201
|
Verdegem D, Moens S, Stapor P, Carmeliet P. Endothelial cell metabolism: parallels and divergences with cancer cell metabolism. Cancer Metab 2014; 2:19. [PMID: 25250177 PMCID: PMC4171726 DOI: 10.1186/2049-3002-2-19] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/14/2014] [Indexed: 02/08/2023] Open
Abstract
The stromal vasculature in tumors is a vital conduit of nutrients and oxygen for cancer cells. To date, the vast majority of studies have focused on unraveling the genetic basis of vessel sprouting (also termed angiogenesis). In contrast to the widely studied changes in cancer cell metabolism, insight in the metabolic regulation of angiogenesis is only just emerging. These studies show that metabolic pathways in endothelial cells (ECs) importantly regulate angiogenesis in conjunction with genetic signals. In this review, we will highlight these emerging insights in EC metabolism and discuss them in perspective of cancer cell metabolism. While it is generally assumed that cancer cells have unique metabolic adaptations, not shared by healthy non-transformed cells, we will discuss parallels and highlight differences between endothelial and cancer cell metabolism and consider possible novel therapeutic opportunities arising from targeting both cancer and endothelial cells.
Collapse
Affiliation(s)
- Dries Verdegem
- Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, Department of Oncology, University of Leuven, Leuven 3000, Belgium ; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, K.U.Leuven, Campus Gasthuisberg, Herestraat 49, box 912, Leuven 3000, Belgium
| | - Stijn Moens
- Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, Department of Oncology, University of Leuven, Leuven 3000, Belgium ; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, K.U.Leuven, Campus Gasthuisberg, Herestraat 49, box 912, Leuven 3000, Belgium
| | - Peter Stapor
- Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, Department of Oncology, University of Leuven, Leuven 3000, Belgium ; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, K.U.Leuven, Campus Gasthuisberg, Herestraat 49, box 912, Leuven 3000, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, Department of Oncology, University of Leuven, Leuven 3000, Belgium ; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, K.U.Leuven, Campus Gasthuisberg, Herestraat 49, box 912, Leuven 3000, Belgium
| |
Collapse
|
202
|
Feeley KP, Westbrook DG, Bray AW, Ballinger SW. An ex-vivo model for evaluating bioenergetics in aortic rings. Redox Biol 2014; 2:1003-7. [PMID: 25460736 PMCID: PMC4215468 DOI: 10.1016/j.redox.2014.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 08/22/2014] [Accepted: 08/26/2014] [Indexed: 01/08/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide and it exhibits a greatly increasing incidence proportional to aging. Atherosclerosis is a chronic condition of arterial hardening resulting in restriction of oxygen delivery and blood flow to the heart. Relationships between mitochondrial DNA damage, oxidant production, and early atherogenesis have been recently established and it is likely that aspects of atherosclerotic risk are metabolic in nature. Here we present a novel method through which mitochondrial bioenergetics can be assessed from whole aorta tissue. This method does not require mitochondrial isolation or cell culture and it allows for multiple technical replicates and expedient measurement. This procedure facilitates quantitative bioenergetic analysis and can provide great utility in better understanding the link between mitochondria, metabolism, and atherogenesis. Cardiovascular disease is a primary cause of mortality and morbidity in developed societies. Atherosclerosis is a common cause of cardiovascular disease, and manifests in the vasculature. Mitochondrial damage has been linked to the early events of atherogenesis; therefore an improved means for assessing mitochondrial function in vascular tissues is of interest. Current bioenergetics methods in vascular tissues are limited to transformed or cultured primary cells, or alternatively, isolated preparations of mitochondria. A novel method for ex vivo ascertainment of mitochondrial bioenergetics in aortic tissue is presented.
Collapse
Affiliation(s)
- Kyle P Feeley
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David G Westbrook
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alexander W Bray
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Scott W Ballinger
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
203
|
Stapor P, Wang X, Goveia J, Moens S, Carmeliet P. Angiogenesis revisited - role and therapeutic potential of targeting endothelial metabolism. J Cell Sci 2014; 127:4331-41. [PMID: 25179598 DOI: 10.1242/jcs.153908] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Clinically approved therapies that target angiogenesis in tumors and ocular diseases focus on controlling pro-angiogenic growth factors in order to reduce aberrant microvascular growth. Although research on angiogenesis has revealed key mechanisms that regulate tissue vascularization, therapeutic success has been limited owing to insufficient efficacy, refractoriness and tumor resistance. Emerging concepts suggest that, in addition to growth factors, vascular metabolism also regulates angiogenesis and is a viable target for manipulating the microvasculature. Recent studies show that endothelial cells rely on glycolysis for ATP production, and that the key glycolytic regulator 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) regulates angiogenesis by controlling the balance of tip versus stalk cells. As endothelial cells acquire a tip cell phenotype, they increase glycolytic production of ATP for sprouting. Furthermore, pharmacological blockade of PFKFB3 causes a transient, partial reduction in glycolysis, and reduces pathological angiogenesis with minimal systemic harm. Although further assessment of endothelial cell metabolism is necessary, these results represent a paradigm shift in anti-angiogenic therapy from targeting angiogenic factors to focusing on vascular metabolism, warranting research on the metabolic pathways that govern angiogenesis.
Collapse
Affiliation(s)
- Peter Stapor
- Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, B-3000 Leuven, Belgium Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, KU Leuven, B-3000 Leuven, Belgium
| | - Xingwu Wang
- Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, B-3000 Leuven, Belgium Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, KU Leuven, B-3000 Leuven, Belgium
| | - Jermaine Goveia
- Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, B-3000 Leuven, Belgium Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, KU Leuven, B-3000 Leuven, Belgium
| | - Stijn Moens
- Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, B-3000 Leuven, Belgium Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, KU Leuven, B-3000 Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, B-3000 Leuven, Belgium Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, KU Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
204
|
Matsuura K, Utoh R, Nagase K, Okano T. Cell sheet approach for tissue engineering and regenerative medicine. J Control Release 2014; 190:228-39. [DOI: 10.1016/j.jconrel.2014.05.024] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/10/2014] [Accepted: 05/13/2014] [Indexed: 01/06/2023]
|
205
|
Sun X, Kumar S, Sharma S, Aggarwal S, Lu Q, Gross C, Rafikova O, Lee SG, Dasarathy S, Hou Y, Meadows ML, Han W, Su Y, Fineman JR, Black SM. Endothelin-1 induces a glycolytic switch in pulmonary arterial endothelial cells via the mitochondrial translocation of endothelial nitric oxide synthase. Am J Respir Cell Mol Biol 2014; 50:1084-95. [PMID: 24392990 DOI: 10.1165/rcmb.2013-0187oc] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Recent studies have indicated that, during the development of pulmonary hypertension (PH), there is a switch from oxidative phosphorylation to glycolysis in the pulmonary endothelium. However, the mechanisms underlying this phenomenon have not been elucidated. Endothelin (ET)-1, an endothelial-derived vasoconstrictor peptide, is increased in PH, and has been shown to play an important role in the oxidative stress associated with PH. Thus, in this study, we investigated whether there was a potential link between increases in ET-1 and mitochondrial remodeling. Our data indicate that ET-1 induces the redistribution of endothelial nitric oxide synthase (eNOS) from the plasma membrane to the mitochondria in pulmonary arterial endothelial cells, and that this was dependent on eNOS uncoupling. We also found that ET-1 disturbed carnitine metabolism, resulting in the attenuation of mitochondrial bioenergetics. However, ATP levels were unchanged due to a compensatory increase in glycolysis. Further mechanistic investigations demonstrated that ET-1 mediated the redistribution of eNOS via the phosphorylation of eNOS at Thr495 by protein kinase C δ. In addition, the glycolytic switch appeared to be dependent on mitochondrial-derived reactive oxygen species that led to the activation of hypoxia-inducible factor signaling. Finally, the cell culture data were confirmed in vivo using the monocrotaline rat model of PH. Thus, we conclude that ET-1 induces a glycolytic switch in pulmonary arterial endothelial cells via the redistribution of uncoupled eNOS to the mitochondria, and that preventing this event may be an approach for the treatment of PH.
Collapse
Affiliation(s)
- Xutong Sun
- 1 Pulmonary Disease Program, Vascular Biology Center, and
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Abstract
Bioenergetics has become central to our understanding of pathological mechanisms, the
development of new therapeutic strategies and as a biomarker for disease progression
in neurodegeneration, diabetes, cancer and cardiovascular disease. A key concept is
that the mitochondrion can act as the ‘canary in the coal mine’ by
serving as an early warning of bioenergetic crisis in patient populations. We propose
that new clinical tests to monitor changes in bioenergetics in patient populations
are needed to take advantage of the early and sensitive ability of bioenergetics to
determine severity and progression in complex and multifactorial diseases. With the
recent development of high-throughput assays to measure cellular energetic function
in the small number of cells that can be isolated from human blood these clinical
tests are now feasible. We have shown that the sequential addition of
well-characterized inhibitors of oxidative phosphorylation allows a bioenergetic
profile to be measured in cells isolated from normal or pathological samples. From
these data we propose that a single value–the Bioenergetic Health Index
(BHI)–can be calculated to represent the patient's composite mitochondrial
profile for a selected cell type. In the present Hypothesis paper, we discuss how BHI
could serve as a dynamic index of bioenergetic health and how it can be measured in
platelets and leucocytes. We propose that, ultimately, BHI has the potential to be a
new biomarker for assessing patient health with both prognostic and diagnostic
value.
Collapse
|
207
|
Badding MA, Fix NR, Antonini JM, Leonard SS. A comparison of cytotoxicity and oxidative stress from welding fumes generated with a new nickel-, copper-based consumable versus mild and stainless steel-based welding in RAW 264.7 mouse macrophages. PLoS One 2014; 9:e101310. [PMID: 24977413 PMCID: PMC4076336 DOI: 10.1371/journal.pone.0101310] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/04/2014] [Indexed: 02/02/2023] Open
Abstract
Welding processes that generate fumes containing toxic metals, such as hexavalent chromium (Cr(VI)), manganese (Mn), and nickel (Ni), have been implicated in lung injury, inflammation, and lung tumor promotion in animal models. While federal regulations have reduced permissible worker exposure limits to Cr(VI), this is not always practical considering that welders may work in confined spaces and exhaust ventilation may be ineffective. Thus, there has been a recent initiative to minimize the potentially hazardous components in welding materials by developing new consumables containing much less Cr(VI) and Mn. A new nickel (Ni) and copper (Cu)-based material (Ni-Cu WF) is being suggested as a safer alternative to stainless steel consumables; however, its adverse cellular effects have not been studied. This study compared the cytotoxic effects of the newly developed Ni-Cu WF with two well-characterized welding fumes, collected from gas metal arc welding using mild steel (GMA-MS) or stainless steel (GMA-SS) electrodes. RAW 264.7 mouse macrophages were exposed to the three welding fumes at two doses (50 µg/ml and 250 µg/ml) for up to 24 hours. Cell viability, reactive oxygen species (ROS) production, phagocytic function, and cytokine production were examined. The GMA-MS and GMA-SS samples were found to be more reactive in terms of ROS production compared to the Ni-Cu WF. However, the fumes from this new material were more cytotoxic, inducing cell death and mitochondrial dysfunction at a lower dose. Additionally, pre-treatment with Ni-Cu WF particles impaired the ability of cells to phagocytize E. coli, suggesting macrophage dysfunction. Thus, the toxic cellular responses to welding fumes are largely due to the metal composition. The results also suggest that reducing Cr(VI) and Mn in the generated fume by increasing the concentration of other metals (e.g., Ni, Cu) may not necessarily improve welder safety.
