201
|
Muschamp JW, Nemeth CL, Robison AJ, Nestler EJ, Carlezon WA. ΔFosB enhances the rewarding effects of cocaine while reducing the pro-depressive effects of the kappa-opioid receptor agonist U50488. Biol Psychiatry 2012; 71:44-50. [PMID: 21962331 PMCID: PMC3230776 DOI: 10.1016/j.biopsych.2011.08.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/10/2011] [Accepted: 08/23/2011] [Indexed: 12/17/2022]
Abstract
BACKGROUND Elevated expression of the transcription factor ΔFosB accompanies repeated exposure to drugs of abuse, particularly in brain areas associated with reward and motivation (e.g., nucleus accumbens). The persistent effects of ΔFosB on target genes might play an important role in the development and expression of behavioral adaptations that characterize addiction. This study examines how ΔFosB influences the responsiveness of the brain reward system to rewarding and aversive drugs. METHODS We used the intracranial self-stimulation paradigm to assess the effects of cocaine in transgenic mice with inducible overexpression of ΔFosB in striatal regions (including nucleus accumbens and dorsal striatum). Mice implanted with lateral hypothalamic stimulating electrodes were trained with the "rate-frequency" procedure for intracranial self-stimulation to determine the frequency at which stimulation becomes rewarding (threshold). RESULTS A dose-effect analysis of cocaine effects revealed that mice overexpressing ΔFosB show increased sensitivity to the rewarding (threshold-lowering) effects of the drug, compared with littermate control subjects. Interestingly, mice overexpressing ΔFosB were also less sensitive to the pro-depressive (threshold-elevating) effects of U50488, a kappa-opioid agonist known to induce dysphoria and stress-like effects in rodents. CONCLUSIONS These data suggest that induction of ΔFosB in striatal regions has two important behavioral consequences-increased sensitivity to drug reward, and reduced sensitivity to aversion-producing a complex phenotype that shows signs of vulnerability to addiction as well as resilience to stress.
Collapse
Affiliation(s)
- John W. Muschamp
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478
| | - Christina L. Nemeth
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478
| | - Alfred J. Robison
- Fishberg Department of Neuroscience and Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029
| | - Eric J. Nestler
- Fishberg Department of Neuroscience and Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029
| | - William A. Carlezon
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478
| |
Collapse
|
202
|
Higley AE. Treatment of alcohol dependence with drug antagonists of the stress response. Alcohol Res 2012; 34:516-21. [PMID: 23584117 PMCID: PMC3860394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
Alcohol dependence is a chronic relapsing disorder characterized by neuroadaptations that may result in the emergence of negative affective states and stress responses upon discontinuation of alcohol use. Clinical studies have demonstrated that alcohol-dependent people are more sensitive to relapse provoking cues such as alcohol, negative affect, and stress. Moreover, stress relief during protracted abstinence is thought to be a major motivation for excessive alcohol consumption. The relationship between chronic alcohol use, stress, and relapse has implications for the treatment of alcohol dependence. Recent research suggests that neural systems mediating stress responses may offer useful targets for pharmacotherapy of alcoholism.
Collapse
|
203
|
Chartoff E, Sawyer A, Rachlin A, Potter D, Pliakas A, Carlezon WA. Blockade of kappa opioid receptors attenuates the development of depressive-like behaviors induced by cocaine withdrawal in rats. Neuropharmacology 2012; 62:167-76. [PMID: 21736885 PMCID: PMC3195851 DOI: 10.1016/j.neuropharm.2011.06.014] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 06/16/2011] [Accepted: 06/17/2011] [Indexed: 11/25/2022]
Abstract
Drug dependence is characterized by dysregulation of brain reward systems and increased sensitivity to stress. Chronic exposure to drugs of abuse is associated with increased expression of the neuropeptide dynorphin, the endogenous ligand for kappa opioid receptors (KORs). Activation of KORs causes depressive- and aversive-like responses in rodents, raising the possibility that drug-induced upregulation of dynorphin plays a role independence-associated negative states. Here we used "binge" exposure to cocaine (3 daily intraperitoneal injections of 15 mg/kg for 14 days) to examine the development of dependence-like behavior in the intracranial self-stimulation (ICSS) test and the forced swim test (FST). When rats were tested 1 h before their first scheduled injection of each day-a period of drug withdrawal corresponding to 20 h after their last injection on the previous day-there were exposure-dependent increases in ICSS thresholds (a putative indicator of anhedonia) and decreases in latencies to immobility in the FST (a putative indicator of behavioral despair). Administration of the long-lasting KOR antagonist norBNI (20 μg, intracerebroventricular) before the beginning of the binge regimen attenuated the development of cocaine withdrawal-induced anhedonia in the ICSS test. In contrast, administration of norBNI in the midst of the binge regimen had no effect on expression of cocaine withdrawal-induced anhedonia in the ICSS test, although it did attenuate despair-like behavior in the FST. These data suggest that blockade of KORs before exposure to a stressor (in this case, cocaine withdrawal or forced swimming) can attenuate the development of stress-induced behavioral adaptations. This article is part of a Special Issue entitled 'Anxiety and Depression'.
Collapse
Affiliation(s)
- Elena Chartoff
- Behavioral Genetics Laboratory, Department of Psychiatry, Harvard Medical School, McLean Hospital, MRC 218, 115 Mill Street, Belmont, MA 02478, USA.
| | | | | | | | | | | |
Collapse
|
204
|
Paris JJ, Reilley KJ, McLaughlin JP. Kappa Opioid Receptor-Mediated Disruption of Novel Object Recognition: Relevance for Psychostimulant Treatment. ACTA ACUST UNITED AC 2011; S4. [PMID: 22900234 DOI: 10.4172/2155-6105.s4-007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Kappa opioid receptor (KOR) agonists are potentially valuable as therapeutics for the treatment of psychostimulant reward as they suppress dopamine signaling in reward circuitry to repress drug seeking behavior. However, KOR agonists are also associated with sedation and cognitive dysfunction. The extent to which learning and memory disruption or hypolocomotion underlie KOR agonists' role in counteracting the rewarding effects of psychostimulants is of interest. C57BL/6J mice were pretreated with vehicle (saline, 0.9%), the KOR agonist (trans)-3,4-dichloro-N-methyl-N-[2-(1- pyrrolidinyl)-cyclohexyl] benzeneacetamide (U50,488), or the peripherally-restricted agonist D-Phe-D-Phe-D-lle-D-Arg- NH(2) (ffir-NH(2)), through central (i.c.v.) or peripheral (i.p.) routes of administration. Locomotor activity was assessed via activity monitoring chambers and rotorod. Cognitive performance was assessed in a novel object recognition task. Prolonged hypolocomotion was observed following administration of 1.0 and 10.0, but not 0.3 mg/kg U50,488. Central, but not peripheral, administration of ffir-NH(2) (a KOR agonist that does not cross the blood-brain barrier) also reduced motor behavior. Systemic pretreatment with the low dose of U50,488 (0.3 mg/kg, i.p.) significantly impaired performance in the novel object recognition task. Likewise, ffir-NH(2) significantly reduced novel object recognition after central (i.c.v.), but not peripheral (i.p.), administration. U50,488- and ffir-NH(2)-mediated deficits in novel object recognition were prevented by pretreatment with KOR antagonists. Cocaine-induced conditioned place preference was subsequently assessed and was reduced by pretreatment with U50,488 (0.3 mg/kg, i.p.). Together, these results suggest that the activation of centrally-located kappa opioid receptors may induce cognitive and mnemonic disruption independent of hypolocomotor effects which may contribute to the KOR-mediated suppression of psychostimulant reward.
Collapse
Affiliation(s)
- Jason J Paris
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, FL 34987, USA
| | | | | |
Collapse
|
205
|
Wang YJ, Rasakham K, Huang P, Chudnovskaya D, Cowan A, Liu-Chen LY. Sex difference in κ-opioid receptor (KOPR)-mediated behaviors, brain region KOPR level and KOPR-mediated guanosine 5'-O-(3-[35S]thiotriphosphate) binding in the guinea pig. J Pharmacol Exp Ther 2011; 339:438-50. [PMID: 21841040 PMCID: PMC3199977 DOI: 10.1124/jpet.111.183905] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 08/11/2011] [Indexed: 12/15/2022] Open
Abstract
We examined whether sex differences in κ-opioid receptor (KOPR) pharmacology exist in guinea pigs, which are more similar to humans in the expression level and distribution of KOPR in the brain than rats and mice. The KOPR agonist trans-(±)-3,4-dichloro-N-methyl-N-(2-[1-pyrrolidinyl]-cyclohexyl)benzeneacetamide methanesulfonate (U50,488H) produced a dose-dependent increase in abnormal postures and immobility with more effects in males than females. Males also showed more U50,488H-induced antinociception in the paw pressure test than females. Pretreatment with the KOPR antagonist norbinaltorphimine blocked U50,488H-induced abnormal body postures and antinociception. In contrast, inhibition of cocaine-induced hyperambulation by U50,488H was more effective in females than males. Thus, sex differences in the effects of U50,488H are endpoint-dependent. We then examined whether sex differences in KOPR levels and KOPR-mediated G protein activation in brain regions may contribute to the observed differences using quantitative in vitro autoradiography of [(3)H](5a,7a,8b)-(-)-N-methyl-N-(7-(1-pyrrolidinyl)1-oxaspiro(4,5)dec-8-yl)benzeacetamide ([(3)H]U69,593) binding to the KOPR and U50,488H-stimulated guanosine 5'-O-(3-[(35)S]thiotriphosphate ([(35)S]GTPγS) binding. Compared with females, males exhibited more [(3)H]U69,593 binding in the deep layers of somatosensory and insular cortices, claustrum, endopiriform nucleus, periaqueductal gray, and substantial nigra. Concomitantly, U50,488H-stimulated [(35)S]GTPγS binding was greater in males than females in the superficial and deep layers of somatosensory and insular cortices, caudate putamen, claustrum, medial geniculate nucleus, and cerebellum. In contrast, compared with males, females showed more U50,488H-stimulated [(35)S]GTPγS binding in the dentate gyrus and a trend of higher [(35)S]GTPγS binding in the hypothalamus. These data demonstrate that males and females differ in KOPR expression and KOPR-mediated G protein activation in distinct brain regions, which may contribute to the observed sex differences in KOPR-mediated pharmacology.
Collapse
Affiliation(s)
- Yu-Jun Wang
- Department of Pharmacology, Temple University School of Medicine, 3420 N. Broad Street, Philadelphia, PA 19140, USA
| | | | | | | | | | | |
Collapse
|
206
|
Nguyen K, Tseng A, Marquez P, Hamid A, Lutfy K. The role of endogenous dynorphin in ethanol-induced state-dependent CPP. Behav Brain Res 2011; 227:58-63. [PMID: 22074899 DOI: 10.1016/j.bbr.2011.10.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 10/18/2011] [Accepted: 10/23/2011] [Indexed: 11/29/2022]
Abstract
The aim of this study was to determine the role of the endogenous dynorphin/kappa opioid receptor (DYN/KOP) system in ethanol-induced state-dependent conditioned place preference (CPP). To this end, mice lacking the pro-DYN gene and their wild-type littermates/controls were tested for baseline place preference on day 1, received 15-min morning and afternoon conditionings with saline or ethanol (2g/kg) each day for three consecutive days and were then tested for CPP under a drug-free state on day 5 and following a saline or ethanol (1 or 2g/kg) challenge on day 8. Given that compensatory developmental changes may occur in knockout mice, the effect of nor-binaltorphimine (nor-BNI), a KOP antagonist, on state-dependent CPP induced by ethanol was also studied in wild-type mice. On day 1, mice were tested for baseline place preference and, 4h later, treated with saline or nor-BNI (10mg/kg). On days 2-4, mice received 15-min morning and afternoon conditionings and were tested for CPP under a drug-free state on day 5 and following an ethanol (1g/kg) challenge on day 8. A comparable CPP was observed in mice lacking the pro-DYN gene and their wild-type littermates/controls as well as in wild-type mice treated with nor-BNI and their saline-treated controls. However, these mice compared to their respective controls exhibited a greater CPP response following an ethanol (1g/kg) challenge, suggesting that the endogenous DYN/KOP system may negatively regulate ethanol-induced state-dependent CPP.
