201
|
Mehl LC, Manjally AV, Bouadi O, Gibson EM, Tay TL. Microglia in brain development and regeneration. Development 2022; 149:275253. [PMID: 35502782 PMCID: PMC9124570 DOI: 10.1242/dev.200425] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It has recently emerged that microglia, the tissue-resident macrophages of the central nervous system, play significant non-innate immune roles to support the development, maintenance, homeostasis and repair of the brain. Apart from being highly specialized brain phagocytes, microglia modulate the development and functions of neurons and glial cells through both direct and indirect interactions. Thus, recognizing the elements that influence the homeostasis and heterogeneity of microglia in normal brain development is crucial to understanding the mechanisms that lead to early disease pathogenesis of neurodevelopmental disorders. In this Review, we discuss recent studies that have elucidated the physiological development of microglia and summarize our knowledge of their non-innate immune functions in brain development and tissue repair.
Collapse
Affiliation(s)
- Lindsey C Mehl
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | | | - Ouzéna Bouadi
- Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
| | - Erin M Gibson
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Tuan L Tay
- Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany.,BrainLinks-BrainTools Centre, University of Freiburg, Freiburg, 79110, Germany.,Freiburg Institute of Advanced Studies, University of Freiburg, Freiburg, 79104, Germany
| |
Collapse
|
202
|
Luchena C, Zuazo-Ibarra J, Valero J, Matute C, Alberdi E, Capetillo-Zarate E. A Neuron, Microglia, and Astrocyte Triple Co-culture Model to Study Alzheimer’s Disease. Front Aging Neurosci 2022; 14:844534. [PMID: 35493929 PMCID: PMC9048896 DOI: 10.3389/fnagi.2022.844534] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Glial cells are essential to understand Alzheimer’s disease (AD) progression, given their role in neuroinflammation and neurodegeneration. There is a need for reliable and easy to manipulate models that allow studying the mechanisms behind neuron and glia communication. Currently available models such as co-cultures require complex methodologies and/or might not be affordable for all laboratories. With this in mind, we aimed to establish a straightforward in vitro setting with neurons and glial cells to study AD. We generated and optimized a 2D triple co-culture model with murine astrocytes, neurons and microglia, based on sequential seeding of each cell type. Immunofluorescence, western blot and ELISA techniques were used to characterize the effects of oligomeric Aβ (oAβ) in this model. We found that, in the triple co-culture, microglia increased the expression of anti-inflammatory marker Arginase I, and reduced pro-inflammatory iNOS and IL-1β, compared with microglia alone. Astrocytes reduced expression of pro-inflammatory A1 markers AMIGO2 and C3, and displayed a ramified morphology resembling physiological conditions. Anti-inflammatory marker TGF-β1 was also increased in the triple co-culture. Lastly, neurons increased post-synaptic markers, and developed more and longer branches than in individual primary cultures. Addition of oAβ in the triple co-culture reduced synaptic markers and increased CD11b in microglia, which are hallmarks of AD. Consequently, we developed a straightforward and reproducible triple co-cultured model, where cells resemble physiological conditions better than in individual primary cultures: microglia are less inflammatory, astrocytes are less reactive and neurons display a more mature morphology. Moreover, we are able to recapitulate Aβ-induced synaptic loss and CD11b increase. This model emerges as a powerful tool to study neurodegeneration and neuroinflammation in the context of AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Celia Luchena
- Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- CIBERNED, Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas, Madrid, Spain
| | - Jone Zuazo-Ibarra
- Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- CIBERNED, Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas, Madrid, Spain
| | - Jorge Valero
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca, Salamanca, Spain
| | - Carlos Matute
- Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- CIBERNED, Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas, Madrid, Spain
| | - Elena Alberdi
- Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- CIBERNED, Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas, Madrid, Spain
| | - Estibaliz Capetillo-Zarate
- Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- CIBERNED, Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas, Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- *Correspondence: Estibaliz Capetillo-Zarate,
| |
Collapse
|
203
|
Distinct phases of adult microglia proliferation: a Myc-mediated early phase and a Tnfaip3-mediated late phase. Cell Discov 2022; 8:34. [PMID: 35411038 PMCID: PMC9001707 DOI: 10.1038/s41421-022-00377-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
Microgliosis is a hallmark of many neurological diseases, including Alzheimer’s disease, stroke, seizure, traumatic brain and spinal cord injuries, and peripheral and optic nerve injuries. Recent studies have shown that the newly self-renewed microglia have specific neurological functions. However, the mechanism of adult microglia proliferation remains largely unclear. Here, with single-cell RNA sequencing, flow cytometry, and immunohistochemistry, we demonstrate that the sciatic nerve injury induced two distinct phases of microglia proliferation in mouse spinal cord, each with different gene expression profiles. We demonstrate that the transcription factor Myc was transiently upregulated in spinal cord microglia after nerve injury to mediate an early phase microglia proliferation. On the other hand, we reveal that the tumor-necrosis factor alpha-induced protein 3 (Tnfaip3) was downregulated to mediate the Myc-independent late-phase microglia proliferation. We show that cyclin dependent kinase 1, a kinase with important function in the M phase of the cell cycle, was involved only in the early phase. We reveal that although the early phase was neither necessary nor sufficient for the late phase proliferation, the late-phase suppressed the early phase microglia proliferation in the spinal cord. Finally, we demonstrate that the termination of spinal cord microglia proliferation required both Myc and Tnfaip3 to resume their baseline expression. Thus, we have delineated an interactive signaling network in the proliferation of differentiated microglia.
Collapse
|
204
|
Wu C, Pan Y, Wang L, Liu M, Wu M, Wang J, Yang G, Guo Y, Ma Y. A new method for primary culture of microglia in rats with spinal cord injury. Biochem Biophys Res Commun 2022; 599:63-68. [PMID: 35176626 DOI: 10.1016/j.bbrc.2022.02.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 11/29/2022]
Abstract
At present, the primary culture method of microglia is complicated, and the culture of spinal cord microglia is rare, so we will explore to establish a new and efficient primary culture method of microglia in rats with spinal cord injury (SCI). The SCI model of SD rats was established by modified A11en's method, and the model of SCI was performed on 1 d, 3 d, 7 d and 14 d respectively. Then the injured spinal cord was removed, mechanically separated and filtered. The morphology of microglia was observed the next day and its purity was identified by CD11b and Iba1 immunofluorescence labeling. According to the above results, the morphological changes of microglia after 3 d of SCI were observed at 1 d, 2 d and 4 d. The results showed that the purity of microglia was 98%. The number of microglia after 3 d of SCI was the most. After SCI, the migration ability of microglia was enhanced, the number of microglia in the injured area increased, and the number was the highest at 3 d, then gradually decreased. In addition, the microglia after SCI would gradually change from active state to resting state with the passage of time. Therefore, we can use a simple and efficient mechanical separation method to extract primary microglia, which provides the basis for the study of microglia.
Collapse
Affiliation(s)
- Chengjie Wu
- Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yalan Pan
- Laboratory of Chinese Medicine Nursing Intervention for Chronic Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lining Wang
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing, China
| | - Mengmin Liu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing, China
| | - Mao Wu
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China
| | - Jianwei Wang
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China
| | - Guanglu Yang
- Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Guo
- Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Yong Ma
- Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China; School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing, China.
| |
Collapse
|
205
|
Life and death of microglia: mechanisms governing microglial states and fates. Immunol Lett 2022; 245:51-60. [PMID: 35413354 DOI: 10.1016/j.imlet.2022.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 12/16/2022]
|
206
|
Reagan AM, Onos KD, Heuer SE, Sasner M, Howell GR. Improving mouse models for the study of Alzheimer's disease. Curr Top Dev Biol 2022; 148:79-113. [PMID: 35461569 DOI: 10.1016/bs.ctdb.2021.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease whose risk is influenced by genetic and environmental factors. Although a number of pathological hallmarks have been extensively studied over the last several decades, a complete picture of disease initiation and progression remains unclear. We now understand that numerous cell types and systems are involved in AD pathogenesis, and that this cellular profile may present differently for each individual, making the creation of relevant mouse models challenging. However, with increasingly diverse data made available by genome-wide association studies, we can identify and examine new genes and pathways involved in genetic risk for AD, many of which involve vascular health and inflammation. When developing mouse models, it is critical to assess (1) an aging timeline that represents onset and progression in humans, (2) genetic variants and context, (3) environmental factors present in human populations that result in both neuropathological and functional changes-themes that we address in this chapter.
Collapse
Affiliation(s)
| | | | - Sarah E Heuer
- The Jackson Laboratory, Bar Harbor, ME, United States; Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | | | - Gareth R Howell
- The Jackson Laboratory, Bar Harbor, ME, United States; Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States.
| |
Collapse
|
207
|
Cadiz MP, Jensen TD, Sens JP, Zhu K, Song WM, Zhang B, Ebbert M, Chang R, Fryer JD. Culture shock: microglial heterogeneity, activation, and disrupted single-cell microglial networks in vitro. Mol Neurodegener 2022; 17:26. [PMID: 35346293 PMCID: PMC8962153 DOI: 10.1186/s13024-022-00531-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Microglia, the resident immune cells of the brain, play a critical role in numerous diseases, but are a minority cell type and difficult to genetically manipulate in vivo with viral vectors and other approaches. Primary cultures allow a more controlled setting to investigate these cells, but morphological and transcriptional changes upon removal from their normal brain environment raise many caveats from in vitro studies. METHODS To investigate whether cultured microglia recapitulate in vivo microglial signatures, we used single-cell RNA sequencing (scRNAseq) to compare microglia freshly isolated from the brain to primary microglial cultures. We performed cell population discovery, differential expression analysis, and gene co-expression module analysis to compare signatures between in vitro and in vivo microglia. We constructed causal predictive network models of transcriptional regulators from the scRNAseq data and identified a set of potential key drivers of the cultured phenotype. To validate this network analysis, we knocked down two of these key drivers, C1qc and Prdx1, in primary cultured microglia and quantified changes in microglial activation markers. RESULTS We found that, although often assumed to be a relatively homogenous population of cells in culture, in vitro microglia are a highly heterogeneous population consisting of distinct subpopulations of cells with transcriptional profiles reminiscent of macrophages and monocytes, and are marked by transcriptional programs active in neurodegeneration and other disease states. We found that microglia in vitro presented transcriptional activation of a set of "culture shock genes" not found in freshly isolated microglia, characterized by strong upregulation of disease-associated genes including Apoe, Lyz2, and Spp1, and downregulation of homeostatic microglial markers, including Cx3cr1, P2ry12, and Tmem119. Finally, we found that cultured microglia prominently alter their transcriptional machinery modulated by key drivers from the homeostatic to activated phenotype. Knockdown of one of these drivers, C1qc, resulted in downregulation of microglial activation genes Lpl, Lyz2, and Ccl4. CONCLUSIONS Overall, our data suggest that when removed from their in vivo home environment, microglia suffer a severe case of "culture shock", drastically modulating their transcriptional regulatory network state from homeostatic to activated through upregulation of modules of culture-specific genes. Consequently, cultured microglia behave as a disparate cell type that does not recapitulate the homeostatic signatures of microglia in vivo. Finally, our predictive network model discovered potential key drivers that may convert activated microglia back to their homeostatic state, allowing for more accurate representation of in vivo states in culture. Knockdown of key driver C1qc partially attenuated microglial activation in vitro, despite C1qc being only weakly upregulated in culture. This suggests that even genes that are not strongly differentially expressed across treatments or preparations may drive downstream transcriptional changes in culture.