Collapse
Affiliation(s)
- Melissa A. Badding
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
- * E-mail:
| | - Natalie R. Fix
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| | - James M. Antonini
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| | - Stephen S. Leonard
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| |
Collapse
|
208
|
Kalogeris TJ, Baines C, Korthuis RJ. Adenosine prevents TNFα-induced decrease in endothelial mitochondrial mass via activation of eNOS-PGC-1α regulatory axis. PLoS One 2014; 9:e98459. [PMID: 24914683 PMCID: PMC4051583 DOI: 10.1371/journal.pone.0098459] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 05/03/2014] [Indexed: 12/11/2022] Open
Abstract
We tested whether adenosine, a cytoprotective mediator and trigger of preconditioning, could protect endothelial cells from inflammation-induced deficits in mitochondrial biogenesis and function. We examined this question using human microvascular endothelial cells exposed to TNFα. TNFα produced time and dose-dependent decreases in mitochondrial membrane potential, cellular ATP levels, and mitochondrial mass, preceding an increase in apoptosis. These effects were prevented by co-incubation with adenosine, a nitric oxide (NO) donor, a guanylate cyclase (GC) activator, or a cell-permeant cyclic GMP (cGMP) analog. The effects of adenosine were blocked by a nitric oxide synthase inhibitor, a soluble guanylate cyclase inhibitor, a morpholino antisense oligonucleotide to endothelial nitric oxide synthase (eNOS), or siRNA knockdown of the transcriptional coactivator, PGC-1α. Incubation with exogenous NO, a GC activator, or a cGMP analog reversed the effect of eNOS knockdown, while the effect of NO was blocked by inhibition of GC. The protective effects of NO and cGMP analog were prevented by siRNA to PGC-1α. TNFα also decreased expression of eNOS, cellular NO levels, and PGC-1α expression, which were reversed by adenosine. Exogenous NO, but not adenosine, rescued expression of PGC-1α in cells in which eNOS expression was knocked down by eNOS antisense treatment. Thus, TNFα elicits decreases in endothelial mitochondrial function and mass, and an increase in apoptosis. These effects were reversed by adenosine, an effect mediated by eNOS-synthesized NO, acting via soluble guanylate cyclase/cGMP to activate a mitochondrial biogenesis regulatory program under the control of PGC-1α. These results support the existence of an adenosine-triggered, mito-and cytoprotective mechanism dependent upon an eNOS-PGC-1α regulatory pathway, which acts to preserve endothelial mitochondrial function and mass during inflammatory challenge.
Collapse
Affiliation(s)
- Theodore J. Kalogeris
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| | - Christopher Baines
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States of America
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
| | - Ronald J. Korthuis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States of America
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
209
|
Levonen AL, Hill BG, Kansanen E, Zhang J, Darley-Usmar VM. Redox regulation of antioxidants, autophagy, and the response to stress: implications for electrophile therapeutics. Free Radic Biol Med 2014; 71:196-207. [PMID: 24681256 PMCID: PMC4042208 DOI: 10.1016/j.freeradbiomed.2014.03.025] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/06/2014] [Accepted: 03/12/2014] [Indexed: 12/21/2022]
Abstract
Redox networks in the cell integrate signaling pathways that control metabolism, energetics, cell survival, and death. The physiological second messengers that modulate these pathways include nitric oxide, hydrogen peroxide, and electrophiles. Electrophiles are produced in the cell via both enzymatic and nonenzymatic lipid peroxidation and are also relatively abundant constituents of the diet. These compounds bind covalently to families of cysteine-containing, redox-sensing proteins that constitute the electrophile-responsive proteome, the subproteomes of which are found in localized intracellular domains. These include those proteins controlling responses to oxidative stress in the cytosol-notably the Keap1-Nrf2 pathway, the autophagy-lysosomal pathway, and proteins in other compartments including mitochondria and endoplasmic reticulum. The signaling pathways through which electrophiles function have unique characteristics that could be exploited for novel therapeutic interventions; however, development of such therapeutic strategies has been challenging due to a lack of basic understanding of the mechanisms controlling this form of redox signaling. In this review, we discuss current knowledge of the basic mechanisms of thiol-electrophile signaling and its potential impact on the translation of this important field of redox biology to the clinic. Emerging understanding of thiol-electrophile interactions and redox signaling suggests replacement of the oxidative stress hypothesis with a new redox biology paradigm, which provides an exciting and influential framework for guiding translational research.
Collapse
Affiliation(s)
- Anna-Liisa Levonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Bradford G Hill
- Diabetes and Obesity Center, Institute of Molecular Cardiology, and Department of Medicine, University of Louisville, Louisville, KY, USA; Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY, USA; Department of Physiology and Biophysics, University of Louisville, Louisville, KY, USA
| | - Emilia Kansanen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Department of Veteran Affairs Medical Center, Birmingham, AL 35294, USA
| | - Victor M Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Department of Veteran Affairs Medical Center, Birmingham, AL 35294, USA.
| |
Collapse
|
210
|
Bioenergetic analysis of ovarian cancer cell lines: profiling of histological subtypes and identification of a mitochondria-defective cell line. PLoS One 2014; 9:e98479. [PMID: 24858344 PMCID: PMC4032324 DOI: 10.1371/journal.pone.0098479] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 05/02/2014] [Indexed: 12/17/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal of all gynecological cancers, and encompasses distinct histological subtypes that have specific genetic and tissues-of-origin differences. Ovarian clear cell carcinoma (OCCC) represents approximately 10% of cases and has been termed a stress responsive cancer. OCCC is characterized by increased expression of oxidative stress and glycolysis-related genes. In the present study, we hypothesized that bioenergetic profiling might uniquely distinguish OCCC from other EOC histological subtypes. Using an extracellular flux analyzer, OCCC lines (ES-2, TOV-21-G) were shown to be highly metabolically active, with high oxygen consumption rate (OCR) and high extracellular acidification rate (ECAR), indicative of enhanced mitochondrial oxidative phosphorylation and glycolytic rate, respectively. A high bioenergetics profile was associated with the cell lines' ability to form anchorage independent spheroids. Given their high glycolytic and mitochondrial activity, OCCC cells displayed strong sensitivity to 2-deoxy-D-glucose and Rotenone growth inhibition, although this chemosensitivity profile was not specific to only OCCC cells. Bioenergetic profiling also identified a non-OCCC cell line, OVCA420, to have severely compromised mitochondrial function, based on low OCR and a lack of stimulation of maximal respiration following application of the uncoupler FCCP. This was accompanied by mitochondrial morphology changes indicative of enhanced fission, increased expression of the mitochondrial fission protein Drp1, a loss of mitochondrial membrane potential and dependence on glycolysis. Importantly, this loss of mitochondrial function was accompanied by the inability of OVCA420 cells to cope with hypoxic stress, and a compromised ability to stabilize HIF-1α in response to 1% O2 hypoxia. This knowledge may be imperative for researchers planning to utilize this cell line for further studies of metabolism and hypoxia, and suggests that altered mitochondrial fission dynamics represents a phenotype of a subpopulation of EOCs.
Collapse
|
211
|
Familtseva A, Kalani A, Chaturvedi P, Tyagi N, Metreveli N, Tyagi SC. Mitochondrial mitophagy in mesenteric artery remodeling in hyperhomocysteinemia. Physiol Rep 2014; 2:e00283. [PMID: 24771691 PMCID: PMC4001876 DOI: 10.14814/phy2.283] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Although high levels of homocysteine also termed as hyperhomocysteinemia (HHcy) has been associated with inflammatory bowel disease and mesenteric artery occlusion, the mitochondrial mechanisms behind endothelial dysfunction that lead to mesenteric artery remodeling are largely unknown. We hypothesize that in HHcy there is increased mitochondrial fission due to altered Mfn‐2/Drp‐1 ratio, which leads to endothelial dysfunction and collagen deposition in the mesenteric artery inducing vascular remodeling. To test this hypothesis, we used four groups of mice: (i) WT (C57BL/6J); (ii) mice with HHcy (CBS+/−); (iii) oxidative stress resistant mice (C3H) and (iv) mice with HHcy and oxidative stress resistance (CBS+/−/C3H). For mitochondrial dynamics, we studied the expression of Mfn‐2 which is a mitochondrial fusion protein and Drp‐1 which is a mitochondrial fission protein by western blots, real‐time PCR and immunohistochemistry. We also examined oxidative stress markers, endothelial cell, and gap junction proteins that play an important role in endothelial dysfunction. Our data showed increase in oxidative stress, mitochondrial fission (Drp‐1), and collagen deposition in CBS+/− compared to WT and C3H mice. We also observed significant down regulation of Mfn‐2 (mitochondrial fusion marker), CD31, eNOS and connexin 40 (gap junction protein) in CBS+/− mice as compared to WT and C3H mice. In conclusion, our data suggested that HHcy increased mitochondrial fission (i.e., decreased Mfn‐2/Drp‐1 ratio, causing mitophagy) that leads to endothelial cell damage and collagen deposition in the mesenteric artery. This is a novel report on the role of mitochondrial dynamics alteration defining mesenteric artery remodeling. e00283 This article is a novel report on the role of mitochondrial dynamics in mesenteric artery remodeling during hyperhomocysteinemia. The study can contribute significantly toward understanding the mesenteric mitochondrial mechanisms underpinning inflammatory bowel disease – a major clinical concern.
Collapse
Affiliation(s)
- Anastasia Familtseva
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, 40202, Kentucky
| | | | | | | | | | | |
Collapse
|
212
|
Szczesny B, Módis K, Yanagi K, Coletta C, Le Trionnaire S, Perry A, Wood ME, Whiteman M, Szabo C. AP39, a novel mitochondria-targeted hydrogen sulfide donor, stimulates cellular bioenergetics, exerts cytoprotective effects and protects against the loss of mitochondrial DNA integrity in oxidatively stressed endothelial cells in vitro. Nitric Oxide 2014; 41:120-30. [PMID: 24755204 DOI: 10.1016/j.niox.2014.04.008] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 04/08/2014] [Accepted: 04/14/2014] [Indexed: 12/12/2022]
Abstract
The purpose of the current study was to investigate the effect of the recently synthesized mitochondrially-targeted H2S donor, AP39 [(10-oxo-10-(4-(3-thioxo-3H-1,2-dithiol-5yl)phenoxy)decyl) triphenylphosphonium bromide], on bioenergetics, viability, and mitochondrial DNA integrity in bEnd.3 murine microvascular endothelial cells in vitro, under normal conditions, and during oxidative stress. Intracellular H2S was assessed by the fluorescent dye 7-azido-4-methylcoumarin. For the measurement of bioenergetic function, the XF24 Extracellular Flux Analyzer was used. Cell viability was estimated by the combination of the MTT and LDH methods. Oxidative protein modifications were measured by the Oxyblot method. Reactive oxygen species production was monitored by the MitoSOX method. Mitochondrial and nuclear DNA integrity were assayed by the Long Amplicon PCR method. Oxidative stress was induced by addition of glucose oxidase. Addition of AP39 (30-300 nM) to bEnd.3 cells increased intracellular H2S levels, with a preferential response in the mitochondrial regions. AP39 exerted a concentration-dependent effect on mitochondrial activity, which consisted of a stimulation of mitochondrial electron transport and cellular bioenergetic function at lower concentrations (30-100 nM) and an inhibitory effect at the higher concentration of 300 nM. Under oxidative stress conditions induced by glucose oxidase, an increase in oxidative protein modification and an enhancement in MitoSOX oxidation was noted, coupled with an inhibition of cellular bioenergetic function and a reduction in cell viability. AP39 pretreatment attenuated these responses. Glucose oxidase induced a preferential damage to the mitochondrial DNA; AP39 (100 nM) pretreatment protected against it. In conclusion, the current paper documents antioxidant and cytoprotective effects of AP39 under oxidative stress conditions, including a protection against oxidative mitochondrial DNA damage.
Collapse
Affiliation(s)
- Bartosz Szczesny
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Katalin Módis
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Kazunori Yanagi
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ciro Coletta
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Sophie Le Trionnaire
- University of Exeter Medical School, St. Luke's Campus, Exeter, England, United Kingdom
| | - Alexis Perry
- Biosciences, College of Life and Environmental Science, University of Exeter, England, United Kingdom
| | - Mark E Wood
- Biosciences, College of Life and Environmental Science, University of Exeter, England, United Kingdom
| | - Matthew Whiteman
- University of Exeter Medical School, St. Luke's Campus, Exeter, England, United Kingdom.
