201
|
Friling S, Bergsland M, Kjellander S. Activation of Retinoid X Receptor increases dopamine cell survival in models for Parkinson's disease. BMC Neurosci 2009; 10:146. [PMID: 20003337 PMCID: PMC2800113 DOI: 10.1186/1471-2202-10-146] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 12/11/2009] [Indexed: 11/24/2022] Open
Abstract
Background Parkinson's disease (PD) is caused by degeneration of dopamine (DA) neurons in the ventral midbrain (vMB) and results in severely disturbed regulation of movement. The disease inflicts considerable suffering for the affected and their families. Today, the opportunities for pharmacological treatment are meager and new technologies are needed. Previous studies have indicated that activation of the nuclear receptor Retinoid X Receptor (RXR) provides trophic support for DA neurons. Detailed investigations of these neurotrophic effects have been hampered by the lack of readily available DA neurons in vitro. The aim of this study was to further describe the potential neurotrophic actions of RXR ligands and, for this and future purposes, develop a suitable in vitro-platform using mouse embryonic stem cells (mESCs). Results We studied the potential neurotrophic effects of the RXR ligand LG100268 (LG268) and the RXR-Nurr1 ligand XCT0139508 (XCT) in neuronal cultures derived from rat primary vMB and mESCs. RXR ligands protect DA neurons from stress, such as that induced by the PD-modeling toxin 6-hydroxy dopamine (6-OHDA) and hypoxia, but not from stress induced by oxidative hydrogen peroxide (H2O2) or the excitotoxic agent kainic acid (KA). The neurotrophic effect is selective for DA neurons. DA neurons from rat primary vMB and mESCs behaved similarly, but the mESC-derived cultures contained a much higher fraction of DA cells and thus provided more accessible experimental conditions. Conclusions RXR ligands rescue DA neurons from degeneration caused by the PD simulating 6-OHDA as well as hypoxia. Thus, RXR is a novel promising target for PD research. mESC-derived DA cells provide a valid and accessible in vitro-platform for studying PD inducing toxins and potential trophic agents.
Collapse
Affiliation(s)
- Stina Friling
- The Ludwig Institute for Cancer Research, Stockholm Branch, Box 240, S-171 77 Stockholm.
| | | | | |
Collapse
|
202
|
Activin/Nodal inhibition alone accelerates highly efficient neural conversion from human embryonic stem cells and imposes a caudal positional identity. PLoS One 2009; 4:e7327. [PMID: 19806200 PMCID: PMC2752165 DOI: 10.1371/journal.pone.0007327] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 09/11/2009] [Indexed: 12/14/2022] Open
Abstract
Background Neural conversion from human embryonic stem cells (hESCs) has been demonstrated in a variety of systems including chemically defined suspension culture, not requiring extrinsic signals, as well as in an adherent culture method that involves dual SMAD inhibition using Noggin and SB431542 (an inhibitor of activin/nodal signaling). Previous studies have also determined a role for activin/nodal signaling in development of the neural plate and anterior fate specification. We therefore sought to investigate the independent influence of SB431542 both on neural commitment of hESCs and positional identity of derived neural progenitors in chemically defined substrate-free conditions. Methodology/Principal Findings We show that in non-adherent culture conditions, treatment with SB431542 alone for 8 days is sufficient for highly efficient and accelerated neural conversion from hESCs with negligible mesendodermal, epidermal or trophectodermal contamination. In addition the resulting neural progenitor population has a predominantly caudal identity compared to the more anterior positional fate of non-SB431542 treated cultures. Finally we demonstrate that resulting neurons are electro-physiologically competent. Conclusions This study provides a platform for the efficient generation of caudal neural progenitors under defined conditions for experimental study.
Collapse
|
203
|
Nichols J, Silva J, Roode M, Smith A. Suppression of Erk signalling promotes ground state pluripotency in the mouse embryo. Development 2009; 136:3215-22. [PMID: 19710168 PMCID: PMC2739140 DOI: 10.1242/dev.038893] [Citation(s) in RCA: 479] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2009] [Indexed: 01/13/2023]
Abstract
Embryonic stem (ES) cells can be derived and propagated from multiple strains of mouse and rat through application of small-molecule inhibitors of the fibroblast growth factor (FGF)/Erk pathway and of glycogen synthase kinase 3. These conditions shield pluripotent cells from differentiation-inducing stimuli. We investigate the effect of these inhibitors on the development of pluripotent epiblast in intact pre-implantation embryos. We find that blockade of Erk signalling from the 8-cell stage does not impede blastocyst formation but suppresses development of the hypoblast. The size of the inner cell mass (ICM) compartment is not reduced, however. Throughout the ICM, the epiblast-specific marker Nanog is expressed, and in XX embryos epigenetic silencing of the paternal X chromosome is erased. Epiblast identity and pluripotency were confirmed by contribution to chimaeras with germline transmission. These observations indicate that segregation of hypoblast from the bipotent ICM is dependent on FGF/Erk signalling and that in the absence of this signal, the entire ICM can acquire pluripotency. Furthermore, the epiblast does not require paracrine support from the hypoblast. Thus, naïve epiblast and ES cells are in a similar ground state, with an autonomous capacity for survival and replication, and high vulnerability to Erk signalling. We probed directly the relationship between naïve epiblast and ES cells. Dissociated ICM cells from freshly harvested late blastocysts gave rise to up to 12 ES cell clones per embryo when plated in the presence of inhibitors. We propose that ES cells are not a tissue culture creation, but are essentially identical to pre-implantation epiblast cells.
Collapse
Affiliation(s)
- Jennifer Nichols
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.
| | | | | | | |
Collapse
|
204
|
Ellison D, Munden A, Levchenko A. Computational model and microfluidic platform for the investigation of paracrine and autocrine signaling in mouse embryonic stem cells. MOLECULAR BIOSYSTEMS 2009; 5:1004-12. [PMID: 19668866 PMCID: PMC5561740 DOI: 10.1039/b905602e] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Autocrine and paracrine signaling mechanisms are traditionally difficult to study due to the recursive nature of the process and the sub-micromolar concentrations involved. This has proven to be especially limiting in the study of embryonic stem cells that might rely on such signaling for viability, self-renewal, and proliferation. To better characterize possible effects of autocrine and paracrine signaling in the setting of expanding stem cells, we developed a computational model assuming a critical need for cell-secreted survival factors. This model suggested that the precise way in which the removal of putative survival factors could affect stem cell survival in culture. We experimentally tested the predictions in mouse embryonic stem cells by taking advantage of a novel microfluidic device allowing removal of the cell-conditioned medium at defined time intervals. Experimental results in both serum-containing and defined N2B27 media confirmed computational model predictions, suggested existence of unknown survival factors with distinct rates of diffusion, and revealed an adaptive/selective phase in mouse embryonic stem cell response to a lack of paracrine signaling. We suggest that the described computational/experimental platform can be used to identify and study specific factors and pathways involved in a wide variety of paracrine signaling systems.
Collapse
Affiliation(s)
- David Ellison
- Department of Biomedical Engineering, Johns Hopkins University School of Engineering, Clark Hall 208C, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Alex Munden
- Department of Biomedical Engineering, Johns Hopkins University School of Engineering, Clark Hall 208C, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Andre Levchenko
- Department of Biomedical Engineering, Johns Hopkins University School of Engineering, Clark Hall 208C, 3400 North Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|
205
|
Kobayashi T, Mizuno H, Imayoshi I, Furusawa C, Shirahige K, Kageyama R. The cyclic gene Hes1 contributes to diverse differentiation responses of embryonic stem cells. Genes Dev 2009; 23:1870-5. [PMID: 19684110 DOI: 10.1101/gad.1823109] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Stem cells do not all respond the same way, but the mechanisms underlying this heterogeneity are not well understood. Here, we found that expression of Hes1 and its downstream genes oscillate in mouse embryonic stem (ES) cells. Those expressing low and high levels of Hes1 tended to differentiate into neural and mesodermal cells, respectively. Furthermore, inactivation of Hes1 facilitated neural differentiation more uniformly at earlier time. Thus, Hes1-null ES cells display less heterogeneity in both the differentiation timing and fate choice, suggesting that the cyclic gene Hes1 contributes to heterogeneous responses of ES cells even under the same environmental conditions.
Collapse
Affiliation(s)
- Taeko Kobayashi
- Institute for Virus Research, Kyoto University, Kyoto, Japan.
| | | | | | | | | | | |
Collapse
|
206
|
Fernandes A, Falcão AS, Abranches E, Bekman E, Henrique D, Lanier LM, Brites D. Bilirubin as a determinant for altered neurogenesis, neuritogenesis, and synaptogenesis. Dev Neurobiol 2009; 69:568-82. [PMID: 19449315 PMCID: PMC2795766 DOI: 10.1002/dneu.20727] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Elevated levels of serum unconjugated bilirubin (UCB) in the first weeks of life may lead to long-term neurologic impairment. We previously reported that an early exposure of developing neurons to UCB, in conditions mimicking moderate to severe neonatal jaundice, leads to neuritic atrophy and cell death. Here, we have further analyzed the effect of UCB on nerve cell differentiation and neuronal development, addressing how UCB may affect the viability of undifferentiated neural precursor cells and their fate decisions, as well as the development of hippocampal neurons in terms of dendritic and axonal elongation and branching, the axonal growth cone morphology, and the establishment of dendritic spines and synapses. Our results indicate that UCB reduces the viability of proliferating neural precursors, decreases neurogenesis without affecting astrogliogenesis, and increases cellular dysfunction in differentiating cells. In addition, an early exposure of neurons to UCB decreases the number of dendritic and axonal branches at 3 and 9 days in vitro (DIV), and a higher number of neurons showed a smaller growth cone area. UCB-treated neurons also reveal a decreased density of dendritic spines and synapses at 21 DIV. Such deleterious role of UCB in neuronal differentiation, development, and plasticity may compromise the performance of the brain in later life.