Collapse
Affiliation(s)
- Mika P. Cadiz
- Department of Neuroscience, Mayo Clinic, Scottsdale, AZ 85259 USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Scottsdale, AZ 85259 USA
| | - Tanner D. Jensen
- Department of Neuroscience, Mayo Clinic, Scottsdale, AZ 85259 USA
| | - Jonathon P. Sens
- Department of Neuroscience, Mayo Clinic, Scottsdale, AZ 85259 USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Scottsdale, AZ 85259 USA
| | - Kuixi Zhu
- Department of Neurology, University of Arizona, Tucson, AZ 85721 USA
| | - Won-Min Song
- Department of Genetics & Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Bin Zhang
- Department of Genetics & Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Mark Ebbert
- Sanders-Brown Center on Aging, Biomedical Informatics, and Department of Neuroscience, University of Kentucky, Lexington, KY 40536 USA
| | - Rui Chang
- Department of Neurology, University of Arizona, Tucson, AZ 85721 USA
| | - John D. Fryer
- Department of Neuroscience, Mayo Clinic, Scottsdale, AZ 85259 USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Scottsdale, AZ 85259 USA
| |
Collapse
|
208
|
Pierre WC, Londono I, Quiniou C, Chemtob S, Lodygensky GA. Modulatory effect of IL‐1 inhibition following lipopolysaccharide‐induced neuroinflammation in neonatal microglia and astrocytes. Int J Dev Neurosci 2022; 82:243-260. [DOI: 10.1002/jdn.10179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 02/23/2022] [Accepted: 03/17/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Wyston C. Pierre
- Sainte‐Justine Hospital and Research Center, Department of Pediatrics Université de Montréal Montréal, Québec Canada
- Department of Pharmacology and Physiology Université de Montréal Montréal Canada
| | - Irène Londono
- Sainte‐Justine Hospital and Research Center, Department of Pediatrics Université de Montréal Montréal, Québec Canada
| | - Christiane Quiniou
- Sainte‐Justine Hospital and Research Center, Department of Pediatrics Université de Montréal Montréal, Québec Canada
| | - Sylvain Chemtob
- Sainte‐Justine Hospital and Research Center, Department of Pediatrics Université de Montréal Montréal, Québec Canada
- Department of Pharmacology and Physiology Université de Montréal Montréal Canada
- Department of Pharmacology and Therapeutics McGill University Montréal Canada
| | - Gregory A. Lodygensky
- Sainte‐Justine Hospital and Research Center, Department of Pediatrics Université de Montréal Montréal, Québec Canada
- Department of Pharmacology and Physiology Université de Montréal Montréal Canada
| |
Collapse
|
209
|
Hu C, Du R, Xiao Q, Geng M. Differences between cultured cortical neurons by trypsin and papain digestion. IBRAIN 2022; 8:93-99. [PMID: 37786412 PMCID: PMC10529170 DOI: 10.1002/ibra.12028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/05/2023]
Abstract
The objective of this study was to compare the efficiency of trypsin and papain in neuronal digestion and determine which enzyme is more efficient. Cortical tissues were obtained from Sprague-Dawley (SD) rats. According to the different digestive enzymes, the samples were divided into the trypsin group and the papain group. After being digested by each of the two enzymes, cortical neurons were collected from the samples. Then, the morphology of the cortical neurons was determined. Moreover, the cortical neurons were transfected with the negative control (NC) lentivirus. The transfection efficiency and morphology were determined and compared. Compared with the papain group, cortical neurons in the trypsin group were more in number, had larger cell size, had longer axonal length, and had fewer impurities. The transfection efficiency of the trypsin group (57.77%) was higher than that of the papain group (53.83%). The morphology of neurons that was displayed showed that the cell body of most neurons shrank and became smaller, and the axis mutation became shorter and less in the papain group 6 days after transfection with the NC lentivirus. Trypsin is more efficient in digesting neurons because the neurons digested by this enzyme are more in number, have a larger cell body, longer axons, and greater transfection efficiency.
Collapse
Affiliation(s)
- Chang‐Yan Hu
- Animal Zoology DepartmentKunming Medical UniversityKunmingYunnanChina
| | - Ruo‐Lan Du
- Institute of Neurological Disease, West China HospitalSichuan UniversityChengduSichuanChina
| | - Qiu‐Xia Xiao
- Animal Zoology DepartmentKunming Medical UniversityKunmingYunnanChina
| | - Min‐Jian Geng
- Department of AnesthesiologyNanchong Central HospitalNanchongSichuanChina
| |
Collapse
|
210
|
Redefining microglia states: Lessons and limits of human and mouse models to study microglia states in neurodegenerative diseases. Semin Immunol 2022; 60:101651. [PMID: 36155944 DOI: 10.1016/j.smim.2022.101651] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/03/2022] [Indexed: 01/15/2023]
Abstract
Microglia are resident macrophages of the brain parenchyma and play an essential role in various aspects of brain development, plasticity, and homeostasis. With recent advances in single-cell RNA-sequencing, heterogeneous microglia transcriptional states have been identified in both animal models of neurodegenerative disorders and patients. However, the functional roles of these microglia states remain unclear; specifically, the question of whether individual states or combinations of states are protective or detrimental (or both) in the context of disease progression. To attempt to answer this, the field has largely relied on studies employing mouse models, human in vitro and chimeric models, and human post-mortem tissue, all of which have their caveats, but used in combination can enable new biological insight and validation of candidate disease pathways and mechanisms. In this review, we summarize our current understanding of disease-associated microglia states and phenotypes in neurodegenerative disorders, discuss important considerations when comparing mouse and human microglia states and functions, and identify areas of microglia biology where species differences might limit our understanding of microglia state.
Collapse
|
211
|
Marsh SE, Walker AJ, Kamath T, Dissing-Olesen L, Hammond TR, de Soysa TY, Young AMH, Murphy S, Abdulraouf A, Nadaf N, Dufort C, Walker AC, Lucca LE, Kozareva V, Vanderburg C, Hong S, Bulstrode H, Hutchinson PJ, Gaffney DJ, Hafler DA, Franklin RJM, Macosko EZ, Stevens B. Dissection of artifactual and confounding glial signatures by single-cell sequencing of mouse and human brain. Nat Neurosci 2022; 25:306-316. [PMID: 35260865 PMCID: PMC11645269 DOI: 10.1038/s41593-022-01022-8] [Citation(s) in RCA: 213] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/25/2022] [Indexed: 12/31/2022]
Abstract
A key aspect of nearly all single-cell sequencing experiments is dissociation of intact tissues into single-cell suspensions. While many protocols have been optimized for optimal cell yield, they have often overlooked the effects that dissociation can have on ex vivo gene expression. Here, we demonstrate that use of enzymatic dissociation on brain tissue induces an aberrant ex vivo gene expression signature, most prominently in microglia, which is prevalent in published literature and can substantially confound downstream analyses. To address this issue, we present a rigorously validated protocol that preserves both in vivo transcriptional profiles and cell-type diversity and yield across tissue types and species. We also identify a similar signature in postmortem human brain single-nucleus RNA-sequencing datasets, and show that this signature is induced in freshly isolated human tissue by exposure to elevated temperatures ex vivo. Together, our results provide a methodological solution for preventing artifactual gene expression changes during fresh tissue digestion and a reference for future deeper analysis of the potential confounding states present in postmortem human samples.
Collapse
Affiliation(s)
- Samuel E Marsh
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alec J Walker
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Tushar Kamath
- Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lasse Dissing-Olesen
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Timothy R Hammond
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - T Yvanka de Soysa
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Adam M H Young
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Sarah Murphy
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Abdulraouf Abdulraouf
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Naeem Nadaf
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Connor Dufort
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Alicia C Walker
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Liliana E Lucca
- Department of Neurology and Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Velina Kozareva
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Charles Vanderburg
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Soyon Hong
- UK Dementia Research Institute, University College London, London, UK
| | - Harry Bulstrode
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Peter J Hutchinson
- Department of Clinical Neurosciences, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - David A Hafler
- Department of Neurology and Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Robin J M Franklin
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Evan Z Macosko
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Beth Stevens
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
212
|
Cowan MN, Sethi I, Harris TH. Microglia in CNS infections: insights from Toxoplasma gondii and other pathogens. Trends Parasitol 2022; 38:217-229. [PMID: 35039238 PMCID: PMC8852251 DOI: 10.1016/j.pt.2021.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022]
Abstract
Microglia, the resident immune cells of the central nervous system (CNS), are poised to respond to neuropathology. Microglia play multiple roles in maintaining homeostasis and promoting inflammation in numerous disease states. The study of microglial innate immune programs has largely focused on exploring neurodegenerative disease states with the use of genetic targeting approaches. Our understanding of how microglia participate in immune responses against pathogens is just beginning to take shape. Here, we review existing animal models of CNS infection, with a focus on how microglial physiology and inflammatory processes control protozoan and viral infections of the brain. We further discuss how microglial participation in over-exuberant immune responses can drive immunopathology that is detrimental to CNS health and homeostasis.
Collapse
Affiliation(s)
- Maureen N. Cowan
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
| | - Ish Sethi
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
| | - Tajie H. Harris
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, VA, United States,Correspondence: (T. H. Harris)
| |
Collapse
|
213
|
O'Brien CA, Bennett FC, Bennett ML. Microglia in antiviral immunity of the brain and spinal cord. Semin Immunol 2022; 60:101650. [PMID: 36099864 PMCID: PMC9934594 DOI: 10.1016/j.smim.2022.101650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/17/2022] [Accepted: 08/30/2022] [Indexed: 01/15/2023]
Abstract
Viral infections of the central nervous system (CNS) are a significant cause of neurological impairment and mortality worldwide. As tissue resident macrophages, microglia are critical initial responders to CNS viral infection. Microglia seem to coordinate brain-wide antiviral responses of both brain resident cells and infiltrating immune cells. This review discusses how microglia may promote this antiviral response at a molecular level, from potential mechanisms of virus recognition to downstream cytokine responses and interaction with antiviral T cells. Recent advancements in genetic tools to specifically target microglia in vivo promise to further our understanding about the precise mechanistic role of microglia in CNS infection.
Collapse
Affiliation(s)
- Carleigh A O'Brien
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States.
| | - F Chris Bennett
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States; Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Mariko L Bennett
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| |
Collapse
|
214
|
Cuadros MA, Sepulveda MR, Martin-Oliva D, Marín-Teva JL, Neubrand VE. Microglia and Microglia-Like Cells: Similar but Different. Front Cell Neurosci 2022; 16:816439. [PMID: 35197828 PMCID: PMC8859783 DOI: 10.3389/fncel.2022.816439] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
Microglia are the tissue-resident macrophages of the central nervous parenchyma. In mammals, microglia are thought to originate from yolk sac precursors and posteriorly maintained through the entire life of the organism. However, the contribution of microglial cells from other sources should also be considered. In addition to “true” or “bona-fide” microglia, which are of embryonic origin, the so-called “microglia-like cells” are hematopoietic cells of bone marrow origin that can engraft the mature brain mainly under pathological conditions. These cells implement great parts of the microglial immune phenotype, but they do not completely adopt the “true microglia” features. Because of their pronounced similarity, true microglia and microglia-like cells are usually considered together as one population. In this review, we discuss the origin and development of these two distinct cell types and their differences. We will also review the factors determining the appearance and presence of microglia-like cells, which can vary among species. This knowledge might contribute to the development of therapeutic strategies aiming at microglial cells for the treatment of diseases in which they are involved, for example neurodegenerative disorders like Alzheimer’s and Parkinson’s diseases.
