201
|
Chase CR. The Geometry of Emotions: Using Chakra Acupuncture and 5-Phase Theory to Describe Personality Archetypes for Clinical Use. Med Acupunct 2018; 30:167-178. [PMID: 30147818 DOI: 10.1089/acu.2018.1288] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: The 5-Phase theory of Traditional Chinese Medicine has been an integral part of medical acupuncture for 2000 years. The research of John R. Cross PhD, PhDAc, has resulted in a further evolution of the 5-Phase theory to include the Ayurvedic chakra energy centers. By using chakras, a clinician can appreciate the integration of human organ systems, the neuroendocrine system, and personality attributes (both positive and negative) associated with each chakra. Objective: To create personality archetypes from chakras that have practical clinical value. Design: By assigning chakras to the 5-Phase elements on a pentagon per Dr. Cross, it was possible to connect a series of negative or positive emotions, from one to another, using the familiar Ko cycles and Shen cycles, to form theoretical personality archetypes and then to demonstrate archetype usefulness in a sample clinical case. The patient was being treated with Japanese acupuncture. The main outcome sought was to determine the personality types according to the 5-Phase theory with chakra energy centers included and to demonstrate the application of this system in the clinical case. Results: Fourteen personality archetypes-seven composed of positive emotions and seven composed of negative emotions-were identified. Easy-to-remember names and familiar patterns of emotion that are mapped to the nodes of a pentagon (adapted to chakra acupuncture) were produced. The clinical case showed that the patient's work life conflicts resulted in negative archetype emotional patterns (anger, scarcity, lack of self-esteem) consistent with the presentation of irritable bowel syndrome, insomnia, liver illness, and osteoarthritis. Conclusions: Personality archetypes have clinical value for understanding the emotions associated with illness.
Collapse
Affiliation(s)
- Christopher R Chase
- Department of Anesthesiology, University of Vermont Medical Center and Larner College of Medicine, Burlington, VT
| |
Collapse
|
202
|
Ketamine and pharmacological imaging: use of functional magnetic resonance imaging to evaluate mechanisms of action. Behav Pharmacol 2018; 28:610-622. [PMID: 29049083 DOI: 10.1097/fbp.0000000000000354] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Ketamine has been used as a pharmacological model for schizophrenia as subanesthetic infusions have been shown to produce temporary schizophrenia-like symptoms in healthy humans. More recently, ketamine has emerged as a potential treatment for multiple psychiatric disorders, including treatment-resistant depression and suicidal ideation. However, the mechanisms underlying both the psychotomimetic and the therapeutic effects of ketamine remain poorly understood. This review provides an overview of what is known of the neural mechanisms underlying the effects of ketamine and details what functional MRI studies have yielded at a systems level focused on brain circuitry. Multiple analytic approaches show that ketamine exerts robust and consistent effects at the whole-brain level. These effects are highly conserved across human and nonhuman primates, validating the use of nonhuman primate models for further investigations with ketamine. Regional analysis of brain functional connectivity suggests that the therapeutic potential of ketamine may be derived from a strengthening of executive control circuitry, making it an intriguing candidate for the treatment of drug abuse. There are still important questions about the mechanism of action and the therapeutic potential of ketamine that can be addressed using appropriate functional neuroimaging techniques.
Collapse
|
203
|
Girotti M, Adler SM, Bulin SE, Fucich EA, Paredes D, Morilak DA. Prefrontal cortex executive processes affected by stress in health and disease. Prog Neuropsychopharmacol Biol Psychiatry 2018; 85:161-179. [PMID: 28690203 PMCID: PMC5756532 DOI: 10.1016/j.pnpbp.2017.07.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/01/2017] [Accepted: 07/05/2017] [Indexed: 11/23/2022]
Abstract
Prefrontal cortical executive functions comprise a number of cognitive capabilities necessary for goal directed behavior and adaptation to a changing environment. Executive dysfunction that leads to maladaptive behavior and is a symptom of psychiatric pathology can be instigated or exacerbated by stress. In this review we survey research addressing the impact of stress on executive function, with specific focus on working memory, attention, response inhibition, and cognitive flexibility. We then consider the neurochemical pathways underlying these cognitive capabilities and, where known, how stress alters them. Finally, we review work exploring potential pharmacological and non-pharmacological approaches that can ameliorate deficits in executive function. Both preclinical and clinical literature indicates that chronic stress negatively affects executive function. Although some of the circuitry and neurochemical processes underlying executive function have been characterized, a great deal is still unknown regarding how stress affects these processes. Additional work focusing on this question is needed in order to make progress on developing interventions that ameliorate executive dysfunction.
Collapse
Affiliation(s)
- Milena Girotti
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA.
| | - Samantha M Adler
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - Sarah E Bulin
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - Elizabeth A Fucich
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - Denisse Paredes
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - David A Morilak
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| |
Collapse
|
204
|
Kawaguchi Y. Pyramidal Cell Subtypes and Their Synaptic Connections in Layer 5 of Rat Frontal Cortex. Cereb Cortex 2018; 27:5755-5771. [PMID: 29028949 DOI: 10.1093/cercor/bhx252] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/06/2017] [Indexed: 12/31/2022] Open
Abstract
The frontal cortical areas make a coordinated response that generates appropriate behavior commands, using individual local circuits with corticostriatal and corticocortical connections in longer time scales than sensory areas. In secondary motor cortex (M2), situated between the prefrontal and primary motor areas, major subtypes of layer 5 corticostriatal cells are crossed-corticostriatal (CCS) cells innervating both sides of striatum, and corticopontine (CPn) cells projecting to the ipsilateral striatum and pontine nuclei. CCS cells innervate CPn cells unidirectionally: the former are therefore hierarchically higher than the latter among L5 corticostriatal cells. CCS cells project directly to both frontal and nonfrontal areas. On the other hand, CPn cells innervate the thalamus and layer 1a of frontal areas, where thalamic fibers relaying basal ganglia outputs are distributed. Thus, CCS cells can make activities of frontal areas in concert with those of nonfrontal area using corticocortical loops, whereas CPn cells are more involved in closed corticostriatal loops than CCS cells. Since reciprocal connections between CPn cells with facilitatory synapses may be related to persistent activity, CPn cells play a key role of longer time constant processes in corticostriatal as well as in corticocortical loops between the frontal areas.
Collapse
Affiliation(s)
- Yasuo Kawaguchi
- Division of Cerebral Circuitry, National Institute for Physiological Sciences, Okazaki 444-8787, Japan.,Department of Physiological Sciences, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Japan
| |
Collapse
|
205
|
Age-Related Declines in Prefrontal Cortical Expression of Metabotropic Glutamate Receptors that Support Working Memory. eNeuro 2018; 5:eN-NWR-0164-18. [PMID: 29971246 PMCID: PMC6026020 DOI: 10.1523/eneuro.0164-18.2018] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/07/2018] [Accepted: 06/07/2018] [Indexed: 11/21/2022] Open
Abstract
Glutamate signaling is essential for the persistent neural activity in prefrontal cortex (PFC) that enables working memory. Metabotropic glutamate receptors (mGluRs) are a diverse class of proteins that modulate excitatory neurotransmission via both presynaptic regulation of extracellular glutamate levels and postsynaptic modulation of ion channels on dendritic spines. This receptor class is of significant therapeutic interest for treatment of cognitive disorders associated with glutamate dysregulation. Working memory impairment and cortical hypoexcitability are both associated with advanced aging. Whether aging modifies PFC mGluR expression, and the extent to which any such alterations are regionally or subtype specific, however, is unknown. Moreover, it is unclear whether specific mGluRs in PFC are critical for working memory, and thus, whether altered mGluR expression in aging or disease is sufficient to play a causative role in working memory decline. Experiments in the current study first evaluated the effects of age on medial PFC (mPFC) mGluR expression using biochemical and molecular approaches in rats. Of the eight mGluRs examined, only mGluR5, mGluR3, and mGluR4 were significantly reduced in the aged PFC. The reductions in mGluR3 and mGluR5 (but not mGluR4) were observed in both mRNA and protein and were selectively localized to the prelimbic (PrL), but not infralimbic (IL), subregion of mPFC. Finally, pharmacological blockade of mGluR5 or mGluR2/3 using selective antagonists directed to PrL significantly impaired working memory without influencing non-mnemonic aspects of task performance. Together, these data implicate attenuated expression of PFC mGluR5 and mGluR3 in the impaired working memory associated with advanced ages.
Collapse
|
206
|
Ventura-Bort C, Wirkner J, Genheimer H, Wendt J, Hamm AO, Weymar M. Effects of Transcutaneous Vagus Nerve Stimulation (tVNS) on the P300 and Alpha-Amylase Level: A Pilot Study. Front Hum Neurosci 2018; 12:202. [PMID: 29977196 PMCID: PMC6021745 DOI: 10.3389/fnhum.2018.00202] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 04/30/2018] [Indexed: 11/30/2022] Open
Abstract
Recent research suggests that the P3b may be closely related to the activation of the locus coeruleus-norepinephrine (LC-NE) system. To further study the potential association, we applied a novel technique, the non-invasive transcutaneous vagus nerve stimulation (tVNS), which is speculated to increase noradrenaline levels. Using a within-subject cross-over design, 20 healthy participants received continuous tVNS and sham stimulation on two consecutive days (stimulation counterbalanced across participants) while performing a visual oddball task. During stimulation, oval non-targets (standard), normal-head (easy) and rotated-head (difficult) targets, as well as novel stimuli (scenes) were presented. As an indirect marker of noradrenergic activation we also collected salivary alpha-amylase (sAA) before and after stimulation. Results showed larger P3b amplitudes for target, relative to standard stimuli, irrespective of stimulation condition. Exploratory post hoc analyses, however, revealed that, in comparison to standard stimuli, easy (but not difficult) targets produced larger P3b (but not P3a) amplitudes during active tVNS, compared to sham stimulation. For sAA levels, although main analyses did not show differential effects of stimulation, direct testing revealed that tVNS (but not sham stimulation) increased sAA levels after stimulation. Additionally, larger differences between tVNS and sham stimulation in P3b magnitudes for easy targets were associated with larger increase in sAA levels after tVNS, but not after sham stimulation. Despite preliminary evidence for a modulatory influence of tVNS on the P3b, which may be partly mediated by activation of the noradrenergic system, additional research in this field is clearly warranted. Future studies need to clarify whether tVNS also facilitates other processes, such as learning and memory, and whether tVNS can be used as therapeutic tool.
Collapse
Affiliation(s)
| | - Janine Wirkner
- Department of Psychology, University of Greifswald, Greifswald, Germany
| | - Hannah Genheimer
- Department of Psychology, University of Würzburg, Würzburg, Germany
| | - Julia Wendt
- Department of Psychology, University of Greifswald, Greifswald, Germany
| | - Alfons O. Hamm
- Department of Psychology, University of Greifswald, Greifswald, Germany
| | - Mathias Weymar
- Department of Psychology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
207
|
Guedj C, Monfardini E, Reynaud AJ, Farnè A, Meunier M, Hadj-Bouziane F. Boosting Norepinephrine Transmission Triggers Flexible Reconfiguration of Brain Networks at Rest. Cereb Cortex 2018; 27:4691-4700. [PMID: 27600848 DOI: 10.1093/cercor/bhw262] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/01/2016] [Indexed: 12/19/2022] Open
Abstract
The locus coeruleus-norepinephrine (LC-NE) system is thought to act as a reset signal allowing brain network reorganization in response to salient information in the environment. However, no direct evidence of NE-dependent whole-brain reorganization has ever been described. We used resting-state functional magnetic resonance imaging in monkeys to investigate the impact of NE-reuptake inhibition on whole-brain connectivity patterns. We found that boosting NE transmission changes functional connectivity between and within resting-state networks. It modulated the functional connectivity pattern of a brainstem network including the LC region and interactions between associative and sensory-motor networks as well as within sensory-motor networks. Among the observed changes, those involving the fronto-parietal attention network exhibited a unique pattern of uncoupling with other sensory-motor networks and correlation switching from negative to positive with the brainstem network that included the LC nucleus. These findings provide the first empirical evidence of NE-dependent large-scale brain network reorganization and further demonstrate that the fronto-parietal attention network represents a central feature within this reorganization.
