201
|
Lim LS, Tay YL, Alias H, Wan KL, Dear PH. Insights into the genome structure and copy-number variation of Eimeria tenella. BMC Genomics 2012; 13:389. [PMID: 22889016 PMCID: PMC3505466 DOI: 10.1186/1471-2164-13-389] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 08/01/2012] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Eimeria is a genus of parasites in the same phylum (Apicomplexa) as human parasites such as Toxoplasma, Cryptosporidium and the malaria parasite Plasmodium. As an apicomplexan whose life-cycle involves a single host, Eimeria is a convenient model for understanding this group of organisms. Although the genomes of the Apicomplexa are diverse, that of Eimeria is unique in being composed of large alternating blocks of sequence with very different characteristics - an arrangement seen in no other organism. This arrangement has impeded efforts to fully sequence the genome of Eimeria, which remains the last of the major apicomplexans to be fully analyzed. In order to increase the value of the genome sequence data and aid in the effort to gain a better understanding of the Eimeria tenella genome, we constructed a whole genome map for the parasite. RESULTS A total of 1245 contigs representing 70.0% of the whole genome assembly sequences (Wellcome Trust Sanger Institute) were selected and subjected to marker selection. Subsequently, 2482 HAPPY markers were developed and typed. Of these, 795 were considered as usable markers, and utilized in the construction of a HAPPY map. Markers developed from chromosomally-assigned genes were then integrated into the HAPPY map and this aided the assignment of a number of linkage groups to their respective chromosomes. BAC-end sequences and contigs from whole genome sequencing were also integrated to improve and validate the HAPPY map. This resulted in an integrated HAPPY map consisting of 60 linkage groups that covers approximately half of the estimated 60 Mb genome. Further analysis suggests that the segmental organization first seen in Chromosome 1 is present throughout the genome, with repeat-poor (P) regions alternating with repeat-rich (R) regions. Evidence of copy-number variation between strains was also uncovered. CONCLUSIONS This paper describes the application of a whole genome mapping method to improve the assembly of the genome of E. tenella from shotgun data, and to help reveal its overall structure. A preliminary assessment of copy-number variation (extra or missing copies of genomic segments) between strains of E. tenella was also carried out. The emerging picture is of a very unusual genome architecture displaying inter-strain copy-number variation. We suggest that these features may be related to the known ability of this parasite to rapidly develop drug resistance.
Collapse
Affiliation(s)
- Lik-Sin Lim
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor DE, Malaysia
| | | | | | | | | |
Collapse
|
202
|
EmaxDB: Availability of a first draft genome sequence for the apicomplexan Eimeria maxima. Mol Biochem Parasitol 2012; 184:48-51. [DOI: 10.1016/j.molbiopara.2012.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 01/31/2012] [Accepted: 03/12/2012] [Indexed: 02/01/2023]
|
203
|
Su H, Liu X, Yan W, Shi T, Zhao X, Blake DP, Tomley FM, Suo X. piggyBac transposon-mediated transgenesis in the apicomplexan parasite Eimeria tenella. PLoS One 2012; 7:e40075. [PMID: 22768223 PMCID: PMC3386905 DOI: 10.1371/journal.pone.0040075] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Accepted: 06/05/2012] [Indexed: 01/24/2023] Open
Abstract
piggyBac, a type II transposon that is useful for efficient transgenesis and insertional mutagenesis, has been used for effective and stable transfection in a wide variety of organisms. In this study we investigate the potential use of the piggyBac transposon system for forward genetics studies in the apicomplexan parasite Eimeria tenella. Using the restriction enzyme-mediated integration (REMI) method, E. tenella sporozoites were electroporated with a donor plasmid containing the enhanced yellow fluorescent protein (EYFP) gene flanked by piggyBac inverted terminal repeats (ITRs), an Asc I-linearized helper plasmid containing the transposase gene and the restriction enzyme Asc I. Subsequently, electroporated sporozoites were inoculated into chickens via the cloacal route and transfected progeny oocysts expressing EYFP were sorted by flow cytometry. A transgenic E. tenella population was selected by successive in vivo passage. Southern-blotting analysis showed that exogenous DNA containing the EYFP gene was integrated into the parasite genome at a limited number of integration sites and that the inserted part of the donor plasmid was the fragment located between the 5′ and 3′ ITRs as indicated by primer-specific PCR screening. Genome walking revealed that the insertion sites were TTAA-specific, which is consistent with the transposition characteristics of piggyBac.
Collapse
Affiliation(s)
- Huali Su
- National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xianyong Liu
- National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wenchao Yan
- National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Tuanyuan Shi
- National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xinxin Zhao
- National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Damer P. Blake
- Institute for Animal Health, Compton, Berkshire, United Kingdom
- Royal Veterinary College, Pathology and Infectious Diseases, North Mymms, Hertfordshire, United Kingdom
| | - Fiona M. Tomley
- Institute for Animal Health, Compton, Berkshire, United Kingdom
- Royal Veterinary College, Pathology and Infectious Diseases, North Mymms, Hertfordshire, United Kingdom
| | - Xun Suo
- National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
204
|
Fernández MLS, Engels KK, Bender F, Gassel M, Marhöfer RJ, Mottram JC, Selzer PM. High-throughput screening with the Eimeria tenella CDC2-related kinase2/cyclin complex EtCRK2/EtCYC3a. MICROBIOLOGY-SGM 2012; 158:2262-2271. [PMID: 22723289 PMCID: PMC3542813 DOI: 10.1099/mic.0.059428-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The poultry disease coccidiosis, caused by infection with Eimeria spp. apicomplexan parasites, is responsible for enormous economic losses to the global poultry industry. The rapid increase of resistance to therapeutic agents, as well as the expense of vaccination with live attenuated vaccines, requires the development of new effective treatments for coccidiosis. Because of their key regulatory function in the eukaryotic cell cycle, cyclin-dependent kinases (CDKs) are prominent drug targets. The Eimeria tenella CDC2-related kinase 2 (EtCRK2) is a validated drug target that can be activated in vitro by the CDK activator XlRINGO (Xenopus laevisrapid inducer of G2/M progression in oocytes). Bioinformatics analyses revealed four putative E. tenella cyclins (EtCYCs) that are closely related to cyclins found in the human apicomplexan parasite Plasmodium falciparum. EtCYC3a was cloned, expressed in Escherichia coli and purified in a complex with EtCRK2. Using the non-radioactive time-resolved fluorescence energy transfer (TR-FRET) assay, we demonstrated the ability of EtCYC3a to activate EtCRK2 as shown previously for XlRINGO. The EtCRK2/EtCYC3a complex was used for a combined in vitro and in silico high-throughput screening approach, which resulted in three lead structures, a naphthoquinone, an 8-hydroxyquinoline and a 2-pyrimidinyl-aminopiperidine-propane-2-ol. This constitutes a promising starting point for the subsequent lead optimization phase and the development of novel anticoccidial drugs.