Collapse
Affiliation(s)
- Khanh Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, United States
| | | | | | | | | |
Collapse
|
207
|
Potter DN, Damez-Werno D, Carlezon WA, Cohen BM, Chartoff EH. Repeated exposure to the κ-opioid receptor agonist salvinorin A modulates extracellular signal-regulated kinase and reward sensitivity. Biol Psychiatry 2011; 70:744-753. [PMID: 21757186 PMCID: PMC3186866 DOI: 10.1016/j.biopsych.2011.05.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 04/28/2011] [Accepted: 05/21/2011] [Indexed: 11/15/2022]
Abstract
BACKGROUND Repeated exposure to drugs of abuse and stress increase dynorphin, a κ opioid receptor (KOR) ligand, in the nucleus accumbens (NAc). Acute KOR activation produces dysphoria that might contribute to addictive behavior. How repeated KOR activation modulates reward circuitry is not understood. METHODS We used intracranial self-stimulation (ICSS), a method that provides a behavioral index of reward sensitivity, to measure the effects of repeated administration of the KOR agonist salvinorin A (salvA) (2 mg/kg) on the reward-potentiating effects of cocaine (5.0 mg/kg). In separate rats, we measured the effects of salvA on activation of extracellular signal regulated kinase (ERK), cyclic adenosine monophosphate (cAMP) response element binding protein, and c-Fos within the NAc. RESULTS SalvA had biphasic effects on reward: an immediate effect was to decrease the rewarding impact of ICSS, whereas a delayed effect was to increase the rewarding impact of ICSS. Repeated salvA produced a net decrease in the reward-potentiating effects of cocaine. In the NAc, both acute and repeated salvA administration increased phosphorylated ERK, whereas only acute salvA increased c-Fos and repeated salvA increased phosphorylated cAMP response element binding protein. The KOR antagonist nor-binaltorphimine (20 mg/kg) blocked the immediate and delayed effects of salvA and prolonged the duration of cocaine effects in ICSS. CONCLUSIONS Repeated salvA might trigger opponent processes such that "withdrawal" from the dysphoric effects of KOR activation is rewarding and decreases the net rewarding valence of cocaine. The temporal effects of salvA on ERK signaling suggest KOR-mediated engagement of distinct signaling pathways within the NAc that might contribute to biphasic effects on reward sensitivity.
Collapse
Affiliation(s)
- David N. Potter
- Behavioral Genetics Laboratory, Harvard Medical School, McLean Hospital, Belmont, MA,Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA
| | - Diane Damez-Werno
- Molecular Pharmacology Laboratory, Harvard Medical School, McLean Hospital, Belmont, MA,Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA
| | - William A. Carlezon
- Behavioral Genetics Laboratory, Harvard Medical School, McLean Hospital, Belmont, MA,Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA
| | - Bruce M. Cohen
- Molecular Pharmacology Laboratory, Harvard Medical School, McLean Hospital, Belmont, MA,Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA
| | - Elena H. Chartoff
- Behavioral Genetics Laboratory, Harvard Medical School, McLean Hospital, Belmont, MA,Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA
| |
Collapse
|
208
|
Braida D, Donzelli A, Martucci R, Capurro V, Sala M. Learning and Memory Impairment Induced by Salvinorin A, the Principal Ingredient of Salvia divinorum, in Wistar Rats. Int J Toxicol 2011; 30:650-61. [DOI: 10.1177/1091581811418538] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effects of salvinorin A ( Salvia divinorum principal ingredient), a potent κ-opioid natural hallucinogen, on learning and memory were investigated. Wistar rats were tested in the 8-arm radial maze, for object recognition and passive avoidance tasks for spatial, episodic, and aversive memory. Attention was assessed using a latent inhibition task. Salvinorin A (80-640 μg/kg subcutaneous [sc]) did not affect short-term memory, but it impaired spatial long-term memory. Episodic and aversive memories were impaired by salvinorin A (160-640 μg/kg). Memory impairment was blocked by the selective κ-opioid receptor antagonist, nor-binaltorphimine ([nor-B]; 0.5-1 mg/kg, intraperitoneal [ip]). Salvinorin A (160 μg/kg) disrupted latent inhibition, after LiCl treatment, such as reduced sucrose intake, suggesting an attention would result in an impairment of cognitive behavior. These findings demonstrate for the first time that salvinorin A has deleterious effects on learning and memory, through a κ-opioid receptor mechanism.
Collapse
Affiliation(s)
- Daniela Braida
- Department of Pharmacology, Chemotherapy and Medical Toxicology, Università degli Studi di Milano, Milan, Italy
| | - Andrea Donzelli
- Department of Pharmacology, Chemotherapy and Medical Toxicology, Università degli Studi di Milano, Milan, Italy
| | - Roberta Martucci
- Department of Pharmacology, Chemotherapy and Medical Toxicology, Università degli Studi di Milano, Milan, Italy
| | - Valeria Capurro
- Department of Pharmacology, Chemotherapy and Medical Toxicology, Università degli Studi di Milano, Milan, Italy
| | - Mariaelvina Sala
- Department of Pharmacology, Chemotherapy and Medical Toxicology, Università degli Studi di Milano, Milan, Italy
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Milan, Italy
| |
Collapse
|
209
|
Hook V, Funkelstein L, Wegrzyn J, Bark S, Kindy M, Hook G. Cysteine Cathepsins in the secretory vesicle produce active peptides: Cathepsin L generates peptide neurotransmitters and cathepsin B produces beta-amyloid of Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1824:89-104. [PMID: 21925292 DOI: 10.1016/j.bbapap.2011.08.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Revised: 08/26/2011] [Accepted: 08/29/2011] [Indexed: 12/01/2022]
Abstract
Recent new findings indicate significant biological roles of cysteine cathepsin proteases in secretory vesicles for production of biologically active peptides. Notably, cathepsin L in secretory vesicles functions as a key protease for proteolytic processing of proneuropeptides (and prohormones) into active neuropeptides that are released to mediate cell-cell communication in the nervous system for neurotransmission. Moreover, cathepsin B in secretory vesicles has been recently identified as a β-secretase for production of neurotoxic β- amyloid (Aβ) peptides that accumulate in Alzheimer's disease (AD), participating as a notable factor in the severe memory loss in AD. These secretory vesicle functions of cathepsins L and B for production of biologically active peptides contrast with the well-known role of cathepsin proteases in lysosomes for the degradation of proteins to result in their inactivation. The unique secretory vesicle proteome indicates proteins of distinct functional categories that provide the intravesicular environment for support of cysteine cathepsin functions. Features of the secretory vesicle protein systems insure optimized intravesicular conditions that support the proteolytic activity of cathepsins. These new findings of recently discovered biological roles of cathepsins L and B indicate their significance in human health and disease. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.
Collapse
Affiliation(s)
- Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Dept. of Neurosciences, Univ. of Calif., San Diego, USA.
| | | | | | | | | | | |
Collapse
|
210
|
CREB-mediated alterations in the amygdala transcriptome: coordinated regulation of immune response genes following cocaine. Int J Neuropsychopharmacol 2011; 14:1111-26. [PMID: 21138621 PMCID: PMC3970411 DOI: 10.1017/s1461145710001392] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The neuronal circuitry underlying stress- and drug-induced reinstatement of cocaine-seeking has been relatively well characterized; however, less is known regarding the long-term molecular changes following cocaine administration that may promote future reinstatement. The transcription factor cAMP response element-binding protein (CREB) is necessary for stress- but not cocaine-induced reinstatement of conditioned reward, suggesting that different molecular mechanisms may underlie these two types of reinstatement. To explore the relationship between this transcription factor and reinstatement, we utilized the place-conditioning paradigm to examine alterations in gene expression in the amygdala, a neural substrate critically involved in stress-induced reinstatement, following the development of cocaine reward and subsequent extinction. Our findings demonstrate that the amygdala transcriptome was altered by CREB deficiency more than by previous cocaine experience, with an over-representation of genes involved in the immune response. However, a subset of genes involved in stress and immune response demonstrated a drug×genotype interaction, indicating that cocaine produces different long-term alterations in gene expression depending on the presence or absence of CREB. This profile of gene expression in the context of addiction enhances our understanding of the long-term molecular changes that occur throughout the addiction cycle and identifies novel genes and pathways that might lead to the creation of better therapeutic agents.
Collapse
|
211
|
Pharmacological differentiation of opioid receptor antagonists by molecular and functional imaging of target occupancy and food reward-related brain activation in humans. Mol Psychiatry 2011; 16:826-35, 785. [PMID: 21502953 PMCID: PMC3142667 DOI: 10.1038/mp.2011.29] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Opioid neurotransmission has a key role in mediating reward-related behaviours. Opioid receptor (OR) antagonists, such as naltrexone (NTX), can attenuate the behaviour-reinforcing effects of primary (food) and secondary rewards. GSK1521498 is a novel OR ligand, which behaves as an inverse agonist at the μ-OR sub-type. In a sample of healthy volunteers, we used [(11)C]-carfentanil positron emission tomography to measure the OR occupancy and functional magnetic resonance imaging (fMRI) to measure activation of brain reward centres by palatable food stimuli before and after single oral doses of GSK1521498 (range, 0.4-100 mg) or NTX (range, 2-50 mg). GSK1521498 had high affinity for human brain ORs (GSK1521498 effective concentration 50 = 7.10 ng ml(-1)) and there was a direct relationship between receptor occupancy (RO) and plasma concentrations of GSK1521498. However, for both NTX and its principal active metabolite in humans, 6-β-NTX, this relationship was indirect. GSK1521498, but not NTX, significantly attenuated the fMRI activation of the amygdala by a palatable food stimulus. We thus have shown how the pharmacological properties of OR antagonists can be characterised directly in humans by a novel integration of molecular and functional neuroimaging techniques. GSK1521498 was differentiated from NTX in terms of its pharmacokinetics, target affinity, plasma concentration-RO relationships and pharmacodynamic effects on food reward processing in the brain. Pharmacological differentiation of these molecules suggests that they may have different therapeutic profiles for treatment of overeating and other disorders of compulsive consumption.
Collapse
|
212
|
Tissue-specific DNA methylation of the human prodynorphin gene in post-mortem brain tissues and PBMCs. Pharmacogenet Genomics 2011; 21:185-96. [PMID: 20808262 DOI: 10.1097/fpc.0b013e32833eecbc] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Dynorphins, the endogenous ligands for the κ opioid receptor, are implicated in neuropsychiatric disorders through modulation of basal and stimuli-induced dopaminergic, glutamatergic, and serotonergic tones. Expression of the prodynorphin gene (PDYN) is critical for rewarding properties of drugs of abuse and stress-induced responses. Epigenetic factors, such as DNA methylation, play an important role in modulation of gene expression. METHODS We analyzed DNA methylation patterns of three CpG-rich regions of PDYN, a CpG island, and cluster A in the proximal promoter, and cluster B in coding exon 4, by bisulfite sequencing of DNA from the caudate and anterior cingulate cortex from post-mortem brain of 35 individuals (22 HIV seropositive), and in peripheral blood mononuclear cells from 21 of these individuals. RESULTS We found remarkably similar patterns of methylation across CpG sites in these tissues. However, there were tissue-specific differences in methylation levels (P=0.000001) of the CpG island: higher levels in peripheral blood mononuclear cells (82%) than in the brain tissues, the caudate (62%), and the anterior cingulate cortex (44%). But there was higher PDYN expression in the caudate than in the anterior cingulate cortex. In contrast, cluster A near the transcription start site is hypomethylated. CONCLUSION This DNA methylation profile of the PDYN gene is typical for primary responsive genes with regulatory elements for both basal and tissue-specific transcription. Our findings provide a rationale for further studies of the role of other epigenetic factors in the regulation of PDYN expression in individuals with psychiatric and neurological disorders.