Collapse
Affiliation(s)
- Miguel A Cuadros
- Department of Cell Biology, Faculty of Science, University of Granada, Granada, Spain
| | - M Rosario Sepulveda
- Department of Cell Biology, Faculty of Science, University of Granada, Granada, Spain
| | - David Martin-Oliva
- Department of Cell Biology, Faculty of Science, University of Granada, Granada, Spain
| | - José L Marín-Teva
- Department of Cell Biology, Faculty of Science, University of Granada, Granada, Spain
| | - Veronika E Neubrand
- Department of Cell Biology, Faculty of Science, University of Granada, Granada, Spain
| |
Collapse
|
215
|
Subramanian S, Busch CJL, Molawi K, Geirsdottir L, Maurizio J, Vargas Aguilar S, Belahbib H, Gimenez G, Yuda RAA, Burkon M, Favret J, Gholamhosseinian Najjar S, de Laval B, Kandalla PK, Sarrazin S, Alexopoulou L, Sieweke MH. Long-term culture-expanded alveolar macrophages restore their full epigenetic identity after transfer in vivo. Nat Immunol 2022; 23:458-468. [PMID: 35210623 DOI: 10.1038/s41590-022-01146-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/20/2022] [Indexed: 12/31/2022]
Abstract
Alveolar macrophages (AMs) are lung tissue-resident macrophages that can be expanded in culture, but it is unknown to what extent culture affects their in vivo identity. Here we show that mouse long-term ex vivo expanded AMs (exAMs) maintained a core AM gene expression program, but showed culture adaptations related to adhesion, metabolism and proliferation. Upon transplantation into the lung, exAMs reacquired full transcriptional and epigenetic AM identity, even after several months in culture and could self-maintain long-term in the alveolar niche. Changes in open chromatin regions observed in culture were fully reversible in transplanted exAMs and resulted in a gene expression profile indistinguishable from resident AMs. Our results indicate that long-term proliferation of AMs in culture did not compromise cellular identity in vivo. The robustness of exAM identity provides new opportunities for mechanistic analysis and highlights the therapeutic potential of exAMs.
Collapse
Affiliation(s)
- Sethuraman Subramanian
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany.,Aix-Marseille University, CNRS, INSERM, CIML, Marseille, France.,Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtzgemeinschaft (MDC), Berlin, Germany
| | - Clara Jana-Lui Busch
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Kaaweh Molawi
- Aix-Marseille University, CNRS, INSERM, CIML, Marseille, France.,Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtzgemeinschaft (MDC), Berlin, Germany
| | | | | | - Stephanie Vargas Aguilar
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany.,Aix-Marseille University, CNRS, INSERM, CIML, Marseille, France.,Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtzgemeinschaft (MDC), Berlin, Germany
| | | | - Gregory Gimenez
- Aix-Marseille University, CNRS, INSERM, CIML, Marseille, France
| | - Ridzky Anis Advent Yuda
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Michaela Burkon
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Jérémy Favret
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | | | | | - Prashanth Kumar Kandalla
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Sandrine Sarrazin
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany.,Aix-Marseille University, CNRS, INSERM, CIML, Marseille, France
| | | | - Michael H Sieweke
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany. .,Aix-Marseille University, CNRS, INSERM, CIML, Marseille, France.
| |
Collapse
|
216
|
Garland EF, Hartnell IJ, Boche D. Microglia and Astrocyte Function and Communication: What Do We Know in Humans? Front Neurosci 2022; 16:824888. [PMID: 35250459 PMCID: PMC8888691 DOI: 10.3389/fnins.2022.824888] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Microglia and astrocytes play essential roles in the central nervous system contributing to many functions including homeostasis, immune response, blood-brain barrier maintenance and synaptic support. Evidence has emerged from experimental models of glial communication that microglia and astrocytes influence and coordinate each other and their effects on the brain environment. However, due to the difference in glial cells between humans and rodents, it is essential to confirm the relevance of these findings in human brains. Here, we aim to review the current knowledge on microglia-astrocyte crosstalk in humans, exploring novel methodological techniques used in health and disease conditions. This will include an in-depth look at cell culture and iPSCs, post-mortem studies, imaging and fluid biomarkers, genetics and transcriptomic data. In this review, we will discuss the advantages and limitations of these methods, highlighting the understanding these methods have brought the field on these cells communicative abilities, and the knowledge gaps that remain.
Collapse
Affiliation(s)
| | | | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
217
|
Cook JR, Gray AL, Lemarchand E, Schiessl I, Green JP, Newland MC, Dyer DP, Brough D, Lawrence CB. LRRC8A is dispensable for a variety of microglial functions and response to acute stroke. Glia 2022; 70:1068-1083. [PMID: 35150591 PMCID: PMC9304177 DOI: 10.1002/glia.24156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 11/11/2022]
Abstract
Microglia, resident brain immune cells, are critical in orchestrating responses to central nervous system (CNS) injury. Many microglial functions, such as phagocytosis, motility and chemotaxis, are suggested to rely on chloride channels, including the volume‐regulated anion channel (VRAC), but studies to date have relied on the use of pharmacological tools with limited specificity. VRAC has also been proposed as a drug target for acute CNS injury, and its role in microglial function is of considerable interest for developing CNS therapeutics. This study aimed to definitively confirm the contribution of VRAC in microglia function by using conditional LRRC8A‐knockout mice, which lacked the essential VRAC subunit LRRC8A in microglia. We demonstrated that while VRAC contributed to cell volume regulation, it had no effect on phagocytic activity, cell migration or P2YR12‐dependent chemotaxis. Moreover, loss of microglial VRAC did not affect microglial morphology or the extent of ischemic damage following stroke. We conclude that VRAC does not critically regulate microglial responses to brain injury and could be targetable in other CNS cell types (e.g., astrocytes) without impeding microglial function. Our results also demonstrate a role for VRAC in cell volume regulation but show that VRAC is not involved in several major cellular functions that it was previously thought to regulate, and point to other, alternative mechanisms of chloride transport in innate immunity.
Collapse
Affiliation(s)
- James R Cook
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK.,Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Anna L Gray
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Eloise Lemarchand
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK.,Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Ingo Schiessl
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK.,Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jack P Green
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK.,Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Mary C Newland
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK.,Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Douglas P Dyer
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - David Brough
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK.,Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Catherine B Lawrence
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK.,Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
218
|
Identification of Potential Biomarkers of Type 2 Diabetes Mellitus-Related Immune Infiltration Using Weighted Gene Coexpression Network Analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9920744. [PMID: 35187175 PMCID: PMC8849810 DOI: 10.1155/2022/9920744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 11/24/2021] [Accepted: 12/23/2021] [Indexed: 12/03/2022]
Abstract
Background Type 2 diabetes mellitus (T2DM) is characterized by chronic low-grade inflammation, showing an increasing trend. The infiltration of immune cells into adipose tissue has been shown to be an important pathogenic cause of T2DM. The purpose of this study is to use the relevant database to identify some abnormally expressed or dysfunctional genes related to diabetes from the perspective of immune infiltration. Methods Weighted gene coexpression network analysis (WGCNA) was employed to systematically identify the coexpressed gene modules and hub genes associated with T2DM development based on a microarray dataset (GSE23561) from the Gene Expression Omnibus (GEO) database. The key genes in modules highly related to clinical features were calculated and screened by using R software, and their participation in T2DM was determined by gene enrichment analysis. The mRNA levels of CSF1R, H2AFV, LCK, and TLR9 in pre-T2DM mice and normal wild-type mice were detected by WGCNA screening and real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Results We constructed 14 coexpressed gene modules, and the brown module was shown to be significantly related to T2DM. Through verification of the protein-protein interaction (PPI) network, four upregulated hub genes, CSF1R, H2AFV, LCK, and TLR9, were screened from the brown module and successfully distinguishedT2DM patients from healthy people. These hub genes may be used as biomarkers and important indicators for patient diagnosis. Enrichment analysis showed that these hub genes were highly associated with IL-6-related inflammatory metabolism, immune regulation, and immune cell infiltration. Finally, we verified the hub genes CSF1R, LCK, and TLR9 in a T2DM animal model and found that their mRNA levels were significantly higher in animals with T2DM than in control group mice (NC). Conclusions In summary, our results suggest that these hub genes (CSF1R, LCK, and TLR9) can serve as biomarkers and immunotherapeutic targets for T2DM.
Collapse
|
219
|
Gumbs SBH, Kübler R, Gharu L, Schipper PJ, Borst AL, Snijders GJLJ, Ormel PR, van Berlekom AB, Wensing AMJ, de Witte LD, Nijhuis M. Human microglial models to study HIV infection and neuropathogenesis: a literature overview and comparative analyses. J Neurovirol 2022; 28:64-91. [PMID: 35138593 PMCID: PMC9076745 DOI: 10.1007/s13365-021-01049-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/03/2021] [Accepted: 12/18/2021] [Indexed: 02/08/2023]
Abstract
HIV persistence in the CNS despite antiretroviral therapy may cause neurological disorders and poses a critical challenge for HIV cure. Understanding the pathobiology of HIV-infected microglia, the main viral CNS reservoir, is imperative. Here, we provide a comprehensive comparison of human microglial culture models: cultured primary microglia (pMG), microglial cell lines, monocyte-derived microglia (MDMi), stem cell-derived microglia (iPSC-MG), and microglia grown in 3D cerebral organoids (oMG) as potential model systems to advance HIV research on microglia. Functional characterization revealed phagocytic capabilities and responsiveness to LPS across all models. Microglial transcriptome profiles of uncultured pMG showed the highest similarity to cultured pMG and oMG, followed by iPSC-MG and then MDMi. Direct comparison of HIV infection showed a striking difference, with high levels of viral replication in cultured pMG and MDMi and relatively low levels in oMG resembling HIV infection observed in post-mortem biopsies, while the SV40 and HMC3 cell lines did not support HIV infection. Altogether, based on transcriptional similarities to uncultured pMG and susceptibility to HIV infection, MDMi may serve as a first screening tool, whereas oMG, cultured pMG, and iPSC-MG provide more representative microglial culture models for HIV research. The use of current human microglial cell lines (SV40, HMC3) is not recommended.
