201
|
Salinas-Saavedra M, Vargas AO. Cortical cytasters: a highly conserved developmental trait of Bilateria with similarities to Ctenophora. EvoDevo 2011; 2:23. [PMID: 22133482 PMCID: PMC3248832 DOI: 10.1186/2041-9139-2-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 12/01/2011] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Cytasters (cytoplasmic asters) are centriole-based nucleation centers of microtubule polymerization that are observable in large numbers in the cortical cytoplasm of the egg and zygote of bilaterian organisms. In both protostome and deuterostome taxa, cytasters have been described to develop during oogenesis from vesicles of nuclear membrane that move to the cortical cytoplasm. They become associated with several cytoplasmic components, and participate in the reorganization of cortical cytoplasm after fertilization, patterning the antero-posterior and dorso-ventral body axes. PRESENTATION OF THE HYPOTHESIS The specific resemblances in the development of cytasters in both protostome and deuterostome taxa suggest that an independent evolutionary origin is unlikely. An assessment of published data confirms that cytasters are present in several protostome and deuterostome phyla, but are absent in the non-bilaterian phyla Cnidaria and Ctenophora. We hypothesize that cytasters evolved in the lineage leading to Bilateria and were already present in the most recent common ancestor shared by protostomes and deuterostomes. Thus, cytasters would be an ancient and highly conserved trait that is homologous across the different bilaterian phyla. The alternative possibility is homoplasy, that is cytasters have evolved independently in different lineages of Bilateria. TESTING THE HYPOTHESIS So far, available published information shows that appropriate observations have been made in eight different bilaterian phyla. All of them present cytasters. This is consistent with the hypothesis of homology and conservation. However, there are several important groups for which there are no currently available data. The hypothesis of homology predicts that cytasters should be present in these groups. Increasing the taxonomic sample using modern techniques uniformly will test for evolutionary patterns supporting homology, homoplasy, or secondary loss of cytasters. IMPLICATIONS OF THE HYPOTHESIS If cytasters are homologous and highly conserved across bilateria, their potential developmental and evolutionary relevance has been underestimated. The deep evolutionary origin of cytasters also becomes a legitimate topic of research. In Ctenophora, polyspermic fertilization occurs, with numerous sperm entering the egg. The centrosomes of sperm pronuclei associate with cytoplasmic components of the egg and reorganize the cortical cytoplasm, defining the oral-aboral axis. These resemblances lead us to suggest the possibility of a polyspermic ancestor in the lineage leading to Bilateria.
Collapse
Affiliation(s)
- Miguel Salinas-Saavedra
- Laboratory of Ontogeny and Phylogeny, Department of Biology, Faculty of Science, University of Chile. Las Palmeras, Ñuñoa, Casilla 653, Santiago, Chile
| | - Alexander O Vargas
- Laboratory of Ontogeny and Phylogeny, Department of Biology, Faculty of Science, University of Chile. Las Palmeras, Ñuñoa, Casilla 653, Santiago, Chile
| |
Collapse
|
202
|
Colello D, Mathew S, Ward R, Pumiglia K, LaFlamme SE. Integrins regulate microtubule nucleating activity of centrosome through mitogen-activated protein kinase/extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase (MEK/ERK) signaling. J Biol Chem 2011; 287:2520-30. [PMID: 22117069 DOI: 10.1074/jbc.m111.254128] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microtubule nucleation is an essential step in the formation of the microtubule cytoskeleton. We recently showed that androgen and Src promote microtubule nucleation and γ-tubulin accumulation at the centrosome. Here, we explore the mechanisms by which androgen and Src regulate these processes and ask whether integrins play a role. We perturb integrin function by a tyrosine-to-alanine substitution in membrane-proximal NPIY motif in the integrin β1 tail and show that this mutant substantially decreases microtubule nucleation and γ-tubulin accumulation at the centrosome. Because androgen stimulation promotes the interaction of the androgen receptor with Src, resulting in PI3K/AKT and MEK/ERK signaling, we asked whether these pathways are inhibited by the mutant integrin and whether they regulate microtubule nucleation. Our results indicate that the formation of the androgen receptor-Src complex and the activation of downstream pathways are significantly suppressed when cells are adhered by the mutant integrin. Inhibitor studies indicate that microtubule nucleation requires MEK/ERK but not PI3K/AKT signaling. Importantly, the expression of activated RAF-1 is sufficient to rescue microtubule nucleation inhibited by the mutant integrin by promoting the centrosomal accumulation of γ-tubulin. Our data define a novel paradigm of integrin signaling, where integrins regulate microtubule nucleation by promoting the formation of androgen receptor-Src signaling complexes to activate the MEK/ERK signaling pathway.