Collapse
Affiliation(s)
- Adelaide Fernandes
- Faculdade de Farmácia, Centro de Patogénese Molecular-iMed.UL, University of Lisbon, Lisbon, Portugal
| | | | | | | | | | | | | |
Collapse
|
207
|
Lu J, Tan L, Li P, Gao H, Fang B, Ye S, Geng Z, Zheng P, Song H. All-trans retinoic acid promotes neural lineage entry by pluripotent embryonic stem cells via multiple pathways. BMC Cell Biol 2009; 10:57. [PMID: 19642999 PMCID: PMC2728515 DOI: 10.1186/1471-2121-10-57] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 07/30/2009] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND All-trans retinoic acid (RA) is one of the most important morphogens with pleiotropic actions. Its embryonic distribution correlates with neural differentiation in the developing central nervous system. To explore the precise effects of RA on neural differentiation of mouse embryonic stem cells (ESCs), we detected expression of RA nuclear receptors and RA-metabolizing enzymes in mouse ESCs and investigated the roles of RA in adherent monolayer culture. RESULTS Upon addition of RA, cell differentiation was directed rapidly and exclusively into the neural lineage. Conversely, pharmacological interference with RA signaling suppressed this neural differentiation. Inhibition of fibroblast growth factor (FGF) signaling did not suppress significantly neural differentiation in RA-treated cultures. Pharmacological interference with extracellular signal-regulated kinase (ERK) pathway or activation of Wnt pathway effectively blocked the RA-promoted neural specification. ERK phosphorylation was enhanced in RA-treated cultures at the early stage of differentiation. CONCLUSION RA can promote neural lineage entry by ESCs in adherent monolayer culture systems. This effect depends on RA signaling and its crosstalk with the ERK and Wnt pathways.
Collapse
Affiliation(s)
- Jianfeng Lu
- Department of Molecular Genetics, Shanghai Medical School, Fudan University, Shanghai, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Neural differentiation of embryonic stem cells in vitro: a road map to neurogenesis in the embryo. PLoS One 2009; 4:e6286. [PMID: 19621087 PMCID: PMC2709448 DOI: 10.1371/journal.pone.0006286] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 06/17/2009] [Indexed: 01/07/2023] Open
Abstract
Background The in vitro generation of neurons from embryonic stem (ES) cells is a promising approach to produce cells suitable for neural tissue repair and cell-based replacement therapies of the nervous system. Available methods to promote ES cell differentiation towards neural lineages attempt to replicate, in different ways, the multistep process of embryonic neural development. However, to achieve this aim in an efficient and reproducible way, a better knowledge of the cellular and molecular events that are involved in the process, from the initial specification of neuroepithelial progenitors to their terminal differentiation into neurons and glial cells, is required. Methodology/Principal Findings In this work, we characterize the main stages and transitions that occur when ES cells are driven into a neural fate, using an adherent monolayer culture system. We established improved conditions to routinely produce highly homogeneous cultures of neuroepithelial progenitors, which organize into neural tube-like rosettes when they acquire competence for neuronal production. Within rosettes, neuroepithelial progenitors display morphological and functional characteristics of their embryonic counterparts, namely, apico-basal polarity, active Notch signalling, and proper timing of production of neurons and glia. In order to characterize the global gene activity correlated with each particular stage of neural development, the full transcriptome of different cell populations that arise during the in vitro differentiation protocol was determined by microarray analysis. By using embryo-oriented criteria to cluster the differentially expressed genes, we define five gene expression signatures that correlate with successive stages in the path from ES cells to neurons. These include a gene signature for a primitive ectoderm-like stage that appears after ES cells enter differentiation, and three gene signatures for subsequent stages of neural progenitor development, from an early stage that follows neural induction to a final stage preceding terminal differentiation. Conclusions/Significance Overall, our work confirms and extends the cellular and molecular parallels between monolayer ES cell neural differentiation and embryonic neural development, revealing in addition novel aspects of the genetic network underlying the multistep process that leads from uncommitted cells to differentiated neurons.
Collapse
|
209
|
Mansouri A, Fukumitsu H, Schindehuette J, Krieglstein K. Differentiation of embryonic stem cells. ACTA ACUST UNITED AC 2009; Chapter 3:Unit3.6. [PMID: 19340810 DOI: 10.1002/0471142301.ns0306s47] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mouse embryonic stem (ES) cells are derived from mouse blastocyst and are able to generate all embryonic tissues in vitro. This propensity of ES cells has acquired considerable attention in recent years due to the promising potential for future cell replacement-based therapies. Therefore, it is of fundamental interest to establish protocols that allow the differentiation of ES cells into specific cell types. In recent years, several such differentiation procedures have been described for mouse and human embryonic stem cells. This unit describes a simple procedure that promotes the neuronal differentiation of mouse embryonic stem cells and yields a high proportion of midbrain dopaminergic neurons. Furthermore, this procedure permits the isolation of neural stem cell lines from mouse ES cells.
Collapse
Affiliation(s)
- Ahmed Mansouri
- Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | | |
Collapse
|
210
|
Efficient production of mesencephalic dopamine neurons by Lmx1a expression in embryonic stem cells. Proc Natl Acad Sci U S A 2009; 106:7613-8. [PMID: 19383789 DOI: 10.1073/pnas.0902396106] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Signaling factors involved in CNS development have been used to control the differentiation of embryonic stem cells (ESCs) into mesencephalic dopamine (mesDA) neurons, but tend to generate a limited yield of desired cell type. Here we show that forced expression of Lmx1a, a transcription factor functioning as a determinant of mesDA neurons during embryogenesis, effectively can promote the generation of mesDA neurons from mouse and human ESCs. Under permissive culture conditions, 75%-95% of mouse ESC-derived neurons express molecular and physiological properties characteristic of bona fide mesDA neurons. Similar to primary mesDA neurons, these cells integrate and innervate the striatum of 6-hydroxy dopamine lesioned neonatal rats. Thus, the enriched generation of functional mesDA neurons by forced expression of Lmx1a may be of future importance in cell replacement therapy of Parkinson disease.
Collapse
|
211
|
Hu G, Kim J, Xu Q, Leng Y, Orkin SH, Elledge SJ. A genome-wide RNAi screen identifies a new transcriptional module required for self-renewal. Genes Dev 2009; 23:837-48. [PMID: 19339689 DOI: 10.1101/gad.1769609] [Citation(s) in RCA: 332] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We performed a genome-wide siRNA screen in mouse embryonic stem (ES) cells to identify genes essential for self-renewal, and found 148 genes whose down-regulation caused differentiation. Many of the identified genes function in gene regulation and/or development, and are highly expressed in ES cells and embryonic tissues. We further identified target genes of two transcription regulators Cnot3 and Trim28. We discovered that Cnot3 and Trim28 co-occupy many putative gene promoters with c-Myc and Zfx, but not other pluripotency-associated transcription factors. They form a unique module in the self-renewal transcription network, separate from the core module formed by Nanog, Oct4, and Sox2. The transcriptional targets of this module are enriched for genes involved in cell cycle, cell death, and cancer. This supports the idea that regulatory networks controlling self-renewal in stem cells may also be active in certain cancers and may represent novel anti-cancer targets. Our screen has implicated over 100 new genes in ES cell self-renewal, and illustrates the power of RNAi and forward genetics for the systematic study of self-renewal.
Collapse
Affiliation(s)
- Guang Hu
- Howard Hughes Medical Institute, Department of Genetics, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
212
|
Is REST a regulator of pluripotency? Nature 2009; 457:E5-6; discussion E7. [PMID: 19242418 DOI: 10.1038/nature07784] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 01/19/2009] [Indexed: 01/18/2023]
Abstract
Establishment and maintenance of the pluripotent state of ESCs is a key issue in stem cell biology and regenerative medicine, and consequently identification of transcription factors that regulate ESC pluripotency is an important goal. Singh et al. claim that the transcriptional repressor REST is such a regulator and that a 50% reduction of REST in ESCs leads to activation of a specific microRNA, miR-21, and that this subsequently results in loss of pluripotency markers and a reciprocal gain in some lineage-specific differentiation markers. In contrast, we show that, in haplodeficient Rest(+/-) ESCs, we detected no change in pluripotency markers, no precocious expression of differentiated neuronal markers and no interaction of REST with miR-21. It is vital that identification of factors that regulate pluripotency is based on robust, consistent data, and the contrast in data reported here undermines the claim by Singh et al. that REST is such a regulator.
Collapse
|
213
|
Guo G, Yang J, Nichols J, Hall JS, Eyres I, Mansfield W, Smith A. Klf4 reverts developmentally programmed restriction of ground state pluripotency. Development 2009; 136:1063-9. [PMID: 19224983 PMCID: PMC2685927 DOI: 10.1242/dev.030957] [Citation(s) in RCA: 597] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2009] [Indexed: 11/20/2022]
Abstract
Mouse embryonic stem (ES) cells derived from pluripotent early epiblast contribute functionally differentiated progeny to all foetal lineages of chimaeras. By contrast, epistem cell (EpiSC) lines from post-implantation epithelialised epiblast are unable to colonise the embryo even though they express the core pluripotency genes Oct4, Sox2 and Nanog. We examined interconversion between these two cell types. ES cells can readily become EpiSCs in response to growth factor cues. By contrast, EpiSCs do not change into ES cells. We exploited PiggyBac transposition to introduce a single reprogramming factor, Klf4, into EpiSCs. No effect was apparent in EpiSC culture conditions, but in ground state ES cell conditions a fraction of cells formed undifferentiated colonies. These EpiSC-derived induced pluripotent stem (Epi-iPS) cells activated expression of ES cell-specific transcripts including endogenous Klf4, and downregulated markers of lineage specification. X chromosome silencing in female cells, a feature of the EpiSC state, was erased in Epi-iPS cells. They produced high-contribution chimaeras that yielded germline transmission. These properties were maintained after Cre-mediated deletion of the Klf4 transgene, formally demonstrating complete and stable reprogramming of developmental phenotype. Thus, re-expression of Klf4 in an appropriate environment can regenerate the naïve ground state from EpiSCs. Reprogramming is dependent on suppression of extrinsic growth factor stimuli and proceeds to completion in less than 1% of cells. This substantiates the argument that EpiSCs are developmentally, epigenetically and functionally differentiated from ES cells. However, because a single transgene is the minimum requirement to attain the ground state, EpiSCs offer an attractive opportunity for screening for unknown components of the reprogramming process.