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
213
|
Dunham-Snary KJ, Sandel MW, Westbrook DG, Ballinger SW. A method for assessing mitochondrial bioenergetics in whole white adipose tissues. Redox Biol 2014; 2:656-60. [PMID: 24936439 PMCID: PMC4052527 DOI: 10.1016/j.redox.2014.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 04/14/2014] [Accepted: 04/15/2014] [Indexed: 01/30/2023] Open
Abstract
Obesity is a primary risk factor for numerous metabolic diseases including metabolic syndrome, type II diabetes (T2DM), cardiovascular disease and cancer. Although classically viewed as a storage organ, the field of white adipose tissue biology is expanding to include the consideration of the tissue as an endocrine organ and major contributor to overall metabolism. Given its role in energy production, the mitochondrion has long been a focus of study in metabolic dysfunction and a link between the organelle and white adipose tissue function is likely. Herein, we present a novel method for assessing mitochondrial bioenergetics from whole white adipose tissue. This method requires minimal manipulation of tissue, and eliminates the need for cell isolation and culture. Additionally, this method overcomes some of the limitations to working with transformed and/or isolated primary cells and allows for results to be obtained more expediently. In addition to the novel method, we present a comprehensive statistical analysis of bioenergetic data as well as guidelines for outlier analysis. Obesity and metabolic disease affect 1/3 of the US population; incidence is rising. WAT is emerging as an endocrine organ and major contributor to metabolism. The relationship between mitochondria and white adipose tissue needs to be explored. Current bioenergetics methods are limited to transformed or cultured primary cells. A novel method for tissue preparation, data acquisition and analysis is presented.
Collapse
Affiliation(s)
- Kimberly J Dunham-Snary
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America
| | - Michael W Sandel
- Department of Biostatistics, Section on Statistical Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, United States of America
| | - David G Westbrook
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America
| | - Scott W Ballinger
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America
| |
Collapse
|
214
|
Mouradian M, Kikawa KD, Dranka BP, Komas SM, Kalyanaraman B, Pardini RS. Docosahexaenoic acid attenuates breast cancer cell metabolism and the Warburg phenotype by targeting bioenergetic function. Mol Carcinog 2014; 54:810-20. [PMID: 24729481 DOI: 10.1002/mc.22151] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 02/05/2014] [Accepted: 03/06/2014] [Indexed: 01/19/2023]
Abstract
Docosahexaenoic acid (DHA; C22:6n-3) depresses mammary carcinoma proliferation and growth in cell culture and in animal models. The current study explored the role of interrupting bioenergetic pathways in BT-474 and MDA-MB-231 breast cancer cell lines representing respiratory and glycolytic phenotypes, respectively and comparing the impacts of DHA with a non-transformed cell line, MCF-10A. Metabolic investigation revealed that DHA supplementation significantly diminished the bioenergetic profile of the malignant cell lines in a dose-dependent manner. DHA enrichment also resulted in decreases in hypoxia-inducible factor (HIF-1α) total protein level and transcriptional activity in the malignant cell lines but not in the non-transformed cell line. Downstream targets of HIF-1α, including glucose transporter 1 (GLUT 1) and lactate dehydrogenase (LDH), were decreased by DHA treatment in the BT-474 cell line, as well as decreases in LDH protein level in the MDA-MB-231 cell line. Glucose uptake, total glucose oxidation, glycolytic metabolism, and lactate production were significantly decreased in response to DHA supplementation; thereby enhancing metabolic injury and decreasing oxidative metabolism. The DHA-induced metabolic changes led to a marked decrease of intracellular ATP levels by 50% in both cancer cell lines, which mediated phosphorylation of metabolic stress marker, AMPK, at Thr172. These findings show that DHA contributes to impaired cancer cell growth and survival by altering cancer cell metabolism, increasing metabolic stress and altering HIF-1α-associated metabolism, while not affecting non-transformed MCF-10A cells. This study provides rationale for enhancement of current cancer prevention models and current therapies by combining them with dietary sources, like DHA.
Collapse
Affiliation(s)
- Michael Mouradian
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, Nevada
| | - Keith D Kikawa
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, Nevada
| | - Brian P Dranka
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Steven M Komas
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Ronald S Pardini
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, Nevada
| |
Collapse
|
215
|
Diers AR, Broniowska KA, Chang CF, Hill RB, Hogg N. S-Nitrosation of monocarboxylate transporter 1: inhibition of pyruvate-fueled respiration and proliferation of breast cancer cells. Free Radic Biol Med 2014; 69:229-38. [PMID: 24486553 PMCID: PMC3982622 DOI: 10.1016/j.freeradbiomed.2014.01.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 01/22/2014] [Accepted: 01/22/2014] [Indexed: 02/07/2023]
Abstract
Energy substrates metabolized through mitochondria (e.g., pyruvate, glutamine) are required for biosynthesis of macromolecules in proliferating cells. Because several mitochondrial proteins are known to be targets of S-nitrosation, we determined whether bioenergetics are modulated by S-nitrosation and defined the subsequent effects on proliferation. The nitrosating agent S-nitroso-L-cysteine (L-CysNO) was used to initiate intracellular S-nitrosation, and treatment decreased mitochondrial function and inhibited proliferation of MCF7 mammary adenocarcinoma cells. Surprisingly, the d-isomer of CysNO (D-CysNO), which is not transported into cells, also caused mitochondrial dysfunction and limited proliferation. Both L- and D-CysNO also inhibited cellular pyruvate uptake and caused S-nitrosation of thiol groups on monocarboxylate transporter 1, a proton-linked pyruvate transporter. These data demonstrate the importance of mitochondrial metabolism in proliferative responses in breast cancer and highlight a novel role for inhibition of metabolic substrate uptake through S-nitrosation of exofacial protein thiols in cellular responses to nitrosative stress.
Collapse
Affiliation(s)
- Anne R Diers
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Redox Biology Program, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Katarzyna A Broniowska
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Redox Biology Program, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ching-Fang Chang
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Redox Biology Program, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - R Blake Hill
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Neil Hogg
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Redox Biology Program, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
216
|
Oxidative stress induces mitochondrial dysfunction in a subset of autistic lymphoblastoid cell lines. Transl Psychiatry 2014; 4:e377. [PMID: 24690598 PMCID: PMC4012280 DOI: 10.1038/tp.2014.15] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/31/2014] [Accepted: 02/02/2014] [Indexed: 11/10/2022] Open
Abstract
There is an increasing recognition that mitochondrial dysfunction is associated with autism spectrum disorders. However, little attention has been given to the etiology of mitochondrial dysfunction and how mitochondrial abnormalities might interact with other physiological disturbances such as oxidative stress. Reserve capacity is a measure of the ability of the mitochondria to respond to physiological stress. In this study, we demonstrate, for the first time, that lymphoblastoid cell lines (LCLs) derived from children with autistic disorder (AD) have an abnormal mitochondrial reserve capacity before and after exposure to reactive oxygen species (ROS). Ten (44%) of 22 AD LCLs exhibited abnormally high reserve capacity at baseline and a sharp depletion of reserve capacity when challenged with ROS. This depletion of reserve capacity was found to be directly related to an atypical simultaneous increase in both proton-leak respiration and adenosine triphosphate-linked respiration in response to increased ROS in this AD LCL subgroup. In this AD LCL subgroup, 48-hour pretreatment with N-acetylcysteine, a glutathione precursor, prevented these abnormalities and improved glutathione metabolism, suggesting a role for altered glutathione metabolism associated with this type of mitochondrial dysfunction. The results of this study suggest that a significant subgroup of AD children may have alterations in mitochondrial function, which could render them more vulnerable to a pro-oxidant microenvironment as well as intrinsic and extrinsic sources of ROS such as immune activation and pro-oxidant environmental toxins. These findings are consistent with the notion that AD is caused by a combination of genetic and environmental factors.
Collapse
|
217
|
Lottes RG, Newton DA, Spyropoulos DD, Baatz JE. Alveolar type II cells maintain bioenergetic homeostasis in hypoxia through metabolic and molecular adaptation. Am J Physiol Lung Cell Mol Physiol 2014; 306:L947-55. [PMID: 24682450 DOI: 10.1152/ajplung.00298.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Although many lung diseases are associated with hypoxia, alveolar type II epithelial (ATII) cell impairment, and pulmonary surfactant dysfunction, the effects of O(2) limitation on metabolic pathways necessary to maintain cellular energy in ATII cells have not been studied extensively. This report presents results of targeted assays aimed at identifying specific metabolic processes that contribute to energy homeostasis using primary ATII cells and a model ATII cell line, mouse lung epithelial 15 (MLE-15), cultured in normoxic and hypoxic conditions. MLEs cultured in normoxia demonstrated a robust O(2) consumption rate (OCR) coupled to ATP generation and limited extracellular lactate production, indicating reliance on oxidative phosphorylation for ATP production. Pharmacological uncoupling of respiration increased OCR in normoxic cultures to 175% of basal levels, indicating significant spare respiratory capacity. However, when exposed to hypoxia for 20 h, basal O(2) consumption fell to 60% of normoxic rates, and cells maintained only ∼50% of normoxic spare respiratory capacity, indicating suppression of mitochondrial function, although intracellular ATP levels remained at near normoxic levels. Moreover, while hypoxic exposure stimulated glycogen synthesis and storage in MLE-15, glycolytic rate (as measured by lactate generation) was not significantly increased in the cells, despite enhanced expression of several enzymes related to glycolysis. These results were largely recapitulated in murine primary ATII, demonstrating MLE-15 suitability for modeling ATII metabolism. The ability of ATII cells to maintain ATP levels in hypoxia without enhancing glycolysis suggests that these cells are exceptionally efficient at conserving ATP to maintain bioenergetic homeostasis under O(2) limitation.
Collapse
Affiliation(s)
- Robyn G Lottes
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolia; and
| | - Danforth A Newton
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolia; and
| | - Demetri D Spyropoulos
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolia
| | - John E Baatz
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolia; and
| |
Collapse
|
218
|
Pathak R, Pawar SA, Fu Q, Gupta PK, Berbée M, Garg S, Sridharan V, Wang W, Biju PG, Krager KJ, Boerma M, Ghosh SP, Cheema AK, Hendrickson HP, Aykin-Burns N, Hauer-Jensen M. Characterization of transgenic Gfrp knock-in mice: implications for tetrahydrobiopterin in modulation of normal tissue radiation responses. Antioxid Redox Signal 2014; 20:1436-46. [PMID: 23521531 PMCID: PMC3936502 DOI: 10.1089/ars.2012.5025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 02/22/2013] [Accepted: 03/22/2013] [Indexed: 01/17/2023]
Abstract
AIMS The free radical scavenger and nitric oxide synthase cofactor, 5,6,7,8-tetrahydrobiopterin (BH4), plays a well-documented role in many disorders associated with oxidative stress, including normal tissue radiation responses. Radiation exposure is associated with decreased BH4 levels, while BH4 supplementation attenuates aspects of radiation toxicity. The endogenous synthesis of BH4 is catalyzed by the enzyme guanosine triphosphate cyclohydrolase I (GTPCH1), which is regulated by the inhibitory GTP cyclohydrolase I feedback regulatory protein (GFRP). We here report and characterize a novel, Cre-Lox-driven, transgenic mouse model that overexpresses Gfrp. RESULTS Compared to control littermates, transgenic mice exhibited high transgene copy numbers, increased Gfrp mRNA and GFRP expression, enhanced GFRP-GTPCH1 interaction, reduced BH4 levels, and low glutathione (GSH) levels and differential mitochondrial bioenergetic profiles. After exposure to total body irradiation, transgenic mice showed decreased BH4/7,8-dihydrobiopterin ratios, increased vascular oxidative stress, and reduced white blood cell counts compared with controls. INNOVATION AND CONCLUSION This novel Gfrp knock-in transgenic mouse model allows elucidation of the role of GFRP in the regulation of BH4 biosynthesis. This model is a valuable tool to study the involvement of BH4 in whole body and tissue-specific radiation responses and other conditions associated with oxidative stress.