Collapse
Affiliation(s)
- María L Suárez Fernández
- Institute of Microbiology and Wine Research, Johannes-Gutenberg-Universität Mainz, Becherweg 15, 55099 Mainz, Germany.,Intervet Innovation GmbH, Zur Propstei, 55270 Schwabenheim, Germany
| | - Kristin K Engels
- Intervet Innovation GmbH, Zur Propstei, 55270 Schwabenheim, Germany
| | - Frank Bender
- Intervet Innovation GmbH, Zur Propstei, 55270 Schwabenheim, Germany
| | - Michael Gassel
- Intervet Innovation GmbH, Zur Propstei, 55270 Schwabenheim, Germany
| | | | - Jeremy C Mottram
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Paul M Selzer
- Interfaculty Institute of Biochemistry, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany.,Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK.,Intervet Innovation GmbH, Zur Propstei, 55270 Schwabenheim, Germany
| |
Collapse
|
205
|
Jatau I, Sulaiman N, Musa I, Lawal A, Okubanjo O, Isah I, Magaji Y. Prevalence of Coccidia Infection and Preponderance Eimeria Species in Free Range Indigenous and Intensively Managed Exotic Chickens during Hot-wet Season, in Zaria, Nigeria. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/ajpsaj.2012.79.88] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
206
|
Velkers FC, Bouma A, Arjan Stegeman J, de Jong MC. Oocyst output and transmission rates during successive infections with Eimeria acervulina in experimental broiler flocks. Vet Parasitol 2012; 187:63-71. [DOI: 10.1016/j.vetpar.2011.12.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 12/23/2011] [Accepted: 12/29/2011] [Indexed: 11/24/2022]
|
207
|
Szatanek T, Anderson-White BR, Faugno-Fusci DM, White M, Saeij JPJ, Gubbels MJ. Cactin is essential for G1 progression in Toxoplasma gondii. Mol Microbiol 2012; 84:566-77. [PMID: 22486860 DOI: 10.1111/j.1365-2958.2012.08044.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Toxoplasma gondii is an obligate intracellular protozoan parasite whose rapid lytic replication cycles define its pathogenicity. We identified a temperature-sensitive growth mutant, FV-P6, which irreversibly arrests before the middle of the G1 stage of the tachyzoite cell cycle. This arrest is caused by a point mutation in a gene conserved across eukaryotes, Cactin, whose product localizes to the nucleus. To elucidate the role of TgCactin we performed genome-wide expression profiling. Besides the expected G1 expression profile, many genes associated with the extracellular state as well as with the bradyzoite cyst stage were identified. Consistent with these profiles were the expression of AP2 transcription factors typically associated with extracellular and bradyzoite stage parasites. This suggests a role for TgCactin in control of gene expression. As TgCactin does not contain any functionally defined domains we reasoned TgCactin exerts its function through interactions with other proteins. In support of this model we demonstrated that TgCactin is present in a protein complex and can oligomerize. Taken together, these results suggest that TgCactin acts as a pivotal protein potentially regulating gene expression at several transition points in parasite development.
Collapse
Affiliation(s)
- Tomasz Szatanek
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | | | | | | | | | | |
Collapse
|
208
|
Clark JD, Oakes RD, Redhead K, Crouch CF, Francis MJ, Tomley FM, Blake DP. Eimeria species parasites as novel vaccine delivery vectors: Anti-Campylobacter jejuni protective immunity induced by Eimeria tenella-delivered CjaA. Vaccine 2012; 30:2683-8. [DOI: 10.1016/j.vaccine.2012.02.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/27/2012] [Accepted: 02/01/2012] [Indexed: 10/14/2022]
|
209
|
Amiruddin N, Lee XW, Blake DP, Suzuki Y, Tay YL, Lim LS, Tomley FM, Watanabe J, Sugimoto C, Wan KL. Characterisation of full-length cDNA sequences provides insights into the Eimeria tenella transcriptome. BMC Genomics 2012; 13:21. [PMID: 22244352 PMCID: PMC3315734 DOI: 10.1186/1471-2164-13-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 01/13/2012] [Indexed: 11/12/2022] Open
Abstract
Background Eimeria tenella is an apicomplexan parasite that causes coccidiosis in the domestic fowl. Infection with this parasite is diagnosed frequently in intensively reared poultry and its control is usually accorded a high priority, especially in chickens raised for meat. Prophylactic chemotherapy has been the primary method used for the control of coccidiosis. However, drug efficacy can be compromised by drug-resistant parasites and the lack of new drugs highlights demands for alternative control strategies including vaccination. In the long term, sustainable control of coccidiosis will most likely be achieved through integrated drug and vaccination programmes. Characterisation of the E. tenella transcriptome may provide a better understanding of the biology of the parasite and aid in the development of a more effective control for coccidiosis. Results More than 15,000 partial sequences were generated from the 5' and 3' ends of clones randomly selected from an E. tenella second generation merozoite full-length cDNA library. Clustering of these sequences produced 1,529 unique transcripts (UTs). Based on the transcript assembly and subsequently primer walking, 433 full-length cDNA sequences were successfully generated. These sequences varied in length, ranging from 441 bp to 3,083 bp, with an average size of 1,647 bp. Simple sequence repeat (SSR) analysis identified CAG as the most abundant trinucleotide motif, while codon usage analysis revealed that the ten most infrequently used codons in E. tenella are UAU, UGU, GUA, CAU, AUA, CGA, UUA, CUA, CGU and AGU. Subsequent analysis of the E. tenella complete coding sequences identified 25 putative secretory and 60 putative surface proteins, all of which are now rational candidates for development as recombinant vaccines or drug targets in the effort to control avian coccidiosis. Conclusions This paper describes the generation and characterisation of full-length cDNA sequences from E. tenella second generation merozoites and provides new insights into the E. tenella transcriptome. The data generated will be useful for the development and validation of diagnostic and control strategies for coccidiosis and will be of value in annotation of the E. tenella genome sequence.
Collapse
Affiliation(s)
- Nadzirah Amiruddin
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor DE, Malaysia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
210
|
A comparative transcriptome analysis reveals expression profiles conserved across three Eimeria spp. of domestic fowl and associated with multiple developmental stages. Int J Parasitol 2012; 42:39-48. [DOI: 10.1016/j.ijpara.2011.10.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 10/15/2011] [Accepted: 10/19/2011] [Indexed: 11/22/2022]
|
211
|
Anderson-White B, Beck JR, Chen CT, Meissner M, Bradley PJ, Gubbels MJ. Cytoskeleton assembly in Toxoplasma gondii cell division. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 298:1-31. [PMID: 22878103 PMCID: PMC4066374 DOI: 10.1016/b978-0-12-394309-5.00001-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cell division across members of the protozoan parasite phylum Apicomplexa displays a surprising diversity between different species as well as between different life stages of the same parasite. In most cases, infection of a host cell by a single parasite results in the formation of a polyploid cell from which individual daughters bud in a process dependent on a final round of mitosis. Unlike other apicomplexans, Toxoplasma gondii divides by a binary process consisting of internal budding that results in only two daughter cells per round of division. Since T. gondii is experimentally accessible and displays the simplest division mode, it has manifested itself as a model for apicomplexan daughter formation. Here, we review newly emerging insights in the prominent role that assembly of the cortical cytoskeletal scaffold plays in the process of daughter parasite formation.
