201
|
Rakshit N, Yang S, Zhou W, Xu Y, Deng C, Yang J, Yu H, Wei W. Adenovirus-mediated co-expression of ING4 and PTEN cooperatively enhances their antitumor activity in human hepatocellular carcinoma cells. Acta Biochim Biophys Sin (Shanghai) 2016; 48:704-13. [PMID: 27421660 DOI: 10.1093/abbs/gmw062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/24/2016] [Indexed: 11/13/2022] Open
Abstract
Both inhibitor of growth 4 (ING4) and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) are well known as tumor suppressors that are closely related to tumor occurrence and progression. It was reported that ING4 and PTEN showed synergistic antitumor activities in nasopharyngeal carcinoma cells. The two tumor suppressors demonstrated synergistic effect on growth inhibition and apoptosis activation. In this study, we investigated their therapeutic potential in hepatocellular carcinoma (HCC) cells. Recombinant adenoviruses co-expressing ING4 and PTEN (Ad-ING4-PTEN) were constructed, and the antitumor effect on SMMC-7721 and HepG2 HCC cells was evaluated. Ad-ING4-PTEN cooperatively inhibited cell growth, stimulated apoptosis, and suppressed invasion in both HCC cells, and regulated cell cycle in SMMC-7721. Further studies showed that the combination of ING4 and PTEN by Ad-ING4-PTEN cooperatively enhanced the alteration of the expression of cell cycle-related proteins (p53, p21, and cyclin D1) and apoptotic factors (Bad, Bcl-2, Bcl-XL, and Bax), which are involved in the regulation of cell cycle and the activation of apoptotic pathways, leading to the synergistic antitumor effect. These results indicate that the combination of ING4 and PTEN may provide an effective therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Nargis Rakshit
- Department of Cell Biology, School of Medicine, Soochow University, Suzhou 215123, China
| | - Sijun Yang
- School of Life Science, Shangrao Normal University, Shangrao 334001, China
| | - Wei Zhou
- Department of Cell Biology, School of Medicine, Soochow University, Suzhou 215123, China
| | - Yi Xu
- Department of Cell Biology, School of Medicine, Soochow University, Suzhou 215123, China
| | - Chenghui Deng
- Department of Cell Biology, School of Medicine, Soochow University, Suzhou 215123, China
| | - Jiecheng Yang
- Department of Cell Biology, School of Medicine, Soochow University, Suzhou 215123, China
| | - Huijun Yu
- Department of Cell Biology, School of Medicine, Soochow University, Suzhou 215123, China
| | - Wenxiang Wei
- Department of Cell Biology, School of Medicine, Soochow University, Suzhou 215123, China
| |
Collapse
|
202
|
Weigt D, Hopf C, Médard G. Studying epigenetic complexes and their inhibitors with the proteomics toolbox. Clin Epigenetics 2016; 8:76. [PMID: 27437033 PMCID: PMC4950666 DOI: 10.1186/s13148-016-0244-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/05/2016] [Indexed: 12/27/2022] Open
Abstract
Some epigenetic modifier proteins have become validated clinical targets. With a few small molecule inhibitors already approved by national health administrations and many more in the pharmaceutical industry pipelines, there is a need for technologies that can promote full comprehension of the molecular action of these drugs. Proteomics, with its relatively unbiased nature, can contribute to a thorough understanding of the complexity of the megadalton complexes, which write, read and erase the histone code, and it can help study the on-target and off-target effect of the drugs designed to modulate their action. This review on the one hand gathers the published affinity probes able to decipher small molecule targets and off-targets in a close-to-native environment. These are small molecule analogues of epigenetic drugs conceived as protein target enrichment tools after they have engaged them in cells or lysates. Such probes, which have been designed for deacetylases, bromodomains, demethylases, and methyltransferases not only enrich their direct protein targets but also their stable interactors, which can be identified by mass spectrometry. Hence, they constitute a tool to study the epigenetic complexes together with other techniques also reviewed here: immunoaffinity purification with antibodies against native protein complex constituents or epitope tags, affinity matrices designed to bind recombinantly tagged protein, and enrichment of the complexes using histone tail peptides as baits. We expect that this toolbox will be adopted by more and more researchers willing to harness the spectacular advances in mass spectrometry to the epigenetic field.
Collapse
Affiliation(s)
- David Weigt
- />Center for Applied Research in Biomedical Mass Spectrometry (ABIMAS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany
- />HBIGS International Graduate School of Molecular and Cellular Biology, Heidelberg University, Im Neuenheimer Feld 501, 69120 Heidelberg, Germany
| | - Carsten Hopf
- />Center for Applied Research in Biomedical Mass Spectrometry (ABIMAS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany
- />HBIGS International Graduate School of Molecular and Cellular Biology, Heidelberg University, Im Neuenheimer Feld 501, 69120 Heidelberg, Germany
| | - Guillaume Médard
- />Chair of Proteomics and Bioanalytics, Technical University of Munich, Emil Erlenmeyer Forum 5, 85354 Freising, Germany
| |
Collapse
|
203
|
Pan X, Wang R, Bian H, De W, Zhang P, Wei C, Wang Z. Overexpression of Inhibitor of Growth 4 Enhances Radiosensitivity in Non-Small Cell Lung Cancer Cell Line SPC-A1. Technol Cancer Res Treat 2016; 16:533-545. [PMID: 27381846 DOI: 10.1177/1533034616656315] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Inhibitor of growth 4 is a member of the inhibitor of growth family proteins, which is involved in cell apoptosis, migration, invasion, and cell cycle progress. In this study, we investigated the inhibitor of growth 4 level in non-small cell lung cancer tissues and explored the antitumor activity of inhibitor of growth 4 in vitro and in vivo using non-small cell lung cancer cell line SPC-A1 and its underlying molecular mechanisms. We also explored its role on the radiosensitivity in SPC-A1 cells. The level of inhibitor of growth 4 protein was significantly decreased in 28 cases of non-small cell lung cancer tissues in comparison with corresponding noncancerous lung epithelial tissues. Upregulation of inhibitor of growth 4 by plasmid pcDNA3.1-ING4 delivery could suppress proliferation and increase apoptosis of SPC-A1 cells both in vitro and in vivo. Additionally, we found that overexpression of inhibitor of growth 4 in SPC-A1 cell line could lead to a higher Bcl-2/Bax ratio, which might be an important factor in the apoptosis regulation. Furthermore, overexpression of inhibitor of growth 4 enhanced the radiosensitivity of SPC-A1 cells to irradiation. Inhibitor of growth 4 upregulation plus radiotherapy induced synergistic tumor suppression in SPC-A1 xenografts implanted in athymic nude mice. Thus, the restoration of inhibitor of growth 4 function might provide a potential strategy for non-small cell lung cancer radiosensitization.
Collapse
Affiliation(s)
- Xuan Pan
- 1 Department of Medical Oncology, Nanjing Medical University Affiliated Cancer Hospital of Jiangsu Province, Cancer Institution of Jiangsu Province, Nanjing, China
- 2 Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Wang
- 3 Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Haibo Bian
- 2 Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei De
- 4 Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Ping Zhang
- 5 Department of Pathology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chenchen Wei
- 2 Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhaoxia Wang
- 2 Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
204
|
Regulation of KAT6 Acetyltransferases and Their Roles in Cell Cycle Progression, Stem Cell Maintenance, and Human Disease. Mol Cell Biol 2016; 36:1900-7. [PMID: 27185879 DOI: 10.1128/mcb.00055-16] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The lysine acetyltransferase 6 (KAT6) histone acetyltransferase (HAT) complexes are highly conserved from yeast to higher organisms. They acetylate histone H3 and other nonhistone substrates and are involved in cell cycle regulation and stem cell maintenance. In addition, the human KAT6 HATs are recurrently mutated in leukemia and solid tumors. Therefore, it is important to understand the mechanisms underlying the regulation of KAT6 HATs and their roles in cell cycle progression. In this minireview, we summarize the identification and analysis of the KAT6 complexes and discuss the regulatory mechanisms governing their enzymatic activities and substrate specificities. We further focus on the roles of KAT6 HATs in regulating cell proliferation and stem cell maintenance and review recent insights that aid in understanding their involvement in human diseases.
Collapse
|
205
|
Abstract
Oxidative stress has a significant impact on the development and progression of common human pathologies, including cancer, diabetes, hypertension and neurodegenerative diseases. Increasing evidence suggests that oxidative stress globally influences chromatin structure, DNA methylation, enzymatic and non-enzymatic post-translational modifications of histones and DNA-binding proteins. The effects of oxidative stress on these chromatin alterations mediate a number of cellular changes, including modulation of gene expression, cell death, cell survival and mutagenesis, which are disease-driving mechanisms in human pathologies. Targeting oxidative stress-dependent pathways is thus a promising strategy for the prevention and treatment of these diseases. We summarize recent research developments connecting oxidative stress and chromatin regulation.
Collapse
Affiliation(s)
- Sarah Kreuz
- King Abdullah University of Science & Technology (KAUST), Environmental Epigenetics Program, Thuwal 23955-6900, Saudi Arabia
| | - Wolfgang Fischle
- King Abdullah University of Science & Technology (KAUST), Environmental Epigenetics Program, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
206
|
Kim S, Natesan S, Cornilescu G, Carlson S, Tonelli M, McClurg UL, Binda O, Robson CN, Markley JL, Balaz S, Glass KC. Mechanism of Histone H3K4me3 Recognition by the Plant Homeodomain of Inhibitor of Growth 3. J Biol Chem 2016; 291:18326-41. [PMID: 27281824 PMCID: PMC5000080 DOI: 10.1074/jbc.m115.690651] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Indexed: 12/23/2022] Open
Abstract
Aberrant access to genetic information disrupts cellular homeostasis and can lead to cancer development. One molecular mechanism that regulates access to genetic information includes recognition of histone modifications, which is carried out by protein modules that interact with chromatin and serve as landing pads for enzymatic activities that regulate gene expression. The ING3 tumor suppressor protein contains a plant homeodomain (PHD) that reads the epigenetic code via recognition of histone H3 tri-methylated at lysine 4 (H3K4me3), and this domain is lost or mutated in various human cancers. However, the molecular mechanisms targeting ING3 to histones and the role of this interaction in the cell remain elusive. Thus, we employed biochemical and structural biology approaches to investigate the interaction of the ING3 PHD finger (ING3PHD) with the active transcription mark H3K4me3. Our results demonstrate that association of the ING3PHD with H3K4me3 is in the sub-micromolar range (KD ranging between 0.63 and 0.93 μm) and is about 200-fold stronger than with the unmodified histone H3. NMR and computational studies revealed an aromatic cage composed of Tyr-362, Ser-369, and Trp-385 that accommodate the tri-methylated side chain of H3K4. Mutational analysis confirmed the critical importance of Tyr-362 and Trp-385 in mediating the ING3PHD-H3K4me3 interaction. Finally, the biological relevance of ING3PHD-H3K4me3 binding was demonstrated by the failure of ING3PHD mutant proteins to enhance ING3-mediated DNA damage-dependent cell death. Together, our results reveal the molecular mechanism of H3K4me3 selection by the ING3PHD and suggest that this interaction is important for mediating ING3 tumor suppressive activities.
Collapse
Affiliation(s)
- Sophia Kim
- From the Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont 05446
| | - Senthil Natesan
- From the Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont 05446
| | - Gabriel Cornilescu
- the National Magnetic Resonance Facility at Madison and Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, and
| | - Samuel Carlson
- From the Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont 05446
| | - Marco Tonelli
- the National Magnetic Resonance Facility at Madison and Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, and
| | - Urszula L McClurg
- the Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne NE2 4HH, United Kingdom
| | - Olivier Binda
- the Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne NE2 4HH, United Kingdom
| | - Craig N Robson
- the Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne NE2 4HH, United Kingdom
| | - John L Markley
- the National Magnetic Resonance Facility at Madison and Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, and
| | - Stefan Balaz
- From the Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont 05446
| | - Karen C Glass
- From the Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont 05446,
| |
Collapse
|
207
|
Ohzeki JI, Shono N, Otake K, Martins NMC, Kugou K, Kimura H, Nagase T, Larionov V, Earnshaw WC, Masumoto H. KAT7/HBO1/MYST2 Regulates CENP-A Chromatin Assembly by Antagonizing Suv39h1-Mediated Centromere Inactivation. Dev Cell 2016; 37:413-27. [PMID: 27270040 PMCID: PMC4906249 DOI: 10.1016/j.devcel.2016.05.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 04/08/2016] [Accepted: 05/09/2016] [Indexed: 01/01/2023]
Abstract
Centromere chromatin containing histone H3 variant CENP-A is required for accurate chromosome segregation as a foundation for kinetochore assembly. Human centromere chromatin assembles on a part of the long α-satellite (alphoid) DNA array, where it is flanked by pericentric heterochromatin. Heterochromatin spreads into adjacent chromatin and represses gene expression, and it can antagonize centromere function or CENP-A assembly. Here, we demonstrate an interaction between CENP-A assembly factor M18BP1 and acetyltransferase KAT7/HBO1/MYST2. Knocking out KAT7 in HeLa cells reduced centromeric CENP-A assembly. Mitotic chromosome misalignment and micronuclei formation increased in the knockout cells and were enhanced when the histone H3-K9 trimethylase Suv39h1 was overproduced. Tethering KAT7 to an ectopic alphoid DNA integration site removed heterochromatic H3K9me3 modification and was sufficient to stimulate new CENP-A or histone H3.3 assembly. Thus, KAT7-containing acetyltransferases associating with the Mis18 complex provides competence for histone turnover/exchange activity on alphoid DNA and prevents Suv39h1-mediated heterochromatin invasion into centromeres.
