201
|
Advances in pharmacokinetics and pharmacodynamics of PD-1/PD-L1 inhibitors. Int Immunopharmacol 2023; 115:109638. [PMID: 36587500 DOI: 10.1016/j.intimp.2022.109638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/09/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022]
Abstract
Immune checkpoint inhibitors (ICIs) are a group of drugs designed to improve the therapeutic effects on various types of malignant tumors. Irrespective of monotherapy or combinational therapies as first-line and later-line therapy, ICIs have achieved benefits for various tumors. Programmed cell death protein-1 (PD-1) / ligand 1 (PD-L1) is an immune checkpoint that suppresses antitumor immunity, especially in the tumor microenvironment (TME). PD-1/PD-L1 immune checkpoint inhibitors block tumor-related downregulation of the immune system, thereby enhancing antitumor immunity. In comparison with traditional small-molecule drugs, ICIs exhibit pharmacokinetic characteristics owing to their high molecular weight. Furthermore, different types of ICIs exhibit different pharmacodynamic characteristics. Hence, ICIs have been approved for different indications by the Food and Drug Administration (FDA) and National Medical Products Administration (NMPA). This review summarizes pharmacokinetic and pharmacodynamic studies of PD-1/ PD-L1 inhibitors to provide a reference for rational clinical application.
Collapse
|
202
|
Vick LV, Collins CP, Khuat LT, Wang Z, Dunai C, Aguilar EG, Stoffel K, Yendamuri S, Smith R, Mukherjee S, Barbi J, Canter RJ, Monjazeb AM, Murphy WJ. Aging augments obesity-induced thymic involution and peripheral T cell exhaustion altering the "obesity paradox". Front Immunol 2023; 13:1012016. [PMID: 36776393 PMCID: PMC9910174 DOI: 10.3389/fimmu.2022.1012016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/07/2022] [Indexed: 01/28/2023] Open
Abstract
Introduction The incidence of obesity, a condition characterized by systemic chronic inflammation, has reached pandemic proportions and is a poor prognostic factor in many pathologic states. However, its role on immune parameters has been diverse and at times contradictory. We have previously demonstrated that obesity can result in what has been called the "obesity paradox" which results in increased T cell exhaustion, but also greater efficacy of immune checkpoint blockade in cancer treatment. Methods The role of obesity, particularly in the context of aging, has not been robustly explored using preclinical models. We therefore evaluated how age impacts the immune environment on T cell development and function using diet-induced obese (DIO) mice. Results We observed that DIO mice initially displayed greater thymopoiesis but then developed greater thymic involution over time compared to their lean counterparts. Both aging and obesity resulted in increased T cell memory conversion combined with increased expression of T cell exhaustion markers and Treg expansion. This increased T cell immunosuppression with age then resulted in a loss of anti-tumor efficacy by immune checkpoint inhibitors (ICIs) in older DIO mice compared to the younger DIO counterparts. Discussion These results suggest that both aging and obesity contribute to T cell dysfunction resulting in increased thymic involution. This combined with increased T cell exhaustion and immunosuppressive parameters affects immunotherapy efficacy reducing the advantage of obesity in cancer immunotherapy responses.
Collapse
Affiliation(s)
- Logan V. Vick
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Craig P. Collins
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Lam T. Khuat
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Ziming Wang
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Cordelia Dunai
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Ethan G. Aguilar
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Kevin Stoffel
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Sai Yendamuri
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Randall Smith
- Department of Immunology Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Sarbajit Mukherjee
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Joseph Barbi
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
- Department of Immunology Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Robert J. Canter
- Division of Surgical Oncology, Department of Surgery, University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Arta M. Monjazeb
- Department of Radiation Oncology, University of California Davis Comprehensive Cancer Center, University of California School of Medicine, Sacramento, CA, United States
| | - William J. Murphy
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, United States
- Department of Internal Medicine, Division of Hematology and Oncology, University of California Davis School of Medicine, Sacramento, CA, United States
| |
Collapse
|
203
|
Xiao J, Li Y, Rowley T, Huang J, Yolken RH, Viscidi RP. Immunotherapy targeting the PD-1 pathway alleviates neuroinflammation caused by chronic Toxoplasma infection. Sci Rep 2023; 13:1288. [PMID: 36690687 PMCID: PMC9870997 DOI: 10.1038/s41598-023-28322-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
Toxoplasma gondii can infect the host brain and trigger neuroinflammation. Such neuroinflammation might persist for years if the infection is not resolved, resulting in harmful outcomes for the brain. We have previously demonstrated the efficacy of immunotherapy targeting the programmed cell death protein 1 (PD-1) pathway on clearance of Toxoplasma tissue cysts. We aimed to test whether parasite clearance would lead to the resolution of neuroinflammation in infected brains. We established chronic Toxoplasma infection in BALB/c mice using the cyst-forming Prugniaud strain. Mice then received αPD-L1 or isotype control antibodies. After completion of the therapy, mice were euthanized six weeks later. The number of brain tissue cysts, Toxoplasma-specific CD8 + T cell proliferation and IFN-γ secretion, serum cytokine and chemokine levels, and CNS inflammation were measured. In αPD-L1-treated mice, we observed reduced brain tissue cysts, increased spleen weight, elevated IFN-γ production by antigen-specific CD8 + T cells, and a general increase in multiple serum cytokines and chemokines. Importantly, αPD-L1-treated mice displayed attenuation of meningeal lymphocytes, reactive astrocytes, and C1q expression. The reduction in inflammation-related proteins is correlated with reduced parasite burden. These results suggest that promoting systemic immunity results in parasite clearance, which in turn alleviates neuroinflammation. Our study may have implications for some brain infections where neuroinflammation is a critical component.
Collapse
Affiliation(s)
- Jianchun Xiao
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA.
| | - Ye Li
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Treva Rowley
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Jing Huang
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Robert H Yolken
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Raphael P Viscidi
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| |
Collapse
|
204
|
Combination Analysis of Ferroptosis and Immune Status Predicts Patients Survival in Breast Invasive Ductal Carcinoma. Biomolecules 2023; 13:biom13010147. [PMID: 36671532 PMCID: PMC9855618 DOI: 10.3390/biom13010147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/01/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
Ferroptosis is a new form of iron-dependent cell death and plays an important role during the occurrence and development of various tumors. Increasingly, evidence shows a convincing interaction between ferroptosis and tumor immunity, which affects cancer patients' prognoses. These two processes cooperatively regulate different developmental stages of tumors and could be considered important tumor therapeutic targets. However, reliable prognostic markers screened based on the combination of ferroptosis and tumor immune status have not been well characterized. Here, we chose the ssGSEA and ESTIMATE algorithms to evaluate the ferroptosis and immune status of a TCGA breast invasive ductal carcinoma (IDC) cohort, which revealed their correlation characteristics as well as patients' prognoses. The WGCNA algorithm was used to identify genes related to both ferroptosis and immunity. Univariate COX, LASSO regression, and multivariate Cox regression models were used to screen prognostic-related genes and construct prognostic risk models. Based on the ferroptosis and immune scores, the cohort was divided into three groups: a high-ferroptosis/low-immune group, a low-ferroptosis/high-immune group, and a mixed group. These three groups exhibited distinctive survival characteristics, as well as unique clinical phenotypes, immune characteristics, and activated signaling pathways. Among them, low-ferroptosis and high-immune statuses were favorable factors for the survival rates of patients. A total of 34 differentially expressed genes related to ferroptosis-immunity were identified among the three groups. After univariate, Lasso regression, and multivariate stepwise screening, two key prognostic genes (GNAI2, PSME1) were identified. Meanwhile, a risk prognosis model was constructed, which can predict the overall survival rate in the validation set. Lastly, we verified the importance of model genes in three independent GEO cohorts. In short, we constructed a prognostic model that assists in patient risk stratification based on ferroptosis-immune-related genes in IDC. This model helps assess patients' prognoses and guide individualized treatment, which also further eelucidatesthe molecular mechanisms of IDC.
Collapse
|
205
|
Fernandes D, Barbeiro CDO, Palaçon MP, Biancardi MR, Ferrisse TM, Silveira HA, Castilho RM, de Almeida LY, Leon JE, Bufalino A. High density of CD8 T cell and immune imbalance of T lymphocytes subsets are associated with proliferative verrucous leukoplakia. Immunol Suppl 2023; 168:96-109. [PMID: 36056642 DOI: 10.1111/imm.13565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/28/2022] [Indexed: 12/27/2022]
Abstract
Oral leukoplakia (OL) and proliferative verrucous leukoplakia (PVL) are oral potentially malignant disorders (OPMDs) that microscopically show no or varying degrees of dysplasia. Even sharing clinical and microscopic aspects, PVL shows a more aggressive clinical behaviour, with a malignant transformation rate greater than 40%. Inflammatory infiltrate associated with dysplastic lesions may favour malignant transformation of OPMDs. This study aimed to evaluate the density of T cells and cytokines in dysplastic lesions from OL and PVL patients. Additionally, we evaluated whether soluble products produced in vitro by dysplastic keratinocytes are capable of modulating apoptosis rates and Th phenotype (Th1, Th2, Th17 and Treg) of peripheral blood mononuclear cells. The density of CD3, CD4 and CD8 T cells was assessed by immunohistochemistry. Cytokines and chemokines profile from frozen tissue samples were analysed using the LUMINEX system. Apoptosis rates and Th phenotype modulation were evaluated by flow cytometry. Our results showed an increase in the number of CD8 T cell in the subepithelial region from PVL dysplastic lesions in relation to OL samples. PVL showed increased levels of IL-5 and a decrease in IL-1β and IFN-γ levels compared to OL. Soluble products of PVL and oral carcinoma cell cultures were able to reduce apoptosis rate and promote an imbalance of Th1/Th2 and Th17/Treg. The high-subepithelial density of CD8 T cells and immune imbalance of T lymphocytes subsets probably play an important role in the pathogenesis of PVL and may explain its more aggressive behaviour in relation to OL.
Collapse
Affiliation(s)
- Darcy Fernandes
- Oral Medicine, Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, Araraquara, São Paulo, Brazil
| | - Camila de Oliveira Barbeiro
- Oral Medicine, Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, Araraquara, São Paulo, Brazil
| | - Mariana Paravani Palaçon
- Oral Medicine, Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, Araraquara, São Paulo, Brazil
| | - Mariel Ruivo Biancardi
- Oral Medicine, Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, Araraquara, São Paulo, Brazil
| | - Túlio Morandin Ferrisse
- Oral Medicine, Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, Araraquara, São Paulo, Brazil
| | - Heitor Albergoni Silveira
- Oral Medicine, Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, Araraquara, São Paulo, Brazil
| | - Rogerio Moraes Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, Michigan, USA
| | - Luciana Yamamoto de Almeida
- Oral Medicine, Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, Araraquara, São Paulo, Brazil
| | - Jorge Esquiche Leon
- Oral Pathology, Department of Stomatology, Public Oral Health and Forensic Dentistry, Ribeirão Preto Dental School, University of São Paulo (FORP/USP), Ribeirão Preto, São Paulo, Brazil
| | - Andreia Bufalino
- Oral Medicine, Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, Araraquara, São Paulo, Brazil
| |
Collapse
|
206
|
Brunell AE, Lahesmaa R, Autio A, Thotakura AK. Exhausted T cells hijacking the cancer-immunity cycle: Assets and liabilities. Front Immunol 2023; 14:1151632. [PMID: 37122741 PMCID: PMC10140554 DOI: 10.3389/fimmu.2023.1151632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
T cell exhaustion is an alternative differentiation path of T cells, sometimes described as a dysfunction. During the last decade, insights of T cell exhaustion acting as a bottle neck in the field of cancer immunotherapy have undoubtedly provoked attention. One of the main drivers of T cell exhaustion is prolonged antigen presentation, a prerequisite in the cancer-immunity cycle. The umbrella term "T cell exhaustion" comprises various stages of T cell functionalities, describing the dynamic, one-way exhaustion process. Together these qualities of T cells at the exhaustion continuum can enable tumor clearance, but if the exhaustion acquired timeframe is exceeded, tumor cells have increased possibilities of escaping immune system surveillance. This could be considered a tipping point where exhausted T cells switch from an asset to a liability. In this review, the contrary role of exhausted T cells is discussed.
Collapse
Affiliation(s)
- Anna E. Brunell
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Immuno-Oncology, Oncology Research, Orion Corporation, Turku, Finland
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Anu Autio
- Immuno-Oncology, Oncology Research, Orion Corporation, Turku, Finland
| | - Anil K. Thotakura
- Immuno-Oncology, Oncology Research, Orion Corporation, Turku, Finland
- *Correspondence: Anil K. Thotakura,
| |
Collapse
|
207
|
Maekawa N, Konnai S, Asano Y, Otsuka T, Aoki E, Takeuchi H, Kato Y, Kaneko MK, Yamada S, Kagawa Y, Nishimura M, Takagi S, Deguchi T, Ohta H, Nakagawa T, Suzuki Y, Okagawa T, Murata S, Ohashi K. Molecular characterization of feline immune checkpoint molecules and establishment of PD-L1 immunohistochemistry for feline tumors. PLoS One 2023; 18:e0281143. [PMID: 36701405 PMCID: PMC9879432 DOI: 10.1371/journal.pone.0281143] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/11/2023] [Indexed: 01/27/2023] Open
Abstract
Spontaneous tumors are a major cause of death in cats. Treatment of human tumors has progressed dramatically in the past decade, partly due to the success of immunotherapies using immune checkpoint inhibitors, such as anti-programmed death 1 (PD-1) and anti-PD-ligand 1 (PD-L1) antibodies. However, little is known about the PD-1 pathway and its association with tumor disease in cats. This study investigated the applicability of anti-PD-1/PD-L1 therapy in feline tumors. We first determined the complete coding sequence of feline PD-L1 and PD-L2, and found that the deduced amino acid sequences of feline PD-L1/PD-L2 share high sequence identities (66-83%) with orthologs in other mammalian species. We prepared recombinant feline PD-1, PD-L1, and PD-L2 proteins and confirmed receptor-ligand binding between PD-1 and PD-L1/PD-L2 using flow cytometry. Next, we established an anti-feline PD-L1 monoclonal antibody (clone CL1Mab-7) to analyze the expression of PD-L1. Flow cytometry using CL1Mab-7 revealed the cell surface expression of PD-L1 in a feline macrophage (Fcwf-4) and five mammary adenocarcinoma cell lines (FKNp, FMCm, FYMp, FONp, and FONm), and showed that PD-L1 expression was upregulated by interferon-γ stimulation. Finally, immunohistochemistry using CL1Mab-7 also showed PD-L1 expression in feline squamous cell carcinoma (5/5, 100%), mammary adenocarcinoma (4/5, 80%), fibrosarcoma (5/5, 100%), and renal cell carcinoma (2/2, 100%) tissues. Our results strongly encourage further investigations of the PD-1/PD-L1 pathway as a potential therapeutic target for feline tumors.
