201
|
McIntosh JM, Absalom N, Chebib M, Elgoyhen AB, Vincler M. Alpha9 nicotinic acetylcholine receptors and the treatment of pain. Biochem Pharmacol 2009; 78:693-702. [PMID: 19477168 PMCID: PMC2739401 DOI: 10.1016/j.bcp.2009.05.020] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 05/15/2009] [Accepted: 05/18/2009] [Indexed: 01/16/2023]
Abstract
Chronic pain is a vexing worldwide problem that causes substantial disability and consumes significant medical resources. Although there are numerous analgesic medications, these work through a small set of molecular mechanisms. Even when these medications are used in combination, substantial amounts of pain often remain. It is therefore highly desirable to develop treatments that work through distinct mechanisms of action. While agonists of nicotinic acetylcholine receptors (nAChRs) have been intensively studied, new data suggest a role for selective antagonists of nAChRs. alpha-Conotoxins are small peptides used offensively by carnivorous marine snails known as Conus. A subset of these peptides known as alpha-conotoxins RgIA and Vc1.1 produces both acute and long lasting analgesia. In addition, these peptides appear to accelerate the recovery of function after nerve injury, possibly through immune mediated mechanisms. Pharmacological analysis indicates that RgIA and Vc1.1 are selective antagonists of alpha9alpha10 nAChRs. A recent study also reported that these alpha9alpha10 antagonists are also potent GABA-B agonists. In the current study, we were unable to detect RgIA or Vc1.1 binding to or action on cloned GABA-B receptors expressed in HEK cells or Xenopus oocytes. We review the background, findings and implications of use of compounds that act on alpha9* nAChRs.(1).
Collapse
Affiliation(s)
- J Michael McIntosh
- Department of Psychiatry, University of Utah, Salt Lake City, UT 84132, USA.
| | | | | | | | | |
Collapse
|
202
|
Zhang YQ, Guo N, Peng G, Wang X, Han M, Raincrow J, Chiu CH, Coolen LM, Wenthold RJ, Zhao ZQ, Jing N, Yu L. Role of SIP30 in the development and maintenance of peripheral nerve injury-induced neuropathic pain. Pain 2009; 146:130-40. [PMID: 19748740 DOI: 10.1016/j.pain.2009.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2009] [Revised: 07/11/2009] [Accepted: 07/13/2009] [Indexed: 01/24/2023]
Abstract
Using the chronic constriction injury (CCI) model of neuropathic pain, we profiled gene expression in the rat spinal cord, and identified SIP30 as a gene whose expression was elevated after CCI. SIP30 was previously shown to interact with SNAP25, but whose function was otherwise unknown. We now show that in the spinal cord, SIP30 was present in the dorsal horn laminae where the peripheral nociceptive inputs first synapse, co-localizing with nociception-related neuropeptides CGRP and substance P. With the onset of neuropathic pain after CCI surgery, SIP30 mRNA and protein levels increased in the ipsilateral side of the spinal cord, suggesting a potential association between SIP30 and neuropathic pain. When CCI-upregulated SIP30 was inhibited by intrathecal antisense oligonucleotide administration, neuropathic pain was attenuated. This neuropathic pain-reducing effect was observed both during neuropathic pain onset following CCI, and after neuropathic pain was fully established, implicating SIP30 involvement in the development and maintenance phases of neuropathic pain. Using a secretion assay in PC12 cells, anti-SIP30 siRNA decreased the total pool of synaptic vesicles available for exocytosis, pointing to a potential function for SIP30. These results suggest a role of SIP30 in the development and maintenance of peripheral nerve injury-induced neuropathic pain.
Collapse
Affiliation(s)
- Yu-Qiu Zhang
- Department of Cell Biology, Neurobiology and Anatomy, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Peng G, Han M, Du Y, Lin A, Yu L, Zhang Y, Jing N. SIP30 is regulated by ERK in peripheral nerve injury-induced neuropathic pain. J Biol Chem 2009; 284:30138-47. [PMID: 19723624 DOI: 10.1074/jbc.m109.036756] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
ERK plays an important role in chronic neuropathic pain. However, the underlying mechanism is largely unknown. Here we show that in chronic constriction injury-treated rat spinal cords, up-regulation of SIP30 (SNAP25-interacting protein 30), which is involved in the development and maintenance of chronic constriction injury-induced neuropathic pain, correlates with ERK activation and that the up-regulation of SIP30 is suppressed by intrathecal delivery of the MEK inhibitor U0126. In PC12 cells, up-regulation of SIP30 by nerve growth factor is also dependent on ERK activation. We found that there is an ERK-responsive region in the rat sip30 promoter. Activation of ERK promotes the recruitment of the transcription factor cyclic AMP-response element-binding protein to the sip30 gene promoter. Taken together, our results provide a potential downstream target of ERK activation-mediated neuropathic pain.
Collapse
Affiliation(s)
- Guangdun Peng
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | |
Collapse
|
204
|
Ohman L, Isaksson S, Lindmark AC, Posserud I, Stotzer PO, Strid H, Sjövall H, Simrén M. T-cell activation in patients with irritable bowel syndrome. Am J Gastroenterol 2009; 104:1205-12. [PMID: 19367268 DOI: 10.1038/ajg.2009.116] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Irritable bowel syndrome (IBS) has been found to be associated with low-grade immune activation in a subset of patients. We therefore investigated blood and colonic T-cell activity in IBS patients. METHODS Blood samples were initially obtained from 74 IBS patients and 30 controls. Supplementary blood samples, to confirm data, were taken from another cohort (26 patients and 14 controls). In addition, colonic biopsies were taken from a third cohort (11 patients and 10 controls). Peripheral blood and colonic mononuclear cells were stimulated with anti-CD3/CD28 antibodies. Proliferation, cytokine secretion, and T-cell phenotype were investigated. IBS symptom severity was assessed. RESULTS IBS patients displayed an activated phenotype with increased frequencies of blood T cells expressing CD69 and integrin beta7/HLA-DR. Anti-CD3/CD28-stimulated blood and colonic T cells from IBS patients proliferated less than T cells from controls. IBS patients had an increased polyclonally stimulated T-cell secretion of IL-1beta, which also weakly correlated with increased bowel habit dissatisfaction. Furthermore, despite normal frequencies of CD25high T cells in the blood of IBS patients, lower blood CD25high T-cell frequencies were modestly correlated with more bowel habit dissatisfaction and increased total IBS symptom severity. CONCLUSIONS IBS patients have an increased frequency of activated T cells, demonstrated by the expression of activation markers and reduced proliferation in response to restimulation in vitro. The increased level of T-cell activation is consistent with the hypothesis of low-grade immune activation in IBS and may also be involved in symptom generation in IBS.