Collapse
|
213
|
Taqi MM, Bazov I, Watanabe H, Sheedy D, Harper C, Alkass K, Druid H, Wentzel P, Nyberg F, Yakovleva T, Bakalkin G. Prodynorphin CpG-SNPs associated with alcohol dependence: elevated methylation in the brain of human alcoholics. Addict Biol 2011; 16:499-509. [PMID: 21521424 DOI: 10.1111/j.1369-1600.2011.00323.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The genetic, epigenetic and environmental factors may influence the risk for neuropsychiatric disease through their effects on gene transcription. Mechanistically, these effects may be integrated through regulation of methylation of CpG dinucleotides overlapping with single-nucleotide polymorphisms (SNPs) associated with a disorder. We addressed this hypothesis by analyzing methylation of prodynorphin (PDYN) CpG-SNPs associated with alcohol dependence, in human alcoholics. Postmortem specimens of the dorsolateral prefrontal cortex (dl-PFC) involved in cognitive control of addictive behavior were obtained from 14 alcohol-dependent and 14 control subjects. Methylation was measured by pyrosequencing after bisulfite treatment of DNA. DNA binding proteins were analyzed by electromobility shift assay. Three PDYN CpG-SNPs associated with alcoholism were found to be differently methylated in the human brain. In the dl-PFC of alcoholics, methylation levels of the C, non-risk variant of 3'-untranslated region (3'-UTR) SNP (rs2235749; C > T) were increased, and positively correlated with dynorphins. A DNA-binding factor that differentially targeted the T, risk allele and methylated and unmethylated C allele of this SNP was identified in the brain. The findings suggest a causal link between alcoholism-associated PDYN 3'-UTR CpG-SNP methylation, activation of PDYN transcription and vulnerability of individuals with the C, non-risk allele(s) to develop alcohol dependence.
Collapse
Affiliation(s)
- Malik Mumtaz Taqi
- The Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Han W, Takamatsu Y, Yamamoto H, Kasai S, Endo S, Shirao T, Kojima N, Ikeda K. Inhibitory role of inducible cAMP early repressor (ICER) in methamphetamine-induced locomotor sensitization. PLoS One 2011; 6:e21637. [PMID: 21738744 PMCID: PMC3125264 DOI: 10.1371/journal.pone.0021637] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 06/04/2011] [Indexed: 12/02/2022] Open
Abstract
Background The inducible cyclic adenosine monophosphate (cAMP) early repressor (ICER) is highly expressed in the central nervous system and functions as a repressor of cAMP response element-binding protein (CREB) transcription. The present study sought to clarify the role of ICER in the effects of methamphetamine (METH). Methods and Findings We tested METH-induced locomotor sensitization in wildtype mice, ICER knockout mice, and ICER I-overexpressing mice. Both ICER wildtype mice and knockout mice displayed increased locomotor activity after continuous injections of METH. However, ICER knockout mice displayed a tendency toward higher locomotor activity compared with wildtype mice, although no significant difference was observed between the two genotypes. Moreover, compared with wildtype mice, ICER I-overexpressing mice displayed a significant decrease in METH-induced locomotor sensitization. Furthermore, Western blot analysis and quantitative real-time reverse transcription polymerase chain reaction demonstrated that ICER overexpression abolished the METH-induced increase in CREB expression and repressed cocaine- and amphetamine-regulated transcript (CART) and prodynorphin (Pdyn) expression in mice. The decreased CART and Pdyn mRNA expression levels in vivo may underlie the inhibitory role of ICER in METH-induced locomotor sensitization. Conclusions Our data suggest that ICER plays an inhibitory role in METH-induced locomotor sensitization.
Collapse
Affiliation(s)
- Wenhua Han
- Research Project for Addictive Substances, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yukio Takamatsu
- Research Project for Addictive Substances, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hideko Yamamoto
- Research Project for Addictive Substances, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Shinya Kasai
- Research Project for Addictive Substances, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Shogo Endo
- Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Tomoaki Shirao
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Nobuhiko Kojima
- Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Japan
- Laboratory for Neurobiology of Emotion, RIKEN Brain Science Institute, Wako, Japan
- * E-mail:
| | - Kazutaka Ikeda
- Research Project for Addictive Substances, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
215
|
Wu G, Huang W, Zhang H, Li Q, Zhou J, Shu H. Inhibitory effects of processed Aconiti tuber on morphine-induced conditioned place preference in rats. JOURNAL OF ETHNOPHARMACOLOGY 2011; 136:254-259. [PMID: 21549821 DOI: 10.1016/j.jep.2011.04.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/18/2011] [Accepted: 04/20/2011] [Indexed: 05/30/2023]
Abstract
AIM OF THE STUDY Our previous studies indicated that processed Aconiti tuber (PAT), a traditional Chinese herbal medicine, had antinociceptive effects and inhibitory effects on morphine tolerance by activation of kappa-opioid receptor (KOR). Preclinical studies also demonstrated that KOR agonists functionally attenuate addictive behaviors of morphine, such as conditioned place preference (CPP). Therefore, we hypothesize that PAT may inhibit morphine-induced CPP in rats. MATERIALS AND METHODS (1) Five groups of rats (n=8 for each group) were alternately subcutaneous (s.c.) injected with morphine 10mg/kg (one group receive normal saline as a control) and normal saline for 8 days and oral co-administrated with distilled water or PAT 0.3, 1.0, or 3.0 g/kg daily on days 2-9 during CPP training, respectively. (2) Other four groups of rats were randomly s.c. injected with nor-binaltorphimine (nor-BNI; 5mg/kg) or normal saline (as a control) 120 min before alternately s.c. with morphine and normal saline and oral co-administrated with distilled water or PAT 3.0 g/kg daily. Each rat was acquired pre-conditioning and post-conditioning CPP data and assayed dynorphin concentrations by radioimmunoassay in rat's nucleus accumbens (NAc) after CPP training. RESULTS (1) PAT 1.0 or 3.0 g/kg dose-dependently decreased the morphine-induced increase of CPP scores. (2) Nor-BNI completely antagonized the inhibition of PAT on morphine-induced CPP. (3) PAT dose-dependently increased dynorphin content in rats' NAc after CPP training. CONCLUSIONS (1) PAT dose-dependently inhibited morphine-induced CPP. (2) The inhibition of PAT on morphine-induced CPP was probably due to activation of KOR by increasing dynorphin release in rats' NAc.
Collapse
MESH Headings
- Aconitum
- Animals
- Behavior, Addictive/drug therapy
- Behavior, Addictive/metabolism
- Behavior, Animal/drug effects
- Conditioning, Operant/drug effects
- Dose-Response Relationship, Drug
- Drug Tolerance
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Dynorphins/metabolism
- Male
- Morphine Dependence/drug therapy
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Narcotic Antagonists/pharmacology
- Narcotic Antagonists/therapeutic use
- Nucleus Accumbens/drug effects
- Nucleus Accumbens/metabolism
- Phytotherapy
- Plant Tubers
- Random Allocation
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, kappa/agonists
Collapse
Affiliation(s)
- Guiyun Wu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan 2nd Road, Guangzhou, Guangdong 510080, China
| | | | | | | | | | | |
Collapse
|
216
|
Cunningham CW, Rothman RB, Prisinzano TE. Neuropharmacology of the naturally occurring kappa-opioid hallucinogen salvinorin A. Pharmacol Rev 2011; 63:316-47. [PMID: 21444610 PMCID: PMC3082450 DOI: 10.1124/pr.110.003244] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Salvia divinorum is a perennial sage native to Oaxaca, Mexico, that has been used traditionally in divination rituals and as a treatment for the "semimagical" disease panzón de borrego. Because of the intense "out-of-body" experiences reported after inhalation of the pyrolized smoke, S. divinorum has been gaining popularity as a recreational hallucinogen, and the United States and several other countries have regulated its use. Early studies isolated the neoclerodane diterpene salvinorin A as the principal psychoactive constituent responsible for these hallucinogenic effects. Since the finding that salvinorin A exerts its potent psychotropic actions through the activation of KOP receptors, there has been much interest in elucidating the underlying mechanisms behind its effects. These effects are particularly remarkable, because 1) salvinorin A is the first reported non-nitrogenous opioid receptor agonist, and 2) its effects are not mediated by the 5-HT(2A) receptor, the classic target of hallucinogens such as lysergic acid diethylamide and mescaline. Rigorous investigation into the structural features of salvinorin A responsible for opioid receptor affinity and selectivity has produced numerous receptor probes, affinity labels, and tools for evaluating the biological processes responsible for its observed psychological effects. Salvinorin A has therapeutic potential as a treatment for pain, mood and personality disorders, substance abuse, and gastrointestinal disturbances, and suggests that nonalkaloids are potential scaffolds for drug development for aminergic G-protein coupled receptors.
Collapse
|
217
|
Martinez D, Carpenter KM, Liu F, Slifstein M, Broft A, Friedman AC, Kumar D, Van Heertum R, Kleber HD, Nunes E. Imaging dopamine transmission in cocaine dependence: link between neurochemistry and response to treatment. Am J Psychiatry 2011; 168:634-41. [PMID: 21406463 PMCID: PMC3235735 DOI: 10.1176/appi.ajp.2010.10050748] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Previous research has shown that dopamine signaling in the limbic striatum is crucial for selecting adaptive, motivated behavior and that disrupted dopamine transmission is associated with impulsive and maladaptive behavior. In humans, positron emission tomography (PET) imaging studies have shown that cocaine dependence is associated with the dysregulation of striatal dopamine signaling, which is linked to cocaine-seeking behavior. The goal of the present study was to investigate whether this association applies to the treatment setting. The authors hypothesized that dopamine signaling in the limbic striatum would be associated with response to a behavioral treatment that uses positive reinforcement to replace impulsive cocaine use with constructive personal goals. METHOD Prior to treatment, cocaine-dependent subjects underwent two PET scans using [(11)C]raclopride, before and after the administration of a stimulant (methylphenidate), for measurement of striatal dopamine D(2/3) receptor binding and presynaptic dopamine release. RESULTS Both of the outcome measures were lower in the volunteers who did not respond to treatment than in those who experienced a positive treatment response. CONCLUSIONS These findings provide insight into the neurochemistry of treatment response and show that low dopamine transmission is associated with treatment failure. In addition, these data suggest that the combination of behavioral treatment with methods that increase striatal dopamine signaling might serve as a therapeutic strategy for cocaine dependence.
Collapse
Affiliation(s)
- Diana Martinez
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, USA.
| | - Kenneth M Carpenter
- Department of Psychiatry, Columbia University College of Physicians and Surgeons New York, NY
| | - Fei Liu
- Department of Psychiatry, Columbia University College of Physicians and Surgeons New York, NY
| | - Mark Slifstein
- Department of Psychiatry, Columbia University College of Physicians and Surgeons New York, NY
| | - Allegra Broft
- Department of Psychiatry, Columbia University College of Physicians and Surgeons New York, NY
| | | | - Dileep Kumar
- Department of Psychiatry, Columbia University College of Physicians and Surgeons New York, NY
| | - Ronald Van Heertum
- Department of Radiology, Columbia University College of Physicians and Surgeons New York, NY
| | - Herbert D Kleber
- Department of Psychiatry, Columbia University College of Physicians and Surgeons New York, NY
| | - Edward Nunes
- Department of Psychiatry, Columbia University College of Physicians and Surgeons New York, NY
| |
Collapse
|
218
|
New operant model of reinstatement of food-seeking behavior in mice. Psychopharmacology (Berl) 2011; 215:49-70. [PMID: 21161187 DOI: 10.1007/s00213-010-2110-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 11/23/2010] [Indexed: 10/18/2022]
Abstract
RATIONALE A major problem in treating obesity is the high rate of relapse to abnormal food-taking behavior when maintaining diet. OBJECTIVES The present study evaluates the reinstatement of extinguished palatable food-seeking behavior induced by cues previously associated with the palatable food, re-exposure to this food, or stress. The participation of the opioid and dopamine mechanisms in the acquisition, extinction, and cue-induced reinstatement was also investigated. MATERIALS AND METHODS C57BL/6 mice were first trained on a fixed-ratio-1 schedule of reinforcement to obtain chocolate-flavored pellets during 20 days, which was associated to a stimulus light. Operant behavior was then extinguished during 20 daily sessions. mRNA levels of opioid peptide precursors and dopamine receptors were evaluated in the brain by in situ hybridization and RT-PCR techniques. RESULTS A reinstatement of food-seeking behavior was only obtained after exposure to the food-associated cue. A down-regulation of prodynorphin mRNA was found in the dorsal striatum and nucleus accumbens after the acquisition, extinction, and reinstatement of the operant behavior. Extinction and reinstatement of this operant response enhanced proenkephalin mRNA in the dorsal striatum and/or the nucleus accumbens core. Down-regulation of D2 receptor expression was observed in the dorsal striatum and nucleus accumbens after reinstatement. An up-regulation of PDYN mRNA expression was found in the hypothalamus after extinction and reinstatement. CONCLUSIONS This study provides a new operant model in mice for the evaluation of food-taking behavior and reveals specific changes in the dopamine and opioid system associated to the behavioral responses directed to obtain a natural reward.