Collapse
Affiliation(s)
- Ge Guo
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge CB2 1QR, UK
| | | | | | | | | | | | | |
Collapse
|
214
|
Streckfuss-Bömeke K, Vlasov A, Hülsmann S, Yin D, Nayernia K, Engel W, Hasenfuss G, Guan K. Generation of functional neurons and glia from multipotent adult mouse germ-line stem cells. Stem Cell Res 2009; 2:139-54. [DOI: 10.1016/j.scr.2008.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 09/10/2008] [Accepted: 09/14/2008] [Indexed: 11/24/2022] Open
|
215
|
|
216
|
Grivennikov IA. Embryonic stem cells and the problem of directed differentiation. BIOCHEMISTRY (MOSCOW) 2009; 73:1438-52. [DOI: 10.1134/s0006297908130051] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
217
|
Gualandris A, Noghero A, Geuna M, Arese M, Valdembri D, Serini G, Bussolino F. Microenvironment drives the endothelial or neural fate of differentiating embryonic stem cells coexpressing neuropilin-1 and Flk-1. FASEB J 2009; 23:68-78. [PMID: 18757501 DOI: 10.1096/fj.08-112847] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The observation that the architecture of the cardiovascular and nervous systems is drawn by common guidance cues and the closeness between neural progenitors and endothelial cells in the vascular niche strongly suggests the existence of links between endothelial and neural cell fates. We identified an embryonic stem cell-derived discrete, nonclonal cell population expressing the two vascular endothelial growth factor receptors neuropilin-1 (Nrp1) and Flk1 that differentiates in vitro toward endothelial or neural phenotypes depending on microenvironmental cues. When microinjected in the chick embryo, Nrp1(+) cells integrate within the host, developing vessels and brain, and acquire endothelial and neural markers, respectively. These results show that precursors of endothelial cells and precursors of neural cells arise from the same pool of differentiating embryonic stem cells and share the expression of Nrp1 and Flk1. These data reinforce the parallelism between vascular and nervous system at the level of cell fate and commitment and open new perspective in regenerative medicine of neurovascular diseases.
Collapse
Affiliation(s)
- Anna Gualandris
- Department of Oncological Sciences, Institute for Cancer Research and Treatment (IRCC), University of Turin School of Medicine, 10060, Candiolo (TO), Italy.
| | | | | | | | | | | | | |
Collapse
|
218
|
Buehr M, Meek S, Blair K, Yang J, Ure J, Silva J, McLay R, Hall J, Ying QL, Smith A. Capture of authentic embryonic stem cells from rat blastocysts. Cell 2008; 135:1287-98. [PMID: 19109897 DOI: 10.1016/j.cell.2008.12.007] [Citation(s) in RCA: 583] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 11/24/2008] [Accepted: 12/08/2008] [Indexed: 12/19/2022]
Abstract
Embryonic stem (ES) cells have been available from inbred mice since 1981 but have not been validated for other rodents. Failure to establish ES cells from a range of mammals challenges the identity of cultivated stem cells and our understanding of the pluripotent state. Here we investigated derivation of ES cells from the rat. We applied molecularly defined conditions designed to shield the ground state of authentic pluripotency from inductive differentiation stimuli. Undifferentiated cell lines developed that exhibited diagnostic features of ES cells including colonization of multiple tissues in viable chimeras. Definitive ES cell status was established by transmission of the cell line genome to offspring. Derivation of germline-competent ES cells from the rat paves the way to targeted genetic manipulation in this valuable biomedical model species. Rat ES cells will also provide a refined test-bed for functional evaluation of pluripotent stem cell-derived tissue repair and regeneration.
Collapse
Affiliation(s)
- Mia Buehr
- Institute for Stem Cell Research, University of Edinburgh, King's Buildings, Edinburgh EH93JQ, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Silva J, Barrandon O, Nichols J, Kawaguchi J, Theunissen TW, Smith A. Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol 2008; 6:e253. [PMID: 18942890 PMCID: PMC2570424 DOI: 10.1371/journal.pbio.0060253] [Citation(s) in RCA: 620] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 09/10/2008] [Indexed: 12/18/2022] Open
Abstract
Induced pluripotent stem (iPS) cells are generated from somatic cells by genetic manipulation. Reprogramming entails multiple transgene integrations and occurs apparently stochastically in rare cells over many days. Tissue stem cells may be subject to less-stringent epigenetic restrictions than other cells and might therefore be more amenable to deprogramming. We report that brain-derived neural stem (NS) cells acquire undifferentiated morphology rapidly and at high frequency after a single round of transduction with reprogramming factors. However, critical attributes of true pluripotency--including stable expression of endogenous Oct4 and Nanog, epigenetic erasure of X chromosome silencing in female cells, and ability to colonise chimaeras--were not attained. We therefore applied molecularly defined conditions for the derivation and propagation of authentic pluripotent stem cells from embryos. We combined dual inhibition (2i) of mitogen-activated protein kinase signalling and glycogen synthase kinase-3 (GSK3) with the self-renewal cytokine leukaemia inhibitory factor (LIF). The 2i/LIF condition induced stable up-regulation of Oct4 and Nanog, reactivation of the X chromosome, transgene silencing, and competence for somatic and germline chimaerism. Using 2i /LIF, NS cell reprogramming required only 1-2 integrations of each transgene. Furthermore, transduction with Sox2 and c-Myc is dispensable, and Oct4 and Klf4 are sufficient to convert NS cells into chimaera-forming iPS cells. These findings demonstrate that somatic cell state influences requirements for reprogramming and delineate two phases in the process. The ability to capture pre-pluripotent cells that can advance to ground state pluripotency simply and with high efficiency opens a door to molecular dissection of this remarkable phenomenon.
Collapse
Affiliation(s)
- Jose Silva
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Ornella Barrandon
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Jennifer Nichols
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge, United Kingdom
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Jitsutaro Kawaguchi
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Thorold W Theunissen
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Austin Smith
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
220
|
Gale E, Li M. Midbrain dopaminergic neuron fate specification: Of mice and embryonic stem cells. Mol Brain 2008; 1:8. [PMID: 18826576 PMCID: PMC2569927 DOI: 10.1186/1756-6606-1-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 09/30/2008] [Indexed: 01/08/2023] Open
Abstract
The midbrain dopaminergic (mDA) neurons of the substantia nigra and the ventral tegmental area play a fundamental role in the control of voluntary movement and the regulation of emotion, and are severely affected in Parkinson's disease. Recent advances in mouse genetics and vertebrate development have provided us with insight into the genetic cascades involved in the development of mDA neurons, including the induction of mDA neuron progenitors in the ventral mesencephalon, the specification of the mDA neuronal fate and the maintenance of postmitotic mDA neurons. In parallel, rapid progress has been made in the generation of DA neurons from pluripotent stem cells and the development of stem cell-based therapies for Parkinson's disease. Here, we summarize the new findings via the developmental progression of mDA neurons and outline how this knowledge has been exploited to develop novel paradigms for the in vitro generation of these neurons from embryonic stem cells.
Collapse
Affiliation(s)
- Emily Gale
- MRC Clinical Sciences Centre, Imperial College London, London, UK
| | - Meng Li
- MRC Clinical Sciences Centre, Imperial College London, London, UK
| |
Collapse
|
221
|
Analysis of the temporal and concentration-dependent effects of BMP-4, VEGF, and TPO on development of embryonic stem cell-derived mesoderm and blood progenitors in a defined, serum-free media. Exp Hematol 2008; 36:1186-98. [PMID: 18550259 DOI: 10.1016/j.exphem.2008.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 04/08/2008] [Accepted: 04/09/2008] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To develop a robust serum-free (SF) system for generation of hemogenic mesoderm and blood progenitors from pluripotent cells. MATERIALS AND METHODS Embryonic stem cells (ESCs) maintained in N2B27 supplemented with leukemia inhibitory factor (LIF) and bone morphogenetic protein (BMP)-4 were induced to differentiate into Brachyury/T-expressing cells (measured using a green fluorescent protein reporter) and myeloid-erythroid colony-forming cells (ME-CFCs), by removing LIF, changing the base media formulation, and via the time- and concentration-dependent addition of other factors. RESULTS Presence of 10 ng/mL BMP-4 permitted the emergence of cells expressing T and the vascular endothelial growth factor receptor (VEGFR)-2, however, <5% of the cells were double-positive on day 4. Adjusting the SF media formulation allowed only 5 ng/mL BMP-4 to yield 24% +/- 4% Brachyury-green fluorescent protein VEGFR-2(+) cells by day 4. These cells could develop into ME-CFC, producing 4.4 +/- 0.8 CFC per 1000 cells at day 8. We also examined the timing and concentration sensitivity of BMP-4, VEGF, and thrombopoietin (TPO) during differentiation. BMP-4 with 50 ng/mL TPO generated 232 +/- 48 CFC per 5 x 10(4) cells, similar to the serum-control, and this response could be enhanced to 292 +/- 42 CFC per 5 x 10(4) cells by early (between day 0-5), but not late (after day 5) VEGF treatment. CONCLUSION Moving to SF systems facilitates directed differentiation by eliminating confounding signals. This article describes modifications to the N2B27 media that amplify mesoderm induction and extends earlier work defining blood progenitor cell induction from ESC with BMP-4, VEGF, and TPO.