Collapse
Affiliation(s)
- Carole Guedj
- ImpAct Team, Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292, Lyon F-69000, France.,University UCBL Lyon 1, F-69000, France
| | - Elisabetta Monfardini
- ImpAct Team, Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292, Lyon F-69000, France.,University UCBL Lyon 1, F-69000, France.,Institut de Médecine Environnementale, Paris F-75007, France
| | - Amélie J Reynaud
- ImpAct Team, Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292, Lyon F-69000, France.,University UCBL Lyon 1, F-69000, France
| | - Alessandro Farnè
- ImpAct Team, Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292, Lyon F-69000, France.,University UCBL Lyon 1, F-69000, France
| | - Martine Meunier
- ImpAct Team, Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292, Lyon F-69000, France.,University UCBL Lyon 1, F-69000, France
| | - Fadila Hadj-Bouziane
- ImpAct Team, Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292, Lyon F-69000, France.,University UCBL Lyon 1, F-69000, France
| |
Collapse
|
208
|
Vijayraghavan S, Major AJ, Everling S. Muscarinic M1 Receptor Overstimulation Disrupts Working Memory Activity for Rules in Primate Prefrontal Cortex. Neuron 2018; 98:1256-1268.e4. [PMID: 29887340 DOI: 10.1016/j.neuron.2018.05.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 04/10/2018] [Accepted: 05/17/2018] [Indexed: 10/14/2022]
Abstract
Acetylcholine release in the prefrontal cortex (PFC), acting through muscarinic receptors, has an essential role in regulating flexible behavior and working memory (WM). General muscarinic receptor blockade disrupts PFC WM representations, while selective stimulation of muscarinic receptor subtypes is of great interest for the treatment of cognitive dysfunction in Alzheimer's disease. Here, we tested selective stimulation and blockade of muscarinic M1 receptors (M1Rs) in macaque PFC, during performance of a cognitive control task in which rules maintained in WM specified saccadic responses. We hypothesized that M1R blockade and stimulation would disrupt and enhance rule representation in WM, respectively. Unexpectedly, M1R blockade did not consistently affect PFC neuronal rule selectivity. Moreover, M1R stimulation suppressed PFC activity, and at higher doses, degraded rule representations. Our results suggest that, in primates, the deleterious effects of general muscarinic blockade on PFC WM activity are not mediated by M1Rs, while their overstimulation deteriorates PFC rule maintenance.
Collapse
Affiliation(s)
- Susheel Vijayraghavan
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON N6A 5B7, Canada; Robarts Research Institute, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Alex James Major
- Graduate Program in Neuroscience, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Stefan Everling
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON N6A 5B7, Canada; Robarts Research Institute, The University of Western Ontario, London, ON N6A 5B7, Canada; Graduate Program in Neuroscience, The University of Western Ontario, London, ON N6A 5B7, Canada.
| |
Collapse
|
209
|
Choi SJ, Mukai J, Kvajo M, Xu B, Diamantopoulou A, Pitychoutis PM, Gou B, Gogos JA, Zhang H. A Schizophrenia-Related Deletion Leads to KCNQ2-Dependent Abnormal Dopaminergic Modulation of Prefrontal Cortical Interneuron Activity. Cereb Cortex 2018; 28:2175-2191. [PMID: 28525574 PMCID: PMC6018968 DOI: 10.1093/cercor/bhx123] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 03/25/2017] [Indexed: 02/06/2023] Open
Abstract
Altered prefrontal cortex function is implicated in schizophrenia (SCZ) pathophysiology and could arise from imbalance between excitation and inhibition (E/I) in local circuits. It remains unclear whether and how such imbalances relate to genetic etiologies. We used a mouse model of the SCZ-predisposing 22q11.2 deletion (Df(16)A+/- mice) to evaluate how this genetic lesion affects the excitability of layer V prefrontal pyramidal neurons and its modulation by dopamine (DA). Df(16)A+/- mice have normal balance between E/I at baseline but are unable to maintain it upon dopaminergic challenge. Specifically, in wild-type mice, D1 receptor (D1R) activation enhances excitability of layer V prefrontal pyramidal neurons and D2 receptor (D2R) activation reduces it. Whereas the excitatory effect upon D1R activation is enhanced in Df(16)A+/- mice, the inhibitory effect upon D2R activation is reduced. The latter is partly due to the inability of mutant mice to activate GABAergic parvalbumin (PV)+ interneurons through D2Rs. We further demonstrate that reduced KCNQ2 channel function in PV+ interneurons in Df(16)A+/- mice renders them less capable of inhibiting pyramidal neurons upon D2 modulation. Thus, DA modulation of PV+ interneurons and control of E/I are altered in Df(16)A+/- mice with a higher excitation and lower inhibition during dopaminergic modulation.
Collapse
Affiliation(s)
- Se Joon Choi
- Department of Neurology, Columbia University, New York, NY10032, USA
| | - Jun Mukai
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Mirna Kvajo
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Bin Xu
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Anastasia Diamantopoulou
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Pothitos M Pitychoutis
- Department of Biology, Center for Tissue Regeneration and Engineering (TREND), University of Dayton, 300 College Park, Dayton, OH 45469, USA
| | - Bin Gou
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Joseph A Gogos
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
- Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Hui Zhang
- Department of Neurology, Columbia University, New York, NY10032, USA
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
210
|
Prefronto-cortical dopamine D1 receptor sensitivity can critically influence working memory maintenance during delayed response tasks. PLoS One 2018; 13:e0198136. [PMID: 29813109 PMCID: PMC5973564 DOI: 10.1371/journal.pone.0198136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/14/2018] [Indexed: 01/15/2023] Open
Abstract
The dopamine (DA) hypothesis of cognitive deficits suggests that too low or too high extracellular DA concentration in the prefrontal cortex (PFC) can severely impair the working memory (WM) maintenance during delay period. Thus, there exists only an optimal range of DA where the sustained-firing activity, the neural correlate of WM maintenance, in the cortex possesses optimal firing frequency as well as robustness against noisy distractions. Empirical evidences demonstrate changes even in the D1 receptor (D1R)-sensitivity to extracellular DA, collectively manifested through D1R density and DA-binding affinity, in the PFC under neuropsychiatric conditions such as ageing and schizophrenia. However, the impact of alterations in the cortical D1R-sensitivity on WM maintenance has yet remained poorly addressed. Using a quantitative neural mass model of the prefronto-mesoprefrontal system, the present study reveals that higher D1R-sensitivity may not only effectuate shrunk optimal DA range but also shift of the range to lower concentrations. Moreover, higher sensitivity may significantly reduce the WM-robustness even within the optimal DA range and exacerbates the decline at abnormal DA levels. These findings project important clinical implications, such as dosage precision and variability of DA-correcting drugs across patients, and failure in acquiring healthy WM maintenance even under drug-controlled normal cortical DA levels.
Collapse
|
211
|
Paspalas CD, Carlyle BC, Leslie S, Preuss TM, Crimins JL, Huttner AJ, van Dyck CH, Rosene DL, Nairn AC, Arnsten AFT. The aged rhesus macaque manifests Braak stage III/IV Alzheimer's-like pathology. Alzheimers Dement 2018; 14:680-691. [PMID: 29241829 PMCID: PMC6178089 DOI: 10.1016/j.jalz.2017.11.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/18/2017] [Accepted: 11/07/2017] [Indexed: 01/10/2023]
Abstract
INTRODUCTION An animal model of late-onset Alzheimer's disease is needed to research what causes degeneration in the absence of dominant genetic insults and why the association cortex is particularly vulnerable to degeneration. METHODS We studied the progression of tau and amyloid cortical pathology in the aging rhesus macaque using immunoelectron microscopy and biochemical assays. RESULTS Aging macaques exhibited the same qualitative pattern and sequence of tau and amyloid cortical pathology as humans, reaching Braak stage III/IV. Pathology began in the young-adult entorhinal cortex with protein kinase A-phosphorylation of tau, progressing to fibrillation with paired helical filaments and mature tangles in oldest animals. Tau pathology in the dorsolateral prefrontal cortex paralleled but lagged behind the entorhinal cortex, not afflicting the primary visual cortex. DISCUSSION The aging rhesus macaque provides the long-sought animal model for exploring the etiology of late-onset Alzheimer's disease and for testing preventive strategies.
Collapse
Affiliation(s)
| | - Becky C Carlyle
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Shannon Leslie
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Todd M Preuss
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Center, Emory University, Atlanta, GA, USA
| | - Johanna L Crimins
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Anita J Huttner
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Christopher H van Dyck
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA; Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Douglas L Rosene
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Angus C Nairn
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Amy F T Arnsten
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
212
|
Cyproheptadine Regulates Pyramidal Neuron Excitability in Mouse Medial Prefrontal Cortex. Neurosci Bull 2018; 34:759-768. [PMID: 29671217 DOI: 10.1007/s12264-018-0225-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/12/2018] [Indexed: 10/17/2022] Open
Abstract
Cyproheptadine (CPH), a first-generation antihistamine, enhances the delayed rectifier outward K+ current (IK) in mouse cortical neurons through a sigma-1 receptor-mediated protein kinase A pathway. In this study, we aimed to determine the effects of CPH on neuronal excitability in current-clamped pyramidal neurons in mouse medial prefrontal cortex slices. CPH (10 µmol/L) significantly reduced the current density required to generate action potentials (APs) and increased the instantaneous frequency evoked by a depolarizing current. CPH also depolarized the resting membrane potential (RMP), decreased the delay time to elicit an AP, and reduced the spike threshold potential. This effect of CPH was mimicked by a sigma-1 receptor agonist and eliminated by an antagonist. Application of tetraethylammonium (TEA) to block IK channels hyperpolarized the RMP and reduced the instantaneous frequency of APs. TEA eliminated the effects of CPH on AP frequency and delay time, but had no effect on spike threshold or RMP. The current-voltage relationship showed that CPH increased the membrane depolarization in response to positive current pulses and hyperpolarization in response to negative current pulses, suggesting that other types of membrane ion channels might also be affected by CPH. These results suggest that CPH increases the excitability of medial prefrontal cortex neurons by regulating TEA-sensitive IK channels as well as other TEA-insensitive K+ channels, probably ID and inward-rectifier Kir channels. This effect of CPH may explain its apparent clinical efficacy as an antidepressant and antipsychotic.
Collapse
|
213
|
McDonough PM, Prigozhina NL, Basa RCB, Price JH. Assay of Calcium Transients and Synapses in Rat Hippocampal Neurons by Kinetic Image Cytometry and High-Content Analysis: An In Vitro Model System for Postchemotherapy Cognitive Impairment. Assay Drug Dev Technol 2018; 15:220-236. [PMID: 28723268 DOI: 10.1089/adt.2017.797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Postchemotherapy cognitive impairment (PCCI) is commonly exhibited by cancer patients treated with a variety of chemotherapeutic agents, including the endocrine disruptor tamoxifen (TAM). The etiology of PCCI is poorly understood. Our goal was to develop high-throughput assay methods to test the effects of chemicals on neuronal function applicable to PCCI. Rat hippocampal neurons (RHNs) were plated in 96- or 384-well dishes and exposed to test compounds (forskolin [FSK], 17β-estradiol [ES]), TAM or fulvestrant [FUL], aka ICI 182,780) for 6-14 days. Kinetic Image Cytometry™ (KIC™) methods were developed to quantify spontaneously occurring intracellular calcium transients representing the activity of the neurons, and high-content analysis (HCA) methods were developed to quantify the expression, colocalization, and puncta formed by synaptic proteins (postsynaptic density protein-95 [PSD-95] and presynaptic protein Synapsin-1 [Syn-1]). As quantified by KIC, FSK increased the occurrence and synchronization of the calcium transients indicating stimulatory effects on RHN activity, whereas TAM had inhibitory effects. As quantified by HCA, FSK also increased PSD-95 puncta and PSD-95:Syn-1 colocalization, whereas ES increased the puncta of both PSD-95 and Syn-1 with little effect on colocalization. The estrogen receptor antagonist FUL also increased PSD-95 puncta. In contrast, TAM reduced Syn-1 and PSD-95:Syn-1 colocalization, consistent with its inhibitory effects on the calcium transients. Thus TAM reduced activity and synapse formation by the RHNs, which may relate to the ability of this agent to cause PCCI. The results illustrate that KIC and HCA can be used to quantify neurotoxic and neuroprotective effects of chemicals in RHNs to investigate mechanisms and potential therapeutics for PCCI.
Collapse
Affiliation(s)
| | | | | | - Jeffrey H Price
- 1 Vala Sciences Inc. , San Diego, California.,3 The Scintillon Institute , San Diego, California
| |
Collapse
|
214
|
Adams TG, Kelmendi B, Brake CA, Gruner P, Badour CL, Pittenger C. The role of stress in the pathogenesis and maintenance of obsessive-compulsive disorder. ACTA ACUST UNITED AC 2018. [PMID: 29527593 PMCID: PMC5841259 DOI: 10.1177/2470547018758043] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Individuals with obsessive-compulsive disorder often identify psychosocial stress
as a factor that exacerbates their symptoms, and many trace the onset of
symptoms to a stressful period of life or a discrete traumatic incident.