Collapse
Affiliation(s)
- Rupak Pathak
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Snehalata A. Pawar
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Qiang Fu
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Prem K. Gupta
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Maaike Berbée
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Sarita Garg
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Vijayalakshmi Sridharan
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Wenze Wang
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Prabath G. Biju
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Kimberly J. Krager
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Marjan Boerma
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Sanchita P. Ghosh
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Amrita K. Cheema
- Department of Oncology, Georgetown University Medical Center, Washington, District of Columbia
| | - Howard P. Hendrickson
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Nukhet Aykin-Burns
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Martin Hauer-Jensen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Surgical Service, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| |
Collapse
|
219
|
Lee KK, Boelsterli UA. Bypassing the compromised mitochondrial electron transport with methylene blue alleviates efavirenz/isoniazid-induced oxidant stress and mitochondria-mediated cell death in mouse hepatocytes. Redox Biol 2014; 2:599-609. [PMID: 25460728 PMCID: PMC4297936 DOI: 10.1016/j.redox.2014.03.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 03/11/2014] [Indexed: 11/03/2022] Open
Abstract
Efavirenz (EFV) is an anti-retroviral drug frequently combined with isoniazid (INH) to treat HIV-1/tuberculosis co-infected patients. Both drugs have been associated with idiosyncratic liver injury (DILI), but combined anti-retroviral and anti-tubercular therapy can increase the risk for DILI as compared to either drug class alone. Because both EFV and INH have been implicated in targeting mitochondria, we aimed at exploring whether the two drugs might cause synergistic effects on the electron transport chain. We found that EFV inhibited complex I activity in isolated mouse liver mitochondria (IC50 ˜30 μM), whereas hydrazine, a major metabolite of INH generated by acylamidase-mediated hydrolytic cleavage, inhibited complex II activity (IC50 ˜30 μM). Neither INH alone (≤1000 μM) nor EFV alone (≤30 μM) was able to induce cell injury in cultured mouse hepatocytes. However, combined EFV/INH exposure resulted in increased superoxide formation and peroxynitrite stress, leading to the opening of the cyclosporine A-insensitive mode of the mitochondrial permeability transition (mPT), and necrotic cell death. The peroxynitrite scavengers, CBA or Fe-TMPyP, protected against mPT induction and alleviated cell injury. The acylamidase inhibitor bis-p-nitrophenyl phosphate prevented cell injury, suggesting that hydrazine greatly contributed to the toxicity. Methylene blue, a redox-active alternative electron acceptor/donor that bypasses complex I/II, effectively protected against EFV/INH-induced toxicity. These data demonstrate that, in murine hepatocytes, the mitochondrial electron transport chain is a critical target of combined EFV/INH exposure, and that this drug combination can lead to peroxynitrite stress-induced mPT and hepatocellular necrosis. These results are compatible with the concept that underlying silent mitochondrial dysfunction may be a key susceptibility factor contributing to idiosyncratic drug-induced liver injury.
Collapse
Affiliation(s)
- Kang Kwang Lee
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, United States of America
| | - Urs A Boelsterli
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, United States of America.
| |
Collapse
|
220
|
Issaq SH, Teicher BA, Monks A. Bioenergetic properties of human sarcoma cells help define sensitivity to metabolic inhibitors. Cell Cycle 2014; 13:1152-61. [PMID: 24553119 PMCID: PMC4013165 DOI: 10.4161/cc.28010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 01/26/2014] [Accepted: 01/27/2014] [Indexed: 12/22/2022] Open
Abstract
Sarcomas represent a diverse group of malignancies with distinct molecular and pathological features. A better understanding of the alterations associated with specific sarcoma subtypes is critically important to improve sarcoma treatment. Renewed interest in the metabolic properties of cancer cells has led to an exploration of targeting metabolic dependencies as a therapeutic strategy. In this study, we have characterized key bioenergetic properties of human sarcoma cells in order to identify metabolic vulnerabilities between sarcoma subtypes. We have also investigated the effects of compounds that inhibit glycolysis or mitochondrial respiration, either alone or in combination, and examined relationships between bioenergetic parameters and sensitivity to metabolic inhibitors. Using 2-deoxy-D-glucose (2-DG), a competitive inhibitor of glycolysis, oligomycin, an inhibitor of mitochondrial ATP synthase, and metformin, a widely used anti-diabetes drug and inhibitor of complex I of the mitochondrial respiratory chain, we evaluated the effects of metabolic inhibition on sarcoma cell growth and bioenergetic function. Inhibition of glycolysis by 2-DG effectively reduced the viability of alveolar rhabdomyosarcoma cells vs. embryonal rhabdomyosarcoma, osteosarcoma, and normal cells. Interestingly, inhibitors of mitochondrial respiration did not significantly affect viability, but were able to increase sensitivity of sarcomas to inhibition of glycolysis. Additionally, inhibition of glycolysis significantly reduced intracellular ATP levels, and sensitivity to 2-DG-induced growth inhibition was related to respiratory rates and glycolytic dependency. Our findings demonstrate novel relationships between sarcoma bioenergetics and sensitivity to metabolic inhibitors, and suggest that inhibition of metabolic pathways in sarcomas should be further investigated as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Sameer H Issaq
- Molecular Pharmacology Branch; Leidos Biomedical Research, Inc.; Frederick National Laboratory for Cancer Research; Frederick, MD USA
| | - Beverly A Teicher
- Division of Cancer Treatment and Diagnosis; National Cancer Institute; Rockville, MD USA
| | - Anne Monks
- Molecular Pharmacology Branch; Leidos Biomedical Research, Inc.; Frederick National Laboratory for Cancer Research; Frederick, MD USA
| |
Collapse
|
221
|
Salabei JK, Gibb AA, Hill BG. Comprehensive measurement of respiratory activity in permeabilized cells using extracellular flux analysis. Nat Protoc 2014; 9:421-38. [PMID: 24457333 DOI: 10.1038/nprot.2014.018] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Extracellular flux (XF) analysis has become a mainstream method for measuring mitochondrial function in cells and tissues. Although this technique is commonly used to measure bioenergetics in intact cells, we outline here a detailed XF protocol for measuring respiration in permeabilized cells. Cells are permeabilized using saponin (SAP), digitonin (DIG) or recombinant perfringolysin O (rPFO) (XF-plasma membrane permeabilizer (PMP) reagent), and they are provided with specific substrates to measure complex I- or complex II-mediated respiratory activity, complex III+IV respiratory activity or complex IV activity. Medium- and long-chain acylcarnitines or glutamine may also be provided for measuring fatty acid (FA) oxidation or glutamine oxidation, respectively. This protocol uses a minimal number of cells compared with other protocols and does not require isolation of mitochondria. The results are highly reproducible, and mitochondria remain well coupled. Collectively, this protocol provides comprehensive and detailed information regarding mitochondrial activity and efficiency, and, after preparative steps, it takes 6-8 h to complete.
Collapse
Affiliation(s)
- Joshua K Salabei
- Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Andrew A Gibb
- 1] Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, Kentucky, USA. [2] Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Bradford G Hill
- 1] Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, Kentucky, USA. [2] Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, Kentucky, USA. [3] Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
222
|
Kramer PA, Ravi S, Chacko B, Johnson MS, Darley-Usmar VM. A review of the mitochondrial and glycolytic metabolism in human platelets and leukocytes: implications for their use as bioenergetic biomarkers. Redox Biol 2014; 2:206-10. [PMID: 24494194 PMCID: PMC3909784 DOI: 10.1016/j.redox.2013.12.026] [Citation(s) in RCA: 308] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 12/30/2013] [Indexed: 01/27/2023] Open
Abstract
The assessment of metabolic function in cells isolated from human blood for treatment and diagnosis of disease is a new and important area of translational research. It is now becoming clear that a broad range of pathologies which present clinically with symptoms predominantly in one organ, such as the brain or kidney, also modulate mitochondrial energetics in platelets and leukocytes allowing these cells to serve as “the canary in the coal mine” for bioenergetic dysfunction. This opens up the possibility that circulating platelets and leukocytes can sense metabolic stress in patients and serve as biomarkers of mitochondrial dysfunction in human pathologies such as diabetes, neurodegeneration and cardiovascular disease. In this overview we will describe how the utilization of glycolysis and oxidative phosphorylation differs in platelets and leukocytes and discuss how they can be used in patient populations. Since it is clear that the metabolic programs between leukocytes and platelets are fundamentally distinct the measurement of mitochondrial function in distinct cell populations is necessary for translational research. Monocytes, lymphocytes, neutrophils and platelets have distinct bioenergetic programs that regulate energy production. Platelets and monocytes exhibit a high level of aerobic glycolysis and mitochondrial respiration. Lymphocytes have a low glycolytic capacity while neutrophils have little or no detectable oxidative phosphorylation. The levels of mitochondrial complex IV and III subunits differ substantially between lymphocytes, monocytes and platelets.
Collapse
Affiliation(s)
- Philip A Kramer
- Department of Pathology, UAB Mitochondrial Medicine Laboratory, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Saranya Ravi
- Department of Pathology, UAB Mitochondrial Medicine Laboratory, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Balu Chacko
- Department of Pathology, UAB Mitochondrial Medicine Laboratory, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michelle S Johnson
- Department of Pathology, UAB Mitochondrial Medicine Laboratory, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Victor M Darley-Usmar
- Department of Pathology, UAB Mitochondrial Medicine Laboratory, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
223
|
Modulation of mitochondrial bioenergetics in a skeletal muscle cell line model of mitochondrial toxicity. Redox Biol 2014; 2:224-33. [PMID: 24494197 PMCID: PMC3909783 DOI: 10.1016/j.redox.2013.12.028] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 12/24/2013] [Accepted: 12/24/2013] [Indexed: 12/03/2022] Open
Abstract
Mitochondrial toxicity is increasingly being implicated as a contributing factor to many xenobiotic-induced organ toxicities, including skeletal muscle toxicity. This has necessitated the need for predictive in vitro models that are able to sensitively detect mitochondrial toxicity of chemical entities early in the research and development process. One such cell model involves substituting galactose for glucose in the culture media. Since cells cultured in galactose are unable to generate sufficient ATP from glycolysis they are forced to rely on mitochondrial oxidative phosphorylation for ATP generation and consequently are more sensitive to mitochondrial perturbation than cells grown in glucose. The aim of this study was to characterise cellular growth, bioenergetics and mitochondrial toxicity of the L6 rat skeletal muscle cell line cultured in either high glucose or galactose media. L6 myoblasts proliferated more slowly when cultured in galactose media, although they maintained similar levels of ATP. Galactose cultured L6 cells were significantly more sensitive to classical mitochondrial toxicants than glucose-cultured cells, confirming the cells had adapted to galactose media. Analysis of bioenergetic function with the XF Seahorse extracellular flux analyser demonstrated that oxygen consumption rate (OCR) was significantly increased whereas extracellular acidification rate (ECAR), a measure of glycolysis, was decreased in cells grown in galactose. Mitochondria operated closer to state 3 respiration and had a lower mitochondrial membrane potential and basal mitochondrial O2•– level compared to cells in the glucose model. An antimycin A (AA) dose response revealed that there was no difference in the sensitivity of OCR to AA inhibition between glucose and galactose cells. Importantly, cells in glucose were able to up-regulate glycolysis, while galactose cells were not. These results confirm that L6 cells are able to adapt to growth in a galactose media model and are consequently more susceptible to mitochondrial toxicants. L6 cells grown in glucose and galactose as model to detect skeletal muscle mitochondrial toxicity. L6 cells grown in galactose rely on mitochondrial oxidative phosphorylation for ATP production. Galactose cells are unable to use glycolysis to produce ATP following mitochondrial inhibition.