Collapse
|
222
|
Fico A, Manganelli G, Simeone M, Guido S, Minchiotti G, Filosa S. High-throughput screening-compatible single-step protocol to differentiate embryonic stem cells in neurons. Stem Cells Dev 2008; 17:573-84. [PMID: 18576914 DOI: 10.1089/scd.2007.0130] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Biotechnologies such as high-throughput screening (HTS) enable evaluation of large compound libraries for their biological activity and toxic properties. In the field of drug development, embryonic stem (ES) cells have been instrumental in HTS for testing the effect of new compounds. We report an innovative method in one step to differentiate ES cells in neurons and glial cells. The four different neuronal subtypes, gamma-aminobutyric acid (GABA)-ergic, dopaminergic, serotonergic, and motor neurons, are formed in culture. This protocol is adaptable to small wells and is highly reproducible, as indicated by the Z-factor value. Moreover, by using either leukemia inhibitory factor (LIF) or recombinant Cripto protein in our culture conditions, we provide evidence that this protocol is suitable for testing the effect of different molecules on neuronal differentiation of ES cells. Finally, thanks to the simplicity in carrying out the experiment, this method provides the possibility of following the morphological evolution of the in vitro differentiating neuronal cells by timelapse videomicroscopy. Our experimental system provides a powerful tool for testing the effect of different substances on survival and/or differentiation of neuronal and glial cells in an HTS-based approach. Furthermore, using genetically modified ES cells, it would be possible to screen for drugs that have a therapeutic effect on specific neuronal pathologies or to follow, by time-lapse videomicroscopy, their ability to in vitro differentiate.
Collapse
Affiliation(s)
- Annalisa Fico
- Stem Cell Fate Lab, Istituto di Genetica e Biofisica Adriano Buzzati Traverso CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | | | | | | | | | | |
Collapse
|
223
|
Sun Y, Pollard S, Conti L, Toselli M, Biella G, Parkin G, Willatt L, Falk A, Cattaneo E, Smith A. Long-term tripotent differentiation capacity of human neural stem (NS) cells in adherent culture. Mol Cell Neurosci 2008; 38:245-58. [PMID: 18450476 DOI: 10.1016/j.mcn.2008.02.014] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 02/15/2008] [Accepted: 02/26/2008] [Indexed: 12/23/2022] Open
Abstract
Stem cell lines that provide a renewable and scaleable supply of central nervous system cell types would constitute an invaluable resource for basic and applied neurobiology. Here we describe the generation and long-term expansion of multiple human foetal neural stem (NS) cell lines in monolayer culture without genetic immortalization. Adherent human NS cells are propagated in the presence of epidermal growth factor (EGF) and fibroblast growth factor 2 (FGF2), under which conditions they stably express neural precursor markers and exhibit negligible differentiation into neurons or glia. However, they produce astrocytes, oligodendrocytes, and neurons upon exposure to appropriate differentiation factors. Single cell cloning demonstrates that human NS cells are tripotent. They retain a diploid karyotype and constant neurogenic capacity after over 100 generations. In contrast to human neurospheres, we observe no requirement for the cytokine leukaemia inhibitory factor (LIF) for continued expansion of adherent human NS cells. Human NS cells can be stably transfected to provide reporter lines and readily imaged in live monolayer cultures, creating the potential for high content genetic and chemical screens.
Collapse
Affiliation(s)
- Yirui Sun
- Wellcome Trust Centre for Stem Cell Research and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A. The ground state of embryonic stem cell self-renewal. Nature 2008; 453:519-23. [PMID: 18497825 PMCID: PMC5328678 DOI: 10.1038/nature06968] [Citation(s) in RCA: 2643] [Impact Index Per Article: 155.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Accepted: 04/02/2008] [Indexed: 11/09/2022]
Abstract
In the three decades since pluripotent mouse embryonic stem (ES) cells were first described they have been derived and maintained by using various empirical combinations of feeder cells, conditioned media, cytokines, growth factors, hormones, fetal calf serum, and serum extracts. Consequently ES-cell self-renewal is generally considered to be dependent on multifactorial stimulation of dedicated transcriptional circuitries, pre-eminent among which is the activation of STAT3 by cytokines (ref. 8). Here we show, however, that extrinsic stimuli are dispensable for the derivation, propagation and pluripotency of ES cells. Self-renewal is enabled by the elimination of differentiation-inducing signalling from mitogen-activated protein kinase. Additional inhibition of glycogen synthase kinase 3 consolidates biosynthetic capacity and suppresses residual differentiation. Complete bypass of cytokine signalling is confirmed by isolating ES cells genetically devoid of STAT3. These findings reveal that ES cells have an innate programme for self-replication that does not require extrinsic instruction. This property may account for their latent tumorigenicity. The delineation of minimal requirements for self-renewal now provides a defined platform for the precise description and dissection of the pluripotent state.
Collapse
Affiliation(s)
- Qi-Long Ying
- Center for Stem Cell and Regenerative Medicine, Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, ZNI 529, Los Angeles, California 90033, USA.
| | | | | | | | | | | | | | | |
Collapse
|
225
|
Hedgehog Serves as a Mitogen and Survival Factor During Embryonic Stem Cell Neurogenesis. Stem Cells 2008; 26:1097-108. [DOI: 10.1634/stemcells.2007-0684] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
226
|
Trouillas M, Saucourt C, Duval D, Gauthereau X, Thibault C, Dembele D, Feraud O, Menager J, Rallu M, Pradier L, Boeuf H. Bcl2, a transcriptional target of p38alpha, is critical for neuronal commitment of mouse embryonic stem cells. Cell Death Differ 2008; 15:1450-9. [PMID: 18437159 DOI: 10.1038/cdd.2008.63] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Mouse embryonic stem (ES) cells remain pluripotent in vitro when grown in the presence of leukemia inhibitory factor (LIF) cytokine. LIF starvation leads to cell commitment, and part of the ES-derived differentiated cells die by apoptosis together with caspase3-cleavage and p38alpha activation. Inhibition of p38 activity by chemical compounds (PD169316 and SB203580), along with LIF withdrawal, leads to different outcomes on cell apoptosis, giving the opportunity to study the influence of apoptosis on cell differentiation. By gene profiling studies on ES-derived differentiated cells treated or not with these inhibitors, we have characterized the common and specific set of genes modulated by each inhibitor. We have also identified key genes that might account for their different survival effects. In addition, we have demonstrated that some genes, similarly regulated by both inhibitors (upregulated as Bcl2, Id2, Cd24a or downregulated as Nodal), are bona fide p38alpha targets involved in neurogenesis and found a correlation with their expression profiles and the onset of neuronal differentiation triggered upon retinoic acid treatment. We also showed, in an embryoid body differentiation protocol, that overexpression of EGFP (enhanced green fluorescent protein)-BCL2 fusion protein and repression of p38alpha are essential to increase formation of TUJ1-positive neuronal cell networks along with an increase in Map2-expressing cells.
Collapse
|
227
|
Dahl L, Richter K, Hägglund AC, Carlsson L. Lhx2 expression promotes self-renewal of a distinct multipotential hematopoietic progenitor cell in embryonic stem cell-derived embryoid bodies. PLoS One 2008; 3:e2025. [PMID: 18431502 PMCID: PMC2292257 DOI: 10.1371/journal.pone.0002025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 03/13/2008] [Indexed: 01/12/2023] Open
Abstract
The molecular mechanisms regulating the expansion of the hematopoietic system including hematopoietic stem cells (HSCs) in the fetal liver during embryonic development are largely unknown. The LIM-homeobox gene Lhx2 is a candidate regulator of fetal hematopoiesis since it is expressed in the fetal liver and Lhx2−/− mice die in utero due to severe anemia. Moreover, expression of Lhx2 in embryonic stem (ES) cell-derived embryoid bodies (EBs) can lead to the generation of HSC-like cell lines. To further define the role of this transcription factor in hematopoietic regulation, we generated ES cell lines that enabled tet-inducible expression of Lhx2. Using this approach we observed that Lhx2 expression synergises with specific signalling pathways, resulting in increased frequency of colony forming cells in developing EB cells. The increase in growth factor-responsive progenitor cells directly correlates to the efficiency in generating HSC-like cell lines, suggesting that Lhx2 expression induce self-renewal of a distinct multipotential hematopoietic progenitor cell in EBs. Signalling via the c-kit tyrosine kinase receptor and the gp130 signal transducer by IL-6 is necessary and sufficient for the Lhx2 induced self-renewal. While inducing self-renewal of multipotential progenitor cells, expression of Lhx2 inhibited proliferation of primitive erythroid precursor cells and interfered with early ES cell commitment, indicating striking lineage specificity of this effect.
Collapse
Affiliation(s)
- Lina Dahl
- Umeå Center for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Karin Richter
- Umeå Center for Molecular Medicine, Umeå University, Umeå, Sweden
| | | | - Leif Carlsson
- Umeå Center for Molecular Medicine, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
228
|
Westbrook TF, Hu G, Ang XL, Mulligan P, Pavlova NN, Liang A, Leng Y, Maehr R, Shi Y, Harper JW, Elledge SJ. SCFbeta-TRCP controls oncogenic transformation and neural differentiation through REST degradation. Nature 2008; 452:370-4. [PMID: 18354483 PMCID: PMC2688689 DOI: 10.1038/nature06780] [Citation(s) in RCA: 262] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Accepted: 01/22/2008] [Indexed: 11/09/2022]
Abstract
The RE1-silencing transcription factor (REST, also known as NRSF) is a master repressor of neuronal gene expression and neuronal programmes in non-neuronal lineages. Recently, REST was identified as a human tumour suppressor in epithelial tissues, suggesting that its regulation may have important physiological and pathological consequences. However, the pathways controlling REST have yet to be elucidated. Here we show that REST is regulated by ubiquitin-mediated proteolysis, and use an RNA interference (RNAi) screen to identify a Skp1-Cul1-F-box protein complex containing the F-box protein beta-TRCP (SCF(beta-TRCP)) as an E3 ubiquitin ligase responsible for REST degradation. beta-TRCP binds and ubiquitinates REST and controls its stability through a conserved phospho-degron. During neural differentiation, REST is degraded in a beta-TRCP-dependent manner. beta-TRCP is required for proper neural differentiation only in the presence of REST, indicating that beta-TRCP facilitates this process through degradation of REST. Conversely, failure to degrade REST attenuates differentiation. Furthermore, we find that beta-TRCP overexpression, which is common in human epithelial cancers, causes oncogenic transformation of human mammary epithelial cells and that this pathogenic function requires REST degradation. Thus, REST is a key target in beta-TRCP-driven transformation and the beta-TRCP-REST axis is a new regulatory pathway controlling neurogenesis.