However, the pathophysiological relationship between stress and
obsessive-compulsive disorder remains poorly characterized: it is unclear
whether trauma or stress is an independent cause of obsessive-compulsive
disorder symptoms, a triggering factor that interacts with a preexisting
diathesis, or simply a nonspecific factor that can exacerbate
obsessive-compulsive disorder along with other aspects of psychiatric
symptomatology. Nonetheless, preclinical research has demonstrated that stress
has conspicuous effects on corticostriatal and limbic circuitry. Specifically,
stress can lead to neuronal atrophy in frontal cortices (particularly the medial
prefrontal cortex), the dorsomedial striatum (caudate), and the hippocampus.
Stress can also result in neuronal hypertrophy in the dorsolateral striatum
(putamen) and amygdala. These neurobiological effects mirror reported neural
abnormalities in obsessive-compulsive disorder and may contribute to an
imbalance between goal-directed and habitual behavior, an imbalance that is
implicated in the pathogenesis and expression of obsessive-compulsive disorder
symptomatology. The modulation of corticostriatal and limbic circuits by stress
and the resultant imbalance between habit and goal-directed learning and
behavior offers a framework for investigating how stress may exacerbate or
trigger obsessive-compulsive disorder symptomatology.
Collapse
Affiliation(s)
- T G Adams
- School of Medicine - Department of Psychiatry, Yale University.,Clinical Neuroscience Division of the VA National Center for PTSD
| | - B Kelmendi
- School of Medicine - Department of Psychiatry, Yale University.,Clinical Neuroscience Division of the VA National Center for PTSD
| | - C A Brake
- University of Kentucky, Department of Psychology
| | - P Gruner
- School of Medicine - Department of Psychiatry, Yale University
| | - C L Badour
- University of Kentucky, Department of Psychology
| | - C Pittenger
- School of Medicine - Department of Psychiatry, Yale University.,Clinical Neuroscience Division of the VA National Center for PTSD.,Child Study Center, Yale University.,Department of Psychology, Yale University
| |
Collapse
|
215
|
Jin LE, Wang M, Galvin VC, Lightbourne TC, Conn PJ, Arnsten AFT, Paspalas CD. mGluR2 versus mGluR3 Metabotropic Glutamate Receptors in Primate Dorsolateral Prefrontal Cortex: Postsynaptic mGluR3 Strengthen Working Memory Networks. Cereb Cortex 2018; 28:974-987. [PMID: 28108498 PMCID: PMC5974790 DOI: 10.1093/cercor/bhx005] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/30/2016] [Indexed: 01/06/2023] Open
Abstract
The newly evolved circuits in layer III of primate dorsolateral prefrontal cortex (dlPFC) generate the neural representations that subserve working memory. These circuits are weakened by increased cAMP-K+ channel signaling, and are a focus of pathology in schizophrenia, aging, and Alzheimer's disease. Cognitive deficits in these disorders are increasingly associated with insults to mGluR3 metabotropic glutamate receptors, while reductions in mGluR2 appear protective. This has been perplexing, as mGluR3 has been considered glial receptors, and mGluR2 and mGluR3 have been thought to have similar functions, reducing glutamate transmission. We have discovered that, in addition to their astrocytic expression, mGluR3 is concentrated postsynaptically in spine synapses of layer III dlPFC, positioned to strengthen connectivity by inhibiting postsynaptic cAMP-K+ channel actions. In contrast, mGluR2 is principally presynaptic as expected, with only a minor postsynaptic component. Functionally, increase in the endogenous mGluR3 agonist, N-acetylaspartylglutamate, markedly enhanced dlPFC Delay cell firing during a working memory task via inhibition of cAMP signaling, while the mGluR2 positive allosteric modulator, BINA, produced an inverted-U dose-response on dlPFC Delay cell firing and working memory performance. These data illuminate why insults to mGluR3 would erode cognitive abilities, and support mGluR3 as a novel therapeutic target for higher cognitive disorders.
Collapse
Affiliation(s)
- Lu E Jin
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Min Wang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Veronica C Galvin
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Taber C Lightbourne
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Peter Jeffrey Conn
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232-0697, USA
| | - Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | | |
Collapse
|
216
|
Konstantoudaki X, Chalkiadaki K, Vasileiou E, Kalemaki K, Karagogeos D, Sidiropoulou K. Prefrontal cortical-specific differences in behavior and synaptic plasticity between adolescent and adult mice. J Neurophysiol 2018; 119:822-833. [DOI: 10.1152/jn.00189.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Adolescence is a highly vulnerable period for the emergence of major neuropsychological disorders and is characterized by decreased cognitive control and increased risk-taking behavior and novelty-seeking. The prefrontal cortex (PFC) is involved in the cognitive control of impulsive and risky behavior. Although the PFC is known to reach maturation later than other cortical areas, little information is available regarding the functional changes from adolescence to adulthood in PFC, particularly compared with other primary cortical areas. This study aims to understand the development of PFC-mediated, compared with non-PFC-mediated, cognitive functions. Toward this aim, we performed cognitive behavioral tasks in adolescent and adult mice and subsequently investigated synaptic plasticity in two different cortical areas. Our results showed that adolescent mice exhibit impaired performance in PFC-dependent cognitive tasks compared with adult mice, whereas their performance in non-PFC-dependent tasks is similar to that of adults. Furthermore, adolescent mice exhibited decreased long-term potentiation (LTP) within upper-layer synapses of the PFC but not the barrel cortex. Blocking GABAA receptor function significantly augments LTP in both the adolescent and adult PFC. No change in intrinsic excitability of PFC pyramidal neurons was observed between adolescent and adult mice. Finally, increased expression of the NR2A subunit of the N-methyl-d-aspartate receptors is found only in the adult PFC, a change that could underlie the emergence of LTP. In conclusion, our results demonstrate physiological and behavioral changes during adolescence that are specific to the PFC and could underlie the reduced cognitive control in adolescents. NEW & NOTEWORTHY This study reports that adolescent mice exhibit impaired performance in cognitive functions dependent on the prefrontal cortex but not in cognitive functions dependent on other cortical regions. The current results propose reduced synaptic plasticity in the upper layers of the prefrontal cortex as a cellular correlate of this weakened cognitive function. This decreased synaptic plasticity is due to reduced N-methyl-d-aspartate receptor expression but not due to dampened intrinsic excitability or enhanced GABAergic signaling during adolescence.
Collapse
Affiliation(s)
| | | | | | - Katerina Kalemaki
- Division of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology – Hellas, Heraklion, Greece
| | - Domna Karagogeos
- Division of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology – Hellas, Heraklion, Greece
| | | |
Collapse
|
217
|
Riquelme D, Silva I, Philp AM, Huidobro-Toro JP, Cerda O, Trimmer JS, Leiva-Salcedo E. Subcellular Localization and Activity of TRPM4 in Medial Prefrontal Cortex Layer 2/3. Front Cell Neurosci 2018; 12:12. [PMID: 29440991 PMCID: PMC5797675 DOI: 10.3389/fncel.2018.00012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/08/2018] [Indexed: 11/18/2022] Open
Abstract
TRPM4 is a Ca2+-activated non-selective cationic channel that conducts monovalent cations. TRPM4 has been proposed to contribute to burst firing and sustained activity in several brain regions, however, the cellular and subcellular pattern of TRPM4 expression in medial prefrontal cortex (mPFC) during postnatal development has not been elucidated. Here, we use multiplex immunofluorescence labeling of brain sections to characterize the postnatal developmental expression of TRPM4 in the mouse mPFC. We also performed electrophysiological recordings to correlate the expression of TRPM4 immunoreactivity with the presence of TRPM4-like currents. We found that TRPM4 is expressed from the first postnatal day, with expression increasing up to postnatal day 35. Additionally, in perforated patch clamp experiments, we found that TRPM4-like currents were active at resting membrane potentials at all postnatal ages studied. Moreover, TRPM4 is expressed in both pyramidal neurons and interneurons. TRPM4 expression is localized in the soma and proximal dendrites, but not in the axon initial segment of pyramidal neurons. This subcellular localization is consistent with a reduction in the basal current only when we locally perfused 9-Phenanthrol in the soma, but not upon perfusion in the medial or distal dendrites. Our results show a specific localization of TRPM4 expression in neurons in the mPFC and that a 9-Phenanthrol sensitive current is active at resting membrane potential, suggesting specific functional roles in mPFC neurons during postnatal development and in adulthood.
Collapse
Affiliation(s)
- Denise Riquelme
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Ian Silva
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ashleigh M Philp
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, Davis, CA, United States
| | - Juan P Huidobro-Toro
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Centro para el Desarrollo de Nanociencias y Nanotecnología, Santiago, Chile
| | - Oscar Cerda
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - James S Trimmer
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, Davis, CA, United States.,Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis CA, United States
| | - Elias Leiva-Salcedo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Centro para el Desarrollo de Nanociencias y Nanotecnología, Santiago, Chile
| |
Collapse
|
218
|
Yu X, Franks NP, Wisden W. Sleep and Sedative States Induced by Targeting the Histamine and Noradrenergic Systems. Front Neural Circuits 2018; 12:4. [PMID: 29434539 PMCID: PMC5790777 DOI: 10.3389/fncir.2018.00004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/11/2018] [Indexed: 01/07/2023] Open
Abstract
Sedatives target just a handful of receptors and ion channels. But we have no satisfying explanation for how activating these receptors produces sedation. In particular, do sedatives act at restricted brain locations and circuitries or more widely? Two prominent sedative drugs in clinical use are zolpidem, a GABAA receptor positive allosteric modulator, and dexmedetomidine (DEX), a selective α2 adrenergic receptor agonist. By targeting hypothalamic neuromodulatory systems both drugs induce a sleep-like state, but in different ways: zolpidem primarily reduces the latency to NREM sleep, and is a controlled substance taken by many people to help them sleep; DEX produces prominent slow wave activity in the electroencephalogram (EEG) resembling stage 2 NREM sleep, but with complications of hypothermia and lowered blood pressure—it is used for long term sedation in hospital intensive care units—under DEX-induced sedation patients are arousable and responsive, and this drug reduces the risk of delirium. DEX, and another α2 adrenergic agonist xylazine, are also widely used in veterinary clinics to sedate animals. Here we review how these two different classes of sedatives, zolpidem and dexmedetomideine, can selectively interact with some nodal points of the circuitry that promote wakefulness allowing the transition to NREM sleep. Zolpidem enhances GABAergic transmission onto histamine neurons in the hypothalamic tuberomammillary nucleus (TMN) to hasten the transition to NREM sleep, and DEX interacts with neurons in the preoptic hypothalamic area that induce sleep and body cooling. This knowledge may aid the design of more precise acting sedatives, and at the same time, reveal more about the natural sleep-wake circuitry.
Collapse
Affiliation(s)
- Xiao Yu
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Nicholas P Franks
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Centre for Neurotechnology, Imperial College London, London, United Kingdom.,UK Dementia Research Institute, Imperial College London, London, United Kingdom
| | - William Wisden
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Centre for Neurotechnology, Imperial College London, London, United Kingdom.,UK Dementia Research Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
219
|
Dual contributions of noradrenaline to behavioural flexibility and motivation. Psychopharmacology (Berl) 2018; 235:2687-2702. [PMID: 29998349 PMCID: PMC6182595 DOI: 10.1007/s00213-018-4963-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/27/2018] [Indexed: 01/06/2023]
Abstract
INTRODUCTION While several theories have highlighted the importance of the noradrenergic system for behavioral flexibility, a number of recent studies have also shown a role for noradrenaline in motivation, particularly in effort processing. Here, we designed a novel sequential cost/benefit decision task to test the causal influence of noradrenaline on these two functions in rhesus monkeys. METHODS We manipulated noradrenaline using clonidine, an alpha-2 noradrenergic receptor agonist, which reduces central noradrenaline levels and examined how this manipulation influenced performance on the task. RESULTS Clonidine had two specific and distinct effects: first, it decreased choice variability, without affecting the cost/benefit trade-off; and second, it reduced force production, without modulating the willingness to work. CONCLUSIONS Together, these results support an overarching role for noradrenaline in facing challenging situations in two complementary ways: by modulating behavioral volatility, which would facilitate adaptation depending on the lability of the environment, and by modulating the mobilization of resources to face immediate challenges.