Collapse
Key Words
- AA, antimycin A
- ANT, adenine nucleotide translocase
- CPD, cumulative population doublings
- ECAR, extracellular acidification rate
- ETC, electron transport chain
- Extracellular flux analysis
- FCCP, Carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone
- FSC, forward scatter
- Galactose
- Mitochondria
- O2•–, superoxide
- OCR, oxygen consumption rate
- OXPHOS, oxidative phosphorylation
- Oligo, oligomycin
- PD, population doublings
- PPP, pentose phosphate pathway
- RCR, respiratory control ratio
- SSC, side scatter
- Skeletal muscle toxicity
- TCA, tricarboxylic acid cycle
- UCPs, uncoupling proteins
- XF, extracellular flux
Collapse
|
224
|
Rose S, Frye RE, Slattery J, Wynne R, Tippett M, Pavliv O, Melnyk S, James SJ. Oxidative stress induces mitochondrial dysfunction in a subset of autism lymphoblastoid cell lines in a well-matched case control cohort. PLoS One 2014; 9:e85436. [PMID: 24416410 PMCID: PMC3885720 DOI: 10.1371/journal.pone.0085436] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 11/26/2013] [Indexed: 01/26/2023] Open
Abstract
There is increasing recognition that mitochondrial dysfunction is associated with the autism spectrum disorders. However, little attention has been given to the etiology of mitochondrial dysfunction or how mitochondrial abnormalities might interact with other physiological disturbances associated with autism, such as oxidative stress. In the current study we used respirometry to examine reserve capacity, a measure of the mitochondrial ability to respond to physiological stress, in lymphoblastoid cell lines (LCLs) derived from children with autistic disorder (AD) as well as age and gender-matched control LCLs. We demonstrate, for the first time, that LCLs derived from children with AD have an abnormal mitochondrial reserve capacity before and after exposure to increasingly higher concentrations of 2,3-dimethoxy-1,4-napthoquinone (DMNQ), an agent that increases intracellular reactive oxygen species (ROS). Specifically, the AD LCLs exhibit a higher reserve capacity at baseline and a sharper depletion of reserve capacity when ROS exposure is increased, as compared to control LCLs. Detailed investigation indicated that reserve capacity abnormalities seen in AD LCLs were the result of higher ATP-linked respiration and maximal respiratory capacity at baseline combined with a marked increase in proton leak respiration as ROS was increased. We further demonstrate that these reserve capacity abnormalities are driven by a subgroup of eight (32%) of 25 AD LCLs. Additional investigation of this subgroup of AD LCLs with reserve capacity abnormalities revealed that it demonstrated a greater reliance on glycolysis and on uncoupling protein 2 to regulate oxidative stress at the inner mitochondria membrane. This study suggests that a significant subgroup of AD children may have alterations in mitochondrial function which could render them more vulnerable to a pro-oxidant microenvironment derived from intrinsic and extrinsic sources of ROS such as immune activation and pro-oxidant environmental toxicants. These findings are consistent with the notion that AD is caused by a combination of genetic and environmental factors.
Collapse
Affiliation(s)
- Shannon Rose
- Department of Pediatrics, Arkansas Children's Hospital Research Institute, Little Rock, Arkansas, United States of America
| | - Richard E. Frye
- Department of Pediatrics, Arkansas Children's Hospital Research Institute, Little Rock, Arkansas, United States of America
- * E-mail:
| | - John Slattery
- Department of Pediatrics, Arkansas Children's Hospital Research Institute, Little Rock, Arkansas, United States of America
| | - Rebecca Wynne
- Department of Pediatrics, Arkansas Children's Hospital Research Institute, Little Rock, Arkansas, United States of America
| | - Marie Tippett
- Department of Pediatrics, Arkansas Children's Hospital Research Institute, Little Rock, Arkansas, United States of America
| | - Oleksandra Pavliv
- Department of Pediatrics, Arkansas Children's Hospital Research Institute, Little Rock, Arkansas, United States of America
| | - Stepan Melnyk
- Department of Pediatrics, Arkansas Children's Hospital Research Institute, Little Rock, Arkansas, United States of America
| | - S. Jill James
- Department of Pediatrics, Arkansas Children's Hospital Research Institute, Little Rock, Arkansas, United States of America
| |
Collapse
|
225
|
Dymkowska D, Drabarek B, Podszywałow-Bartnicka P, Szczepanowska J, Zabłocki K. Hyperglycaemia modifies energy metabolism and reactive oxygen species formation in endothelial cells in vitro. Arch Biochem Biophys 2014; 542:7-13. [DOI: 10.1016/j.abb.2013.11.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 11/06/2013] [Accepted: 11/22/2013] [Indexed: 11/24/2022]
|
226
|
Myatt L, Muralimanoharan S, Maloyan A. Effect of preeclampsia on placental function: influence of sexual dimorphism, microRNA's and mitochondria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 814:133-46. [PMID: 25015807 DOI: 10.1007/978-1-4939-1031-1_12] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In pregnancy fetal growth and development occur in a sexually dimorphic manner. Male and female fetuses respond differently to the intrauterine environment with males disproportionately suffering from perinatal morbidity and mortality. We have demonstrated placental dysfunction and sexually dimorphic responses in pregnancies complicated by severe preeclampsia. Production of cytokines and apoptosis in the male placenta is heightened relative to that of the female placenta. We also find increased expression and stabilization and a sexual dimorphism in expression of the transcription factor HIF-1α, but a defect in binding to the hypoxia response element with corresponding reduced expression of HIF-1α target genes including VEGF and Glut-1. HIF-1α is involved in crosstalk with the redox sensitive transcription factor NFκB in regulation by cytokines, reactive oxygen species and expression of inflammatory genes. We find increased placental expression and DNA binding of NFκB and a sexually dimorphic response suggesting a role for NFκB in placental dysfunction with preeclampsia. Placental mitochondrial complex III activity and complex I and IV expression are reduced and alterations in mitochondrial morphology are found in preeclampsia and are linked to the hypoxamir miR-210. We propose that with severe PE placental HIF-1α is stabilized by excessive ROS, inflammation and relative hypoxia. This increases the expression of miR-210 in the placenta causing repression of mitochondria-associated target genes, potentially leading to mitochondrial and placental dysfunction. This placental dysfunction may lead to a fetal programming effect that results in disease in later life.
Collapse
Affiliation(s)
- Leslie Myatt
- Department of Obstetrics and Gynecology, Center for Pregnancy and Newborn Research, University of Texas Health Science Center San Antonio, San Antonio, TX, 78229-3900, USA,
| | | | | |
Collapse
|
227
|
Yu J, Xiao Y, Liu J, Ji Y, Liu H, Xu J, Jin X, Liu L, Guan MX, Jiang P. Loss of MED1 triggers mitochondrial biogenesis in C2C12 cells. Mitochondrion 2013; 14:18-25. [PMID: 24368311 DOI: 10.1016/j.mito.2013.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 10/31/2013] [Accepted: 12/12/2013] [Indexed: 01/09/2023]
Abstract
Under stress conditions transcription factors, including their coactivators, play major roles in mitochondrial biogenesis and oxidative phosphorylation. MED1 (Mediator complex subunit 1) functions as a coactivator of several transcription factors and is implicated in adipogenesis of the lipid and glucose metabolism. This suggests that MED1 may play a role in mitochondrial function. In this study, we found that both the mtDNA content and mitochondrial mass were markedly increased and cell proliferation markedly suppressed in MED1-deficient cells. Upon MED1 loss, Nrf1 and its downstream target genes involved in mitochondrial biogenesis (Tfam, Plormt, Tfb1m), were up-regulated as were those genes in the OXPHOS pathway. Moreover, the knockdown of MED1 resulted in significant changes in the profile of mitochondrial respiration, accompanied by a prominent decrease in the generation of ATP. Collectively, these observations strongly suggest that MED1 has an important affect on mitochondrial function. This further elucidates the role of MED1, particularly its role in the energy metabolism.
Collapse
Affiliation(s)
- Jialing Yu
- Department of Genetics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yun Xiao
- Department of Genetics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junxia Liu
- Department of Genetics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanchun Ji
- Department of Genetics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hao Liu
- Department of Genetics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jing Xu
- Department of Genetics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaofen Jin
- Department of Genetics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Li Liu
- Department of Genetics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Min-Xin Guan
- Department of Genetics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Pingping Jiang
- Department of Genetics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
228
|
Eelen G, Cruys B, Welti J, De Bock K, Carmeliet P. Control of vessel sprouting by genetic and metabolic determinants. Trends Endocrinol Metab 2013; 24:589-96. [PMID: 24075830 DOI: 10.1016/j.tem.2013.08.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/26/2013] [Accepted: 08/28/2013] [Indexed: 01/28/2023]
Abstract
Vessel sprouting by endothelial cells (ECs) during angiogenesis relies on a navigating tip cell and on proliferating stalk cells that elongate the shaft. To date, only genetic signals have been shown to regulate vessel sprouting. However, emerging evidence indicates that the angiogenic switch also requires a metabolic switch. Indeed, angiogenic signals not only induce a change in EC metabolism but this metabolic adaptation also co-determines vessel sprouting. The glycolytic activator PFKFB3 regulates stalk cell proliferation and renders ECs more competitive to reach the tip. We discuss the emerging link between angiogenesis and EC metabolism during the various stages of vessel sprouting, focusing only on genetic signals for which an effect on EC metabolism has been documented.
Collapse
Affiliation(s)
- Guy Eelen
- Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, Vlaams Instituut voor Biotechnologie (VIB), Department of Oncology, Katholieke Universiteit Leuven (KU Leuven), Herestraat 49, 3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
229
|
Benavides GA, Liang Q, Dodson M, Darley-Usmar V, Zhang J. Inhibition of autophagy and glycolysis by nitric oxide during hypoxia-reoxygenation impairs cellular bioenergetics and promotes cell death in primary neurons. Free Radic Biol Med 2013; 65:1215-1228. [PMID: 24056030 PMCID: PMC3859859 DOI: 10.1016/j.freeradbiomed.2013.09.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/28/2013] [Accepted: 09/11/2013] [Indexed: 12/12/2022]
Abstract
Excessive nitric oxide (NO) production is known to damage mitochondrial proteins and the autophagy repair pathway and so can potentially contribute to neurotoxicity. Accordingly, we hypothesized that protection against protein damage from reactive oxygen and nitrogen species under conditions of low oxygen by the autophagy pathway in neurons would be impaired by NO and enhance bioenergetic dysfunction. Rat primary cortical neurons had the same basal cellular respiration in hypoxia as in normoxia, whereas NO-exposed cells exhibited a gradual decrease in mitochondrial respiration in hypoxia. Upon reoxygenation, the respiration in NO-treated cells did not recover to prehypoxic levels. Hypoxia-reoxygenation in the presence of NO was associated with inhibition of autophagy, and the inability to recover during reoxygenation was exacerbated by an inhibitor of autophagy, 3-methyladenine. The effects of hypoxia could be recapitulated by inhibiting glycolytic flux under normoxic conditions. Under both normoxic and hypoxic conditions NO exposure induced immediate stimulation of glycolysis, but prolonged NO exposure, associated with irreversible inhibition of mitochondrial respiration in hypoxia, inhibited glycolysis. Importantly, we found that NO inhibited basal respiration under normoxic conditions only when glucose was absent from the medium or glycolysis was inhibited by 2-deoxy-d-glucose, revealing a novel NO-dependent mechanism for the inhibition of mitochondrial respiration that is modulated by glycolysis. Taken together these data suggest an oxygen-dependent interaction between mitochondrial respiration, glycolysis, and autophagy in protecting neuronal cells exposed to NO. Importantly, they indicate that mitochondrial dysfunction is intimately linked to a failure of glycolytic flux induced by exposure to NO. In addition, these studies provide new insights into the understanding of how autophagy and NO may play interactive roles in neuroinflammation-induced cellular damage, which is pertinent to our understanding of the pathology of neurodegenerative diseases in which excessive NO is generated.