Collapse
Affiliation(s)
| | - Josh R. Beck
- University of California Los Angeles, Department of Microbiology, Immunology and Molecular Genetics, Los Angeles, CA 90095, USA
| | - Chun-Ti Chen
- Boston College, Department of Biology, Chestnut Hill, MA 02467, USA
| | - Markus Meissner
- Division of Infection and Immunity, Institute of Biomedical Life Sciences, Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Peter J. Bradley
- University of California Los Angeles, Department of Microbiology, Immunology and Molecular Genetics, Los Angeles, CA 90095, USA
| | - Marc-Jan Gubbels
- Boston College, Department of Biology, Chestnut Hill, MA 02467, USA
| |
Collapse
|
212
|
Velkers FC, Bouma A, Stegeman JA, de Jong MC. Transmission of a live Eimeria acervulina vaccine strain and response to infection in vaccinated and contact-vaccinated broilers. Vaccine 2012; 30:322-8. [DOI: 10.1016/j.vaccine.2011.10.090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 08/17/2011] [Accepted: 10/30/2011] [Indexed: 10/15/2022]
|
213
|
Barkway CP, Pocock RL, Vrba V, Blake DP. Loop-mediated isothermal amplification (LAMP) assays for the species-specific detection of Eimeria that infect chickens. BMC Vet Res 2011; 7:67. [PMID: 22053893 PMCID: PMC3217895 DOI: 10.1186/1746-6148-7-67] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/03/2011] [Indexed: 11/29/2022] Open
Abstract
Background Eimeria parasites can cause the disease coccidiosis in poultry and even subclinical infection can incur economic loss. Diagnosis of infection predominantly relies on traditional techniques including lesion scoring and faecal microscopy despite the availability of sensitive molecular assays, largely due to cost and the requirement for specialist equipment. Despite longstanding proven efficacy these traditional techniques demand time and expertise, can be highly subjective and may under-diagnose subclinical disease. Recognition of the tight economic margins prevailing in modern poultry production and the impact of avian coccidiosis on poverty in many parts of the world has highlighted a requirement for a panel of straightforward and sensitive, but cost-effective, Eimeria species-specific diagnostic assays. Results Loop-mediated isothermal amplification (LAMP) is an uncomplicated, quick and relatively inexpensive diagnostic tool. In this study we have developed a panel of species-specific LAMP assays targeting the seven Eimeria species that infect the chicken. Each assay has been shown to be genuinely species-specific with the capacity to detect between one and ten eimerian genomes, equivalent to less than a single mature schizont. Development of a simple protocol for template DNA preparation from tissue collected post mortem with no requirement for specialist laboratory equipment supports the use of these assays in routine diagnosis of eimerian infection. Preliminary field testing supports this hypothesis. Conclusions Development of a panel of sensitive species-specific LAMP assays introduces a valuable new cost-effective tool for use in poultry husbandry.
Collapse
Affiliation(s)
- Christopher P Barkway
- Royal Veterinary College, Department of Pathology and Infectious Diseases, University of London, North Mymms, UK
| | | | | | | |
Collapse
|
214
|
The role of sialyl glycan recognition in host tissue tropism of the avian parasite Eimeria tenella. PLoS Pathog 2011; 7:e1002296. [PMID: 22022267 PMCID: PMC3192848 DOI: 10.1371/journal.ppat.1002296] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 08/17/2011] [Indexed: 11/29/2022] Open
Abstract
Eimeria spp. are a highly successful group of intracellular protozoan parasites that develop within intestinal epithelial cells of poultry, causing coccidiosis. As a result of resistance against anticoccidial drugs and the expense of manufacturing live vaccines, it is necessary to understand the relationship between Eimeria and its host more deeply, with a view to developing recombinant vaccines. Eimeria possesses a family of microneme lectins (MICs) that contain microneme adhesive repeat regions (MARR). We show that the major MARR protein from Eimeria tenella, EtMIC3, is deployed at the parasite-host interface during the early stages of invasion. EtMIC3 consists of seven tandem MAR1-type domains, which possess a high specificity for sialylated glycans as shown by cell-based assays and carbohydrate microarray analyses. The restricted tissue staining pattern observed for EtMIC3 in the chicken caecal epithelium indicates that EtMIC3 contributes to guiding the parasite to the site of invasion in the chicken gut. The microarray analyses also reveal a lack of recognition of glycan sequences terminating in the N-glycolyl form of sialic acid by EtMIC3. Thus the parasite is well adapted to the avian host which lacks N-glycolyl neuraminic acid. We provide new structural insight into the MAR1 family of domains and reveal the atomic resolution basis for the sialic acid-based carbohydrate recognition. Finally, a preliminary chicken immunization trial provides evidence that recombinant EtMIC3 protein and EtMIC3 DNA are effective vaccine candidates. Eimeria spp. are highly successful protozoan parasites of the intestine of birds and one of the most important diseases in modern poultry farming. The economic impact is significant causing billion dollar losses to the industry and as a result there is pressing need for new therapeutic approaches. Anticoccidial drugs are thwarted by resistance, live vaccines are expensive to manufacture and few recombinant vaccine antigens have been characterized in detail. We show that the microneme protein, MIC3 from Eimeria tenella, is deployed at the parasite-host interface during the early stages of invasion. We provide new atomic resolution insight into its predilection for sialic acid-bearing glycans and demonstrate its role in invasion. We also provide evidence that EtMIC3-based vaccines induce protection in preliminary immunization studies.
Collapse
|
215
|
Travers MA, Florent I, Kohl L, Grellier P. Probiotics for the control of parasites: an overview. J Parasitol Res 2011; 2011:610769. [PMID: 21966589 PMCID: PMC3182331 DOI: 10.1155/2011/610769] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 07/11/2011] [Accepted: 07/11/2011] [Indexed: 12/29/2022] Open
Abstract
Probiotics are defined as live organisms, which confer benefits to the host. Their efficiency was demonstrated for the treatment of gastrointestinal disorders, respiratory infections, and allergic symptoms, but their use is mostly limited to bacterial and viral diseases. During the last decade, probiotics as means for the control of parasite infections were reported covering mainly intestinal diseases but also some nongut infections, that are all of human and veterinary importance. In most cases, evidence for a beneficial effect was obtained by studies using animal models. In a few cases, cellular interactions between probiotics and pathogens or relevant host cells were also investigated using in vitro culture systems. However, molecular mechanisms mediating the beneficial effects are as yet poorly understood. These studies indicate that probiotics might indeed provide a strain-specific protection against parasites, probably through multiple mechanisms. But more unravelling studies are needed to justify probiotic utilisation in therapeutics.
Collapse
Affiliation(s)
- Marie-Agnès Travers
- Team Adaptation of Protozoa to their Environment, UMR 7245 CNRS, National Museum of Natural History, CP52, 61 rue Buffon, 75231 Paris Cedex 05, France
| | - Isabelle Florent
- Team Adaptation of Protozoa to their Environment, UMR 7245 CNRS, National Museum of Natural History, CP52, 61 rue Buffon, 75231 Paris Cedex 05, France
| | - Linda Kohl
- Team Adaptation of Protozoa to their Environment, UMR 7245 CNRS, National Museum of Natural History, CP52, 61 rue Buffon, 75231 Paris Cedex 05, France
| | - Philippe Grellier
- Team Adaptation of Protozoa to their Environment, UMR 7245 CNRS, National Museum of Natural History, CP52, 61 rue Buffon, 75231 Paris Cedex 05, France
| |
Collapse
|
216
|
Peek H, Landman W. Coccidiosis in poultry: anticoccidial products, vaccines and other prevention strategies. Vet Q 2011; 31:143-61. [DOI: 10.1080/01652176.2011.605247] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
217
|
Lee J, Eckert N, Ameiss K, Stevens S, Anderson P, Anderson S, Barri A, McElroy A, Danforth H, Caldwell D. The effect of dietary protein level on performance characteristics of coccidiosis vaccinated and nonvaccinated broilers following mixed-species Eimeria challenge. Poult Sci 2011; 90:1916-25. [DOI: 10.3382/ps.2011-01362] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
218
|
Jiang L, Lin J, Han H, Zhao Q, Dong H, Zhu S, Huang B. Identification and partial characterization of a serine protease inhibitor (serpin) of Eimeria tenella. Parasitol Res 2011; 110:865-74. [PMID: 21842392 DOI: 10.1007/s00436-011-2568-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 07/20/2011] [Indexed: 02/07/2023]
Abstract
Serine protease inhibitors (serpins) mediate many biological processes, including immune responses to pathogenic infection. In this study, a member of the serpin superfamily was identified from the common poultry parasite Eimeria tenella by expressed sequence tag analysis and the rapid amplification of cDNA ends technique. The full-length cDNA was 1,918 bp and had an open reading frame of 1,248 bp encoding a polypeptide of 415 amino acids with the theoretical isoelectric point of 5.26 and predicted molecular weight of 45.5 kDa. Real-time quantitative PCR analysis revealed that the serpin gene was expressed at higher levels in sporozoites than in the other developmental stages (unsporulated oocysts, sporulated oocysts, and second-generation merozoites). The sequence encoding the mature protein was amplified by PCR, cloned into the pET28(a) vector, and expressed in Escherichia coli. Specific antiserum generated against the recombinant protein was prepared and used to determine invasion inhibition capacity and localization; the results suggested that the serpin may play an important role in invasion and survival of the sporoziotes in the host.