Collapse
|
220
|
Wu C, Zheng Y, Li J, She S, Peng H, Li L. Cortical Gray Matter Loss, Augmented Vulnerability to Speech-on-Speech Masking, and Delusion in People With Schizophrenia. Front Psychiatry 2018; 9:287. [PMID: 30022955 PMCID: PMC6040158 DOI: 10.3389/fpsyt.2018.00287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/12/2018] [Indexed: 11/13/2022] Open
Abstract
People with schizophrenia exhibit impairments in target-speech recognition (TSR) against multiple-talker-induced informational speech masking. Up to date, the underlying neural mechanisms and its relationships with psychotic symptoms remain largely unknown. This study aimed to investigate whether the schizophrenia-associated TSR impairment contribute to certain psychotic symptoms by sharing underlying alternations in cortical gray-matter volume (GMV) with the psychotic symptoms. Participants with schizophrenia (N = 34) and their matched healthy controls (N = 29) were tested for TSR against a two-talker-speech masker. Psychotic symptoms of participants with schizophrenia were evaluated using the Positive and Negative Syndrome Scale. The regional GMV across various cortical regions was assessed using the voxel-based morphometry. The results of partial-correlation and mediation analyses showed that in participants with schizophrenia, the TSR was negatively correlated with the delusion severity, but positively with the GMV in the bilateral superior/middle temporal cortex, bilateral insular, left medial orbital frontal gyrus, left Rolandic operculum, left mid-cingulate cortex, left posterior fusiform, and left cerebellum. Moreover, the association between GMV and delusion was based on the mediating role played by the TSR performance. Thus, in people with schizophrenia, both delusions and the augmented vulnerability of TSR to informational masking are associated with each other and share the underlying cortical GMV reduction, suggesting that the origin of delusion in schizophrenia may be related to disorganized or limited informational processing (e.g., the incapability of adequately filtering information from multiple sources at the perceptual level). The TSR impairment can be a potential marker for predicting delusion severity.
Collapse
Affiliation(s)
- Chao Wu
- Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Yingjun Zheng
- Guangzhou Brain Hospital, Guangzhou Medical University, Guangzhou, China
| | - Juanhua Li
- Guangzhou Brain Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shenglin She
- Guangzhou Brain Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hongjun Peng
- Guangzhou Brain Hospital, Guangzhou Medical University, Guangzhou, China
| | - Liang Li
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Key Laboratory on Machine Perception, Ministry of Education, Peking University, Beijing, China.,Beijing Institute for Brain Disorder, Capital Medical University, Beijing, China
| |
Collapse
|
221
|
Effects of tolcapone and bromocriptine on cognitive stability and flexibility. Psychopharmacology (Berl) 2018; 235:1295-1305. [PMID: 29427081 PMCID: PMC5869902 DOI: 10.1007/s00213-018-4845-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 01/31/2018] [Indexed: 12/22/2022]
Abstract
RATIONALE The prefrontal cortex (PFC) and basal ganglia (BG) have been associated with cognitive stability and cognitive flexibility, respectively. We hypothesized that increasing PFC dopamine tone by administering tolcapone (a catechol-O-methyltransferase (COMT) inhibitor) to human subjects should promote stability; conversely, increasing BG dopamine tone by administering bromocriptine (a D2 receptor agonist) should promote flexibility. OBJECTIVE We assessed these hypotheses by administering tolcapone, bromocriptine, and a placebo to healthy subjects who performed a saccadic eye movement task requiring stability and flexibility. METHODS We used a randomized, double-blind, within-subject design that was counterbalanced across drug administration sessions. In each session, subjects were cued to prepare for a pro-saccade (look towards a visual stimulus) or anti-saccade (look away) on every trial. On 60% of the trials, subjects were instructed to switch the response already in preparation. We hypothesized that flexibility would be required on switch trials, whereas stability would be required on non-switch trials. The primary measure of performance was efficiency (the percentage correct divided by reaction time for each trial type). RESULTS Subjects were significantly less efficient across all trial types under tolcapone, and there were no significant effects of bromocriptine. After grouping subjects based on Val158Met COMT polymorphism, we found that Met/Met and Val/Met subjects (greater PFC dopamine) were less efficient compared to Val/Val subjects. CONCLUSIONS Optimal behavior was based on obeying the environmental stimuli, and we found reduced efficiency with greater PFC dopamine tone. We suggest that greater PFC dopamine interfered with the ability to flexibly follow the environment.
Collapse
|
222
|
Dauvermann MR, Moorhead TW, Watson AR, Duff B, Romaniuk L, Hall J, Roberts N, Lee GL, Hughes ZA, Brandon NJ, Whitcher B, Blackwood DH, McIntosh AM, Lawrie SM. Verbal working memory and functional large-scale networks in schizophrenia. Psychiatry Res Neuroimaging 2017; 270:86-96. [PMID: 29111478 DOI: 10.1016/j.pscychresns.2017.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 09/16/2017] [Accepted: 10/20/2017] [Indexed: 12/17/2022]
Abstract
The aim of this study was to test whether bilinear and nonlinear effective connectivity (EC) measures of working memory fMRI data can differentiate between patients with schizophrenia (SZ) and healthy controls (HC). We applied bilinear and nonlinear Dynamic Causal Modeling (DCM) for the analysis of verbal working memory in 16 SZ and 21 HC. The connection strengths with nonlinear modulation between the dorsolateral prefrontal cortex (DLPFC) and the ventral tegmental area/substantia nigra (VTA/SN) were evaluated. We used Bayesian Model Selection at the group and family levels to compare the optimal bilinear and nonlinear models. Bayesian Model Averaging was used to assess the connection strengths with nonlinear modulation. The DCM analyses revealed that SZ and HC used different bilinear networks despite comparable behavioral performance. In addition, the connection strengths with nonlinear modulation between the DLPFC and the VTA/SN area showed differences between SZ and HC. The adoption of different functional networks in SZ and HC indicated neurobiological alterations underlying working memory performance, including different connection strengths with nonlinear modulation between the DLPFC and the VTA/SN area. These novel findings may increase our understanding of connectivity in working memory in schizophrenia.
Collapse
Affiliation(s)
- Maria R Dauvermann
- Division of Psychiatry, Royal Edinburgh Hospital, Morningside Park, University of Edinburgh, Edinburgh EH10 5HF, UK; School of Psychology, National University of Ireland Galway, University Road, Galway, Ireland; McGovern Institute for Brain Research, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA 02139, USA.
| | - Thomas Wj Moorhead
- Division of Psychiatry, Royal Edinburgh Hospital, Morningside Park, University of Edinburgh, Edinburgh EH10 5HF, UK
| | - Andrew R Watson
- Division of Psychiatry, Royal Edinburgh Hospital, Morningside Park, University of Edinburgh, Edinburgh EH10 5HF, UK
| | - Barbara Duff
- Division of Psychiatry, Royal Edinburgh Hospital, Morningside Park, University of Edinburgh, Edinburgh EH10 5HF, UK
| | - Liana Romaniuk
- Division of Psychiatry, Royal Edinburgh Hospital, Morningside Park, University of Edinburgh, Edinburgh EH10 5HF, UK
| | - Jeremy Hall
- Division of Psychiatry, Royal Edinburgh Hospital, Morningside Park, University of Edinburgh, Edinburgh EH10 5HF, UK; Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Neil Roberts
- Clinical Research Imaging Centre, University of Edinburgh, Edinburgh, UK; British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Graham L Lee
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA 02139, USA
| | - Zoë A Hughes
- Neuroscience Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Nicholas J Brandon
- Neuroscience Research Unit, Pfizer Inc., Cambridge, MA, USA; IMED Neuroscience Unit, AstraZeneca, Waltham, MA, USA
| | - Brandon Whitcher
- Clinical and Translational Imaging, Pfizer Inc., Cambridge, MA, USA
| | - Douglas Hr Blackwood
- Division of Psychiatry, Royal Edinburgh Hospital, Morningside Park, University of Edinburgh, Edinburgh EH10 5HF, UK
| | - Andrew M McIntosh
- Division of Psychiatry, Royal Edinburgh Hospital, Morningside Park, University of Edinburgh, Edinburgh EH10 5HF, UK
| | - Stephen M Lawrie
- Division of Psychiatry, Royal Edinburgh Hospital, Morningside Park, University of Edinburgh, Edinburgh EH10 5HF, UK
| |
Collapse
|
223
|
Avery MC, Krichmar JL. Neuromodulatory Systems and Their Interactions: A Review of Models, Theories, and Experiments. Front Neural Circuits 2017; 11:108. [PMID: 29311844 PMCID: PMC5744617 DOI: 10.3389/fncir.2017.00108] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/14/2017] [Indexed: 01/01/2023] Open
Abstract
Neuromodulatory systems, including the noradrenergic, serotonergic, dopaminergic, and cholinergic systems, track environmental signals, such as risks, rewards, novelty, effort, and social cooperation. These systems provide a foundation for cognitive function in higher organisms; attention, emotion, goal-directed behavior, and decision-making derive from the interaction between the neuromodulatory systems and brain areas, such as the amygdala, frontal cortex, hippocampus, and sensory cortices. Given their strong influence on behavior and cognition, these systems also play a key role in disease states and are the primary target of many current treatment strategies. The fact that these systems interact with each other either directly or indirectly, however, makes it difficult to understand how a failure in one or more systems can lead to a particular symptom or pathology. In this review, we explore experimental evidence, as well as focus on computational and theoretical models of neuromodulation. Better understanding of neuromodulatory systems may lead to the development of novel treatment strategies for a number of brain disorders.
Collapse
Affiliation(s)
- Michael C Avery
- SNL-R, Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Jeffrey L Krichmar
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, United States.,Department of Computer Science, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
224
|
Holliday WB, Gurnsey K, Sweet RA, Teichert T. A putative electrophysiological biomarker of auditory sensory memory encoding is sensitive to pharmacological alterations of excitatory/inhibitory balance in male macaque monkeys. J Psychiatry Neurosci 2017; 43:170093. [PMID: 29236648 PMCID: PMC5915239 DOI: 10.1503/jpn.170093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/30/2017] [Accepted: 10/27/2017] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND The amplitude of the auditory evoked N1 component that can be derived from noninvasive electroencephalographic recordings increases as a function of time between subsequent tones. N1 amplitudes in individuals with schizophrenia saturate at a lower asymptote, thus giving rise to a reduced dynamic range. Reduced N1 dynamic range is a putative electrophysiological biomarker of altered sensory memory function in individuals with the disease. To date, it is not clear what determines N1 dynamic range and what causes reduced N1 dynamic range in individuals with schizophrenia. Here we test the hypothesis that reduced N1 dynamic range results from a shift in excitatory/inhibitory (E/I) balance toward an excitation-deficient or inhibition-dominant state. METHODS We recorded auditory-evoked potentials (AEPs) while 4 macaque monkeys passively listened to sequences of sounds of random pitch and stimulus-onset asynchrony (SOA). Three independent experiments tested the effect of the N-methyl-d-aspartate receptor channel blockers ketamine and MK-801 as well as the γ-aminobutyric acid (GABA) A receptor-positive allosteric modulator midazolam on the dynamic range of a putative monkey N1 homologue and 4 other AEP components. RESULTS Ketamine, MK-801 and midazolam reduced peak N1 amplitudes for the longest SOAs. Other AEP components were also affected, but revealed distinct patterns of susceptibility for the glutamatergic and GABA-ergic drugs. Different patterns of susceptibility point toward differences in the circuitry maintaining E/I balance of individual components. LIMITATIONS The study used systemic pharmacological interventions that may have acted on targets outside of the auditory cortex. CONCLUSION The N1 dynamic range may be a marker of altered E/I balance. Reduced N1 dynamic range in individuals with schizophrenia may indicate that the auditory cortex is in an excitation-deficient or inhibition-dominant state. This may be the result of an incomplete compensation for a primary deficit in excitatory drive.