Collapse
Affiliation(s)
- Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Satoru Konnai
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- * E-mail:
| | - Yumie Asano
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Takumi Otsuka
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Eri Aoki
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroto Takeuchi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K. Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shinji Yamada
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | - Satoshi Takagi
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Department of Veterinary Surgery 1, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Tatsuya Deguchi
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Companion Animal Internal Medicine, Department of Companion Animal Clinical Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Hiroshi Ohta
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Companion Animal Internal Medicine, Department of Companion Animal Clinical Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Japan
| | - Yasuhiko Suzuki
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Shiro Murata
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuhiko Ohashi
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- International Affairs Office, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
208
|
Zhao X, He Y, Pan Y, Ye L, Liu L, Mou X, Fu L. Integrated clinical analysis and data mining assessed the impact of NOX4 on the immune microenvironment and prognosis of pancreatic cancer. Front Oncol 2023; 13:1044526. [PMID: 36874093 PMCID: PMC9978331 DOI: 10.3389/fonc.2023.1044526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Background The tumor microenvironment (TME) of pancreatic cancer is complex. which forms forms a microenvironment with high immunosuppression, ischemia and hypoxia, which promotes tumor proliferation and migration, inhibit the anti-tumor immune response. NOX4 plays an important role in tumor microenvironment and has a significant relationship with the occurrence, development and drug resistance of tumor. Methods Firstly, NOX4 expression in pancreatic cancer tissues under different pathological conditions was detected by applying immunohistochemical staining of tissue microarray (TMA). Transcriptome RNA sequencing data and clinical data of 182 pancreatic cancer samples were downloaded and collated from the UCSC xena database. 986 NOX4-related lncRNAs were filtered by Spearman correlation analysis. prognosis-related NOX4-related lncRNAs and NRlncSig Score were finally obtained by univariate and multivariate Cox regression with Least Absolute Shrinkage and Selection Operator (Lasso) analysis in pancreatic cancer patients. we plotted Kaplan -Meier and time-dependent ROC curves (ROC) to assess the validity in predicting the prognosis of pancreatic cancer. The ssGSEA analysis was applied to explore the immune microenvironment of pancreatic cancer patients as well as to discuss the immune cells and immune status separately. Results We found that a mature tumor marker, NOX4, play different roles in different clinical subgroups by immunohistochemical analysis and clinical data. Finally, 2 NOX4-related lncRNAs were determined by least absolute shrinkage and selection operator (LASSO) analysis, univariate Cox analysis and multivariate COX analysis. The ROC curve and DCA curve showed that NRS Score had better predictive ability than independent prognosis-related lncRNA and other clinicopathologic indicators. We obtained the relative abundance of 28 infiltrating immune cells by ssGSEA analysis and found a significant positive correlation between the abundance of anti-tumor immune cells and tumor-promoting immune cells in the risk-classified microenvironment. No matter NRS Score or AC092667.2, RP11-349A8.3 was significantly correlated with immune infiltrating cells. Meanwhile, the IC50 of conventional chemotherapeutic agents in high-score group were significantly lower than those in low-score group. Conclusion As a mature tumor marker, NOX4-related lncRNAs provide new research strategies for prognostic evaluation, molecular mechanism and clinical treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Xin Zhao
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.,Department of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yichen He
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.,College of pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Yi Pan
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.,College of pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Luyi Ye
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.,Department of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Longcai Liu
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.,Department of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaozhou Mou
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Luoqin Fu
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
209
|
Shen X, Zuo X, Liang L, Wang L, Luo B. Integrating machine learning and single-cell trajectories to analyze T-cell exhaustion to predict prognosis and immunotherapy in colon cancer patients. Front Immunol 2023; 14:1162843. [PMID: 37207222 PMCID: PMC10191250 DOI: 10.3389/fimmu.2023.1162843] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/13/2023] [Indexed: 05/21/2023] Open
Abstract
Introduction The incidence of colon adenocarcinoma (COAD) has recently increased, and patients with advanced COAD have a poor prognosis due to treatment resistance. Combining conventional treatment with targeted therapy and immunotherapy has shown unexpectedly positive results in improving the prognosis of patients with COAD. More study is needed to determine the prognosis for patients with COAD and establish the appropriate course of treatment. Methods This study aimed to explore the trajectory of T-cell exhaustion in COAD to predict the overall survival and treatment outcome of COAD patients. Clinical data were derived from the TCGA-COAD cohort through "UCSC", as well as the whole genome data. Prognostic genes driving T-cell trajectory differentiation were identified on the basis of single-cell trajectories and univariate Cox regression. Subsequently, T-cell exhaustion score (TES) was created by iterative LASSO regression. The potential biological logic associated with TES was explored through functional analysis, immune microenvironment assessment, immunotherapy response prediction, and in vitro experiments. Results Data showed that patients with significant TES had fewer favorable outcomes. Expression, proliferation, and invasion of COAD cells treated with TXK siRNA were also examined by cellular experiments. Both univariate and multivariate Cox regression indicated that TES was an independent prognostic factor in patients with COAD; in addition, subgroup analysis supported this finding. Functional assay revealed that immune response and cytotoxicity pathways are associated with TES, as the subgroup with low TES has an active immune microenvironment. Furthermore, patients with low TES responded better to chemotherapy and immunotherapy. Conclusion In this study, we systematically explored the T-cell exhaustion trajectory in COAD and developed a TES model to assess prognosis and provide guidelines for the treatment decision. This discovery gave rise to a fresh concept for novel therapeutic procedures for the clinical treatment of COAD.
Collapse
Affiliation(s)
- Xiaogang Shen
- Department of Gastrointestinal Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Xiaofei Zuo
- Department of Gastrointestinal Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Liang Liang
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- Cancer Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lin Wang
- Department of Gastrointestinal Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- *Correspondence: Bin Luo, ; Lin Wang,
| | - Bin Luo
- Department of Gastrointestinal Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- *Correspondence: Bin Luo, ; Lin Wang,
| |
Collapse
|
210
|
Pang K, Shi ZD, Wei LY, Dong Y, Ma YY, Wang W, Wang GY, Cao MY, Dong JJ, Chen YA, Zhang P, Hao L, Xu H, Pan D, Chen ZS, Han CH. Research progress of therapeutic effects and drug resistance of immunotherapy based on PD-1/PD-L1 blockade. Drug Resist Updat 2023; 66:100907. [PMID: 36527888 DOI: 10.1016/j.drup.2022.100907] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/12/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
The binding of programmed death-1 (PD-1) on the surface of T cells and PD-1 ligand 1 (PD-L1) on tumor cells can prevent the immune-killing effect of T cells on tumor cells and promote the immune escape of tumor cells. Therefore, immune checkpoint blockade targeting PD-1/PD-L1 is a reliable tumor therapy with remarkable efficacy. However, the main challenges of this therapy are low response rate and acquired resistance, so that the outcomes of this therapy are usually unsatisfactory. This review begins with the description of biological structure of the PD-1/PD-L1 immune checkpoint and its role in a variety of cells. Subsequently, the therapeutic effects of immune checkpoint blockers (PD-1 / PD-L1 inhibitors) in various tumors were introduced and analyzed, and the reasons affecting the function of PD-1/PD-L1 were systematically analyzed. Then, we focused on analyzing, sorting out and introducing the possible underlying mechanisms of primary and acquired resistance to PD-1/PD-L1 blockade including abnormal expression of PD-1/PD-L1 and some factors, immune-related pathways, tumor immune microenvironment, and T cell dysfunction and others. Finally, promising therapeutic strategies to sensitize the resistant patients with PD-1/PD-L1 blockade treatment were described. This review is aimed at providing guidance for the treatment of various tumors, and highlighting the drug resistance mechanisms to offer directions for future tumor treatment and improvement of patient prognosis.
Collapse
Affiliation(s)
- Kun Pang
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, Jiangsu, China; School of Life Sciences, Jiangsu Normal University, Jiangsu, China
| | - Zhen-Duo Shi
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, Jiangsu, China; School of Life Sciences, Jiangsu Normal University, Jiangsu, China; Department of Urology, Heilongjiang Provincial Hospital, Heilongjiang, China
| | - Liu-Ya Wei
- School of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, China
| | - Yang Dong
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, Jiangsu, China
| | - Yu-Yang Ma
- Graduate School, Bengbu Medical College, Building 1, Administration Building, 2600 Donghai Avenue, Bengbu, Anhui, China
| | - Wei Wang
- Department of Medical College, Southeast University, 87 DingjiaQiao, Nanjing, China
| | - Guang-Yue Wang
- Graduate School, Bengbu Medical College, Building 1, Administration Building, 2600 Donghai Avenue, Bengbu, Anhui, China
| | - Ming-Yang Cao
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, Jiangsu, China
| | - Jia-Jun Dong
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Yu-Ang Chen
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, Jiangsu, China
| | - Peng Zhang
- Graduate School, Bengbu Medical College, Building 1, Administration Building, 2600 Donghai Avenue, Bengbu, Anhui, China
| | - Lin Hao
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, Jiangsu, China
| | - Hao Xu
- Graduate School, Bengbu Medical College, Building 1, Administration Building, 2600 Donghai Avenue, Bengbu, Anhui, China
| | - Deng Pan
- Graduate School, Bengbu Medical College, Building 1, Administration Building, 2600 Donghai Avenue, Bengbu, Anhui, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| | - Cong-Hui Han
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, Jiangsu, China; School of Life Sciences, Jiangsu Normal University, Jiangsu, China; Department of Urology, Heilongjiang Provincial Hospital, Heilongjiang, China.
| |
Collapse
|
211
|
Chi X, Luo S, Ye P, Hwang WL, Cha JH, Yan X, Yang WH. T-cell exhaustion and stemness in antitumor immunity: Characteristics, mechanisms, and implications. Front Immunol 2023; 14:1104771. [PMID: 36891319 PMCID: PMC9986432 DOI: 10.3389/fimmu.2023.1104771] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
T cells play a crucial role in the regulation of immune response and are integral to the efficacy of cancer immunotherapy. Because immunotherapy has emerged as a promising treatment for cancer, increasing attention has been focused on the differentiation and function of T cells in immune response. In this review, we describe the research progress on T-cell exhaustion and stemness in the field of cancer immunotherapy and summarize advances in potential strategies to intervene and treat chronic infection and cancer by reversing T-cell exhaustion and maintaining and increasing T-cell stemness. Moreover, we discuss therapeutic strategies to overcome T-cell immunodeficiency in the tumor microenvironment and promote continuous breakthroughs in the anticancer activity of T cells.
Collapse
Affiliation(s)
- Xiaoxia Chi
- Affiliated Cancer Hospital & Institute and Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shahang Luo
- Affiliated Cancer Hospital & Institute and Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Peng Ye
- Department of Infectious Diseases, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, China
| | - Wei-Lun Hwang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jong-Ho Cha
- Department of Biomedical Science, College of Medicine, and Program in Biomedical Sciences and Engineering, Inha University, Incheon, Republic of Korea
| | - Xiuwen Yan
- Affiliated Cancer Hospital & Institute and Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wen-Hao Yang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
212
|
Brauneck F, Fischer B, Witt M, Muschhammer J, Oelrich J, da Costa Avelar PH, Tsoka S, Bullinger L, Seubert E, Smit DJ, Bokemeyer C, Ackermann C, Wellbrock J, Haag F, Fiedler W. TIGIT blockade repolarizes AML-associated TIGIT + M2 macrophages to an M1 phenotype and increases CD47-mediated phagocytosis. J Immunother Cancer 2022; 10:jitc-2022-004794. [PMID: 36549780 PMCID: PMC9791419 DOI: 10.1136/jitc-2022-004794] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Leukemia-associated macrophages (LAMs) represent an important cell population within the tumor microenvironment, but little is known about the phenotype, function, and plasticity of these cells. The present study provides an extensive characterization of macrophages in patients with acute myeloid leukemia (AML). METHODS The phenotype and expression of coregulatory markers were assessed on bone marrow (BM)-derived LAM populations, using multiparametric flow cytometry. BM and blood aspirates were obtained from patients with newly diagnosed acute myeloid leukemia (pAML, n=59), patients in long-term remission (lrAML, n=8), patients with relapsed acute myeloid leukemia (rAML, n=7) and monocyte-derived macrophages of the blood from healthy donors (HD, n=17). LAM subpopulations were correlated with clinical parameters. Using a blocking anti-T-cell immunoreceptor with Ig and ITIM domains (TIGIT) antibody or mouse IgG2α isotype control, we investigated polarization, secretion of cytokines, and phagocytosis on LAMs and healthy monocyte-derived macrophages in vitro. RESULTS In pAML and rAML, M1 LAMs were reduced and the predominant macrophage population consisted of immunosuppressive M2 LAMs defined by expression of CD163, CD204, CD206, and CD86. M2 LAMs in active AML highly expressed inhibitory receptors such as TIGIT, T-cell immunoglobulin and mucin-domain containing-3 protein (TIM-3), and lymphocyte-activation gene 3 (LAG-3). High expression of CD163 was associated with a poor overall survival (OS). In addition, increased frequencies of TIGIT+ M2 LAMs were associated with an intermediate or adverse risk according to the European Leukemia Network criteria and the FLT3 ITD mutation. In vitro blockade of TIGIT shifted the polarization of primary LAMs or peripheral blood-derived M2 macrophages toward the M1 phenotype and increased secretion of M1-associated cytokines and chemokines. Moreover, the blockade of TIGIT augmented the anti-CD47-mediated phagocytosis of AML cell lines and primary AML cells. CONCLUSION Our findings suggest that immunosuppressive TIGIT+ M2 LAMs can be redirected into an efficient effector population that may be of direct clinical relevance in the near future.
Collapse
Affiliation(s)
- Franziska Brauneck
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Brit Fischer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marius Witt
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jana Muschhammer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jennyfer Oelrich
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Sophia Tsoka
- Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London, UK
| | - Lars Bullinger
- Department of Hematology, Oncology and Tumor Immunology, Charite Universitatsmedizin Berlin, Berlin, Germany
| | - Elisa Seubert
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel J Smit
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christin Ackermann
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jasmin Wellbrock
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Haag
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
213
|
Qi R, Yu Y, Shen M, Lv D, He S. Current status and challenges of immunotherapy in ALK rearranged NSCLC. Front Oncol 2022; 12:1016869. [PMID: 36591504 PMCID: PMC9795041 DOI: 10.3389/fonc.2022.1016869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Rearrangements of the anaplastic lymphoma kinase (ALK) gene account for 5-6% in non-small cell lung cancer (NSCLC). ALK rearranged NSCLC is sensitive to ALK tyrosine kinase inhibitors (TKIs) but prone to drug resistance. Meanwhile, ALK rearranged NSCLC has poor response to single immunotherapy. Here we mainly describe the immune escape mechanisms of ALK mutated NSCLC and the role of related biomarkers. Additionally, we collate and evaluate preclinical and clinical studies of novel immune combination regimens, and describe the prospects and perspectives for the in vivo application of novel immune technologies in patients with ALK rearranged NSCLC.