Collapse
Affiliation(s)
- Lena Ohman
- Department of Internal Medicine, Institute of Medicine, The Sahlgren's Academy, University of Gothenburg, Gothenburg, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
205
|
Labuz D, Schmidt Y, Schreiter A, Rittner HL, Mousa SA, Machelska H. Immune cell-derived opioids protect against neuropathic pain in mice. J Clin Invest 2009; 119:278-86. [PMID: 19139563 DOI: 10.1172/jci36246] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 11/19/2008] [Indexed: 12/26/2022] Open
Abstract
The analgesic effects of leukocyte-derived opioids have been exclusively demonstrated for somatic inflammatory pain, for example, the pain associated with surgery and arthritis. Neuropathic pain results from injury to nerves, is often resistant to current treatments, and can seriously impair a patient's quality of life. Although it has been recognized that neuronal damage can involve inflammation, it is generally assumed that immune cells act predominately as generators of neuropathic pain. However, in this study we have demonstrated that leukocytes containing opioids are essential regulators of pain in a mouse model of neuropathy. About 30%-40% of immune cells that accumulated at injured nerves expressed opioid peptides such as beta-endorphin, Met-enkephalin, and dynorphin A. Selective stimulation of these cells by local application of corticotropin-releasing factor led to opioid peptide-mediated activation of opioid receptors in damaged nerves. This ultimately abolished tactile allodynia, a highly debilitating heightened response to normally innocuous mechanical stimuli, which is symptomatic of neuropathy. Our findings suggest that selective targeting of opioid-containing immune cells promotes endogenous pain control and offers novel opportunities for management of painful neuropathies.
Collapse
Affiliation(s)
- Dominika Labuz
- Klinik für Anaesthesiologie und operative Intensivmedizin, Freie Universität Berlin, Medizinische Fakultät Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
206
|
Wu A, Lauschke JL, Morris R, Waite PM. Characterization of Rat Forepaw Function in Two Models of Cervical Dorsal Root Injury. J Neurotrauma 2009; 26:17-29. [DOI: 10.1089/neu.2008.0675] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Ann Wu
- Neural Injury Research Unit, School of Medical Sciences, University of New South Wales, New South Wales, Sydney, Australia
| | - Jenny L. Lauschke
- Neural Injury Research Unit, School of Medical Sciences, University of New South Wales, New South Wales, Sydney, Australia
| | - Renée Morris
- Neural Injury Research Unit, School of Medical Sciences, University of New South Wales, New South Wales, Sydney, Australia
| | - Phil M.E. Waite
- Neural Injury Research Unit, School of Medical Sciences, University of New South Wales, New South Wales, Sydney, Australia
| |
Collapse
|
207
|
Neuropathic pain behaviours in a chronic-relapsing model of experimental autoimmune encephalomyelitis (EAE). Pain 2009; 141:156-64. [DOI: 10.1016/j.pain.2008.11.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2008] [Revised: 11/05/2008] [Accepted: 11/05/2008] [Indexed: 12/27/2022]
|
208
|
Gómez-Nicola D, Valle-Argos B, Suardíaz M, Taylor JS, Nieto-Sampedro M. Role of IL-15 in spinal cord and sciatic nerve after chronic constriction injury: regulation of macrophage and T-cell infiltration. J Neurochem 2008; 107:1741-52. [PMID: 19014377 DOI: 10.1111/j.1471-4159.2008.05746.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The release of inflammatory mediators from immune and glial cells either in the peripheral or CNS may have an important role in the development of physiopathological processes such as neuropathic pain. Microglial, then astrocytic activation in the spinal cord, lead to chronic inflammation, alteration of neuronal physiology and neuropathic pain. Standard experimental models of neuropathic pain include an important peripheral inflammatory component, which involves prominent immune cell activation and infiltration. Among potential immunomodulators, the T-cell cytokine interleukin-15 (IL-15) has a key role in regulating immune cell activation and glial reactivity after CNS injury. Here we show, using the model of chronic constriction of the sciatic nerve (CCI), that IL-15 is essential for the development of the early inflammatory events in the spinal cord after a peripheral lesion that generates neuropathic pain. IL-15 expression in the spinal cord was identified in both astroglial and microglial cells and was present during the initial gliotic and inflammatory (NFkappaB) response to injury. The expression of IL-15 was also identified as a cue for macrophage and T-cell activation and infiltration in the sciatic nerve, as shown by intraneural injection of the cytokine and activity blockage approaches. We conclude that the regulation of IL-15 and hence the initial events following its expression after peripheral nerve injury could have a future therapeutic potential in the reduction of neuroinflammation.
Collapse
|
209
|
Ha GK, Pastrana M, Huang Z, Petitto JM. T cell memory in the injured facial motor nucleus: relation to functional recovery following facial nerve crush. Neurosci Lett 2008; 443:150-4. [PMID: 18687384 DOI: 10.1016/j.neulet.2008.07.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 07/03/2008] [Accepted: 07/21/2008] [Indexed: 01/28/2023]
Abstract
T cells have the ability to mount a memory response to a previously encountered antigen such that re-exposure to the antigen results in a response that is greater in magnitude and function. Following facial nerve transection, T cells have been shown to traffic to injured motor neurons in the facial motor nucleus (FMN) and may have the ability to promote neuronal survival and functional recovery. Previously, we demonstrated that early exposure to neuronal injury on one side of the brain during young adulthood elicited a T cell response that was greater in magnitude following exposure to the same form of injury on the contralateral side later in adulthood. Whether the T cell memory response to neuronal injury influenced functional recovery following nerve crush injury was unknown. In the current study, we tested the hypotheses that (1) transection of the right facial nerve in sensitized mice would result in faster recovery of the whisker response when the contralateral facial nerve is crushed 10 weeks later, and (2) the early recovery would be associated with an increase in the magnitude of the T cell response in the contralateral FMN following crush injury in sensitized mice. The onset of modest recovery in sensitized mice occurred between 3 and 5 days following crush injury of the contralateral facial nerve, approximately 1.5 days earlier than naïve mice, and was associated with more than a two-fold increase in the magnitude of the T cell response in the contralateral FMN following crush injury. There was no difference between groups in the number of days to full recovery. Further study of how T cell memory influences neuroregeneration may have important implications for translational research.