Collapse
Affiliation(s)
- Lianlian Jiang
- Key Laboratory for Animal Parasitology, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518 Ziyue Road, Minhang District, Shanghai 200241, China
| | | | | | | | | | | | | |
Collapse
|
219
|
Yin G, Liu X, Zou J, Huang X, Suo X. Co-expression of reporter genes in the widespread pathogen Eimeria tenella using a double-cassette expression vector strategy. Int J Parasitol 2011; 41:813-6. [PMID: 21550346 DOI: 10.1016/j.ijpara.2011.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 03/31/2011] [Accepted: 04/04/2011] [Indexed: 11/26/2022]
Abstract
The double-cassette expression vector strategy is valuable for many studies, including comparative analysis of the function of promoters and expression of genes in different compartments. In this study, we report co-expression of enhanced yellow fluorescent protein (EYFP) and red fluorescent protein (RFP) in Eimeria tenella transfected with two double-cassette expression vectors, pMIC-EYFP/ACT-RFP and pMIC-EYFP/ACTss-RFP. The results showed that under regulation of the mic1 promoter, EYFP was expressed in sporulated oocysts but not in unsporulated ones, while under regulation of the actin promoter RFP was expressed in both forms. We found that the signal peptide of Toxoplasma gondii dense granule protein 8 (GRA8) located the RFP expression to the parasitophorous vacuoles of the parasites, the margins of the unsporulated oocysts and the cavities of the sporocysts. The feasibility of co-expression of exogenous proteins in E. tenella is important for the development of transgenic E. tenella as a novel vaccine vector.
Collapse
Affiliation(s)
- Guangwen Yin
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | | | | | | | | |
Collapse
|
220
|
Carvalho FS, Wenceslau AA, Teixeira M, Albuquerque GR. Molecular diagnosis of Eimeria species affecting naturally infected Gallus gallus. GENETICS AND MOLECULAR RESEARCH 2011; 10:996-1005. [PMID: 21710449 DOI: 10.4238/vol10-2gmr1043] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We used PCR to test various protocols and define a technique for DNA extraction directly from chicken-shed stool samples for the identification of Eimeria species that parasitize birds. It was possible to extract and amplify DNA of seven Eimeria species from field stool samples, using both protocols tested; extractions made with phenol/chloroform protocols gave the best results. The primers were specific and sensitive, allowing amplification of samples containing as few as 20 oocysts, both in individual and in a multiplex PCR. Individualized PCR with the phenol/chloroform DNA extraction protocol detected a larger number of Eimeria species. Molecular diagnosis was found to be practical and precise, and can be used for monitoring and epidemiological studies of Eimeria.
Collapse
Affiliation(s)
- F S Carvalho
- Programa de Pós-Graduação em Ciência Animal, Departamento de Ciências Agrárias e Ambientais, Universidade Estadual de Santa Cruz, Campus Universitário, Ilhéus, BA, Brasil
| | | | | | | |
Collapse
|
221
|
Jafari RA, Kiani R, Shahriyari A, Asadi F, Hamidinejat H. Effect of dietary vitamin E on plasma oxidative stress in broiler chicks infected with Eimeria tenella. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s00580-011-1194-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
222
|
Diagnosis of Eimeria species using traditional and molecular methods in field studies. Vet Parasitol 2011; 176:95-100. [DOI: 10.1016/j.vetpar.2010.11.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 11/04/2010] [Accepted: 11/10/2010] [Indexed: 11/22/2022]
|
223
|
Khalafalla RE, Daugschies A, Dyachenko V. Cross-reactivity of anti-Eimeria tenella antibody fragments on merozoites and sporozoites of different chicken Eimeria species. Parasitol Res 2011; 108:745-9. [PMID: 21107860 DOI: 10.1007/s00436-010-2171-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 11/12/2010] [Indexed: 11/26/2022]
Abstract
Eimeria tenella-specific antibodies were examined for the cross-reactivity on the sporozoites and merozoites of E. tenella, Eimeria maxima, Eimeria acervulina and Eimeria brunetti in an indirect fluorescence antibody test. Two of nine antibodies showed cross-reactivity with sporozoites of E. maxima, E. acervulina and E. brunetti; however, the localization of specific fluorescence differed between species. No antibody binding was observed on merozoites. The suitability of these antibodies to alter the infectivity of Eimeria sporozoites and/or merozoites must be verified in cell culture models and in vivo experimental infections.
Collapse
Affiliation(s)
- Reda E Khalafalla
- Institute of Parasitology, Faculty of Veterinary Medicine, University Leipzig, Leipzig, Germany.
| | | | | |
Collapse
|
224
|
Goh MY, Pan MZ, Blake DP, Wan KL, Song BK. Eimeria maxima phosphatidylinositol 4-phosphate 5-kinase: locus sequencing, characterization, and cross-phylum comparison. Parasitol Res 2011; 108:611-20. [PMID: 20938684 DOI: 10.1007/s00436-010-2104-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Accepted: 09/23/2010] [Indexed: 10/19/2022]
Abstract
Phosphatidylinositol 4-phosphate 5-kinase (PIP5K) may play an important role in host-cell invasion by the Eimeria species, protozoan parasites which can cause severe intestinal disease in livestock. Here, we report the structural organization of the PIP5K gene in Eimeria maxima (Weybridge strain). Two E. maxima BAC clones carrying the E. maxima PIP5K (EmPIP5K) coding sequences were selected for shotgun sequencing, yielding a 9.1-kb genomic segment. The EmPIP5K coding region was initially identified using in silico gene-prediction approaches and subsequently confirmed by mapping rapid amplification of cDNA ends and RT-PCR-generated cDNA sequence to its genomic segment. The putative EmPIP5K gene was located at position 710-8036 nt on the complimentary strand and comprised of 23 exons. Alignment of the 1147 amino acid sequence with previously annotated PIP5K proteins from other Apicomplexa species detected three conserved motifs encompassing the kinase core domain, which has been shown by previous protein deletion studies to be necessary for PIP5K protein function. Phylogenetic analysis provided further evidence that the putative EmPIP5K protein is orthologous to that of other Apicomplexa. Subsequent comparative gene structure characterization revealed events of intron loss/gain throughout the evolution of the apicomplexan PIP5K gene. Further scrutiny of the genomic structure revealed a possible trend towards "intron gain" between two of the motif regions. Our findings offer preliminary insights into the structural variations that have occurred during the evolution of the PIP5K locus and may aid in understanding the functional role of this gene in the cellular biology of apicomplexan parasites.