Collapse
|
219
|
Kim KS, Kim H, Baek IS, Lee KW, Han PL. Mice lacking adenylyl cyclase type 5 (AC5) show increased ethanol consumption and reduced ethanol sensitivity. Psychopharmacology (Berl) 2011; 215:391-8. [PMID: 21193983 DOI: 10.1007/s00213-010-2143-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 12/10/2010] [Indexed: 10/18/2022]
Abstract
RATIONALE The adenylyl cyclase (AC)/cAMP system is believed to be a key component in regulating alcohol-drinking behavior. It was reported that adenylyl cyclase-5 (AC5) is expressed widely in the brain, with a preferential concentration in the dorsal striatum and nucleus accumbens, brain regions which are important for addiction and emotion. AC5 has been shown to be an essential mediator of morphine addiction and dopamine receptor function; however, it remains unknown whether or not AC5 plays a role in ethanol preference and sensitivity in animals. OBJECTIVE This work was carried out to determine the role of AC5 in alcohol consumption and the hypnotic response to alcohol using AC5 knockout (KO) mice. RESULTS In the test for ethanol preference employing a two-bottle free-choice paradigm, AC5 KO mice showed increased ethanol consumption and preference compared with the wild-type mice. Ethanol-induced hypothermia was weakly reduced in AC5 KO mice. AC5 KO mice exhibited sedation/behavioral sleep to high-dose ethanol, but their responses were greatly suppressed compared with the wild-type mice. CONCLUSIONS These results suggest that AC5 is an important signaling molecule regulating alcohol sensitivity and preference in animals. These data provide critical information for AC5 activation as a candidate target for the treatment of alcoholism.
Collapse
Affiliation(s)
- Kyoung-Shim Kim
- Brain Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | | | | | | | | |
Collapse
|
220
|
Wei SG, Zhu YS, Lai JH, Xue HX, Chai ZQ, Li SB. Association between heroin dependence and prodynorphin gene polymorphisms. Brain Res Bull 2011; 85:238-42. [PMID: 21382455 DOI: 10.1016/j.brainresbull.2011.02.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 02/11/2011] [Accepted: 02/27/2011] [Indexed: 01/27/2023]
Abstract
Dynorphin peptides and k-opioid receptor are important in the rewarding effects of drugs of abuse such as heroin. This study examined potential association between heroin dependence and four single nucleotide polymorphisms (SNPs) of prodynorphin (PDYN) gene (rs35286281 in promoter region and rs1022563, rs2235749, rs910080 in 3'UTR). Participants included 304 heroin-dependent subjects and 300 healthy controls. Genotype, allele frequencies and difference between groups were analyzed by HaploView 4.0 and SPSS 11.5 software. The analysis indicated a significant higher frequency of the PDYN 68bp VNTR (rs35286281) H allele in heroin-dependent subjects than in controls (p=0.002 after Bonferroni correction). Strong linkage disequilibrium was observed between rs1022563, rs2235749 and rs910080 polymorphism (D'>0.9). Significantly more TCT haplotypes were found in heroin-dependent patients than in the controls (p=0.006 after Bonferroni correction). We found significant pointwise correlation of these three variants (rs1022563, rs2235749 and rs910080) with heroin dependence. These findings support the important role of PDYN polymorphism in heroin dependence, and may guide future studies to identify genetic risk factors for heroin dependence.
Collapse
Affiliation(s)
- S G Wei
- Department of Forensic Science, School of Medicine, Xi'an Jiaotong University, Key Laboratory of Ministry of Public Health for Forensic Science, Xi'an, Shannxi, PR China
| | | | | | | | | | | |
Collapse
|
221
|
Taqi MM, Bazov I, Watanabe H, Nyberg F, Yakovleva T, Bakalkin G. Prodynorphin promoter SNP associated with alcohol dependence forms noncanonical AP-1 binding site that may influence gene expression in human brain. Brain Res 2011; 1385:18-25. [PMID: 21338584 DOI: 10.1016/j.brainres.2011.02.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 01/19/2011] [Accepted: 02/14/2011] [Indexed: 11/18/2022]
Abstract
Single nucleotide polymorphism (rs1997794) in promoter of the prodynorphin gene (PDYN) associated with alcohol-dependence may impact PDYN transcription in human brain. To address this hypothesis we analyzed PDYN mRNA levels in the dorsolateral prefrontal cortex (dl-PFC) and hippocampus, both involved in cognitive control of addictive behavior and PDYN promoter SNP genotype in alcohol-dependent and control human subjects. The principal component analysis suggested that PDYN expression in the dl-PFC may be related to alcoholism, while in the hippocampus may depend on the genotype. We also demonstrated that the T, low risk SNP allele resides within noncanonical AP-1-binding element that may be targeted by JUND and FOSB proteins, the dominant AP-1 constituents in the human brain. The T to C transition abrogated AP-1 binding. The impact of genetic variations on PDYN transcription may be relevant for diverse adaptive responses of this gene to alcohol.
Collapse
Affiliation(s)
- Malik Mumtaz Taqi
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, 751 24, Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
222
|
Mu P, Panksepp J, Schlüter O, Dong Y, Dong Y. Exposure to cocaine alters dynorphin-mediated regulation of excitatory synaptic transmission in nucleus accumbens neurons. Biol Psychiatry 2011; 69:228-35. [PMID: 21030009 PMCID: PMC3790254 DOI: 10.1016/j.biopsych.2010.09.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 08/23/2010] [Accepted: 09/08/2010] [Indexed: 10/18/2022]
Abstract
BACKGROUND Dysregulation of excitatory synaptic input to nucleus accumbens (NAc) medium spiny neurons (MSNs) underlies a key pathophysiology of drug addiction and addiction-associated emotional and motivational alterations. Dynorphin peptides, which exhibit higher affinity to κ type opioid receptors, are upregulated within the NAc upon exposure to cocaine administration, and the increased dynorphin-signaling in the NAc has been critically implicated in negative mood observed in cocaine- or stress-exposed animals. Despite such apparent behavioral significance of the NAc dynorphins, the understanding of how dynorphins regulate excitatory synaptic transmission in the NAc remains incomplete. METHODS We used electrophysiological recording in brain slices to examine the effects of dynorphins on excitatory synaptic transmission in the NAc. RESULTS We focused on two key dynorphins, dynorphin A and B. Our current results show that dynorphin A and B differentially regulated excitatory postsynaptic currents (EPSCs) in NAc MSNs. Whereas perfusions of both dynorphin A and B to NAc slices decreased EPSCs in MSNs, the effect of dynorphin A but not dynorphin B was completely reversed by the κ receptor-selective antagonist nor-binaltorphimine. These results implicate κ receptor-independent mechanisms in dynorphin B-mediated synaptic effects in the NAc. Furthermore, repeated exposure to cocaine (15 mg/kg/day via intraperitoneal injection for 5 days, with 1, 2, or 14 days withdrawal) completely abolished dynorphin A-mediated modulation of EPSCs in NAc MSNs, whereas the effect of dynorphin B remained largely unchanged. CONCLUSIONS Given the quantitatively higher abundance of dynorphin B in the NAc, our present results suggest that the dynorphin B-mediated, κ receptor-independent pathways predominate in the overall effect of dynorphins in cocaine-pretreated animals and potentially in cocaine-induced alterations in mood.
Collapse
Affiliation(s)
- Ping Mu
- Program in Neuroscience, Washington State University, Pullman, WA 99164-6520
| | - Jaak Panksepp
- Program in Neuroscience, Washington State University, Pullman, WA 99164-6520
| | - Oliver Schlüter
- Department of Molecular Neurobiology, European Neuroscience Institute, Grisebachstr. 5, 37077 Göttingen, Germany
| | - Yan Dong
- Program in Neuroscience, Washington State University, Pullman, WA 99164-6520
| | | |
Collapse
|
223
|
Liu X, Jernigan C. Activation of the opioid μ1, but not δ or κ, receptors is required for nicotine reinforcement in a rat model of drug self-administration. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:146-53. [PMID: 20965223 PMCID: PMC3019243 DOI: 10.1016/j.pnpbp.2010.10.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 10/11/2010] [Accepted: 10/11/2010] [Indexed: 12/17/2022]
Abstract
There has long been an interest in examining the involvement of opioid neurotransmission in nicotine rewarding process and addiction to nicotine. Over the past 3 decades, however, clinical effort to test the effectiveness of nonselective opioid antagonists (mainly naloxone and naltrexone) for smoking cessation has yielded equivocal results. In light of the fact that there are three distinctive types of receptors mediating actions of the endogenous opioid peptides, this study, using a rat model of nicotine self-administration, examined involvement of different opioid receptors in the reinforcement of nicotine by selective blockade of the μ1, the δ, and the κ opioid receptors. Male Sprague-Dawley rats were trained in daily 1h sessions to intravenously self-administer nicotine (0.03 mg/kg/infusion) on a fixed-ratio 5 schedule. After establishment of stable nicotine self-administration behavior, the effects of the opioid antagonists were tested. Separate groups of rats were used to test the effects of naloxanazine (selective for μ1 receptors, 0, 5 and 15 mg/kg), naltrindole (selective for δ receptors, 0, 0.5 and 5mg/kg), and 5'-guanidinonaltrindole (GNTI, selective for κ receptors, 0, 0.25 and 1mg/kg). In each individual drug group, the 3 drug doses were tested by using a within-subject and Latin-Square design. The effects of these antagonists on food self-administering behavior were also examined in the same rats in each respective drug group after retrained for food self-administration. Pretreatment with naloxonazine, but not naltrindole or GNTI, significantly reduced responses on the active lever and correspondingly the number of nicotine infusions. None of these antagonists changed lever-pressing behavior for food reinforcement. These results indicate that activation of the opioid μ1, but not the δ or the κ, receptors is required for the reinforcement of nicotine and suggest that opioid neurotransmission via the μ1 receptors would be a promising target for the development of opioid ligands for smoking cessation.
Collapse
Affiliation(s)
- Xiu Liu
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | | |
Collapse
|
224
|
Funkelstein L, Hook V. The novel role of cathepsin L for neuropeptide production illustrated by research strategies in chemical biology with protease gene knockout and expression. Methods Mol Biol 2011; 768:107-125. [PMID: 21805239 DOI: 10.1007/978-1-61779-204-5_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Neuropeptides are essential for cell-cell communication in the nervous and endocrine systems. Production of active neuropeptides requires proteolytic processing of proneuropeptide precursors in secretory vesicles that produce, store, and release neuropeptides that regulate physiological functions. This review describes research strategies utilizing chemical biology combined with protease gene knockout and expression to demonstrate the key role of cathepsin L for production of neuropeptides in secretory vesicles. Cathepsin L was discovered using activity-based probes and mass spectrometry to identify proenkephalin cleaving activity as cathepsin L. Significantly, in vivo protease gene knockout and expression approaches illustrate the key role of cathepsin L for neuropeptide production. Notably, cathepsin L is colocalized with neuropeptide secretory vesicles, the major site of proteolytic processing of proneuropeptides to generate active neuropeptides. Cathepsin L participates in producing opioid neuropeptides consisting of enkephalin, β-endorphin, and dynorphin, as well as in generating the POMC-derived peptide hormones ACTH and α-MSH. In addition, NPY, CCK, and catestatin neuropeptides utilize cathepsin L for their biosynthesis. The role of cathepsin L for neuropeptide production indicates its unique biological role in secretory vesicles, which contrasts with its role in lysosomes for protein degradation. Interesting evaluations of protease gene knockout studies in mice that lack cathepsin L compared to the PC1/3 and PC2 (PC, prohormone convertase) indicate the significant role of cathepsin L in neuropeptide production. Thus, dual cathepsin L and prohormone convertase protease pathways participate in neuropeptide production. These recent new findings indicate cathepsin L as a novel 'proprotein convertase' for production of neuropeptides that mediate cell-cell communication in health and disease.