Collapse
Affiliation(s)
- William B Holliday
- From the Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA (Holliday, Gurnsey, Sweet, Teichert); the Department of Neurology, University of Pittsburgh, Pittsburgh, PA (Sweet); the Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA (Sweet); and the Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA (Teichert)
| | - Kate Gurnsey
- From the Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA (Holliday, Gurnsey, Sweet, Teichert); the Department of Neurology, University of Pittsburgh, Pittsburgh, PA (Sweet); the Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA (Sweet); and the Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA (Teichert)
| | - Robert A Sweet
- From the Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA (Holliday, Gurnsey, Sweet, Teichert); the Department of Neurology, University of Pittsburgh, Pittsburgh, PA (Sweet); the Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA (Sweet); and the Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA (Teichert)
| | - Tobias Teichert
- From the Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA (Holliday, Gurnsey, Sweet, Teichert); the Department of Neurology, University of Pittsburgh, Pittsburgh, PA (Sweet); the Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA (Sweet); and the Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA (Teichert)
| |
Collapse
|
225
|
Vijayraghavan S, Major AJ, Everling S. Neuromodulation of Prefrontal Cortex in Non-Human Primates by Dopaminergic Receptors during Rule-Guided Flexible Behavior and Cognitive Control. Front Neural Circuits 2017; 11:91. [PMID: 29259545 PMCID: PMC5723345 DOI: 10.3389/fncir.2017.00091] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/08/2017] [Indexed: 11/13/2022] Open
Abstract
The prefrontal cortex (PFC) is indispensable for several higher-order cognitive and executive capacities of primates, including representation of salient stimuli in working memory (WM), maintenance of cognitive task set, inhibition of inappropriate responses and rule-guided flexible behavior. PFC networks are subject to robust neuromodulation from ascending catecholaminergic systems. Disruption of these systems in PFC has been implicated in cognitive deficits associated with several neuropsychiatric disorders. Over the past four decades, a considerable body of work has examined the influence of dopamine on macaque PFC activity representing spatial WM. There has also been burgeoning interest in neuromodulation of PFC circuits involved in other cognitive functions of PFC, including representation of rules to guide flexible behavior. Here, we review recent neuropharmacological investigations conducted in our laboratory and others of the role of PFC dopamine receptors in regulating rule-guided behavior in non-human primates. Employing iontophoresis, we examined the effects of local manipulation of dopaminergic subtypes on neuronal activity during performance of rule-guided pro- and antisaccades, an experimental paradigm sensitive to PFC integrity, wherein deficits in performance are reliably observed in many neuropsychiatric disorders. We found dissociable effects of dopamine receptors on neuronal activity for rule representation and oculomotor responses and discuss these findings in the context of prior studies that have examined the role of dopamine in spatial delayed response tasks, attention, target selection, abstract rules, visuomotor learning and reward. The findings we describe here highlight the common features, as well as heterogeneity and context dependence of dopaminergic neuromodulation in regulating the efficacy of cognitive functions of PFC in health and disease.
Collapse
Affiliation(s)
- Susheel Vijayraghavan
- Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | - Alex J Major
- Graduate Program in Neuroscience, University of Western Ontario, London, ON, Canada
| | - Stefan Everling
- Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada.,Graduate Program in Neuroscience, University of Western Ontario, London, ON, Canada
| |
Collapse
|
226
|
Maran T, Sachse P, Martini M, Weber B, Pinggera J, Zuggal S, Furtner M. Lost in Time and Space: States of High Arousal Disrupt Implicit Acquisition of Spatial and Sequential Context Information. Front Behav Neurosci 2017; 11:206. [PMID: 29170634 PMCID: PMC5684831 DOI: 10.3389/fnbeh.2017.00206] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/10/2017] [Indexed: 01/05/2023] Open
Abstract
Biased cognition during high arousal states is a relevant phenomenon in a variety of topics: from the development of post-traumatic stress disorders or stress-triggered addictive behaviors to forensic considerations regarding crimes of passion. Recent evidence indicates that arousal modulates the engagement of a hippocampus-based "cognitive" system in favor of a striatum-based "habit" system in learning and memory, promoting a switch from flexible, contextualized to more rigid, reflexive responses. Existing findings appear inconsistent, therefore it is unclear whether and which type of context processing is disrupted by enhanced arousal. In this behavioral study, we investigated such arousal-triggered cognitive-state shifts in human subjects. We validated an arousal induction procedure (three experimental conditions: violent scene, erotic scene, neutral control scene) using pupillometry (Preliminary Experiment, n = 13) and randomly administered this method to healthy young adults to examine whether high arousal states affect performance in two core domains of contextual processing, the acquisition of spatial (spatial discrimination paradigm; Experiment 1, n = 66) and sequence information (learned irrelevance paradigm; Experiment 2, n = 84). In both paradigms, spatial location and sequences were encoded incidentally and both displacements when retrieving spatial position as well as the predictability of the target by a cue in sequence learning changed stepwise. Results showed that both implicit spatial and sequence learning were disrupted during high arousal states, regardless of valence. Compared to the control group, participants in the arousal conditions showed impaired discrimination of spatial positions and abolished learning of associative sequences. Furthermore, Bayesian analyses revealed evidence against the null models. In line with recent models of stress effects on cognition, both experiments provide evidence for decreased engagement of flexible, cognitive systems supporting encoding of context information in active cognition during acute arousal, promoting reduced sensitivity for contextual details. We argue that arousal fosters cognitive adaptation towards less demanding, more present-oriented information processing, which prioritizes a current behavioral response set at the cost of contextual cues. This transient state of behavioral perseverance might reduce reliance on context information in unpredictable environments and thus represent an adaptive response in certain situations.
Collapse
Affiliation(s)
- Thomas Maran
- Department of Psychology, University of Innsbruck, Innsbruck, Austria.,Department of Educational Sciences and Research, Alps-Adria University of Klagenfurt, Klagenfurt, Austria
| | - Pierre Sachse
- Department of Psychology, University of Innsbruck, Innsbruck, Austria
| | - Markus Martini
- Department of Psychology, University of Innsbruck, Innsbruck, Austria
| | - Barbara Weber
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jakob Pinggera
- Department of Computer Science, University of Innsbruck, Innsbruck, Austria
| | - Stefan Zuggal
- Department of Computer Science, University of Innsbruck, Innsbruck, Austria
| | - Marco Furtner
- Department of Psychology, University of Innsbruck, Innsbruck, Austria.,Department of Entrepreneurship, University of Liechtenstein, Vaduz, Liechtenstein
| |
Collapse
|
227
|
Bagasrawala I, Memi F, V. Radonjić N, Zecevic N. N-Methyl d-Aspartate Receptor Expression Patterns in the Human Fetal Cerebral Cortex. Cereb Cortex 2017; 27:5041-5053. [PMID: 27664962 PMCID: PMC6077866 DOI: 10.1093/cercor/bhw289] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 08/01/2016] [Accepted: 08/23/2016] [Indexed: 01/09/2023] Open
Abstract
N-methyl d-aspartate receptors (NMDARs), a subtype of glutamate receptor, have important functional roles in cellular activity and neuronal development. They are well-studied in rodent and adult human brains, but limited information is available about their distribution in the human fetal cerebral cortex. Here we show that 3 NMDAR subunits, NR1, NR2A, and NR2B, are expressed in the human cerebral cortex during the second trimester of gestation, a period of intense neurogenesis and synaptogenesis. With increasing fetal age, expression of the NMDAR-encoding genes Grin1 (NR1) and Grin2a (NR2A) increased while Grin2b (NR2B) expression decreased. The protein levels of all 3 subunits paralleled the changes in gene expression. On cryosections, all 3 subunits were expressed in proliferative ventricular and subventricular zones, in radial glia, and in intermediate progenitor cells, consistent with their role in the proliferation of cortical progenitor cells and in the determination of their respective fates. The detection of NR1, NR2A, and NR2B in both glutamatergic and GABAergic neurons of the cortical plate suggests the involvement of NMDARs in the maturation of human cortical neurons and in early synapse formation. Our results and previous studies in rodents suggest that NMDAR expression in the developing human brain is evolutionarily conserved.
Collapse
Affiliation(s)
- Inseyah Bagasrawala
- Department of Neuroscience, University of Connecticut Health, Farmington, CT 06030, USA
| | - Fani Memi
- Department of Neuroscience, University of Connecticut Health, Farmington, CT 06030, USA
| | - Nevena V. Radonjić
- Psychiatry Department, University of Connecticut Health, Farmington, CT 06030, USA
| | - Nada Zecevic
- Department of Neuroscience, University of Connecticut Health, Farmington, CT 06030, USA
| |
Collapse
|
228
|
Jin LE, Wang M, Yang ST, Yang Y, Galvin VC, Lightbourne TC, Ottenheimer D, Zhong Q, Stein J, Raja A, Paspalas CD, Arnsten AFT. mGluR2/3 mechanisms in primate dorsolateral prefrontal cortex: evidence for both presynaptic and postsynaptic actions. Mol Psychiatry 2017; 22:1615-1625. [PMID: 27502475 PMCID: PMC5298940 DOI: 10.1038/mp.2016.129] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/04/2016] [Accepted: 06/15/2016] [Indexed: 01/12/2023]
Abstract
Cognitive deficits in psychiatric and age-related disorders generally involve dysfunction of the dorsolateral prefrontal cortex (dlPFC), but there are few treatments for these debilitating symptoms. Group II metabotropic glutamate receptors (mGluR2/3), which couple to Gi/Go, have been a focus of therapeutics based on rodent research, where mGluR2/3 have been shown to reduce axonal glutamate release and increase glial glutamate uptake. However, this strategy has had mixed results in patients, and understanding mGluR2/3 mechanisms in primates will help guide therapeutic interventions. The current study examined mGluR2/3 localization and actions in the primate dlPFC layer III circuits underlying working memory, where the persistent firing of 'Delay cells' is mediated by N-methyl-d-aspartate receptors and weakened by cAMP-PKA-potassium channel signaling in dendritic spines. Immunoelectron microscopy identified postsynaptic mGluR2/3 in the spines, in addition to the traditional presynaptic and astrocytic locations. In vivo iontophoretic application of the mGluR2/3 agonists (2R, 4R)-APDC or LY379268 onto dlPFC Delay cells produced an inverted-U effect on working memory representation, with enhanced neuronal firing following low doses of mGluR2/3 agonists. The enhancing effects were reversed by an mGluR2/3 antagonist or by activating cAMP signaling, consistent with mGluR2/3 inhibiting postsynaptic cAMP signaling in spines. Systemic administration of these agonists to monkeys performing a working memory task also produced an inverted-U dose-response, where low doses improved performance but higher doses, similar to clinical trials, had mixed effects. Our data suggest that low doses of mGluR2/3 stimulation may have therapeutic effects through unexpected postsynaptic actions in dlPFC, strengthening synaptic connections and improving cognitive function.
Collapse
Affiliation(s)
- L E Jin
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - M Wang
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - S-T Yang
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Y Yang
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - V C Galvin
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - T C Lightbourne
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - D Ottenheimer
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Q Zhong
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - J Stein
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - A Raja
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - C D Paspalas
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - A F T Arnsten
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
229
|
Romer D, Reyna VF, Satterthwaite TD. Beyond stereotypes of adolescent risk taking: Placing the adolescent brain in developmental context. Dev Cogn Neurosci 2017; 27:19-34. [PMID: 28777995 PMCID: PMC5626621 DOI: 10.1016/j.dcn.2017.07.007] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 01/03/2023] Open
Abstract
Recent neuroscience models of adolescent brain development attribute the morbidity and mortality of this period to structural and functional imbalances between more fully developed limbic regions that subserve reward and emotion as opposed to those that enable cognitive control. We challenge this interpretation of adolescent development by distinguishing risk-taking that peaks during adolescence (sensation seeking and impulsive action) from risk taking that declines monotonically from childhood to adulthood (impulsive choice and other decisions under known risk). Sensation seeking is primarily motivated by exploration of the environment under ambiguous risk contexts, while impulsive action, which is likely to be maladaptive, is more characteristic of a subset of youth with weak control over limbic motivation. Risk taking that declines monotonically from childhood to adulthood occurs primarily under conditions of known risks and reflects increases in executive function as well as aversion to risk based on increases in gist-based reasoning. We propose an alternative Life-span Wisdom Model that highlights the importance of experience gained through exploration during adolescence. We propose, therefore, that brain models that recognize the adaptive roles that cognition and experience play during adolescence provide a more complete and helpful picture of this period of development.