Collapse
Affiliation(s)
- Mei-Yen Goh
- School of Science, Monash University Sunway Campus, Jalan Lagoon Selatan, 46150 Bandar Sunway, Selangor, DE, Malaysia
| | | | | | | | | |
Collapse
|
225
|
Blake DP, Billington KJ, Copestake SL, Oakes RD, Quail MA, Wan KL, Shirley MW, Smith AL. Genetic mapping identifies novel highly protective antigens for an apicomplexan parasite. PLoS Pathog 2011; 7:e1001279. [PMID: 21347348 PMCID: PMC3037358 DOI: 10.1371/journal.ppat.1001279] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 01/07/2011] [Indexed: 11/19/2022] Open
Abstract
Apicomplexan parasites are responsible for a myriad of diseases in humans and livestock; yet despite intensive effort, development of effective sub-unit vaccines remains a long-term goal. Antigenic complexity and our inability to identify protective antigens from the pool that induce response are serious challenges in the development of new vaccines. Using a combination of parasite genetics and selective barriers with population-based genetic fingerprinting, we have identified that immunity against the most important apicomplexan parasite of livestock (Eimeria spp.) was targeted against a few discrete regions of the genome. Herein we report the identification of six genomic regions and, within two of those loci, the identification of true protective antigens that confer immunity as sub-unit vaccines. The first of these is an Eimeria maxima homologue of apical membrane antigen-1 (AMA-1) and the second is a previously uncharacterised gene that we have termed ‘immune mapped protein-1’ (IMP-1). Significantly, homologues of the AMA-1 antigen are protective with a range of apicomplexan parasites including Plasmodium spp., which suggest that there may be some characteristic(s) of protective antigens shared across this diverse group of parasites. Interestingly, homologues of the IMP-1 antigen, which is protective against E. maxima infection, can be identified in Toxoplasma gondii and Neospora caninum. Overall, this study documents the discovery of novel protective antigens using a population-based genetic mapping approach allied with a protection-based screen of candidate genes. The identification of AMA-1 and IMP-1 represents a substantial step towards development of an effective anti-eimerian sub-unit vaccine and raises the possibility of identification of novel antigens for other apicomplexan parasites. Moreover, validation of the parasite genetics approach to identify effective antigens supports its adoption in other parasite systems where legitimate protective antigen identification is difficult. Protozoan parasites are responsible for serious diseases in humans and livestock species. Vaccination is a declared intervention of choice with these infections, but even after many years of effort few effective vaccines are available. Identification of the right antigens for inclusion in sub-unit vaccines is a particular problem with complex pathogens. Moreover, the host response does not discriminate between protective and non-protective antigens, confounding development of effective screening systems. This study represents the culmination of work using parasite genetics and immunity as a selective barrier to find parts of the parasite genome targeted by immunity. The pathogen used in these studies (Eimeria maxima) is very important in livestock and related to a number of human pathogens including those responsible for malaria. Our studies indicate that just six regions in the genome were targeted by immunity and two of these have now been interrogated to determine the protective antigen encoding gene. Interestingly, one of these (called AMA-1) has homologues known to be protective with other apicomplexan parasites. This raises the intriguing possibility that a set of homologous antigens may be protective across the apicomplexan parasites and that protective antigen discovery in one parasite may generate new leads in other vaccine programmes.
Collapse
Affiliation(s)
- Damer P. Blake
- Institute for Animal Health, Compton, Berkshire, United Kingdom
- Pathology and Infectious Diseases, Royal Veterinary College, University of London, North Mymms, United Kingdom
- * E-mail: (DPB); (ALS)
| | | | | | | | - Michael A. Quail
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Kiew-Lian Wan
- Malaysia Genome Institute, UKM-MTDC Technology Centre, Selangor, Malaysia
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | | | - Adrian L. Smith
- Institute for Animal Health, Compton, Berkshire, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- * E-mail: (DPB); (ALS)
| |
Collapse
|
226
|
Gerhold RW, Fuller AL, Beckstead RB, McDougald LR. Low-Dose Immunization of Northern Bobwhites (Colinus virginianus) with Eimeria lettyae Provides Protection Against a High-Dose Challenge. Avian Dis 2010; 54:1220-3. [DOI: 10.1637/9403-052510-reg.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
227
|
Vrba V, Blake DP, Poplstein M. Quantitative real-time PCR assays for detection and quantification of all seven Eimeria species that infect the chicken. Vet Parasitol 2010; 174:183-90. [DOI: 10.1016/j.vetpar.2010.09.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 08/31/2010] [Accepted: 09/06/2010] [Indexed: 11/28/2022]
|
228
|
Analysis of differentially expressed genes in the precocious line of Eimeria maxima and its parent strain using suppression subtractive hybridization and cDNA microarrays. Parasitol Res 2010; 108:1033-40. [DOI: 10.1007/s00436-010-2149-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 10/29/2010] [Indexed: 10/18/2022]
|
229
|
Characterization of the antibody response in birds following infection with wild-type and attenuated strains of Eimeria tenella and Eimeria necatrix. Vet Parasitol 2010; 175:47-51. [PMID: 21035267 DOI: 10.1016/j.vetpar.2010.09.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Revised: 09/14/2010] [Accepted: 09/24/2010] [Indexed: 11/22/2022]
Abstract
Live vaccines containing attenuated parasite strains are increasingly used to control chicken coccidiosis. In this paper antibody responses elicited by infections with wild-type and attenuated strains of Eimeria tenella and Eimeria necatrix were characterized by immunoblotting and ELISA with homologous and heterologous antisera. Few differences between antisera from birds infected with wild and attenuated strains of E. tenella were evident in immunoblots conducted with merozoite antigen preparations from both E. tenella strains, however the reactivity of sera raised in birds infected with the wild-type strain was noticeably more intense. In ELISAs conducted with merozoite antigen preparations, antisera from birds infected with the wild-type strains of E. tenella and E. necatrix consistently produced a significantly higher (P<0.05) antibody response than antisera from birds infected with the attenuated strains. Likewise, avidity ELISAs conducted with the E. tenella strains demonstrated that antibodies in birds infected with the wild-type strain were of significantly higher avidity (P<0.05) than antibodies in birds infected with the attenuated strain. The differences in the antibody responses are probably due to changes in the attenuated strain as a result of selection for precocious development and the less severe tissue damage and inflammation of the intestine resulting from infection with the attenuated strain.
Collapse
|
230
|
McGill I, Feltrer Y, Jeffs C, Sayers G, Marshall RN, Peirce MA, Stidworthy MF, Pocknell A, Sainsbury AW. Isosporoid coccidiosis in translocated cirl buntings (Emberiza cirlus
). Vet Rec 2010; 167:656-60. [DOI: 10.1136/vr.c5179] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- I. McGill
- Institute of Zoology; Zoological Society of London; Regent's Park London NW1 4RY
| | - Y. Feltrer
- Institute of Zoology; Zoological Society of London; Regent's Park London NW1 4RY
| | - C. Jeffs
- Royal Society for the Protection of Birds, South West Regional Office; Keble House, Southernhay Gardens Exeter EX1 1NT
| | - G. Sayers
- Paignton Zoo Environmental Park; Totnes Road Paignton Devon TQ4 7EU
| | - R. N. Marshall
- Veterinary Laboratories Agency - Weybridge; Woodham Lane, New Haw Addlestone Surrey KT15 3NB
| | - M. A. Peirce
- MP International Consultancy; 6 Normandale House, Normandale Bexhill-on-Sea East Sussex TN39 3NZ
| | - M. F. Stidworthy
- International Zoo Veterinary Group; Keighley Business Centre; South Street Keighley West Yorkshire BD21 1AG
| | - A. Pocknell
- Institute of Zoology; Zoological Society of London; Regent's Park London NW1 4RY
| | - A. W. Sainsbury
- Institute of Zoology; Zoological Society of London; Regent's Park London NW1 4RY
| |
Collapse
|
231
|
Khalafalla RE, Daugschies A. In vivo evaluation of anticoccidial effect of antibody fragments expressed in pea (Pasum sativum) on Eimeria tenella sporozoites. Parasitol Res 2010; 107:983-6. [PMID: 20602113 DOI: 10.1007/s00436-010-1964-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 06/15/2010] [Indexed: 10/19/2022]
Abstract
Coccidiosis in chicken causes great economic losses. The increasing resistance of Eimeria species to anticoccidials has induced the search for alternative methods of control. In vivo antibody neutralization assay was conducted to study the inhibitory effect of nine antibody fragments (Ab1-Ab9) on Eimeria tenella sporozoites. These anti-E. tenella antibody fragments were expressed in pea plant (Pasum sativum). To assess the inhibitory effect on parasite reproduction, the in vivo antibody neutralization assay was done by retrograde infection of chicken with sporozoites previously incubated with antibody fragments. The pre-incubated sporozoites with the examined antibody fragments displayed a reduced ability to reproduce following intracloacal application to chicken (especially Ab1, Ab3, Ab5, and Ab9). Other antibody fragments (Ab2, Ab4, Ab6, Ab7, and Ab8) were less capable to reduce sporozoite infectivity and reproduction.