Collapse
Affiliation(s)
- Grace K Ha
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | | | | | | |
Collapse
|
210
|
Popovich PG, Longbrake EE. Can the immune system be harnessed to repair the CNS? Nat Rev Neurosci 2008; 9:481-93. [PMID: 18490917 DOI: 10.1038/nrn2398] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Experimental and clinical data have demonstrated that activating the immune system in the CNS can be destructive. However, other studies have shown that enhancing an immune response can be therapeutic, and several clinical trials have been initiated with the aim of boosting immune responses in the CNS of individuals with spinal cord injury, multiple sclerosis and Alzheimer's disease. Here, we evaluate the controversies in the field and discuss the remaining scientific challenges that are associated with enhancing immune function in the CNS to treat neurological diseases.
Collapse
Affiliation(s)
- Phillip G Popovich
- Ohio State University, 786 Biomedical Research Tower, 460 W. 12th Avenue, Columbus, Ohio 43210, USA.
| | | |
Collapse
|
211
|
Dominguez CA, Lidman O, Hao JX, Diez M, Tuncel J, Olsson T, Wiesenfeld-Hallin Z, Piehl F, Xu XJ. Genetic analysis of neuropathic pain-like behavior following peripheral nerve injury suggests a role of the major histocompatibility complex in development of allodynia. Pain 2008; 136:313-319. [PMID: 17764842 DOI: 10.1016/j.pain.2007.07.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 07/06/2007] [Accepted: 07/16/2007] [Indexed: 10/22/2022]
Abstract
Neuropathic pain is a common consequence of damage to the nervous system. We here report a genetic analysis of development of neuropathic pain-like behaviors after unilateral photochemically-induced ischemic sciatic nerve injury in a panel of inbred rat strains known to display different susceptibility to autoimmune neuroinflammation. Pain behavior was initially characterized in Dark-Agouti (DA; RT1(av1)), Piebald Virol Glaxo (PVG; RT1(c)), and in the major histocompatibility complex (MHC)-congenic strain PVG-RT1(av1). All strains developed mechanical hypersensitivity (allodynia) following nerve injury. However, the extent and duration of allodynia varied significantly among the strains, with PVG displaying more severe allodynia compared to DA rats. Interestingly, the response of PVG-RT1(avRT1) was similar to that of DA, suggesting regulation by the MHC locus. This notion was subsequently confirmed in an F2 cohort derived from crossing of the PVG and PVG-RT1(av1)strains, where allodynia was reduced in homozygous or heterozygous carriers of the RT1(av1) allele in comparison to rats homozygous for the RT1(c) allele. These results indicate that certain allelic variants of the MHC could influence susceptibility to develop and maintain neuropathic pain-like behavior following peripheral nerve injury in rats.
Collapse
Affiliation(s)
- Cecilia A Dominguez
- Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital Solna, SE-17176 Stockholm, Sweden Medical Inflammation Research, Lund University, Lund, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Saab CY, Waxman SG, Hains BC. Alarm or curse? The pain of neuroinflammation. ACTA ACUST UNITED AC 2008; 58:226-35. [PMID: 18486228 DOI: 10.1016/j.brainresrev.2008.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 04/03/2008] [Accepted: 04/04/2008] [Indexed: 02/07/2023]
Abstract
The nociceptive nervous system and the immune system serve to defend and alarm the host of imminent or actual damage. However, persistent or recurring exposure of neurons to activated immune cells is associated with an increase in painful behavior following experimental neuropathic injuries. Our understanding of the functional consequences of immune cell-neuron interaction is still incomplete. The purpose of this review is to focus on a seriously detrimental consequence of chronic activation of these two systems, by discussing the contributions of microglia and polymorphonuclear neutrophils to neuropathic pain following experimental spinal cord injury or peripheral nerve injury. Identification of molecules mediating pro-nociceptive signaling between immune cells and neurons, as well as the distinction between neuroprotective versus neuroexcitatory effects of activated immune cells, may be useful in the development of pharmacotherapy for the management of chronic pain and restoration of the beneficial alarm function of pain.
Collapse
Affiliation(s)
- Carl Y Saab
- Department of Surgery, Rhode Island Hospital, Brown Medical School and Department of Neuroscience, Brown University, 593 Eddy St, NAB 210, Providence, RI 02903, USA.
| | | | | |
Collapse
|
213
|
Cao L, DeLeo JA. CNS-infiltrating CD4+ T lymphocytes contribute to murine spinal nerve transection-induced neuropathic pain. Eur J Immunol 2008; 38:448-58. [PMID: 18196515 PMCID: PMC2963094 DOI: 10.1002/eji.200737485] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We previously reported leukocytic infiltration into the lumbar spinal cord in a rodent spinal nerve L5 transection (L5Tx) neuropathic pain model. Here, we further investigated the role of infiltrating T lymphocytes in the etiology of persistent pain following L5Tx. T lymphocyte-deficient nude mice showed no evident mechanical hypersensitivity after day 3 of L5Tx compared to wild-type BALB/c mice. Through FACS analysis, we determined that significant leukocytic infiltration (CD45(hi)) into the lumbar spinal cord peaked at day 7 post L5Tx. These infiltrating leukocytes contained predominantly CD4(+) but not CD8(+) T lymphocytes. B lymphocytes, natural killer cells and macrophages were not detected at day 7 post L5Tx. No differences in the activation of peripheral CD4(+) T lymphocytes were detected in either the spleen or lumbar lymph nodes between L5Tx and sham surgery groups. Further, CD4 KO mice displayed significantly decreased mechanical hypersensitivity after day 7 of L5Tx, and adoptive transfer of CD4(+) leukocytes reversed this effect. Decreased immunoreactivity of glial fibrillary acidic protein observed in CD4 KO mice post L5Tx indicated possible T lymphocyte-glial interactions. These results strongly support a contributing role of spinal cord-infiltrating CD4(+) T lymphocytes versus peripheral CD4(+) T lymphocytes in the maintenance of nerve injury-induced neuropathic pain.