Collapse
Affiliation(s)
- Thomas F. Westbrook
- Howard Hughes Medical Institute, Department of Genetics, Harvard Partners Center for Genetics and Genomics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Guang Hu
- Howard Hughes Medical Institute, Department of Genetics, Harvard Partners Center for Genetics and Genomics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Xiaolu L. Ang
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | - Peter Mulligan
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | - Natalya N. Pavlova
- Howard Hughes Medical Institute, Department of Genetics, Harvard Partners Center for Genetics and Genomics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Anthony Liang
- Howard Hughes Medical Institute, Department of Genetics, Harvard Partners Center for Genetics and Genomics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Yumei Leng
- Howard Hughes Medical Institute, Department of Genetics, Harvard Partners Center for Genetics and Genomics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Rene Maehr
- Department of Stem Cell and Regenerative Biology, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Yang Shi
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | - J. Wade Harper
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | - Stephen J. Elledge
- Howard Hughes Medical Institute, Department of Genetics, Harvard Partners Center for Genetics and Genomics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
229
|
Fernandes AM, Fernandes TG, Diogo MM, da Silva CL, Henrique D, Cabral JMS. Mouse embryonic stem cell expansion in a microcarrier-based stirred culture system. J Biotechnol 2007; 132:227-36. [PMID: 17644203 DOI: 10.1016/j.jbiotec.2007.05.031] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 05/07/2007] [Accepted: 05/25/2007] [Indexed: 11/15/2022]
Abstract
Embryonic stem (ES) cells have the ability to differentiate in vitro into a wide variety of cell types with potential applications for tissue regeneration. However, a large number of cells are required, thus strengthening the need to develop large-scale systems using chemically defined media for ES cell production and/or controlled differentiation. In the present studies, a stirred culture system (i.e. spinner flask) was used to scale-up mouse ES (mES) cell expansion in serum-containing (DMEM/FBS) or serum-free medium, both supplemented with leukemia inhibitory factor (LIF), using either Cytodex 3 or Cultispher S microcarriers. After 8 days, maximal cell densities achieved were (1.9+/-0.1), (2.6+/-0.7) and 3.5x10(6)cells/mL for Cytodex 3 in DMEM/FBS, Cultispher S in DMEM/FBS and Cultispher S in serum-free cultures, respectively, with fold increases of 38+/-2, 50+/-15 and 70. Both microcarriers were suitable to sustain mES cell expansion, though the macroporous Cultispher S seemed to be advantageous in providing a more protective environment against shear stress forces, which harmful effects are exacerbated in serum-free conditions. Importantly, mES cells expanded under stirred conditions using serum-free medium retained their pluripotency and the ability to commit to the neural lineage.
Collapse
Affiliation(s)
- A M Fernandes
- Institute for Biotechnology and Bioengineering (IBB), Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | | | | | | | | | | |
Collapse
|
230
|
Kunath T, Saba-El-Leil MK, Almousailleakh M, Wray J, Meloche S, Smith A. FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment. Development 2007; 134:2895-902. [PMID: 17660198 DOI: 10.1242/dev.02880] [Citation(s) in RCA: 590] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pluripotent embryonic stem (ES) cells must select between alternative fates of self-replication and lineage commitment during continuous proliferation. Here, we delineate the role of autocrine production of fibroblast growth factor 4 (Fgf4) and associated activation of the Erk1/2 (Mapk3/1) signalling cascade. Fgf4 is the major stimulus activating Erk in mouse ES cells. Interference with FGF or Erk activity using chemical inhibitors or genetic ablations does not impede propagation of undifferentiated ES cells. Instead, such manipulations restrict the ability of ES cells to commit to differentiation. ES cells lacking Fgf4 or treated with FGF receptor inhibitors resist neural and mesodermal induction, and are refractory to BMP-induced non-neural differentiation. Lineage commitment potential of Fgf4-null cells is restored by provision of FGF protein. Thus, FGF enables rather than antagonises the differentiation activity of BMP. The key downstream role of Erk signalling is revealed by examination of Erk2-null ES cells, which fail to undergo either neural or mesodermal differentiation in adherent culture, and retain expression of pluripotency markers Oct4, Nanog and Rex1. These findings establish that Fgf4 stimulation of Erk1/2 is an autoinductive stimulus for naïve ES cells to exit the self-renewal programme. We propose that the Erk cascade directs transition to a state that is responsive to inductive cues for germ layer segregation. Consideration of Erk signalling as a primary trigger that potentiates lineage commitment provides a context for reconciling disparate views on the contribution of FGF and BMP pathways during germ layer specification in vertebrate embryos.
Collapse
Affiliation(s)
- Tilo Kunath
- Centre Development in Stem Cell Biology, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | | | |
Collapse
|
231
|
Stavridis MP, Lunn JS, Collins BJ, Storey KG. A discrete period of FGF-induced Erk1/2 signalling is required for vertebrate neural specification. Development 2007; 134:2889-94. [PMID: 17660197 DOI: 10.1242/dev.02858] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neural tissue formation is induced by growth factors that activate networks of signal transduction cascades that ultimately lead to the expression of early neural genes, including transcription factors of the SoxB family. Here, we report that fibroblast growth factor (FGF)-induced Erk1/2 (Mapk3 and Mapk1, respectively) mitogen-activated protein kinase (MAPK), but not phosphatidylinositol 3'-OH kinase (PI3K, Pik3r1), signalling is required for neural specification in mouse embryonic stem (ES) cells and in the chick embryo. Further, blocking Erk1/2 inhibits the onset of key SoxB genes in both mouse ES cells (Sox1) and chick embryos (Sox2 and Sox3) and, in both contexts, Erk1/2 signalling is required during only a narrow time window, as neural specification takes place. In the absence of Erk1/2 signalling, differentiation of ES cells stalls following Fgf5 upregulation. Using differentiating ES cells as a model for neural specification, we demonstrate that sustained Erk1/2 activation controls the transition from an Fgf5-positive, primitive ectoderm-like cell state to a neural progenitor cell state without attenuating bone morphogenetic protein (BMP) signalling and we also define the minimum period of Erk1/2 activity required to mediate this key developmental step. Together, these findings identify a conserved, specific and stage-dependent requirement for Erk1/2 signalling downstream of FGF-induced neural specification in higher vertebrates and provide insight into the signalling dynamics governing this process.
Collapse
Affiliation(s)
- Marios P Stavridis
- Division of Cell and Developmental Biology, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | | | | | | |
Collapse
|
232
|
Parmar M, Li M. Early specification of dopaminergic phenotype during ES cell differentiation. BMC DEVELOPMENTAL BIOLOGY 2007; 7:86. [PMID: 17640353 PMCID: PMC1978208 DOI: 10.1186/1471-213x-7-86] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Accepted: 07/18/2007] [Indexed: 12/20/2022]
Abstract
BACKGROUND Understanding how lineage choices are made during embryonic stem (ES) cell differentiation is critical for harnessing strategies for controlled production of therapeutic somatic cell types for cell transplantation and pharmaceutical drug screens. The in vitro generation of dopaminergic neurons, the type of cells lost in Parkinson's disease patients' brains, requires the inductive molecules sonic hedgehog and FGF8, or an unknown stromal cell derived inducing activity (SDIA). However, the exact identity of the responding cells and the timing of inductive activity that specify a dopaminergic fate in neural stem/progenitors still remain elusive. RESULTS Using ES cells carrying a neuroepithelial cell specific vital reporter (Sox1-GFP) and FACS purification of Sox1-GFP neural progenitors, we have investigated the temporal aspect of SDIA mediated dopaminergic neuron specification during ES cell differentiation. Our results establish that SDIA induces a dopaminergic neuron fate in nascent neural stem or progenitor cells at, or prior to, Sox1 expression and does not appear to have further instructive role or neurotrophic activity during late neuronal differentiation of neural precursors. Furthermore, we show that dopaminergic neurons could be produced efficiently in a monolayer differentiation paradigm independent of SDIA activity or exogenous signalling molecules. In this case, the competence for dopaminergic neuron differentiation is also established at the level of Sox1 expression. CONCLUSION Dopaminergic neurons are specified early during mouse ES cell differentiation. The subtype specification seems to be tightly linked with the acquisition of a pan neuroectoderm fate.
Collapse
Affiliation(s)
- Malin Parmar
- Institute for Stem Cell Research, University of Edinburgh, Edinburgh, UK
| | - Meng Li
- MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College, London, UK
| |
Collapse
|
233
|
Chen C, Ridzon D, Lee CT, Blake J, Sun Y, Strauss WM. Defining embryonic stem cell identity using differentiation-related microRNAs and their potential targets. Mamm Genome 2007; 18:316-27. [PMID: 17610011 DOI: 10.1007/s00335-007-9032-6] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 04/10/2007] [Indexed: 01/07/2023]
Abstract
Defining the identity of embryonic stem (ES) cells in quantitative molecular terms is a prerequisite to understanding their functional characteristics. Little is known about the role of microRNAs (miRNAs) in the regulation of ES cell identity. Statistical analysis of miRNA expression revealed unique expression signatures that could definitively classify mouse ES (mES), embryoid bodies (mEB), and somatic tissues. Analysis of these data sets also provides further confirmation of the nonrestrictive expression of miRNAs during murine development. Using combined genome-wide expression analyses of both miRNAs and mRNAs, we observed both negative and positive correlations in gene expression between miRNAs and their predicted targets. ES-specific miRNAs were positively correlated with their predicted targets, suggesting that mES-specific miRNAs may have a different role or mechanism in regulating their targets in mES maintenance or differentiation. The concept of cellular identity has changed with technology; this study redefines cellular identity by a generic statistical method of known dimension.