Collapse
Affiliation(s)
- Diane Colello
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York 12208, USA
| | | | | | | | | |
Collapse
|
203
|
Hinchcliffe EH. The centrosome and bipolar spindle assembly: does one have anything to do with the other? Cell Cycle 2011; 10:3841-8. [PMID: 22071626 DOI: 10.4161/cc.10.22.18293] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In vertebrate somatic cells the centrosome functions as the major microtubule-organizing center (MTOC), which splits and separates to form the poles of the mitotic spindle. However, the role of the centriole-containing centrosome in the formation of bipolar mitotic spindles continues to be controversial. Cells normally containing centrosomes are still able to build bipolar spindles after their centrioles have been removed or ablated. In naturally occurring cellular systems that lack centrioles - such as plant cells and many oocytes - bipolar spindles form in the complete absence of canonical centrosomes. These observations have led to the notion that centrosomes play no role during mitosis. However, recent work has re-examined spindle assembly in the absence of centrosomes, both in cells that naturally lack them, and those that have had them experimentally removed. The results of these studies suggest that an appreciation of microtubule network organization- both before and after nuclear envelope breakdown (NEB) - is the key to understanding the mechanisms that regulate spindle assembly and the generation of bipolarity.
Collapse
Affiliation(s)
- Edward H Hinchcliffe
- Section of Cellular Dynamics, The Hormel Institute, University of Minnesota, Austin, MN, USA.
| |
Collapse
|
204
|
Farnum CE, Wilsman NJ. Axonemal positioning and orientation in three-dimensional space for primary cilia: what is known, what is assumed, and what needs clarification. Dev Dyn 2011; 240:2405-31. [PMID: 22012592 PMCID: PMC3278774 DOI: 10.1002/dvdy.22756] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Two positional characteristics of the ciliary axoneme--its location on the plasma membrane as it emerges from the cell, and its orientation in three-dimensional (3D) space--are known to be critical for optimal function of actively motile cilia (including nodal cilia), as well as for modified cilia associated with special senses. However, these positional characteristics have not been analyzed to any significant extent for primary cilia. This review briefly summarizes the history of knowledge of these two positional characteristics across a wide spectrum of cilia, emphasizing their importance for proper function. Then the review focuses what is known about these same positional characteristics for primary cilia in all major tissue types where they have been reported. The review emphasizes major areas that would be productive for future research for understanding how positioning and 3D orientation of primary cilia may be related to their hypothesized signaling roles within different cellular populations.
Collapse
Affiliation(s)
- Cornelia E Farnum
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853, USA.
| | | |
Collapse
|
205
|
Ueda H, Morphew MK, McIntosh JR, Davis MM. CD4+ T-cell synapses involve multiple distinct stages. Proc Natl Acad Sci U S A 2011; 108:17099-104. [PMID: 21949383 PMCID: PMC3193211 DOI: 10.1073/pnas.1113703108] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
One very striking feature of T-cell recognition is the formation of an immunological synapse between a T cell and a cell that it is recognizing. Formation of this complex structure correlates with cytotoxicity in the case of killer (largely CD8(+)) T-cell activity, or robust cytokine release and proliferation in the case of the much longer lived synapses formed by helper (CD4(+)) T cells. Here we have used electron microscopy and 3D tomography to characterize the synapses of antigen-specific CD4(+) T cells recognizing B cells and dendritic cells at different time points. We show that there are at least four distinct stages in synapse formation, proceeding over several hours, including an initial stage involving invasive T-cell pseudopodia that penetrate deeply into the antigen-presenting cell, almost to the nuclear envelope. This must involve considerable force and may serve to widen the search for potential ligands on the surface of the cell being recognized. We also show that centrioles and the Golgi complex are always located immediately beneath the synapse and that centrioles are significantly shifted toward the late contact zone with either B lymphocytes or bone marrow-derived dendritic cells such as antigen-presenting cells, and that there are dynamic, stage-dependent changes in the organization of microtubules beneath the synapse. These data reinforce and extend previous data on cytotoxic T cells that one of the principal functions of the immunological synapse is to facilitate cytokine secretion into the synaptic cleft, as well as provide important insights into the overall dynamics of this phenomenon.