Collapse
Affiliation(s)
- Ling Cao
- Department of Anesthesiology, HB 7125, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Joyce A. DeLeo
- Department of Anesthesiology, HB 7125, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
- Department of Pharmacology and Toxicology, HB 7650, Dartmouth Medical School, Hanover, NH 03755, USA
| |
Collapse
|
214
|
Li M, Peake PW, Charlesworth JA, Tracey DJ, Moalem-Taylor G. Complement activation contributes to leukocyte recruitment and neuropathic pain following peripheral nerve injury in rats. Eur J Neurosci 2007; 26:3486-500. [DOI: 10.1111/j.1460-9568.2007.05971.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
215
|
|
216
|
Watkins LR, Hutchinson MR, Milligan ED, Maier SF. "Listening" and "talking" to neurons: implications of immune activation for pain control and increasing the efficacy of opioids. BRAIN RESEARCH REVIEWS 2007; 56:148-69. [PMID: 17706291 PMCID: PMC2245863 DOI: 10.1016/j.brainresrev.2007.06.006] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 06/21/2007] [Accepted: 06/26/2007] [Indexed: 01/08/2023]
Abstract
It is recently become clear that activated immune cells and immune-like glial cells can dramatically alter neuronal function. By increasing neuronal excitability, these non-neuronal cells are now implicated in the creation and maintenance of pathological pain, such as occurs in response to peripheral nerve injury. Such effects are exerted at multiple sites along the pain pathway, including at peripheral nerves, dorsal root ganglia, and spinal cord. In addition, activated glial cells are now recognized as disrupting the pain suppressive effects of opioid drugs and contributing to opioid tolerance and opioid dependence/withdrawal. While this review focuses on regulation of pain and opioid actions, such immune-neuronal interactions are broad in their implications. Such changes in neuronal function would be expected to occur wherever immune-derived substances come in close contact with neurons.
Collapse
Affiliation(s)
- Linda R Watkins
- Department of Psychology and Center for Neuroscience, University of Colorado at Boulder, Boulder, CO 80309-0345, USA.
| | | | | | | |
Collapse
|
217
|
Ha GK, Huang Z, Parikh R, Pastrana M, Petitto JM. Immunodeficiency impairs re-injury induced reversal of neuronal atrophy: relation to T cell subsets and microglia. Exp Neurol 2007; 208:92-9. [PMID: 17761165 PMCID: PMC2111131 DOI: 10.1016/j.expneurol.2007.07.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 07/18/2007] [Accepted: 07/20/2007] [Indexed: 11/24/2022]
Abstract
Following facial nerve resection in the mouse, a substantial number of neurons reside in an atrophied state (characterized by cell shrinkage and decreased ability to uptake Nissl stain), which can be reversed by re-injury. The mechanisms mediating the reversal of neuronal atrophy remain unclear. Although T cells have been shown to prevent neuronal loss following peripheral nerve injury, it was unknown whether T cells play a role in mediating the reversal of axotomy-induced neuronal atrophy. Thus, we used a facial nerve re-injury model to test the hypothesis that the reversal of neuronal atrophy would be impaired in recombinase activating gene-2 knockout (RAG-2 KO) mice, which lack functional T and B cells. Measures of neuronal survival were compared in the injured facial motor nucleus (FMN) of RAG-2 KO and wild-type (WT) mice that received a resection of the right facial nerve followed by re-injury of the same nerve 10 weeks later ("chronic resection+re-injury") or a resection of the right facial nerve followed by sham re-injury of the same nerve 10 weeks later ("chronic resection+sham"). We recently demonstrated that prior exposure to neuronal injury elicited a marked increase in T cell trafficking indicative of a T cell memory response when the contralateral FMN was injured later in adulthood. We examined if such a T cell memory response would also occur in the current re-injury model. RAG-2 KO mice showed no reversal of neuronal atrophy whereas WT mice showed a robust response. The reversal of atrophy in WT mice was not accompanied by a T cell memory response. Although the number of CD4(+) and CD8(+) T cells in the injured FMN did not differ from each other, double-negative T cells appear to be recruited in response to neuronal injury. Re-injury did not result in increased expression of MHC2 by microglia. Our findings suggest that T cells may be involved in reversing the axotomy-induced atrophy of injured neurons.
Collapse
Affiliation(s)
- Grace K. Ha
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL USA
| | - Zhi Huang
- Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL USA
| | - Ravi Parikh
- Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL USA
| | - Marlon Pastrana
- Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL USA
| | - John M. Petitto
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL USA
- Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL USA
| |
Collapse
|
218
|
Thacker MA, Clark AK, Marchand F, McMahon SB. Pathophysiology of peripheral neuropathic pain: immune cells and molecules. Anesth Analg 2007; 105:838-47. [PMID: 17717248 DOI: 10.1213/01.ane.0000275190.42912.37] [Citation(s) in RCA: 288] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Damage to the peripheral nervous system often leads to chronic neuropathic pain characterized by spontaneous pain and an exaggerated response to painful and/or innocuous stimuli. This pain condition is extremely debilitating and usually difficult to treat. Although inflammatory and neuropathic pain syndromes are often considered distinct entities, emerging evidence belies this strict dichotomy. Inflammation is a well-characterized phenomenon, which involves a cascade of different immune cell types, such as mast cells, neutrophils, macrophages, and T lymphocytes. In addition, these cells release numerous compounds that contribute to pain. Recent evidence suggests that immune cells play a role in neuropathic pain in the periphery. In this review we identify the different immune cell types that contribute to neuropathic pain in the periphery and release factors that are crucial in this particular condition.