Collapse
Affiliation(s)
- Caifu Chen
- R&D, Applied Biosystems, Foster City, California 94404, USA
| | | | | | | | | | | |
Collapse
|
234
|
Rogers I, Yamanaka N, Bielecki R, Wong CJ, Chua S, Yuen S, Casper RF. Identification and analysis of in vitro cultured CD45-positive cells capable of multi-lineage differentiation. Exp Cell Res 2007; 313:1839-52. [PMID: 17433293 DOI: 10.1016/j.yexcr.2007.02.029] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 02/14/2007] [Accepted: 02/15/2007] [Indexed: 01/30/2023]
Abstract
We report on a subset of cells that co-purify with CD45-positive/Lineage minus (CD45(pos)/Lin(minus)) hematopoietic cells that are capable of in vitro differentiation into multi-potential cells including cells with neuroectoderm properties. Although these cells are CD45 positive and have properties similar to CD45-negative mesenchymal progenitor cells (MPC) derived from bone marrow (BM), they are neither hematopoietic cells nor mesenchymal cells. These CD45(pos)/Lin(minus) cells can be expanded in vitro, express the stem cell genes Oct-4 and Nanog and can be induced to differentiate into endothelial cells, osteoblasts, muscle cells and neural cells at frequencies similar to those reported for bone marrow mesenchymal cells. Long-term culture of these cells followed by transplantation into NOD/SCID mice resulted in positive bone marrow stromal cell engraftment but not hematopoietic engraftment, suggesting that despite their CD45-positive status these cells do not have the same properties as hematopoietic stem cells. Clonal cell analysis determined that the culture period caused a broadening in the differentiation potential of the starting population.
Collapse
Affiliation(s)
- Ian Rogers
- Department of Obstetrics and Gynaecology, Rm. 876 Samuel Lunenfeld Research Institute, Mount Sinai Hospital and the University of Toronto, 600 University Ave, Toronto, Ontario, Canada M5G 1X5.
| | | | | | | | | | | | | |
Collapse
|
235
|
Giadrossi S, Dvorkina M, Fisher AG. Chromatin organization and differentiation in embryonic stem cell models. Curr Opin Genet Dev 2007; 17:132-8. [PMID: 17336511 DOI: 10.1016/j.gde.2007.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 02/19/2007] [Indexed: 01/31/2023]
Abstract
Embryonic stem cells derived from mammalian embryos represent indispensable tools for mammalian genetics. Their key features--self-renewal and pluripotency--enable them, on the one hand, to be propagated in culture almost indefinitely and, on the other, to be used to study the molecular details of cell commitment and differentiation. In the past few years, it has become clear that chromatin and epigenetic modifications have a central role in maintaining the gene expression programs that are important for both self-renewal and cell commitment. Therefore, studies focused on the chromatin profiles of embryonic stem cells are likely to be very informative for understanding pluripotency and the process of differentiation, and ultimately for using embryonic stem cells as a tool for cell replacement therapy or as models for the study of genetic diseases, cancer progression or drug testing.
Collapse
Affiliation(s)
- Sara Giadrossi
- Lymphocytes Development Group, MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, Hammersmith Hospital Campus, Du Cane Road, W12 0NN, London, UK
| | | | | |
Collapse
|
236
|
Cai C, Grabel L. Directing the differentiation of embryonic stem cells to neural stem cells. Dev Dyn 2007; 236:3255-66. [PMID: 17823944 DOI: 10.1002/dvdy.21306] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Embryonic stem cells (ESCs) are a potential source of neural derivatives that can be used in stem cell-based therapies designed to treat neurological disorders. The derivation of specific neuronal or glial cell types from ESCs invariably includes the production of neural stem cells (NSCs). We describe the basic mechanisms of neural induction during vertebrate embryogenesis and how this information helped formulate several protocols used to generate NSCs from ESCs. We highlight the advantages and disadvantages of each approach and review what has been learned about the intermediate stages in the transition from ESC to NSC. Recent data describing how specific growth factors and signaling molecules regulate production of NSCs are described and a model synthesizing this information is presented.
Collapse
Affiliation(s)
- Chunyu Cai
- Biology Department, Wesleyan University, Middletown, Connecticut 06459-1070, USA
| | | |
Collapse
|
237
|
Watanabe D, Uchiyama K, Hanaoka K. Transition of mouse de novo methyltransferases expression from Dnmt3b to Dnmt3a during neural progenitor cell development. Neuroscience 2006; 142:727-37. [PMID: 16973295 DOI: 10.1016/j.neuroscience.2006.07.053] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 07/15/2006] [Accepted: 07/26/2006] [Indexed: 12/31/2022]
Abstract
Dnmt3a and Dnmt3b, which are known as functional de novo methyltransferases, are responsible for creating genomic methylation patterns during mammalian development. Recently, we have shown that specific expression of Dnmt3b in epiblast, embryonic ectoderm, hematopoietic progenitor cells and spermatogonia cells is followed by Dnmt3a expression (Watanabe D, Suetake I, Tada T, Tajima S (2002) Stage- and cell-specific expression of Dnmt3a and Dnmt3b during embryogenesis. Mech Dev 118:187-190; Watanabe D, Suetake I, Tajima S, Hanaoka K (2004) Expression of Dnmt3b in mouse hematopoietic progenitor cells and spermatogonia at specific stages. Gene Expr Patterns 5:43-49). In this study, we analyzed the expression of mouse de novo methyltransferases during development of the nervous systems. In the embryonic olfactory epithelium (OE), Dnmt3b was specifically expressed in Mash1 positive globose basal cells (i.e. transiently amplifying neural progenitor cells), while Dnmt3a was expressed in immature olfactory receptor neurons. Dnmt3b-positive cells were rarely observed in the adult OE, but were increased in regenerating OE with intranasal ZnSO(4) administration. Dnmt3b was also detected in the E8.5 neural plate, E10.5 spinal cord and retina cells, while Dnmt3a was expressed in postmitotic young neurons. Furthermore, Dnmt3b was specifically expressed in ES cells, while Dnmt3a was transiently expressed during neural cell differentiation of ES cells. Dnmt3b is specifically expressed in progenitor cells during hematopoiesis, spermatogenesis and neurogenesis, suggesting an important role in the initial steps of progenitor cell differentiation. Dnmt3a is expressed in postmitotic young neurons following the Dnmt3b expression. Dnmt3a may be required for the establishment of tissue-specific methylation patterns of the genome. The coordinated expression of de novo methyltransferases from Dnmt3b to Dnmt3a suggests conserved mechanisms of de novo methylation of the genome and different functions for Dnmt3b and Dnmt3a during progenitor cell development.
Collapse
Affiliation(s)
- D Watanabe
- Laboratory of Molecular Embryology, Department of Bioscience, Kitasato University School of Science, 1-15-1, Kitasato, Sagamihara, Kanagawa 228-8555, Japan.
| | | | | |
Collapse
|
238
|
Faherty S, Kane MT, Quinlan LR. Self-renewal and differentiation of mouse embryonic stem cells as measured by Oct 4 gene expression: effects of lif, serum-free medium, retinoic acid, and dbcAMP. In Vitro Cell Dev Biol Anim 2006; 41:356-63. [PMID: 16448226 DOI: 10.1007/s11626-005-0008-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In this study we examined the interplay between serum, leukemia inhibitory factor (LIF), retinoic acid, and dibutyrl cyclic adenosine monophosphate (dbcAMP) in affecting IOUD2 embryonic stem cell self-renewal and differentiation as assessed by Oct 4 expression, and cell proliferation as measured by total cell protein. Removal of LIF, reduced levels of fetal calf serum (FCS), and addition of retinoic acid all induced embryonic stem cell differentiation as measured by reduced Oct 4 expression. Lower levels of retinoic acid (0.1-10 nM) promoted the formation of epithelial-like cells, whereas higher levels (100-10,000 nM) favored differentiation into fibroblastic-like cells. The effects of dbcAMP varied with the presence or absence of FCS and LIF and the concentration of dbcAMP. In FCS-containing media, a low level of dbcAMP (100 microM) increased self-renewal in the absence of LIF, but it had no effect in its presence. In contrast, at higher concentrations (1,000 microM dbcAMP), regardless of LIF, differentiation was promoted. A similar effect of dbcAMP was seen in the presence of retinoic acid. In media without FCS but with serum replacement supplements, there was no effect of dbcAMP. This study shows that the Oct 4 expression system of IOUD2 cells provides a novel, simple method for quantifying cellular differentiation.
Collapse
Affiliation(s)
- S Faherty
- Department of Physiology, National University of Ireland, Galway, University Road, Galway, Ireland
| | | | | |
Collapse
|
239
|
Blelloch R, Wang Z, Meissner A, Pollard S, Smith A, Jaenisch R. Reprogramming efficiency following somatic cell nuclear transfer is influenced by the differentiation and methylation state of the donor nucleus. Stem Cells 2006; 24:2007-13. [PMID: 16709876 PMCID: PMC3000431 DOI: 10.1634/stemcells.2006-0050] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Reprogramming of a differentiated cell nucleus by somatic cell nuclear transplantation is an inefficient process. Following nuclear transfer, the donor nucleus often fails to express early embryonic genes and establish a normal embryonic pattern of chromatin modifications. These defects correlate with the low number of cloned embryos able to produce embryonic stem cells or develop into adult animals. Here, we show that the differentiation and methylation state of the donor cell influence the efficiency of genomic reprogramming. First, neural stem cells, when used as donors for nuclear transplantation, produce embryonic stem cells at a higher efficiency than blastocysts derived from terminally differentiated neuronal donor cells, demonstrating a correlation between the state of differentiation and cloning efficiency. Second, using a hypomorphic allele of DNA methyltransferase-1, we found that global hypomethylation of a differentiated cell genome improved cloning efficiency. Our results provide functional evidence that the differentiation and epigenetic state of the donor nucleus influences reprogramming efficiency.