Collapse
Affiliation(s)
- Jun-Ichirou Ohzeki
- Laboratory of Cell Engineering, Department of Frontier Research, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu 292-0818, Japan
| | - Nobuaki Shono
- Laboratory of Cell Engineering, Department of Frontier Research, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu 292-0818, Japan
| | - Koichiro Otake
- Laboratory of Cell Engineering, Department of Frontier Research, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu 292-0818, Japan
| | - Nuno M C Martins
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Kazuto Kugou
- Laboratory of Cell Engineering, Department of Frontier Research, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu 292-0818, Japan
| | - Hiroshi Kimura
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Takahiro Nagase
- Public Relations Team, Kazusa DNA Research Institute, Kisarazu 292-0818, Japan
| | - Vladimir Larionov
- Genome Structure and Function Group, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Hiroshi Masumoto
- Laboratory of Cell Engineering, Department of Frontier Research, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu 292-0818, Japan.
| |
Collapse
|
208
|
Guo LL, Yu SY, Li M. Functional analysis of HBO1 in tumor development and inhibitor screening. Int J Mol Med 2016; 38:300-4. [PMID: 27247147 DOI: 10.3892/ijmm.2016.2617] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 04/21/2016] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to explore the functions of histone acetyltransferase binding to origin recog-nition complex (ORC) 1 (HBO1) during tumor development and to screen for HBO1 inhibitors. The chromatin immuno-precipitation sequencing (ChIP-seq) data of HBO1 in the RKO human colon cancer cell line (GSE33007) were downloaded from the Gene Expression Omnibus (GEO) database. The reads were then mapped back to a reference genome hg19. The PCR duplicate reads were removed by using SAMtools software and the shift was calculated using SPP and MaSC software. The peak calling was carried out using MACS 1.4.0 software. Furthermore, the inhibitors of HBO1 were screened out from the Specs database using Dock 6.6 software. The binding sites of HBO1 were mainly distributed in the intergenic, intronic and 3'-end regions. Further analysis revealed that a total of 9,467 target genes was identified around HBO1 binding sites in the RKO cell lines and those genes mainly participated in the cell cycle, biosynthetic process, as well as other processes. Finally, 5 inhibitors with best binding affinity in the positively charged cavity of HBO1 were screened out: i) 5-[(2-hydroxybenzylidene)amino] -2-(2‑{4‑[(2‑hydroxy-benzylidene)amino]-2-sulfonatophenyl}vinyl)benzenesulfonate, ii) 3-[4-(3-bromo-4-{2-[4-(ethoxycarbonyl)anilino]-2-oxo-ethoxy}-5-methoxybenzylidene)‑3‑methyl‑5‑oxo -4,5-dihydro-1H-pyrazol-1-yl]benzoic acid, iii) 4-(4-{3-iodo‑5‑ methoxy‑4-[2-(2-methoxyanilino)-2-oxoethoxy]benzylidene}-3-methyl-5-oxo-4,5-dihydro-1H-pyrazol-1-yl)benzoic acid, iv) 5-chloro-1,3-bis{[3,5,6-trihydroxy-4-(octyloxy)tetrahydro-2H-pyran-2-yl]methyl}-1,3-dihydro-2H-benzimidazol-2-one and v) 4-{[4-(tetradecylamino)-1-naphthyl]diazenyl}benzoic acid. As a whole, in this study, we identified the possible binding sites and biological functions of HBO1. The potential inhibitors of HBO1 were also screened, which prove to be helpful for the inhibition of HBO1 during tumor development.
Collapse
Affiliation(s)
- Ling-Li Guo
- Department of Colorectal Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Su-Yang Yu
- Department of Colorectal Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Meng Li
- Department of Colorectal Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
209
|
The BRPF2/BRD1-MOZ complex is involved in retinoic acid-induced differentiation of embryonic stem cells. Exp Cell Res 2016; 346:30-9. [PMID: 27256846 DOI: 10.1016/j.yexcr.2016.05.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/24/2016] [Accepted: 05/27/2016] [Indexed: 12/13/2022]
Abstract
The scaffold protein BRPF2 (also called BRD1), a key component of histone acetyltransferase complexes, plays an important role in embryonic development, but its function in the differentiation of embryonic stem cells (ESCs) remains unknown. In the present study, we investigated whether BRPF2 is involved in mouse ESC differentiation. BRPF2 depletion resulted in abnormal formation of embryoid bodies, downregulation of differentiation-associated genes, and persistent maintenance of alkaline phosphatase activity even after retinoic acid-induced differentiation, indicating impaired differentiation of BRPF2-depleted ESCs. We also found reduced global acetylation of histone H3 lysine 14 (H3K14) in BRPF2-depleted ESCs, irrespective of differentiation status. Further, co-immunoprecipitation analysis revealed a physical association between BRPF2 and the histone acetyltransferase MOZ in differentiated ESCs, suggesting the role of BRPF2-MOZ complexes in ESC differentiation. Together, these results suggest that BRPF2-MOZ complexes play an important role in the differentiation of ESCs via H3K14 acetylation.
Collapse
|
210
|
Gou WF, Shen DF, Yang XF, Zhao S, Liu YP, Sun HZ, Su RJ, Luo JS, Zheng HC. ING5 suppresses proliferation, apoptosis, migration and invasion, and induces autophagy and differentiation of gastric cancer cells: a good marker for carcinogenesis and subsequent progression. Oncotarget 2016; 6:19552-79. [PMID: 25980581 PMCID: PMC4637305 DOI: 10.18632/oncotarget.3735] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/10/2015] [Indexed: 12/13/2022] Open
Abstract
Here, we found that ING5 overexpression increased autophagy, differentiation, and decreased proliferation, apoptosis, migration, invasion and lamellipodia formation in gastric cancer cells, while ING5 knockdown had the opposite effects. In SGC-7901 transfectants, ING5 overexpression caused G1 arrest, which was positively associated with 14-3-3 overexpression, Cdk4 and c-jun hypoexpression. The induction of Bax hypoexpression, Bcl-2, survivin, 14-3-3, PI3K, p-Akt and p70S6K overexpression by ING5 decreased apoptosis in SGC-7901 cells. The hypoexpression of MMP-9, MAP1B and flotillin 2 contributed to the inhibitory effects of ING5 on migration and invasion of SGC-7901 cells. ING5 overexpression might activate both β-catenin and NF-κB pathways in SGC-7901 cells, and promote the expression of down-stream genes (c-myc, VEGF, Cyclin D1, survivin, and interleukins). Compared with the control, ING5 transfectants displayed drug resistance to triciribine, paclitaxel, cisplatin, SAHA, MG132 and parthenolide, which was positively related to their apoptotic induction and the overexpression of chemoresistance-related genes (MDR1, GRP78, GRP94, IRE, CD147, FBXW7, TOP1, TOP2, MLH1, MRP1, BRCP1 and GST-π). ING5 expression was higher in gastric cancer than matched mucosa. It was inversely associated with tumor size, dedifferentiation, lymph node metastasis and clinicopathological staging of cancer. ING5 overexpression suppressed growth, blood supply and lung metastasis of SGC-7901 cells by inhibiting proliferation, enhancing autophagy and apoptosis in xenograft models. It was suggested that ING5 expression might be employed as a good marker for gastric carcinogenesis and subsequent progression by inhibiting proliferation, growth, migration, invasion and metastasis. ING5 might induce apoptotic and chemotherapeutic resistances of gastric cancer cells by activating β-catenin, NF-κB and Akt pathways.
Collapse
Affiliation(s)
- Wen-feng Gou
- Cancer Research Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, China
| | - Dao-fu Shen
- Cancer Research Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, China
| | - Xue-feng Yang
- Cancer Research Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, China
| | - Shuang Zhao
- Cancer Research Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, China
| | - Yun-peng Liu
- Department of Oncological Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hong-zhi Sun
- Cancer Research Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, China
| | - Rong-Jian Su
- Experimental Center, Liaoning Medical University, Jinzhou, China
| | - Jun-sheng Luo
- Cancer Research Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, China
| | - Hua-chuan Zheng
- Cancer Research Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, China
| |
Collapse
|
211
|
Huang F, Saraf A, Florens L, Kusch T, Swanson SK, Szerszen LT, Li G, Dutta A, Washburn MP, Abmayr SM, Workman JL. The Enok acetyltransferase complex interacts with Elg1 and negatively regulates PCNA unloading to promote the G1/S transition. Genes Dev 2016; 30:1198-210. [PMID: 27198229 PMCID: PMC4888840 DOI: 10.1101/gad.271429.115] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 04/29/2016] [Indexed: 11/24/2022]
Abstract
KAT6 histone acetyltransferases (HATs) are highly conserved in eukaryotes and are involved in cell cycle regulation. However, information regarding their roles in regulating cell cycle progression is limited. Here, we report the identification of subunits of the Drosophila Enok complex and demonstrate that all subunits are important for its HAT activity. We further report a novel interaction between the Enok complex and the Elg1 proliferating cell nuclear antigen (PCNA)-unloader complex. Depletion of Enok in S2 cells resulted in a G1/S cell cycle block, and this block can be partially relieved by depleting Elg1. Furthermore, depletion of Enok reduced the chromatin-bound levels of PCNA in both S2 cells and early embryos, suggesting that the Enok complex may interact with the Elg1 complex and down-regulate its PCNA-unloading function to promote the G1/S transition. Supporting this hypothesis, depletion of Enok also partially rescued the endoreplication defects in Elg1-depleted nurse cells. Taken together, our study provides novel insights into the roles of KAT6 HATs in cell cycle regulation through modulating PCNA levels on chromatin.