Collapse
Affiliation(s)
- Michael A Thacker
- Neurorestoration group, Wolfson Centre for Age Related Diseases, Kings College London, UK
| | | | | | | |
Collapse
|
219
|
Moalem-Taylor G, Allbutt HN, Iordanova MD, Tracey DJ. Pain hypersensitivity in rats with experimental autoimmune neuritis, an animal model of human inflammatory demyelinating neuropathy. Brain Behav Immun 2007; 21:699-710. [PMID: 17005365 DOI: 10.1016/j.bbi.2006.07.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Revised: 06/30/2006] [Accepted: 07/12/2006] [Indexed: 01/20/2023] Open
Abstract
Experimental autoimmune neuritis (EAN) is a T cell mediated autoimmune disease of the peripheral nervous system that serves as an animal model of the acute inflammatory demyelinating polyradiculoneuropathy in Guillain-Barre syndrome (GBS). Although pain is a common symptom of GBS occurring in 55-85% of cases, it is often overlooked and the underlying mechanisms are poorly understood. Here we examined whether animals with EAN exhibit signs of neuropathic pain including hyperalgesia and allodynia, and assessed their peripheral nerve autoimmune inflammation. We immunized Lewis rats with peripheral myelin P2 peptide (amino acids 57-81) emulsified with complete Freund's adjuvant, or with adjuvant only as control. P2-immunized rats developed mild to modest monophasic EAN with disease onset at day 8, peak at days 15-17, and full recovery by day 28 following immunization. Rats with EAN showed a significant decrease in withdrawal latency to thermal stimuli and withdrawal threshold to mechanical stimuli, in both hindpaws and forepaws, during the course of the disease. We observed a significant infiltration of T cells bearing alphabeta receptors, and a significant increase in antigen-presenting cells expressing MHC class II as well as macrophages, in EAN-affected rats. Our results demonstrate that animals with active EAN develop significant thermal hyperalgesia and mechanical allodynia, accompanied by pronounced autoimmune inflammation in peripheral nerves. These findings suggest that EAN is a useful model for the pain seen in many GBS patients, and may facilitate study of neuroimmune mechanisms underlying pain in autoimmune neuropathies.
Collapse
Affiliation(s)
- Gila Moalem-Taylor
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | | | |
Collapse
|
220
|
Hu P, Bembrick AL, Keay KA, McLachlan EM. Immune cell involvement in dorsal root ganglia and spinal cord after chronic constriction or transection of the rat sciatic nerve. Brain Behav Immun 2007; 21:599-616. [PMID: 17187959 DOI: 10.1016/j.bbi.2006.10.013] [Citation(s) in RCA: 225] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2006] [Revised: 10/19/2006] [Accepted: 10/20/2006] [Indexed: 01/10/2023] Open
Abstract
Chronic constriction injury (CCI) of the sciatic nerve in rodents produces mechanical and thermal hyperalgesia and is a common model of neuropathic pain. Here we compare the inflammatory responses in L4/5 dorsal root ganglia (DRGs) and spinal segments after CCI with those after transection and ligation at the same site. Expression of ATF3 after one week implied that 75% of sensory and 100% of motor neurones had been axotomized after CCI. Macrophage invasion of DRGs and microglial and astrocytic activation in the spinal cord were qualitatively similar but quantitatively distinct between the lesions. The macrophage and glial reactions around neurone somata in DRGs and ventral horn were slightly greater after transection than CCI while, in the dorsal horn, microglial activation (using markers OX-42(for CD11b) and ED1(for CD68)) was greater after CCI. In DRGs, macrophages positive for OX-42(CD11b), CD4, MHC II and ED1(CD68) more frequently formed perineuronal rings beneath the glial sheath of ATF3+ medium to large neurone somata after CCI. There were more invading MHC II+ macrophages lacking OX-42(CD11b)/CD4/ED1(CD68) after transection. MHC I was expressed in DRGs and in spinal sciatic territories to a similar extent after both lesions. CD8+ T-lymphocytes aggregated to a greater extent both in DRGs and the dorsal horn after CCI, but in the ventral horn after transection. This occurred mainly by migration, additional T-cells being recruited only after CCI. Some of these were probably CD4+. It appears that inflammation of the peripheral nerve trunk after CCI triggers an adaptive immune response not seen after axotomy.
Collapse
Affiliation(s)
- Ping Hu
- Prince of Wales Medical Research Institute, Randwick, NSW 2031, Australia
| | | | | | | |
Collapse
|
221
|
Brett K, Parker R, Wittenauer S, Hayashida KI, Young T, Vincler M. Impact of chronic nicotine on sciatic nerve injury in the rat. J Neuroimmunol 2007; 186:37-44. [PMID: 17382409 PMCID: PMC1948068 DOI: 10.1016/j.jneuroim.2007.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 02/19/2007] [Accepted: 02/20/2007] [Indexed: 01/29/2023]
Abstract
Chronic nicotine exposure and the immune response to peripheral nerve injury has not been investigated thoroughly. Rats were exposed to chronic nicotine or saline followed by chronic constriction injury (CCI) of the sciatic nerve. Mechanical sensitivity was measured at various time points and the immune response was investigated at 21 days post-CCI. Chronic nicotine increased mechanical hypersensitivity, microglia activation, and the production of IL-1beta, but not the number of immune cells at the site of injury. These results suggest that chronic nicotine increases mechanical hypersensitivity following peripheral nerve injury through a mechanism that may involve an increased production and release of central and peripheral cytokines.
Collapse
Affiliation(s)
- Kyle Brett
- Department of Anesthesiology, and Center for the Study of Pharmacological Plasticity in the Presence of Pain, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Renée Parker
- Department of Anesthesiology, and Center for the Study of Pharmacological Plasticity in the Presence of Pain, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Shannon Wittenauer
- Department of Anesthesiology, and Center for the Study of Pharmacological Plasticity in the Presence of Pain, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Ken-ichiro Hayashida
- Department of Anesthesiology, and Center for the Study of Pharmacological Plasticity in the Presence of Pain, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Tracey Young
- Department of Anesthesiology, and Center for the Study of Pharmacological Plasticity in the Presence of Pain, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Michelle Vincler
- Department of Anesthesiology, and Center for the Study of Pharmacological Plasticity in the Presence of Pain, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
222
|
Klass M, Gavrikov V, Drury D, Stewart B, Hunter S, Denson DD, Hord A, Csete M. Intravenous mononuclear marrow cells reverse neuropathic pain from experimental mononeuropathy. Anesth Analg 2007; 104:944-8. [PMID: 17377111 DOI: 10.1213/01.ane.0000258021.03211.d0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Stem cells mediate neuroprotection in a variety of nervous system injury models. In this study, we evaluated a potential role for stem cells in pain therapies. Marrow mononuclear cells containing mixed stem cell populations were used because of wide experience with these cells in experimental and clinical transplantation. METHODS After sciatic nerve chronic constriction injury (CCI), adult male Sprague Dawley rats were treated with freshly isolated marrow mononuclear cells (10(7) cells in 0.5 mL IV) from the same strain, or with carrier. The major end points of analysis were thermal and mechanical hypersensitivity using paw withdrawal latency (PWL) to a calibrated heat source and paw withdrawal response to von Frey filaments, evaluated by a blinded investigator. RESULTS Marrow transplantation did not prevent pain, and 5 days after CCI all animals were equivalently lesioned. However, 10 days after CCI, rats that received marrow transplants demonstrated paw withdrawal response and PWL patterns indicating recovery from pain, whereas untreated rats continued to have significant pain behavior patterns. For example, PWL values for marrow-treated animals were similar to baseline pre-CCI values (P = 0.54) but significantly shorter latency to withdrawal indicative of continuing pain was seen in untreated rats compared with pre-CCI values (P < 0.001). CONCLUSIONS These studies suggest that stem or progenitor cell-mediated therapies may be useful for the treatment of pain after nerve injury, and deserve further study to elucidate the mechanisms of analgesia.