Collapse
Affiliation(s)
- Rongbin Qi
- Department of Respiratory Medicine, TaiZhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Yingying Yu
- Department of Respiratory Medicine, TaiZhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Mo Shen
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Dongqing Lv
- Department of Respiratory Medicine, At Enze Hospital, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Susu He
- Department of Respiratory Medicine, TaiZhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
214
|
Chen D, Guo Y, Jiang J, Wu P, Zhang T, Wei Q, Huang J, Wu D. γδ T cell exhaustion: Opportunities for intervention. J Leukoc Biol 2022; 112:1669-1676. [PMID: 36000310 PMCID: PMC9804355 DOI: 10.1002/jlb.5mr0722-777r] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/25/2022] [Indexed: 01/05/2023] Open
Abstract
T lymphocytes are the key protective contributors in chronic infection and tumor, but experience exhaustion by persistent antigen stimulation. As an unconventional lineage of T cells, γδ T cells can rapidly response to varied infectious and tumor challenges in a non-MHC-restricted manner and play key roles in immune surveillance via pleiotropic effector functions, showing promising as candidates for cellular tumor immunotherapy. Activated γδ T cells can also acquire exhaustion signature with elevated expression of immune checkpoints, such as PD-1, decreased cytokine production, and functional impairment. However, the exhaustion features of γδ T cells are distinct from conventional αβ T cells. Here, we review the researches regarding the characteristics, heterogeneity, and mechanisms of γδ T cell exhaustion. These studies provide insights into the combined strategies to overcome the exhaustion of γδ T cells and enhance antitumor immunity. Summary sentence: Review of the characteristics, heterogeneity, and mechanisms of γδ T cell exhaustion provides insights into the combined strategies to enhance γδ T cell-based antitumor immunotherapy.
Collapse
Affiliation(s)
- Di Chen
- Department of Radiation Oncology, Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina
| | - Yinglu Guo
- Department of Radiation Oncology, Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina
| | - Jiahuan Jiang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina,Department of Breast Surgery, Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina
| | - Pin Wu
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina,Department of Thoracic Surgery, Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina
| | - Ting Zhang
- Department of Radiation Oncology, Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina
| | - Qichun Wei
- Department of Radiation Oncology, Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina
| | - Jian Huang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina,Department of Breast Surgery, Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina
| | - Dang Wu
- Department of Radiation Oncology, Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina
| |
Collapse
|
215
|
Horzum U, Yanik H, Taskiran EZ, Esendagli G. Effector Th1 cells under PD-1 and CTLA-4 checkpoint blockade abrogate the upregulation of multiple inhibitory receptors and by-pass exhaustion. Immunology 2022; 167:640-650. [PMID: 36053975 DOI: 10.1111/imm.13560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023] Open
Abstract
Immune checkpoint inhibitor (ICI) immunotherapy relies on the restoration of T-cell functions. The ICI receptors are not only found on exhausted T cells but also upregulated upon activation and reach high levels on effector T cells. In an ex vivo model, this study explored the consequences of PD-1 and cytotoxic T-lymphocyte antigen (CTLA-4) blockade applied during specific time frames of T-cell stimulation that coincide with distinct functional phases in type 1 helper T (Th1) cells. When applied at an early stimulation stage, the checkpoint blockade interfered with the upregulation of multiple inhibitory receptors such as PD-1, LAG3, TIM-3 and CTLA-4. Moreover, extension of the blockade period restricted the hyporesponsiveness in T cells. Alternatively, a short-term ICI treatment was advantageous when applied at late time frames of Th1 cell stimulation. Here, a transition phase from effector to exhausted state, which coincided with the late time frames of Th1 stimulation, was clearly determined together with the transcriptomics data demonstrating the initiation of significant alterations in metabolic pathways, genetic information processes, effector and exhaustion specific pathways. Applied in this transition phase, PD-1 and/or CTLA-4 blockade downregulated the inhibitory receptors which were already present on the effector Th1 cells, potentially through endocytic pathways. Therefore, the efficacy of ICI therapy was modulated by the functional status of T cells and can be improved by modifying the timing and duration of PD-1 and CTLA-4 blockade. In conclusion, the ICI therapy not only supports the reactivation of T cells but can also constrain de novo exhaustion.
Collapse
Affiliation(s)
- Utku Horzum
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
- Division of Molecular Pathophysiology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Hamdullah Yanik
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Ekim Z Taskiran
- Department of Medical Genetics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Gunes Esendagli
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| |
Collapse
|
216
|
Bae J, Liu L, Moore C, Hsu E, Zhang A, Ren Z, Sun Z, Wang X, Zhu J, Shen J, Qiao J, Fu YX. IL-2 delivery by engineered mesenchymal stem cells re-invigorates CD8 + T cells to overcome immunotherapy resistance in cancer. Nat Cell Biol 2022; 24:1754-1765. [PMID: 36474070 DOI: 10.1038/s41556-022-01024-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 09/27/2022] [Indexed: 12/12/2022]
Abstract
Immune checkpoint blockade (ICB)-based immunotherapy depends on functional tumour-infiltrating lymphocytes (TILs), but essential cytokines are less understood. Here we uncover an essential role of endogenous IL-2 for ICB responsiveness and the correlation between insufficient IL-2 signalling and T-cell exhaustion as tumours progress. To determine if exogenous IL-2 in the tumour microenvironment can overcome ICB resistance, we engineered mesenchymal stem cells (MSCs) to successfully deliver IL-2 mutein dimer (SIL2-EMSC) to TILs. While MSCs have been used to suppress inflammation, SIL2-EMSCs elicit anti-tumour immunity and overcome ICB resistance without toxicity. Mechanistically, SIL2-EMSCs activate and expand pre-existing CD8+ TILs, sufficient for tumour control and induction of systemic anti-tumour effects. Furthermore, engineered MSCs create synergy of innate and adaptive immunity. The therapeutic benefits of SIL2-EMSCs were also observed in humanized mouse models. Overall, engineered MSCs rejuvenate CD8+ TILs and thus potentiate ICB and chemotherapy.
Collapse
Affiliation(s)
- Joonbeom Bae
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Longchao Liu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Casey Moore
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Eric Hsu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anli Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhenhua Ren
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhichen Sun
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xue Wang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jiankun Zhu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jiao Shen
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jian Qiao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
217
|
An Elevated Neutrophil-to-Lymphocyte Ratio Predicts Poor Prognosis in Patients with Liver Cancer after Interventional Treatments. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6141317. [DOI: 10.1155/2022/6141317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/25/2022] [Accepted: 11/08/2022] [Indexed: 11/27/2022]
Abstract
This study is aimed at examining the prognostic value of blood neutrophil-to-lymphocyte ratio (NLR) in patients with hepatocellular carcinoma (HCC). Demographic and clinical data of 543 HCC patients treated with interventional therapies were retrospectively analyzed. Preoperative NLRs were determined and receiver operating characteristic (ROC) curves were plotted for survival time in patients with high (NLR ≥3.8) and low (NLR<3.8) NLR. The median overall survival (OS) was 1241 days after interventional therapies and was significantly reduced in the high NLR group when compared to the low NLR group. The median progression-free survival time (PFST) of patients was also significantly shorter in the high NLR group than in the low NLR group. Univariate analysis revealed that tumor type, therapy method, maximum tumor size (>3 mm), and NLR (>3.8) were risk factors for OST and PFST (
). Multivariate analysis indicated that tumor type, maximum tumor diameter, therapy method, and NLR (>3.8) were independent risk factors for PFST (
). Our results demonstrate that preoperative NLR has prognostic value for patients with HCC undergoing interventional therapies, and high NLR is an indication of poor prognosis.
Collapse
|
218
|
Mu W, Rezek V, Martin H, Carrillo MA, Tomer S, Hamid P, Lizarraga MA, Tibbe TD, Yang OO, Jamieson BD, Kitchen SG, Zhen A. Autophagy inducer rapamycin treatment reduces IFN-I-mediated Inflammation and improves anti-HIV-1 T cell response in vivo. JCI Insight 2022; 7:e159136. [PMID: 36509289 PMCID: PMC9746825 DOI: 10.1172/jci.insight.159136] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022] Open
Abstract
A hallmark of HIV-1 infection is chronic inflammation, even in patients treated with antiretroviral therapy (ART). Chronic inflammation drives HIV-1 pathogenesis, leading to loss of CD4+ T cells and exhaustion of antiviral immunity. Therefore, strategies to safely reduce systematic inflammation are needed to halt disease progression and restore defective immune responses. Autophagy is a cellular mechanism for disposal of damaged organelles and elimination of intracellular pathogens. Autophagy is pivotal for energy homeostasis and plays critical roles in regulating immunity. However, how it regulates inflammation and antiviral T cell responses during HIV infection is unclear. Here, we demonstrate that autophagy is directly linked to IFN-I signaling, which is a key driver of immune activation and T cell exhaustion during chronic HIV infection. Impairment of autophagy leads to spontaneous IFN-I signaling, and autophagy induction reduces IFN-I signaling in monocytic cells. Importantly, in HIV-1-infected humanized mice, autophagy inducer rapamycin treatment significantly reduced persistent IFN-I-mediated inflammation and improved antiviral T cell responses. Cotreatment of rapamycin with ART led to significantly reduced viral rebound after ART withdrawal. Taken together, our data suggest that therapeutically targeting autophagy is a promising approach to treat persistent inflammation and improve immune control of HIV replication.
Collapse
Affiliation(s)
- Wenli Mu
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Valerie Rezek
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Heather Martin
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Mayra A. Carrillo
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Shallu Tomer
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Philip Hamid
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Miguel A. Lizarraga
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Tristan D. Tibbe
- Statistic Core, Department of Medicine at UCLA, Los Angeles, California, USA
| | - Otto O. Yang
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Division of Infectious Disease and
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | | | - Scott G. Kitchen
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Anjie Zhen
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
219
|
Yan L, Chen Y, Han Y, Tong C. Role of CD8 + T cell exhaustion in the progression and prognosis of acute respiratory distress syndrome induced by sepsis: a prospective observational study. BMC Emerg Med 2022; 22:182. [PMCID: PMC9675152 DOI: 10.1186/s12873-022-00733-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 10/25/2022] [Indexed: 11/21/2022] Open
Abstract
Background CD8+ T cells are important for protective immunity against intracellular pathogens. Excessive amounts of antigen and/or inflammatory signals often lead to the gradual deterioration of CD8+ T cell function, a state called “exhaustion”. However, the association between CD8+ T cell exhaustion and acute respiratory distress syndrome (ARDS) has not been studied. This study was conducted to elucidate how CD8+ T cells and inhibitory receptors were related to the clinical prognosis of ARDS. Methods A prospective observational study in an emergency department enrolled patients who were diagnosed with sepsis-associated ARDS according to the sepsis-3 criteria and Berlin definition. Peripheral blood samples were collected within 24 h post recruitment. CD8+ T cell count, proliferation ratio, cytokine secretion, and the expression of coinhibitory receptors were assayed. Results Sixty-two patients with ARDS met the inclusion criteria. CD8+ T cell counts and proliferation rates were dramatically decreased in non-surviving ARDS patients. Increasing programmed cell death 1 (PD-1) expression on the CD8+ T cell surface was seen in patients with worse organ function, while an increasing level of T cell immunoglobulin mucin-3 (Tim-3) was associated with a longer duration of the shock. Kaplan–Meier analysis showed that low CD8+ T cell percentages and increased inhibitory molecule expression were significantly associated with a worse survival rate. Conclusions CD8+ T cells and coinhibitory receptors are promising independent prognostic markers of sepsis-induced ARDS, and increased CD8+ T cell exhaustion is significantly correlated with poor prognosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12873-022-00733-2.
Collapse
Affiliation(s)
- Lei Yan
- grid.8547.e0000 0001 0125 2443Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Yumei Chen
- grid.8547.e0000 0001 0125 2443Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Yi Han
- grid.8547.e0000 0001 0125 2443Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Chaoyang Tong
- grid.8547.e0000 0001 0125 2443Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| |
Collapse
|
220
|
Neves JB, Roberts K, Nguyen JS, El Sheikh S, Tran-Dang MA, Horsfield C, Mumtaz F, Campbell P, Stauss H, Tran MG, Mitchell T. Defining the origin, evolution, and immune composition of SDH-deficient renal cell carcinoma. iScience 2022; 25:105389. [PMID: 36345344 PMCID: PMC9636038 DOI: 10.1016/j.isci.2022.105389] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/05/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
Succinate dehydrogenase (SDH)-deficient renal cell carcinoma represents a rare subtype of hereditary kidney cancer. Clinical diagnosis can be challenging and there is little evidence to guide systemic therapeutic options. We performed genomic profiling of a cohort of tumors through the analysis of whole genomes, transcriptomes, as well as flow cytometry and immunohistochemistry in order to gain a deeper understanding of their molecular biology. We find neutral evolution after early tumor activation with a lack of secondary driver events. We show that these tumors have epithelial derivation, possibly from the macula densa, a specialized paracrine cell of the renal juxtaglomerular apparatus. They subsequently develop into immune excluded tumors. We provide transcriptomic and protein expression evidence of a highly specific tumor marker, PAPPA2. These translational findings have implications for the diagnosis and treatment for this rare tumor subtype.
Collapse
Affiliation(s)
- Joana B. Neves
- UCL Division of Surgery and Interventional Science, Royal Free Hospital, London, UK
- Specialist Centre for Kidney Cancer, Royal Free Hospital, London, UK
- UCL Institute of Immunity & Transplantation, The Pears Building, Pond Street, London, UK
| | - Kirsty Roberts
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | - Soha El Sheikh
- Department of Histopathology, Royal Free Hospital, London, UK
| | | | - Catherine Horsfield
- Guy’s & St Thomas’ National Health Service Trust, Westminster Bridge Road, London, UK
| | - Faiz Mumtaz
- UCL Division of Surgery and Interventional Science, Royal Free Hospital, London, UK
- Specialist Centre for Kidney Cancer, Royal Free Hospital, London, UK
| | - Peter Campbell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Hans Stauss
- UCL Institute of Immunity & Transplantation, The Pears Building, Pond Street, London, UK
| | - Maxine G.B. Tran
- UCL Division of Surgery and Interventional Science, Royal Free Hospital, London, UK
- Specialist Centre for Kidney Cancer, Royal Free Hospital, London, UK
- UCL Institute of Immunity & Transplantation, The Pears Building, Pond Street, London, UK
| | - Thomas Mitchell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| |
Collapse
|
221
|
Conway JW, Braden J, Wilmott JS, Scolyer RA, Long GV, Pires da Silva I. The effect of organ-specific tumor microenvironments on response patterns to immunotherapy. Front Immunol 2022; 13:1030147. [DOI: 10.3389/fimmu.2022.1030147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022] Open
Abstract
Immunotherapy, particularly immune checkpoint inhibitors, have become widely used in various settings across many different cancer types in recent years. Whilst patients are often treated on the basis of the primary cancer type and clinical stage, recent studies have highlighted disparity in response to immune checkpoint inhibitors at different sites of metastasis, and their impact on overall response and survival. Studies exploring the tumor immune microenvironment at different organ sites have provided insights into the immune-related mechanisms behind organ-specific patterns of response to immunotherapy. In this review, we aimed to highlight the key learnings from clinical studies across various cancers including melanoma, lung cancer, renal cell carcinoma, colorectal cancer, breast cancer and others, assessing the association of site of metastasis and response to immune checkpoint inhibitors. We also summarize the key clinical and pre-clinical findings from studies exploring the immune microenvironment of specific sites of metastasis. Ultimately, further characterization of the tumor immune microenvironment at different metastatic sites, and understanding the biological drivers of these differences, may identify organ-specific mechanisms of resistance, which will lead to more personalized treatment approaches for patients with innate or acquired resistance to immunotherapy.