Collapse
Affiliation(s)
- Stephanie B H Gumbs
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Raphael Kübler
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Psychiatry, Icahn School of Medicine, New York, NY, USA
| | - Lavina Gharu
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pauline J Schipper
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anne L Borst
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gijsje J L J Snijders
- Department of Psychiatry, Icahn School of Medicine, New York, NY, USA
- Department of Psychiatry, University Medical Center Utrecht, Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Paul R Ormel
- Department of Psychiatry, University Medical Center Utrecht, Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Amber Berdenis van Berlekom
- Department of Psychiatry, University Medical Center Utrecht, Brain Center, Utrecht University, Utrecht, The Netherlands
- Department of Translational Neuroscience, University Medical Center Utrecht, Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Annemarie M J Wensing
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lot D de Witte
- Department of Psychiatry, Icahn School of Medicine, New York, NY, USA
- Department of Psychiatry, University Medical Center Utrecht, Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Monique Nijhuis
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
220
|
Brain cell type-specific cholesterol metabolism and implications for learning and memory. Trends Neurosci 2022; 45:401-414. [DOI: 10.1016/j.tins.2022.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/06/2022] [Accepted: 01/25/2022] [Indexed: 12/21/2022]
|
221
|
He X, Wu Y, Huang H, Guo F. A novel histone deacetylase inhibitor‐based approach to eliminate microglia and retain astrocyte properties in glial cell culture. J Neurochem 2022; 161:405-416. [PMID: 35092690 DOI: 10.1111/jnc.15581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/04/2022] [Accepted: 01/25/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Xi‐Biao He
- Laboratory of Stem Cell Biology and Epigenetics, School of Basic Medical Sciences Shanghai University of Medicine and Health Sciences Shanghai China
| | - Yi Wu
- Speech Therapy Department, The Second Rehabilitation Hospital of Shanghai Shanghai China
| | - Haozhi Huang
- Department of Orthopaedic Surgery, Shanghai Tenth People’s Hospital Affiliated to Tongji University Shanghai China
| | - Fang Guo
- Laboratory of Stem Cell Biology and Epigenetics, School of Basic Medical Sciences Shanghai University of Medicine and Health Sciences Shanghai China
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital Shanghai China
| |
Collapse
|
222
|
O'Neil SM, Hans EE, Jiang S, Wangler LM, Godbout JP. Astrocyte immunosenescence and deficits in interleukin 10 signaling in the aged brain disrupt the regulation of microglia following innate immune activation. Glia 2022; 70:913-934. [DOI: 10.1002/glia.24147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/13/2021] [Accepted: 01/09/2022] [Indexed: 12/21/2022]
Affiliation(s)
- Shane M. O'Neil
- Department of Neuroscience The Ohio State University Wexner Medical Center Columbus Ohio USA
| | - Emma E. Hans
- Department of Neuroscience The Ohio State University Wexner Medical Center Columbus Ohio USA
| | - Starr Jiang
- Department of Neuroscience The Ohio State University Wexner Medical Center Columbus Ohio USA
| | - Lynde M. Wangler
- Department of Neuroscience The Ohio State University Wexner Medical Center Columbus Ohio USA
| | - Jonathan P. Godbout
- Department of Neuroscience The Ohio State University Wexner Medical Center Columbus Ohio USA
- Institute for Behavioral Medicine Research The Ohio State University Wexner Medical Center Columbus Ohio USA
- Chronic Brain Injury Program The Ohio State University Columbus Ohio USA
| |
Collapse
|
223
|
He D, Xu H, Zhang H, Tang R, Lan Y, Xing R, Li S, Christian E, Hou Y, Lorello P, Caldarone B, Ding J, Nguyen L, Dionne D, Thakore P, Schnell A, Huh JR, Rozenblatt-Rosen O, Regev A, Kuchroo VK. Disruption of the IL-33-ST2-AKT signaling axis impairs neurodevelopment by inhibiting microglial metabolic adaptation and phagocytic function. Immunity 2022; 55:159-173.e9. [PMID: 34982959 PMCID: PMC9074730 DOI: 10.1016/j.immuni.2021.12.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 04/27/2021] [Accepted: 12/03/2021] [Indexed: 01/13/2023]
Abstract
To accommodate the changing needs of the developing brain, microglia must undergo substantial morphological, phenotypic, and functional reprogramming. Here, we examined whether cellular metabolism regulates microglial function during neurodevelopment. Microglial mitochondria bioenergetics correlated with and were functionally coupled to phagocytic activity in the developing brain. Transcriptional profiling of microglia with diverse metabolic profiles revealed an activation signature wherein the interleukin (IL)-33 signaling axis is associated with phagocytic activity. Genetic perturbation of IL-33 or its receptor ST2 led to microglial dystrophy, impaired synaptic function, and behavioral abnormalities. Conditional deletion of Il33 from astrocytes or Il1rl1, encoding ST2, in microglia increased susceptibility to seizures. Mechanistically, IL-33 promoted mitochondrial activity and phagocytosis in an AKT-dependent manner. Mitochondrial metabolism and AKT activity were temporally regulated in vivo. Thus, a microglia-astrocyte circuit mediated by the IL-33-ST2-AKT signaling axis supports microglial metabolic adaptation and phagocytic function during early development, with implications for neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Danyang He
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Science, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Heping Xu
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Science, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Huiyuan Zhang
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ruihan Tang
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yangning Lan
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Science, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Ruxiao Xing
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Science, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Shaomin Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Elena Christian
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yu Hou
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Paul Lorello
- Mouse Behavior Core, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Barbara Caldarone
- Mouse Behavior Core, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jiarui Ding
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lan Nguyen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Danielle Dionne
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Pratiksha Thakore
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alexandra Schnell
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jun R Huh
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute and Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
224
|
Yoo HJ, Kwon MS. Aged Microglia in Neurodegenerative Diseases: Microglia Lifespan and Culture Methods. Front Aging Neurosci 2022; 13:766267. [PMID: 35069173 PMCID: PMC8766407 DOI: 10.3389/fnagi.2021.766267] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022] Open
Abstract
Microglia have been recognized as macrophages of the central nervous system (CNS) that are regarded as a culprit of neuroinflammation in neurodegenerative diseases. Thus, microglia have been considered as a cell that should be suppressed for maintaining a homeostatic CNS environment. However, microglia ontogeny, fate, heterogeneity, and their function in health and disease have been defined better with advances in single-cell and imaging technologies, and how to maintain homeostatic microglial function has become an emerging issue for targeting neurodegenerative diseases. Microglia are long-lived cells of yolk sac origin and have limited repopulating capacity. So, microglial perturbation in their lifespan is associated with not only neurodevelopmental disorders but also neurodegenerative diseases with aging. Considering that microglia are long-lived cells and may lose their functional capacity as they age, we can expect that aged microglia contribute to various neurodegenerative diseases. Thus, understanding microglial development and aging may represent an opportunity for clarifying CNS disease mechanisms and developing novel therapies.
Collapse
Affiliation(s)
- Hyun-Jung Yoo
- Department of Pharmacology, School of Medicine, Research Institute for Basic Medical Science, CHA University, Cha Bio Complex, Seongnam-si, South Korea
- Research Competency Milestones Program (RECOMP) of School of Medicine, CHA University, Seongnam-si, South Korea
| | - Min-Soo Kwon
- Department of Pharmacology, School of Medicine, Research Institute for Basic Medical Science, CHA University, Cha Bio Complex, Seongnam-si, South Korea
- *Correspondence: Min-Soo Kwon,
| |
Collapse
|
225
|
Hastings N, Kuan WL, Osborne A, Kotter MRN. Therapeutic Potential of Astrocyte Transplantation. Cell Transplant 2022; 31:9636897221105499. [PMID: 35770772 PMCID: PMC9251977 DOI: 10.1177/09636897221105499] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cell transplantation is an attractive treatment strategy for a variety of brain disorders, as it promises to replenish lost functions and rejuvenate the brain. In particular, transplantation of astrocytes has come into light recently as a therapy for amyotrophic lateral sclerosis (ALS); moreover, grafting of astrocytes also showed positive results in models of other conditions ranging from neurodegenerative diseases of older age to traumatic injury and stroke. Despite clear differences in etiology, disorders such as ALS, Parkinson's, Alzheimer's, and Huntington's diseases, as well as traumatic injury and stroke, converge on a number of underlying astrocytic abnormalities, which include inflammatory changes, mitochondrial damage, calcium signaling disturbance, hemichannel opening, and loss of glutamate transporters. In this review, we examine these convergent pathways leading to astrocyte dysfunction, and explore the existing evidence for a therapeutic potential of transplantation of healthy astrocytes in various models. Existing literature presents a wide variety of methods to generate astrocytes, or relevant precursor cells, for subsequent transplantation, while described outcomes of this type of treatment also differ between studies. We take technical differences between methodologies into account to understand the variability of therapeutic benefits, or lack thereof, at a deeper level. We conclude by discussing some key requirements of an astrocyte graft that would be most suitable for clinical applications.
Collapse
Affiliation(s)
- Nataly Hastings
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Wei-Li Kuan
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Andrew Osborne
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Mark R N Kotter
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
226
|
Pons V, Rivest S. Targeting Systemic Innate Immune Cells as a Therapeutic Avenue for Alzheimer Disease. Pharmacol Rev 2022; 74:1-17. [PMID: 34987086 DOI: 10.1124/pharmrev.121.000400] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer disease (AD) is the first progressive neurodegenerative disease worldwide, and the disease is characterized by an accumulation of amyloid in the brain and neurovasculature that triggers cognitive decline and neuroinflammation. The innate immune system has a preponderant role in AD. The last decade, scientists focused their efforts on therapies aiming to modulate innate immunity. The latter is of great interest, since they participate to the inflammation and phagocytose the amyloid in the brain and blood vessels. We and others have developed pharmacological approaches to stimulate these cells using various ligands. These include toll-like receptor 4, macrophage colony stimulating factor, and more recently nucleotide-binding oligomerization domain-containing 2 receptors. This review will discuss the great potential to take advantage of the innate immune system to fight naturally against amyloid β accumulation and prevent its detrimental consequence on brain functions and its vascular system. SIGNIFICANCE STATEMENT: The focus on amyloid β removal from the perivascular space rather than targeting CNS plaque formation and clearance represents a new direction with a great potential. Small molecules able to act at the level of peripheral immunity would constitute a novel approach for tackling aberrant central nervous system biology, one of which we believe would have the potential of generating a lot of interest.
Collapse
Affiliation(s)
- Vincent Pons
- Neuroscience Laboratory, CHU de Québec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boul., Québec City, QC G1V 4G2, Canada
| | - Serge Rivest
- Neuroscience Laboratory, CHU de Québec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boul., Québec City, QC G1V 4G2, Canada
| |
Collapse
|
227
|
Liu E, Karpf L, Bohl D. Neuroinflammation in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia and the Interest of Induced Pluripotent Stem Cells to Study Immune Cells Interactions With Neurons. Front Mol Neurosci 2022; 14:767041. [PMID: 34970118 PMCID: PMC8712677 DOI: 10.3389/fnmol.2021.767041] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a shared hallmark between amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). For long, studies were conducted on tissues of post-mortem patients and neuroinflammation was thought to be only bystander result of the disease with the immune system reacting to dying neurons. In the last two decades, thanks to improving technologies, the identification of causal genes and the development of new tools and models, the involvement of inflammation has emerged as a potential driver of the diseases and evolved as a new area of intense research. In this review, we present the current knowledge about neuroinflammation in ALS, ALS-FTD, and FTD patients and animal models and we discuss reasons of failures linked to therapeutic trials with immunomodulator drugs. Then we present the induced pluripotent stem cell (iPSC) technology and its interest as a new tool to have a better immunopathological comprehension of both diseases in a human context. The iPSC technology giving the unique opportunity to study cells across differentiation and maturation times, brings the hope to shed light on the different mechanisms linking neurodegeneration and activation of the immune system. Protocols available to differentiate iPSC into different immune cell types are presented. Finally, we discuss the interest in studying monocultures of iPS-derived immune cells, co-cultures with neurons and 3D cultures with different cell types, as more integrated cellular approaches. The hope is that the future work with human iPS-derived cells helps not only to identify disease-specific defects in the different cell types but also to decipher the synergistic effects between neurons and immune cells. These new cellular tools could help to find new therapeutic approaches for all patients with ALS, ALS-FTD, and FTD.