Collapse
Affiliation(s)
- Hironori Ueda
- The Howard Hughes Medical Institute and
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5323; and
| | - Mary K. Morphew
- Laboratory for 3D Structure of Cells and Molecules, Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347
| | - J. Richard McIntosh
- Laboratory for 3D Structure of Cells and Molecules, Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347
| | - Mark M. Davis
- The Howard Hughes Medical Institute and
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5323; and
| |
Collapse
|
206
|
The centrosome cycle: Centriole biogenesis, duplication and inherent asymmetries. Nat Cell Biol 2011; 13:1154-60. [PMID: 21968988 DOI: 10.1038/ncb2345] [Citation(s) in RCA: 451] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Centrosomes are microtubule-organizing centres of animal cells. They influence the morphology of the microtubule cytoskeleton, function as the base for the primary cilium and serve as a nexus for important signalling pathways. At the core of a typical centrosome are two cylindrical microtubule-based structures termed centrioles, which recruit a matrix of associated pericentriolar material. Cells begin the cell cycle with exactly one centrosome, and the duplication of centrioles is constrained such that it occurs only once per cell cycle and at a specific site in the cell. As a result of this duplication mechanism, the two centrioles differ in age and maturity, and thus have different functions; for example, the older of the two centrioles can initiate the formation of a ciliary axoneme. We discuss spatial aspects of the centrosome duplication cycle, the mechanism of centriole assembly and the possible consequences of the inherent asymmetry of centrioles and centrosomes.
Collapse
|
207
|
Carvalho-Santos Z, Azimzadeh J, Pereira-Leal JB, Bettencourt-Dias M. Evolution: Tracing the origins of centrioles, cilia, and flagella. J Cell Biol 2011; 194:165-75. [PMID: 21788366 PMCID: PMC3144413 DOI: 10.1083/jcb.201011152] [Citation(s) in RCA: 308] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 06/29/2011] [Indexed: 12/28/2022] Open
Abstract
Centrioles/basal bodies (CBBs) are microtubule-based cylindrical organelles that nucleate the formation of centrosomes, cilia, and flagella. CBBs, cilia, and flagella are ancestral structures; they are present in all major eukaryotic groups. Despite the conservation of their core structure, there is variability in their architecture, function, and biogenesis. Recent genomic and functional studies have provided insight into the evolution of the structure and function of these organelles.
Collapse
Affiliation(s)
| | - Juliette Azimzadeh
- Department of Biochemistry and Biophysics, UCSF Mission Bay, University of California, San Francisco, San Francisco, CA 94143
| | | | | |
Collapse
|
208
|
Zebrafish: a model system for the study of vertebrate renal development, function, and pathophysiology. Curr Opin Nephrol Hypertens 2011; 20:416-24. [DOI: 10.1097/mnh.0b013e3283477797] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
209
|
Abstract
Phosphorylation of proteins on serine or threonine residues preceding proline is a key signalling mechanism in diverse physiological and pathological processes. Pin1 (peptidyl-prolyl cis–trans isomerase) is the only enzyme known that can isomerise specific Ser/Thr-Pro peptide bonds after phosphorylation and regulate their conformational changes with high efficiency. These Pin1-catalysed conformational changes can have profound effects on phosphorylation signalling by regulating a spectrum of target activities. Interestingly, Pin1 deregulation is implicated in a number of diseases, notably ageing and age-related diseases, including cancer and Alzheimer disease. Pin1 is overexpressed in most human cancers; it activates numerous oncogenes or growth enhancers and also inactivates a large number of tumour suppressors or growth inhibitors. By contrast, ablation of Pin1 prevents cancer, but eventually leads to premature ageing and neurodegeneration. Consistent with its neuroprotective role, Pin1 has been shown to be inactivated in neurons of patients with Alzheimer disease. Therefore, Pin1-mediated phosphorylation-dependent prolyl isomerisation represents a unique signalling mechanism that has a pivotal role in the development of human diseases, and might offer an attractive new diagnostic and therapeutic target.