Collapse
|
222
|
Yuan LL, Chen Z, Qin J, Qin CJ, Bian J, Dong RF, Yuan TB, Xu YT, Kong LY, Xia YZ. Single-cell sequencing reveals the landscape of the tumor microenvironment in a skeletal undifferentiated pleomorphic sarcoma patient. Front Immunol 2022; 13:1019870. [PMID: 36466840 PMCID: PMC9709471 DOI: 10.3389/fimmu.2022.1019870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/25/2022] [Indexed: 09/12/2024] Open
Abstract
Skeletal undifferentiated pleomorphic sarcoma (SUPS) is an invasive pleomorphic soft tissue sarcoma with a high degree of malignancy and poor prognosis. It is prone to recur and metastasize. The tumor microenvironment (TME) and the pathophysiology of SUPS are barely described. Single-cell RNA sequencing (scRNA-seq) provides an opportunity to dissect the landscape of human diseases at an unprecedented resolution, particularly in diseases lacking animal models, such as SUPS. We performed scRNA-seq to analyze tumor tissues and paracancer tissues from a SUPS patient. We identified the cell types and the corresponding marker genes in this SUPS case. We further showed that CD8+ exhausted T cells and Tregs highly expressed PDCD1, CTLA4 and TIGIT. Thus, PDCD1, CTLA4 and TIGIT were identified as potential targets in this case. We applied copy number karyotyping of aneuploid tumors (CopyKAT) to distinguish malignant cells from normal cells in fibroblasts. Our study identified eight malignant fibroblast subsets in SUPS with distinct gene expression profiles. C1-malignant Fibroblast and C6-malignant Fibroblast in the TME play crucial roles in tumor growth, angiogenesis, metastasis and immune response. Hence, targeting malignant fibroblasts could represent a potential strategy for this SUPS therapy. Intervention via tirelizumab enabled disease control, and immune checkpoint inhibitors (ICIs) of PD-1 may be considered as the first-line option in patients with SUPS. Taken together, scRNA-seq analyses provided a powerful basis for this SUPS treatment, improved our understanding of complex human diseases, and may afforded an alternative approach for personalized medicine in the future.
Collapse
Affiliation(s)
- Liu-Liu Yuan
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhong Chen
- Department of Orthopedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Jian Qin
- Department of Orthopedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Cheng-Jiao Qin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jing Bian
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Rui-Fang Dong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Tang-Bo Yuan
- Department of Orthopedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Yi-Ting Xu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuan-Zheng Xia
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education and Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China
| |
Collapse
|
223
|
Murugan D, Murugesan V, Panchapakesan B, Rangasamy L. Nanoparticle Enhancement of Natural Killer (NK) Cell-Based Immunotherapy. Cancers (Basel) 2022; 14:cancers14215438. [PMID: 36358857 PMCID: PMC9653801 DOI: 10.3390/cancers14215438] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Simple Summary Natural killer cells are a part of the native immune response to cancer. NK cell-based immunotherapies are an emerging strategy to kill tumor cells. This paper reviews the role of NK cells, their mechanism of action for killing tumor cells, and the receptors which could serve as potential targets for signaling. In this review, the role of nanoparticles in NK cell activation and increased cytotoxicity of NK cells against cancer are highlighted. Abstract Natural killer (NK) cells are one of the first lines of defense against infections and malignancies. NK cell-based immunotherapies are emerging as an alternative to T cell-based immunotherapies. Preclinical and clinical studies of NK cell-based immunotherapies have given promising results in the past few decades for hematologic malignancies. Despite these achievements, NK cell-based immunotherapies have limitations, such as limited performance/low therapeutic efficiency in solid tumors, the short lifespan of NK cells, limited specificity of adoptive transfer and genetic modification, NK cell rejection by the patient’s immune system, insignificant infiltration of NK cells into the tumor microenvironment (TME), and the expensive nature of the treatment. Nanotechnology could potentially assist with the activation, proliferation, near-real time imaging, and enhancement of NK cell cytotoxic activity by guiding their function, analyzing their performance in near-real time, and improving immunotherapeutic efficiency. This paper reviews the role of NK cells, their mechanism of action in killing tumor cells, and the receptors which could serve as potential targets for signaling. Specifically, we have reviewed five different areas of nanotechnology that could enhance immunotherapy efficiency: nanoparticle-assisted immunomodulation to enhance NK cell activity, nanoparticles enhancing homing of NK cells, nanoparticle delivery of RNAi to enhance NK cell activity, genetic modulation of NK cells based on nanoparticles, and nanoparticle activation of NKG2D, which is the master regulator of all NK cell responses.
Collapse
Affiliation(s)
- Dhanashree Murugan
- School of Biosciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, India
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Vasanth Murugesan
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, India
- School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Balaji Panchapakesan
- Small Systems Laboratory, Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
- Correspondence: (B.P.); (L.R.)
| | - Loganathan Rangasamy
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, India
- Correspondence: (B.P.); (L.R.)
| |
Collapse
|
224
|
Quach HT, Hou Z, Bellis RY, Saini JK, Amador-Molina A, Adusumilli PS, Xiong Y. Next-generation immunotherapy for solid tumors: combination immunotherapy with crosstalk blockade of TGFβ and PD-1/PD-L1. Expert Opin Investig Drugs 2022; 31:1187-1202. [PMID: 36448335 PMCID: PMC10085570 DOI: 10.1080/13543784.2022.2152323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022]
Abstract
INTRODUCTION In solid tumor immunotherapy, less than 20% of patients respond to anti-programmed cell death 1 (PD-1)/programmed cell death 1 ligand 1 (PD-L1) agents. The role of transforming growth factor β (TGFβ) in diverse immunity is well-established; however, systemic blockade of TGFβ is associated with toxicity. Accumulating evidence suggests the role of crosstalk between TGFβ and PD-1/PD-L1 pathways. AREAS COVERED We focus on TGFβ and PD-1/PD-L1 signaling pathway crosstalk and the determinant role of TGFβ in the resistance of immune checkpoint blockade. We provide the rationale for combination anti-TGFβ and anti-PD-1/PD-L1 therapies for solid tumors and discuss the current status of dual blockade therapy in preclinical and clinical studies. EXPERT OPINION The heterogeneity of tumor microenvironment across solid tumors complicates patient selection, treatment regimens, and response and toxicity assessment for investigation of dual blockade agents. However, clinical knowledge from single-agent studies provides infrastructure to translate dual blockade therapies. Dual TGFβ and PD-1/PD-L1 blockade results in enhanced T-cell infiltration into tumors, a primary requisite for successful immunotherapy. A bifunctional fusion protein specifically targets TGFβ in the tumor microenvironment, avoiding systemic toxicity, and prevents interaction of PD-1+ cytotoxic cells with PD-L1+ tumor cells.
Collapse
Affiliation(s)
- Hue Tu Quach
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Zhaohua Hou
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Rebecca Y. Bellis
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Jasmeen K. Saini
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Alfredo Amador-Molina
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Prasad S. Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
- Director, Mesothelioma Program; Head, Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Yuquan Xiong
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| |
Collapse
|
225
|
Establishment of a mechanism-based in vitro coculture assay for evaluating the efficacy of immune checkpoint inhibitors. Cancer Immunol Immunother 2022; 71:2777-2789. [DOI: 10.1007/s00262-022-03201-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/28/2022] [Indexed: 11/26/2022]
|
226
|
Laba S, Mallett G, Amarnath S. The depths of PD-1 function within the tumor microenvironment beyond CD8 + T cells. Semin Cancer Biol 2022; 86:1045-1055. [PMID: 34048897 DOI: 10.1016/j.semcancer.2021.05.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/30/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023]
Abstract
Programmed cell death-1 (PD-1; CD279) is a cell surface receptor that is expressed in both innate and adaptive immune cells. The role of PD-1 in adaptive immune cells, specifically in CD8+ T cells, has been thoroughly investigated but its significance in other immune cells is yet to be well established. This review will address the role of PD-1 based therapies in enhancing non-CD8+ T cell immune responses within cancer. Specifically, the expression and function of PD-1 in non-CD8+ immune cell compartments such as CD4+ T helper cell subsets, myeloid cells and innate lymphoid cells (ILCs) will be discussed. By understanding the immune cell specific function of PD-1 within tissue resident innate and adaptive immune cells, it will be possible to stratify patients for PD-1 based therapies for both immunogeneic and non-immunogeneic neoplastic disorders. With this knowledge from fundamental and translational studies, PD-1 based therapies can be utilized to enhance T cell independent immune responses in cancers.
Collapse
Affiliation(s)
- Stephanie Laba
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, United Kingdom.
| | - Grace Mallett
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, United Kingdom
| | - Shoba Amarnath
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, United Kingdom.
| |
Collapse
|
227
|
Ichiki Y, Fukuyama T, Ueno M, Kanasaki Y, Goto H, Takahashi M, Mikami S, Kobayashi N, Nakanishi K, Hayashi S, Ishida T. Immune profile analysis of peripheral blood and tumors of lung cancer patients treated with immune checkpoint inhibitors. Transl Lung Cancer Res 2022; 11:2192-2207. [PMID: 36519023 PMCID: PMC9742629 DOI: 10.21037/tlcr-22-421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 10/13/2022] [Indexed: 04/08/2024]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have become central to lung cancer drug therapy, and establishing biomarkers that can predict effects and adverse events (AEs) is awaited. We prospectively analyzed the association between the immune-related molecular expression in peripheral blood mononuclear cells (PBMCs) and lung cancer tissues, and the effects of ICI monotherapy. METHODS Twenty-one patients with advanced non-small cell lung cancer (NSCLC) who received ICI monotherapy were included. Changes in the expression of immune-related molecules in PBMCs before and after the administration of ICI were analyzed by flow cytometry. The major histocompatibility complex (MHC) class I and programmed cell death-ligand 1 (PD-L1) expression of cancer cells, and the PD-L1, CD8 and CD103 expression of tumor infiltrating immune cells in lung cancer tissue before the administration of ICI were confirmed by immunohistochemistry (IHC). RESULTS Twenty-one patients were investigated, including 11 adenocarcinoma and 10 squamous cell carcinoma cases. Anti-programmed cell death protein-1 (PD-1) antibody (n=18) and anti-PD-L1 antibody (n=3) were administered. The clinical responses were graded as follows: complete response (CR) (n=1), partial response (PR) (n=7), stable disease (SD) (n=10) and progressive disease (PD) (n=3). Among immune-related molecules expressed in PBMCs, the CD103+ CD39+ CD8+ T cell change after administration closely correlated with the clinical response. In the univariate analyses of the factors associated with progression-free survival (PFS), CD103+ CD39+ CD8+ cell change after administration was identified as a significant prognostic factor, while the CD103+ CD39+ CD8+ cell change after administration and Brinkman index were independent prognostic factors in a multivariate analysis of the factors associated with PFS. CONCLUSIONS The CD103+ CD39+ CD8+ cell change after administration may predict the efficacy of ICIs.
Collapse
Affiliation(s)
- Yoshinobu Ichiki
- Department of General Thoracic Surgery, National Hospital Organization, Saitama Hospital, Wako, Japan
- Second Department of Surgery, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan
| | - Takashi Fukuyama
- Division of Biomedical Research, Kitasato University Medical Center, Kitamoto, Japan
| | - Mari Ueno
- Department of Diagnostic Pathology, National Hospital Organization, Saitama Hospital, Wako, Japan
| | - Yoshiro Kanasaki
- Department of General Thoracic Surgery, National Hospital Organization, Saitama Hospital, Wako, Japan
| | - Hidenori Goto
- Department of General Thoracic Surgery, National Hospital Organization, Saitama Hospital, Wako, Japan
| | - Mai Takahashi
- Department of Respiratory Medicine, National Hospital Organization, Saitama Hospital, Wako, Japan
| | - Shuji Mikami
- Department of Diagnostic Pathology, National Hospital Organization, Saitama Hospital, Wako, Japan
| | - Noritada Kobayashi
- Division of Biomedical Research, Kitasato University Medical Center, Kitamoto, Japan
| | - Kozo Nakanishi
- Department of General Thoracic Surgery, National Hospital Organization, Saitama Hospital, Wako, Japan
| | - Shinichi Hayashi
- Department of Respiratory Medicine, National Hospital Organization, Saitama Hospital, Wako, Japan
| | - Tsuyoshi Ishida
- Department of Diagnostic Pathology, National Hospital Organization, Saitama Hospital, Wako, Japan
| |
Collapse
|
228
|
Liu C, Yang M, Zhang D, Chen M, Zhu D. Clinical cancer immunotherapy: Current progress and prospects. Front Immunol 2022; 13:961805. [PMID: 36304470 PMCID: PMC9592930 DOI: 10.3389/fimmu.2022.961805] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Immune checkpoint therapy via PD-1 antibodies has shown exciting clinical value and robust therapeutic potential in clinical practice. It can significantly improve progression-free survival and overall survival. Following surgery, radiotherapy, chemotherapy, and targeted therapy, cancer treatment has now entered the age of immunotherapy. Although cancer immunotherapy has shown remarkable efficacy, it also suffers from limitations such as irAEs, cytokine storm, low response rate, etc. In this review, we discuss the basic classification, research progress, and limitations of cancer immunotherapy. Besides, by combining cancer immunotherapy resistance mechanism with analysis of combination therapy, we give our insights into the development of new anticancer immunotherapy strategies.