Collapse
Affiliation(s)
- Robert Blelloch
- Whitehead Institute of Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Zhongde Wang
- Whitehead Institute of Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Alex Meissner
- Whitehead Institute of Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Steven Pollard
- Centre Development in Stem Cell Biology, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, King’s Buildings, Edinburgh, United Kingdom
| | - Austin Smith
- Centre Development in Stem Cell Biology, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, King’s Buildings, Edinburgh, United Kingdom
| | - Rudolf Jaenisch
- Whitehead Institute of Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
240
|
Strauss WM, Chen C, Lee CT, Ridzon D. Nonrestrictive developmental regulation of microRNA gene expression. Mamm Genome 2006; 17:833-40. [PMID: 16897339 DOI: 10.1007/s00335-006-0025-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Accepted: 03/29/2006] [Indexed: 10/24/2022]
Abstract
During different periods of mammalian development, global changes in gene expression occur. Developmental changes in global gene expression have been modeled as a restrictive process. To test the restriction model of global changes in gene expression, we have used embryonic stem (ES) cells as a model system for the early mammalian embryo. ES cells are pluripotent cells that can contribute to all cellular lineages of the developing mammalian fetus and are derived from early embryonic cells. Using this model system, we have studied a new class of RNAs called microRNAs that have been identified and shown to play a role in the direct regulation of messenger RNAs. Here we report the expression signature for 248 microRNAs in 13 independent murine ES cells, embryoid bodies, and somatic tissues. The expression profile for 248 mouse microRNAs was determined for embryonic stem cells, embryoid bodies, mouse embryos, mature heart, lung, liver, kidney, and brain. Characteristic microRNA expression signatures were observed for each evaluated sample. When the characteristic microRNA signatures for developmentally ordered samples were compared, immature samples exhibited a less complex microRNA transcript profile than did mature samples. Our data support a progressive model of microRNA gene expression. Based on the progressive increase in complexity of micro- RNA expression, we hypothesize that the mammalian developmental program requires a temporal coupling of expression between microRNAs and messenger RNAs to enable the developmental potential observed in mammalian ontogeny.
Collapse
|
241
|
Lowell S, Benchoua A, Heavey B, Smith AG. Notch promotes neural lineage entry by pluripotent embryonic stem cells. PLoS Biol 2006; 4:e121. [PMID: 16594731 PMCID: PMC1431581 DOI: 10.1371/journal.pbio.0040121] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Accepted: 02/15/2006] [Indexed: 12/31/2022] Open
Abstract
A central challenge in embryonic stem (ES) cell biology is to understand how to impose direction on primary lineage commitment. In basal culture conditions, the majority of ES cells convert asynchronously into neural cells. However, many cells resist differentiation and others adopt nonneural fates. Mosaic activation of the neural reporter Sox-green fluorescent protein suggests regulation by cell-cell interactions. We detected expression of Notch receptors and ligands in mouse ES cells and investigated the role of this pathway. Genetic manipulation to activate Notch constitutively does not alter the stem cell phenotype. However, upon withdrawal of self-renewal stimuli, differentiation is directed rapidly and exclusively into the neural lineage. Conversely, pharmacological or genetic interference with Notch signalling suppresses the neural fate choice. Notch promotion of neural commitment requires parallel signalling through the fibroblast growth factor receptor. Stromal cells expressing Notch ligand stimulate neural specification of human ES cells, indicating that this is a conserved pathway in pluripotent stem cells. These findings define an unexpected and decisive role for Notch in ES cell fate determination. Limiting activation of endogenous Notch results in heterogeneous lineage commitment. Manipulation of Notch signalling is therefore likely to be a key factor in taking command of ES cell lineage choice.
Collapse
Affiliation(s)
- Sally Lowell
- 1Centre Development in Stem Cell Biology, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Alexandra Benchoua
- 1Centre Development in Stem Cell Biology, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- 2INSERM U 421/I-STEM, Faculté de Médecine, Evry-Cedex, France
| | - Barry Heavey
- 1Centre Development in Stem Cell Biology, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Austin G Smith
- 1Centre Development in Stem Cell Biology, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- 3Institute for Stem Cell Biology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
242
|
Aoto T, Saitoh N, Ichimura T, Niwa H, Nakao M. Nuclear and chromatin reorganization in the MHC-Oct3/4 locus at developmental phases of embryonic stem cell differentiation. Dev Biol 2006; 298:354-67. [PMID: 16950240 DOI: 10.1016/j.ydbio.2006.04.450] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Accepted: 04/12/2006] [Indexed: 01/24/2023]
Abstract
Epigenetic gene control is involved in mechanisms of development. Little is known about the cooperation of nuclear and chromatin events in programmed differentiation from mouse embryonic stem cells (ESC). To address this, Oct3/4-positive ESC and differentiated progenies, Sox1-positive neural precursor cells (NPC) and post-mitotic neurons (PMN), were isolated using a stage-selected culture system. We first investigated global nuclear organization at the each stage. Chromocenter preexists in ESC, disperses in NPC and becomes integrated into large heterochromatic foci in PMN, while the formation of PML bodies markedly decreases in neural differentiation. We next focused on the gene-dense MHC-Oct3/4 region. Oct3/4 gene is expressed preferentially adjacent to PML bodies in ESC and are repressed in the absence of chromocenter association in NPC and PMN. Histone deacetylation in NPC, demethylation of lysine 4 of histone H3 (H3K4), tri-methylation of H3K27, and CpG methylation in PMN are targeted for the Oct3/4 promoter within the region. Interestingly, di-methyl H3K4 mark is present in Oct3/4 promoter in NPC as well as ESC. These findings provide insights into the molecular basis of global nuclear reorganization and euchromatic gene silencing in differentiation through the spatiotemporal order of epigenetic controls.
Collapse
Affiliation(s)
- Takahiro Aoto
- Department of Regeneration Medicine, Institute of Molecular Embryology and Genetics, The 21st Century COE, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | | | | | | | | |
Collapse
|
243
|
Richter K, Wirta V, Dahl L, Bruce S, Lundeberg J, Carlsson L, Williams C. Global gene expression analyses of hematopoietic stem cell-like cell lines with inducible Lhx2 expression. BMC Genomics 2006; 7:75. [PMID: 16600034 PMCID: PMC1459142 DOI: 10.1186/1471-2164-7-75] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Accepted: 04/06/2006] [Indexed: 12/13/2022] Open
Abstract
Background Expression of the LIM-homeobox gene Lhx2 in murine hematopoietic cells allows for the generation of hematopoietic stem cell (HSC)-like cell lines. To address the molecular basis of Lhx2 function, we generated HSC-like cell lines where Lhx2 expression is regulated by a tet-on system and hence dependent on the presence of doxycyclin (dox). These cell lines efficiently down-regulate Lhx2 expression upon dox withdrawal leading to a rapid differentiation into various myeloid cell types. Results Global gene expression of these cell lines cultured in dox was compared to different time points after dox withdrawal using microarray technology. We identified 267 differentially expressed genes. The majority of the genes overlapping with HSC-specific databases were those down-regulated after turning off Lhx2 expression and a majority of the genes overlapping with those defined as late progenitor-specific genes were the up-regulated genes, suggesting that these cell lines represent a relevant model system for normal HSCs also at the level of global gene expression. Moreover, in situ hybridisations of several genes down-regulated after dox withdrawal showed overlapping expression patterns with Lhx2 in various tissues during embryonic development. Conclusion Global gene expression analysis of HSC-like cell lines with inducible Lhx2 expression has identified genes putatively linked to self-renewal / differentiation of HSCs, and function of Lhx2 in organ development and stem / progenitor cells of non-hematopoietic origin.
Collapse
Affiliation(s)
- Karin Richter
- Umeå Center for Molecular Medicin, Umeå Universitet, 90187 Umeå, Sweden
| | - Valtteri Wirta
- School of Biotechnology, KTH, Royal Institute of Technology, AlbaNova University Center, 10691 Stockholm, Sweden
| | - Lina Dahl
- Umeå Center for Molecular Medicin, Umeå Universitet, 90187 Umeå, Sweden
| | - Sara Bruce
- School of Biotechnology, KTH, Royal Institute of Technology, AlbaNova University Center, 10691 Stockholm, Sweden
- Department of Biosciences at Novum, Karolinska Institutet, 14157 Huddinge, Sweden
| | - Joakim Lundeberg
- School of Biotechnology, KTH, Royal Institute of Technology, AlbaNova University Center, 10691 Stockholm, Sweden
| | - Leif Carlsson
- Umeå Center for Molecular Medicin, Umeå Universitet, 90187 Umeå, Sweden
| | - Cecilia Williams
- School of Biotechnology, KTH, Royal Institute of Technology, AlbaNova University Center, 10691 Stockholm, Sweden
- Department of Biosciences at Novum, Karolinska Institutet, 14157 Huddinge, Sweden
| |
Collapse
|
244
|
Conti L, Reitano E, Cattaneo E. Neural stem cell systems: diversities and properties after transplantation in animal models of diseases. Brain Pathol 2006; 16:143-54. [PMID: 16768755 PMCID: PMC8095762 DOI: 10.1111/j.1750-3639.2006.00009.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Currently available effective treatments of the diseased or damaged central nervous system (CNS) are restricted to a limited pharmacological relief of symptoms or those given to avoid further damage. Therefore the search is on for treatments that can restore function in the CNS. During recent years replacement of damaged neurons by cell transplantation is being enthusiastically explored as a potential treatment for many neurodegenerative diseases, stroke and traumatic brain injury. Several references in both scientific journals and popular newspapers concerning different types of cultured stem cells, potentially exploitable to treat pathological conditions of the brain, raise important questions pertinent to the fundamental and realistic differences between grafts of primary neural cells and the transplantation of in vitro expanded neural stem cells (NSCs). Our aim is to review the available information on the grafting of different NSC types into the adult rodent brain, focusing on critical aspects for the development of clinical therapies to replace damaged neurons.
Collapse
Affiliation(s)
- Luciano Conti
- Department of Pharmacological Sciences and Center of Excellence on Neurodegenerative Diseases, University of Milano, Milano, Italy
| | - Erika Reitano
- Department of Pharmacological Sciences and Center of Excellence on Neurodegenerative Diseases, University of Milano, Milano, Italy
| | - Elena Cattaneo
- Department of Pharmacological Sciences and Center of Excellence on Neurodegenerative Diseases, University of Milano, Milano, Italy
| |
Collapse
|
245
|
Abstract
Embryonic stem (ES) cells are a unique resource, providing in principle access to unlimited quantities of every cell type in vitro. They constitute an accessible system for modeling fundamental developmental processes, such as cell fate choice, commitment, and differentiation. Furthermore, the pluripotency of ES cells opens up opportunities for use of human ES cells as a source of material for pharmaceutical screening and cell-based transplantation therapies. Widespread application of ES cell-based technologies in both basic biology and medicine necessitates development of robust and reliable protocols for controlling self-renewal and differentiation in the laboratory. This chapter describes protocols that enable the conversion of mouse ES cells in simple adherent conditions to either terminally differentiated neurons and glia or self-renewing but lineage-restricted neural stem cell lines. It also reports on the current status in transfer of these approaches to human ES cells.