Collapse
Affiliation(s)
- Elise Liu
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Léa Karpf
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Delphine Bohl
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
228
|
Timmerman R, Zuiderwijk-Sick EA, Oosterhof N, 't Jong AEJ, Veth J, Burm SM, van Ham TJ, Bajramovic JJ. Transcriptome analysis reveals the contribution of oligodendrocyte and radial glia-derived cues for maintenance of microglia identity. Glia 2021; 70:728-747. [PMID: 34961968 DOI: 10.1002/glia.24136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/26/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022]
Abstract
Microglia are increasingly being recognized as druggable targets in neurodegenerative disorders, and good in vitro models are crucial to address cell biological questions. Major challenges are to recapitulate the complex microglial morphology and their in vivo transcriptome. We have therefore exposed primary microglia from adult rhesus macaques to a variety of different culture conditions including exposure to soluble factors as M-CSF, IL-34, and TGF-β as well as serum replacement approaches, and compared their morphologies and transcriptomes to those of mature, homeostatic in vivo microglia. This enabled us to develop a new, partially serum-free, monoculture protocol, that yields high numbers of ramified cells. We also demonstrate that exposure of adult microglia to M-CSF or IL-34 induces similar transcriptomes, and that exposure to TGF-β has much less pronounced effects than it does on rodent microglia. However, regardless of culture conditions, the transcriptomes of in vitro and in vivo microglia remained substantially different. Analysis of differentially expressed genes inspired us to perform 3D-spherical coculture experiments of microglia with oligodendrocytes and radial glia. In such spheres, microglia signature genes were strongly induced, even in the absence of neurons and astrocytes. These data reveal a novel role for oligodendrocyte and radial glia-derived cues in the maintenance of microglial identity, providing new anchor points to study microglia in health and disease.
Collapse
Affiliation(s)
- Raissa Timmerman
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | | | - Nynke Oosterhof
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands
| | - Anke E J 't Jong
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Jennifer Veth
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Saskia M Burm
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Tjakko J van Ham
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jeffrey J Bajramovic
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| |
Collapse
|
229
|
You MJ, Rim C, Kang YJ, Kwon MS. A new method for obtaining bankable and expandable adult-like microglia in mice. J Neuroinflammation 2021; 18:294. [PMID: 34920745 PMCID: PMC8680120 DOI: 10.1186/s12974-021-02351-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 12/08/2021] [Indexed: 11/10/2022] Open
Abstract
Background The emerging role of microglia in neurological disorders requires a novel method for obtaining massive amounts of adult microglia. We aim to develop a new method for obtaining bankable and expandable adult-like microglia in mice. Methods The head neuroepithelial layer (NEL) that composed of microglial progenitor and neuroepithelial cells at mouse E13.5 was dissected and then cultured or banked. Microglia (MG) isolated from the cultured NEL by magnetic-activated cell sorting system were obtained and named NEL-MG. Results The NEL included microglia progenitors that proliferate and ramify over time with neuroepithelial cells as feeder. In functional analysis, NEL-MG exhibited microglial functions, such as phagocytosis (microbeads, amyloid β, synaptosome), migration, and inflammatory response following lipopolysaccharide (LPS) stimulation. NEL was passage cultured and the NEL-MG exhibited a higher expression of microglia signature genes than the neonatal microglia, a widely used in vitro surrogate. Banking or long-term passage culture of NEL did not affect NEL-MG characteristics. Transcriptome analysis revealed that NEL-MG exhibited better conservation of microglia signature genes with a closer fidelity to freshly isolated adult microglia than neonatal microglia. NEL-MG could be re-expandable when they were plated again on neuroepithelial cells. Conclusions This new method effectively contributes to obtaining sufficient matured form of microglia (adult-like microglia), even when only a small number of experimental animals are available, leading to a broad application in the field of neuroscience. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02351-4.
Collapse
Affiliation(s)
- Min-Jung You
- Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Chan Rim
- Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Youn-Jung Kang
- Department of Biochemistry, Research Institute for Basic Medical Science, School of Medicine, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Min-Soo Kwon
- Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.
| |
Collapse
|
230
|
Rao Y, Du S, Yang B, Wang Y, Li Y, Li R, Zhou T, Du X, He Y, Wang Y, Zhou X, Yuan TF, Mao Y, Peng B. NeuroD1 induces microglial apoptosis and cannot induce microglia-to-neuron cross-lineage reprogramming. Neuron 2021; 109:4094-4108.e5. [PMID: 34875233 DOI: 10.1016/j.neuron.2021.11.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/28/2021] [Accepted: 09/24/2021] [Indexed: 11/21/2022]
Abstract
The regenerative capacity of neurons is limited in the central nervous system (CNS), with irreversible neuronal loss upon insult. In contrast, microglia exhibit extraordinary capacity for repopulation. Matsuda et al. (2019) recently reported NeuroD1-induced microglia-to-neuron conversion, aiming to provide an "unlimited" source to regenerate neurons. However, the extent to which NeuroD1 can exert cross-lineage reprogramming of microglia (myeloid lineage) to neurons (neuroectodermal lineage) is unclear. In this study, we unexpectedly found that NeuroD1 cannot convert microglia to neurons in mice. Instead, NeuroD1 expression induces microglial cell death. Moreover, lineage tracing reveals non-specific leakage of similar lentiviruses as previously used for microglia-to-neuron conversion, which confounds the microglia-to-neuron observation. In summary, we demonstrated that NeuroD1 cannot induce microglia-to-neuron cross-lineage reprogramming. We here propose rigid principles for verifying glia-to-neuron conversion. This Matters Arising paper is in response to Matsuda et al. (2019), published in Neuron.
Collapse
Affiliation(s)
- Yanxia Rao
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, China.
| | - Siling Du
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, China; Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Baozhi Yang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, China; Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China; School of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Yuqing Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, China; Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China; School of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Yuxin Li
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Ruofan Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, China
| | - Tian Zhou
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Xiangjuan Du
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Yang He
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Yafei Wang
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Xin Zhou
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China.
| | - Bo Peng
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China.
| |
Collapse
|
231
|
Popova G, Soliman SS, Kim CN, Keefe MG, Hennick KM, Jain S, Li T, Tejera D, Shin D, Chhun BB, McGinnis CS, Speir M, Gartner ZJ, Mehta SB, Haeussler M, Hengen KB, Ransohoff RR, Piao X, Nowakowski TJ. Human microglia states are conserved across experimental models and regulate neural stem cell responses in chimeric organoids. Cell Stem Cell 2021; 28:2153-2166.e6. [PMID: 34536354 PMCID: PMC8642295 DOI: 10.1016/j.stem.2021.08.015] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 06/23/2021] [Accepted: 08/25/2021] [Indexed: 01/25/2023]
Abstract
Microglia are resident macrophages in the brain that emerge in early development and respond to the local environment by altering their molecular and phenotypic states. Fundamental questions about microglia diversity and function during development remain unanswered because we lack experimental strategies to interrogate their interactions with other cell types and responses to perturbations ex vivo. We compared human microglia states across culture models, including cultured primary and pluripotent stem cell-derived microglia. We developed a "report card" of gene expression signatures across these distinct models to facilitate characterization of their responses across experimental models, perturbations, and disease conditions. Xenotransplantation of human microglia into cerebral organoids allowed us to characterize key transcriptional programs of developing microglia in vitro and reveal that microglia induce transcriptional changes in neural stem cells and decrease interferon signaling response genes. Microglia additionally accelerate the emergence of synchronized oscillatory network activity in brain organoids by modulating synaptic density.
Collapse
Affiliation(s)
- Galina Popova
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Sarah S Soliman
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Chang N Kim
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Matthew G Keefe
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Kelsey M Hennick
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Samhita Jain
- Division of Neonatology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Tao Li
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Dario Tejera
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - David Shin
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | | | - Christopher S McGinnis
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA USA
| | - Matthew Speir
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Zev J Gartner
- Chan Zuckerberg Biohub, San Francisco, CA, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA USA; Center for Cellular Construction, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | | | | | - Keith B Hengen
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Xianhua Piao
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Division of Neonatology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Newborn Brain Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Tomasz J Nowakowski
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
232
|
Bennett ML, Song H, Ming GL. Microglia modulate neurodevelopment in human neuroimmune organoids. Cell Stem Cell 2021; 28:2035-2036. [PMID: 34861141 DOI: 10.1016/j.stem.2021.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Dissecting contributions of microglia to human brain development and disease pathogenesis requires modeling interactions between these microglia and their local environment. In this issue of Cell Stem Cell, Popova et al. (2021) propose a transcriptomic "microglia report card" and create a neuroimmune organoid to model complex interactions involving human microglia.
Collapse
Affiliation(s)
- Mariko L Bennett
- Department of Pediatrics, Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Epigenetics Institute, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
233
|
|
234
|
Ngwa C, Qi S, Mamun AA, Xu Y, Sharmeen R, Liu F. Age and sex differences in primary microglia culture: A comparative study. J Neurosci Methods 2021; 364:109359. [PMID: 34537225 DOI: 10.1016/j.jneumeth.2021.109359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/27/2021] [Accepted: 09/13/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Microglia play a central role in neuroinflammation in various CNS diseases.Neonatal microglial culture has been extensively used to in vitro study microglial activation; however, as many neuroinflammatory diseases occur in the elderly, the neonatal microglial culture may not fully replicate the aged microglial activity seen in these diseases. NEW METHOD Primary microglia from both 18-24-month-old and P0-P4 C57BL/6 mice were cultured simultaneously. Morphology and activation profiles of the two age groups of microglia were examined following ischemic stimulation, by ELISA, RT-PCR, live microscopy, immunocytochemistry, and Western blotting. RESULTS We showed that aged microglia had larger cell bodies, more cytoplasmic inclusions, and enhanced phagocytosis than neonatal microglia. Cytokine production in these cells exhibited heterogeneity either after or before ischemic stimulation. The baseline expression of microglial marker CD11b was significantly higher in aged vs. neonatal cells; ischemic stimulation increased the expression in neonatal vs. aged microglia only in males but not in females. COMPARISON WITH EXISTING METHODS Previous primary microglia cultures have been limited to using neonatal/adult cells. This method is complementary to exiting methods and works for aged microglia, and does not suffer from potential limitations due to filtering artifacts. The protocol renders microglial culture no need for meningeal/hippocampal removal prior to brain tissue dissociation, and compares microglia between males vs. females, and between the aged vs. neonates. CONCLUSIONS We concluded that neonatal microglial culture is not appropriate for those in vitro studies that mimic the neuroinflammatory central nervous system disorders occurring in the elderly, in which case the aged microglial culture should be applied, and sex differences should be considered.