Collapse
Affiliation(s)
- Fu Huang
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA; Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Anita Saraf
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Thomas Kusch
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Selene K Swanson
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Leanne T Szerszen
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Ge Li
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Arnob Dutta
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Michael P Washburn
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA; Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Susan M Abmayr
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Jerry L Workman
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| |
Collapse
|
212
|
de Jesus TCL, Nunes VS, Lopes MDC, Martil DE, Iwai LK, Moretti NS, Machado FC, de Lima-Stein ML, Thiemann OH, Elias MC, Janzen C, Schenkman S, da Cunha JPC. Chromatin Proteomics Reveals Variable Histone Modifications during the Life Cycle of Trypanosoma cruzi. J Proteome Res 2016; 15:2039-51. [DOI: 10.1021/acs.jproteome.6b00208] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Teresa Cristina Leandro de Jesus
- Laboratório
Especial de Ciclo Celular, Center of Toxins, Immune Response and Cell
Signaling - CeTICS, Instituto Butantan, São Paulo 05503-900, Brazil
- Departamento
de Física e Informática, Instituto de Física
de São Carlos, Universidade de São Paulo - USP, São Carlos, São Paulo 13563-120, Brazil
| | - Vinícius Santana Nunes
- Departamento
de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo 04039-032, Brazil
| | - Mariana de Camargo Lopes
- Laboratório
Especial de Ciclo Celular, Center of Toxins, Immune Response and Cell
Signaling - CeTICS, Instituto Butantan, São Paulo 05503-900, Brazil
| | - Daiana Evelin Martil
- Departamento
de Física e Informática, Instituto de Física
de São Carlos, Universidade de São Paulo - USP, São Carlos, São Paulo 13563-120, Brazil
| | - Leo Kei Iwai
- Laboratório
Especial de Ciclo Celular, Center of Toxins, Immune Response and Cell
Signaling - CeTICS, Instituto Butantan, São Paulo 05503-900, Brazil
| | - Nilmar Silvio Moretti
- Departamento
de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo 04039-032, Brazil
| | - Fabrício Castro Machado
- Departamento
de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo 04039-032, Brazil
| | - Mariana L. de Lima-Stein
- Departamento
de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo 04039-032, Brazil
| | - Otavio Henrique Thiemann
- Departamento
de Física e Informática, Instituto de Física
de São Carlos, Universidade de São Paulo - USP, São Carlos, São Paulo 13563-120, Brazil
| | - Maria Carolina Elias
- Laboratório
Especial de Ciclo Celular, Center of Toxins, Immune Response and Cell
Signaling - CeTICS, Instituto Butantan, São Paulo 05503-900, Brazil
| | - Christian Janzen
- Department
of Cell and Developmental Biology, Theodor-Boveri-Institute at the
Biocenter, University of Würzburg, 97070 Germany
| | - Sergio Schenkman
- Departamento
de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo 04039-032, Brazil
| | - Julia Pinheiro Chagas da Cunha
- Laboratório
Especial de Ciclo Celular, Center of Toxins, Immune Response and Cell
Signaling - CeTICS, Instituto Butantan, São Paulo 05503-900, Brazil
| |
Collapse
|
213
|
Vallée Marcotte B, Cormier H, Guénard F, Rudkowska I, Lemieux S, Couture P, Vohl MC. Novel Genetic Loci Associated with the Plasma Triglyceride Response to an Omega-3 Fatty Acid Supplementation. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2016; 9:1-11. [PMID: 27160456 DOI: 10.1159/000446024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/07/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND A recent genome-wide association study (GWAS) by our group identified 13 loci associated with the plasma triglyceride (TG) response to omega-3 (n-3) fatty acid (FA) supplementation. This study aimed to test whether single-nucleotide polymorphisms (SNPs) within the IQCJ, NXPH1, PHF17 and MYB genes are associated with the plasma TG response to an n-3 FA supplementation. METHODS A total of 208 subjects followed a 6-week n-3 FA supplementation of 5 g/day of fish oil (1.9-2.2 g of eicosapentaenoic acid and 1.1 g of docosahexaenoic acid). Measurements of plasma lipids were made before and after the supplementation. Sixty-seven tagged SNPs were selected to increase the density of markers near GWAS hits. RESULTS In a repeated model, independent effects of the genotype and the gene-supplementation interaction were associated with plasma TG. Genotype effects were observed with two SNPs of NXPH1, and gene-diet interactions were observed with ten SNPs of IQCJ, four SNPs of NXPH1 and three SNPs of MYB. Positive and negative responders showed different genotype frequencies with nine SNPs of IQCJ, two SNPs of NXPH1 and two SNPs of MYB. CONCLUSION Fine mapping in GWAS-associated loci allowed the identification of SNPs partly explaining the large interindividual variability observed in plasma TG levels in response to an n-3 FA supplementation.
Collapse
|
214
|
Panchenko MV. Structure, function and regulation of jade family PHD finger 1 (JADE1). Gene 2016; 589:1-11. [PMID: 27155521 DOI: 10.1016/j.gene.2016.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/28/2016] [Accepted: 05/01/2016] [Indexed: 12/24/2022]
Abstract
The family of JADE proteins includes three paralogues encoded by individual genes and designated PHF17 (JADE1), PHF16 (JADE2), and PHF15 (JADE3). All three JADE proteins bear in tandem two Plant Homeo-domains (PHD) which are zinc finger domains. This review focuses on one member of the JADE family, JADE1. Studies addressing the biochemical, cellular and biological role of JADE1 are discussed. Recent discoveries of JADE1 function in the regulation of the epithelial cell cycle with potential relevance to disease are presented. Unresolved questions and future directions are formulated.
Collapse
Affiliation(s)
- Maria V Panchenko
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, United States.
| |
Collapse
|
215
|
Zhang F, Zhang X, Meng J, Zhao Y, Liu X, Liu Y, Wang Y, Li Y, Sun Y, Wang Z, Mei Q, Zhang T. ING5 inhibits cancer aggressiveness via preventing EMT and is a potential prognostic biomarker for lung cancer. Oncotarget 2016; 6:16239-52. [PMID: 25938545 PMCID: PMC4599267 DOI: 10.18632/oncotarget.3842] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/20/2015] [Indexed: 11/25/2022] Open
Abstract
The proteins of the Inhibitor of Growth (ING) candidate tumor suppressor family are involved in multiple cellular functions such as cell cycle regulation, apoptosis, and chromatin remodeling. ING5 is the new member of the family whose actual role in tumor suppression is not known. Here we show that ING5 overexpression in lung cancer A549 cells inhibited cell proliferation and invasiveness, while ING5 knockdown in lung cancer H1299 cells promoted cell aggressiveness. ING5 overexpression also abrogated tumor growth and invasive abilities of lung cancer cells in mouse xenograft models. Further study showed that ING5 overexpression inhibited EMT indicated by increase of E-cadherin and decrease of N-cadherin, Snail and slug at mRNA and protein levels, which was accompanied with morphological changes. cDNA microarray and subsequent qRT-PCR validation revealed that ING5 significantly downregulated expression of EMT (epithelial to mesenchymal transition)-inducing genes including CEACAM6, BMP2 and CDH11. Clinical study by tissue microarray showed that nuclear ING5 negatively correlated with clinical stages and lymph node metastasis of lung cancer. Furthermore, high level of nuclear ING5 was associated with a better prognosis. Taken together, these findings uncover an important role for ING5 as a potent tumor suppressor in lung cancer growth and metastasis.
Collapse
Affiliation(s)
- Feng Zhang
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Xutao Zhang
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Jin Meng
- Department of Oncology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.,Department of Pharmacy, No. 309 Hospital of PLA, Beijing, China
| | - Yong Zhao
- Laboratory Animal Center, Fourth Military Medical University, Xi'an, China
| | - Xinli Liu
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Yanxia Liu
- National Engineering Center for Biochip, Shanghai, China
| | - Yukun Wang
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Yuhua Li
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Yang Sun
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Zhipeng Wang
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Qibing Mei
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Tao Zhang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
216
|
Fryland T, Christensen JH, Pallesen J, Mattheisen M, Palmfeldt J, Bak M, Grove J, Demontis D, Blechingberg J, Ooi HS, Nyegaard M, Hauberg ME, Tommerup N, Gregersen N, Mors O, Corydon TJ, Nielsen AL, Børglum AD. Identification of the BRD1 interaction network and its impact on mental disorder risk. Genome Med 2016; 8:53. [PMID: 27142060 PMCID: PMC4855718 DOI: 10.1186/s13073-016-0308-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/15/2016] [Indexed: 01/23/2023] Open
Abstract
Background The bromodomain containing 1 (BRD1) gene has been implicated with transcriptional regulation, brain development, and susceptibility to schizophrenia and bipolar disorder. To advance the understanding of BRD1 and its role in mental disorders, we characterized the protein and chromatin interactions of the BRD1 isoforms, BRD1-S and BRD1-L. Methods Stable human cell lines expressing epitope tagged BRD1-S and BRD1-L were generated and used as discovery systems for identifying protein and chromatin interactions. Protein-protein interactions were identified using co-immunoprecipitation followed by mass spectrometry and chromatin interactions were identified using chromatin immunoprecipitation followed by next generation sequencing. Gene expression profiles and differentially expressed genes were identified after upregulating and downregulating BRD1 expression using microarrays. The presented functional molecular data were integrated with human genomic and transcriptomic data using available GWAS, exome-sequencing datasets as well as spatiotemporal transcriptomic datasets from the human brain. Results We present several novel protein interactions of BRD1, including isoform-specific interactions as well as proteins previously implicated with mental disorders. By BRD1-S and BRD1-L chromatin immunoprecipitation followed by next generation sequencing we identified binding to promoter regions of 1540 and 823 genes, respectively, and showed correlation between BRD1-S and BRD1-L binding and regulation of gene expression. The identified BRD1 interaction network was found to be predominantly co-expressed with BRD1 mRNA in the human brain and enriched for pathways involved in gene expression and brain function. By interrogation of large datasets from genome-wide association studies, we further demonstrate that the BRD1 interaction network is enriched for schizophrenia risk. Conclusion Our results show that BRD1 interacts with chromatin remodeling proteins, e.g. PBRM1, as well as histone modifiers, e.g. MYST2 and SUV420H1. We find that BRD1 primarily binds in close proximity to transcription start sites and regulates expression of numerous genes, many of which are involved with brain development and susceptibility to mental disorders. Our findings indicate that BRD1 acts as a regulatory hub in a comprehensive schizophrenia risk network which plays a role in many brain regions throughout life, implicating e.g. striatum, hippocampus, and amygdala at mid-fetal stages. Electronic supplementary material The online version of this article (doi:10.1186/s13073-016-0308-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tue Fryland
- Department of Biomedicine, Aarhus University, Building 1242, Bartholins Allé 6, 8000, Aarhus C, Denmark.,iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8000 Aarhus C, Denmark.,iSEQ, Centre for Integrative Sequencing, Aarhus University, 8000, Aarhus C, Denmark
| | - Jane H Christensen
- Department of Biomedicine, Aarhus University, Building 1242, Bartholins Allé 6, 8000, Aarhus C, Denmark.,iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8000 Aarhus C, Denmark.,iSEQ, Centre for Integrative Sequencing, Aarhus University, 8000, Aarhus C, Denmark
| | - Jonatan Pallesen
- Department of Biomedicine, Aarhus University, Building 1242, Bartholins Allé 6, 8000, Aarhus C, Denmark.,iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8000 Aarhus C, Denmark.,iSEQ, Centre for Integrative Sequencing, Aarhus University, 8000, Aarhus C, Denmark
| | - Manuel Mattheisen
- Department of Biomedicine, Aarhus University, Building 1242, Bartholins Allé 6, 8000, Aarhus C, Denmark.,iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8000 Aarhus C, Denmark.,iSEQ, Centre for Integrative Sequencing, Aarhus University, 8000, Aarhus C, Denmark
| | - Johan Palmfeldt
- Research Unit for Molecular Medicine, Aarhus University Hospital, 8200, Skejby, Denmark
| | - Mads Bak
- Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Jakob Grove
- Department of Biomedicine, Aarhus University, Building 1242, Bartholins Allé 6, 8000, Aarhus C, Denmark.,iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8000 Aarhus C, Denmark.,iSEQ, Centre for Integrative Sequencing, Aarhus University, 8000, Aarhus C, Denmark.,Bioinformatics Research Centre (BiRC, Aarhus University, 8000, Aarhus C, Denmark
| | - Ditte Demontis
- Department of Biomedicine, Aarhus University, Building 1242, Bartholins Allé 6, 8000, Aarhus C, Denmark.,iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8000 Aarhus C, Denmark.,iSEQ, Centre for Integrative Sequencing, Aarhus University, 8000, Aarhus C, Denmark
| | - Jenny Blechingberg
- Department of Biomedicine, Aarhus University, Building 1242, Bartholins Allé 6, 8000, Aarhus C, Denmark
| | - Hong Sain Ooi
- Department of Biomedicine, Aarhus University, Building 1242, Bartholins Allé 6, 8000, Aarhus C, Denmark.,iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8000 Aarhus C, Denmark.,iSEQ, Centre for Integrative Sequencing, Aarhus University, 8000, Aarhus C, Denmark
| | - Mette Nyegaard
- Department of Biomedicine, Aarhus University, Building 1242, Bartholins Allé 6, 8000, Aarhus C, Denmark.,iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8000 Aarhus C, Denmark.,iSEQ, Centre for Integrative Sequencing, Aarhus University, 8000, Aarhus C, Denmark
| | - Mads E Hauberg
- Department of Biomedicine, Aarhus University, Building 1242, Bartholins Allé 6, 8000, Aarhus C, Denmark.,iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8000 Aarhus C, Denmark.,iSEQ, Centre for Integrative Sequencing, Aarhus University, 8000, Aarhus C, Denmark
| | - Niels Tommerup
- Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Niels Gregersen
- Research Unit for Molecular Medicine, Aarhus University Hospital, 8200, Skejby, Denmark
| | - Ole Mors
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8000 Aarhus C, Denmark.,iSEQ, Centre for Integrative Sequencing, Aarhus University, 8000, Aarhus C, Denmark.,Research Department P, Aarhus University Hospital, 8240, Risskov, Denmark
| | - Thomas J Corydon
- Department of Biomedicine, Aarhus University, Building 1242, Bartholins Allé 6, 8000, Aarhus C, Denmark.,iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8000 Aarhus C, Denmark.,iSEQ, Centre for Integrative Sequencing, Aarhus University, 8000, Aarhus C, Denmark
| | - Anders L Nielsen
- Department of Biomedicine, Aarhus University, Building 1242, Bartholins Allé 6, 8000, Aarhus C, Denmark.,iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8000 Aarhus C, Denmark.,iSEQ, Centre for Integrative Sequencing, Aarhus University, 8000, Aarhus C, Denmark
| | - Anders D Børglum
- Department of Biomedicine, Aarhus University, Building 1242, Bartholins Allé 6, 8000, Aarhus C, Denmark. .,iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8000 Aarhus C, Denmark. .,iSEQ, Centre for Integrative Sequencing, Aarhus University, 8000, Aarhus C, Denmark. .,Research Department P, Aarhus University Hospital, 8240, Risskov, Denmark.