Collapse
Affiliation(s)
- Daniel Romer
- Annenberg Public Policy Center, University of Pennsylvania, United States.
| | - Valerie F Reyna
- Human Neuroscience Institute, Cornell University, United States
| | - Theodore D Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, United States
| |
Collapse
|
230
|
Lupi M, Martinotti G, Santacroce R, Cinosi E, Carlucci M, Marini S, Acciavatti T, di Giannantonio M. Transcranial Direct Current Stimulation in Substance Use Disorders: A Systematic Review of Scientific Literature. J ECT 2017; 33:203-209. [PMID: 28272095 DOI: 10.1097/yct.0000000000000401] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION New treatment options such as noninvasive brain stimulation have been recently explored in the field of substance use disorders (SUDs), including transcranial direct current stimulation (tDCS). OBJECTIVES In light of this, we have performed a review of the scientific literature to assess efficacy and technical and methodological issues resulting from applying tDCS to the field of SUDs. METHODS Our analysis highlighted the following selection criteria: clinical studies on tDCS and SUDs (alcohol, caffeine, cannabis, cocaine, heroin, methamphetamine, and nicotine). Study selection, data analysis, and reporting were conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Exclusion criteria were as follows: clinical studies about tDCS among behavioral addiction; review and didactic articles; physiopathological studies; and case reports. RESULTS Eighteen scientific papers were selected out of 48 articles. Among these, 16 studied the efficacy of tDCS applied to the dorsolateral prefrontal cortex, and 8 suggested the efficacy of tDCS in reducing substance craving. CONCLUSIONS In light of these data, it is premature to conclude that tDCS over the dorsolateral prefrontal cortex is a very efficient technique in reducing craving. Small sample size, different stimulation protocols, and study duration were the main limitations. However, the efficacy of tDCS in treating SUDs requires further investigation.
Collapse
Affiliation(s)
- Matteo Lupi
- From the Department of Neuroscience, Imaging and Clinical Sciences, University "G. D'Annunzio", Chieti, Italy
| | | | | | | | | | | | | | | |
Collapse
|
231
|
Forsyth JK, Bachman P, Mathalon DH, Roach BJ, Ye E, Asarnow RF. Effects of Augmenting N-Methyl-D-Aspartate Receptor Signaling on Working Memory and Experience-Dependent Plasticity in Schizophrenia: An Exploratory Study Using Acute d-cycloserine. Schizophr Bull 2017; 43:1123-1133. [PMID: 28338977 PMCID: PMC5581900 DOI: 10.1093/schbul/sbw193] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Cognitive deficits in schizophrenia have been hypothesized to reflect N-methyl-D-aspartate receptor (NMDAR) dysfunction. However, the mechanisms through which the NMDAR contributes to individual cognitive functions differ. To explore how NMDAR signaling relates to specific cognitive deficits in schizophrenia, we tested the effects of enhancing NMDAR signaling on working memory and experience-dependent plasticity using d-cycloserine (DCS). Plasticity was assessed using an EEG paradigm that utilizes high-frequency visual stimulation (HFvS) to induce neural potentiation, and 2 learning tasks, the information integration (IIT) and weather prediction (WPT) tasks. Working memory was assessed using an N-back task. Forty-five schizophrenia patients were randomized to receive a single 100 mg DCS dose (SZ-DCS; n = 24) or placebo (SZ-PLC; n = 21) in a double-blind, between-groups design. Testing occurred on a single day after placebo or DCS administration; baseline values were not obtained. DCS did not affect plasticity, as indicated by similar neural potentiation, and similar IIT and WPT learning between groups. However, among patients who successfully engaged in the working memory task (ie, performed above chance), SZ-DCS (n = 17) showed superior 2-back performance compared to SZ-PLC (n = 16). Interestingly, SZ-DCS also showed larger pre-HFvS neural responses during the LTP task. Notably, this pattern of DCS effects is the opposite of those found in our prior study of healthy adults. Results are consistent with target engagement of the NMDAR by DCS, but suggest that NMDAR signaling was not translated into synaptic plasticity changes in schizophrenia. Results highlight the importance of considering how distinct NMDAR-associated processes contribute to individual cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Jennifer K Forsyth
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA
| | - Peter Bachman
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Daniel H Mathalon
- Department of Psychiatry and Biomedical Sciences, University of California, San Francisco, San Francisco, CA;,San Francisco Veterans Affairs Medical Center, San Francisco, CA
| | - Brian J Roach
- San Francisco Veterans Affairs Medical Center, San Francisco, CA
| | - Elissa Ye
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA
| | - Robert F Asarnow
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA;,Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA,To whom correspondence should be addressed; Department of Psychology, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095; tel: (310) 825-0394, fax: (310) 206-4446, e-mail:
| |
Collapse
|
232
|
Zhan J, Wu X, Fan J, Guo J, Zhou J, Ren J, Liu C, Luo J. Regulating Anger under Stress via Cognitive Reappraisal and Sadness. Front Psychol 2017; 8:1372. [PMID: 28855881 PMCID: PMC5557741 DOI: 10.3389/fpsyg.2017.01372] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 07/28/2017] [Indexed: 11/29/2022] Open
Abstract
Previous studies have reported the failure of cognitive emotion regulation (CER), especially in regulating unpleasant emotions under stress. The underlying reason for this failure was the application of CER depends heavily on the executive function of the prefrontal cortex (PFC), but this function can be impaired by stress-related neuroendocrine hormones. This observation highlights the necessity of developing self-regulatory strategies that require less top-down cognitive control. Based on traditional Chinese philosophy and medicine, which examine how different types of emotions promote or counteract one another, we have developed a novel emotion regulation strategy whereby one emotion is used to alter another. For example, our previous experiment showed that sadness induction (after watching a sad film) could reduce aggressive behavior associated with anger [i.e., “sadness counteracts anger” (SCA)] (Zhan et al., 2015). Relative to the CER strategy requiring someone to think about certain cognitive reappraisals to reinterpret the meaning of an unpleasant situation, watching a film or listening to music and experiencing the emotion contained therein seemingly requires less cognitive effort and control; therefore, this SCA strategy may be an alternative strategy that compensates for the limitations of cognitive regulation strategies, especially in stressful situations. The present study was designed to directly compare the effects of the CER and SCA strategy in regulating anger and anger-related aggression in stressful and non-stressful conditions. Participants’ subjective feeling of anger, anger-related aggressive behavior, skin conductance, and salivary cortisol and alpha-amylase levels were measured. Our findings revealed that acute stress impaired one’s ability to use CR to control angry responses provoked by others, whereas stress did not influence the efficiency of the SCA strategy. Compared with sadness or neutral emotion induction, CER induction was found to reduce the level of subjective anger more, but this difference only existed in non-stressful conditions. By contrast, irrespective of stress, the levels of aggressive behavior and related skin conductance after sadness induction were both significantly lower than those after CER induction or neutral emotion induction, thus suggesting the immunity of the regulatory effect of SCA strategy to the stress factor.
Collapse
Affiliation(s)
- Jun Zhan
- Beijing Key Laboratory of Learning and Cognition, Collaborative Innovation Center for Capital Education Development, Department of Psychology, Capital Normal UniversityBeijing, China
| | - Xiaofei Wu
- Beijing Key Laboratory of Learning and Cognition, Collaborative Innovation Center for Capital Education Development, Department of Psychology, Capital Normal UniversityBeijing, China
| | - Jin Fan
- Department of Psychology, Queens College, City University of New York, New YorkNY, United States
| | - Jianyou Guo
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of SciencesBeijing, China
| | - Jianshe Zhou
- Beijing Advanced Innovation Center for Imaging Technology, Capital Normal UniversityBeijing, China
| | - Jun Ren
- Department of Psychology, Zhejiang Normal UniversityJinhua, China
| | - Chang Liu
- School of Psychology, Nanjing Normal UniversityNanjing, China
| | - Jing Luo
- Beijing Key Laboratory of Learning and Cognition, Collaborative Innovation Center for Capital Education Development, Department of Psychology, Capital Normal UniversityBeijing, China
| |
Collapse
|
233
|
Mizumori SJY, Baker PM. The Lateral Habenula and Adaptive Behaviors. Trends Neurosci 2017; 40:481-493. [PMID: 28688871 PMCID: PMC11568516 DOI: 10.1016/j.tins.2017.06.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/04/2017] [Accepted: 06/06/2017] [Indexed: 02/05/2023]
Abstract
The evolutionarily conserved lateral habenula (LHb) enables dynamic responses to continually changing contexts and environmental conditions. A model is proposed to account for greater mnemonic and contextual control over LHb-mediated response flexibility as vertebrate brains became more complex. The medial prefrontal cortex (mPFC) provides instructions for context-specific responses to LHb, which assesses the extent to which this response information matches the motivation or internal state of the individual. LHb output either maintains a prior response (match) or leads to alternative responses (mismatch). It may also maintain current spatial and temporal processing in hippocampus (match), or alter such activity to reflect updated trajectory and sequenced information (mismatch). A response flexibility function of the LHb is consistent with poor behavioral control following its disruption (e.g., in depression).
Collapse
Affiliation(s)
- Sheri J Y Mizumori
- Psychology Department, University of Washington, Seattle, WA 98195-1525, USA; Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195-1525, USA.
| | - Phillip M Baker
- Psychology Department, University of Washington, Seattle, WA 98195-1525, USA
| |
Collapse
|
234
|
Synaptic Actin Dysregulation, a Convergent Mechanism of Mental Disorders? J Neurosci 2017; 36:11411-11417. [PMID: 27911743 DOI: 10.1523/jneurosci.2360-16.2016] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 12/25/2022] Open
Abstract
Actin polymerization governs activity-dependent modulation of excitatory synapses, including their morphology and functionality. It is clear from human genetics that neuropsychiatric and neurodevelopmental disturbances are multigenetic in nature, highlighting the need to better understand the critical neural pathways associated with these disorders and how they are altered by genetic risk alleles. One such signaling pathway that is heavily implicated by candidate genes for psychiatric and neurodevelopmental disorders are regulators of signaling to the actin cytoskeleton, suggesting that its disruption and the ensuring abnormalities of spine structures and postsynaptic complexes is a commonly affected pathway in brain disorders. This review will discuss recent experimental findings that strongly support genetic evidence linking the synaptic cytoskeleton to mental disorders, such as schizophrenia and autism spectrum disorders.
Collapse
|
235
|
|
236
|
Sakurai T. The role of cell adhesion molecules in brain wiring and neuropsychiatric disorders. Mol Cell Neurosci 2017; 81:4-11. [PMID: 27561442 DOI: 10.1016/j.mcn.2016.08.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/16/2016] [Accepted: 08/19/2016] [Indexed: 12/15/2022] Open
Abstract
Cell adhesion molecules (CAMs) in the nervous system have long been a research focus, but many mice lacking CAMs show very subtle phenotypes, giving an impression that CAMs may not be major players in constructing the nervous system. However, recent human genetic studies suggest CAM involvement in many neuropsychiatric disorders, implicating that they must have significant functions in nervous system development, namely in circuitry formation. As CAMs can provide specificity through their molecular interactions, this review summarizes possible mechanisms on how alterations of CAMs can result in neuropsychiatric disorders through circuitry modification.
Collapse
Affiliation(s)
- Takeshi Sakurai
- Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
237
|
Su H, Zhong N, Gan H, Wang J, Han H, Chen T, Li X, Ruan X, Zhu Y, Jiang H, Zhao M. High frequency repetitive transcranial magnetic stimulation of the left dorsolateral prefrontal cortex for methamphetamine use disorders: A randomised clinical trial. Drug Alcohol Depend 2017; 175:84-91. [PMID: 28410525 DOI: 10.1016/j.drugalcdep.2017.01.037] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/14/2016] [Accepted: 01/26/2017] [Indexed: 01/05/2023]
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is a brain stimulation and modulation electrophysiological technique, it can change cortical excitability of target brain region, modulate neuron plasticity and brain connections. Previous researches indicated that rTMS could reduce cue-induced craving in drug addiction. OBJECTIVE In this study, we employed real and sham rTMS of the left dorsolateral prefrontal cortex (DLPFC) to test whether it could reduce cue-induced craving for methamphetamine (MA) and influence cognitive function in a randomised clinical trial. METHODS Thirty MA-addicted patients were randomized to receive 5 sessions of 8min sham or 10Hz rTMS to the left DLPFC. Subjects rated their craving at baseline, after exposed to MA-associated cues and after rTMS sessions. RESULTS Real rTMS over the left DLPFC reduced craving significantly after 5 sessions of rTMS as compared to sham stimulation. Furthermore, real rTMS improved verbal learning and memory and social cognition in MA-addicted patients. CONCLUSIONS The present study suggests that 10Hz rTMS of the left DLPFC may reduce craving and have no negative effects on cognitive function in MA-addicted patients, supporting the safety of rTMS in treating MA addiction.