Collapse
Affiliation(s)
- Conelius Ngwa
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Shaohua Qi
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Abdullah Al Mamun
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yan Xu
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Romana Sharmeen
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Fudong Liu
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
235
|
Poshtkohi A, Wade J, McDaid L, Liu J, Dallas M, Bithell A. Mathematical modelling of human P2X-mediated plasma membrane electrophysiology and calcium dynamics in microglia. PLoS Comput Biol 2021; 17:e1009520. [PMID: 34723961 PMCID: PMC8584768 DOI: 10.1371/journal.pcbi.1009520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 11/11/2021] [Accepted: 10/02/2021] [Indexed: 01/14/2023] Open
Abstract
Regulation of cytosolic calcium (Ca2+) dynamics is fundamental to microglial function. Temporal and spatial Ca2+ fluxes are induced from a complicated signal transduction pathway linked to brain ionic homeostasis. In this paper, we develop a novel biophysical model of Ca2+ and sodium (Na+) dynamics in human microglia and evaluate the contribution of purinergic receptors (P2XRs) to both intracellular Ca2+ and Na+ levels in response to agonist/ATP binding. This is the first comprehensive model that integrates P2XRs to predict intricate Ca2+ and Na+ transient responses in microglia. Specifically, a novel compact biophysical model is proposed for the capture of whole-cell patch-clamp currents associated with P2X4 and P2X7 receptors, which is composed of only four state variables. The entire model shows that intricate intracellular ion dynamics arise from the coupled interaction between P2X4 and P2X7 receptors, the Na+/Ca2+ exchanger (NCX), Ca2+ extrusion by the plasma membrane Ca2+ ATPase (PMCA), and Ca2+ and Na+ leak channels. Both P2XRs are modelled as two separate adenosine triphosphate (ATP) gated Ca2+ and Na+ conductance channels, where the stoichiometry is the removal of one Ca2+ for the hydrolysis of one ATP molecule. Two unique sets of model parameters were determined using an evolutionary algorithm to optimise fitting to experimental data for each of the receptors. This allows the proposed model to capture both human P2X7 and P2X4 data (hP2X7 and hP2X4). The model architecture enables a high degree of simplicity, accuracy and predictability of Ca2+ and Na+ dynamics thus providing quantitative insights into different behaviours of intracellular Na+ and Ca2+ which will guide future experimental research. Understanding the interactions between these receptors and other membrane-bound transporters provides a step forward in resolving the qualitative link between purinergic receptors and microglial physiology and their contribution to brain pathology. Mathematical modelling and computer simulation are powerful tools by which we can analyse complex biological systems, particularly, neural phenomena involved in brain dysfunction. In this research, we develop a theoretical foundation for studying P2X-mediated calcium and sodium signalling in human microglial cells. Microglia, which are brain-resident macrophages, restructure their intracellular actin cytoskeleton to enable motility; this restructuring requires a complex molecular cascade involving a set of ionic channels, membrane-coupled receptors and cytosolic components. Recent studies highlight the importance for increasing our understanding of microglia physiology, since their functions play critical roles in both normal physiological and pathological dynamics of the brain. There is a need to develop reliable human cellular models to investigate the biology of microglia aimed at understanding the influence of purinergic signalling in brain dysfunction to provide novel drug discovery targets. In this work, a detailed mathematical model is built for the dynamics of human P2XRs in microglia. Subsequently, experimental whole-cell currents are used to derive P2X-mediated electrophysiology of human microglia (i.e. sodium and calcium dynamics, and membrane potential). Our predictions reveal new quantitative insights into P2XRs on how they regulate ionic concentrations in terms of physiological interactions and transient responses.
Collapse
Affiliation(s)
- Alireza Poshtkohi
- School of Computing, Engineering and Intelligent Systems, Ulster University, Londonderry, United Kingdom
- * E-mail:
| | - John Wade
- School of Computing, Engineering and Intelligent Systems, Ulster University, Londonderry, United Kingdom
| | - Liam McDaid
- School of Computing, Engineering and Intelligent Systems, Ulster University, Londonderry, United Kingdom
| | - Junxiu Liu
- School of Computing, Engineering and Intelligent Systems, Ulster University, Londonderry, United Kingdom
| | - Mark Dallas
- School of Pharmacy, University of Reading, Reading, United Kingdom
| | - Angela Bithell
- School of Pharmacy, University of Reading, Reading, United Kingdom
| |
Collapse
|
236
|
Booms A, Coetzee GA. Functions of Intracellular Alpha-Synuclein in Microglia: Implications for Parkinson's Disease Risk. Front Cell Neurosci 2021; 15:759571. [PMID: 34671245 PMCID: PMC8521067 DOI: 10.3389/fncel.2021.759571] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Alpha-synuclein accumulation in dopaminergic neurons is one of the primary features of Parkinson’s disease (PD). Despite its toxic properties during PD, alpha-synuclein has some important physiological functions. Although the activity of the protein has been extensively studied in neurons, the protein is also expressed in other cell types including immune cells and glia. Genetic studies show that mutations in synuclein alpha (SNCA), the gene that encodes alpha-synuclein, and alterations in its expression levels are a significant risk factor for PD, which likely impact the functions of a broad range of cell types. The consequences of altered SNCA expression in other cell types is beginning to be explored. Microglia, the primary macrophage population in the Central Nervous System (CNS), for example, are affected by variations in alpha-synuclein levels and functions. Studies suggest that deviations of alpha-synuclein’s normal activity influence hematopoiesis, the process that gives rise to microglia, and microglia’s immune functions. Alpha-synuclein levels also dictate the efficiency of SNARE-mediated vesicle formation, which could influence autophagy and cytokine release in microglia. Starting from the time of conception, these effects could impact one’s risk for developing PD. Further studies are needed to determine the physiological role of alpha-synuclein and how the protein is affected during PD in non-neuronal cells such as microglia. In this review we will discuss the known roles of alpha-synuclein in differentiation, immune responses, and vesicle formation, with insights into how abnormal alpha-synuclein expression and activity are linked to altered functions of microglia during PD.
Collapse
Affiliation(s)
- Alix Booms
- Coetzee Laboratory, Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
| | - Gerhard A Coetzee
- Coetzee Laboratory, Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
| |
Collapse
|
237
|
Synapse development is regulated by microglial THIK-1 K + channels. Proc Natl Acad Sci U S A 2021; 118:2106294118. [PMID: 34642249 PMCID: PMC8545484 DOI: 10.1073/pnas.2106294118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2021] [Indexed: 12/17/2022] Open
Abstract
Microglia are the brain’s resident immune cells, surveying the brain with motile processes, which can remove pathogens but also prune unnecessary junctions between the neurons (synapses). A potassium channel, THIK-1, in the microglial membrane allows efflux of potassium from these cells and thereby regulates their membrane voltage as well as their process motility and release of inflammatory mediators. Here, using THIK-1–blocking drugs and THIK-1–deficient mice, we demonstrate that THIK-1 controls removal of synaptic material by microglia, which reduces the number of functional synapses in the developing brain.
Microglia are the resident immune cells of the central nervous system. They constantly survey the brain parenchyma for redundant synapses, debris, or dying cells, which they remove through phagocytosis. Microglial ramification, motility, and cytokine release are regulated by tonically active THIK-1 K+ channels on the microglial plasma membrane. Here, we examined whether these channels also play a role in phagocytosis. Using pharmacological blockers and THIK-1 knockout (KO) mice, we found that a lack of THIK-1 activity approximately halved both microglial phagocytosis and marker levels for the lysosomes that degrade phagocytically removed material. These changes may reflect a decrease of intracellular [Ca2+]i activity, which was observed when THIK-1 activity was reduced, since buffering [Ca2+]i reduced phagocytosis. Less phagocytosis is expected to result in impaired pruning of synapses. In the hippocampus, mice lacking THIK-1 expression had an increased number of anatomically and electrophysiologically defined glutamatergic synapses during development. This resulted from an increased number of presynaptic terminals, caused by impaired removal by THIK-1 KO microglia. The dependence of synapse number on THIK-1 K+ channels, which control microglial surveillance and phagocytic ability, implies that changes in the THIK-1 expression level in disease states may contribute to altering neural circuit function.
Collapse
|
238
|
Borst K, Dumas AA, Prinz M. Microglia: Immune and non-immune functions. Immunity 2021; 54:2194-2208. [PMID: 34644556 DOI: 10.1016/j.immuni.2021.09.014] [Citation(s) in RCA: 392] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/20/2021] [Accepted: 09/16/2021] [Indexed: 12/21/2022]
Abstract
As resident macrophages of the central nervous system (CNS), microglia are associated with diverse functions essential to the developing and adult brain during homeostasis and disease. They are aided in their tasks by intricate bidirectional communication with other brain cells under steady-state conditions as well as with infiltrating peripheral immune cells during perturbations. Harmonious cell-cell communication involving microglia are considered crucial to maintain the healthy state of the tissue environment and to overcome pathology such as neuroinflammation. Analyses of such intercellular pathways have contributed to our understanding of the heterogeneous but context-associated microglial responses to environmental cues across neuropathology, including inflammatory conditions such as infections and autoimmunity, as well as immunosuppressive states as seen in brain tumors. Here, we summarize the latest evidence demonstrating how these interactions drive microglia immune and non-immune functions, which coordinate the transition from homeostatic to disease-related cellular states.
Collapse
Affiliation(s)
- Katharina Borst
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany.
| | - Anaelle Aurelie Dumas
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany.
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
239
|
Rahimian R, Wakid M, O'Leary LA, Mechawar N. The emerging tale of microglia in psychiatric disorders. Neurosci Biobehav Rev 2021; 131:1-29. [PMID: 34536460 DOI: 10.1016/j.neubiorev.2021.09.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/18/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022]
Abstract
As the professional phagocytes of the brain, microglia orchestrate the immunological response and play an increasingly important role in maintaining homeostatic brain functions. Microglia are activated by pathological events or slight alterations in brain homeostasis. This activation is dependent on the context and type of stressor or pathology. Through secretion of cytokines, chemokines and growth factors, microglia can strongly influence the response to a stressor and can, therefore, determine the pathological outcome. Psychopathologies have repeatedly been associated with long-lasting priming and sensitization of cerebral microglia. This review focuses on the diversity of microglial phenotype and function in health and psychiatric disease. We first discuss the diverse homeostatic functions performed by microglia and then elaborate on context-specific spatial and temporal microglial heterogeneity. Subsequently, we summarize microglia involvement in psychopathologies, namely major depressive disorder, schizophrenia and bipolar disorder, with a particular focus on post-mortem studies. Finally, we postulate microglia as a promising novel therapeutic target in psychiatry through antidepressant and antipsychotic treatment.
Collapse
Affiliation(s)
- Reza Rahimian
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada
| | - Marina Wakid
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Liam Anuj O'Leary
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
240
|
Romero-Molina C, Navarro V, Jimenez S, Muñoz-Castro C, Sanchez-Mico MV, Gutierrez A, Vitorica J, Vizuete M. Should We Open Fire on Microglia? Depletion Models as Tools to Elucidate Microglial Role in Health and Alzheimer's Disease. Int J Mol Sci 2021; 22:9734. [PMID: 34575898 PMCID: PMC8471219 DOI: 10.3390/ijms22189734] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/20/2022] Open
Abstract
Microglia play a critical role in both homeostasis and disease, displaying a wide variety in terms of density, functional markers and transcriptomic profiles along the different brain regions as well as under injury or pathological conditions, such as Alzheimer's disease (AD). The generation of reliable models to study into a dysfunctional microglia context could provide new knowledge towards the contribution of these cells in AD. In this work, we included an overview of different microglial depletion approaches. We also reported unpublished data from our genetic microglial depletion model, Cx3cr1CreER/Csf1rflx/flx, in which we temporally controlled microglia depletion by either intraperitoneal (acute model) or oral (chronic model) tamoxifen administration. Our results reported a clear microglial repopulation, then pointing out that our model would mimic a context of microglial replacement instead of microglial dysfunction. Next, we evaluated the origin and pattern of microglial repopulation. Additionally, we also reviewed previous works assessing the effects of microglial depletion in the progression of Aβ and Tau pathologies, where controversial data are found, probably due to the heterogeneous and time-varying microglial phenotypes observed in AD. Despite that, microglial depletion represents a promising tool to assess microglial role in AD and design therapeutic strategies.