Collapse
Affiliation(s)
- Chenglong Liu
- Minhang Hospital and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Mengxuan Yang
- Minhang Hospital and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Daizhou Zhang
- New Drug Evaluation Center, Shandong Academy of Pharmaceutical Science, Jinan, China
| | - Ming Chen
- Department of Laboratory Medicine, Sixth Affiliated Hospital of Yangzhou University, Yangzhou, China
- Department of Laboratory Medicine, Affiliated Taixing Hospital of Bengbu Medical College, Taizhou, China
| | - Di Zhu
- Minhang Hospital and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
- New Drug Evaluation Center, Shandong Academy of Pharmaceutical Science, Jinan, China
- Shanghai Engineering Research Center of ImmunoTherapeutics, Fudan University, Shanghai, China
| |
Collapse
|
229
|
The PD-1/PD-L1 Pathway: A Perspective on Comparative Immuno-Oncology. Animals (Basel) 2022; 12:ani12192661. [PMID: 36230402 PMCID: PMC9558501 DOI: 10.3390/ani12192661] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/25/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022] Open
Abstract
Simple Summary The programmed cell death protein 1/programmed death-ligand 1 (PD-1/PD-L1) pathway inhibits the function of activated immune cells. This mediates immune tolerance and prevents immune-mediated tissue destruction. The malfunction of this pathway is involved in the pathogenesis of chronic infections, autoimmunity, and cancer. The PD-1/PD-L1 pathway is an excellent example of the research benefits of comparative pathology and attests to the importance of the “one health one medicine” concept. Pioneering research was mainly focused on the examination of cells and tissues of human and mouse origin. It mainly revealed that PD-L1-positive tumor cells can paralyze PD-1-bearing immune cells, which prevents immunological destruction of cancer cells. This led to a major breakthrough in cancer treatment, i.e., the use of antibodies that block the interaction of these molecules and restore anti-cancer immune defense (immune checkpoint therapy). Further studies provided more detailed information on the tissue-specific context and fine-tuning of this pathway. The most recent research has extended the investigations to the examination of several animal species with the aim of improving disease diagnostics and treatment for certain animal diseases, in particular cancer, which is a major cause of disease and death in companion animals. Abstract The programmed cell death protein 1/programmed death-ligand 1 (PD-1/PD-L1) pathway mainly attracted attention in immuno-oncology, leading to the development of immune checkpoint therapy. It has, however, much broader importance for tissue physiology and pathology. It mediates basic processes of immune tolerance and tissue homeostasis. In addition, it is involved in the pathogenesis of chronic infectious diseases, autoimmunity, and cancer. It is also an important paradigm for comparative pathology as well as the “one health one medicine” concept. The aim of this review is to provide an overview of novel research into the diverse facets of the PD-1/PD-L1 pathway and to give insights into its fine-tuning homeostatic role in a tissue-specific context. This review details early translational research from the discovery phase based on mice as animal models for understanding pathophysiological aspects in human tissues to more recent research extending the investigations to several animal species. The latter has the twofold goal of comparing this pathway between humans and different animal species and translating diagnostic tools and treatment options established for the use in human beings to animals and vice versa.
Collapse
|
230
|
Tang X, Deng B, Zang A, He X, Zhou Y, Wang D, Li D, Dai X, Chen J, Zhang X, Liu Y, Xu Y, Chen J, Zheng W, Zhang L, Gao C, Yang H, Li B, Wang X. Characterization of age-related immune features after autologous NK cell infusion: Protocol for an open-label and randomized controlled trial. Front Immunol 2022; 13:940577. [PMID: 36248873 PMCID: PMC9562930 DOI: 10.3389/fimmu.2022.940577] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/05/2022] [Indexed: 01/07/2023] Open
Abstract
Background Aging is usually accompanied by functional declines of the immune system, especially in T-cell responses. However, little is known about ways to alleviate this. Methods Here, 37 middle-aged healthy participants were recruited, among which 32 were intravenously administrated with expanded NK cells and 5 with normal saline. Then, we monitored changes of peripheral senescent and exhausted T cells within 4 weeks after infusion by flow cytometry, as well as serum levels of senescence-associated secretory phenotype (SASP)-related factors. In vitro co-culture assays were performed to study NK-mediated cytotoxic activity against senescent or exhausted T cells. Functional and phenotypic alteration of NK cells before and after expansion was finally characterized. Results After NK cell infusion, senescent CD28-, CD57+, CD28-CD57+, and CD28-KLRG1+ CD4+ and CD8+ T-cell populations decreased significantly, so did PD-1+ and TIM-3+ T cells. These changes were continuously observed for 4 weeks. Nevertheless, no significant changes were observed in the normal saline group. Moreover, SASP-related factors including IL-6, IL-8, IL-1α, IL-17, MIP-1α, MIP-1β, and MMP1 were significantly decreased after NK cell infusion. Further co-culture assays showed that expanded NK cells specifically and dramatically eliminated senescent CD4+ T cells other than CD28+CD4+ T cells. They also showed improved cytotoxic activity, with different expression patterns of activating and inhibitory receptors including NKG2C, NKG2A, KLRG1, LAG3, CD57, and TIM3. Conclusion Our findings imply that T-cell senescence and exhaustion is a reversible process in healthy individuals, and autologous NK cell administration can be introduced to alleviate the aging. Clinical Trial Registration ClinicalTrials.gov, ChiCTR-OOh-17011878.
Collapse
Affiliation(s)
- Xiaofeng Tang
- Department of Blood Transfusion, Changzheng Hospital, Shanghai, China
| | - Biaolong Deng
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aiping Zang
- Department of Research and Development, Shanghai Origincell Medical Technology Co., Ltd., Origincell Technology Group Co., Ltd., Shanghai, China
| | - Xiaowen He
- Department of Research and Development, Shanghai Origincell Medical Technology Co., Ltd., Origincell Technology Group Co., Ltd., Shanghai, China
| | - Ye Zhou
- Department of Blood Transfusion, Changzheng Hospital, Shanghai, China
| | - Daimeng Wang
- Department of Research and Development, Shanghai Origincell Medical Technology Co., Ltd., Origincell Technology Group Co., Ltd., Shanghai, China
| | - Dan Li
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueyu Dai
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieqiong Chen
- Department of Research and Development, Shanghai Affinity Biopharmaceutical Co., Ltd., Shanghai, China
| | - Xuhua Zhang
- Department of Research and Development, Shanghai Origincell Medical Technology Co., Ltd., Origincell Technology Group Co., Ltd., Shanghai, China
| | - Ye Liu
- Department of Blood Transfusion, Changzheng Hospital, Shanghai, China
| | - Yonghua Xu
- Department of Blood Transfusion, Changzheng Hospital, Shanghai, China
| | - Jingjing Chen
- Department of Blood Transfusion, Changzheng Hospital, Shanghai, China
| | - Weijie Zheng
- Department of Blood Transfusion, Changzheng Hospital, Shanghai, China
| | - Luding Zhang
- Department of Blood Transfusion, Changzheng Hospital, Shanghai, China
| | - Constance Gao
- Department of Biology, College of Science, Northeastern University, Boston, MA, United States
| | - Huanfeng Yang
- Department of Research and Development, Shanghai Origincell Medical Technology Co., Ltd., Origincell Technology Group Co., Ltd., Shanghai, China
| | - Bin Li
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueqi Wang
- Department of Blood Transfusion, Changzheng Hospital, Shanghai, China
| |
Collapse
|
231
|
Gao Z, Feng Y, Xu J, Liang J. T-cell exhaustion in immune-mediated inflammatory diseases: New implications for immunotherapy. Front Immunol 2022; 13:977394. [PMID: 36211414 PMCID: PMC9538155 DOI: 10.3389/fimmu.2022.977394] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Immune-mediated inflammatory diseases(IMIDs) are referred to as highly disabling chronic diseases affecting different organs and systems. Inappropriate or excessive immune responses with chronic inflammation are typical manifestations. Usually in patients with chronic infection and cancer, due to long-term exposure to persistent antigens and inflammation microenvironment, T-cells are continuously stimulated and gradually differentiate into an exhausted state. Exhausted T-cells gradually lose effector function and characteristics of memory T-cells. However, existing studies have found that exhausted T-cells are not only present in the infection and tumor environment, but also in autoimmunity, and are associated with better prognosis of IMIDs. This suggests new prospects for the application of this reversible process of T-cell exhaustion in the treatment of IMID. This review will focus on the research progress of T-cell exhaustion in several IMIDs and its potential application for diagnosis and treatment in IMIDs.
Collapse
Affiliation(s)
- Zhanyan Gao
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yang Feng
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinhua Xu
- Shanghai Institute of Dermatology, Shanghai, China
- *Correspondence: Jun Liang, ; Jinhua Xu,
| | - Jun Liang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Jun Liang, ; Jinhua Xu,
| |
Collapse
|
232
|
Kudo-Saito C, Boku N, Hirano H, Shoji H. Targeting myeloid villains in the treatment with immune checkpoint inhibitors in gastrointestinal cancer. Front Immunol 2022; 13:1009701. [PMID: 36211375 PMCID: PMC9539086 DOI: 10.3389/fimmu.2022.1009701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/13/2022] [Indexed: 12/03/2022] Open
Abstract
Despite the clinical outcomes being extremely limited, blocking immune inhibitory checkpoint pathways has been in the spotlight as a promising strategy for treating gastrointestinal cancer. However, a distinct strategy for the successful treatment is obviously needed in the clinical settings. Myeloid cells, such as neutrophils, macrophages, dendritic cells, and mast cells, are the majority of cellular components in the human immune system, but have received relatively less attention for the practical implementation than T cells and NK cells in cancer therapy because of concentration of the interest in development of the immune checkpoint blocking antibody inhibitors (ICIs). Abnormality of myeloid cells must impact on the entire host, including immune responses, stromagenesis, and cancer cells, leading to refractory cancer. This implies that elimination and reprogramming of the tumor-supportive myeloid villains may be a breakthrough to efficiently induce potent anti-tumor immunity in cancer patients. In this review, we provide an overview of current situation of the IC-blocking therapy of gastrointestinal cancer, including gastric, colorectal, and esophageal cancers. Also, we highlight the possible oncoimmunological components involved in the mechanisms underlying the resistance to the ICI therapy, particularly focusing on myeloid cells, including unique subsets expressing IC molecules. A deeper understanding of the molecular and cellular determinants may facilitate its practical implementation of targeting myeloid villains, and improve the clinical outcomes in the ICI therapy of gastrointestinal cancer.
Collapse
Affiliation(s)
- Chie Kudo-Saito
- Department of Immune Medicine, National Cancer Center Research Institute, Tokyo, Japan
- *Correspondence: Chie Kudo-Saito,
| | - Narikazu Boku
- Department of Oncology and General Medicine, Institute of Medical Science Hospital, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hidekazu Hirano
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Hirokazu Shoji
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
233
|
Pyroptosis: a novel signature to predict prognosis and immunotherapy response in gliomas. Hum Cell 2022; 35:1976-1992. [PMID: 36129672 DOI: 10.1007/s13577-022-00791-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/06/2022] [Indexed: 11/04/2022]
Abstract
Gliomas are the most common primary brain tumors and are highly malignant with a poor prognosis. Pyroptosis, an inflammatory form of programmed cell death, promotes the inflammatory cell death of cancer. Studies have demonstrated that pyroptosis can promote the inflammatory cell death (ICD) of cancer, thus affecting the prognosis of cancer patients. Therefore, genes that control pyroptosis could be a promising candidate bio-indicator in tumor therapy. The function of pyroptosis-related genes (PRGs) in gliomas was investigated based on the Chinese Glioma Genome Atlas (CGGA), the Cancer Genome Atlas (TCGA) and the Repository of Molecular Brain Neoplasia Data (Rembrandt) databases. In this study, using the non-negative matrix factorization (NMF) clustering method, 26 PRGs from the RNA sequencing data were divided into two subgroups. The LASSO and Cox regression was used to develop a 4-gene (BAX, Caspase-4, Caspase-8, PLCG1) risk signature, and all glioma patients in the CGGA, TCGA and Rembrandt cohorts were divided into low- and high-risk groups. The results demonstrate that the gene risk signature related to clinical features can be used as an independent prognostic indicator in glioma patients. Moreover, the high-risk subtype had rich immune infiltration and high expression of immune checkpoint genes in the tumor immune microenvironment (TIME). The analysis of the Submap algorithm shows that patients in the high-risk group could benefit more from anti-PD1 treatment. The risk characteristics associated with pyroptosis proposed in this study play an essential role in TIME and can potentially predict the prognosis and immunotherapeutic response of glioma patients.
Collapse
|
234
|
Philipp N, Kazerani M, Nicholls A, Vick B, Wulf J, Straub T, Scheurer M, Muth A, Hänel G, Nixdorf D, Sponheimer M, Ohlmeyer M, Lacher SM, Brauchle B, Marcinek A, Rohrbacher L, Leutbecher A, Rejeski K, Weigert O, von Bergwelt-Baildon M, Theurich S, Kischel R, Jeremias I, Bücklein V, Subklewe M. T-cell exhaustion induced by continuous bispecific molecule exposure is ameliorated by treatment-free intervals. Blood 2022; 140:1104-1118. [PMID: 35878001 PMCID: PMC10652962 DOI: 10.1182/blood.2022015956] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/07/2022] [Indexed: 11/20/2022] Open
Abstract
T-cell-recruiting bispecific molecule therapy has yielded promising results in patients with hematologic malignancies; however, resistance and subsequent relapse remains a major challenge. T-cell exhaustion induced by persistent antigen stimulation or tonic receptor signaling has been reported to compromise outcomes of T-cell-based immunotherapies. The impact of continuous exposure to bispecifics on T-cell function, however, remains poorly understood. In relapsed/refractory B-cell precursor acute lymphoblastic leukemia patients, 28-day continuous infusion with the CD19xCD3 bispecific molecule blinatumomab led to declining T-cell function. In an in vitro model system, mimicking 28-day continuous infusion with the half-life-extended CD19xCD3 bispecific AMG 562, we identified hallmark features of exhaustion arising over time. Continuous AMG 562 exposure induced progressive loss of T-cell function (day 7 vs day 28 mean specific lysis: 88.4% vs 8.6%; n = 6; P = .0003). Treatment-free intervals (TFIs), achieved by AMG 562 withdrawal, were identified as a powerful strategy for counteracting exhaustion. TFIs induced strong functional reinvigoration of T cells (continuous vs TFI-specific lysis on day 14: 34.9% vs 93.4%; n = 6; P < .0001) and transcriptional reprogramming. Furthermore, use of a TFI led to improved T-cell expansion and tumor control in vivo. Our data demonstrate the relevance of T-cell exhaustion in bispecific antibody therapy and highlight that T cells can be functionally and transcriptionally rejuvenated with TFIs. In view of the growing number of bispecific molecules being evaluated in clinical trials, our findings emphasize the need to consider and evaluate TFIs in application schedules to improve clinical outcomes.