Collapse
Affiliation(s)
- Reda E Khalafalla
- Institute of Parasitology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany.
| | | |
Collapse
|
232
|
Velkers FC, Swinkels WJC, Rebel JMJ, Bouma A, Daemen AJJM, Klinkenberg D, Boersma WJA, Stegeman JA, de Jong MCM, Heesterbeek JAP. Effect of Eimeria acervulina infection history on the immune response and transmission in broilers. Vet Parasitol 2010; 173:184-92. [PMID: 20800971 DOI: 10.1016/j.vetpar.2010.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 07/08/2010] [Accepted: 07/15/2010] [Indexed: 11/17/2022]
Abstract
Heterogeneity in exposure to Eimeria spp. of chickens in a flock will result in differences between individual birds in oocyst output and acquired immunity, which subsequently affects transmission of the parasite in the population. The aim of this study was to quantify effects of previous infection of broilers with Eimeria acervulina on immune responses, oocyst output and transmission. A transmission experiment was carried out with pair-wise housed broilers, that differed in infection history. This "infection history" was achieved by establishment of a primary infection by inoculation of birds with 50,000 sporulated E. acervulina oocysts at day 6 of age ("primed"); the other birds did not receive a primary infection ("naïve"). The actual transmission experiment started at day 24 of age: one bird (I) was inoculated with 50,000 sporulated oocysts and was housed together with a non-inoculated contact bird (C). Oocyst excretion and parameters describing transmission, i.e. the number of infected C birds and time passed before start of excretion of C birds, were determined from day 28 to day 50 for six pairs of four different combinations of I and C birds (I-C): naïve-naïve, naïve-primed, primed-naïve and primed-primed. Immune parameters, CD4(+), CD8(+), αβTCR(+) and γδTCR(+) T cells and macrophages in duodenum, were determined in an additional 25 non-primed, non-inoculated control birds, and in the naïve-naïve and naïve-primed groups, each group consisting of 25 pairs. Although the numbers of CD4(+) T cells and γδTCR(+) T cells increased after primary infection, none of the immunological cell types provided an indication of differences in infectivity, susceptibility or transmission between birds. Oocyst output was significantly reduced in primed I and C birds. Transmission was reduced most in the primed-primed group, but nonetheless transmission occurred in all groups. This study also showed that acquired immunity significantly reduced oocyst output after inoculation and contact-infection, but not sufficiently to prevent transmission to contact-exposed birds.
Collapse
Affiliation(s)
- F C Velkers
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80151, 3508 TD Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
233
|
Studies on construction of a recombinant Eimeria tenella SO7 gene expressing Escherichia coli and its protective efficacy against homologous infection. Parasitol Int 2010; 59:517-23. [PMID: 20601103 DOI: 10.1016/j.parint.2010.06.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 06/07/2010] [Accepted: 06/23/2010] [Indexed: 11/22/2022]
Abstract
Eimeria spp. are the causative agents of coccidiosis, a major disease affecting the poultry industry. A recombinant non-antibiotic Escherichia coli that expresses the Eimeria tenella SO7 gene was constructed and its protective efficacy against homologous infection in chickens was determined. The three-day-old chickens were orally immunized with the recombinant non-antibiotic SO7 gene expressing E. coli and boosted two weeks later. Four weeks after the second immunization, the chickens were challenged with 5 × 10(4) homologous sporulated oocysts. The protective effects of the recombinant non-antibiotic E. coli were determined by measuring body weight change, mortality, histopathology, lesion scores, oocyst counts, the specific antibody response and the frequency of CD4(+) and CD8(+) lymphocytes in peripheral blood. The results showed that immunization with SO7 expressing E. coli resulted in significantly improved body weight gain, reduced lesion scores and oocyst shedding in immunized chickens compared to controls. Furthermore, administration of recombinant SO7 expressing E. coli leads to a significant increase in serum antibody, CD4(+) and CD8(+) T cells in peripheral blood of chickens. These results, therefore, suggest that the recombinant non-antibiotic E. coli that expresses the SO7 gene is able to effectively stimulate host protective immunity as evidenced by the induction of development of both humoral and cell-mediated immune responses against homologous challenge in chickens.
Collapse
|
234
|
Wallach M. Role of antibody in immunity and control of chicken coccidiosis. Trends Parasitol 2010; 26:382-7. [PMID: 20452286 DOI: 10.1016/j.pt.2010.04.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 04/09/2010] [Accepted: 04/12/2010] [Indexed: 01/20/2023]
Abstract
Research has been carried out worldwide to try to elucidate the mechanism of protective immunity against coccidiosis. It was concluded from early studies that cellular immunity is the key to protection against Eimeria, whereas humoral immunity plays a very minor role in resistance against infection. By contrast, other studies have pointed towards the ability of antibody to block parasite invasion, development and transmission and to provide passive and maternal immunity against challenge infection. Herein, recent results demonstrate the ability of antibodies (raised by live immunization or against purified stage-specific Eimeria antigens) to inhibit parasite development in vitro and in vivo and readdress the question of the role of antibody in protection against coccidiosis.
Collapse
Affiliation(s)
- Michael Wallach
- Institute for the Biotechnology of Infectious Diseases, University of Technology Sydney, PO Box 123, Broadway, Sydney, New South Wales, 2007, Australia.
| |
Collapse
|
235
|
Velkers F, Blake D, Graat E, Vernooij J, Bouma A, de Jong M, Stegeman J. Quantification of Eimeria acervulina in faeces of broilers: Comparison of McMaster oocyst counts from 24h faecal collections and single droppings to real-time PCR from cloacal swabs. Vet Parasitol 2010; 169:1-7. [DOI: 10.1016/j.vetpar.2010.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 12/21/2009] [Accepted: 01/04/2010] [Indexed: 11/30/2022]
|
236
|
Bhaskaran MS, Venkatesan L, Aadimoolam R, Tirunelveli Jayagopal H, Sriraman R. Sequence diversity of internal transcribed spacer-1 (ITS-1) region of Eimeria infecting chicken and its relevance in species identification from Indian field samples. Parasitol Res 2009; 106:513-21. [DOI: 10.1007/s00436-009-1696-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 11/20/2009] [Indexed: 11/25/2022]
|
237
|
Lal K, Bromley E, Oakes R, Prieto JH, Sanderson SJ, Kurian D, Hunt L, Yates JR, Wastling JM, Sinden RE, Tomley FM. Proteomic comparison of four Eimeria tenella life-cycle stages: unsporulated oocyst, sporulated oocyst, sporozoite and second-generation merozoite. Proteomics 2009; 9:4566-76. [PMID: 19795439 DOI: 10.1002/pmic.200900305] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We report the proteomes of four life-cycle stages of the Apicomplexan parasite Eimeria tenella. A total of 1868 proteins were identified, with 630, 699, 845 and 1532 found in early oocysts (unsporulated), late oocysts (sporulated), sporozoites and second-generation merozoites, respectively. A multidimensional protein identification technology shotgun approach identified 812 sporozoites, 1528 merozoites and all of the oocyst proteins, whereas 2-D gel proteomics identified 230 sporozoites and 98 merozoite proteins. Comparing the invasive stages, we find moving junction components RON2 in both, whereas AMA-1 and RON4 are found only in merozoites and AMA-2 and RON5 are only found in sporozoites, suggesting stage-specific moving junction proteins. During early oocyst to sporozoite development, refractile body and most "glideosome" proteins are found throughout, whereas microneme and most rhoptry proteins are only found after sporulation. Quantitative analysis indicates glycolysis and gluconeogenesis are the most abundant metabolic groups detected in all stages. The mannitol cycle "off shoot" of glycolysis was not detected in merozoites but was well represented in the other stages. However, in merozoites we find more protein associated with oxidative phosphorylation, suggesting a metabolic shift mobilising greater energy production. We find a greater abundance of protein linked to transcription, protein synthesis and cell cycle in merozoites than in sporozoites, which may be residual protein from the preceding massive replication during schizogony.