Collapse
Affiliation(s)
- Carmen Romero-Molina
- Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain; (C.R.-M.); (V.N.); (S.J.); (C.M.-C.); (M.V.S.-M.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41012 Seville, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| | - Victoria Navarro
- Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain; (C.R.-M.); (V.N.); (S.J.); (C.M.-C.); (M.V.S.-M.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41012 Seville, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| | - Sebastian Jimenez
- Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain; (C.R.-M.); (V.N.); (S.J.); (C.M.-C.); (M.V.S.-M.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41012 Seville, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| | - Clara Muñoz-Castro
- Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain; (C.R.-M.); (V.N.); (S.J.); (C.M.-C.); (M.V.S.-M.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41012 Seville, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| | - Maria V. Sanchez-Mico
- Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain; (C.R.-M.); (V.N.); (S.J.); (C.M.-C.); (M.V.S.-M.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41012 Seville, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| | - Antonia Gutierrez
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga (IBIMA), Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain
| | - Javier Vitorica
- Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain; (C.R.-M.); (V.N.); (S.J.); (C.M.-C.); (M.V.S.-M.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41012 Seville, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| | - Marisa Vizuete
- Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain; (C.R.-M.); (V.N.); (S.J.); (C.M.-C.); (M.V.S.-M.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41012 Seville, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| |
Collapse
|
241
|
Carroll JA, Race B, Williams K, Striebel JF, Chesebro B. Innate immune responses after stimulation with Toll-like receptor agonists in ex vivo microglial cultures and an in vivo model using mice with reduced microglia. J Neuroinflammation 2021; 18:194. [PMID: 34488805 PMCID: PMC8419892 DOI: 10.1186/s12974-021-02240-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/14/2021] [Indexed: 12/02/2022] Open
Abstract
Background Past experiments studying innate immunity in the central nervous system (CNS) utilized microglia obtained from neonatal mouse brain, which differ developmentally from adult microglia. These differences might impact our current understanding of the role of microglia in CNS development, function, and disease. Methods Cytokine protein secretion was compared in ex vivo P3 and adult microglial cultures after exposure to agonists for three different toll-like receptors (TLR4, lipopolysaccharide [LPS]; TLR7, imiquimod [IMQ]; and TLR9, CpG Oligodeoxynucleotide [CpG-ODN] 1585). In addition, changes in inflammatory gene expression in ex vivo adult microglia in response to the TLR agonists was assessed. Furthermore, in vivo experiments evaluated changes in gene expression associated with inflammation and TLR signaling in brains of mice with or without treatment with PLX5622 to reduce microglia. Results Ex vivo adult and P3 microglia increased cytokine secretion when exposed to TLR4 agonist LPS and to TLR7 agonist IMQ. However, adult microglia decreased expression of numerous genes after exposure to TLR 9 agonist CpG-ODN 1585. In contrast, in vivo studies indicated a core group of inflammatory and TLR signaling genes increased when each of the TLR agonists was introduced into the CNS. Reducing microglia in the brain led to decreased expression of various inflammatory and TLR signaling genes. Mice with reduced microglia showed extreme impairment in upregulation of genes after exposure to TLR7 agonist IMQ. Conclusions Cultured adult microglia were more reactive than P3 microglia to LPS or IMQ exposure. In vivo results indicated microglial influences on neuroinflammation were agonist specific, with responses to TLR7 agonist IMQ more dysregulated in mice with reduced microglia. Thus, TLR7-mediated innate immune responses in the CNS appeared more dependent on the presence of microglia. Furthermore, partial responses to TLR4 and TLR9 agonists in mice with reduced microglia suggested other cell types in the CNS can compensate for their absence. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02240-w.
Collapse
Affiliation(s)
- James A Carroll
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South Fourth Street, Hamilton, MT, 59840, USA.
| | - Brent Race
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South Fourth Street, Hamilton, MT, 59840, USA
| | - Katie Williams
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South Fourth Street, Hamilton, MT, 59840, USA
| | - James F Striebel
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South Fourth Street, Hamilton, MT, 59840, USA
| | - Bruce Chesebro
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South Fourth Street, Hamilton, MT, 59840, USA
| |
Collapse
|
242
|
Bassil R, Shields K, Granger K, Zein I, Ng S, Chih B. Improved modeling of human AD with an automated culturing platform for iPSC neurons, astrocytes and microglia. Nat Commun 2021; 12:5220. [PMID: 34471104 PMCID: PMC8410795 DOI: 10.1038/s41467-021-25344-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/27/2021] [Indexed: 11/17/2022] Open
Abstract
Advancement in human induced pluripotent stem cell (iPSC) neuron and microglial differentiation protocols allow for disease modeling using physiologically relevant cells. However, iPSC differentiation and culturing protocols have posed challenges to maintaining consistency. Here, we generated an automated, consistent, and long-term culturing platform of human iPSC neurons, astrocytes, and microglia. Using this platform we generated a iPSC AD model using human derived cells, which showed signs of Aβ plaques, dystrophic neurites around plaques, synapse loss, dendrite retraction, axon fragmentation, phospho-Tau induction, and neuronal cell death in one model. We showed that the human iPSC microglia internalized and compacted Aβ to generate and surround the plaques, thereby conferring some neuroprotection. We investigated the mechanism of action of anti-Aβ antibodies protection and found that they protected neurons from these pathologies and were most effective before pTau induction. Taken together, these results suggest that this model can facilitate target discovery and drug development efforts. Human induced pluripotent stem cell (iPSC) cells have been used to model disease in specific cell types. Here, the authors develop an automated long-term culturing platform of human iPSC neurons, astrocytes, and microglia and use it to model some cellular aspects of Alzheimer’s disease.
Collapse
Affiliation(s)
- Reina Bassil
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, USA.,Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, La Jolla, CA, USA
| | - Kenneth Shields
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, USA
| | - Kevin Granger
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, USA
| | - Ivan Zein
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, USA
| | - Shirley Ng
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, USA
| | - Ben Chih
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, USA. .,Department of Neuroscience, Genentech Inc., South San Francisco, CA, USA.
| |
Collapse
|
243
|
Hohsfield LA, Najafi AR, Ghorbanian Y, Soni N, Crapser J, Figueroa Velez DX, Jiang S, Royer SE, Kim SJ, Henningfield CM, Anderson A, Gandhi SP, Mortazavi A, Inlay MA, Green KN. Subventricular zone/white matter microglia reconstitute the empty adult microglial niche in a dynamic wave. eLife 2021; 10:66738. [PMID: 34423781 PMCID: PMC8425950 DOI: 10.7554/elife.66738] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 08/22/2021] [Indexed: 02/06/2023] Open
Abstract
Microglia, the brain’s resident myeloid cells, play central roles in brain defense, homeostasis, and disease. Using a prolonged colony-stimulating factor 1 receptor inhibitor (CSF1Ri) approach, we report an unprecedented level of microglial depletion and establish a model system that achieves an empty microglial niche in the adult brain. We identify a myeloid cell that migrates from the subventricular zone and associated white matter areas. Following CSF1Ri, these amoeboid cells migrate radially and tangentially in a dynamic wave filling the brain in a distinct pattern, to replace the microglial-depleted brain. These repopulating cells are enriched in disease-associated microglia genes and exhibit similar phenotypic and transcriptional profiles to white-matter-associated microglia. Our findings shed light on the overlapping and distinct functional complexity and diversity of myeloid cells of the CNS and provide new insight into repopulating microglia function and dynamics in the mouse brain.
Collapse
Affiliation(s)
- Lindsay A Hohsfield
- Department of Neurobiology and Behavior, Irvine, United States.,Institute for Memory Impairments and Neurological Disorders, Irvine, United States
| | - Allison R Najafi
- Department of Neurobiology and Behavior, Irvine, United States.,Institute for Memory Impairments and Neurological Disorders, Irvine, United States
| | - Yasamine Ghorbanian
- Sue and Bill Gross Stem Cell Research Center, Irvine, United States.,Department of Molecular Biology and Biochemistry, Irvine, United States
| | - Neelakshi Soni
- Department of Neurobiology and Behavior, Irvine, United States.,Institute for Memory Impairments and Neurological Disorders, Irvine, United States
| | - Joshua Crapser
- Department of Neurobiology and Behavior, Irvine, United States.,Institute for Memory Impairments and Neurological Disorders, Irvine, United States
| | | | - Shan Jiang
- Department of Developmental and Cell Biology, Irvine, United States
| | - Sarah E Royer
- Department of Neurobiology and Behavior, Irvine, United States.,Sue and Bill Gross Stem Cell Research Center, Irvine, United States.,Department of Anatomy and Neurobiology, Irvine, United States
| | - Sung Jin Kim
- Department of Neurobiology and Behavior, Irvine, United States.,Institute for Memory Impairments and Neurological Disorders, Irvine, United States
| | - Caden M Henningfield
- Department of Neurobiology and Behavior, Irvine, United States.,Institute for Memory Impairments and Neurological Disorders, Irvine, United States
| | - Aileen Anderson
- Department of Neurobiology and Behavior, Irvine, United States.,Institute for Memory Impairments and Neurological Disorders, Irvine, United States.,Sue and Bill Gross Stem Cell Research Center, Irvine, United States.,Department of Anatomy and Neurobiology, Irvine, United States.,Department of Physical Medicine & Rehabilitation, University of California, Irvine, Irvine, United States
| | - Sunil P Gandhi
- Department of Neurobiology and Behavior, Irvine, United States
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, Irvine, United States
| | - Matthew A Inlay
- Department of Neurobiology and Behavior, Irvine, United States.,Sue and Bill Gross Stem Cell Research Center, Irvine, United States.,Department of Molecular Biology and Biochemistry, Irvine, United States
| | - Kim N Green
- Department of Neurobiology and Behavior, Irvine, United States.,Institute for Memory Impairments and Neurological Disorders, Irvine, United States
| |
Collapse
|
244
|
Prakash P, Jethava KP, Korte N, Izquierdo P, Favuzzi E, Rose IVL, Guttenplan KA, Manchanda P, Dutta S, Rochet JC, Fishell G, Liddelow SA, Attwell D, Chopra G. Monitoring phagocytic uptake of amyloid β into glial cell lysosomes in real time. Chem Sci 2021; 12:10901-10918. [PMID: 34476070 PMCID: PMC8372545 DOI: 10.1039/d1sc03486c] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 07/07/2021] [Indexed: 12/30/2022] Open
Abstract
Phagocytosis by glial cells is essential to regulate brain function during health and disease. Therapies for Alzheimer's disease (AD) have primarily focused on targeting antibodies to amyloid β (Aβ) or inhibitng enzymes that make it, and while removal of Aβ by phagocytosis is protective early in AD it remains poorly understood. Impaired phagocytic function of glial cells during later stages of AD likely contributes to worsened disease outcome, but the underlying mechanisms of how this occurs remain unknown. We have developed a human Aβ1-42 analogue (AβpH) that exhibits green fluorescence upon internalization into the acidic organelles of cells but is non-fluorescent at physiological pH. This allowed us to image, for the first time, glial uptake of AβpH in real time in live animals. We find that microglia phagocytose more AβpH than astrocytes in culture, in brain slices and in vivo. AβpH can be used to investigate the phagocytic mechanisms responsible for removing Aβ from the extracellular space, and thus could become a useful tool to study Aβ clearance at different stages of AD.