Collapse
Affiliation(s)
- Lydiane Funkelstein
- Department of Neuroscience, Pharmacology, and Medicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA 93093, USA.
| | | |
Collapse
|
225
|
Walker BM, Zorrilla EP, Koob GF. Systemic κ-opioid receptor antagonism by nor-binaltorphimine reduces dependence-induced excessive alcohol self-administration in rats. Addict Biol 2011; 16:116-9. [PMID: 20579007 DOI: 10.1111/j.1369-1600.2010.00226.x] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Altered dynorphin opioid peptide systems contribute to increased ethanol self-administration during withdrawal following chronic alcohol exposure. We previously identified that the κ-opioid receptor antagonist nor-binaltorphimine (nor-BNI) selectively reduced ethanol self-administration in dependent animals. The purpose of this study was twofold: (1) determine whether peripherally administered nor-BNI could reduce dependence-induced ethanol self-administration and (2) confirm the selective κ-opioid effects of nor-BNI by administering it 24 hours prior to ethanol self-administration sessions occurring during acute withdrawal. Nor-BNI decreased ethanol self-administration in ethanol-dependent animals, with no effect in nondependent animals. Thus, the κ-opioid/dynorphin system is a viable pharmacotherapeutic target for the treatment of alcoholism.
Collapse
|
226
|
Funkelstein L, Beinfeld M, Minokadeh A, Zadina J, Hook V. Unique biological function of cathepsin L in secretory vesicles for biosynthesis of neuropeptides. Neuropeptides 2010; 44:457-66. [PMID: 21047684 PMCID: PMC3058267 DOI: 10.1016/j.npep.2010.08.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 08/05/2010] [Accepted: 08/30/2010] [Indexed: 11/18/2022]
Abstract
Neuropeptides are essential for cell-cell communication in the nervous and neuroendocrine systems. Production of active neuropeptides requires proteolytic processing of proneuropeptide precursors in secretory vesicles that produce, store, and release neuropeptides that regulate physiological functions. This review describes recent findings indicating the prominent role of cathepsin L in secretory vesicles for production of neuropeptides from their protein precursors. The role of cathepsin L in neuropeptide production was discovered using the strategy of activity-based probes for proenkephalin-cleaving activity for identification of the enzyme protein by mass spectrometry. The novel role of cathepsin L in secretory vesicles for neuropeptide production has been demonstrated in vivo by cathepsin L gene knockout studies, cathepsin L gene expression in neuroendocrine cells, and notably, cathepsin L localization in neuropeptide-containing secretory vesicles. Cathepsin L is involved in producing opioid neuropeptides consisting of enkephalin, β-endorphin, and dynorphin, as well as in generating the POMC-derived peptide hormones ACTH and α-MSH. In addition, NPY, CCK, and catestatin neuropeptides utilize cathepsin L for their biosynthesis. The neuropeptide-synthesizing functions of cathepsin L represent its unique activity in secretory vesicles, which contrasts with its role in lysosomes. Interesting evaluations of protease gene knockout studies in mice that lack cathepsin L compared to those lacking PC1/3 and PC2 (PC, prohormone convertase) indicate the key role of cathepsin L in neuropeptide production. Therefore, dual cathepsin L and prohormone convertase protease pathways participate in neuropeptide production. Significantly, the recent new findings indicate cathepsin L as a novel 'proprotein convertase' for production of neuropeptides that mediate cell-cell communication in health and disease.
Collapse
Affiliation(s)
- Lydiane Funkelstein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
227
|
Berrendero F, Robledo P, Trigo JM, Martín-García E, Maldonado R. Neurobiological mechanisms involved in nicotine dependence and reward: participation of the endogenous opioid system. Neurosci Biobehav Rev 2010; 35:220-31. [PMID: 20170672 PMCID: PMC2908214 DOI: 10.1016/j.neubiorev.2010.02.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 02/08/2010] [Accepted: 02/09/2010] [Indexed: 01/07/2023]
Abstract
Nicotine is the primary component of tobacco that maintains the smoking habit and develops addiction. The adaptive changes of nicotinic acetylcholine receptors produced by repeated exposure to nicotine play a crucial role in the establishment of dependence. However, other neurochemical systems also participate in the addictive effects of nicotine including glutamate, cannabinoids, GABA and opioids. This review will cover the involvement of these neurotransmitters in nicotine addictive properties, with a special emphasis on the endogenous opioid system. Thus, endogenous enkephalins and beta-endorphins acting on mu-opioid receptors are involved in nicotine-rewarding effects, whereas opioid peptides derived from prodynorphin participate in nicotine aversive responses. An up-regulation of mu-opioid receptors has been reported after chronic nicotine treatment that could counteract the development of nicotine tolerance, whereas the down-regulation induced on kappa-opioid receptors seems to facilitate nicotine tolerance. Endogenous enkephalins acting on mu-opioid receptors also play a role in the development of physical dependence to nicotine. In agreement with these actions of the endogenous opioid system, the opioid antagonist naltrexone has shown to be effective for smoking cessation in certain sub-populations of smokers.
Collapse
Affiliation(s)
- Fernando Berrendero
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, University Pompeu Fabra, PRBB, C/Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Patricia Robledo
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, University Pompeu Fabra, PRBB, C/Doctor Aiguader 88, 08003 Barcelona, Spain
- Municipal Institute of Medical Research (IMIM), Barcelona, Spain
| | - José Manuel Trigo
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, University Pompeu Fabra, PRBB, C/Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Elena Martín-García
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, University Pompeu Fabra, PRBB, C/Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, University Pompeu Fabra, PRBB, C/Doctor Aiguader 88, 08003 Barcelona, Spain
| |
Collapse
|
228
|
Rasakham K, Liu-Chen LY. Sex differences in kappa opioid pharmacology. Life Sci 2010; 88:2-16. [PMID: 20951148 DOI: 10.1016/j.lfs.2010.10.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 09/24/2010] [Accepted: 10/06/2010] [Indexed: 12/31/2022]
Abstract
In recent years it has become apparent that sex is a major factor involved in modulating the pharmacological effects of exogenous opioids. The kappa opioid receptor (KOPR) system is a potential therapeutic target for pain, mood disorders and addiction. In humans mixed KOPR/MOPR ligands have been found to produce greater analgesia in women than men. In contrast, in animals, selective KOPR agonists have been found to produce greater antinociceptive effects in males than females. Collectively, the studies indicate that the direction and magnitude of sex differences of KOPR-mediated antinociception/analgesia are dependent on species, strain, ligand and pain model examined. Of interest, and less studied, is whether sex differences in other KOPR-mediated effects exist. In the studies conducted thus far, greater effects of KOPR agonists in males have been found in neuroprotection against stroke and suppression of food intake behavior. On the other hand, greater effects of KOPR agonists were found in females in mediation of prolactin release. In modulation of drugs of abuse, sex differences in KOPR effects were observed but appear to be dependent on the drug examined. The mechanism(s) underlying sex differences in KOPR-mediated effects may be mediated by sex chromosomes, gonadal hormonal influence on organization (circuitry) and/or acute hormonal influence on KOPR expression, distribution and localization. In light of the diverse pharmacology of KOPR we discuss the need for future studies characterizing the sexual dimorphism of KOPR neural circuitry and in examining other behaviors and processes that are modulated by the KOPR.
Collapse
Affiliation(s)
- Khampaseuth Rasakham
- Department of Pharmacology and Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140, United States
| | | |
Collapse
|
229
|
Abstract
The kappa-opioid receptor (KOR), a member of the opioid receptor family, is widely expressed in the central nervous system and peripheral tissues. Substantial evidence has shown that activation of KOR by agonists and endogenous opioid peptides in vivo may produce a strong analgesic effect that is free from the abuse potential and the adverse side effects of mu-opioid receptor (MOR) agonists, such as morphine. In addition, activation of the KOR has also been shown to exert an inverse effect on morphine-induced adverse actions, such as tolerance, reward, and impairment of learning and memory. Therefore, the KOR has received much attention in the effort to develop alternative analgesics to MOR agonists and agents for the treatment of drug addiction. However, KOR agonists also produce several severe undesirable side effects such as dysphoria, water diuresis, salivation, emesis, and sedation in nonhuman primates, which may limit the clinical utility of KOR agonists for pain and drug abuse treatment. This article will review the role of KOR activation in mediating antinociception and addiction. The possible therapeutic application of kappa-agonists in the treatment of pain and drug addiction is also discussed.
Collapse
|
230
|
Jackson KJ, Carroll FI, Negus SS, Damaj MI. Effect of the selective kappa-opioid receptor antagonist JDTic on nicotine antinociception, reward, and withdrawal in the mouse. Psychopharmacology (Berl) 2010; 210:285-94. [PMID: 20232057 PMCID: PMC2866121 DOI: 10.1007/s00213-010-1803-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 02/11/2010] [Indexed: 11/24/2022]
Abstract
RATIONALE Several lines of evidence support a role for the endogenous opioid system in mediating behaviors associated with drug dependence. Specifically, recent findings suggest that the kappa-opioid receptor (KOR) may play a role in aspects of nicotine dependence, which contribute to relapse and continued tobacco smoking. OBJECTIVE The objective of this study is to determine the involvement of the KOR in the initial behavioral responses of nicotine, nicotine reward, and nicotine withdrawal using the highly selective KOR antagonist JDTic. JDTic doses of 1, 4, 8, or 16 mg/kg were administered subcutaneously (s.c.) 18 h prior to nicotine treatment. RESULTS JDTic dose-dependently blocked acute nicotine-induced antinociception in the tail-flick but not the hot-plate test and did not significantly attenuate morphine's antinociceptive effect in either the tail-flick or hot-plate test. Furthermore, JDTic (8 and 16 mg/kg, s.c.) failed to block the expression of nicotine reward as measured by the conditioned place preference model. In contrast, JDTic and the KOR antagonist norBNI attenuated the expression of both the physical (somatic signs and hyperalgesia) and affective (anxiety-related behavior and conditioned place aversion) nicotine withdrawal signs. CONCLUSIONS Our findings clearly show that the KOR is involved in mediating the withdrawal aspects of nicotine dependence. The results from this study suggest that blockade of the KOR by selective KOR antagonists may be useful smoking cessation pharmacotherapies.
Collapse
Affiliation(s)
- K. J. Jackson
- Department of Pharmacology and Toxicology, Medical Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
- Department of Psychiatry, Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Frank Ivy Carroll
- Center for Organic and Medicinal Chemistry, Research Triangle Institute, Research Triangle Park, NC 27709, USA
| | - S. S. Negus
- Department of Pharmacology and Toxicology, Medical Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - M. I. Damaj
- Department of Pharmacology and Toxicology, Medical Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
231
|
The role of the dynorphin-kappa opioid system in the reinforcing effects of drugs of abuse. Psychopharmacology (Berl) 2010; 210:121-35. [PMID: 20352414 PMCID: PMC2879894 DOI: 10.1007/s00213-010-1825-8] [Citation(s) in RCA: 298] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 03/06/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Initial hypotheses regarding the role of the kappa opioid system in drug addiction suggested that kappa receptor stimulation had anti-addictive effects. However, recent research suggests that kappa receptor antagonists may reverse motivational aspects of dependence. In the present review, we revisit the studies that measured the effects of kappa receptor ligands on the reinforcing and rewarding effects of drugs and postulate underlying neurobiological mechanisms for these effects to elaborate a more complex view of the role of kappa receptor ligands in drug addiction. RESULTS The review of studies indicates that kappa receptor stimulation generally antagonizes the acute reinforcing/rewarding effects of drugs whereas kappa receptor blockade has no consistent effect. However, in a drug dependent-like state, kappa receptor blockade was effective in reducing increased drug intake. In animal models of reinstatement, kappa receptor stimulation can induce reinstatement via a stress-like mechanism. Results in conditioned place preference/aversion and intracranial self-stimulation indicate that kappa receptor agonists produce, respectively, aversive-like and dysphoric-like effects. Additionally, preclinical and postmortem studies show that administration or self-administration of cocaine, ethanol, and heroin activate the kappa opioid system. CONCLUSION kappa receptor agonists antagonize the reinforcing/rewarding effects of drugs possibly through punishing/aversive-like effects and reinstate drug seeking through stress-like effects. Evidence suggests that abused drugs activate the kappa opioid system, which may play a key role in motivational aspects of dependence. Kappa opioid systems may have an important role in driving compulsive drug intake.