Collapse
Affiliation(s)
- Nora Philipp
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Maryam Kazerani
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Alyssa Nicholls
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Binje Vick
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Munich, Germany
| | - Jan Wulf
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Tobias Straub
- Bioinformatics Unit, Biomedical Center, LMU Munich, Martinsried, Germany
| | - Michaela Scheurer
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Amelie Muth
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Gerulf Hänel
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Daniel Nixdorf
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Monika Sponheimer
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Malte Ohlmeyer
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Sonja M. Lacher
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Bettina Brauchle
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Anetta Marcinek
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Lisa Rohrbacher
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Alexandra Leutbecher
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Kai Rejeski
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Oliver Weigert
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Experimental Leukemia and Lymphoma Research, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | | | - Sebastian Theurich
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Roman Kischel
- AMGEN Research Munich GmbH, Munich, Germany
- AMGEN Inc., Thousand Oaks, CA
| | - Irmela Jeremias
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Munich, Germany
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany
| | - Veit Bücklein
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Marion Subklewe
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
235
|
Xie Y, Yan F, Wang X, Yu L, Yan H, Pu Q, Li W, Yang Z. Mechanisms and network pharmacological analysis of Yangyin Fuzheng Jiedu prescription in the treatment of hepatocellular carcinoma. Cancer Med 2022; 12:3237-3259. [PMID: 36043445 PMCID: PMC9939140 DOI: 10.1002/cam4.5064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/22/2022] [Accepted: 07/03/2022] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE To identify the key drugs of Yangyin Fuzheng Jiedu prescription (YFJP) and investigate their therapeutic effects against hepatocellular carcinoma (HCC) and the potential mechanism using network pharmacology. METHODS The H22 tumor-bearing mouse model was established. Thirty male BALB/c mice were divided randomly into five groups. The mice were orally treated with either disassembled prescriptions of YFJP or saline solution continuously for 14 days. The mice were weighed every 2 days during treatment and the appearance of tumors was observed by photographing. The tumor inhibition rate and the spleen and thymus indexes were calculated. Hematoxylin and eosin and immunohistochemical staining were performed to observe the histological changes and tumor-infiltrating lymphocytes. Cell apoptosis was determined by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining. The proportion of CD8+ T cells and the expression of programmed cell death protein 1 (PD-1), T cell immunoglobulin domain and mucin domain-3 (Tim-3), and T cell immunoreceptor with Ig and ITIM domains (TIGIT) were analyzed using flow cytometry. The production of serum cytokines was detected using the Milliplex® MAP mouse high sensitivity T cell panel kit. The active components of the key drugs and HCC-related target proteins were obtained from the corresponding databases. The putative targets for HCC treatment were screened by target mapping, and potential active components were screened by constructing a component-target network. The interactive targets of putative targets were obtained from the STRING database to construct the protein-protein interaction network. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes pathway enrichment analyses were performed based on potential targets. The gene-gene inner and component-target-pathway networks were constructed and analyzed to screen the key targets. Western blotting was used to evaluate the protein expression of the key targets in the tumor-bearing mouse model. The binding activity of the key targets and compounds was verified by molecular docking. RESULTS Among the three disassembled prescriptions of YFJP, the Fuzheng prescription (FZP) showed significant antitumor effects and inhibited weight loss during the treatment of H22 tumor-bearing mice. FZP increased the immune organ index and the levels of CD8+ and CD3+ T cells in the spleen and peripheral blood of H22 tumor-bearing mice. FZP also reduced the expression of PD-1, TIGIT, and TIM3 in CD8+ T cells and the production of IL-10, IL-4, IL-6, and IL-1β. Network pharmacology and experimental validation showed that the key targets of FZP in the treatment of HCC were PIK3CA, TP53, MAPK1, MAPK3, and EGFR. The therapeutic effect on HCC was evaluated based on HCC-related signaling pathways, including the PIK3-Akt signaling pathway, PD-L1 expression, and PD-1 checkpoint pathway in cancer. GO enrichment analysis indicated that FZP positively regulated the molecular functions of transferases and kinases on the cell surface through membrane raft, membrane microarea, and other cell components to inhibit cell death and programmed cell death. CONCLUSION FZP was found to be the key disassembled prescription of YFJP that exerted antitumor and immunoregulatory effects against HCC. FZP alleviated T cell exhaustion and improved the immunosuppressive microenvironment via HCC-related targets, pathways, and biological processes.
Collapse
Affiliation(s)
- Yuqing Xie
- Center of Integrative Medicine, Beijing Ditan HospitalCapital Medical UniversityBeijingP.R. China
| | - Fengna Yan
- Center of Integrative Medicine, Beijing Ditan HospitalCapital Medical UniversityBeijingP.R. China
| | - Xinhui Wang
- Center of Integrative Medicine, Beijing Ditan HospitalCapital Medical UniversityBeijingP.R. China
| | - Lihua Yu
- Center of Integrative Medicine, Beijing Ditan HospitalCapital Medical UniversityBeijingP.R. China
| | - Huiwen Yan
- Center of Integrative Medicine, Beijing Ditan HospitalCapital Medical UniversityBeijingP.R. China
| | - Qing Pu
- Center of Integrative Medicine, Beijing Ditan HospitalCapital Medical UniversityBeijingP.R. China
| | - Weihong Li
- School of Traditional Chinese MedicineBeijing University of Chinese MedicineBeijingP.R. China
| | - Zhiyun Yang
- Center of Integrative Medicine, Beijing Ditan HospitalCapital Medical UniversityBeijingP.R. China
| |
Collapse
|
236
|
Triple negative breast cancer: approved treatment options and their mechanisms of action. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04189-6. [PMID: 35976445 DOI: 10.1007/s00432-022-04189-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/06/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Breast cancer, the most prevalent cancer worldwide, consists of 4 main subtypes, namely, Luminal A, Luminal B, HER2-positive, and Triple-negative breast cancer (TNBC). Triple-negative breast tumors, which do not express estrogen, progesterone, and HER2 receptors, account for approximately 15-20% of breast cancer cases. The lack of traditional receptor targets contributes to the heterogenous, aggressive, and refractory nature of these tumors, resulting in limited therapeutic strategies. METHODS Chemotherapeutics such as taxanes and anthracyclines have been the traditional go to treatment regimens for TNBC patients. Paclitaxel, docetaxel, doxorubicin, and epirubicin have been longstanding, Food and Drug Administration (FDA)-approved therapies against TNBC. Additionally, the FDA approved PARP inhibitors such as olaparib and atezolizumab to be used in combination with chemotherapies, primarily to improve their efficiency and reduce adverse patient outcomes. The immunotherapeutic Keytruda was the latest addition to the FDA-approved list of drugs used to treat TNBC. RESULTS The following review aims to elucidate current FDA-approved therapeutics and their mechanisms of action, shedding a light on the various strategies currently used to circumvent the treatment-resistant nature of TNBC cases. CONCLUSION The recent approval and use of therapies such as Trodelvy, olaparib and Keytruda has its roots in the development of an understanding of signaling pathways that drive tumour growth. In the future, the emergence of novel drug delivery methods may help increase the efficiency of these therapies whiel also reducing adverse side effects.
Collapse
|
237
|
Huang YS, Li Z, Xiao ZF, Li D, Liu WY. Case report: Radiotherapy plus pneumococcal conjugate vaccine stimulates abscopal immune response in a patient with ALK+ NSCLC. Front Immunol 2022; 13:950252. [PMID: 36032102 PMCID: PMC9403065 DOI: 10.3389/fimmu.2022.950252] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/15/2022] [Indexed: 11/27/2022] Open
Abstract
Most patients with anaplastic lymphoma kinase-positive (ALK+) non-small-cell lung cancer (NSCLC) could benefit from the treatment with selected tyrosine kinase inhibitors (TKIs) for a period of time, but almost inevitably progress due to drug resistance. It was reported that these patients were generally unresponsive to immune-based therapies. Here, we reported that stereotactic body radiotherapy (SBRT) combined with pneumococcal conjugate vaccine (PCV) produced excellent therapeutic outcomes in a patient after multiple lines of TKI treatment. The patient’s metastasis lesion experienced regression after SBRT for lumbar spine. Unexpectedly, the patient also experienced an abscopal complete pathological response (CPR) just after combination use of SBRT and PCV. Biopsy analysis indicated that the primary lung lesion was map-like necrotic and infiltrated by tumor-infiltrating lymphocytes (TILs), and multifocal granulomas and early tertiary lymphoid structures (TLS) were formed. Our case reported that radiotherapy plus PCV could specifically stimulate immune response and remodel the tumor immune microenvironment in TKI-resistant NSCLC, which may provide a new perspective for future immunotherapy in this challenging clinical situation.
Collapse
Affiliation(s)
- Yong-Sheng Huang
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- School of Basic Medicine, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhuo Li
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ze-Fen Xiao
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dan Li
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Dan Li, ; Wen-Yang Liu,
| | - Wen-Yang Liu
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Dan Li, ; Wen-Yang Liu,
| |
Collapse
|
238
|
Wesolowski J, Tankiewicz-Kwedlo A, Pawlak D. Modern Immunotherapy in the Treatment of Triple-Negative Breast Cancer. Cancers (Basel) 2022; 14:cancers14163860. [PMID: 36010854 PMCID: PMC9406094 DOI: 10.3390/cancers14163860] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary This review summarizes reports from the latest clinical trials assessing the safety and clinical effectiveness of new biological drugs stimulating the immune system to fight cancer. The aim of this study is to show the enormous therapeutic potential of monoclonal antibodies in the treatment of cancer, in particular triple negative breast cancer (TNBC). Introduction of these innovative drugs to the standard clinical cancer therapies, including TNBC, allows for an increase in the response rate to the applied treatment, and consequently extending the lives of patients suffering from cancer. We hope to draw attention to the extremely difficult-to-treat TNBC, as well as the importance of the development of clinical trials evaluating drugs modulating the immune system in TNBC therapy. Abstract Triple-Negative Breast Cancer is a subtype of breast cancer characterized by the lack of expression of estrogen receptors, progesterone receptors, as well as human epidermal growth factor receptor 2. This cancer accounts for 15–20% of all breast cancers and is especially common in patients under 40 years of age, as well as with the occurring BRCA1 mutation. Its poor prognosis is reflected in the statistical life expectancy of 8–15 months after diagnosis of metastatic TNBC. So far, the lack of targeted therapy has narrowed therapeutic possibilities to classic chemotherapy. The idea behind the use of humanized monoclonal antibodies, as inhibitors of immunosuppressive checkpoints used by the tumor to escape from immune system control, is to reduce immunotolerance and direct an intensified anti-tumor immune response. An abundance of recent studies has provided numerous pieces of evidence about the safety and clinical benefits of immunotherapy using humanized monoclonal antibodies in the fight against many types of cancer, including TNBC. In particular, phase three clinical trials, such as the IMpassion 130, the KEYNOTE-355 and the KEYNOTE-522 resulted in the approval of immunotherapeutic agents, such as atezolizumab and pembrolizumab by the US Food and Drug Administration in TNBC therapy. This review aims to present the huge potential of immunotherapy using monoclonal antibodies directed against immunosuppressive checkpoints—such as atezolizumab, avelumab, durvalumab, pembrolizumab, nivolumab, cemiplimab, tremelimumab, ipilimumab—in the fight against difficult to treat TNBCs as monotherapy as well as in more advanced combination strategies.
Collapse
Affiliation(s)
- Jakub Wesolowski
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University in Bialystok, 15-089 Bialystok, Poland
- Correspondence:
| | - Anna Tankiewicz-Kwedlo
- Department of Monitored Pharmacotherapy, Faculty of Pharmacy, Medical University in Bialystok, 15-089 Bialystok, Poland
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University in Bialystok, 15-089 Bialystok, Poland
| |
Collapse
|
239
|
Rienzo M, Skirecki T, Monneret G, Timsit JF. Immune checkpoint inhibitors for the treatment of sepsis:insights from preclinical and clinical development. Expert Opin Investig Drugs 2022; 31:885-894. [PMID: 35944174 DOI: 10.1080/13543784.2022.2102477] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Sepsis represents one-fifth of all deaths worldwide and is associated with huge costs. Regarding disease progression, it is now well established that sepsis induces a state of acquired immunosuppression, with an increased risk of secondary infections that contributes to patients' worsening. Thus, tackling sepsis-induced immunosuppression represents a promising perspective. AREAS COVERED Of mechanisms responsible for sepsis-induced immunosuppression, the increased expression of co-inhibitory receptors (aka immune checkpoint) such as PD-1, CTLA4, TIM-3, LAG-3 or BTLA and their ligands recently received considerable interest since their inhibition, thanks to the so-called checkpoint inhibitors (CPI), provided astonishing results in cancer by rebooting immune functions. This review reports on the first landmarks of these molecules in sepsis. We introduce them in terms of basic immunology in line with sepsis pathophysiology both in experimental models and observational works and assess the first human clinical studies. EXPERT OPINION Preclinical results are positive and the first human clinical trials, although currently limited to the early phase, showed a beneficial effect on immunological functions and/or markers and suggested that tolerance of CPIs side effects, mainly auto-immune disorders, is acceptable in sepsis. Elsewhere, in some specific infections leading to ICU admission (or occurring during ICU stay), such as fungal infections, preliminary convincing case reports have been published. Overall, the first results regarding CPIs in sepsis appear encouraging. However, further efforts are warranted, especially in defining the right patients to be treated (i.e., in an individualized approach) and establishing the optimal time to start an immune restoration. Larger trials are now mandatory to confirm CPIs' potential in sepsis.
Collapse
Affiliation(s)
- Mario Rienzo
- AP-HP, Bichat Hospital, Medical and infectious diseases ICU (MI2), F-75018 Paris, France
| | - Tomasz Skirecki
- Laboratory of Flow Cytometry, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Guillaume Monneret
- Immunology Laboratory, Hôpital E. Herriot, Hospices Civils de Lyon, Lyon, F-69003.,Université de Lyon, EA7426, Hôpital E. Herriot, Lyon, F-69003
| | - Jean-François Timsit
- AP-HP, Bichat Hospital, Medical and infectious diseases ICU (MI2), F-75018 Paris, France.,University of Paris, IAME, INSERM, F-75018 Paris, France
| |
Collapse
|
240
|
Khanniche A, Yang Y, Zhang J, Liu S, Xia L, Duan H, Yao Y, Zhao B, Zhao GP, Hu C, Wang Y, Lu S. Early-like differentiation status of systemic PD-1 +CD8 + T cells predicts PD-1 blockade outcome in non-small cell lung cancer. Clin Transl Immunology 2022; 11:e1406. [PMID: 35910005 PMCID: PMC9327560 DOI: 10.1002/cti2.1406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 05/24/2022] [Accepted: 07/08/2022] [Indexed: 12/02/2022] Open
Abstract
Objectives Despite remarkable advances in the treatment of non‐small cell lung cancer (NSCLC) with anti‐programmed death (PD)‐1 therapy; only a fraction of patients derives durable clinical benefit. In this study, we investigated whether the differentiation status of systemic CD8+ T cells predicts the outcome of PD‐1 blockade in NSCLC. Methods We carried out a prospective study on a total of 77 NSCLC patients receiving anti‐PD‐1 blockers, among which 47 patients were assigned as a discovery cohort and 30 patients as a validation cohort. Peripheral blood samples were obtained at baseline and upon multiple therapy cycles and analyzed by multi‐parameter flow cytometry. Results We found that a higher baseline ratio of PD‐1+ early effector memory CD8+ T cells (CD28+CD27−CD45RO+, TEEM) to PD‐1+ effector CD8+ T cells (CD28−CD27−CD45RO−, TE) delineated responders to PD‐1 blockade from progressors and was associated with prolonged progression‐free survival (PFS) and durable clinical benefit. Moreover, PD‐1+CD8 TEEM cells exhibited early responses after anti‐PD‐1 therapy and was the major fraction of cycling PD‐1+Ki67+CD8+ T cells to expand specifically with positive impact on PFS. Conclusion These findings provide insights into how the baseline differentiation status of the peripheral immune system determines responses to PD‐1‐targeted therapies.