Collapse
Affiliation(s)
- Markus Klass
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | | | | | | | | | |
Collapse
|
223
|
Kenner M, Menon U, Elliott DG. Multiple Sclerosis as A Painful Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2007; 79:303-21. [PMID: 17531847 DOI: 10.1016/s0074-7742(07)79013-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pain is a common problem of patients with multiple sclerosis (MS) and may be due to central/neuropathic or peripheral/somatic pathology. Rarely MS may present with pain, or pain may herald an MS exacerbation, such as in painful tonic spasms or Lhermitte's sign. In other patients, pain may become chronic as a long-term sequela of damage to nerve root entry zones (trigeminal neuralgia) or structures in central sensory pathways. Migraine headache may develop as a consequence of MS, and headache can also be a side effect of interferon treatment. The pathophysiology of pain in MS may be linked to certain plaque locations which disrupt the spinothalamic and quintothalamic pathways, abnormal impulses through motor axons, development of an acquired channelopathy in affected nerves, or involve glial cell inflammatory immune mechanisms. At this time, the treatment of pain in MS employs the use of antiepileptic drugs, muscle relaxers/antispasmodic agents, anti-inflammatory drugs, and nonpharmacological measures. Research concerning cannabis-based treatments shows promising results, and substances which block microglial or astrocytic involvement in pain processing are also under investigation.
Collapse
Affiliation(s)
- Meghan Kenner
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71103, USA
| | | | | |
Collapse
|
224
|
You JH, Song HK, Jeong DC, Bae DH. Normal Lymphocyte Subpopulation of the Spleen is Altered after Peripheral Nerve Injury in Mice. Korean J Anesthesiol 2007. [DOI: 10.4097/kjae.2007.53.6.s42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Joo Hyun You
- Department of Anesthesioloy and Pain Medicine, Our Lady of Mercy Hospital, The Catholic University College of Medicine, Incheon, Korea
| | - Ho-Kyung Song
- Department of Anesthesioloy and Pain Medicine, Our Lady of Mercy Hospital, The Catholic University College of Medicine, Incheon, Korea
| | - Dae Chul Jeong
- Department of Pediatrics, Our Lady of Mercy Hospital, The Catholic University College of Medicine, Incheon, Korea
| | - Da Hyoun Bae
- Department of Anesthesioloy and Pain Medicine, Our Lady of Mercy Hospital, The Catholic University College of Medicine, Incheon, Korea
| |
Collapse
|
225
|
Kang YJ, Song HK, Chon JY, You JH. Alterations in NK Cell Cytotoxicity Induced by Peripheral Nerve Injury in Mice. Korean J Anesthesiol 2007. [DOI: 10.4097/kjae.2007.52.2.219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- You Jin Kang
- Department of Anesthesiology and Pain Medicine, St. Vincent's Hospital, Suwon, Korea
| | - Ho-Kyung Song
- Department of Anesthesiology and Pain Medicine, Our Lady of Mercy Hospital, Incheon, Korea
| | - Jin Young Chon
- Department of Anesthesiology and Pain Medicine, St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Joo Hyun You
- Department of Anesthesiology and Pain Medicine, Our Lady of Mercy Hospital, Incheon, Korea
| |
Collapse
|
226
|
Vincler M, Wittenauer S, Parker R, Ellison M, Olivera BM, McIntosh JM. Molecular mechanism for analgesia involving specific antagonism of alpha9alpha10 nicotinic acetylcholine receptors. Proc Natl Acad Sci U S A 2006; 103:17880-4. [PMID: 17101979 PMCID: PMC1635975 DOI: 10.1073/pnas.0608715103] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2006] [Indexed: 01/01/2023] Open
Abstract
alpha9alpha10 nicotinic acetylcholine receptors (nAChRs) have been identified in a variety of tissues including lymphocytes and dorsal root ganglia; except in the case of the auditory system, the function of alpha9alpha10 nAChRs is not known. Here we show that selective block (rather than stimulation) of alpha9alpha10 nAChRs is analgesic in an animal model of nerve injury pain. In addition, blockade of this nAChR subtype reduces the number of choline acetyltransferase-positive cells, macrophages, and lymphocytes at the site of injury. Chronic neuropathic pain is estimated to affect up to 8% of the world's population; the numerous analgesic compounds currently available are largely ineffective and act through a small number of pharmacological mechanisms. Our findings not only suggest a molecular mechanism for the treatment of neuropathic pain but also demonstrate the involvement of alpha9alpha10 nAChRs in the pathophysiology of peripheral nerve injury.
Collapse
Affiliation(s)
- Michelle Vincler
- *Department of Anesthesiology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157; and
| | - Shannon Wittenauer
- *Department of Anesthesiology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157; and
| | - Renee Parker
- *Department of Anesthesiology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157; and
| | | | | | - J. Michael McIntosh
- Departments of Biology and
- Psychiatry, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112
| |
Collapse
|
227
|
Abstract
Neuropathic pain refers to pain that originates from pathology of the nervous system. Diabetes, infection (herpes zoster), nerve compression, nerve trauma, "channelopathies," and autoimmune disease are examples of diseases that may cause neuropathic pain. The development of both animal models and newer pharmacological strategies has led to an explosion of interest in the underlying mechanisms. Neuropathic pain reflects both peripheral and central sensitization mechanisms. Abnormal signals arise not only from injured axons but also from the intact nociceptors that share the innervation territory of the injured nerve. This review focuses on how both human studies and animal models are helping to elucidate the mechanisms underlying these surprisingly common disorders. The rapid gain in knowledge about abnormal signaling promises breakthroughs in the treatment of these often debilitating disorders.