Collapse
|
232
|
Nicotine withdrawal and kappa-opioid receptors. Psychopharmacology (Berl) 2010; 210:221-9. [PMID: 19806344 DOI: 10.1007/s00213-009-1674-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 09/08/2009] [Indexed: 10/20/2022]
Abstract
RATIONALE The synthesis and release of dynorphin are increased in the caudate/putamen (CPU) and nucleus accumbens (NAc) of nicotine-withdrawn mice, suggesting a role in the nicotine abstinence syndrome. OBJECTIVES This study aims to investigate the consequences of enhanced dynorphinergic activity on kappa-opioid receptor (KOPr) expression, coupling, and function in CPU and NAc following chronic nicotine administration and withdrawal. METHODS Mice were injected with nicotine-free base 2 mg/kg, or saline, sc, four times daily for 14 days and experiments performed at 24, 48, and 72 h after drug discontinuation. KOPr binding and mRNA were evaluated by [(3)H]-U69,593 autoradiography and in situ hybridization. KOPr coupling and function were investigated by agonist (U69-593)-stimulated [(35)S]GTPgammaS binding autoradiography and inhibition of adenylyl cyclase activity. RESULTS KOPr binding density and mRNA in CPU and NAc were unaltered during nicotine withdrawal; however, KPOr mRNA was increased in midbrain. U69,593-stimulated [(35)S]GTPgammaS binding was attenuated in both striatal regions, especially in NAc. In NAc shell and core, stimulated [(35)S]GTPgammaS binding was significantly decreased by 24 h and further declined over the 72 h observation period. In CPU, significant changes were observed only at 72 h. Basal adenylyl cyclase activity decreased early during nicotine withdrawal and recovered by 48 h. Stimulation with U69,593 failed to inhibit adenylyl cyclase activity at all times studied. CONCLUSIONS These observations suggest that KOPr coupling and function are impaired in NAc and CPU during nicotine withdrawal, and imply receptor desensitization. KOPr desensitization might be a mechanism to ameliorate aversive behavioral symptoms, as nicotine withdrawal evolves.
Collapse
|
233
|
Tejeda HA, Chefer VI, Zapata A, Shippenberg TS. The effects of kappa-opioid receptor ligands on prepulse inhibition and CRF-induced prepulse inhibition deficits in the rat. Psychopharmacology (Berl) 2010; 210:231-40. [PMID: 20232058 PMCID: PMC2946822 DOI: 10.1007/s00213-010-1799-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 02/10/2010] [Indexed: 11/30/2022]
Abstract
RATIONALE Kappa-opioid receptor (KOR) agonists produce dysphoria and psychotomimesis in humans. KORs are enriched in the prefrontal cortex and other brain regions that regulate mood and cognitive function. Dysregulation of the dynorphin/KOR system has been implicated in the pathogenesis of schizophrenia, depression, and bipolar disorder. Prepulse inhibition of the acoustic startle reflex (PPI), a sensorimotor gating process, is disrupted in many psychiatric disorders. OBJECTIVES The present study determined whether KOR ligands alter PPI in rats. RESULTS Utilizing a range of doses of the synthetic KOR agonists (+/-) U50,488, (-) U50,488, and U69,593 and the naturally occurring KOR agonist, Salvinorin A, we demonstrate that KOR activation does not alter PPI or startle reactivity in rats. Similarly, selective KOR blockade using the long-acting antagonist nor-binaltorphimine (nor-BNI) was without effect. In contrast to KOR ligands, MK-801 and quinpirole produced deficits in PPI. Stress and corticotropin-releasing factor (CRF) decrease PPI levels. The dynorphin/KOR system has been suggested to be a key mediator of various behavioral effects produced by stress and CRF. We therefore examined the contribution of KORs to CRF-induced alterations in PPI. Intracerebroventricular infusion of CRF decreased PPI. Administration of nor-BNI failed to affect the CRF-evoked disruption in PPI. CONCLUSIONS Together, these results provide no evidence of a link between the dynorphin/KOR system and deficits in sensory gating processes. Additional studies, however, examining whether dysregulation of this opioid system contributes to cognitive deficits and other behavioral abnormalities associated with psychiatric disorders are warranted.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Animals
- Benzeneacetamides/pharmacology
- Corticotropin-Releasing Hormone/pharmacology
- Diterpenes, Clerodane/pharmacology
- Dose-Response Relationship, Drug
- Ligands
- Male
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Neural Inhibition
- Pyrrolidines/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/antagonists & inhibitors
- Reflex, Startle/drug effects
Collapse
Affiliation(s)
- Hugo A. Tejeda
- Integrative Neuroscience Section, Integrative Neuroscience Branch, National Institute on Drug Abuse, National Institutes of Health, NIDA/IRP 333 Cassell Dr., Baltimore, MD 21224, USA
- Program in Neuroscience, University of Maryland, Baltimore, 20 Penn St., Baltimore, MD 21201, USA
| | - Vladimir I. Chefer
- Integrative Neuroscience Section, Integrative Neuroscience Branch, National Institute on Drug Abuse, National Institutes of Health, NIDA/IRP 333 Cassell Dr., Baltimore, MD 21224, USA
| | - Agustin Zapata
- Integrative Neuroscience Section, Integrative Neuroscience Branch, National Institute on Drug Abuse, National Institutes of Health, NIDA/IRP 333 Cassell Dr., Baltimore, MD 21224, USA
| | - Toni S. Shippenberg
- Integrative Neuroscience Section, Integrative Neuroscience Branch, National Institute on Drug Abuse, National Institutes of Health, NIDA/IRP 333 Cassell Dr., Baltimore, MD 21224, USA
| |
Collapse
|
234
|
Segarra AC, Agosto-Rivera JL, Febo M, Lugo-Escobar N, Menéndez-Delmestre R, Puig-Ramos A, Torres-Diaz YM. Estradiol: a key biological substrate mediating the response to cocaine in female rats. Horm Behav 2010; 58:33-43. [PMID: 20026119 PMCID: PMC3621914 DOI: 10.1016/j.yhbeh.2009.12.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 12/03/2009] [Accepted: 12/04/2009] [Indexed: 12/19/2022]
Abstract
A consistent finding in drug abuse research is that males and females show differences in their response to drugs of abuse. In women, increased plasma estradiol is associated with increased vulnerability to the psychostimulant and reinforcing effects of drugs of abuse. Our laboratory has focused on the role of estradiol in modulating the response to cocaine. We have seen that ovariectomy increases the locomotor response to a single cocaine injection, whereas estradiol exacerbates the locomotor response to repeated cocaine administration. Cocaine-induced sensitization of brain activity, as measured by fMRI, is also dependent on plasma estradiol. Moreover, we observed that although all ovariectomized rats show conditioned place preference to cocaine, it is more robust in ovariectomized rats with estradiol. Opioid receptors are enriched in brain regions associated with pleasure and reward. We find that in females, the effectiveness of kappa opioid agonists in decreasing the locomotor response to repeated cocaine varies with plasma estradiol. We also find that estradiol regulates the density of mu opioid receptors in brains areas associated with reward. These data hint that in females, estradiol modulates the behavioral effects of cocaine by regulating mu and kappa opioid signaling in mesocorticolimbic brain structures. Identifying the mechanisms that mediate differences in vulnerability to drugs of abuse may lead to effective therapeutic strategies for the treatment and prevention of addiction and relapse. We encourage health practitioners treating persons addicted to drugs to consider gender differences in response to particular pharmacotherapies, as well the sex steroid milieu of the patient.
Collapse
Affiliation(s)
- Annabell C Segarra
- University of Puerto Rico, Department of Physiology, School of Medicine, PO Box 365067, San Juan, Puerto Rico 00936-5067.
| | | | | | | | | | | | | |
Collapse
|
235
|
Ebner SR, Roitman MF, Potter DN, Rachlin AB, Chartoff EH. Depressive-like effects of the kappa opioid receptor agonist salvinorin A are associated with decreased phasic dopamine release in the nucleus accumbens. Psychopharmacology (Berl) 2010; 210:241-52. [PMID: 20372879 PMCID: PMC2894632 DOI: 10.1007/s00213-010-1836-5] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 03/11/2010] [Indexed: 11/25/2022]
Abstract
RATIONALE Kappa opioid receptors (KORs) have been implicated in depressive-like states associated with chronic administration of drugs of abuse and stress. Although KOR agonists decrease dopamine in the nucleus accumbens (NAc), KOR modulation of phasic dopamine release in the core and shell subregions of the NAc-which have distinct roles in reward processing-remains poorly understood. OBJECTIVES Studies were designed to examine whether the time course of effects of KOR activation on phasic dopamine release in the NAc core or shell are similar to effects on motivated behavior. METHODS The effect of systemic administration of the KOR agonist salvinorin A (salvA)-at a dose (2.0 mg/kg) previously determined to have depressive-like effects-was measured on electrically evoked phasic dopamine release in the NAc core or shell of awake and behaving rats using fast scan cyclic voltammetry. In parallel, the effects of salvA on intracranial self-stimulation (ICSS) and sucrose-reinforced responding were assessed. For comparison, a threshold dose of salvA (0.25 mg/kg) was also tested. RESULTS The active, but not threshold, dose of salvA significantly decreased phasic dopamine release without affecting dopamine reuptake in the NAc core and shell. SalvA increased ICSS thresholds and significantly lowered breakpoint on the progressive ratio schedule, indicating a decrease in motivation. The time course of the KOR-mediated decrease in dopamine in the core was qualitatively similar to the effects on motivated behavior. CONCLUSIONS These data suggest that the effects of KOR activation on motivation are due, in part, to inhibition of phasic dopamine signaling in the NAc core.
Collapse
Affiliation(s)
- Stephanie R Ebner
- Department of Psychology, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | | | | | |
Collapse
|
236
|
Endogenous kappa-opioid mediation of stress-induced potentiation of ethanol-conditioned place preference and self-administration. Psychopharmacology (Berl) 2010; 210:199-209. [PMID: 20401606 DOI: 10.1007/s00213-010-1844-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 03/22/2010] [Indexed: 10/19/2022]
Abstract
RATIONALE Exposure to inescapable stressors increases both the rewarding properties and self-administration of cocaine through the signaling of the kappa-opioid receptor (KOR), but the effect of this signaling on other reinforcing agents remains unclear. OBJECTIVE The objective of this study is to test the hypothesis that signaling of the KOR mediates the forced swim stress (FSS)-induced potentiation of ethanol reward and self-administration. METHODS Male C57Bl/6J mice were tested in a biased ethanol-conditioned place preference (CPP) procedure, and both C57Bl/6J and prodynorphin gene-disrupted (Dyn -/-) mice were used in two-bottle free choice (TBC) assays, with or without exposure to FSS. To determine the role of the KOR in the resulting behaviors, the KOR agonist U50,488 (10 mg/kg) and antagonist nor-binaltorphimine (nor-BNI, 10 mg/kg) were administered prior to parallel testing. RESULTS C57Bl/6J mice exposed to repeated FSS 5 min prior to daily place conditioning with ethanol (0.8 g/kg) demonstrated a 4.4-fold potentiation of ethanol-CPP compared to unstressed mice that was prevented by nor-BNI pretreatment. Likewise, pretreatment with U50,488 90 min prior to daily ethanol place conditioning resulted in a 2.8-fold potentiation of ethanol-CPP. In the TBC assay, exposure to FSS significantly increased the consumption of 10% (v/v) ethanol by 19.3% in a nor-BNI-sensitive manner. Notably, Dyn -/- mice consumed a similar volume of ethanol as wild-type littermates and C57Bl/6J mice, but did not demonstrate significant stress-induced increases in consumption. CONCLUSIONS These data demonstrated a stress-induced potentiation of the rewarding effects and self-administration of ethanol mediated by KOR signaling.