Collapse
Affiliation(s)
- Asma Khanniche
- Department of Immunology and Microbiology, Shanghai Institute of Immunology Shanghai Jiao Tong University School of Medicine Shanghai China.,Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
| | - Yi Yang
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital Shanghai Jiao Tong University Shanghai China
| | - Jie Zhang
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital Shanghai Jiao Tong University Shanghai China
| | - Shiqing Liu
- Department of Respiratory Medicine, Xiangya Lung Cancer Center, Xiangya Hospital Central South University Changsha China
| | - Liliang Xia
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital Shanghai Jiao Tong University Shanghai China
| | - Huangqi Duan
- Department of Immunology and Microbiology, Shanghai Institute of Immunology Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yaxian Yao
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital Shanghai Jiao Tong University Shanghai China
| | - Bingrong Zhao
- Department of Respiratory Medicine, Xiangya Lung Cancer Center, Xiangya Hospital Central South University Changsha China
| | - Guo-Ping Zhao
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
| | - Chengping Hu
- Department of Respiratory Medicine, Xiangya Lung Cancer Center, Xiangya Hospital Central South University Changsha China
| | - Ying Wang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Shun Lu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital Shanghai Jiao Tong University Shanghai China
| |
Collapse
|
241
|
Zhou Z, Liu Q, Zhang G, Mohammed D, Amadou S, Tan G, Zhang X. HOXA11-AS1 Promotes PD-L1-Mediated Immune Escape and Metastasis of Hypopharyngeal Carcinoma by Facilitating PTBP1 and FOSL1 Association. Cancers (Basel) 2022; 14:cancers14153694. [PMID: 35954358 PMCID: PMC9367556 DOI: 10.3390/cancers14153694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The metastasis of hypopharyngeal squamous cell carcinoma (HSCC) is the main reason for the poor prognosis of patients. Increasing studies have shown that abnormally expressed lncRNAs play crucial roles in HSCC, providing new perspectives for exploring cancer pathogenesis and matastasis. The expressions of HOXA11-AS1 and PD-L1 were found to be closely related to the overall survival of HSCC patients. Subsequently, the potential target genes, namely PBTP1 and FOSL1, were identified by expression correlation analysis. Finally, HOXA11-AS1/FOSL1/PTBP1/PD-L1 axis was identified to be a novel pathway provided a feasible preliminary basis for the future application of immunotherapy or targeted therapies in HSCC. Abstract Background: The metastatic characteristics of hypopharyngeal squamous cell carcinoma (HSCC) lead to many diagnostic and therapeutic challenges, while functional long non-coding RNAs (lncRNAs) can provide effective strategies for its diagnosis and treatment. Methods: RT-qPCR, Western blot, immunohistochemistry, and an immunofluorescence assay were used to detect the related gene expression. Flow cytometry was used to measure the percentage of CD8+ and CD4+ T cells. CCK-8 and transwell assays were performed to analyze the role of HOXA11-AS1. The targeted relationship of the FOSL1/PD-L1 promoter was measured by ChIP and dual-luciferase reporter assays. RNA pulldown and RIP assays were used to measure the interaction between HOXA11-AS1, FOSL1, and PTBP1. A tumor xenograft study was used to analyze HOXA11-AS1 function in vivo. Results: HOXA11-AS1, PD-L1, and FOSL1 were upregulated in HSCC, and HOXA11-AS1 positively correlated with PD-L1. HOXA11-AS1 knockdown upregulated CD8+ T cells through an increase in IFN-γ concentration while decreasing the proliferation, migration, and invasion of HSCC cells. FOSL1 bound the PD-L1 promoter, increasing gene expression. HOXA11-AS1 enhanced the stability of FOSL1 mRNA by binding to PTBP1. HOXA11-AS1 or PTBP1 overexpression increased FOSL1 and PD-L1 expression. PD-L1 knockdown arrested the inhibiting function of HOXA11-AS1 overexpression on CD8+ T cell content. HOXA11-AS1 knockdown inhibited immune escape and metastasis through PD-L1 regulation by downregulating FOSL1 in vivo. Conclusion: HOXA11-AS1 promoted PD-L1 expression by upregulating FOSL1 levels through PTBP1, thereby facilitating immune escape, proliferation, and metastasis of HSCC cells.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Otolaryngology Head & Neck, Third Xiangya Hospital, Changsha 410013, China; (Z.Z.); (Q.L.); (G.Z.); (G.T.)
| | - Qian Liu
- Department of Otolaryngology Head & Neck, Third Xiangya Hospital, Changsha 410013, China; (Z.Z.); (Q.L.); (G.Z.); (G.T.)
| | - Gehou Zhang
- Department of Otolaryngology Head & Neck, Third Xiangya Hospital, Changsha 410013, China; (Z.Z.); (Q.L.); (G.Z.); (G.T.)
| | - Diab Mohammed
- Department of Otolaryngology Head & Neck, Xiangya Hospital, Changsha 410008, China;
| | - Sani Amadou
- Department of ENT, Reference Hospital, Maradi 12481, Niger;
| | - Guolin Tan
- Department of Otolaryngology Head & Neck, Third Xiangya Hospital, Changsha 410013, China; (Z.Z.); (Q.L.); (G.Z.); (G.T.)
| | - Xiaowei Zhang
- Department of Otolaryngology Head & Neck, Third Xiangya Hospital, Changsha 410013, China; (Z.Z.); (Q.L.); (G.Z.); (G.T.)
- Correspondence:
| |
Collapse
|
242
|
Origin and Therapies of Osteosarcoma. Cancers (Basel) 2022; 14:cancers14143503. [PMID: 35884563 PMCID: PMC9322921 DOI: 10.3390/cancers14143503] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 01/15/2023] Open
Abstract
Simple Summary Osteosarcoma is the most common malignant bone tumor in children, with a 5-year survival rate ranging from 70% to 20% depending on the aggressiveness of the disease. The current treatments have not evolved over the past four decades due in part to the genetic complexity of the disease and its heterogeneity. This review will summarize the current knowledge of OS origin, diagnosis and therapies. Abstract Osteosarcoma (OS) is the most frequent primary bone tumor, mainly affecting children and young adults. Despite therapeutic advances, the 5-year survival rate is 70% but drastically decreases to 20–30% for poor responders to therapies or for patients with metastasis. No real evolution of the survival rates has been observed for four decades, explained by poor knowledge of the origin, difficulties related to diagnosis and the lack of targeted therapies for this pediatric tumor. This review will describe a non-exhaustive overview of osteosarcoma disease from a clinical and biological point of view, describing the origin, diagnosis and therapies.
Collapse
|
243
|
Berg J, Halvorsen AR, Bengtson MB, Lindberg M, Halvorsen B, Aukrust P, Helland Å, Ueland T. Circulating T Cell Activation and Exhaustion Markers Are Associated With Radiation Pneumonitis and Poor Survival in Non-Small-Cell Lung Cancer. Front Immunol 2022; 13:875152. [PMID: 35911763 PMCID: PMC9329944 DOI: 10.3389/fimmu.2022.875152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction Persistent inflammation and immune activation in the lungs are associated with adverse outcomes such as radiation pneumonitis (RP) and poor survival in non-small-cell lung cancer (NSCLC) patients. However, it is unknown how this is reflected by leukocyte activation markers in serum. Objective The aim was to evaluate the serum levels of activation of different leukocyte subsets and to examine those in relation to the pathogenesis of RP and survival in NSCLC. Methods We analyzed the serum levels of MPO, sCD25, sTIM-3, sPD-L1, sCD14, sCD163, CCL19 and CCL21 in 66 inoperable NSCLC patients with stage IA-IIIA disease. The patients were treated with stereotactic body radiation therapy (SBRT) or concurrent chemoradiation therapy (CCRT), followed by regular blood sampling for 12 months after treatment and for 5 years for survival. Results Nineteen (29%) patients developed RP, which occurred more frequently and earlier in patients receiving CCRT than in those receiving SBRT. Increases in sCD25, sTIM-3 and CCL21 levels were observed at the last 6 months of follow-up in patients who had RP after SBRT. Patients who had RP after CCRT had higher sTIM-3 levels during the first 3 months of follow-up. Baseline sCD25 was independently associated with both 2- and 5-year mortality outcomes, while baseline sTIM-3 was independently associated with 2-year mortality. Conclusion We showed that T cell activation and exhaustion markers such as sCD25 and sTIM-3 are enhanced in patients developing RP and are associated with poor survival in NSCLC.
Collapse
Affiliation(s)
- Janna Berg
- Department of Medicine, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Cancer Genetics, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Department of Clinical Medicine, University of Oslo, Oslo, Norway
- *Correspondence: Janna Berg,
| | - Ann Rita Halvorsen
- Department of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | | | - Morten Lindberg
- Department of Medical Biochemistry, Vestfold Hospital Trust, Tønsberg, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Åslaug Helland
- Department of Cancer Genetics, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Department of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
| |
Collapse
|
244
|
Mochan E, Sego TJ, Ermentrout B. Age-Related Changes to the Immune System Exacerbate the Inflammatory Response to Pandemic H1N1 Infection. Bull Math Biol 2022; 84:88. [PMID: 35829841 PMCID: PMC9278316 DOI: 10.1007/s11538-022-01045-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 06/22/2022] [Indexed: 11/30/2022]
Abstract
Age-induced dysregulation of the immune response is a major contributor to the morbidity and mortality related to influenza a virus infections. Experimental data have shown substantial changes to the activation and maintenance of the immune response will occur with age, but it remains unclear which of these many interrelated changes are most critical to controlling the survival of the host during infection. To ascertain which mechanisms are predominantly responsible for the increased morbidity in elderly hosts, we developed an ordinary differential equation model to simulate the immune response to pandemic H1N1 infection. We fit this model to experimental data measured in young and old macaques. We determined that the severity of the infection in the elderly hosts is caused by a dysregulation in the innate immune response. We also simulated CD8+ T cell exhaustion, a common consequence of chronic and extensive infections. Our simulations indicate that while T cell exhaustion is possible in both age groups, its effects are more severe in the elderly population, as their dysregulated immune response cannot easily compensate for the exhausted T cells. Finally, we explore a therapeutic approach to reversing T cell exhaustion through an inflammatory stimulus. A controlled increase in inflammatory signals can lead to a higher chance of surviving the infection, but excess inflammation will likely lead to septic death. These results indicate that our model captures distinctions in the predominant mechanisms controlling the immune response in younger and older hosts and allows for simulations of clinically relevant therapeutic strategies post-infection.
Collapse
Affiliation(s)
- Ericka Mochan
- Department of Analytical, Physical, and Social Sciences, Carlow University, Pittsburgh, PA, 15213, USA.
| | - T J Sego
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47408, USA
| | - Bard Ermentrout
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| |
Collapse
|
245
|
Acúrcio RC, Pozzi S, Carreira B, Pojo M, Gómez-Cebrián N, Casimiro S, Fernandes A, Barateiro A, Farricha V, Brito J, Leandro AP, Salvador JAR, Graça L, Puchades-Carrasco L, Costa L, Satchi-Fainaro R, Guedes RC, Florindo HF. Therapeutic targeting of PD-1/PD-L1 blockade by novel small-molecule inhibitors recruits cytotoxic T cells into solid tumor microenvironment. J Immunother Cancer 2022; 10:jitc-2022-004695. [PMID: 35863821 PMCID: PMC9310269 DOI: 10.1136/jitc-2022-004695] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2022] [Indexed: 12/12/2022] Open
Abstract
Background Inhibiting programmed cell death protein 1 (PD-1) or PD-ligand 1 (PD-L1) has shown exciting clinical outcomes in diverse human cancers. So far, only monoclonal antibodies are approved as PD-1/PD-L1 inhibitors. While significant clinical outcomes are observed on patients who respond to these therapeutics, a large proportion of the patients do not benefit from the currently available immune checkpoint inhibitors, which strongly emphasize the importance of developing new immunotherapeutic agents. Methods In this study, we followed a transdisciplinary approach to discover novel small molecules that can modulate PD-1/PD-L1 interaction. To that end, we employed in silico analyses combined with in vitro, ex vivo, and in vivo experimental studies to assess the ability of novel compounds to modulate PD-1/PD-L1 interaction and enhance T-cell function. Results Accordingly, in this study we report the identification of novel small molecules, which like anti-PD-L1/PD-1 antibodies, can stimulate human adaptive immune responses. Unlike these biological compounds, our newly-identified small molecules enabled an extensive infiltration of T lymphocytes into three-dimensional solid tumor models, and the recruitment of cytotoxic T lymphocytes to the tumor microenvironment in vivo, unveiling a unique potential to transform cancer immunotherapy. Conclusions We identified a new promising family of small-molecule candidates that regulate the PD-L1/PD-1 signaling pathway, promoting an extensive infiltration of effector CD8 T cells to the tumor microenvironment.