Collapse
Affiliation(s)
- Hang Su
- Collaborative Innovation Center for Brain Science, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Na Zhong
- Collaborative Innovation Center for Brain Science, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Gan
- Collaborative Innovation Center for Brain Science, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jijun Wang
- Collaborative Innovation Center for Brain Science, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Han
- Collaborative Innovation Center for Brain Science, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianzhen Chen
- Collaborative Innovation Center for Brain Science, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaotong Li
- Collaborative Innovation Center for Brain Science, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolu Ruan
- Collaborative Innovation Center for Brain Science, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Youwei Zhu
- Collaborative Innovation Center for Brain Science, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haifeng Jiang
- Collaborative Innovation Center for Brain Science, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhao
- Collaborative Innovation Center for Brain Science, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai, PR China.
| |
Collapse
|
238
|
Short SM, Oikonomou KD, Zhou WL, Acker CD, Popovic MA, Zecevic D, Antic SD. The stochastic nature of action potential backpropagation in apical tuft dendrites. J Neurophysiol 2017; 118:1394-1414. [PMID: 28566465 DOI: 10.1152/jn.00800.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 05/25/2017] [Accepted: 05/30/2017] [Indexed: 11/22/2022] Open
Abstract
In cortical pyramidal neurons, backpropagating action potentials (bAPs) supply Ca2+ to synaptic contacts on dendrites. To determine whether the efficacy of AP backpropagation into apical tuft dendrites is stable over time, we performed dendritic Ca2+ and voltage imaging in rat brain slices. We found that the amplitude of bAP-Ca2+ in apical tuft branches was unstable, given that it varied from trial to trial (termed "bAP-Ca2+ flickering"). Small perturbations in dendritic physiology, such as spontaneous synaptic inputs, channel inactivation, or temperature-induced changes in channel kinetics, can cause bAP flickering. In the tuft branches, the density of Na+ and K+ channels was sufficient to support local initiation of fast spikelets by glutamate iontophoresis. We quantified the time delay between the somatic AP burst and the peak of dendritic Ca2+ transient in the apical tuft, because this delay is important for induction of spike-timing dependent plasticity. Depending on the frequency of the somatic AP triplets, Ca2+ signals peaked in the apical tuft 20-50 ms after the 1st AP in the soma. Interestingly, at low frequency (<20 Hz), the Ca2+ peaked sooner than at high frequency, because only the 1st AP invaded tuft. Activation of dendritic voltage-gated Ca2+ channels is sensitive to the duration of the dendritic voltage transient. In apical tuft branches, small changes in the duration of bAP voltage waveforms cause disproportionately large increases in dendritic Ca2+ influx (bAP-Ca2+ flickering). The stochastic nature of bAP-Ca2+ adds a new perspective on the mechanisms by which pyramidal neurons combine inputs arriving at different cortical layers.NEW & NOTEWORTHY The bAP-Ca2+ signal amplitudes in some apical tuft branches randomly vary from moment to moment. In repetitive measurements, successful AP invasions are followed by complete failures. Passive spread of voltage from the apical trunk into the tuft occasionally reaches the threshold for local Na+ spike, resulting in stronger Ca2+ influx. During a burst of three somatic APs, the peak of dendritic Ca2+ in the apical tuft occurs with a delay of 20-50 ms depending on AP frequency.
Collapse
Affiliation(s)
- Shaina M Short
- Department of Neuroscience, UConn Health, Farmington, Connecticut
| | | | - Wen-Liang Zhou
- Department of Neuroscience, UConn Health, Farmington, Connecticut
| | - Corey D Acker
- Center for Cell Analysis and Modeling, UConn Health, Farmington, Connecticut
| | - Marko A Popovic
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut
| | - Dejan Zecevic
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut
| | - Srdjan D Antic
- Department of Neuroscience, UConn Health, Farmington, Connecticut; .,Stem Cell Institute, UConn Health, Farmington, Connecticut; and.,Institute for Systems Genomics, UConn Health, Farmington, Connecticut
| |
Collapse
|
239
|
Martinez E, Lin HH, Zhou H, Dale J, Liu K, Wang J. Corticostriatal Regulation of Acute Pain. Front Cell Neurosci 2017; 11:146. [PMID: 28603489 PMCID: PMC5445115 DOI: 10.3389/fncel.2017.00146] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/04/2017] [Indexed: 01/23/2023] Open
Abstract
The mechanisms for acute pain regulation in the brain are not well understood. The prefrontal cortex (PFC) provides top-down control of emotional processes, and it projects to the nucleus accumbens (NAc). This corticostriatal projection forms an important regulatory pathway within the brain’s reward system. Recently, this projection has been suggested to control both sensory and affective phenotypes specifically associated with chronic pain. As this projection is also known to play a role in the transition from acute to chronic pain, we hypothesized that this corticostriatal circuit can also exert a modulatory function in the acute pain state. Here, we used optogenetics to specifically target the projection from the PFC to the NAc. We tested sensory pain behaviors with Hargreaves’ test and mechanical allodynia, and aversive pain behaviors with conditioned place preference (CPP) test. We found that the activation of this corticostriatal circuit gave rise to bilateral relief from peripheral nociceptive inputs. Activation of this circuit also provided important control for the aversive response to transient noxious stimulations. Hence, our results support a novel role for corticostriatal circuitry in acute pain regulation.
Collapse
Affiliation(s)
- Erik Martinez
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of MedicineNew York, NY, United States
| | - Harvey H Lin
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of MedicineNew York, NY, United States
| | - Haocheng Zhou
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of MedicineNew York, NY, United States
| | - Jahrane Dale
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of MedicineNew York, NY, United States
| | - Kevin Liu
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of MedicineNew York, NY, United States
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of MedicineNew York, NY, United States.,Department of Neuroscience and Physiology, New York University School of MedicineNew York, NY, United States
| |
Collapse
|
240
|
Layer 3 Excitatory and Inhibitory Circuitry in the Prefrontal Cortex: Developmental Trajectories and Alterations in Schizophrenia. Biol Psychiatry 2017; 81:862-873. [PMID: 27455897 PMCID: PMC5136518 DOI: 10.1016/j.biopsych.2016.05.022] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/25/2016] [Accepted: 05/25/2016] [Indexed: 11/20/2022]
Abstract
Convergent evidence suggests that schizophrenia is a disorder of neurodevelopment with alterations in both early and late developmental processes hypothesized to contribute to the disease process. Abnormalities in certain clinical features of schizophrenia, such as working memory impairments, depend on distributed neural circuitry including the dorsolateral prefrontal cortex (DLPFC) and appear to arise during the protracted maturation of this circuitry across childhood and adolescence. In particular, the neural circuitry substrate for working memory in primates involves the coordinated activity of excitatory pyramidal neurons and a specific population of inhibitory gamma-aminobutyric acid neurons (i.e., parvalbumin-containing basket cells) in layer 3 of the DLPFC. Understanding the relationships between the normal development of-and the schizophrenia-associated alterations in-the DLPFC circuitry that subserves working memory could provide new insights into the nature of schizophrenia as a neurodevelopmental disorder. Consequently, we review the following in this article: 1) recent findings regarding alterations of DLPFC layer 3 circuitry in schizophrenia, 2) the developmental refinements in this circuitry that occur during the period when the working memory alterations in schizophrenia appear to arise and progress, and 3) how various adverse environmental exposures could contribute to developmental disturbances of this circuitry in individuals with schizophrenia.
Collapse
|
241
|
Lu JM, Liu DD, Li ZY, Ling C, Mei YA. Neuritin Enhances Synaptic Transmission in Medial Prefrontal Cortex in Mice by Increasing CaV3.3 Surface Expression. Cereb Cortex 2017; 27:3842-3855. [DOI: 10.1093/cercor/bhx082] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 03/23/2017] [Indexed: 02/02/2023] Open
Affiliation(s)
- Jun-Mei Lu
- State Key Laboratory of Medical Neurobiology and School of Life Sciences, Institutes of Brain Science, Fudan University, Shanghai 200433, China
| | - Dong-Dong Liu
- State Key Laboratory of Medical Neurobiology and School of Life Sciences, Institutes of Brain Science, Fudan University, Shanghai 200433, China
| | - Zhao-Yang Li
- State Key Laboratory of Medical Neurobiology and School of Life Sciences, Institutes of Brain Science, Fudan University, Shanghai 200433, China
| | - Chen Ling
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yan-Ai Mei
- State Key Laboratory of Medical Neurobiology and School of Life Sciences, Institutes of Brain Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
242
|
Devilbiss DM, Spencer RC, Berridge CW. Stress Degrades Prefrontal Cortex Neuronal Coding of Goal-Directed Behavior. Cereb Cortex 2017; 27:2970-2983. [PMID: 27226444 PMCID: PMC6059199 DOI: 10.1093/cercor/bhw140] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Stress, pervasive in modern society, impairs prefrontal cortex (PFC)-dependent cognitive processes, an action implicated in multiple psychopathologies and estimated to contribute to nearly half of all work place accidents. However, the neurophysiological bases for stress-related impairment of PFC-dependent function remain poorly understood. The current studies examined the effects of stress on PFC neural coding during a working memory task in rats. Stress suppressed responses of medial PFC (mPFC) neurons strongly tuned to a diversity of task events, including delay and outcome (reward, error). Stress-related impairment of task-related neuronal activity included multidimensional coding by PFC neurons, an action that significantly predicted cognitive impairment. Importantly, the effects of stress on PFC neuronal signaling were highly conditional on tuning strength: stress increased task-related activity in the larger population of PFC neurons weakly tuned to task events. Combined, stress elicits a profound collapse of task representations across the broader population of PFC neurons.
Collapse
Affiliation(s)
- David M. Devilbiss
- Department of Psychology, University of Wisconsin, Madison, WI 53706, USA
| | - Robert C. Spencer
- Department of Psychology, University of Wisconsin, Madison, WI 53706, USA
| | - Craig W. Berridge
- Department of Psychology, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
243
|
Could LC-NE-Dependent Adjustment of Neural Gain Drive Functional Brain Network Reorganization? Neural Plast 2017; 2017:4328015. [PMID: 28607776 PMCID: PMC5457760 DOI: 10.1155/2017/4328015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/01/2017] [Indexed: 01/21/2023] Open
Abstract
The locus coeruleus-norepinephrine (LC-NE) system is thought to act at synaptic, cellular, microcircuit, and network levels to facilitate cognitive functions through at least two different processes, not mutually exclusive. Accordingly, as a reset signal, the LC-NE system could trigger brain network reorganizations in response to salient information in the environment and/or adjust the neural gain within its target regions to optimize behavioral responses. Here, we provide evidence of the co-occurrence of these two mechanisms at the whole-brain level, in resting-state conditions following a pharmacological stimulation of the LC-NE system. We propose that these two mechanisms are interdependent such that the LC-NE-dependent adjustment of the neural gain inferred from the clustering coefficient could drive functional brain network reorganizations through coherence in the gamma rhythm. Via the temporal dynamic of gamma-range band-limited power, the release of NE could adjust the neural gain, promoting interactions only within the neuronal populations whose amplitude envelopes are correlated, thus making it possible to reorganize neuronal ensembles, functional networks, and ultimately, behavioral responses. Thus, our proposal offers a unified framework integrating the putative influence of the LC-NE system on both local- and long-range adjustments of brain dynamics underlying behavioral flexibility.
Collapse
|
244
|
Tanaka M, Ishizuka K, Nekooki-Machida Y, Endo R, Takashima N, Sasaki H, Komi Y, Gathercole A, Huston E, Ishii K, Hui KKW, Kurosawa M, Kim SH, Nukina N, Takimoto E, Houslay MD, Sawa A. Aggregation of scaffolding protein DISC1 dysregulates phosphodiesterase 4 in Huntington's disease. J Clin Invest 2017; 127:1438-1450. [PMID: 28263187 DOI: 10.1172/jci85594] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/11/2017] [Indexed: 01/19/2023] Open
Abstract
Huntington's disease (HD) is a polyglutamine (polyQ) disease caused by aberrant expansion of the polyQ tract in Huntingtin (HTT). While motor impairment mediated by polyQ-expanded HTT has been intensively studied, molecular mechanisms for nonmotor symptoms in HD, such as psychiatric manifestations, remain elusive. Here we have demonstrated that HTT forms a ternary protein complex with the scaffolding protein DISC1 and cAMP-degrading phosphodiesterase 4 (PDE4) to regulate PDE4 activity. We observed pathological cross-seeding between DISC1 and mutant HTT aggregates in the brains of HD patients as well as in a murine model that recapitulates the polyQ pathology of HD (R6/2 mice). In R6/2 mice, consequent reductions in soluble DISC1 led to dysregulation of DISC1-PDE4 complexes, aberrantly increasing the activity of PDE4. Importantly, exogenous expression of a modified DISC1, which binds to PDE4 but not mutant HTT, normalized PDE4 activity and ameliorated anhedonia in the R6/2 mice. We propose that cross-seeding of mutant HTT and DISC1 and the resultant changes in PDE4 activity may underlie the pathology of a specific subset of mental manifestations of HD, which may provide an insight into molecular signaling in mental illness in general.