| |
Collapse
|
217
|
Esmaeili M, Jennek S, Ludwig S, Klitzsch A, Kraft F, Melle C, Baniahmad A. The tumor suppressor ING1b is a novel corepressor for the androgen receptor and induces cellular senescence in prostate cancer cells. J Mol Cell Biol 2016; 8:207-20. [PMID: 26993046 DOI: 10.1093/jmcb/mjw007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/10/2015] [Indexed: 12/28/2022] Open
Abstract
The androgen receptor (AR) signaling is critical for prostate cancer (PCa) progression to the castration-resistant stage with poor clinical outcome. Altered function of AR-interacting factors may contribute to castration-resistant PCa (CRPCa). Inhibitor of growth 1 (ING1) is a tumor suppressor that regulates various cellular processes including cell proliferation. Interestingly, ING1 expression is upregulated in senescent primary human prostate cells; however, its role in AR signaling in PCa was unknown. Using a proteomic approach by surface-enhanced laser desorption ionization-mass spectrometry (SELDI-MS) combined with immunological techniques, we provide here evidence that ING1b interacts in vivo with the AR. The interaction was confirmed by co-immunoprecipitation, in vitro GST-pull-down, and quantitative intracellular colocalization analyses. Functionally, ING1b inhibits AR-responsive promoters and endogenous key AR target genes in the human PCa LNCaP cells. Conversely, ING1b knockout (KO) mouse embryonic fibroblasts (MEFs) exhibit enhanced AR activity, suggesting that the interaction with ING1b represses the AR-mediated transcription. Also, data suggest that ING1b expression is downregulated in CRPCa cells compared with androgen-dependent LNCaP cells. Interestingly, its ectopic expression induces cellular senescence and reduces cell migration in both androgen-dependent and CRPCa cells. Intriguingly, ING1b can also inhibit androgen-induced growth in LNCaP cells in a similar manner as AR antagonists. Moreover, ING1b upregulates different cell cycle inhibitors including p27(KIP1), which is a novel target for ING1b. Taken together, our findings reveal a novel corepressor function of ING1b on various AR functions, thereby inhibiting PCa cell growth.
Collapse
Affiliation(s)
- Mohsen Esmaeili
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Susanne Jennek
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Susann Ludwig
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | | | - Florian Kraft
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Christian Melle
- Biomolecular Photonics Group, Jena University Hospital, Jena, Germany
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| |
Collapse
|
218
|
Li Y, Deng H, Lv L, Zhang C, Qian L, Xiao J, Zhao W, Liu Q, Zhang D, Wang Y, Yan J, Zhang H, He Y, Zhu J. The miR-193a-3p-regulated ING5 gene activates the DNA damage response pathway and inhibits multi-chemoresistance in bladder cancer. Oncotarget 2016; 6:10195-206. [PMID: 25991669 PMCID: PMC4496349 DOI: 10.18632/oncotarget.3555] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 12/21/2022] Open
Abstract
As the major barrier to curative cancer chemotherapy, chemoresistance presents a formidable challenge to both cancer researchers and clinicians. We have previously shown that the bladder cancer (BCa) cell line 5637 is significantly more sensitive to the cytoxicity of five chemotherapeutic agents than H-bc cells. Using an RNA-seq-based omic analysis and validation at both the mRNA and protein levels, we found that the inhibitor of growth 5 (ING5) gene was upregulated in 5637 cells compared with H-bc cells, indicating that it has an inhibitory role in BCa chemoresistance. siRNA-mediated inhibition of ING5 increased the chemoresistance and inhibited the DNA damage response pathway in 5637 cells. Conversely, forced expression of EGFP-ING5 decreased the chemoresistance of and activated the DNA damage response pathway in H-bc cells. We also showed that ING5 gene expression is inhibited by miR-193a-3p and is instrumental in miR-193a-3p's role in activating BCa chemoresistance. Our results demonstrate both the role and mechanism of inhibition of BCa chemoresistance by ING5.
Collapse
Affiliation(s)
- Yang Li
- Department of Biology, School of Life Science, Anhui Medical University, Hefei, Anhui, China
| | - Hui Deng
- Cancer Epigenetics Program, Anhui Cancer Hospital, Hefei, Anhui, China
| | - Lei Lv
- Cancer Epigenetics Program, Anhui Cancer Hospital, Hefei, Anhui, China
| | - Cheng Zhang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Liting Qian
- Department of Radiotherapy, Anhui Cancer Hospital, Hefei, Anhui, China
| | - Jun Xiao
- Department of Urology, Anhui Provincial Hospital, Hefei, Anhui, China
| | - Weidong Zhao
- Department of Gynecologic Cancer, Anhui Cancer Hospital, Hefei, Anhui, China
| | - Qi Liu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Daming Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yingwei Wang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jun Yan
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Hongyu Zhang
- Cancer Epigenetics Program, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yinghua He
- Cancer Epigenetics Program, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jingde Zhu
- Cancer Epigenetics Program, Anhui Cancer Hospital, Hefei, Anhui, China.,Cancer Epigenetics Program, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
219
|
Yuan S, Jin J, Shi J, Hou Y. Inhibitor of growth-4 is a potential target for cancer therapy. Tumour Biol 2016; 37:4275-9. [PMID: 26803518 DOI: 10.1007/s13277-016-4842-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/12/2016] [Indexed: 12/11/2022] Open
Abstract
The inhibitor of growth-4 (ING-4) belongs to the inhibitor of growth (ING) family that is a type II tumor suppressor gene including five members (ING1-5). As a tumor suppressor, ING4 inhibits tumor growth, invasion, and metastasis by multiple signaling pathways. In addition to that, ING4 can facilitate cancer cell sensitivity to chemotherapy and radiotherapy. Although ING4 loss is observed for many types of cancers, increasing evidences show that ING4 can be used for gene therapy. In this review, the recent progress of ING4 regulating tumorigenesis is discussed.
Collapse
Affiliation(s)
- Shuping Yuan
- Department of Oncology, Affiliated Wujin People's Hospital, Jiangsu University, Changzhou, 212017, People's Republic of China.,Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Jianhua Jin
- Department of Oncology, Affiliated Wujin People's Hospital, Jiangsu University, Changzhou, 212017, People's Republic of China
| | - Juanjuan Shi
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| | - Yongzhong Hou
- Department of Oncology, Affiliated Wujin People's Hospital, Jiangsu University, Changzhou, 212017, People's Republic of China. .,Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
220
|
Welch D, Manton C, Hurst D. Breast Cancer Metastasis Suppressor 1 (BRMS1): Robust Biological and Pathological Data, But Still Enigmatic Mechanism of Action. Adv Cancer Res 2016; 132:111-37. [PMID: 27613131 DOI: 10.1016/bs.acr.2016.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Metastasis requires coordinated expression of multiple genetic cassettes, often via epigenetic regulation of gene transcription. BRMS1 blocks metastasis, but not orthotopic tumor growth in multiple tumor types, presumably via SIN3 chromatin remodeling complexes. Although there is an abundance of strong data supporting BRMS1 as a metastasis suppressor, the mechanistic data directly connecting molecular pathways with inhibition of particular steps in metastasis are not well defined. In this review, the data for BRMS1-mediated metastasis suppression in multiple tumor types are discussed along with the steps in metastasis that are inhibited.
Collapse
|
221
|
Boyko A, Riabowol K. A minimal ING1b fragment that improves the efficacy of HDAC-based cancer cell killing. Cell Death Dis 2015; 6:e2027. [PMID: 26720336 PMCID: PMC4720907 DOI: 10.1038/cddis.2015.376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- A Boyko
- Departments of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - K Riabowol
- Departments of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
222
|
Yan K, You L, Degerny C, Ghorbani M, Liu X, Chen L, Li L, Miao D, Yang XJ. The Chromatin Regulator BRPF3 Preferentially Activates the HBO1 Acetyltransferase but Is Dispensable for Mouse Development and Survival. J Biol Chem 2015; 291:2647-63. [PMID: 26677226 DOI: 10.1074/jbc.m115.703041] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Indexed: 12/12/2022] Open
Abstract
To interpret epigenetic information, chromatin readers utilize various protein domains for recognition of DNA and histone modifications. Some readers possess multidomains for modification recognition and are thus multivalent. Bromodomain- and plant homeodomain-linked finger-containing protein 3 (BRPF3) is such a chromatin reader, containing two plant homeodomain-linked fingers, one bromodomain and a PWWP domain. However, its molecular and biological functions remain to be investigated. Here, we report that endogenous BRPF3 preferentially forms a tetrameric complex with HBO1 (also known as KAT7) and two other subunits but not with related acetyltransferases such as MOZ, MORF, TIP60, and MOF (also known as KAT6A, KAT6B, KAT5, and KAT8, respectively). We have also characterized a mutant mouse strain with a lacZ reporter inserted at the Brpf3 locus. Systematic analysis of β-galactosidase activity revealed dynamic spatiotemporal expression of Brpf3 during mouse embryogenesis and high expression in the adult brain and testis. Brpf3 disruption, however, resulted in no obvious gross phenotypes. This is in stark contrast to Brpf1 and Brpf2, whose loss causes lethality at E9.5 and E15.5, respectively. In Brpf3-null mice and embryonic fibroblasts, RT-quantitative PCR uncovered no changes in levels of Brpf1 and Brpf2 transcripts, confirming no compensation from them. These results indicate that BRPF3 forms a functional tetrameric complex with HBO1 but is not required for mouse development and survival, thereby distinguishing BRPF3 from its paralogs, BRPF1 and BRPF2.
Collapse
Affiliation(s)
- Kezhi Yan
- From the Rosalind and Morris Goodman Cancer Research Center, Departments of Biochemistry and Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Linya You
- From the Rosalind and Morris Goodman Cancer Research Center, Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Cindy Degerny
- From the Rosalind and Morris Goodman Cancer Research Center
| | - Mohammad Ghorbani
- From the Rosalind and Morris Goodman Cancer Research Center, Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Xin Liu
- From the Rosalind and Morris Goodman Cancer Research Center
| | - Lulu Chen
- the State Key Laboratory of Reproductive Medicine, Research Center for Bone and Stem Cells, Department of Human Anatomy, Nanjing Medical University, Nanjing 210029, China, and
| | - Lin Li
- From the Rosalind and Morris Goodman Cancer Research Center, Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Dengshun Miao
- the State Key Laboratory of Reproductive Medicine, Research Center for Bone and Stem Cells, Department of Human Anatomy, Nanjing Medical University, Nanjing 210029, China, and
| | - Xiang-Jiao Yang
- From the Rosalind and Morris Goodman Cancer Research Center, Departments of Biochemistry and Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada, the McGill University Health Center, Montreal, Quebec H3A 1A3, Canada
| |
Collapse
|
223
|
Judes G, Rifaï K, Ngollo M, Daures M, Bignon YJ, Penault-Llorca F, Bernard-Gallon D. A bivalent role of TIP60 histone acetyl transferase in human cancer. Epigenomics 2015; 7:1351-63. [PMID: 26638912 DOI: 10.2217/epi.15.76] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Acetylation is a major modification that is required for gene regulation, genome maintenance and metabolism. A dysfunctional acetylation plays an important role in several diseases, including cancer. A group of enzymes-lysine acetyltransferases are responsible for this modification and act in regulation of transcription as cofactors and by acetylation of histones and other proteins. Tip60, a member of MYST family, is expressed ubiquitously and is the acetyltransferase catalytic subunit of human NuA4 complex. This HAT has a well-characterized involvement in many processes, such as cellular signaling, DNA damage repair, transcriptional and cellular cycle. Aberrant lysine acetyltransferase functions promote or suppress tumorigenesis in different cancers such as colon, breast and prostate tumors. Therefore, Tip60 might be a potential and important therapeutic target in the cancer treatment; new histone acetyl transferase inhibitors were identified and are more selective inhibitors of Tip60.