Collapse
Affiliation(s)
- Priya Prakash
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
| | - Krupal P Jethava
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
| | - Nils Korte
- Department of Neuroscience, Physiology and Pharmacology, University College London London WC1E 6BT UK
| | - Pablo Izquierdo
- Department of Neuroscience, Physiology and Pharmacology, University College London London WC1E 6BT UK
| | - Emilia Favuzzi
- Department of Neurobiology, Harvard Medical School 220 Longwood Avenue Boston MA 02115 USA
- Stanley Center at the Broad 75 Ames Street Cambridge MA 02142 USA
| | - Indigo V L Rose
- Neuroscience Institute, NYU Grossman School of Medicine New York NY 10016 USA
| | | | - Palak Manchanda
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
| | - Sayan Dutta
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| | - Jean-Christophe Rochet
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
- Purdue Institute for Integrative Neuroscience, Purdue University West Lafayette IN 47907 USA
| | - Gord Fishell
- Department of Neurobiology, Harvard Medical School 220 Longwood Avenue Boston MA 02115 USA
- Stanley Center at the Broad 75 Ames Street Cambridge MA 02142 USA
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine New York NY 10016 USA
- Department of Neuroscience & Physiology, NYU Grossman School of Medicine New York NY 10016 USA
- Department of Ophthalmology, NYU Grossman School of Medicine New York NY 10016 USA
| | - David Attwell
- Department of Neuroscience, Physiology and Pharmacology, University College London London WC1E 6BT UK
| | - Gaurav Chopra
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
- Purdue Institute for Integrative Neuroscience, Purdue University West Lafayette IN 47907 USA
- Purdue Institute for Drug Discovery 720 Clinic Drive West Lafayette IN 47907 USA
- Purdue Center for Cancer Research, Purdue University West Lafayette IN 47907 USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University West Lafayette IN 47907 USA
| |
Collapse
|
245
|
Abstract
Transforming growth factor-beta2 (TGF-β2) is recognized as a versatile cytokine that plays a vital role in regulation of joint development, homeostasis, and diseases, but its role as a biological mechanism is understood far less than that of its counterpart, TGF-β1. Cartilage as a load-resisting structure in vertebrates however displays a fragile performance when any tissue disturbance occurs, due to its lack of blood vessels, nerves, and lymphatics. Recent reports have indicated that TGF-β2 is involved in the physiological processes of chondrocytes such as proliferation, differentiation, migration, and apoptosis, and the pathological progress of cartilage such as osteoarthritis (OA) and rheumatoid arthritis (RA). TGF-β2 also shows its potent capacity in the repair of cartilage defects by recruiting autologous mesenchymal stem cells and promoting secretion of other growth factor clusters. In addition, some pioneering studies have already considered it as a potential target in the treatment of OA and RA. This article aims to summarize the current progress of TGF-β2 in cartilage development and diseases, which might provide new cues for remodelling of cartilage defect and intervention of cartilage diseases.
Collapse
Affiliation(s)
- Mengmeng Duan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qingxuan Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
246
|
Li X, Hollingshead N, Lampert S, Truong CD, Li W, Niu J, Crispe IN, Soysa R. A conserved pathway of transdifferentiation in murine Kupffer cells. Eur J Immunol 2021; 51:2452-2463. [PMID: 34324208 DOI: 10.1002/eji.202049124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/07/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022]
Abstract
Abundant long-lived liver-resident macrophages, termed Kupffer cells, are activated during chronic liver injury. They secrete both pro-inflammatory and pro-fibrotic cytokines, which act on hepatic stellate cells causing their transdifferentiation into myofibroblasts that deposit collagen. In other tissues, wound-associated macrophages go further, and transdifferentiate into fibrocytes, secreting collagen themselves. We tested Kupffer cells for this property in two experimental models: mixed non-parenchymal cell culture, and precision-cut liver slice culture. Using the Emr1-Cre transgene as a driver and the RiboTag transgene as a reporter, we found that Kupffer cells undergo transdifferentiation under these circumstances. Over time, they lose the expression of both Kupffer cell-specific and macrophage-specific genes and the transcription factors that control their expression, and they begin to express multiple genes and proteins characteristic of either myofibroblasts or tissue fibroblasts. These effects were strongly conserved between non-parenchymal cell culture and liver tissue slice culture, arguing that such transdifferentiation is a conserved function of Kupffer cells. We conclude that in addition to supporting fibrosis through an action on stellate cells, Kupffer cells also participate in liver fibrosis through transdifferentiation into fibrocytes.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Nicole Hollingshead
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, USA
| | - Sarah Lampert
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, USA
| | - Camtu D Truong
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, USA
| | - Wanyu Li
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Junqi Niu
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Ian N Crispe
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, USA.,Department of Immunology, University of Washington, Seattle, USA
| | - Radika Soysa
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, USA
| |
Collapse
|
247
|
Parajuli B, Saito H, Shinozaki Y, Shigetomi E, Miwa H, Yoneda S, Tanimura M, Omachi S, Asaki T, Takahashi K, Fujita M, Nakashima K, Koizumi S. Transnasal transplantation of human induced pluripotent stem cell-derived microglia to the brain of immunocompetent mice. Glia 2021; 69:2332-2348. [PMID: 34309082 DOI: 10.1002/glia.23985] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 01/26/2023]
Abstract
Microglia are the resident immune cells of the brain, and play essential roles in neuronal development, homeostatic function, and neurodegenerative disease. Human microglia are relatively different from mouse microglia. However, most research on human microglia is performed in vitro, which does not accurately represent microglia characteristics under in vivo conditions. To elucidate the in vivo characteristics of human microglia, methods have been developed to generate and transplant induced pluripotent or embryonic stem cell-derived human microglia into neonatal or adult mouse brains. However, its widespread use remains limited by the technical difficulties of generating human microglia, as well as the need to use immune-deficient mice and conduct invasive surgeries. To address these issues, we developed a simplified method to generate induced pluripotent stem cell-derived human microglia and transplant them into the brain via a transnasal route in immunocompetent mice, in combination with a colony stimulating factor 1 receptor antagonist. We found that human microglia were able to migrate through the cribriform plate to different regions of the brain, proliferate, and become the dominant microglia in a region-specific manner by occupying the vacant niche when exogenous human cytokine is administered, for at least 60 days.
Collapse
Affiliation(s)
- Bijay Parajuli
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.,GLIA Center, University of Yamanashi, Yamanashi, Japan
| | - Hiroki Saito
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co. Ltd., Osaka, Japan
| | - Youichi Shinozaki
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.,GLIA Center, University of Yamanashi, Yamanashi, Japan
| | - Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.,GLIA Center, University of Yamanashi, Yamanashi, Japan
| | - Hiroto Miwa
- Laboratory for Innovative Therapy Research, Shionogi & Co. Ltd., Osaka, Japan
| | - Sosuke Yoneda
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co. Ltd., Osaka, Japan
| | - Miki Tanimura
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co. Ltd., Osaka, Japan
| | - Shigeki Omachi
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co. Ltd., Osaka, Japan
| | - Toshiyuki Asaki
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co. Ltd., Osaka, Japan
| | - Koji Takahashi
- Laboratory for Innovative Therapy Research, Shionogi & Co. Ltd., Osaka, Japan
| | - Masahide Fujita
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co. Ltd., Osaka, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.,GLIA Center, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
248
|
Jones RE, Andrews R, Holmans P, Hill M, Taylor PR. Modest changes in Spi1 dosage reveal the potential for altered microglial function as seen in Alzheimer's disease. Sci Rep 2021; 11:14935. [PMID: 34294785 PMCID: PMC8298495 DOI: 10.1038/s41598-021-94324-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
Genetic association studies have identified multiple variants at the SPI1 locus that modify risk and age of onset for Alzheimer's Disease (AD). Reports linking risk variants to gene expression suggest that variants denoting higher SPI1 expression are likely to have an earlier AD onset, and several other AD risk genes contain PU.1 binding sites in the promoter region. Overall, this suggests the level of SPI1 may alter microglial phenotype potentially impacting AD. This study determined how the microglial transcriptome was altered following modest changes to Spi1 expression in primary mouse microglia. RNA-sequencing was performed on microglia with reduced or increased Spi1/PU.1 expression to provide an unbiased approach to determine transcriptomic changes affected by Spi1. In summary, a reduction in microglial Spi1 resulted in the dysregulation of transcripts encoding proteins involved in DNA replication pathways while an increased Spi1 results in an upregulation of genes associated with immune response pathways. Additionally, a subset of 194 Spi1 dose-sensitive genes was identified and pathway analysis suggests that several innate immune and interferon response pathways are impacted by the concentration of Spi1. Together these results suggest Spi1 levels can alter the microglial transcriptome and suggests interferon pathways may be altered in individuals with AD related Spi1 risk SNPs.
Collapse
Affiliation(s)
- Ruth E Jones
- Division of Infection and Immunity, Cardiff University, Cardiff, UK
- UK Dementia Research Institute at Cardiff, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Robert Andrews
- Division of Infection and Immunity, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Peter Holmans
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Matthew Hill
- UK Dementia Research Institute at Cardiff, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Philip R Taylor
- Division of Infection and Immunity, Cardiff University, Cardiff, UK.
- UK Dementia Research Institute at Cardiff, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK.
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK.
| |
Collapse
|
249
|
Role of TREM2 in Alzheimer's Disease: A Long Road Ahead. Mol Neurobiol 2021; 58:5239-5252. [PMID: 34275100 DOI: 10.1007/s12035-021-02477-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/28/2021] [Indexed: 10/20/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by an increasing deterioration of memory, which is concomitant with additional cognitive deficits. Neurofibrillary tangles and senile plaques are two pivotal proteins inside the brain that are considered essential to obstruct the normal cognitive function of the brain. Genetic variations in TREM2 gene disturb the neuroinflammatory action of microglia in reducing the progression of the disease.TREM2 is a transmembrane receptor present on the microglia, which has an important function in neuroinflammation. Genome-wide association studies identified variants of TREM2 gene and linked it with the risk of developing AD, by 2-4 folds. Numerous studies on mice models have revealed the relationship between mutations of TREM2 gene and its effect on amyloid burden and tau pathology in the brain that gets affected by AD. This review summarizes the role of TREM2 and its variants in the progression of AD and tries to delve deep into the role of soluble TREM2 as an effective biomarker and impending neuroprotection in AD. It also focuses on the strategies to develop therapeutic agents against TREM2 by employing its expression, function, and signalling pathways. The current challenges posed against prospective therapy for AD are also discussed.
Collapse
|
250
|
Koo JW, Wohleb ES. How Stress Shapes Neuroimmune Function: Implications for the Neurobiology of Psychiatric Disorders. Biol Psychiatry 2021; 90:74-84. [PMID: 33485589 PMCID: PMC8126571 DOI: 10.1016/j.biopsych.2020.11.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022]
Abstract
Chronic stress causes physiological and hormonal adaptations that lead to neurobiological consequences and behavioral and cognitive impairments. In particular, chronic stress has been shown to drive reduced neurogenesis and altered synaptic plasticity in brain regions that regulate mood and motivation. The neurobiological and behavioral effects of stress resemble the pathophysiology and symptoms observed in psychiatric disorders, suggesting that there are similar underlying mechanisms. Accumulating evidence indicates that neuroimmune systems, particularly microglia, have a critical role in regulating the neurobiology of stress. Preclinical models indicate that chronic stress provokes changes in microglia phenotype and increases inflammatory cytokine signaling, which affects neuronal function and leads to synaptic plasticity deficits and impaired neurogenesis. More recent work has shown that microglia can also phagocytose neuronal elements and contribute to structural remodeling of neurons in response to chronic stress. In this review we highlight work by the Duman research group (as well as others) that has revealed how chronic stress shapes neuroimmune function and, in turn, how inflammatory mediators and microglia contribute to the neurobiological effects of chronic stress. We also provide considerations to engage the therapeutic potential of neuroimmune systems, with the goal of improving treatment for psychiatric disorders.
Collapse
Affiliation(s)
- Ja Wook Koo
- Department of Neural Development and Disease, Korea Brain
Research Institute, Daegu, Korea,Department of Brain and Cognitive Sciences, Daegu Gyeongbuk
Institute of Science and Technology (DGIST), Daegu, Korea
| | - Eric S. Wohleb
- Department of Pharmacology & Systems Physiology,
University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of
America,Corresponding author: Eric S. Wohleb, Department
of Pharmacology & Systems Physiology, University of Cincinnati College of
Medicine, 2120 East Galbraith Road, Cincinnati, OH 45237 U.S.A.,
| |
Collapse
|