Collapse
Affiliation(s)
- James N Campbell
- Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.
| | | |
Collapse
|
228
|
Kleinschnitz C, Hofstetter HH, Meuth SG, Braeuninger S, Sommer C, Stoll G. T cell infiltration after chronic constriction injury of mouse sciatic nerve is associated with interleukin-17 expression. Exp Neurol 2006; 200:480-5. [PMID: 16674943 DOI: 10.1016/j.expneurol.2006.03.014] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 02/21/2006] [Accepted: 03/04/2006] [Indexed: 10/24/2022]
Abstract
Interleukin (IL)-17A, a recently described novel T cell cytokine, orchestrates inflammation in a variety of immune-mediated diseases. In the present investigation, we analyzed the temporal gene expression pattern of IL-17A and its main regulators IL-23 and IL-15 after chronic constriction injury (CCI) of the sciatic nerve, a lesion paradigm inducing neuropathic pain, by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) in mice. IL-17A displayed a monophasic expression in degenerating nerves at day 7 after CCI while transcripts for the IL-17A regulatory cytokines IL-23 and IL-15 peaked earlier. Accordingly, IL-17A positive T cells were detectable within the endoneurium of the injured nerves by immunocytochemistry. In support of a crucial role of T cell inflammation, RAG-1 knockout mice lacking functional T lymphocytes did not express IL-17A mRNA in distal nerve segments following CCI. Interestingly, T cell deficiency was associated with less thermal hyperalgesia and reduced mRNA levels for the macrophage marker molecule F4/80 and the chemokine macrophage chemoattractant protein-1 (MCP-1) after CCI. Our study supports the notion that T cells and T-cell-derived cytokines contribute to the inflammatory response after peripheral nerve injury.
Collapse
Affiliation(s)
- Christoph Kleinschnitz
- Department of Neurology, Julius-Maximilians-Universität, Josef-Schneider-Str. 11, D-97080 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
229
|
Xu JT, Xin WJ, Zang Y, Wu CY, Liu XG. The role of tumor necrosis factor-alpha in the neuropathic pain induced by Lumbar 5 ventral root transection in rat. Pain 2006; 123:306-321. [PMID: 16675114 DOI: 10.1016/j.pain.2006.03.011] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2005] [Revised: 02/26/2006] [Accepted: 03/13/2006] [Indexed: 01/21/2023]
Abstract
Accumulating evidence has demonstrated that tumor necrosis factor-alpha (TNF-alpha) plays an important role in neuropathic pain. Recently, it has been shown that Lumbar 5 ventral root transection (L5 VRT) induces persistent mechanical allodynia and thermal hyperalgesia in bilateral hind paws. In the present study, the role of TNF-alpha in the L5 VRT model was investigated. We found that immunoreactivity (IR) of TNF-alpha and TNF receptor 1 (TNFR1) in ipsilateral (but not in contralateral) L4 and L5 dorsal root ganglion (DRG) was increased following L5 VRT, started 1 day after the lesion and persisted for 2 weeks. Double immunofluorescence staining revealed that the increased TNF-alpha-IR in DRG was in satellite glial cells, immune cells and neuronal cells, while TNFR1-IR was almost restricted at DRG neuronal cells. L5 VRT increased TNF-alpha-IR and TNFR1-IR in bilateral L5 spinal dorsal horn, started 1 day after lesion and persisted for 2 weeks. The increased TNF-alpha-IR in spinal dorsal horn was observed in astrocytes, microglias and neurons, but the upregulation of TNFR1 was mainly in neurons. Intraperitoneal injection of thalidomide, an inhibitor of TNF-alpha synthesis, started at 2h before surgery, blocked mechanical allodynia and thermal hyperalgesia. However, the drug failed to reverse the abnormal pain behaviors, when it was applied at day 7 after surgery. These data suggest that the upregulation of TNF-alpha and TNFR1 in DRG and spinal dorsal horn is essential for the initiation but not for maintenance of the neuropathic pain induced by L5 VRT.
Collapse
Affiliation(s)
- Ji-Tian Xu
- Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, P.R. China Department of Immunology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, P.R. China Pain Research Center of Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, P.R. China
| | | | | | | | | |
Collapse
|
230
|
|
231
|
Romero-Sandoval EA, McCall C, Eisenach JC. Alpha2-adrenoceptor stimulation transforms immune responses in neuritis and blocks neuritis-induced pain. J Neurosci 2006; 25:8988-94. [PMID: 16192389 PMCID: PMC6725591 DOI: 10.1523/jneurosci.2995-05.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Neuropathic pain may be primarily driven by immune responses in peripheral nerves. Peripherally released catecholamines may exacerbate neuropathic pain and also modulate immune responses in a complex and sometimes opposing manner by actions on multiple adrenoceptor subtypes. We showed previously that injection of the alpha2-adrenoceptor agonist clonidine at the site of peripheral nerve injury reduces pain behavior and local tissue pro-inflammatory cytokine content in rats. The current study used a model of acute inflammatory neuritis to test the efficacy and mechanisms of action of alpha2-adrenoceptor stimulation to reduce pain. Zymosan, injected on the sciatic nerve, caused hypersensitivity to mechanical stimuli ipsilateral to injection and contralaterally, so-called mirror image pain. Ipsilateral hypersensitivity was inhibited dose-dependently by perineural injection of clonidine. Zymosan increased leukocyte number at the site of injection 3 d later as well as their content of interleukin 1alpha (IL-1alpha), IL-1beta, and IL-6. Perineural clonidine prevented both the increase in leukocyte number and cytokine expression induced by zymosan. Additionally, clonidine reduced the capacity of leukocytes to express pro-inflammatory cytokines as assessed by treatment of cells ex vivo with lipopolysaccharide, whereas no repression of IL-10 production occurred. Clonidine reduced the number of macrophages and lymphocytes as well as their expression of tumor necrosis factor alpha. All of the effects of clonidine were prevented by coadministration of an alpha2A-adrenoceptor-preferring antagonist. These results suggest that alpha2-adrenoceptor stimulation transforms cytokine gene expression, especially in macrophages and lymphocytes from a pro- to an anti-inflammatory profile in the setting of neuritis, likely relieving neuritis-induced pain by this mechanism.