Collapse
Affiliation(s)
- Rita C Acúrcio
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Sabina Pozzi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Barbara Carreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Marta Pojo
- Unidade de Investigação em Patobiologia Molecular (UIPM) do Instituto Português de Oncologia de Lisboa Francisco Gentil EPE 1099-023, Lisbon, Portugal
| | | | - Sandra Casimiro
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Adelaide Fernandes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Andreia Barateiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Vitor Farricha
- Serviço de Cirurgia do Instituto Português de Oncologia de Lisboa Francisco Gentil EPE, 1099-023 Lisbon, Portugal
| | - Joaquim Brito
- Serviço de Ortopedia, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal
| | - Ana Paula Leandro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Jorge A R Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra,Centre for Neuroscience and Cell Biology, 3000-548 Coimbra, Portugal
| | - Luís Graça
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | | | - Luís Costa
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal.,Serviço de Oncologia Médica, Centro Hospitalar Universitário Lisboa Norte, 1649-028, Lisbon, Portugal
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel .,Sagol School of Neurosciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Rita C Guedes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Helena F Florindo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| |
Collapse
|
246
|
Niborski LL, Gueguen P, Ye M, Thiolat A, Ramos RN, Caudana P, Denizeau J, Colombeau L, Rodriguez R, Goudot C, Luccarini JM, Soudé A, Bournique B, Broqua P, Pace L, Baulande S, Sedlik C, Quivy JP, Almouzni G, Cohen JL, Zueva E, Waterfall JJ, Amigorena S, Piaggio E. CD8+T cell responsiveness to anti-PD-1 is epigenetically regulated by Suv39h1 in melanomas. Nat Commun 2022; 13:3739. [PMID: 35768432 PMCID: PMC9243005 DOI: 10.1038/s41467-022-31504-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/18/2022] [Indexed: 11/09/2022] Open
Abstract
Tumor-infiltrating CD8 + T cells progressively lose functionality and fail to reject tumors. The underlying mechanism and re-programing induced by checkpoint blockers are incompletely understood. We show here that genetic ablation or pharmacological inhibition of histone lysine methyltransferase Suv39h1 delays tumor growth and potentiates tumor rejection by anti-PD-1. In the absence of Suv39h1, anti-PD-1 induces alternative activation pathways allowing survival and differentiation of IFNγ and Granzyme B producing effector cells that express negative checkpoint molecules, but do not reach final exhaustion. Their transcriptional program correlates with that of melanoma patients responding to immune-checkpoint blockade and identifies the emergence of cytolytic-effector tumor-infiltrating lymphocytes as a biomarker of clinical response. Anti-PD-1 favors chromatin opening in loci linked to T-cell activation, memory and pluripotency, but in the absence of Suv39h1, cells acquire accessibility in cytolytic effector loci. Overall, Suv39h1 inhibition enhances anti-tumor immune responses, alone or combined with anti-PD-1, suggesting that Suv39h1 is an “epigenetic checkpoint” for tumor immunity. Understanding CD8 + T cell response to immune checkpoint blockade at the molecular level is important for the design of more efficient cancer immune therapies. Authors show here that the histone lysine methyltransferase Suv39h1 controls the transcriptional programs that determine the functionality of CD8 + T cells and Suv39h1 inhibition may potentiate anti-PD-1 therapy of melanomas.
Collapse
Affiliation(s)
- Leticia Laura Niborski
- Institut Curie, PSL Research University, F-75005, Paris, France.,INSERM U932, F-75005, Paris, France.,Translational Research Department, Institut Curie, F-75005, Paris, France
| | - Paul Gueguen
- Institut Curie, PSL Research University, F-75005, Paris, France.,INSERM U932, F-75005, Paris, France
| | - Mengliang Ye
- Institut Curie, PSL Research University, F-75005, Paris, France.,INSERM U932, F-75005, Paris, France
| | - Allan Thiolat
- Université Paris-Est, UMR S955, Université Paris-Est Créteil Val de Marne, Créteil, France.,INSERM, U955, Equipe 21, Créteil, France
| | - Rodrigo Nalio Ramos
- Institut Curie, PSL Research University, F-75005, Paris, France.,INSERM U932, F-75005, Paris, France.,Translational Research Department, Institut Curie, F-75005, Paris, France
| | - Pamela Caudana
- Institut Curie, PSL Research University, F-75005, Paris, France.,INSERM U932, F-75005, Paris, France.,Translational Research Department, Institut Curie, F-75005, Paris, France
| | - Jordan Denizeau
- Institut Curie, PSL Research University, F-75005, Paris, France.,INSERM U932, F-75005, Paris, France.,Translational Research Department, Institut Curie, F-75005, Paris, France
| | - Ludovic Colombeau
- Institut Curie, PSL Research University, CNRS UMR3666, INSERM U1143, Chemical Biology of Cancer, Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Raphaël Rodriguez
- Institut Curie, PSL Research University, CNRS UMR3666, INSERM U1143, Chemical Biology of Cancer, Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Christel Goudot
- Institut Curie, PSL Research University, F-75005, Paris, France.,INSERM U932, F-75005, Paris, France
| | | | - Anne Soudé
- Inventiva, 50 rue de Dijon, 21121, Daix, France
| | | | | | - Luigia Pace
- Institut Curie, PSL Research University, F-75005, Paris, France.,INSERM U932, F-75005, Paris, France
| | - Sylvain Baulande
- Institut Curie, Genomics of Excellence (ICGex) Platform, Institut Curie Research Center, Paris, France
| | - Christine Sedlik
- Institut Curie, PSL Research University, F-75005, Paris, France.,INSERM U932, F-75005, Paris, France.,Translational Research Department, Institut Curie, F-75005, Paris, France
| | - Jean-Pierre Quivy
- Institut Curie, PSL Research University, F-75005, Paris, France.,Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France.,Sorbonne Universités, UPMC University Paris 06, CNRS, UMR3664, F-7005, Paris, France
| | - Geneviève Almouzni
- Institut Curie, PSL Research University, F-75005, Paris, France.,Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France.,Sorbonne Universités, UPMC University Paris 06, CNRS, UMR3664, F-7005, Paris, France
| | - José L Cohen
- Université Paris-Est, UMR S955, Université Paris-Est Créteil Val de Marne, Créteil, France.,INSERM, U955, Equipe 21, Créteil, France
| | - Elina Zueva
- Institut Curie, PSL Research University, F-75005, Paris, France.,INSERM U932, F-75005, Paris, France
| | - Joshua J Waterfall
- Institut Curie, PSL Research University, F-75005, Paris, France.,Translational Research Department, Institut Curie, F-75005, Paris, France.,INSERM U830, F-75005, Paris, France
| | - Sebastian Amigorena
- Institut Curie, PSL Research University, F-75005, Paris, France. .,INSERM U932, F-75005, Paris, France.
| | - Eliane Piaggio
- Institut Curie, PSL Research University, F-75005, Paris, France. .,INSERM U932, F-75005, Paris, France. .,Translational Research Department, Institut Curie, F-75005, Paris, France.
| |
Collapse
|
247
|
The role of the Immune System in the Development of Endometriosis. Cells 2022; 11:cells11132028. [PMID: 35805112 PMCID: PMC9265783 DOI: 10.3390/cells11132028] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/19/2022] [Accepted: 06/23/2022] [Indexed: 12/10/2022] Open
Abstract
Endometriosis is a chronic disease that affects about 10% of women of reproductive age. It can contribute to pelvic pain, infertility or other conditions such as asthma, cardiovascular disease, breast or ovarian cancer. Research has shown that one of the conditions for the development of endometrial lesions is the dysfunction of the immune system. It appears that immune cells, such as neutrophils, macrophages, NK cells and dendritic cells, may play a specific role in the angiogenesis, growth and invasion of endometriosis cells. Immune cells secrete cytokines and defensins that also affect the endometriosis environment. This review discusses the various components of the immune system that are involved in the formation of endometrial lesions in women.
Collapse
|
248
|
Serris A, Ouedrani A, Uhel F, Gazzano M, Bedarida V, Rouzaud C, Bougnoux ME, Raphalen JH, Poirée S, Lambotte O, Martin-Blondel G, Lanternier F. Case Report: Immune Checkpoint Blockade Plus Interferon-Γ Add-On Antifungal Therapy in the Treatment of Refractory Covid-Associated Pulmonary Aspergillosis and Cerebral Mucormycosis. Front Immunol 2022; 13:900522. [PMID: 35720319 PMCID: PMC9199385 DOI: 10.3389/fimmu.2022.900522] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/28/2022] [Indexed: 12/28/2022] Open
Abstract
Invasive fungal diseases (IFD) still cause substantial morbidity and mortality, and new therapeutic approaches are urgently needed. Recent data suggest a benefit of checkpoint inhibitors (ICI). We report the case of a diabetic patient with refractory IFD following a SARSCoV-2 infection treated by ICI and interferon-gamma associated with antifungal treatment.
Collapse
Affiliation(s)
- Alexandra Serris
- Centre for Infectious Diseases and Tropical Medicine, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique -Hôpitaux de Paris, Université de Paris, Paris, France
| | - Amani Ouedrani
- Immunology Laboratory, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique -Hôpitaux de Paris, Université de Paris, Paris, France.,Immunoregulation and Immunopathology, Département Immunologie UMR_S1151 UMR8253 Institut Necker Enfants Malades, Université de Paris, Paris, France
| | - Fabrice Uhel
- Intensive Care Medicine, Hôpital Louis Mourier, Assistance Publique -Hôpitaux de Paris, Colombes, France
| | - Marianne Gazzano
- Department of Immunologie, Hôpitaux universitaires Pitié Salpêtrière-Charles Foix, Assistance Publique -Hôpitaux de Paris, Paris, France
| | - Vincent Bedarida
- Otolaryngology-Head and Neck Surgery Department, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Claire Rouzaud
- Centre for Infectious Diseases and Tropical Medicine, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique -Hôpitaux de Paris, Université de Paris, Paris, France
| | - Marie-Elisabeth Bougnoux
- Parasitology-Mycology Laboratory, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique -Hôpitaux de Paris, Paris, France
| | - Jean-Herlé Raphalen
- Intensive Care Medicine, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique -Hôpitaux de Paris, Université de Paris, Paris, France
| | - Sylvain Poirée
- Department of Adult radiology, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique -Hôpitaux de Paris, Paris, France
| | - Olivier Lambotte
- Service de Médecine Interne Immunologie Clinique, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, Le Kremlin Bicêtre, France.,Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IDMIT/IMVA-HB), UMR1184, Université Paris-Saclay, Inserm, CEA, Le Kremlin Bicêtre, France
| | - Guillaume Martin-Blondel
- Service des Maladies Infectieuses et Tropicales, CHU de Toulouse, Université Toulouse III, Toulouse, France.,Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity) INSERM UMR1291 - CNRS UMR5051 - Université Toulouse III, Toulouse, France
| | - Fanny Lanternier
- Centre for Infectious Diseases and Tropical Medicine, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique -Hôpitaux de Paris, Université de Paris, Paris, France.,Molecular Mycology Unit, National Reference Centre for Invasive Mycoses and Antifungals, UMR 2000, Institut Pasteur, CNRS, Université de Paris, Paris, France
| |
Collapse
|
249
|
El-Sayes N, Walsh S, Vito A, Reihani A, Ask K, Wan Y, Mossman K. IFNAR blockade synergizes with oncolytic VSV to prevent virus-mediated PD-L1 expression and promote antitumor T cell activity. Mol Ther Oncolytics 2022; 25:16-30. [PMID: 35399605 PMCID: PMC8971726 DOI: 10.1016/j.omto.2022.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/13/2022] [Indexed: 11/23/2022] Open
Abstract
Oncolytic virotherapies have shown excellent promise in a variety of cancers by promoting antitumor immunity. However, the effects of oncolytic virus-mediated type I interferon (IFN-I) production on antitumor immunity remain unclear. Recent reports have highlighted immunosuppressive functions of IFN-I in the context of checkpoint inhibitor and cell-based therapies. In this study, we demonstrate that oncolytic virus-induced IFN-I promotes the expression of PD-L1 in tumor cells and leukocytes in a IFN receptor (IFNAR)-dependent manner. Inhibition of IFN-I signaling using a monoclonal IFNAR antibody decreased IFN-I-induced PD-L1 expression and promoted tumor-specific T cell effector responses when combined with oncolytic virotherapy. Furthermore, IFNAR blockade improved therapeutic response to oncolytic virotherapy in a manner comparable with PD-L1 blockade. Our study highlights a critical immunosuppressive role of IFN-I on antitumor immunity and uses a combination strategy that improves the response to oncolytic virotherapy.
Collapse
Affiliation(s)
- Nader El-Sayes
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Faculty of Health Science, McMaster University, Hamilton, ON, Canada
| | - Scott Walsh
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Alyssa Vito
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Faculty of Health Science, McMaster University, Hamilton, ON, Canada
| | - Amir Reihani
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Firestone Institute for Respiratory Health, McMaster University, Hamilton, ON, Canada
| | - Kjetil Ask
- Firestone Institute for Respiratory Health, McMaster University, Hamilton, ON, Canada
| | - Yonghong Wan
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Karen Mossman
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Corresponding author. Karen Mossman, Department of Medicine, McMaster Immunology Research Centre, McMaster University, 1280 Main Street West, MDCL 5026, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
250
|
Excessive immunosuppression by regulatory T cells antagonizes T cell response to schistosome infection in PD-1-deficient mice. PLoS Pathog 2022; 18:e1010596. [PMID: 35666747 PMCID: PMC9203022 DOI: 10.1371/journal.ppat.1010596] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 06/16/2022] [Accepted: 05/16/2022] [Indexed: 01/01/2023] Open
Abstract
Schistosomiasis is caused by parasitic flatworms known as schistosomes and affects over 200 million people worldwide. Prevention of T cell exhaustion by blockade of PD-1 results in clinical benefits to cancer patients and clearance of viral infections, however it remains largely unknown whether loss of PD-1 could prevent or cure schistosomiasis in susceptible mice. In this study, we found that S. japonicum infection dramatically induced PD-1 expression in T cells of the liver where the parasites chronically inhabit and elicit deadly inflammation. Even in mice infected by non-egg-producing unisex parasites, we still observed potent induction of PD-1 in liver T cells of C57BL/6 mice following S. japonicum infection. To determine the function of PD-1 in schistosomiasis, we generated PD-1-deficient mice by CRISPR/Cas9 and found that loss of PD-1 markedly increased T cell count in the liver and spleen of infected mice. IL-4 secreting Th2 cells were significantly decreased in the infected PD-1-deficient mice whereas IFN-γ secreting CD4+ and CD8+ T cells were markedly increased. Surprisingly, such beneficial changes of T cell response did not result in eradication of parasites or in lowering the pathogen burden. In further experiments, we found that loss of PD-1 resulted in both beneficial T cell responses and amplification of regulatory T cells that prevented PD-1-deficient T cells from unleashing anti-parasite activity. Moreover, such PD-1-deficient Tregs exert excessive immunosuppression and express larger amounts of adenosine receptors CD39 and CD73 that are crucial for Treg-mediated immunosuppression. Our experimental results have elucidated the function of PD-1 in schistosomiasis and provide novel insights into prevention and treatment of schistosomiasis on the basis of modulating host adaptive immunity. Chronic schistosome infection leads to exaggerated upregulation of PD-1 in the liver, and loss of PD-1 markedly increased T cell presence in the liver of schistosome infected mice, which was accompanied by suppressed Th2 cytokines but markedly increased IFN-γ secretion in CD4+ and CD8+ T cells. The beneficial T cell response did not result in eradication of parasites or lowering the pathogen burden. Loss of PD-1 also resulted in amplification of Tregs and excessive Treg-mediated immunosuppression may prevent T cells from unleashing anti-parasitic immunity.
Collapse
|