Collapse
Affiliation(s)
- Gloria A Benavides
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294-0017, USA; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294-0017, USA
| | - Qiuli Liang
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294-0017, USA; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294-0017, USA
| | - Matthew Dodson
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294-0017, USA; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294-0017, USA
| | - Victor Darley-Usmar
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294-0017, USA; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294-0017, USA
| | - Jianhua Zhang
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294-0017, USA; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294-0017, USA; Department of Veterans Affairs, Birmingham VA Medical Center, Birmingham, AL 35233, USA.
| |
Collapse
|
230
|
Abstract
Endothelial cells (ECs) are quiescent for years but can plastically switch to angiogenesis. Vascular sprouting relies on the coordinated activity of migrating tip cells at the forefront and proliferating stalk cells that elongate the sprout. Past studies have identified genetic signals that control vascular branching. Prominent are VEGF, activating tip cells, and Notch, which stimulates stalk cells. After the branch is formed and perfused, ECs become quiescent phalanx cells. Now, emerging evidence has accumulated indicating that ECs not only adapt their metabolism when switching from quiescence to sprouting but also that metabolism regulates vascular sprouting in parallel to the control by genetic signals.
Collapse
Affiliation(s)
- Katrien De Bock
- Department of Oncology, University of Leuven, Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, Leuven 3000, Belgium; VIB, Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, Leuven 3000, Belgium
| | | | | |
Collapse
|
231
|
Optimization of Tumor Radiotherapy With Modulators of Cell Metabolism: Toward Clinical Applications. Semin Radiat Oncol 2013; 23:262-72. [DOI: 10.1016/j.semradonc.2013.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
232
|
Mitchell T, Johnson MS, Ouyang X, Chacko BK, Mitra K, Lei X, Gai Y, Moore DR, Barnes S, Zhang J, Koizumi A, Ramanadham S, Darley-Usmar VM. Dysfunctional mitochondrial bioenergetics and oxidative stress in Akita(+/Ins2)-derived β-cells. Am J Physiol Endocrinol Metab 2013; 305:E585-99. [PMID: 23820623 PMCID: PMC3761167 DOI: 10.1152/ajpendo.00093.2013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Insulin release from pancreatic β-cells plays a critical role in blood glucose homeostasis, and β-cell dysfunction leads to the development of diabetes mellitus. In cases of monogenic type 1 diabetes mellitus (T1DM) that involve mutations in the insulin gene, we hypothesized that misfolding of insulin could result in endoplasmic reticulum (ER) stress, oxidant production, and mitochondrial damage. To address this, we used the Akita(+/Ins2) T1DM model in which misfolding of the insulin 2 gene leads to ER stress-mediated β-cell death and thapsigargin to induce ER stress in two different β-cell lines and in intact mouse islets. Using transformed pancreatic β-cell lines generated from wild-type Ins2(+/+) (WT) and Akita(+/Ins2) mice, we evaluated cellular bioenergetics, oxidative stress, mitochondrial protein levels, and autophagic flux to determine whether changes in these processes contribute to β-cell dysfunction. In addition, we induced ER stress pharmacologically using thapsigargin in WT β-cells, INS-1 cells, and intact mouse islets to examine the effects of ER stress on mitochondrial function. Our data reveal that Akita(+/Ins2)-derived β-cells have increased mitochondrial dysfunction, oxidant production, mtDNA damage, and alterations in mitochondrial protein levels that are not corrected by autophagy. Together, these findings suggest that deterioration in mitochondrial function due to an oxidative environment and ER stress contributes to β-cell dysfunction and could contribute to T1DM in which mutations in insulin occur.
Collapse
|
233
|
Lee DY, Xun Z, Platt V, Budworth H, Canaria CA, McMurray CT. Distinct pools of non-glycolytic substrates differentiate brain regions and prime region-specific responses of mitochondria. PLoS One 2013; 8:e68831. [PMID: 23874783 PMCID: PMC3714274 DOI: 10.1371/journal.pone.0068831] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 06/04/2013] [Indexed: 01/30/2023] Open
Abstract
Many hereditary diseases are characterized by region-specific toxicity, despite the fact that disease-linked proteins are generally ubiquitously expressed. The underlying basis of the region-specific vulnerability remains enigmatic. Here, we evaluate the fundamental features of mitochondrial and glucose metabolism in synaptosomes from four brain regions in basal and stressed states. Although the brain has an absolute need for glucose in vivo, we find that synaptosomes prefer to respire on non-glycolytic substrates, even when glucose is present. Moreover, glucose is metabolized differently in each brain region, resulting in region-specific “signature” pools of non-glycolytic substrates. The use of non-glycolytic resources increases and dominates during energy crisis, and triggers a marked region-specific metabolic response. We envision that disease-linked proteins confer stress on all relevant brain cells, but region-specific susceptibility stems from metabolism of non-glycolytic substrates, which limits how and to what extent neurons respond to the stress.
Collapse
Affiliation(s)
- Do Yup Lee
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Department of Advanced Fermentation Fusion Science and Technology, Kookmin University, Seuol, Korea
| | - Zhiyin Xun
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Virginia Platt
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- The Buck Institute for Research on Aging, Novato, California, United States of America
| | - Helen Budworth
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Christie A. Canaria
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Cynthia T. McMurray
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
234
|
Sato S, Ogura Y, Mishra V, Shin J, Bhatnagar S, Hill BG, Kumar A. TWEAK promotes exercise intolerance by decreasing skeletal muscle oxidative phosphorylation capacity. Skelet Muscle 2013; 3:18. [PMID: 23835416 PMCID: PMC3711790 DOI: 10.1186/2044-5040-3-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 05/09/2013] [Indexed: 11/24/2022] Open
Abstract
Background Proinflammatory cytokine tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) and its receptor Fn14 are the major regulators of skeletal muscle mass in many catabolic conditions. However, their role in muscle metabolism remains largely unknown. In the present study, we investigated the role of TWEAK on exercise capacity and skeletal muscle mitochondrial content and oxidative metabolism. Methods We employed wild-type and TWEAK-knockout (KO) mice and primary myotube cultures and performed biochemical, bioenergetics, and morphometric assays to evaluate the effects of TWEAK on exercise tolerance and muscle mitochondrial function and angiogenesis. Results TWEAK-KO mice showed improved exercise tolerance compared to wild-type mice. Electron microscopy analysis showed that the abundance of subsarcolemmal and intermyofibrillar mitochondria is significantly increased in skeletal muscle of TWEAK-KO mice compared to wild-type mice. Furthermore, age-related loss in skeletal muscle oxidative capacity was rescued in TWEAK-KO mice. Expression of a key transcriptional regulator peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and several other molecules involved in oxidative metabolism were significantly higher in skeletal muscle of TWEAK-KO mice. Moreover, treatment of primary myotubes with soluble TWEAK inhibited the expression of PGC-1α and mitochondrial genes and decreased mitochondrial respiratory capacity. Deletion of TWEAK also improved angiogenesis and transcript levels of vascular endothelial growth factor in skeletal muscle of mice. Conclusions These results demonstrate that TWEAK decreases mitochondrial content and oxidative phosphorylation and inhibits angiogenesis in skeletal muscle. Neutralization of TWEAK is a potential approach for improving exercise capacity and oxidative metabolism in skeletal muscle.
Collapse
Affiliation(s)
- Shuichi Sato
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, 500 South Preston Street, Louisville, KY 40202, USA.
| | | | | | | | | | | | | |
Collapse
|
235
|
Abstract
In contrast to their role in cell types with higher energy demands, mitochondria in endothelial cells primarily function in signaling cellular responses to environmental cues. This article provides an overview of key aspects of mitochondrial biology in endothelial cells, including subcellular location, biogenesis, dynamics, autophagy, reactive oxygen species production and signaling, calcium homeostasis, regulated cell death, and heme biosynthesis. In each section, we introduce key concepts and then review studies showing the importance of that mechanism to endothelial control of vasomotor tone, angiogenesis, and/or inflammatory activation. We particularly highlight the small number of clinical and translational studies that have investigated each mechanism in human subjects. Finally, we review interventions that target different aspects of mitochondrial function and their effects on endothelial function. The ultimate goal of such research is the identification of new approaches for therapy. The reviewed studies make it clear that mitochondria are important in endothelial physiology and pathophysiology. A great deal of work will be needed, however, before mitochondria-directed therapies are available for the prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Matthew A Kluge
- Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | |
Collapse
|
236
|
Broniowska KA, Diers AR, Corbett JA, Hogg N. Effect of nitric oxide on naphthoquinone toxicity in endothelial cells: role of bioenergetic dysfunction and poly (ADP-ribose) polymerase activation. Biochemistry 2013; 52:4364-72. [PMID: 23718265 DOI: 10.1021/bi400342t] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
When produced at physiological levels, reactive oxygen species (ROS) can act as signaling molecules to regulate normal vascular function. Produced under pathological conditions, ROS can contribute to the oxidative damage of cellular components (e.g., DNA and proteins) and trigger cell death. Moreover, the reaction of superoxide with nitric oxide (NO) produces the strong oxidant peroxynitrite and decreases NO bioavailability, both of which may contribute to activation of cell death pathways. The effects of ROS generated from the 1,4-naphthoquinones alone and in combination with NO on the activation status of poly(ADP-ribose) polymerase (PARP) and cell viability were examined. Treatment with redox cycling quinones activates PARP, and this stimulatory effect is attenuated in the presence of NO. Mitochondria play a central role in cell death signaling pathways and are a target of oxidants. We show that simultaneous exposure of endothelial cells to NO and ROS results in mitochondrial dysfunction, ATP and NAD(+) depletion, and cell death. Alone, NO and ROS have only minor effects on cellular bioenergetics. Further, PARP inhibition does not attenuate reduced cell viability or mitochondrial dysfunction. These results show that concomitant exposure to NO and ROS impairs energy metabolism and triggers PARP-independent cell death. While superoxide-mediated PARP activation is attenuated in the presence of NO, PARP inhibition does not modify the loss of mitochondrial function or adenine and pyridine nucleotide pools and subsequent bioenergetic dysfunction. These findings suggest that the mechanisms by which ROS and NO induce endothelial cell death are closely linked to the maintenance of mitochondrial function and not overactivation of PARP.
Collapse
Affiliation(s)
- Katarzyna A Broniowska
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States.
| | | | | | | |
Collapse
|
237
|
Cheng G, Zielonka J, McAllister DM, Mackinnon AC, Joseph J, Dwinell MB, Kalyanaraman B. Mitochondria-targeted vitamin E analogs inhibit breast cancer cell energy metabolism and promote cell death. BMC Cancer 2013; 13:285. [PMID: 23764021 PMCID: PMC3686663 DOI: 10.1186/1471-2407-13-285] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/07/2013] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Recent research has revealed that targeting mitochondrial bioenergetic metabolism is a promising chemotherapeutic strategy. Key to successful implementation of this chemotherapeutic strategy is the use of new and improved mitochondria-targeted cationic agents that selectively inhibit energy metabolism in breast cancer cells, while exerting little or no long-term cytotoxic effect in normal cells. METHODS In this study, we investigated the cytotoxicity and alterations in bioenergetic metabolism induced by mitochondria-targeted vitamin E analog (Mito-chromanol, Mito-ChM) and its acetylated ester analog (Mito-ChMAc). Assays of cell death, colony formation, mitochondrial bioenergetic function, intracellular ATP levels, intracellular and tissue concentrations of tested compounds, and in vivo tumor growth were performed. RESULTS Both Mito-ChM and Mito-ChMAc selectively depleted intracellular ATP and caused prolonged inhibition of ATP-linked oxygen consumption rate in breast cancer cells, but not in non-cancerous cells. These effects were significantly augmented by inhibition of glycolysis. Mito-ChM and Mito-ChMAc exhibited anti-proliferative effects and cytotoxicity in several breast cancer cells with different genetic background. Furthermore, Mito-ChM selectively accumulated in tumor tissue and inhibited tumor growth in a xenograft model of human breast cancer. CONCLUSIONS We conclude that mitochondria-targeted small molecular weight chromanols exhibit selective anti-proliferative effects and cytotoxicity in multiple breast cancer cells, and that esterification of the hydroxyl group in mito-chromanols is not a critical requirement for its anti-proliferative and cytotoxic effect.