Collapse
Affiliation(s)
- E Alfonso Romero-Sandoval
- Department of Anesthesiology, Center for the Study of Pharmacologic Plasticity in the Presence of Pain, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1009, USA
| | | | | |
Collapse
|
232
|
Wang X, Zhang Y, Kong L, Xie Z, Lin Z, Guo N, Strong JA, Meij JTA, Zhao Z, Jing N, Yu L. RSEP1 is a novel gene with functional involvement in neuropathic pain behaviour. Eur J Neurosci 2006; 22:1090-6. [PMID: 16176350 DOI: 10.1111/j.1460-9568.2005.04282.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neuropathic pain from nerve injury by trauma, disease or surgery often causes prolonged suffering. To explore the molecular mechanisms that underlie neuropathic pain, we used mRNA from the L4--5 segments of the lumbar spinal cord of rats with chronic constriction injury (CCI)-induced neuropathic pain, and differentially screened a cDNA library from the rat brain. A novel gene, termed RSEP1 (Rat Spinal cord Expression Protein 1), was identified. Northern blots revealed that RSEP1 was expressed mainly in the central nervous system including the cerebral cortex, hippocampus, brainstem and spinal cord, as well as in the kidney and ovary. In situ hybridization showed a high level of RSEP1 expression in the CA1, CA3 and dentate gyrus regions of the hippocampus and the small sensory neurons in the dorsal horn, as well as the large neurons in the ventral horn of the spinal cord. Intrathecal injection of RSEP1 antisense oligonucleotide into the spinal cord lumbar enlargement attenuated neuropathic pain behaviours in CCI rats, suggesting a functional involvement of RSEP1 in neuropathic pain.
Collapse
Affiliation(s)
- Xidao Wang
- Laboratory of Molecular Cell Biology, Laboratory of Stem Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
233
|
Moalem G, Tracey DJ. Immune and inflammatory mechanisms in neuropathic pain. ACTA ACUST UNITED AC 2006; 51:240-64. [PMID: 16388853 DOI: 10.1016/j.brainresrev.2005.11.004] [Citation(s) in RCA: 582] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 11/16/2005] [Accepted: 11/17/2005] [Indexed: 12/22/2022]
Abstract
Tissue damage, inflammation or injury of the nervous system may result in chronic neuropathic pain characterised by increased sensitivity to painful stimuli (hyperalgesia), the perception of innocuous stimuli as painful (allodynia) and spontaneous pain. Neuropathic pain has been described in about 1% of the US population, is often severely debilitating and largely resistant to treatment. Animal models of peripheral neuropathic pain are now available in which the mechanisms underlying hyperalgesia and allodynia due to nerve injury or nerve inflammation can be analysed. Recently, it has become clear that inflammatory and immune mechanisms both in the periphery and the central nervous system play an important role in neuropathic pain. Infiltration of inflammatory cells, as well as activation of resident immune cells in response to nervous system damage, leads to subsequent production and secretion of various inflammatory mediators. These mediators promote neuroimmune activation and can sensitise primary afferent neurones and contribute to pain hypersensitivity. Inflammatory cells such as mast cells, neutrophils, macrophages and T lymphocytes have all been implicated, as have immune-like glial cells such as microglia and astrocytes. In addition, the immune response plays an important role in demyelinating neuropathies such as multiple sclerosis (MS), in which pain is a common symptom, and an animal model of MS-related pain has recently been demonstrated. Here, we will briefly review some of the milestones in research that have led to an increased awareness of the contribution of immune and inflammatory systems to neuropathic pain and then review in more detail the role of immune cells and inflammatory mediators.
Collapse
Affiliation(s)
- Gila Moalem
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | | |
Collapse
|
234
|
Abstract
During the past two decades, an important focus of pain research has been the study of chronic pain mechanisms, particularly the processes that lead to the abnormal sensitivity - spontaneous pain and hyperalgesia - that is associated with these states. For some time it has been recognized that inflammatory mediators released from immune cells can contribute to these persistent pain states. However, it has only recently become clear that immune cell products might have a crucial role not just in inflammatory pain, but also in neuropathic pain caused by damage to peripheral nerves or to the CNS.
Collapse
Affiliation(s)
- Fabien Marchand
- Neurorestoration Group and London Pain Consortium, Wolfson Wing, Hodgkin Building, Guy's Campus, King's College London, London Bridge, London SE1 1UL, UK
| | | | | |
Collapse
|
235
|
Moalem G, Grafe P, Tracey DJ. Chemical mediators enhance the excitability of unmyelinated sensory axons in normal and injured peripheral nerve of the rat. Neuroscience 2005; 134:1399-411. [PMID: 16039795 DOI: 10.1016/j.neuroscience.2005.05.046] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2004] [Revised: 04/18/2005] [Accepted: 05/12/2005] [Indexed: 11/24/2022]
Abstract
Ectopic excitation of nociceptive axons by chemical mediators may contribute to symptoms in neuropathic pain. In this study, we have measured the excitability of unmyelinated rat C-fiber axons in isolated segments of sural nerves under different experimental conditions. (1) We demonstrate in normal rats that several mediators including ATP, serotonin (5-HT), 1-(3-chlorophenyl)biguanide (5-HT3 receptor agonist), norepinephrine, acetylcholine and capsaicin alter electrophysiological parameters of C-fibers which indicate an increase of axonal excitability. Other mediators such as histamine, glutamate, prostaglandin E(2) and the cytokines tumor necrosis factor alpha, interleukin-1beta and interleukin-6 did not produce such effects. (2) The effects of several mediators were tested after peripheral nerve injury (partial ligation or spared nerve injury). Sural nerves from such animals did not show significant changes when compared with controls. (3) We tested whether the effects of chemical mediators on axonal excitability are due to actions on the sensory C-fiber afferents or the postganglionic sympathetic efferents. In order to distinguish these effects, we performed surgical sympathectomy of the lumbar sympathetic chain, including the L3, L4 and L5 ganglia. Sympathectomy did not markedly influence the effects of mediators on axonal excitability (except that the norepinephrine effect was significantly diminished). In conclusion, our data suggest a constitutive rather than inducible expression of axonal receptors for some chemical mediators on the axonal membrane of unmyelinated fibers. Most of the changes in axonal excitability take place in sensory C-fiber afferents rather than in postganglionic sympathetic efferents. Thus, it is possible that certain immune and glial cell mediators released in or around the nerve following injury or inflammation influence the excitability of intact nociceptive fibers. This mechanism could contribute to ectopic excitation of axons in neuropathic pain.
Collapse
Affiliation(s)
- G Moalem
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | | | | |
Collapse
|