Collapse
Affiliation(s)
- Gaëlle Judes
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri Dunant, 63001 Clermont-Ferrand, France.,EA 4677 'ERTICA', University of Auvergne, 63011 Clermont-Ferrand, France
| | - Khaldoun Rifaï
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri Dunant, 63001 Clermont-Ferrand, France.,EA 4677 'ERTICA', University of Auvergne, 63011 Clermont-Ferrand, France
| | - Marjolaine Ngollo
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri Dunant, 63001 Clermont-Ferrand, France.,EA 4677 'ERTICA', University of Auvergne, 63011 Clermont-Ferrand, France
| | - Marine Daures
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri Dunant, 63001 Clermont-Ferrand, France.,EA 4677 'ERTICA', University of Auvergne, 63011 Clermont-Ferrand, France
| | - Yves-Jean Bignon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri Dunant, 63001 Clermont-Ferrand, France.,EA 4677 'ERTICA', University of Auvergne, 63011 Clermont-Ferrand, France
| | - Frédérique Penault-Llorca
- EA 4677 'ERTICA', University of Auvergne, 63011 Clermont-Ferrand, France.,Centre Jean Perrin, Laboratory of Biopathology, 63011 Clermont-Ferrand, France
| | - Dominique Bernard-Gallon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri Dunant, 63001 Clermont-Ferrand, France.,EA 4677 'ERTICA', University of Auvergne, 63011 Clermont-Ferrand, France
| |
Collapse
|
224
|
Klein BJ, Muthurajan UM, Lalonde ME, Gibson MD, Andrews FH, Hepler M, Machida S, Yan K, Kurumizaka H, Poirier MG, Côté J, Luger K, Kutateladze TG. Bivalent interaction of the PZP domain of BRPF1 with the nucleosome impacts chromatin dynamics and acetylation. Nucleic Acids Res 2015; 44:472-84. [PMID: 26626149 PMCID: PMC4705663 DOI: 10.1093/nar/gkv1321] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/11/2015] [Indexed: 01/09/2023] Open
Abstract
BRPF1 (bromodomain PHD finger 1) is a core subunit of the MOZ histone acetyltransferase (HAT) complex, critical for normal developmental programs and implicated in acute leukemias. BRPF1 contains a unique assembly of zinc fingers, termed a PZP domain, the physiological role of which remains unclear. Here, we elucidate the structure-function relationship of this novel epigenetic reader and detail the biological and mechanistic consequences of its interaction with nucleosomes. PZP has a globular architecture and forms a 2:1 stoichiometry complex with the nucleosome, bivalently interacting with histone H3 and DNA. This binding impacts the nucleosome dynamics, shifting the DNA unwrapping/rewrapping equilibrium toward the unwrapped state and increasing DNA accessibility. We demonstrate that the DNA-binding function of the BRPF1 PZP domain is required for the MOZ-BRPF1-ING5-hEaf6 HAT complex to be recruited to chromatin and to acetylate nucleosomal histones. Our findings reveal a novel link between chromatin dynamics and MOZ-mediated acetylation.
Collapse
Affiliation(s)
- Brianna J Klein
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Uma M Muthurajan
- Department of Chemistry and Biochemistry and Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309, USA
| | - Marie-Eve Lalonde
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, CHU de Québec Research Center-Oncology Axis, Quebec City, Québec G1R 2J6, Canada
| | - Matthew D Gibson
- Department of Physics, Ohio State University, Columbus, OH 43210, USA
| | - Forest H Andrews
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Maggie Hepler
- Department of Chemistry and Biochemistry and Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309, USA
| | - Shinichi Machida
- Graduate School of Advanced Science & Engineering, Waseda University, Tokyo 162-8480, Japan
| | - Kezhi Yan
- Goodman Cancer Research Center & Department of Medicine, McGill University, Montreal, Québec H3A 1A1, Canada
| | - Hitoshi Kurumizaka
- Graduate School of Advanced Science & Engineering, Waseda University, Tokyo 162-8480, Japan
| | - Michael G Poirier
- Department of Physics, Ohio State University, Columbus, OH 43210, USA
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, CHU de Québec Research Center-Oncology Axis, Quebec City, Québec G1R 2J6, Canada
| | - Karolin Luger
- Department of Chemistry and Biochemistry and Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309, USA
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
225
|
Feng Y, Vlassis A, Roques C, Lalonde ME, González-Aguilera C, Lambert JP, Lee SB, Zhao X, Alabert C, Johansen JV, Paquet E, Yang XJ, Gingras AC, Côté J, Groth A. BRPF3-HBO1 regulates replication origin activation and histone H3K14 acetylation. EMBO J 2015; 35:176-92. [PMID: 26620551 DOI: 10.15252/embj.201591293] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 11/03/2015] [Indexed: 12/23/2022] Open
Abstract
During DNA replication, thousands of replication origins are activated across the genome. Chromatin architecture contributes to origin specification and usage, yet it remains unclear which chromatin features impact on DNA replication. Here, we perform a RNAi screen for chromatin regulators implicated in replication control by measuring RPA accumulation upon replication stress. We identify six factors required for normal rates of DNA replication and characterize a function of the bromodomain and PHD finger-containing protein 3 (BRPF3) in replication initiation. BRPF3 forms a complex with HBO1 that specifically acetylates histone H3K14, and genomewide analysis shows high enrichment of BRPF3, HBO1 and H3K14ac at ORC1-binding sites and replication origins found in the vicinity of TSSs. Consistent with this, BRPF3 is necessary for H3K14ac at selected origins and efficient origin activation. CDC45 recruitment, but not MCM2-7 loading, is impaired in BRPF3-depleted cells, identifying a BRPF3-dependent function of HBO1 in origin activation that is complementary to its role in licencing. We thus propose that BRPF3-HBO1 acetylation of histone H3K14 around TSS facilitates efficient activation of nearby replication origins.
Collapse
Affiliation(s)
- Yunpeng Feng
- Biotech Research and Innovation Centre (BRIC) and Center for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Arsenios Vlassis
- Biotech Research and Innovation Centre (BRIC) and Center for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Céline Roques
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Axis-CHU de Québec Research Center, Quebec City, QC, Canada
| | - Marie-Eve Lalonde
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Axis-CHU de Québec Research Center, Quebec City, QC, Canada
| | - Cristina González-Aguilera
- Biotech Research and Innovation Centre (BRIC) and Center for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | | | - Sung-Bau Lee
- Biotech Research and Innovation Centre (BRIC) and Center for Epigenetics, University of Copenhagen, Copenhagen, Denmark Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Xiaobei Zhao
- Bioinformatics Centre Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Constance Alabert
- Biotech Research and Innovation Centre (BRIC) and Center for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Jens V Johansen
- Biotech Research and Innovation Centre (BRIC) and Center for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Eric Paquet
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Axis-CHU de Québec Research Center, Quebec City, QC, Canada
| | - Xiang-Jiao Yang
- Department of Medicine, McGill University Health Center, Montréal, QC, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Axis-CHU de Québec Research Center, Quebec City, QC, Canada
| | - Anja Groth
- Biotech Research and Innovation Centre (BRIC) and Center for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
226
|
Abstract
Tic disorders are moderately heritable common psychiatric disorders that can be highly troubling, both in childhood and in adulthood. In this study, we report results obtained in the first epigenome-wide association study (EWAS) of tic disorders. The subjects are participants in surveys at the Netherlands Twin Register (NTR) and the NTR biobank project. Tic disorders were measured with a self-report version of the Yale Global Tic Severity Scale Abbreviated version (YGTSS-ABBR), included in the 8th wave NTR data collection (2008). DNA methylation data consisted of 411,169 autosomal methylation sites assessed by the Illumina Infinium HumanMethylation450 BeadChip Kit (HM450k array). Phenotype and DNA methylation data were available in 1,678 subjects (mean age = 41.5). No probes reached genome-wide significance (p < 1.2 × 10(-7)). The strongest associated probe was cg15583738, located in an intergenic region on chromosome 8 (p = 1.98 × 10(-6)). Several of the top ranking probes (p < 1 × 10(-4)) were in or nearby genes previously associated with neurological disorders (e.g., GABBRI, BLM, and ADAM10), warranting their further investigation in relation to tic disorders. The top significantly enriched gene ontology (GO) terms among higher ranking methylation sites included anatomical structure morphogenesis (GO:0009653, p = 4.6 × 10-(15)) developmental process (GO:0032502, p = 2.96 × 10(-12)), and cellular developmental process (GO:0048869, p = 1.96 × 10(-12)). Overall, these results provide a first insight into the epigenetic mechanisms of tic disorders. This first study assesses the role of DNA methylation in tic disorders, and it lays the foundations for future work aiming to unravel the biological mechanisms underlying the architecture of this disorder.
Collapse
|
227
|
Zhang T, Cooper S, Brockdorff N. The interplay of histone modifications - writers that read. EMBO Rep 2015; 16:1467-81. [PMID: 26474904 PMCID: PMC4641500 DOI: 10.15252/embr.201540945] [Citation(s) in RCA: 559] [Impact Index Per Article: 55.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/16/2015] [Indexed: 01/07/2023] Open
Abstract
Histones are subject to a vast array of posttranslational modifications including acetylation, methylation, phosphorylation, and ubiquitylation. The writers of these modifications play important roles in normal development and their mutation or misregulation is linked with both genetic disorders and various cancers. Readers of these marks contain protein domains that allow their recruitment to chromatin. Interestingly, writers often contain domains which can read chromatin marks, allowing the reinforcement of modifications through a positive feedback loop or inhibition of their activity by other modifications. We discuss how such positive reinforcement can result in chromatin states that are robust and can be epigenetically maintained through cell division. We describe the implications of these regulatory systems in relation to modifications including H3K4me3, H3K79me3, and H3K36me3 that are associated with active genes and H3K27me3 and H3K9me3 that have been linked to transcriptional repression. We also review the crosstalk between active and repressive modifications, illustrated by the interplay between the Polycomb and Trithorax histone-modifying proteins, and discuss how this may be important in defining gene expression states during development.
Collapse
Affiliation(s)
- Tianyi Zhang
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford, UK
| | - Sarah Cooper
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford, UK
| | - Neil Brockdorff
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
228
|
Dalvai M, Loehr J, Jacquet K, Huard CC, Roques C, Herst P, Côté J, Doyon Y. A Scalable Genome-Editing-Based Approach for Mapping Multiprotein Complexes in Human Cells. Cell Rep 2015; 13:621-633. [PMID: 26456817 DOI: 10.1016/j.celrep.2015.09.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 07/27/2015] [Accepted: 09/02/2015] [Indexed: 12/18/2022] Open
Abstract
Conventional affinity purification followed by mass spectrometry (AP-MS) analysis is a broadly applicable method used to decipher molecular interaction networks and infer protein function. However, it is sensitive to perturbations induced by ectopically overexpressed target proteins and does not reflect multilevel physiological regulation in response to diverse stimuli. Here, we developed an interface between genome editing and proteomics to isolate native protein complexes produced from their natural genomic contexts. We used CRISPR/Cas9 and TAL effector nucleases (TALENs) to tag endogenous genes and purified several DNA repair and chromatin-modifying holoenzymes to near homogeneity. We uncovered subunits and interactions among well-characterized complexes and report the isolation of MCM8/9, highlighting the efficiency and robustness of the approach. These methods improve and simplify both small- and large-scale explorations of protein interactions as well as the study of biochemical activities and structure-function relationships.