Collapse
|
237
|
Sun W, Xue Y, Huang Z, Steketee JD. Regulation of cocaine-reinstated drug-seeking behavior by kappa-opioid receptors in the ventral tegmental area of rats. Psychopharmacology (Berl) 2010; 210:179-88. [PMID: 20232055 PMCID: PMC2866003 DOI: 10.1007/s00213-010-1812-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 02/21/2010] [Indexed: 11/29/2022]
Abstract
RATIONALE Relapse is one of the main challenges facing the current treatment of cocaine addiction. Understanding its neurobiological mechanism is a critical step toward developing effective anti-relapse therapies. OBJECTIVES Emerging evidence indicates that glutamate-mediated activation of dopamine (DA) neurons in the ventral tegmental area (VTA) may be critically involved in cocaine-induced relapse to drug-seeking behavior. Activity of VTA DA neurons is modulated by multiple neurotransmitter systems including opioids, serotonin, dopamine, and acetylcholine. Recent studies demonstrated that activation of kappa-opioid receptors (kappaORs) in the rat VTA directly inhibits the activity of a subpopulation of DA neurons projecting to the prefrontal cortex (PFC) and amygdala. Because we previously showed that blockade of DA receptors in the dorsal PFC inhibits cocaine-induced reinstatement of extinguished cocaine-seeking behavior suggesting a critical role of the VTA-PFC DA circuit in this process, we tested the hypothesis that activation of kappaORs in the VTA will block cocaine-induced reinstatement in rats. METHODS Rats were trained to self-administer intravenous cocaine (0.125 mg/infusion) under a modified fixed-ratio five schedule. After extinction of the learned behavior, the effects of activation of VTA kappaORs on cocaine-induced reinstatement were studied. RESULTS The kappaOR agonist U50 488 (0-5.6 microg/side) microinjected into the VTA dose-dependently decreased cocaine-induced reinstatement. The effects could not be explained by either a disruption of operant behavior or diffusion of the drug to the areas surrounding the VTA. Moreover, the effect was reversed by norbinaltorphimine. CONCLUSIONS The VTA DA neurons expressing functional kappaORs are critically involved in cocaine-induced reinstatement in rats.
Collapse
Affiliation(s)
- Wenlin Sun
- Department of Pharmacology, University of Tennessee Health Science Center, 874 Union Avenue, Crowe 115, Memphis, TN 38163, USA.
| | | | | | | |
Collapse
|
238
|
Abstract
It is well established that the continued intake of drugs of abuse is reinforcing-that is repeated consumption increases preference. This has been shown in some studies to extend to other drugs of abuse; use of one increases preference for another. In particular, the present review deals with the interaction of nicotine and alcohol as it has been shown that smoking is a risk factor for alcoholism and alcohol use is a risk factor to become a smoker. The review discusses changes in the brain caused by chronic nicotine and chronic alcohol intake to approach the possible mechanisms by which one drug increases the preference for another. Chronic nicotine administration was shown to affect nicotine receptors in the brain, affecting not only receptor levels and distribution, but also receptor subunit composition, thus affecting affinity to nicotine. Other receptor systems are also affected among others catecholamine, glutamate, GABA levels and opiate and cannabinoid receptors. In addition to receptor systems and transmitters, there are endocrine, metabolic and neuropeptide changes as well induced by nicotine. Similarly chronic alcohol intake results in changes in the brain, in multiple receptors, transmitters and peptides as discussed in this overview and also illustrated in the tables. The changes are sex and age-dependent-some changes in males are different from those in females and in general adolescents are more sensitive to drug effects than adults. Although nicotine and alcohol interact-not all the changes induced by the combined intake of both are additive-some are opposing. These opposing effects include those on locomotion, acetylcholine metabolism, nicotine binding, opiate peptides, glutamate transporters and endocannabinoid content among others. The two compounds lower the negative withdrawal symptoms of each other which may contribute to the increase in preference, but the mechanism by which preference increases-most likely consists of multiple components that are not clear at the present time. As the details of induced changes of nicotine and alcohol differ, it is likely that the mechanisms of increasing nicotine preference may not be identical to that of increasing alcohol preference. Stimulation of preference of yet other drugs may again be different -representing one aspect of drug specificity of reward mechanisms.
Collapse
Affiliation(s)
- A Lajtha
- Nathan Kline Institute, Orangeburg, NY 10962, USA
| | | |
Collapse
|
239
|
Piras AP, Zhou Y, Schlussman SD, Ho A, Kreek MJ. Acute withdrawal from chronic escalating-dose binge cocaine administration alters kappa opioid receptor stimulation of [35S] guanosine 5'-O-[gamma-thio]triphosphate acid binding in the rat ventral tegmental area. Neuroscience 2010; 169:751-7. [PMID: 20452406 DOI: 10.1016/j.neuroscience.2010.04.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 04/21/2010] [Accepted: 04/24/2010] [Indexed: 11/30/2022]
Abstract
There is evidence that the kappa opioid system plays an important role in cocaine addiction and that chronic cocaine administration and withdrawal from chronic cocaine alter kappa opioid receptor (KOPr) density. The present study employed in situ [(35)S]guanosine 5'-O-[gamma-thio]triphosphate acid (GTPgammaS) binding autoradiography to measure KOPr-stimulated activation of G-protein in the caudate putamen, nucleus accumbens core and shell, lateral hypothalamus, basolateral amygdala, substantia nigra compacta, substantia nigra reticulata and ventral tegmental area (VTA), in response to chronic cocaine administration or acute and chronic withdrawal from chronic cocaine. Male Fischer rats were injected i.p. with saline or cocaine three times daily at 1 h intervals in an escalating-dose paradigm for 14 days (from 3x15 mg/kg/injection on days 1-3 up to 3x30 mg/kg/injection on days 10-14). Identically treated separate groups were withdrawn from cocaine or saline for 24 h or 14 days. No significant change in KOPr agonist U-69593-stimulated [(35)S]GTPgammaS was found in the seven regions studied 30 min or 14 days after chronic 14 days escalating-dose binge cocaine administration. However there was an increase in KOPr -stimulated [(35)S]GTPgammaS binding in the VTA (P<0.01) of rats withdrawn for 24 h from chronic cocaine. Our results show a cocaine withdrawal induced increase of KOPr signaling in the VTA, and suggest that the KOPr may play a role in acute withdrawal from cocaine.
Collapse
Affiliation(s)
- A P Piras
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, Box 171, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
240
|
Trigo JM, Martin-García E, Berrendero F, Robledo P, Maldonado R. The endogenous opioid system: a common substrate in drug addiction. Drug Alcohol Depend 2010; 108:183-94. [PMID: 19945803 DOI: 10.1016/j.drugalcdep.2009.10.011] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 09/30/2009] [Accepted: 10/28/2009] [Indexed: 12/17/2022]
Abstract
Drug addiction is a chronic brain disorder leading to complex adaptive changes within the brain reward circuits that involve several neurotransmitters. One of the neurochemical systems that plays a pivotal role in different aspects of addiction is the endogenous opioid system (EOS). Opioid receptors and endogenous opioid peptides are largely distributed in the mesolimbic system and modulate dopaminergic activity within these reward circuits. Chronic exposure to the different prototypical drugs of abuse, including opioids, alcohol, nicotine, psychostimulants and cannabinoids has been reported to produce significant alterations within the EOS, which seem to play an important role in the development of the addictive process. In this review, we will describe the adaptive changes produced by different drugs of abuse on the EOS, and the current knowledge about the contribution of each component of this neurobiological system to their addictive properties.
Collapse
Affiliation(s)
- José Manuel Trigo
- Laboratori de Neurofarmacologia, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, PRBB, Barcelona, Spain
| | | | | | | | | |
Collapse
|
241
|
Fuentealba JA, Gysling K, Andrés ME. Repeated treatment with the κ-opioid agonist U-69593 increases K+-stimulated dopamine release in the rat medial prefrontal cortex. Synapse 2010; 64:898-904. [DOI: 10.1002/syn.20808] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
242
|
Núñez C, Martín F, Földes A, Luisa Laorden M, Kovács KJ, Victoria Milanés M. Induction of FosB/DeltaFosB in the brain stress system-related structures during morphine dependence and withdrawal. J Neurochem 2010; 114:475-87. [PMID: 20438612 DOI: 10.1111/j.1471-4159.2010.06765.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The transcription factor DeltaFosB is induced in the nucleus accumbens (NAc) by drugs of abuse. This study was designed to evaluate the possible modifications in FosB/DeltaFosB expression in both hypothalamic and extrahypothalamic brain stress system during morphine dependence and withdrawal. Rats were made dependent on morphine and, on day 8, were injected with saline or naloxone. Using immunohistochemistry and western blot, the expression of FosB/DeltaFosB, tyrosine hydroxylase (TH), corticotropin-releasing factor (CRF) and pro-dynorphin (DYN) was measured in different nuclei from the brain stress system in morphine-dependent rats and after morphine withdrawal. Additionally, we studied the expression of FosB/DeltaFosB in CRF-, TH- and DYN-positive neurons. FosB/DeltaFosB was induced after chronic morphine administration in the parvocellular part of the hypothalamic paraventricular nucleus (PVN), NAc-shell, bed nucleus of the stria terminalis, central amygdala and A(2) noradrenergic part of the nucleus tractus solitarius (NTS-A(2)). Morphine dependence and withdrawal evoked an increase in FosB/DeltaFosB-TH and FosB/DeltaFosB-CRF double labelling in NTS-A(2) and PVN, respectively, besides an increase in TH levels in NTS-A(2) and CRF expression in PVN. These data indicate that neuroadaptation to addictive substances, observed as accumulation of FosB/DeltaFosB, is not limited to the reward circuits but may also manifest in other brain regions, such as the brain stress system, which have been proposed to be directly related to addiction.
Collapse
Affiliation(s)
- Cristina Núñez
- Department of Pharmacology, University School of Medicine, Murcia, Spain.
| | | | | | | | | | | |
Collapse
|
243
|
Heilig M, Egli M, Crabbe JC, Becker HC. Acute withdrawal, protracted abstinence and negative affect in alcoholism: are they linked? Addict Biol 2010; 15:169-84. [PMID: 20148778 PMCID: PMC3268458 DOI: 10.1111/j.1369-1600.2009.00194.x] [Citation(s) in RCA: 316] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The role of withdrawal-related phenomena in the development and maintenance of alcohol addiction remains under debate. A 'self-medication' framework postulates that emotional changes are induced by a history of alcohol use, persist into abstinence, and are a major factor in maintaining alcoholism. This view initially focused on negative emotional states during early withdrawal: these are pronounced, occur in the vast majority of alcohol-dependent patients, and are characterized by depressed mood and elevated anxiety. This concept lost popularity with the realization that in most patients, these symptoms abate over 3-6 weeks of abstinence, while relapse risk persists long beyond this period. More recently, animal data have established that a prolonged history of alcohol dependence induces more subtle neuroadaptations. These confer altered emotional processing that persists long into protracted abstinence. The resulting behavioral phenotype is characterized by excessive voluntary alcohol intake and increased behavioral sensitivity to stress. Emerging human data support the clinical relevance of negative emotionality for protracted abstinence and relapse. These developments prompt a series of research questions: (1) are processes observed during acute withdrawal, while transient in nature, mechanistically related to those that remain during protracted abstinence?; (2) is susceptibility to negative emotionality in acute withdrawal in part due to heritable factors, similar to what animal models have indicated for susceptibility to physical aspects of withdrawal?; and (3) to what extent is susceptibility to negative affect that persists into protracted abstinence heritable?