Collapse
Affiliation(s)
- Steven M Pollard
- Institute for Stem Research, University of Edinburgh, Edinburgh, United Kingdom
| | | | | |
Collapse
|
246
|
Zhang J, Li L. BMP signaling and stem cell regulation. Dev Biol 2005; 284:1-11. [PMID: 15963490 DOI: 10.1016/j.ydbio.2005.05.009] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Revised: 05/05/2005] [Accepted: 05/06/2005] [Indexed: 12/17/2022]
Abstract
Stem cells play an essential role in cellular specialization and pattern formation during embryogenesis and in tissue regeneration in adults. This is mainly due to a stem cell's ability to replenish itself (self-renewal) and, at the same time, produce differentiated progeny. Realization of these special stem cell features has changed the prospective of the field. However, regulation of stem cell self-renewal and maintenance of its potentiality require a complicated regulatory network of both extracellular cues and intrinsic programs. Understanding how signaling regulates stem cell behavior will shed light on the molecular mechanisms underlying stem cell self-renewal. In this review, we focus on comparing the progress of recent research regarding the roles of the BMP signaling pathway in different stem cell systems, including embryonic stem cells, germline stem cells, hematopoietic stem cells, and intestinal stem cells. We hope this comparison, together with a brief look at other signaling pathways, will bring a more balanced view of BMP signaling in regulation of stem cell properties, and further point to a general principle that self-renewal of stem cells may require a combination of maintenance of proliferation potential, inhibition of apoptosis, and blocking of differentiation.
Collapse
Affiliation(s)
- Jiwang Zhang
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | |
Collapse
|
247
|
Schwartz RE, Linehan JL, Painschab MS, Hu WS, Verfaillie CM, Kaufman DS. Defined Conditions for Development of Functional Hepatic Cells from Human Embryonic Stem Cells. Stem Cells Dev 2005; 14:643-55. [PMID: 16433619 DOI: 10.1089/scd.2005.14.643] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Human embryonic stem (hES) cells provide an important means to evaluate specific soluble and cell-bound stimuli that regulate development of specific cell lineages. Here, we examined specific cytokines and extracellular matrix (ECM) proteins that support differentiation of hES cells to hepatocytes. Tests of several different conditions determined that addition of fibroblast growth factor (FGF)-4 and hepatocyte growth factor in completely serum-free cultures of hES cell-derived embryoid bodies subsequently allowed to attach to type I collagen-coated dishes led to maximal differentiation into cells, not only with the morphologic and phenotypic characteristics of hepatocytes but also the functional characteristics. Expression of common hepatic transcription factors including HNF-3beta, HNF-1, and GATA-4 were all significantly induced under these conditions. Hepatocyte function was demonstrated by multiple complementary criteria: production of urea and albumin, phenobarbital-induced cytochrome P450 expression, and uptake of indocyanine green. These hES cell-derived hepatocytes will serve as a resource to understand normal human hepatocyte development and for applications such as cell replacement therapies and screening of pharmacologic drugs.
Collapse
Affiliation(s)
- Robert E Schwartz
- Stem Cell Institute and Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
248
|
Conti L, Pollard SM, Gorba T, Reitano E, Toselli M, Biella G, Sun Y, Sanzone S, Ying QL, Cattaneo E, Smith A. Niche-independent symmetrical self-renewal of a mammalian tissue stem cell. PLoS Biol 2005; 3:e283. [PMID: 16086633 PMCID: PMC1184591 DOI: 10.1371/journal.pbio.0030283] [Citation(s) in RCA: 688] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Accepted: 06/14/2005] [Indexed: 12/11/2022] Open
Abstract
Pluripotent mouse embryonic stem (ES) cells multiply in simple monoculture by symmetrical divisions. In vivo, however, stem cells are generally thought to depend on specialised cellular microenvironments and to undergo predominantly asymmetric divisions. Ex vivo expansion of pure populations of tissue stem cells has proven elusive. Neural progenitor cells are propagated in combination with differentiating progeny in floating clusters called neurospheres. The proportion of stem cells in neurospheres is low, however, and they cannot be directly observed or interrogated. Here we demonstrate that the complex neurosphere environment is dispensable for stem cell maintenance, and that the combination of fibroblast growth factor 2 (FGF-2) and epidermal growth factor (EGF) is sufficient for derivation and continuous expansion by symmetrical division of pure cultures of neural stem (NS) cells. NS cells were derived first from mouse ES cells. Neural lineage induction was followed by growth factor addition in basal culture media. In the presence of only EGF and FGF-2, resulting NS cells proliferate continuously, are diploid, and clonogenic. After prolonged expansion, they remain able to differentiate efficiently into neurons and astrocytes in vitro and upon transplantation into the adult brain. Colonies generated from single NS cells all produce neurons upon growth factor withdrawal. NS cells uniformly express morphological, cell biological, and molecular features of radial glia, developmental precursors of neurons and glia. Consistent with this profile, adherent NS cell lines can readily be established from foetal mouse brain. Similar NS cells can be generated from human ES cells and human foetal brain. The extrinsic factors EGF plus FGF-2 are sufficient to sustain pure symmetrical self-renewing divisions of NS cells. The resultant cultures constitute the first known example of tissue-specific stem cells that can be propagated without accompanying differentiation. These homogenous cultures will enable delineation of molecular mechanisms that define a tissue-specific stem cell and allow direct comparison with pluripotent ES cells.
Collapse
Affiliation(s)
- Luciano Conti
- 1Institute for Stem Cell Research, University of Edinburgh, Edinburgh, United Kingdom
- 2Department of Pharmacological Sciences and Center of Excellence on Neurodegenerative Diseases, University of Milan, Milan, Italy
| | - Steven M Pollard
- 1Institute for Stem Cell Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Thorsten Gorba
- 1Institute for Stem Cell Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Erika Reitano
- 2Department of Pharmacological Sciences and Center of Excellence on Neurodegenerative Diseases, University of Milan, Milan, Italy
| | - Mauro Toselli
- 3Institute of Physiological and Pharmacological Sciences, University of Pavia, Pavia, Italy
| | - Gerardo Biella
- 3Institute of Physiological and Pharmacological Sciences, University of Pavia, Pavia, Italy
| | - Yirui Sun
- 1Institute for Stem Cell Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Sveva Sanzone
- 2Department of Pharmacological Sciences and Center of Excellence on Neurodegenerative Diseases, University of Milan, Milan, Italy
| | - Qi-Long Ying
- 1Institute for Stem Cell Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Elena Cattaneo
- 2Department of Pharmacological Sciences and Center of Excellence on Neurodegenerative Diseases, University of Milan, Milan, Italy
| | - Austin Smith
- 1Institute for Stem Cell Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
249
|
Smirnova L, Gräfe A, Seiler A, Schumacher S, Nitsch R, Wulczyn FG. Regulation of miRNA expression during neural cell specification. Eur J Neurosci 2005; 21:1469-77. [PMID: 15845075 DOI: 10.1111/j.1460-9568.2005.03978.x] [Citation(s) in RCA: 534] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
MicroRNA (miRNA) are a newly recognized class of small, noncoding RNA molecules that participate in the developmental control of gene expression. We have studied the regulation of a set of highly expressed neural miRNA during mouse brain development. Temporal control is a characteristic of miRNA regulation in C. elegans and Drosophila, and is also prominent in the embryonic brain. We observed significant differences in the onset and magnitude of induction for individual miRNAs. Comparing expression in cultures of embryonic neurons and astrocytes we found marked lineage specificity for each of the miRNA in our study. Two of the most highly expressed miRNA in adult brain were preferentially expressed in neurons (mir-124, mir-128). In contrast, mir-23, a miRNA previously implicated in neural specification, was restricted to astrocytes. mir-26 and mir-29 were more strongly expressed in astrocytes than neurons, others were more evenly distributed (mir-9, mir-125). Lineage specificity was further explored using reporter constructs for two miRNA of particular interest (mir-125 and mir-128). miRNA-mediated suppression of both reporters was observed after transfection of the reporters into neurons but not astrocytes. miRNA were strongly induced during neural differentiation of embryonic stem cells, suggesting the validity of the stem cell model for studying miRNA regulation in neural development.
Collapse
Affiliation(s)
- Lena Smirnova
- Center for Anatomy, Institute of Cell Biology and Neurobiology, Charité University Hospital, Schumannstrasse 20-21, 10098 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
250
|
Ying QL, Nichols J, Chambers I, Smith A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 2004; 115:281-92. [PMID: 14636556 DOI: 10.1016/s0092-8674(03)00847-x] [Citation(s) in RCA: 1545] [Impact Index Per Article: 73.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The cytokine leukemia inhibitory factor (LIF) drives self-renewal of mouse embryonic stem (ES) cells by activating the transcription factor STAT3. In serum-free cultures, however, LIF is insufficient to block neural differentiation and maintain pluripotency. Here, we report that bone morphogenetic proteins (BMPs) act in combination with LIF to sustain self-renewal and preserve multilineage differentiation, chimera colonization, and germline transmission properties. ES cells can be propagated from single cells and derived de novo without serum or feeders using LIF plus BMP. The critical contribution of BMP is to induce expression of Id genes via the Smad pathway. Forced expression of Id liberates ES cells from BMP or serum dependence and allows self-renewal in LIF alone. Upon LIF withdrawal, Id-expressing ES cells differentiate but do not give rise to neural lineages. We conclude that blockade of lineage-specific transcription factors by Id proteins enables the self-renewal response to LIF/STAT3.
Collapse
Affiliation(s)
- Qi Long Ying
- Institute for Stem Cell Research, University of Edinburgh, King's Buildings, West Mains Road, EH9 3JQ, Edinburgh, Scotland.
| | | | | | | |
Collapse
|