Collapse
Affiliation(s)
- Gang Cheng
- Free Radical Research Center and Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | | | | | | | | |
Collapse
|
238
|
Fredericks WJ, Yin H, Lal P, Puthiyaveettil R, Malkowicz SB, Fredericks NJ, Tomaszewski J, Rauscher FJ, Malkowicz SB. Ectopic expression of the TERE1 (UBIAD1) protein inhibits growth of renal clear cell carcinoma cells: altered metabolic phenotype associated with reactive oxygen species, nitric oxide and SXR target genes involved in cholesterol and lipid metabolism. Int J Oncol 2013; 43:638-52. [PMID: 23759948 DOI: 10.3892/ijo.2013.1985] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 05/21/2013] [Indexed: 11/05/2022] Open
Abstract
Current studies of the TERE1 (UBIAD1) protein emphasize its multifactorial influence on the cell, in part due to its broad sub-cellular distribution to mitochondria, endoplasmic reticulum and golgi. However, the profound effects of TERE1 relate to its prenyltransferase activity for synthesis of the bioactive quinones menaquinone and COQ10. Menaquinone (aka, vitamin K-2) serves multiple roles: as a carrier in mitochondrial electron transport, as a ligand for SXR nuclear hormone receptor activation, as a redox modulator, and as an alkylator of cellular targets. We initially described the TERE1 (UBIAD1) protein as a tumor suppressor based upon reduced expression in urological cancer specimens and the inhibition of growth of tumor cell lines/xenografts upon ectopic expression. To extend this potential tumor suppressor role for the TERE1 protein to renal cell carcinoma (RCC), we applied TERE1 immunohistochemistry to a TMA panel of 28 RCC lesions and determined that in 57% of RCC lesions, TERE1 expression was reduced (36%) or absent (21%). Ectopic TERE1 expression caused an 80% decrease in growth of Caki-1 and Caki-2 cell lines, a significantly decreased colony formation, and increased caspase 3/7 activity in a panel of RCC cell lines. Furthermore, TERE1 expression increased mitochondrial oxygen consumption and hydrogen production, oxidative stress and NO production. Based on the elevated cholesterol and altered metabolic phenotype of RCC, we also examined the effects of TERE1 and the interacting protein TBL2 on cellular cholesterol. Ectopic TERE1 or TBL2 expression in Caki-1, Caki-2 and HEK 293 cells reduced cholesterol by up to 40%. RT-PCR analysis determined that TERE1 activated several SXR targets known to regulate lipid metabolism, consistent with predictions based on its role in menaquinone synthesis. Loss of TERE1 may contribute to the altered lipid metabolic phenotype associated with progression in RCC via an uncoupling of ROS/RNS and SXR signaling from apoptosis by elevation of cholesterol.
Collapse
Affiliation(s)
- William J Fredericks
- Division of Urology, Department of Surgery, University of Pennsylvania and Veterans Affairs Medical Center Philadelphia, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Módis K, Asimakopoulou A, Coletta C, Papapetropoulos A, Szabo C. Oxidative stress suppresses the cellular bioenergetic effect of the 3-mercaptopyruvate sulfurtransferase/hydrogen sulfide pathway. Biochem Biophys Res Commun 2013; 433:401-7. [DOI: 10.1016/j.bbrc.2013.02.131] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 02/22/2013] [Indexed: 12/12/2022]
|
240
|
Sen S, Kawahara B, Chaudhuri G. Mitochondrial-associated nitric oxide synthase activity inhibits cytochrome c oxidase: implications for breast cancer. Free Radic Biol Med 2013; 57:210-20. [PMID: 23089229 DOI: 10.1016/j.freeradbiomed.2012.10.545] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 10/12/2012] [Accepted: 10/15/2012] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) is produced and nitric oxide synthase (NOS) activity is expressed in many types of tumor cells, but their precise role in tumor proliferation has not been clearly elucidated. Recently, it has been observed that patients with triple-negative breast tumors expressing NOS have a significantly worse prognosis compared to those that do not express any NOS. We observed that NOS activity was associated with the mitochondria in two breast cancer cell lines, ZR-75-30 and BT-474, compared with another NO-producing benign breast epithelial cell line, MCF-12F, in which no significant mitochondrial-associated NOS activity was detected. The rate of proliferation of the malignant cells expressing mitochondrial-associated NOS was decreased in the presence of an inhibitor of NO synthesis, but it had no effect on the normal breast epithelial cells, MCF-12F, which also expressed NOS, but not associated with mitochondria. The basal rate of proliferation was not affected by ODQ, an inhibitor of soluble guanylate cyclase, indicating that the effects of the endogenous NO produced by the malignant cell lines on proliferation are cGMP independent. Our results indicate that mitochondrial-associated NOS activity exhibited by the cancer cell lines ZR-75-30 and BT-474 inhibited cytochrome c oxidase, resulting in increased production of hydrogen peroxide (H2O2), which inhibited protein phosphatase 2A activity. This resulted in the maintenance of Akt and ERK1/2 in a phosphorylated state, leading to cell proliferation.
Collapse
Affiliation(s)
- Suvajit Sen
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
241
|
Li X, Fang P, Mai J, Choi ET, Wang H, Yang XF. Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J Hematol Oncol 2013; 6:19. [PMID: 23442817 PMCID: PMC3599349 DOI: 10.1186/1756-8722-6-19] [Citation(s) in RCA: 545] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 02/20/2013] [Indexed: 12/13/2022] Open
Abstract
There are multiple sources of reactive oxygen species (ROS) in the cell. As a major site of ROS production, mitochondria have drawn considerable interest because it was recently discovered that mitochondrial ROS (mtROS) directly stimulate the production of proinflammatory cytokines and pathological conditions as diverse as malignancies, autoimmune diseases, and cardiovascular diseases all share common phenotype of increased mtROS production above basal levels. Several excellent reviews on this topic have been published, but ever-changing new discoveries mandated a more up-to-date and comprehensive review on this topic. Therefore, we update recent understanding of how mitochondria generate and regulate the production of mtROS and the function of mtROS both in physiological and pathological conditions. In addition, we describe newly developed methods to probe or scavenge mtROS and compare these methods in detail. Thorough understanding of this topic and the application of mtROS-targeting drugs in the research is significant towards development of better therapies to combat inflammatory diseases and inflammatory malignancies.
Collapse
Affiliation(s)
- Xinyuan Li
- Cardiovascular Research Center, Department of Pharmacology and Thrombosis Research Center, Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | | | | | | | | | | |
Collapse
|
242
|
Diers AR, Broniowska KA, Hogg N. Nitrosative stress and redox-cycling agents synergize to cause mitochondrial dysfunction and cell death in endothelial cells. Redox Biol 2013; 1:1-7. [PMID: 24024132 PMCID: PMC3757685 DOI: 10.1016/j.redox.2012.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 11/28/2012] [Accepted: 11/30/2012] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide production by the endothelium is required for normal vascular homeostasis; however, in conditions of oxidative stress, interactions of nitric oxide with reactive oxygen species (ROS) are thought to underlie endothelial dysfunction. Beyond canonical nitric oxide signaling pathways, nitric oxide production results in the post-translational modification of protein thiols, termed S-nitrosation. The potential interplay between S-nitrosation and ROS remains poorly understood and is the focus of the current study. The effects of the S-nitrosating agent S-nitrosocysteine (CysNO) in combination with redox-cycling agents was examined in bovine aortic endothelial cells (BAEC). CysNO significantly impairs mitochondrial function and depletes the NADH/NAD+ pool; however, these changes do not result in cell death. When faced with the additional stressor of a redox-cycling agent used to generate ROS, further loss of NAD+ occurs, and cellular ATP pools are depleted. Cellular S-nitrosothiols also accumulate, and cell death is triggered. These data demonstrate that CysNO sensitizes endothelial cells to redox-cycling agent-dependent mitochondrial dysfunction and cell death and identify attenuated degradation of S-nitrosothiols as one potential mechanism for the enhanced cytotoxicity.
Collapse
Key Words
- BAEC, Bovine aortic endothelial cells
- BSO, Buthioninesulphoximine
- CysNO, S-nitrosocysteine
- DMNQ, 2,3-dimethoxy-1,4-naphthoquinone
- DMSO, Dimethyl sulfoxide
- DPBS, Dulbecco’s phosphate buffered saline
- DTPA, Diethylenetriaminepentaacetic acid
- DTT, Dithiothreitol
- GAPDH, Glyceraldehyde-3-phosphate dehydrogenase
- GSHee, Glutathione Ethyl Ester
- LDH, Lactate Dehydrogenase
- Mitochondria
- N.D., Not detectable
- NAC, N-acetyl cysteine
- NOS, Nitric oxide synthase
- Nitric oxide
- OCR, Oxygen consumption rate
- ROS, Reactive oxygen species
- Reactive oxygen species
- S-nitrosation
- S-nitrosylation
- SEM, Standard error of the mean.
- Thiol
- cGMP, Cyclic guanosine monophosphate
Collapse
Affiliation(s)
- Anne R Diers
- Department of Biophysics, Redox Biology Program, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226 USA
| | | | | |
Collapse
|
243
|
Mitochondrial metabolism in aging: effect of dietary interventions. Ageing Res Rev 2013; 12:22-8. [PMID: 22504406 DOI: 10.1016/j.arr.2012.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/20/2012] [Accepted: 03/30/2012] [Indexed: 01/09/2023]
Abstract
Mitochondrial energy metabolism and mitochondrially-derived oxidants have, for many years, been recognized as central toward the effects of aging. A body of recent work has focused on the relationship between mitochondrial redox state, aging and dietary interventions that affect lifespan. These studies have uncovered mechanisms through which diet alters mitochondrial metabolism, in addition to determining how these changes affect oxidant generation, which in itself has an impact on mitochondrial function in aged animals. Many of the studies conducted to date, however, are correlative, and it remains to be determined which of the energy metabolism and redox modifications induced by diet are central toward lifespan extent. Furthermore, dietary interventions used for laboratory animals are often unequal, and of difficult comparison with humans (for whom, by nature, no long-term sound scientific information on the effects of diet on mitochondrial redox state and aging is available). We hope future studies will be able to mechanistically characterize which energy metabolism and redox changes promoted by dietary interventions have positive lifespan effects, and translate these findings into human prevention and treatment of age-related disease.
Collapse
|
244
|
Beck BH, Fuller SA. The impact of mitochondrial and thermal stress on the bioenergetics and reserve respiratory capacity of fish cell lines. JOURNAL OF AQUATIC ANIMAL HEALTH 2012; 24:244-250. [PMID: 23113865 DOI: 10.1080/08997659.2012.720637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Various stressors affect the health of wild and cultured fish and can cause metabolic disturbances that first manifest at the cellular level. Here, we sought to further our understanding of cellular metabolism in fish by examining the metabolic responses of cell lines derived from channel catfish Ictalurus puntatus (CCO), white bass Morone chrysops (WBE), and fathead minnow Pimephales promelas (EPC) to both mitochondrial and thermal stressors. Using extracellular flux (EF) technology, we simultaneously measured the oxygen consumption rate (OCR; a measure of mitochondrial function) and extracellular acidification rate (ECAR; a surrogate of glycolysis) in each cell type. We performed a mitochondrial function protocol whereby compounds modulating different components of mitochondrial respiration were sequentially exposed to cells. This provided us with basal and maximal OCR, OCR linked to ATP production, OCR from ion movement across the mitochondrial inner membrane, the reserve capacity, and OCR independent of the electron transport chain. After heat shock, EPC and CCO significantly decreased OCR and all three cell lines modestly increased ECAR. After heat shock, the reserve capacity, the mitochondrial energetic reserve used to cope with stress and increased bioenergetic demand, was unaffected in EPC and CCO and completely abrogated in WBE. These findings provide proof-of-concept experimental data that further highlight the utility of fish cell lines as tools for modeling bioenergetics.