Collapse
Affiliation(s)
- Mathieu Dalvai
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Quebec City, QC G1V 4G2, Canada; St-Patrick Research Group in Basic Oncology and Laval University Cancer Research Center, Quebec City, QC G1R 3S3, Canada
| | - Jeremy Loehr
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Quebec City, QC G1V 4G2, Canada
| | - Karine Jacquet
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Quebec City, QC G1V 4G2, Canada; St-Patrick Research Group in Basic Oncology and Laval University Cancer Research Center, Quebec City, QC G1R 3S3, Canada
| | - Caroline C Huard
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Quebec City, QC G1V 4G2, Canada
| | - Céline Roques
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Quebec City, QC G1V 4G2, Canada; St-Patrick Research Group in Basic Oncology and Laval University Cancer Research Center, Quebec City, QC G1R 3S3, Canada
| | - Pauline Herst
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Quebec City, QC G1V 4G2, Canada; St-Patrick Research Group in Basic Oncology and Laval University Cancer Research Center, Quebec City, QC G1R 3S3, Canada
| | - Jacques Côté
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Quebec City, QC G1V 4G2, Canada; St-Patrick Research Group in Basic Oncology and Laval University Cancer Research Center, Quebec City, QC G1R 3S3, Canada
| | - Yannick Doyon
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Quebec City, QC G1V 4G2, Canada.
| |
Collapse
|
229
|
MYST2 acetyltransferase expression and Histone H4 Lysine acetylation are suppressed in AML. Exp Hematol 2015; 43:794-802.e4. [DOI: 10.1016/j.exphem.2015.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 05/26/2015] [Accepted: 05/29/2015] [Indexed: 02/04/2023]
|
230
|
Simó-Riudalbas L, Pérez-Salvia M, Setien F, Villanueva A, Moutinho C, Martínez-Cardús A, Moran S, Berdasco M, Gomez A, Vidal E, Soler M, Heyn H, Vaquero A, de la Torre C, Barceló-Batllori S, Vidal A, Roz L, Pastorino U, Szakszon K, Borck G, Moura CS, Carneiro F, Zondervan I, Savola S, Iwakawa R, Kohno T, Yokota J, Esteller M. KAT6B Is a Tumor Suppressor Histone H3 Lysine 23 Acetyltransferase Undergoing Genomic Loss in Small Cell Lung Cancer. Cancer Res 2015. [PMID: 26208904 DOI: 10.1158/0008-5472.can-14-3702] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent efforts to sequence human cancer genomes have highlighted that point mutations in genes involved in the epigenetic setting occur in tumor cells. Small cell lung cancer (SCLC) is an aggressive tumor with poor prognosis, where little is known about the genetic events related to its development. Herein, we have identified the presence of homozygous deletions of the candidate histone acetyltransferase KAT6B, and the loss of the corresponding transcript, in SCLC cell lines and primary tumors. Furthermore, we show, in vitro and in vivo, that the depletion of KAT6B expression enhances cancer growth, while its restoration induces tumor suppressor-like features. Most importantly, we demonstrate that KAT6B exerts its tumor-inhibitory role through a newly defined type of histone H3 Lys23 acetyltransferase activity.
Collapse
Affiliation(s)
- Laia Simó-Riudalbas
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Montserrat Pérez-Salvia
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Fernando Setien
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Alberto Villanueva
- Translational Research Laboratory, Catalan Institute of Oncology (ICO), IDIBELL, Barcelona, Catalonia, Spain
| | - Catia Moutinho
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Anna Martínez-Cardús
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Sebastian Moran
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Maria Berdasco
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Antonio Gomez
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Enrique Vidal
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Marta Soler
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Holger Heyn
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | | | | | | | - August Vidal
- Department of Pathology, Bellvitge University Hospital, IDIBELL, Barcelona, Catalonia, Spain
| | - Luca Roz
- Tumor Genomics Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ugo Pastorino
- Thoracic Surgery Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Katalin Szakszon
- Institute of Pediatrics, Clinical Genetics Center, University of Debrecen, Debrecen, Hungary
| | - Guntram Borck
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Conceição S Moura
- Department of Pathology, Centro Hospitalar de São João, Porto, Portugal
| | - Fátima Carneiro
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) and Medical Faculty of University of Porto, Porto, Portugal
| | | | | | - Reika Iwakawa
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Jun Yokota
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan. Genomics and Epigenomics of Cancer Prediction Program, Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona, Catalonia, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain. Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain. Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.
| |
Collapse
|
231
|
Siriwardana NS, Meyer RD, Panchenko MV. The novel function of JADE1S in cytokinesis of epithelial cells. Cell Cycle 2015; 14:2821-34. [PMID: 26151225 DOI: 10.1080/15384101.2015.1068476] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
JADE1 belongs to a small family of PHD zinc finger proteins that interacts with histone acetyl transferase (HAT) HBO1 and is associated with chromatin. We recently reported JADE1 chromatin shuttling and phosphorylation during G2/M to G1 transition, which was sensitive to Aurora A inhibition. In the current study we examined mechanisms of the cell cycle regulation by the small isoform of JADE1 protein, JADE1S, and report data showing that JADE1S has a novel function in the regulation of cytokinesis. Using FACS assays, we show that, JADE1S depletion facilitated rates of G1-cells accumulation in synchronously dividing HeLa cell cultures. Depletion of JADE1S protein in asynchronously dividing cells decreased the proportion of cytokinetic cells, and increased the proportion of multi-nuclear cells, indicative of premature and failed cytokinesis. In contrast, moderate overexpression of JADE1S increased the number of cytokinetic cells in time- and dose- dependent manner, indicating cytokinetic delay. Pharmacological inhibition of Aurora B kinase resulted in the release of JADE1S-mediated cytokinetic delay and allowed progression of abscission in cells over-expressing JADE1S. Finally, we show that JADE1S protein localized to centrosomes in interphase and mitotic cells, while during cytokinesis JADE1S localized to the midbody. Neither JADE1L nor partner of JADE1, HAT HBO1 was localized to the centrosomes or midbodies. Our study identifies the novel role for JADE1S in regulation of cytokinesis and suggests function in Aurora B kinase-mediated cytokinesis checkpoint.
Collapse
|
232
|
MicroRNA 665 Regulates Dentinogenesis through MicroRNA-Mediated Silencing and Epigenetic Mechanisms. Mol Cell Biol 2015; 35:3116-30. [PMID: 26124283 DOI: 10.1128/mcb.00093-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/18/2015] [Indexed: 12/26/2022] Open
Abstract
Studies of proteins involved in microRNA (miRNA) processing, maturation, and silencing have indicated the importance of miRNAs in skeletogenesis, but the specific miRNAs involved in this process are incompletely defined. Here, we identified miRNA 665 (miR-665) as a potential repressor of odontoblast maturation. Studies with cultured cell lines and primary embryonic cells showed that miR-665 represses the expression of early and late odontoblast marker genes and stage-specific proteases involved in dentin maturation. Notably, miR-665 directly targeted Dlx3 mRNA and decreased Dlx3 expression. Furthermore, RNA-induced silencing complex (RISC) immunoprecipitation and biotin-labeled miR-665 pulldown studies identified Kat6a as another potential target of miR-665. KAT6A interacted physically and functionally with RUNX2, activating tissue-specific promoter activity and prompting odontoblast differentiation. Overexpression of miR-665 reduced the recruitment of KAT6A to Dspp and Dmp1 promoters and prevented KAT6A-induced chromatin remodeling, repressing gene transcription. Taken together, our results provide novel molecular evidence that miR-665 functions in an miRNA-epigenetic regulatory network to control dentinogenesis.
Collapse
|
233
|
PHF6 Degrees of Separation: The Multifaceted Roles of a Chromatin Adaptor Protein. Genes (Basel) 2015; 6:325-52. [PMID: 26103525 PMCID: PMC4488667 DOI: 10.3390/genes6020325] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/12/2015] [Accepted: 06/16/2015] [Indexed: 12/13/2022] Open
Abstract
The importance of chromatin regulation to human disease is highlighted by the growing number of mutations identified in genes encoding chromatin remodeling proteins. While such mutations were first identified in severe developmental disorders, or in specific cancers, several genes have been implicated in both, including the plant homeodomain finger protein 6 (PHF6) gene. Indeed, germline mutations in PHF6 are the cause of the Börjeson–Forssman–Lehmann X-linked intellectual disability syndrome (BFLS), while somatic PHF6 mutations have been identified in T-cell acute lymphoblastic leukemia (T-ALL) and acute myeloid leukemia (AML). Studies from different groups over the last few years have made a significant impact towards a functional understanding of PHF6 protein function. In this review, we summarize the current knowledge of PHF6 with particular emphasis on how it interfaces with a distinct set of interacting partners and its functional roles in the nucleoplasm and nucleolus. Overall, PHF6 is emerging as a key chromatin adaptor protein critical to the regulation of neurogenesis and hematopoiesis.
Collapse
|
234
|
Haery L, Thompson RC, Gilmore TD. Histone acetyltransferases and histone deacetylases in B- and T-cell development, physiology and malignancy. Genes Cancer 2015; 6:184-213. [PMID: 26124919 PMCID: PMC4482241 DOI: 10.18632/genesandcancer.65] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 05/12/2015] [Indexed: 12/31/2022] Open
Abstract
The development of B and T cells from hematopoietic precursors and the regulation of the functions of these immune cells are complex processes that involve highly regulated signaling pathways and transcriptional control. The signaling pathways and gene expression patterns that give rise to these developmental processes are coordinated, in part, by two opposing classes of broad-based enzymatic regulators: histone acetyltransferases (HATs) and histone deacetylases (HDACs). HATs and HDACs can modulate gene transcription by altering histone acetylation to modify chromatin structure, and by regulating the activity of non-histone substrates, including an array of immune-cell transcription factors. In addition to their role in normal B and T cells, dysregulation of HAT and HDAC activity is associated with a variety of B- and T-cell malignancies. In this review, we describe the roles of HATs and HDACs in normal B- and T-cell physiology, describe mutations and dysregulation of HATs and HDACs that are implicated lymphoma and leukemia, and discuss HAT and HDAC inhibitors that have been explored as treatment options for leukemias and lymphomas.
Collapse
Affiliation(s)
- Leila Haery
- Department of Biology, Boston University, Boston, MA, USA
| | | | | |
Collapse
|
235
|
Yang XJ. MOZ and MORF acetyltransferases: Molecular interaction, animal development and human disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1818-26. [PMID: 25920810 DOI: 10.1016/j.bbamcr.2015.04.014] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 04/17/2015] [Accepted: 04/22/2015] [Indexed: 01/16/2023]
Abstract
Lysine residues are subject to many forms of covalent modification and one such modification is acetylation of the ε-amino group. Initially identified on histone proteins in the 1960s, lysine acetylation is now considered as an important form of post-translational modification that rivals phosphorylation. However, only about a dozen of human lysine acetyltransferases have been identified. Among them are MOZ (monocytic leukemia zinc finger protein; a.k.a. MYST3 and KAT6A) and its paralog MORF (a.k.a. MYST4 and KAT6B). Although there is a distantly related protein in Drosophila and sea urchin, these two enzymes are vertebrate-specific. They form tetrameric complexes with BRPF1 (bromodomain- and PHD finger-containing protein 1) and two small non-catalytic subunits. These two acetyltransferases and BRPF1 play key roles in various developmental processes; for example, they are important for development of hematopoietic and neural stem cells. The human KAT6A and KAT6B genes are recurrently mutated in leukemia, non-hematologic malignancies, and multiple developmental disorders displaying intellectual disability and various other abnormalities. In addition, the BRPF1 gene is mutated in childhood leukemia and adult medulloblastoma. Therefore, these two acetyltransferases and their partner BRPF1 are important in animal development and human disease.
Collapse
Affiliation(s)
- Xiang-Jiao Yang
- The Rosalind & Morris Goodman Cancer Research Center, McGill University, Montreal, Quebec H3A 1A3, Canada; Department of Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada; McGill University Health Center, Montreal, Quebec H3A 1A3, Canada.
| |
Collapse
|
236
|
Abstract
INhibitor of Growth 1 (ING1) expression is repressed in breast carcinomas, but its role in breast cancer development and metastasis is unknown. ING1 levels were quantified in >500 patient samples using automated quantitative fluorescence immunohistochemistry, and data were analysed for correlations to patient outcome. Effects of altering ING levels were examined in microarrays and metastasis assays in vitro, and in a mouse metastasis model in vivo. ING1 levels were lower in tumors compared to adjacent normal breast tissue and correlated with tumor size (p=0.019) and distant recurrence (p=0.001) in ER- or Her2+ patients. In these patients ING1 predicted disease-specific and distant metastasis-free survival. Transcriptome analysis showed that the pathway most affected by ING1 was breast cancer (p = 0.0008). Decreasing levels of ING1 increased, and increasing levels decreased, migration and invasion of MDA-MB231 cells in vitro. ING1 overexpression also blocked cancer cell metastasis in vivo and eliminated tumor-induced mortality in mouse models. Our data show that ING1 protein levels are downregulated in breast cancer and for the first time, we show that altering their levels regulates metastasis in vitro and in vivo, which indicates that ING1 may have a therapeutic role for inhibiting metastasis of breast cancer.