Collapse
|
245
|
Crimins JL, Wang ACJ, Yuk F, Puri R, Janssen WGM, Hara Y, Rapp PR, Morrison JH. Diverse Synaptic Distributions of G Protein-coupled Estrogen Receptor 1 in Monkey Prefrontal Cortex with Aging and Menopause. Cereb Cortex 2017; 27:2022-2033. [PMID: 26941383 PMCID: PMC5909633 DOI: 10.1093/cercor/bhw050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Age- and menopause-related impairment in working memory mediated by the dorsolateral prefrontal cortex (dlPFC) occurs in humans and nonhuman primates. Long-term cyclic 17β-estradiol treatment rescues cognitive deficits in aged ovariectomized rhesus monkeys while restoring highly plastic synapses. Here we tested whether distributions of G protein-coupled estrogen receptor 1 (GPER1) within monkey layer III dlPFC synapses are sensitive to age and estradiol, and coupled to cognitive function. Ovariectomized young and aged monkeys administered vehicle or estradiol were first tested on a delayed response test of working memory. Then, quantitative serial section immunoelectron microscopy was used to determine the distributions of synaptic GPER1. GPER1-containing nonperforated axospinous synapse density was reduced with age, and partially restored with estrogen treatment. The majority of synapses expressed GPER1, which was predominately localized to presynaptic cytoplasm and mitochondria. GPER1 was also abundant at plasmalemmas, and within cytoplasmic and postsynaptic density (PSD) domains of dendritic spines. GPER1 levels did not differ with age or treatment, and none of the variables examined were tightly associated with cognitive function. However, greater representation of GPER1 subjacent to the PSD accompanied higher synapse density. These data suggest that GPER1 is positioned to support diverse functions key to synaptic plasticity in monkey dlPFC.
Collapse
Affiliation(s)
| | - Athena Ching-Jung Wang
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, CO 80045, USA
| | - Frank Yuk
- Fishberg Department of Neuroscience and Friedman Brain Institute
| | - Rishi Puri
- Fishberg Department of Neuroscience and Friedman Brain Institute
| | | | - Yuko Hara
- Fishberg Department of Neuroscience and Friedman Brain Institute
| | - Peter R Rapp
- National Institute on Aging, Laboratory of Behavioral Neuroscience, Baltimore, MD 21224, USA
| | - John H Morrison
- Fishberg Department of Neuroscience and Friedman Brain Institute
- Department of Geriatrics and Palliative Medicine
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- California National Primate Research Center, Davis, CA 95616, USA
- Department of Neurology, School of Medicine, University of California Davis, Davis 95616, USA
| |
Collapse
|
246
|
Datta D, Arion D, Roman KM, Volk DW, Lewis DA. Altered Expression of ARP2/3 Complex Signaling Pathway Genes in Prefrontal Layer 3 Pyramidal Cells in Schizophrenia. Am J Psychiatry 2017; 174:163-171. [PMID: 27523502 PMCID: PMC5288270 DOI: 10.1176/appi.ajp.2016.16020204] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Lower dendritic spine density on layer 3 pyramidal cells in the dorsolateral prefrontal cortex (DLPFC) appears to contribute to cognitive dysfunction in schizophrenia, whereas psychosis is associated with excessive dopamine release in the striatum. These findings may be related via excitatory projections from the DLPFC to the ventral mesencephalon, the location of dopamine cells projecting to the striatum. Consistent with this hypothesis, deletion of the actin-related protein-2/3 (ARP2/3) complex, which regulates the actin cytoskeleton supporting dendritic spines, produced spine loss in cortical pyramidal cells and striatal hyperdopaminergia in mice. The authors sought to determine whether the ARP2/3 complex is altered in schizophrenia. METHOD In matched pairs of schizophrenia and comparison subjects, transcript levels of ARP2/3 complex signaling pathway were assessed in laser-microdissected DLPFC layer 3 and 5 pyramidal cells and layer 3 parvalbumin interneurons, and in total DLPFC gray matter. RESULTS Transcript levels of ARP2/3 complex subunits and of nucleation promotion factors that regulate the ARP2/3 complex were significantly lower in DLPFC layer 3 and 5 pyramidal cells in schizophrenia. In contrast, these transcripts were unaltered, or only modestly changed, in parvalbumin interneurons and DLPFC gray matter. CONCLUSIONS Down-regulation of the ARP2/3 complex signaling pathway, a common final pathway for multiple signaling cascades that regulate the actin cytoskeleton, would compromise the structural stability of spines, leading to their loss. In concert with findings from deletion of the ARP2/3 complex in mice, these findings support the idea that spine deficits in the DLPFC may contribute to subcortical hyperdopaminergia in schizophrenia.
Collapse
Affiliation(s)
- Dibyadeep Datta
- Department of Neuroscience, Translational Neuroscience Program, University of Pittsburgh School of Medicine,Department of Neuroscience and Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine
| | - Dominique Arion
- Department of Neuroscience and Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine
| | - Kaitlyn M. Roman
- Department of Neuroscience and Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine
| | - David W. Volk
- Department of Neuroscience and Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine
| | - David A. Lewis
- Department of Neuroscience, Translational Neuroscience Program, University of Pittsburgh School of Medicine,Department of Neuroscience and Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine
| |
Collapse
|
247
|
Sexual communication and domestication may give rise to the signal complexity necessary for the emergence of language: An indication from songbird studies. Psychon Bull Rev 2017; 24:106-110. [DOI: 10.3758/s13423-016-1165-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
248
|
Hassani SA, Oemisch M, Balcarras M, Westendorff S, Ardid S, van der Meer MA, Tiesinga P, Womelsdorf T. A computational psychiatry approach identifies how alpha-2A noradrenergic agonist Guanfacine affects feature-based reinforcement learning in the macaque. Sci Rep 2017; 7:40606. [PMID: 28091572 PMCID: PMC5238510 DOI: 10.1038/srep40606] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 12/08/2016] [Indexed: 01/05/2023] Open
Abstract
Noradrenaline is believed to support cognitive flexibility through the alpha 2A noradrenergic receptor (a2A-NAR) acting in prefrontal cortex. Enhanced flexibility has been inferred from improved working memory with the a2A-NA agonist Guanfacine. But it has been unclear whether Guanfacine improves specific attention and learning mechanisms beyond working memory, and whether the drug effects can be formalized computationally to allow single subject predictions. We tested and confirmed these suggestions in a case study with a healthy nonhuman primate performing a feature-based reversal learning task evaluating performance using Bayesian and Reinforcement learning models. In an initial dose-testing phase we found a Guanfacine dose that increased performance accuracy, decreased distractibility and improved learning. In a second experimental phase using only that dose we examined the faster feature-based reversal learning with Guanfacine with single-subject computational modeling. Parameter estimation suggested that improved learning is not accounted for by varying a single reinforcement learning mechanism, but by changing the set of parameter values to higher learning rates and stronger suppression of non-chosen over chosen feature information. These findings provide an important starting point for developing nonhuman primate models to discern the synaptic mechanisms of attention and learning functions within the context of a computational neuropsychiatry framework.
Collapse
Affiliation(s)
- S. A. Hassani
- Department of Biology, Centre for Vision Research, York University, Toronto, Ontario M6J 1P3, Canada
| | - M. Oemisch
- Department of Biology, Centre for Vision Research, York University, Toronto, Ontario M6J 1P3, Canada
| | - M. Balcarras
- Department of Biology, Centre for Vision Research, York University, Toronto, Ontario M6J 1P3, Canada
| | - S. Westendorff
- Department of Biology, Centre for Vision Research, York University, Toronto, Ontario M6J 1P3, Canada
| | - S. Ardid
- Department of Mathematics, Boston University, Boston, MA 02215, USA
| | - M. A. van der Meer
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - P. Tiesinga
- Department of Neuroinformatics, Donders Centre for Neuroscience, Radboud University Nijmegen, Nijmegen, AJ 6525, The Netherlands
| | - T. Womelsdorf
- Department of Biology, Centre for Vision Research, York University, Toronto, Ontario M6J 1P3, Canada
| |
Collapse
|
249
|
Maletic V, Eramo A, Gwin K, Offord SJ, Duffy RA. The Role of Norepinephrine and Its α-Adrenergic Receptors in the Pathophysiology and Treatment of Major Depressive Disorder and Schizophrenia: A Systematic Review. Front Psychiatry 2017; 8:42. [PMID: 28367128 PMCID: PMC5355451 DOI: 10.3389/fpsyt.2017.00042] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/01/2017] [Indexed: 12/11/2022] Open
Abstract
Norepinephrine (NE) is recognized as having a key role in the pathophysiology of major depressive disorder (MDD) and schizophrenia, although its distinct actions via α-adrenergic receptors (α-ARs) are not well defined. We performed a systematic review examining the roles of NE and α-ARs in MDD and schizophrenia. PubMed and ProQuest database searches were performed to identify English language papers published between 2008 and 2015. In total, 2,427 publications (PubMed, n = 669; ProQuest, n = 1,758) were identified. Duplicates, articles deemed not relevant, case studies, reviews, meta-analyses, preclinical reports, or articles on non-target indications were excluded. To limit the review to the most recent data representative of the literature, the review further focused on publications from 2010 to 2015, which were screened independently by all authors. A total of 16 research reports were identified: six clinical trial reports, six genetic studies, two biomarker studies, and two receptor studies. Overall, the studies provided indirect evidence that α-AR activity may play an important role in aberrant regulation of cognition, arousal, and valence systems associated with MDD and schizophrenia. Characterization of the NE pathway in patients may provide clinicians with information for more personalized therapy of these heterogeneous diseases. Current clinical studies do not provide direct evidence to support the role of NE α-ARs in the pathophysiology of MDD and schizophrenia and in the treatment response of patients with these diseases, in particular with relation to specific valence systems. Clinical studies that attempt to define associations between specific receptor binding profiles of psychotropics and particular clinical outcomes are needed.
Collapse
Affiliation(s)
- Vladimir Maletic
- Department of Neuropsychiatry and Behavioral Science, University of South Carolina , Columbia, SC , USA
| | - Anna Eramo
- Medical Affairs - Psychiatry, Lundbeck LLC , Deerfield, IL , USA
| | - Keva Gwin
- Medical Affairs - Psychiatry, Lundbeck LLC , Deerfield, IL , USA
| | - Steve J Offord
- Medical Affairs, Otsuka Pharmaceutical Development and Commercialization, Inc. , Princeton, NJ , USA
| | - Ruth A Duffy
- Medical Affairs, Otsuka Pharmaceutical Development and Commercialization, Inc. , Princeton, NJ , USA
| |
Collapse
|
250
|
Simpson EH, Kellendonk C. Insights About Striatal Circuit Function and Schizophrenia From a Mouse Model of Dopamine D 2 Receptor Upregulation. Biol Psychiatry 2017; 81:21-30. [PMID: 27720388 PMCID: PMC5121031 DOI: 10.1016/j.biopsych.2016.07.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 07/08/2016] [Accepted: 07/10/2016] [Indexed: 01/24/2023]
Abstract
The dopamine hypothesis of schizophrenia is supported by a large number of imaging studies that have identified an increase in dopamine binding at the D2 receptor selectively in the striatum. We review a decade of work using a regionally restricted and temporally regulated transgenic mouse model to investigate the behavioral, molecular, electrophysiological, and anatomical consequences of selective D2 receptor upregulation in the striatum. These studies have identified new and potentially important biomarkers at the circuit and molecular level that can now be explored in patients with schizophrenia. They provide an example of how animal models and their detailed level of neurobiological analysis allow a deepening of our understanding of the relationship between neuronal circuit function and symptoms of schizophrenia, and as a consequence generate new hypotheses that are testable in patients.
Collapse
Affiliation(s)
- Eleanor H. Simpson
- Department of Psychiatry, Columbia University,Neurobiology and Behavior, New York State Psychiatric Institute,Corresponding author: Eleanor H. Simpson, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 87, New York, New York 10032, , +1-646-774-6835
| | - Christoph Kellendonk
- Department of Pharmacology, Columbia University,Molecular Therapeutics, New York State Psychiatric Institute
| |
Collapse
|