Collapse
Affiliation(s)
- Benjamin H Beck
- U.S. Department of Agriculture, Harry K. Dupree-Stuttgart National Aquaculture Research Center, Stuttgart, AR, USA.
| | | |
Collapse
|
245
|
Hill BG, Benavides GA, Lancaster JR, Ballinger S, Dell’Italia L, Zhang J, Darley-Usmar VM. Integration of cellular bioenergetics with mitochondrial quality control and autophagy. Biol Chem 2012; 393:1485-1512. [PMID: 23092819 PMCID: PMC3594552 DOI: 10.1515/hsz-2012-0198] [Citation(s) in RCA: 366] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 06/22/2012] [Indexed: 02/06/2023]
Abstract
Bioenergetic dysfunction is emerging as a cornerstone for establishing a framework for understanding the pathophysiology of cardiovascular disease, diabetes,cancer and neurodegeneration. Recent advances in cellular bioenergetics have shown that many cells maintain a substantial bioenergetic reserve capacity, which is a prospective index of ‘ healthy ’ mitochondrial populations.The bioenergetics of the cell are likely regulated by energy requirements and substrate availability. Additionally,the overall quality of the mitochondrial population and the relative abundance of mitochondria in cells and tissues also impinge on overall bioenergetic capacity and resistance to stress. Because mitochondria are susceptible to damage mediated by reactive oxygen/nitrogen and lipid species, maintaining a ‘ healthy ’ population of mitochondria through quality control mechanisms appears to be essential for cell survival under conditions of pathological stress. Accumulating evidence suggest that mitophagy is particularly important for preventing amplification of initial oxidative insults, which otherwise would further impair the respiratory chain or promote mutations in mitochondrial DNA (mtDNA). The processes underlying the regulation of mitophagy depend on several factors, including the integrity of mtDNA, electron transport chain activity, and the interaction and regulation of the autophagic machinery. The integration and interpretation of cellular bioenergetics in the context of mitochondrial quality control and genetics is the theme of this review.
Collapse
Affiliation(s)
- Bradford G. Hill
- Diabetes and Obesity Center, Institute of Molecular Cardiology, and Department of Medicine, University of Louisville, Louisville, KY
- Departments of Biochemistry and Molecular Biology and Physiology and Biophysics, University of Louisville, Louisville, KY
| | - Gloria A. Benavides
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jack R. Lancaster
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Scott Ballinger
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Medicine, Center for Heart Failure Research, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Lou Dell’Italia
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Medicine, Center for Heart Failure Research, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Veteran Affairs Medical Center, Birmingham, AL 35294
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Veteran Affairs Medical Center, Birmingham, AL 35294
| | - Victor M. Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Medicine, Center for Heart Failure Research, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
246
|
Xun Z, Rivera-Sánchez S, Ayala-Peña S, Lim J, Budworth H, Skoda EM, Robbins PD, Niedernhofer LJ, Wipf P, McMurray CT. Targeting of XJB-5-131 to mitochondria suppresses oxidative DNA damage and motor decline in a mouse model of Huntington's disease. Cell Rep 2012; 2:1137-42. [PMID: 23122961 PMCID: PMC3513647 DOI: 10.1016/j.celrep.2012.10.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 08/28/2012] [Accepted: 09/28/2012] [Indexed: 12/11/2022] Open
Abstract
Oxidative damage and mitochondrial dysfunction are implicated in aging and age-related neurodegenerative diseases, including Huntington's disease (HD). Many naturally occurring antioxidants have been tested for their ability to correct for deleterious effects of reactive oxygen species, but often they lack specificity, are tissue variable, and have marginal efficacy in human clinical trials. To increase specificity and efficacy, we have designed a synthetic antioxidant, XJB-5-131, to target mitochondria. We demonstrate in a mouse model of HD that XJB-5-131 has remarkably beneficial effects. XJB-5-131 reduces oxidative damage to mitochondrial DNA, maintains mitochondrial DNA copy number, suppresses motor decline and weight loss, enhances neuronal survival, and improves mitochondrial function. The findings poise XJB-5-131 as a promising therapeutic compound.
Collapse
Affiliation(s)
- Zhiyin Xun
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Bottje W, Kong BW. Cell Biology Symposium: feed efficiency: mitochondrial function to global gene expression. J Anim Sci 2012; 91:1582-93. [PMID: 23148240 DOI: 10.2527/jas.2012-5787] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Understanding the cellular basis of feed efficiency (FE) is instrumental to helping poultry and livestock industries continue to provide high-quality protein for an increasingly crowded world. To understand relationships of FE and gene expression, global RNA transcription was investigated in breast muscle obtained from a male broiler line fed the same diet and individually phenotyped for FE. In these studies, RNA samples obtained from broilers that exhibited either high FE (0.65 ± 0.01) or low FE (0.46 ± 0.01) were analyzed with an Agilent 44K chicken oligoarray. A 1.3-fold cutoff in expression (30% difference between groups) resulted in 782 genes that were differentially expressed (P < 0.05) in muscle between the high- and low-FE phenotypes. Ingenuity Pathway Analysis, an online software program, was used to identify genes, gene networks, and pathways associated with the phenotypic expression of FE. The results indicate that the high-FE phenotype exhibited increased expression of genes associated with 1) signal transduction pathways, 2) anabolic activities, and 3) energy-sensing and energy coordination activities, all of which would likely be favorable to cell growth and development. In contrast, the low-FE broiler phenotype exhibited upregulation of genes 1) associated with actin-myosin filaments, cytoskeletal architecture, and muscle fibers and 2) stress-related or stress-responsive genes. Because the low-FE broiler phenotype exhibits greater oxidative stress, it would appear that the low-FE phenotype is the product of inherent gene expression that is modulated by oxidative stress. The results of these studies begin to provide a comprehensive picture of gene expression in muscle, a major organ of energy demand in an animal, associated with phenotypic expression of FE.
Collapse
Affiliation(s)
- W Bottje
- Department of Poultry Science, Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville 72701, USA.
| | | |
Collapse
|
248
|
Módis K, Coletta C, Erdélyi K, Papapetropoulos A, Szabo C. Intramitochondrial hydrogen sulfide production by 3-mercaptopyruvate sulfurtransferase maintains mitochondrial electron flow and supports cellular bioenergetics. FASEB J 2012; 27:601-11. [PMID: 23104984 DOI: 10.1096/fj.12-216507] [Citation(s) in RCA: 226] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It is well established that exposure of mammalian cells to hydrogen sulfide (H(2)S) suppresses mitochondrial function by inhibiting cytochrome-c oxidase (CcOX; complex IV). However, recent experimental data show that administration of H(2)S to mammalian cells can serve as an electron donor and inorganic source of energy. The aim of our study was to investigate the role of endogenously produced H(2)S in the regulation of mitochondrial electron transport and oxidative phosphorylation in isolated liver mitochondria and in the cultured murine hepatoma cell line Hepa1c1c7. Low concentrations of H(2)S (0.1-1 μM) elicited a significant increase in mitochondrial function, while higher concentrations of H(2)S (3-30 μM) were inhibitory. The positive bioenergetic effect of H(2)S required a basal activity of the Krebs cycle and was most pronounced at intermediate concentrations of succinate. 3-mercaptopyruvate (3-MP), the substrate of the mitochondrial enzyme 3-mercaptopyruvate sulfurtransferase (3-MST) stimulated mitochondrial H(2)S production and enhanced mitochondrial electron transport and cellular bioenergetics at low concentrations (10-100 nM), while at higher concentrations, it inhibited cellular bioenergetics. SiRNA silencing of 3-MST reduced basal bioenergetic parameters and prevented the stimulating effect of 3-MP on mitochondrial bioenergetics. Silencing of sulfide quinone oxidoreductase (SQR) also reduced basal and 3-MP-stimulated bioenergetic parameters. We conclude that an endogenous intramitochondrial H(2)S-producing pathway, governed by 3-MST, complements and balances the bioenergetic role of Krebs cycle-derived electron donors. This pathway may serve a physiological role in the maintenance of mitochondrial electron transport and cellular bioenergetics.
Collapse
Affiliation(s)
- Katalin Módis
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | |
Collapse
|
249
|
Readnower RD, Brainard RE, Hill BG, Jones SP. Standardized bioenergetic profiling of adult mouse cardiomyocytes. Physiol Genomics 2012; 44:1208-13. [PMID: 23092951 DOI: 10.1152/physiolgenomics.00129.2012] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mitochondria are at the crux of life and death and as such have become ideal targets of intervention in cardiovascular disease. Generally, current methods to measure mitochondrial dysfunction rely on working with the isolated organelle and fail to incorporate mitochondrial function in a cellular context. Extracellular flux methodology has been particularly advantageous in this respect; however, certain primary cell types, such as adult cardiac myocytes, have been difficult to standardize with this technology. Here, we describe methods for using extracellular flux (XF) analysis to measure mitochondrial bioenergetics in isolated, intact, adult mouse cardiomyocytes (ACMs). Following isolation, ACMs were seeded overnight onto laminin-coated (20 μg/ml) microplates, which resulted in high attachment efficiency. After establishing seeding density, we found that a commonly used assay medium (containing a supraphysiological concentration of pyruvate at 1 mmol/l) produced a maximal bioenergetic response. After performing a pyruvate dose-response, we determined that pyruvate titrated to 0.1 mmol/l was optimal for examining alternative substrate oxidation. Methods for measuring fatty acid oxidation were established. These methods lay the framework using XF analysis to profile metabolism of ACMs and will likely augment our ability to understand mitochondrial dysfunction in heart failure and acute myocardial ischemia. This platform could easily be extended to models of diabetes or other metabolic defects.
Collapse
Affiliation(s)
- Ryan D Readnower
- Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | | | |
Collapse
|
250
|
Perron NR, Beeson C, Rohrer B. Early alterations in mitochondrial reserve capacity; a means to predict subsequent photoreceptor cell death. J Bioenerg Biomembr 2012; 45:101-9. [PMID: 23090843 DOI: 10.1007/s10863-012-9477-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 08/20/2012] [Indexed: 02/03/2023]
Abstract
Although genetic and environmental factors contribute to neurodegenerative disease, the underlying etiology common to many diseases might be based on metabolic demand. Mitochondria are the main producer of ATP, but are also the major source of reactive oxygen species. Under normal conditions, these oxidants are neutralized; however, under environmental insult or genetic susceptibility conditions, oxidative stress may exceed cellular antioxidant capacities, leading to degeneration. We tested the hypothesis that loss in mitochondrial reserve capacity plays a causative role in neuronal degeneration and chose a cone photoreceptor cell line as our model. 661W cells were exposed to agents that mimic oxidant stress or calcium overload. Real-time changes in cellular metabolism were assessed using the multi-well Seahorse Biosciences XF24 analyzer that measures oxygen consumption (OCR) and extracellular acidification rates (ECAR). Cellular stress resulted in an early loss of mitochondrial reserve capacity, without affecting basal respiration; and ECAR was increased, representing a compensatory shift of ATP productions toward glycolysis. The degree of change in energy metabolism was correlated with the amount of subsequent cell death 24-hours post-treatment, the concentration-dependent loss in mitochondrial reserve capacity correlated with the number of live cells. Our data suggested first, that loss in mitochondrial reserve capacity is a major contributor in disease pathogenesis; and second, that the XF24 assay might represent a useful surrogate assay amenable to the screening of agents that protect against loss of mitochondrial reserve capacity. In future experiments, we will explore these concepts for the development of neuroprotective agents.
Collapse
Affiliation(s)
- Nathan R Perron
- Department of Pharmaceutical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | |
Collapse
|