Collapse
|
237
|
MOZ and BMI1 play opposing roles during Hox gene activation in ES cells and in body segment identity specification in vivo. Proc Natl Acad Sci U S A 2015; 112:5437-42. [PMID: 25922517 DOI: 10.1073/pnas.1422872112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hox genes underlie the specification of body segment identity in the anterior-posterior axis. They are activated during gastrulation and undergo a dynamic shift from a transcriptionally repressed to an active chromatin state in a sequence that reflects their chromosomal location. Nevertheless, the precise role of chromatin modifying complexes during the initial activation phase remains unclear. In the current study, we examined the role of chromatin regulators during Hox gene activation. Using embryonic stem cell lines lacking the transcriptional activator MOZ and the polycomb-family repressor BMI1, we showed that MOZ and BMI1, respectively, promoted and repressed Hox genes during the shift from the transcriptionally repressed to the active state. Strikingly however, MOZ but not BMI1 was required to regulate Hox mRNA levels after the initial activation phase. To determine the interaction of MOZ and BMI1 in vivo, we interrogated their role in regulating Hox genes and body segment identity using Moz;Bmi1 double deficient mice. We found that the homeotic transformations and shifts in Hox gene expression boundaries observed in single Moz and Bmi1 mutant mice were rescued to a wild type identity in Moz;Bmi1 double knockout animals. Together, our findings establish that MOZ and BMI1 play opposing roles during the onset of Hox gene expression in the ES cell model and during body segment identity specification in vivo. We propose that chromatin-modifying complexes have a previously unappreciated role during the initiation phase of Hox gene expression, which is critical for the correct specification of body segment identity.
Collapse
|
238
|
Linzen U, Lilischkis R, Pandithage R, Schilling B, Ullius A, Lüscher-Firzlaff J, Kremmer E, Lüscher B, Vervoorts J. ING5 is phosphorylated by CDK2 and controls cell proliferation independently of p53. PLoS One 2015; 10:e0123736. [PMID: 25860957 PMCID: PMC4393124 DOI: 10.1371/journal.pone.0123736] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 02/27/2015] [Indexed: 11/19/2022] Open
Abstract
Inhibitor of growth (ING) proteins have multiple functions in the control of cell proliferation, mainly by regulating processes associated with chromatin regulation and gene expression. ING5 has been described to regulate aspects of gene transcription and replication. Moreover deregulation of ING5 is observed in different tumors, potentially functioning as a tumor suppressor. Gene transcription in late G1 and in S phase and replication is regulated by cyclin-dependent kinase 2 (CDK2) in complex with cyclin E or cyclin A. CDK2 complexes phosphorylate and regulate several substrate proteins relevant for overcoming the restriction point and promoting S phase. We have identified ING5 as a novel CDK2 substrate. ING5 is phosphorylated at a single site, threonine 152, by cyclin E/CDK2 and cyclin A/CDK2 in vitro. This site is also phosphorylated in cells in a cell cycle dependent manner, consistent with it being a CDK2 substrate. Furthermore overexpression of cyclin E/CDK2 stimulates while the CDK2 inhibitor p27KIP1 represses phosphorylation at threonine 152. This site is located in a bipartite nuclear localization sequence but its phosphorylation was not sufficient to deregulate the subcellular localization of ING5. Although ING5 interacts with the tumor suppressor p53, we could not establish p53-dependent regulation of cell proliferation by ING5 and by phospho-site mutants. Instead we observed that the knockdown of ING5 resulted in a strong reduction of proliferation in different tumor cell lines, irrespective of the p53 status. This inhibition of proliferation was at least in part due to the induction of apoptosis. In summary we identified a phosphorylation site at threonine 152 of ING5 that is cell cycle regulated and we observed that ING5 is necessary for tumor cell proliferation, without any apparent dependency on the tumor suppressor p53.
Collapse
Affiliation(s)
- Ulrike Linzen
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstrasse 30, 52057, Aachen, Germany
| | - Richard Lilischkis
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstrasse 30, 52057, Aachen, Germany
| | - Ruwin Pandithage
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstrasse 30, 52057, Aachen, Germany
| | - Britta Schilling
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstrasse 30, 52057, Aachen, Germany
| | - Andrea Ullius
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstrasse 30, 52057, Aachen, Germany
| | - Juliane Lüscher-Firzlaff
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstrasse 30, 52057, Aachen, Germany
| | - Elisabeth Kremmer
- Helmholtz Zentrum München, Institute of Molecular Immunology, Marchioninistrasse 25, 81377, München, Germany
| | - Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstrasse 30, 52057, Aachen, Germany
- * E-mail: (BL); (JV)
| | - Jörg Vervoorts
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstrasse 30, 52057, Aachen, Germany
- * E-mail: (BL); (JV)
| |
Collapse
|
239
|
Affiliation(s)
- He Huang
- Ben May Department of Cancer Research, The University of Chicago, Chicago, Illinois 60637, United States
| | - Shu Lin
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Benjamin A. Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yingming Zhao
- Ben May Department of Cancer Research, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
240
|
MOZ (MYST3, KAT6A) inhibits senescence via the INK4A-ARF pathway. Oncogene 2015; 34:5807-20. [DOI: 10.1038/onc.2015.33] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 12/01/2014] [Accepted: 01/23/2015] [Indexed: 12/21/2022]
|
241
|
You L, Yan K, Zou J, Zhao H, Bertos NR, Park M, Wang E, Yang XJ. The chromatin regulator Brpf1 regulates embryo development and cell proliferation. J Biol Chem 2015; 290:11349-64. [PMID: 25773539 DOI: 10.1074/jbc.m115.643189] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Indexed: 12/22/2022] Open
Abstract
With hundreds of chromatin regulators identified in mammals, an emerging issue is how they modulate biological and pathological processes. BRPF1 (bromodomain- and PHD finger-containing protein 1) is a unique chromatin regulator possessing two PHD fingers, one bromodomain and a PWWP domain for recognizing multiple histone modifications. In addition, it binds to the acetyltransferases MOZ, MORF, and HBO1 (also known as KAT6A, KAT6B, and KAT7, respectively) to promote complex formation, restrict substrate specificity, and enhance enzymatic activity. We have recently showed that ablation of the mouse Brpf1 gene causes embryonic lethality at E9.5. Here we present systematic analyses of the mutant animals and demonstrate that the ablation leads to vascular defects in the placenta, yolk sac, and embryo proper, as well as abnormal neural tube closure. At the cellular level, Brpf1 loss inhibits proliferation of embryonic fibroblasts and hematopoietic progenitors. Molecularly, the loss reduces transcription of a ribosomal protein L10 (Rpl10)-like gene and the cell cycle inhibitor p27, and increases expression of the cell-cycle inhibitor p16 and a novel protein homologous to Scp3, a synaptonemal complex protein critical for chromosome association and embryo survival. These results uncover a crucial role of Brpf1 in controlling mouse embryo development and regulating cellular and gene expression programs.
Collapse
Affiliation(s)
- Linya You
- From the The Rosalind and Morris Goodman Cancer Research Center, Department of Medicine, and
| | - Kezhi Yan
- From the The Rosalind and Morris Goodman Cancer Research Center, Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3
| | - Jinfeng Zou
- National Research Council Canada, Montreal, Quebec H4P 2R2, and
| | - Hong Zhao
- From the The Rosalind and Morris Goodman Cancer Research Center
| | | | - Morag Park
- From the The Rosalind and Morris Goodman Cancer Research Center, Department of Medicine, and Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, McGill University Health Center, Montreal, Quebec H3A 1A3, Canada
| | - Edwin Wang
- National Research Council Canada, Montreal, Quebec H4P 2R2, and
| | - Xiang-Jiao Yang
- From the The Rosalind and Morris Goodman Cancer Research Center, Department of Medicine, and Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, McGill University Health Center, Montreal, Quebec H3A 1A3, Canada
| |
Collapse
|
242
|
Yan R, He L, Li Z, Han X, Liang J, Si W, Chen Z, Li L, Xie G, Li W, Wang P, Lei L, Zhang H, Pei F, Cao D, Sun L, Shang Y. SCF(JFK) is a bona fide E3 ligase for ING4 and a potent promoter of the angiogenesis and metastasis of breast cancer. Genes Dev 2015; 29:672-685. [PMID: 25792601 PMCID: PMC4378198 DOI: 10.1101/gad.254292.114] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/17/2015] [Indexed: 11/24/2022]
Abstract
Loss of function/dysregulation of inhibitor of growth 4 (ING4) and hyperactivation of NF-κB are frequent events in many types of human malignancies. However, the molecular mechanisms underlying these remarkable aberrations are not understood. Here, we report that ING4 is physically associated with JFK. We demonstrated that JFK targets ING4 for ubiquitination and degradation through assembly of an Skp1-Cul1-F-box (SCF) complex. We showed that JFK-mediated ING4 destabilization leads to the hyperactivation of the canonical NF-κB pathway and promotes angiogenesis and metastasis of breast cancer. Significantly, the expression of JFK is markedly up-regulated in breast cancer, and the level of JFK is negatively correlated with that of ING4 and positively correlated with an aggressive clinical behavior of breast carcinomas. Our study identified SCF(JFK) as a bona fide E3 ligase for ING4 and unraveled the JFK-ING4-NF-κB axis as an important player in the development and progression of breast cancer, supporting the pursuit of JFK as a potential target for breast cancer intervention.
Collapse
Affiliation(s)
- Ruorong Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Lin He
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Zhongwu Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University School of Oncology, Beijing 100142, China
| | - Xiao Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Jing Liang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Wenzhe Si
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Zhe Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Lei Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Guojia Xie
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Wanjin Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Peiyan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Liandi Lei
- Laboratory of Molecular Imaging, Peking University Health Science Center, Beijing 100191, China
| | - Hongquan Zhang
- Department of Anatomy, Histology, and Embryology, Peking University Health Science Center, Beijing 100191, China
| | - Fei Pei
- Department of Pathology, Peking University Health Science Center, Beijing 100191, China
| | - Dengfeng Cao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University School of Oncology, Beijing 100142, China
| | - Luyang Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China;
| | - Yongfeng Shang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China; 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
243
|
Wang Y, Wang T, Han Y, Wu H, Zhao W, Tong D, Wei L, Zhong Z, An R, Wang Y. Reduced ING4 Expression Is Associated with the Malignancy of Human Bladder. Urol Int 2015; 94:464-71. [DOI: 10.1159/000364832] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 05/25/2014] [Indexed: 11/19/2022]
Abstract
Introduction: Inhibitor of growth 4 (ING4) is a tumor suppressor. However the role of ING4 in human bladder malignancy is unknown. In this study, ING4 expression in human bladder cancer and its potential effects were studied. Materials and Methods: ING4 expression in 47 human bladder cancer tissues and paired adjacent normal tissues was detected by Western blotting, quantitative reverse transcription-polymerase chain reaction, and immunohistochemistry. The migration and cell cycle progression of SV-HUC-1 and T24 cells with aberrant ING4 expression were examined. Results: ING4 protein and mRNA were significantly decreased in bladder cancer tissues. ING4 protein level was significantly lower in the group of patients over 50 years of age. ING4 knockdown caused more rapid cell migration and increased the population of SV-HUC-1 and T24 cells in the G2-M phase. Conclusion: Our data suggest a close connection between aberrant ING4 expression and the carcinogenesis of human bladder cells. ING4 may be a potential target for bladder cancer chemotherapy.
Collapse
|
244
|
Nabbi A, Almami A, Thakur S, Suzuki K, Boland D, Bismar TA, Riabowol K. ING3 protein expression profiling in normal human tissues suggest its role in cellular growth and self-renewal. Eur J Cell Biol 2015; 94:214-22. [PMID: 25819753 DOI: 10.1016/j.ejcb.2015.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 03/03/2015] [Accepted: 03/03/2015] [Indexed: 12/17/2022] Open
Abstract
Members of the INhibitor of Growth (ING) family of proteins act as readers of the epigenetic code through specific recognition of the trimethylated form of lysine 4 of histone H3 (H3K4Me3) by their plant homeodomains. The founding member of the family, ING1, was initially identified as a tumor suppressor with altered regulation in a variety of cancer types. While alterations in ING1 and ING4 levels have been reported in a variety of cancer types, little is known regarding ING3 protein levels in normal or transformed cells due to a lack of reliable immunological tools. In this study we present the characterization of a new monoclonal antibody we have developed against ING3 that specifically recognizes human and mouse ING3. The antibody works in western blots, immunofluorescence, immunoprecipitation and immunohistochemistry. Using this antibody we show that ING3 is most highly expressed in small intestine, bone marrow and epidermis, tissues in which cells undergo rapid proliferation and renewal. Consistent with this observation, we show that ING3 is expressed at significantly higher levels in proliferating versus quiescent epithelial cells. These data suggest that ING3 levels may serve as a surrogate for growth rate, and suggest possible roles for ING3 in growth and self renewal and related diseases such as cancer.