Collapse
Affiliation(s)
- Kalpana Lal
- The Division of Cell and Molecular Biology, Imperial College London, London, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Immunoproteomic analysis of the second-generation merozoite proteins of Eimeria tenella. Vet Parasitol 2009; 164:173-82. [DOI: 10.1016/j.vetpar.2009.05.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 05/06/2009] [Accepted: 05/14/2009] [Indexed: 11/18/2022]
|
239
|
Zimmermann J, Saalbach I, Jahn D, Giersberg M, Haehnel S, Wedel J, Macek J, Zoufal K, Glünder G, Falkenburg D, Kipriyanov SM. Antibody expressing pea seeds as fodder for prevention of gastrointestinal parasitic infections in chickens. BMC Biotechnol 2009; 9:79. [PMID: 19747368 PMCID: PMC2755478 DOI: 10.1186/1472-6750-9-79] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 09/11/2009] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Coccidiosis caused by protozoans of genus Eimeria is a chicken parasitic disease of great economical importance. Conventional disease control strategies depend on vaccination and prophylactic use of anticoccidial drugs. Alternative solution to prevent and treat coccidiosis could be provided by passive immunization using orally delivered neutralizing antibodies. We investigated the possibility to mitigate the parasitic infection by feeding poultry with antibody expressing transgenic crop seeds. RESULTS Using the phage display antibody library, we generated a panel of anti-Eimeria scFv antibody fragments with high sporozoite-neutralizing activity. These antibodies were expressed either transiently in agrobacteria-infiltrated tobacco leaves or stably in seeds of transgenic pea plants. Comparison of the scFv antibodies purified either from tobacco leaves or from the pea seeds demonstrated no difference in their antigen-binding activity and molecular form compositions. Force-feeding experiments demonstrated that oral delivery of flour prepared from the transgenic pea seeds had higher parasite neutralizing activity in vivo than the purified antibody fragments isolated from tobacco. The pea seed content was found to protect antibodies against degradation by gastrointestinal proteases (>100-fold gain in stability). Ad libitum feeding of chickens demonstrated that the transgenic seeds were well consumed and not shunned. Furthermore, feeding poultry with shred prepared from the antibody expressing pea seeds led to significant mitigation of infection caused both by high and low challenge doses of Eimeria oocysts. CONCLUSION The results suggest that our strategy offers a general approach to control parasitic infections in production animals using cost-effective antibody expression in crop seeds affordable for the animal health market.
Collapse
Affiliation(s)
- Jana Zimmermann
- Novoplant GmbH, Am Schwabeplan 1b, 06466 Gatersleben, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Jahn D, Matros A, Bakulina AY, Tiedemann J, Schubert U, Giersberg M, Haehnel S, Zoufal K, Mock HP, Kipriyanov SM. Model structure of the immunodominant surface antigen of Eimeria tenella identified as a target for sporozoite-neutralizing monoclonal antibody. Parasitol Res 2009; 105:655-68. [PMID: 19387686 DOI: 10.1007/s00436-009-1437-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2008] [Accepted: 03/27/2009] [Indexed: 12/17/2022]
Abstract
Eimeria tenella is a coccidian parasite of great economical importance for poultry industry. The surface of Eimeria invasive agents, sporozoites and merozoites, is coated with a family of developmentally regulated glycosylphosphatidylinositol (GPI)-linked surface antigens (SAGs), some of them involved in the initiation of the infection process. Using 2D gel electrophoresis followed by mass spectrometry, an antigenic surface protein EtSAG1 (TA4) of E. tenella sporozoites has been identified as a target of neutralizing monoclonal antibody 2H10E3. To clarify the mechanism of invasion inhibition caused by the EtSAG1-specific antibodies, a structural model of EtSAG1 was generated. It appears that "EtSAG fold" does not bear an evolutionary relationship to any known protein structure. The intra- and interchain disulfide bonds could be assigned to certain pairs of six conserved cysteines found in members of the EtSAG protein family. The outward-facing surface of the antigen was found to comprise an expanded positively charged patch, thus suggesting that the parasite invasion process may be initiated by sporozoite attachment to negatively charged sulfated proteoglycans on the surface of the host cell.
Collapse
Affiliation(s)
- Doreen Jahn
- Novoplant GmbH, Am Schwabeplan 1b, 06466, Gatersleben, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Zou J, Liu X, Shi T, Huang X, Wang H, Hao L, Yin G, Suo X. Transfection of Eimeria and Toxoplasma using heterologous regulatory sequences. Int J Parasitol 2009; 39:1189-93. [DOI: 10.1016/j.ijpara.2009.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 03/27/2009] [Accepted: 03/31/2009] [Indexed: 10/20/2022]
|
242
|
Abstract
SUMMARYEimeriaspp. are the causative agents of coccidiosis, a major disease affecting many intensively-reared livestock, especially poultry. The chicken is host to 7 species ofEimeriathat develop within intestinal epithelial cells and produce varying degrees of morbidity and mortality. Control of coccidiosis by the poultry industry is dominated by prophylactic chemotherapy but drug resistance is a serious problem. Strongly protective but species-specific immunity can be induced in chickens by infection with any of theEimeriaspp. At the Institute of Animal Health in Houghton, UK in the 1980s we showed that all 7Eimeriaspp. could be stably attenuated by serial passage in chickens of the earliest oocysts produced (i.e. the first parasites to complete their endogenous development) and this process resulted in the depletion of asexual development. Despite being highly attenuated, the precocious lines retained their immunizing capacity. Subsequent work led to the commercial introduction of the first live attenuated vaccine, Paracox®, that has now been in use for 20 years. As much work still remains to be done before the development of recombinant vaccines becomes a reality, it is likely that reliance upon live, attenuated vaccines will increase in years to come.
Collapse
|
243
|
Reichel MP, Ellis JT. Neospora caninum--how close are we to development of an efficacious vaccine that prevents abortion in cattle? Int J Parasitol 2009; 39:1173-87. [PMID: 19497326 DOI: 10.1016/j.ijpara.2009.05.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 05/19/2009] [Accepted: 05/20/2009] [Indexed: 10/20/2022]
Abstract
Neospora caninum is a protozoan parasite that causes abortion in cattle around the world. Although the clinical signs of disease in both dogs and cattle have now been recognised for over 20years, treatment and control options are still limited, despite the availability of a commercial vaccine in some countries of the world. The case for an efficacious vaccine has not been convincingly waged by farmers, veterinarians and other members of the agricultural and rural communities. In recent times, however, economic modelling has been used to estimate the industry losses due to Neospora-associated abortion, providing, in turn, the business case for forms of control for this parasite, including the development of vaccines. In this review, we document progress in all areas of the vaccine development pipeline, including live, killed and recombinant forms and the animal models available for vaccine evaluation. In addition, we summarise the main outcomes on the economics of Neospora control and suggest that the current boom in the global dairy industry increases the specific need for a vaccine against N. caninum-associated abortion.