Collapse
Affiliation(s)
- Markus Heilig
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
244
|
Chang GQ, Barson JR, Karatayev O, Chang SY, Chen YW, Leibowitz SF. Effect of chronic ethanol on enkephalin in the hypothalamus and extra-hypothalamic areas. Alcohol Clin Exp Res 2010; 34:761-70. [PMID: 20184566 DOI: 10.1111/j.1530-0277.2010.01148.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Ethanol may be consumed for reasons such as reward, anxiety reduction, or caloric content, and the opioid enkephalin (ENK) appears to be involved in many of these functions. Previous studies in Sprague-Dawley rats have demonstrated that ENK in the hypothalamic paraventricular nucleus (PVN) is stimulated by voluntary consumption of ethanol. This suggests that this opioid peptide may be involved in promoting the drinking of ethanol, consistent with our recent findings that PVN injections of ENK analogs stimulate ethanol intake. To broaden our understanding of how this peptide functions throughout the brain to promote ethanol intake, we measured, in rats trained to drink 9% ethanol, the expression of the ENK gene in additional brain areas outside the hypothalamus, namely, the ventral tegmental area (VTA), nucleus accumbens shell (NAcSh) and core (NAcC), medial prefrontal cortex (mPFC), and central nucleus of the amygdala (CeA). METHODS In the first experiment, the brains of rats chronically drinking 1 g/kg/d ethanol, 3 g/kg/d ethanol, or water were examined using real-time quantitative polymerase chain reaction (qRT-PCR). In the second experiment, a more detailed, anatomic analysis of changes in gene expression, in rats chronically drinking 3 g/kg/d ethanol compared to water, was performed using radiolabeled in situ hybridization (ISH). The third experiment employed digoxigenin-labeled ISH (DIG) to examine changes in the density of cells expressing ENK and, for comparison, dynorphin (DYN) in rats chronically drinking 3 g/kg/d ethanol versus water. RESULTS With qRT-PCR, the rats chronically drinking ethanol plus water compared to water alone showed significantly higher levels of ENK mRNA, not only in the PVN but also in the VTA, NAcSh, NAcC, and mPFC, although not in the CeA. Using radiolabeled ISH, levels of ENK mRNA in rats drinking ethanol were found to be elevated in all areas examined, including the CeA. The experiment using DIG confirmed this effect of ethanol, showing an increase in density of ENK-expressing cells in all areas studied. It additionally revealed a similar change in DYN mRNA in the PVN, mPFC, and CeA, although not in the NAcSh or NAcC. CONCLUSIONS While distinguishing the NAc as a site where ENK and DYN respond differentially, these findings lead us to propose that these opioids, in response to voluntary ethanol consumption, are generally elevated in extra-hypothalamic as well as hypothalamic areas, possibly to carry out specific area-related functions that, in turn, drive animals to further consume ethanol. These functions include calorie ingestion in the PVN, reward and motivation in the VTA and NAcSh, response-reinforcement learning in the NAcC, stress reduction in the CeA, and behavioral control in the mPFC.
Collapse
Affiliation(s)
- Guo-Qing Chang
- The Rockefeller University, New York, New York 10065, USA
| | | | | | | | | | | |
Collapse
|
245
|
Shalev U, Erb S, Shaham Y. Role of CRF and other neuropeptides in stress-induced reinstatement of drug seeking. Brain Res 2010; 1314:15-28. [PMID: 19631614 PMCID: PMC2819550 DOI: 10.1016/j.brainres.2009.07.028] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 07/03/2009] [Accepted: 07/11/2009] [Indexed: 11/17/2022]
Abstract
A central problem in the treatment of drug addiction is high rates of relapse to drug use after periods of forced or self-imposed abstinence. This relapse is often provoked by exposure to stress. Stress-induced relapse to drug seeking can be modeled in laboratory animals using a reinstatement procedure. In this procedure, drug-taking behaviors are extinguished and then reinstated by acute exposure to stressors like intermittent unpredictable footshock, restraint, food deprivation, and systemic injections of yohimbine, an alpha-2 adrenoceptor antagonist that induces stress-like responses in humans and nonhumans. For this special issue entitled "The role of neuropeptides in stress and addiction", we review results from studies on the role of corticotropin-releasing factor (CRF) and several other peptides in stress-induced reinstatement of drug seeking in laboratory animals. The results of the studies reviewed indicate that extrahypothalamic CRF plays a critical role in stress-induced reinstatement of drug seeking; this role is largely independent of drug class, experimental procedure, and type of stressor. There is also limited evidence for the role of dynorphins, hypocretins (orexins), nociceptin (orphanin FQ), and leptin in stress-induced reinstatement of drug seeking.
Collapse
Affiliation(s)
- Uri Shalev
- Department of Psychology, Center for Studies in Behavioral Neurobiology/Groupe de Recherche en Neurobiologie Comportementale, Concordia University, Montreal, Quebec, Canada
| | - Suzanne Erb
- Center for Neurobiology of Stress, Department of Psychology, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Yavin Shaham
- Behavioral Neuroscience Branch, NIDA/IRP, NIH, Baltimore, MD, USA
| |
Collapse
|
246
|
Maldonado R. [The endogenous opioid system and drug addiction]. ANNALES PHARMACEUTIQUES FRANÇAISES 2010; 68:3-11. [PMID: 20176158 PMCID: PMC3444724 DOI: 10.1016/j.pharma.2009.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 12/14/2009] [Accepted: 12/14/2009] [Indexed: 11/15/2022]
Abstract
Drug addiction is a chronic brain disorder leading to complex adaptive changes within the brain reward circuits. Several neurotransmitters, including the endogenous opioid system are involved in these changes. The opioid system plays a pivotal role in different aspects of addiction. Thus, opioid receptors and endogenous opioid peptides are largely distributed in the mesolimbic system and modulate dopaminergic activity within the reward circuits. Opioid receptors and peptides are selectively involved in several components of the addictive processes induced by opioids, cannabinoids, psychostimulants, alcohol and nicotine. This review is focused on the contribution of each component of the endogenous opioid system in the addictive properties of the different drugs of abuse.
Collapse
Affiliation(s)
- R Maldonado
- Laboratori de Neurofarmacologia, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Espagne.
| |
Collapse
|
247
|
D'Souza MS, Markou A. Neural substrates of psychostimulant withdrawal-induced anhedonia. Curr Top Behav Neurosci 2010; 3:119-178. [PMID: 21161752 DOI: 10.1007/7854_2009_20] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Psychostimulant drugs have powerful reinforcing and hedonic properties and are frequently abused. Cessation of psychostimulant administration results in a withdrawal syndrome characterized by anhedonia (i.e., an inability to experience pleasure). In humans, psychostimulant withdrawal-induced anhedonia can be debilitating and has been hypothesized to play an important role in relapse to drug use. Hence, understanding the neural substrates involved in psychostimulant withdrawal-induced anhedonia is essential. In this review, we first summarize the theoretical perspectives of psychostimulant withdrawal-induced anhedonia. Experimental procedures and measures used to assess anhedonia in experimental animals are also discussed. The review then focuses on neural substrates hypothesized to play an important role in anhedonia experienced after termination of psychostimulant administration, such as with cocaine, amphetamine-like drugs, and nicotine. Both neural substrates that have been extensively investigated and some that need further evaluation with respect to psychostimulant withdrawal-induced anhedonia are reviewed. In the context of reviewing the various neurosubstrates of psychostimulant withdrawal, we also discuss pharmacological medications that have been used to treat psychostimulant withdrawal in humans. This literature review indicates that great progress has been made in understanding the neural substrates of anhedonia associated with psychostimulant withdrawal. These advances in our understanding of the neurobiology of anhedonia may also shed light on the neurobiology of nondrug-induced anhedonia, such as that seen as a core symptom of depression and a negative symptom of schizophrenia.
Collapse
Affiliation(s)
- Manoranjan S D'Souza
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
248
|
Prevatt-Smith KM, Prisinzano TE. New therapeutic potential for psychoactive natural products. Nat Prod Rep 2010; 27:23-31. [PMID: 20024092 DOI: 10.1039/b912196j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Much of our knowledge in neuroscience was discovered through the study of mind-altering natural products. However, although much has been learned about human physiology and basic biological processes, the underlying causes of CNS disorders and other disease states are still elusive. Based on its main past successes, the continued study of mind-altering compounds promises to yield novel agents that may be developed into medications and to identify new targets for the treatment of diseases. This Highlight describes the history of investigations into several classes of mind-altering natural products and relates recent and potential therapeutic uses for these agents.
Collapse
|
249
|
Minokadeh A, Funkelstein L, Toneff T, Hwang SR, Beinfeld M, Reinheckel T, Peters C, Zadina J, Hook V. Cathepsin L participates in dynorphin production in brain cortex, illustrated by protease gene knockout and expression. Mol Cell Neurosci 2010; 43:98-107. [PMID: 19837164 DOI: 10.1016/j.mcn.2009.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 09/15/2009] [Accepted: 10/05/2009] [Indexed: 02/08/2023] Open
Abstract
Dynorphin opioid neuropeptides mediate neurotransmission for analgesia and behavioral functions. Dynorphin A, dynorphin B, and alpha-neoendorphin are generated from prodynorphin by proteolytic processing. This study demonstrates the significant role of the cysteine protease cathepsin L for producing dynorphins. Cathepsin L knockout mouse brains showed extensive decreases in dynorphin A, dynorphin B, and alpha-neoendorphin that were reduced by 75%, 83%, and 90%, respectively, compared to controls. Moreover, cathepsin L in brain cortical neurons was colocalized with dynorphins in secretory vesicles, the primary site of neuropeptide production. Cellular coexpression of cathepsin L with prodynorphin in PC12 cells resulted in increased production of dynorphins A and B. Comparative studies of PC1/3 and PC2 convertases showed that PC1/3 knockout mouse brains had a modest decrease in dynorphin A, and PC2 knockout mice showed a minor decrease in alpha-neoendorphin. Overall, these results demonstrate a prominent role for cathepsin L, jointly with PC1/3 and PC2, for production of dynorphins in brain.
Collapse
Affiliation(s)
- Ardalan Minokadeh
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Poulin JF, Arbour D, Laforest S, Drolet G. Neuroanatomical characterization of endogenous opioids in the bed nucleus of the stria terminalis. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:1356-65. [PMID: 19583989 DOI: 10.1016/j.pnpbp.2009.06.021] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2009] [Revised: 06/26/2009] [Accepted: 06/29/2009] [Indexed: 12/21/2022]
Abstract
Numerous neuroanatomical data indicate that the bed nucleus of the stria terminalis (BST) provides an interface between cortical and amygdaloid neurons, and effector neurons modulating motor, autonomic and neuroendocrine responses. Distinct divisions of the BST may be involved in stress response, homeostatic regulation, nociception, and motivated behaviors. Endogenous opioid peptides and receptors are expressed in the BST, but their exact distribution is poorly characterized. The present study used in situ hybridization in order to characterize the endogenous opioid system of the BST, focusing on both enkephalin and dynorphin neuropeptides, as well as their respective receptors (mu, delta, and kappa opioid receptors). We report that preprodynorphin mRNA is observed in distinct nuclei of the BST, namely the fusiform, oval and anterior lateral nuclei. In contrast, there is a widespread expression of preproenkephalin mRNA in both anterior and posterior divisions of the BST. Similarly, mu and kappa opioid receptors are broadly expressed in the BST, whereas delta opioid receptor mRNA was observed only in the principal nucleus. For further characterization of enkephalin-expressing neurons of the BST, we performed a double fluorescent in situ hybridization in order to reveal the coexpression of enkephalin peptides and markers of GABAergic and glutamatergic neurons. Although most neurons of the BST are GABAergic, there is also a modest population of glutamatergic cells expressing vesicular glutamate transporter 2 (VGLUT2) in specific nuclei of the BST. Finally, we identified a previously unreported population of enkephalinergic neurons expressing VGLUT2, which is principally located in the posterior BST.
Collapse
Affiliation(s)
- Jean-François Poulin
- Centre de recherche du CHUQ (CHUL), Neurosciences, Université Laval, Québec, QC, Canada.
| | | | | | | |
Collapse
|