Collapse
Affiliation(s)
- Arash Nabbi
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Oncology, Southern Alberta Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Amal Almami
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Oncology, Southern Alberta Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Satbir Thakur
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Oncology, Southern Alberta Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Keiko Suzuki
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Oncology, Southern Alberta Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Donna Boland
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Oncology, Southern Alberta Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Tarek A Bismar
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Oncology, Southern Alberta Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Pathology & Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Karl Riabowol
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Oncology, Southern Alberta Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
245
|
Garritano S, Romanel A, Ciribilli Y, Bisio A, Gavoci A, Inga A, Demichelis F. In-silico identification and functional validation of allele-dependent AR enhancers. Oncotarget 2015; 6:4816-28. [PMID: 25693204 PMCID: PMC4467117 DOI: 10.18632/oncotarget.3019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 12/30/2014] [Indexed: 12/13/2022] Open
Abstract
Androgen Receptor (AR) and Estrogen Receptors (ERs) are key nuclear receptors that can cooperate in orchestrating gene expression programs in multiple tissues and diseases, targeting binding elements in promoters and distant enhancers. We report the unbiased identification of enhancer elements bound by AR and ER-α whose activity can be allele-specific depending on the status of nearby Single Nucleotide Polymorphisms (SNP). ENCODE data were computationally mined to nominate genomic loci with: (i) chromatin signature of enhancer activity from activation histone marks, (ii) binding evidence by AR and ER-α, (iii) presence of a SNP. Forty-one loci were identified and two, on 1q21.3 and 13q34, selected for characterization by gene reporter, Chromatin immunoprecipitation (ChIP) and RT-qPCR assays in breast (MCF7) and prostate (PC-3) cancer-derived cell lines. We observed allele-specific enhancer activity, responsiveness to ligand-bound AR, and potentially influence on the transcription of closely located genes (RAB20, ING1, ARHGEF7, ADAM15). The 1q21.3 variant, rs2242193, showed impact on AR binding in MCF7 cells that are heterozygous for the SNP. Our unbiased genome-wide search proved to be an efficient methodology to discover new functional polymorphic regulatory regions (PRR) potentially acting as risk modifiers in hormone-driven cancers and overall nominated SNPs in PRR across 136 transcription factors.
Collapse
MESH Headings
- Alleles
- Blotting, Western
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Chromatin Immunoprecipitation
- Computer Simulation
- Enhancer Elements, Genetic/genetics
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Genome, Human
- Humans
- Male
- Polymorphism, Single Nucleotide/genetics
- Promoter Regions, Genetic/genetics
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Sonia Garritano
- Laboratory of Computational Oncology, CIBIO, Centre for Integrative Biology, University of Trento, Italy
| | - Alessandro Romanel
- Laboratory of Computational Oncology, CIBIO, Centre for Integrative Biology, University of Trento, Italy
| | - Yari Ciribilli
- Laboratory of Transcriptional Networks, CIBIO, Centre for Integrative Biology, University of Trento, Italy
| | - Alessandra Bisio
- Laboratory of Transcriptional Networks, CIBIO, Centre for Integrative Biology, University of Trento, Italy
| | - Antoneta Gavoci
- Laboratory of Computational Oncology, CIBIO, Centre for Integrative Biology, University of Trento, Italy
| | - Alberto Inga
- Laboratory of Transcriptional Networks, CIBIO, Centre for Integrative Biology, University of Trento, Italy
| | - Francesca Demichelis
- Laboratory of Computational Oncology, CIBIO, Centre for Integrative Biology, University of Trento, Italy
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, NY, USA
- Institute for Precision Medicine, Weill Medical College of Cornell University and New York Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
246
|
The lysine acetyltransferase activator Brpf1 governs dentate gyrus development through neural stem cells and progenitors. PLoS Genet 2015; 11:e1005034. [PMID: 25757017 PMCID: PMC4355587 DOI: 10.1371/journal.pgen.1005034] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 01/28/2015] [Indexed: 12/18/2022] Open
Abstract
Lysine acetylation has recently emerged as an important post-translational modification in diverse organisms, but relatively little is known about its roles in mammalian development and stem cells. Bromodomain- and PHD finger-containing protein 1 (BRPF1) is a multidomain histone binder and a master activator of three lysine acetyltransferases, MOZ, MORF and HBO1, which are also known as KAT6A, KAT6B and KAT7, respectively. While the MOZ and MORF genes are rearranged in leukemia, the MORF gene is also mutated in prostate and other cancers and in four genetic disorders with intellectual disability. Here we show that forebrain-specific inactivation of the mouse Brpf1 gene causes hypoplasia in the dentate gyrus, including underdevelopment of the suprapyramidal blade and complete loss of the infrapyramidal blade. We trace the developmental origin to compromised Sox2+ neural stem cells and Tbr2+ intermediate neuronal progenitors. We further demonstrate that Brpf1 loss deregulates neuronal migration, cell cycle progression and transcriptional control, thereby causing abnormal morphogenesis of the hippocampus. These results link histone binding and acetylation control to hippocampus development and identify an important epigenetic regulator for patterning the dentate gyrus, a brain structure critical for learning, memory and adult neurogenesis. Lysine acetylation refers to addition of the acetyl group to lysine residues after protein synthesis. Little is known about how this modification plays a role in the brain and neural stem cells. It is catalyzed by a group of enzymes known as lysine acetyltransferases. A novel epigenetic regulator called BRPF1 acts as a master activator of three different lysine acetyltransferases and also contains multiple structural domains for histone binding. In this study, we show that forebrain-specific inactivation of the mouse Brpf1 gene causes abnormal development of the dentate gyrus, a key component of the hippocampus. We trace the developmental origin to compromised neural stem cells and progenitors, and demonstrate that Brpf1 loss deregulates neuronal migration and cell cycle progression during development of the dentate gyrus. This is the first report on an epigenetic regulator whose loss has such a profound impact on the hippocampus, especially the dentate gyrus, a brain structure critical for learning, memory and adult neurogenesis.
Collapse
|
247
|
Abstract
ING2 (inhibitor of growth protein-2) is a member of the ING-gene family and participates in diverse cellular processes involving tumor suppression, DNA repair, cell cycle regulation, and cellular senescence. As a subunit of the Sin3 histone deacetylase complex co-repressor complex, ING2 binds to H3K4me3 to regulate chromatin modification and gene expression. Additionally, ING2 recruits histone methyltransferase (HMT) activity for gene repression, which is independent of the HDAC class I or II pathway. However, the physiological function of ING2 in mouse preimplantation embryo development has not yet been characterized previously. The expression, localization and function of ING2 during preimplantation development were investigated in this study. We showed increasing expression of ING2 within the nucleus from the 4-cell embryo stage onwards; and that down-regulation of ING2 expression by endoribonuclease-prepared small interfering RNA (esiRNA) microinjection results in developmental arrest during the morula to blastocyst transition. Embryonic cells microinjected with ING2-specific esiRNA exhibited decreased blastulation rate compared to the negative control. Further investigation of the underlying mechanism indicated that down-regulation of ING2 significantly increased expression of p21, whilst decreasing expression of HDAC1. These results suggest that ING2 may play a crucial role in the process of preimplantation embryo development through chromatin regulation.
Collapse
|
248
|
Hu Q, Fu J, Luo B, Huang M, Guo W, Lin Y, Xie X, Xiao S. OY-TES-1 may regulate the malignant behavior of liver cancer via NANOG, CD9, CCND2 and CDCA3: a bioinformatic analysis combine with RNAi and oligonucleotide microarray. Oncol Rep 2015; 33:1965-75. [PMID: 25673160 DOI: 10.3892/or.2015.3792] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/26/2015] [Indexed: 01/30/2023] Open
Abstract
Given its tumor-specific expression, including liver cancer, OY-TES-1 is a potential molecular marker for the diagnosis and immunotherapy of liver cancers. However, investigations of the mechanisms and the role of OY-TES-1 in liver cancer are rare. In the present study, based on a comprehensive bioinformatic analysis combined with RNA interference (RNAi) and oligonucleotide microarray, we report for the first time that downregulation of OY-TES-1 resulted in significant changes in expression of NANOG, CD9, CCND2 and CDCA3 in the liver cancer cell line BEL-7404. NANOG, CD9, CCND2 and CDCA3 may be involved in cell proliferation, migration, invasion and apoptosis, yet also may be functionally related to each other and OY-TES-1. Among these molecules, we identified that NANOG, containing a Kazal-2 binding motif and homeobox, may be the most likely candidate protein interacting with OY-TES-1 in liver cancer. Thus, the present study may provide important information for further investigation of the roles of OY-TES-1 in liver cancer.
Collapse
Affiliation(s)
- Qiping Hu
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jun Fu
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Bin Luo
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Miao Huang
- Department of Radiology, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Wenwen Guo
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yongda Lin
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiaoxun Xie
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Shaowen Xiao
- Department of Neurosurgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
249
|
Ma Y, Kanakousaki K, Buttitta L. How the cell cycle impacts chromatin architecture and influences cell fate. Front Genet 2015; 6:19. [PMID: 25691891 PMCID: PMC4315090 DOI: 10.3389/fgene.2015.00019] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/14/2015] [Indexed: 01/17/2023] Open
Abstract
Since the earliest observations of cells undergoing mitosis, it has been clear that there is an intimate relationship between the cell cycle and nuclear chromatin architecture. The nuclear envelope and chromatin undergo robust assembly and disassembly during the cell cycle, and transcriptional and post-transcriptional regulation of histone biogenesis and chromatin modification is controlled in a cell cycle-dependent manner. Chromatin binding proteins and chromatin modifications in turn influence the expression of critical cell cycle regulators, the accessibility of origins for DNA replication, DNA repair, and cell fate. In this review we aim to provide an integrated discussion of how the cell cycle machinery impacts nuclear architecture and vice-versa. We highlight recent advances in understanding cell cycle-dependent histone biogenesis and histone modification deposition, how cell cycle regulators control histone modifier activities, the contribution of chromatin modifications to origin firing for DNA replication, and newly identified roles for nucleoporins in regulating cell cycle gene expression, gene expression memory and differentiation. We close with a discussion of how cell cycle status may impact chromatin to influence cell fate decisions, under normal contexts of differentiation as well as in instances of cell fate reprogramming.
Collapse
Affiliation(s)
- Yiqin Ma
- Department of Molecular, Cellular and Developmental Biology, University of Michigan , Ann Arbor, MI, USA
| | - Kiriaki Kanakousaki
- Department of Molecular, Cellular and Developmental Biology, University of Michigan , Ann Arbor, MI, USA
| | - Laura Buttitta
- Department of Molecular, Cellular and Developmental Biology, University of Michigan , Ann Arbor, MI, USA
| |
Collapse
|
250
|
MOZ regulates B-cell progenitors and, consequently, Moz haploinsufficiency dramatically retards MYC-induced lymphoma development. Blood 2015; 125:1910-21. [PMID: 25605372 DOI: 10.1182/blood-2014-08-594655] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The histone acetyltransferase MOZ (MYST3, KAT6A) is the target of recurrent chromosomal translocations fusing the MOZ gene to CBP, p300, NCOA3, or TIF2 in particularly aggressive cases of acute myeloid leukemia. In this study, we report the role of wild-type MOZ in regulating B-cell progenitor proliferation and hematopoietic malignancy. In the Eμ-Myc model of aggressive pre-B/B-cell lymphoma, the loss of just one allele of Moz increased the median survival of mice by 3.9-fold. MOZ was required to maintain the proliferative capacity of B-cell progenitors, even in the presence of c-MYC overexpression, by directly maintaining the transcriptional activity of genes required for normal B-cell development. Hence, B-cell progenitor numbers were significantly reduced in Moz haploinsufficient animals. Interestingly, we find a significant overlap in genes regulated by MOZ, mixed lineage leukemia 1, and mixed lineage leukemia 1 cofactor menin. This includes Meis1, a TALE class homeobox transcription factor required for B-cell development, characteristically upregulated as a result of MLL1 translocations in leukemia. We demonstrate that MOZ localizes to the Meis1 locus in pre-B-cells and maintains Meis1 expression. Our results suggest that even partial inhibition of MOZ may reduce the proliferative capacity of MEIS1, and HOX-driven lymphoma and leukemia cells.
Collapse
|