Collapse
Affiliation(s)
- Michael P Reichel
- Department of Medical and Molecular Biosciences, University of Technology, Sydney, P.O. Box 123, Broadway, NSW 2007, Australia
| | | |
Collapse
|
244
|
Real-time polymerase chain reaction (PCR) assays for the specific detection and quantification of seven Eimeria species that cause coccidiosis in chickens. Mol Cell Probes 2009; 23:83-9. [DOI: 10.1016/j.mcp.2008.12.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 12/19/2008] [Accepted: 12/19/2008] [Indexed: 11/18/2022]
|
245
|
Dietary supplementation of mannan-oligosaccharide enhances neonatal immune responses in chickens during natural exposure to Eimeria spp. Acta Vet Scand 2009; 51:11. [PMID: 19298670 PMCID: PMC2667520 DOI: 10.1186/1751-0147-51-11] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 03/19/2009] [Indexed: 12/29/2022] Open
Abstract
Background Control and eradication of intestinal infections caused by protozoa are important biomedical challenges worldwide. Prophylactic control of coccidiosis has been achieved with the use of anticoccidial drugs; however, the increase in anticoccidial resistance has raised concerns about the need for new alternatives for the control of coccidial infections. In fact, new strategies are needed to induce potent protective immune responses in neonatal individuals. Methods The effects of a dietary supplementation of mannan-oligosaccharide (yeast cell wall; YCW) on the local, humoral and cell-mediated immune responses, and intestinal replication of coccidia were evaluated in a neonatal animal model during natural exposure to Eimeria spp. A total of 840 one-day-old chicks were distributed among four dietary regimens: A) Control diet (no YCW) plus anticoccidial vaccine); B) Control diet plus coccidiostat; C) YCW diet plus anticoccidial vaccination; and D) YCW diet plus coccidiostat. Weight gain, feed consumption and immunological parameters were examined within the first seven weeks of life. Results Dietary supplementation of 0.05% of YCW increased local mucosal IgA secretions, humoral and cell-mediated immune responses, and reduced parasite excretion in feces. Conclusion Dietary supplementation of yeast cell wall in neonatal animals can enhance the immune response against coccidial infections. The present study reveals the potential of YCW as adjuvant for modulating mucosal immune responses.
Collapse
|
246
|
Kirkpatrick NC, Blacker HP, Woods WG, Gasser RB, Noormohammadi AH. A polymerase chain reaction-coupled high-resolution melting curve analytical approach for the monitoring of monospecificity of avianEimeriaspecies. Avian Pathol 2009; 38:13-9. [DOI: 10.1080/03079450802596053] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
247
|
Pinard-van der Laan MH, Bed'hom B, Coville JL, Pitel F, Feve K, Leroux S, Legros H, Thomas A, Gourichon D, Repérant JM, Rault P. Microsatellite mapping of QTLs affecting resistance to coccidiosis (Eimeria tenella) in a Fayoumi x White Leghorn cross. BMC Genomics 2009; 10:31. [PMID: 19154572 PMCID: PMC2633352 DOI: 10.1186/1471-2164-10-31] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2008] [Accepted: 01/20/2009] [Indexed: 11/17/2022] Open
Abstract
Background Avian coccidiosis is a major parasitic disease of poultry, causing severe economical loss to poultry production by affecting growth and feed efficiency of infected birds. Current control strategies using mainly drugs and more recently vaccination are showing drawbacks and alternative strategies are needed. Using genetic resistance that would limit the negative and very costly effects of the disease would be highly relevant. The purpose of this work was to detect for the first time QTL for disease resistance traits to Eimeria tenella in chicken by performing a genome scan in an F2 cross issued from a resistant Fayoumi line and a susceptible Leghorn line. Results The QTL analysis detected 21 chromosome-wide significant QTL for the different traits related to disease resistance (body weight growth, plasma coloration, hematocrit, rectal temperature and lesion) on 6 chromosomes. Out of these, a genome-wide very significant QTL for body weight growth was found on GGA1, five genome-wide significant QTL for body weight growth, plasma coloration and hematocrit and one for plasma coloration were found on GGA1 and GGA6, respectively. Two genome-wide suggestive QTL for plasma coloration and rectal temperature were found on GGA1 and GGA2, respectively. Other chromosme-wide significant QTL were identified on GGA2, GGA3, GGA6, GGA15 and GGA23. Parent-of-origin effects were found for QTL for body weight growth and plasma coloration on GGA1 and GGA3. Several QTL for different resistance phenotypes were identified as co-localized on the same location. Conclusion Using an F2 cross from resistant and susceptible chicken lines proved to be a successful strategy to identify QTL for different resistance traits to Eimeria tenella, opening the way for further gene identification and underlying mechanisms and hopefully possibilities for new breeding strategies for resistance to coccidiosis in the chicken. From the QTL regions identified, several candidate genes and relevant pathways linked to innate immune and inflammatory responses were suggested. These results will be combined with functional genomics approaches on the same lines to provide positional candidate genes for resistance loci for coccidiosis. Results suggested also for further analysis, models tackling the complexity of the genetic architecture of these correlated disease resistance traits including potential epistatic effects.
Collapse
|
248
|
Clark JD, Billington K, Bumstead JM, Oakes RD, Soon PE, Sopp P, Tomley FM, Blake DP. A toolbox facilitating stable transfection of Eimeria species. Mol Biochem Parasitol 2008; 162:77-86. [DOI: 10.1016/j.molbiopara.2008.07.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 07/17/2008] [Accepted: 07/22/2008] [Indexed: 11/30/2022]
|
249
|
Immunogenicity of recombinant attenuated Salmonella enterica serovar Typhimurium vaccine strains carrying a gene that encodes Eimeria tenella antigen SO7. Infect Immun 2008; 76:5745-53. [PMID: 18809658 DOI: 10.1128/iai.00897-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Recombinant attenuated Salmonella vaccines against avian coccidiosis were developed to deliver Eimeria species antigens to the lymphoid tissues of chickens via the type 3 secretion system (T3SS) and the type 2 secretion system (T2SS) of Salmonella. For antigen delivery via the T3SS, the Eimeria tenella gene encoding sporozoite antigen SO7 was cloned downstream of the translocation domain of the Salmonella enterica serovar Typhimurium sopE gene in the parental pYA3868 and pYA3870 vectors to generate pYA4156 and pYA4157. Newly constructed T3SS vectors were introduced into host strain chi8879 (Delta phoP233 Delta sptP1033::xylE Delta asdA16), an attenuated derivative of the highly virulent UK-1 strain. The SopE-SO7 fusion protein was secreted by the T3SS of Salmonella. The vector pYA4184 was constructed for delivery of the SO7 antigen via the T2SS. The SO7 protein was toxic to Salmonella when larger amounts were synthesized; thus, the synthesis of this protein was placed under the control of the lacI repressor gene, whose expression in turn was dependent on the amount of available arabinose in the medium. The pYA4184 vector was introduced into host strain chi9242 (Delta phoP233 Delta asdA16 Delta araBAD23 Delta relA198::araC P(BAD) lacI TT [TT is the T4ipIII transcription terminator]). In addition to SO7, for immunization and challenge studies we used the EAMZ250 antigen of Eimeria acervulina, which was previously shown to confer partial protection against E. acervulina challenge when it was delivered via the T3SS. Immunization of chickens with a combination of the SO7 and EAMZ250 antigens delivered via the T3SS induced superior protection against challenge by E. acervulina. In contrast, chickens immunized with SO7 that was delivered via the T2SS of Salmonella were better protected from challenge by E. tenella.
Collapse
|
250
|
Construction and application of an avian intestinal intraepithelial lymphocyte cDNA microarray (AVIELA) for gene expression profiling during Eimeria maxima infection. Vet Immunol Immunopathol 2008; 124:341-54. [DOI: 10.1016/j.vetimm.2008.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 04/14/2008] [Accepted: 04/22/2008] [Indexed: 11/19/2022]
|