Collapse
|
210
|
Caruso R, Fedele F, Lucianò R, Branca G, Parisi C, Paparo D, Parisi A. Mitotic catastrophe in malignant epithelial tumors: the pathologist's viewpoint. Ultrastruct Pathol 2011; 35:66-71. [PMID: 21299346 DOI: 10.3109/01913123.2010.543753] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mitotic catastrophe is a common phenomenon occurring in tumor cells with impaired p53 function exposed to various cytotoxic and genotoxic agents. The defective p53 checkpoint causes improper segregation of chromosomes, resulting in aberrant mitosis, multiple micronuclei, multinucleate giant cells, and eventual necrosis-like death and centrosome aberration. Although various descriptions explaining mitotic catastrophe exist, there is still no generally accepted definition of this phenomenon. However, the syndrome of mitotic catastrophe may be a unifying morphological concept of particular interest to cancer research, as it integrally links cell death to checkpoints of the cell cycle. Morphological findings compatible with mitotic catastrophe may be found in pleomorphic, giant cell carcinomas--neoplasms characterized by a poor prognosis. The inclusion of mitotic catastrophe as part of the microscopic evaluation of tumors will add further insight to the pathobiology of tumor progression and in novel therapeutic designs. Finally, the possibility of assimilating mitotic catastrophe into a prognostic score is discussed.
Collapse
Affiliation(s)
- Rosario Caruso
- Department of Human Pathology, University of Messina, Messina, Italy.
| | | | | | | | | | | | | |
Collapse
|
211
|
Krämer A, Maier B, Bartek J. Centrosome clustering and chromosomal (in)stability: a matter of life and death. Mol Oncol 2011; 5:324-35. [PMID: 21646054 DOI: 10.1016/j.molonc.2011.05.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 05/06/2011] [Accepted: 05/11/2011] [Indexed: 01/28/2023] Open
Abstract
Centrosome abnormalities occur commonly in cancer, and contribute to chromosomal instability and tumorigenesis. New evidence on a phylogenetically conserved mechanism termed 'centrosomal clustering' provides exciting insights into how cells with supernumerary centrosomes adapt to avoid lethal multipolar divisions. Here, we highlight the emerging molecular basis of centrosome clustering, and its impact on asymmetric divisions of stem cells, chromosomal (in)stability and malignant transformation. Finally, pharmacological inhibition of centrosome clustering promises to selectively target tumor cells.
Collapse
Affiliation(s)
- Alwin Krämer
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center, Department of Internal Medicine V, University of Heidelberg, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany.
| | | | | |
Collapse
|
212
|
Gudi R, Zou C, Li J, Gao Q. Centrobin-tubulin interaction is required for centriole elongation and stability. J Cell Biol 2011; 193:711-25. [PMID: 21576394 PMCID: PMC3166857 DOI: 10.1083/jcb.201006135] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 04/11/2011] [Indexed: 11/22/2022] Open
Abstract
Centrobin is a daughter centriole protein that is essential for centrosome duplication. However, the molecular mechanism by which centrobin functions during centriole duplication remains undefined. In this study, we show that centrobin interacts with tubulin directly, and centrobin-tubulin interaction is pivotal for the function of centrobin during centriole duplication. We found that centrobin is recruited to the centriole biogenesis site via its interaction with tubulins during the early stage of centriole biogenesis, and its recruitment is dependent on hSAS-6 but not centrosomal P4.1-associated protein (CPAP) and CP110. The function of centrobin is also required for the elongation of centrioles, which is likely mediated by its interaction with tubulin. Furthermore, disruption of centrobin-tubulin interaction led to destabilization of existing centrioles and the preformed procentriole-like structures induced by CPAP expression, indicating that centrobin-tubulin interaction is critical for the stability of centrioles. Together, our study demonstrates that centrobin facilitates the elongation and stability of centrioles via its interaction with tubulins.
Collapse
Affiliation(s)
- Radhika Gudi
- Department of Medicine, NorthShore Research Institute, University of Chicago Pritzker School of Medicine, Evanston, IL 60201
| | - Chaozhong Zou
- Department of Medicine, NorthShore Research Institute, University of Chicago Pritzker School of Medicine, Evanston, IL 60201
| | - Jun Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Qingshen Gao
- Department of Medicine, NorthShore Research Institute, University of Chicago Pritzker School of Medicine, Evanston, IL 60201
| |
Collapse
|
213
|
Kraemer N, Issa L, Hauck SCR, Mani S, Ninnemann O, Kaindl AM. What's the hype about CDK5RAP2? Cell Mol Life Sci 2011; 68:1719-36. [PMID: 21327915 PMCID: PMC11115181 DOI: 10.1007/s00018-011-0635-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 01/18/2011] [Accepted: 02/01/2011] [Indexed: 12/11/2022]
Abstract
Cyclin dependent kinase 5 regulatory subunit-associated protein 2 (CDK5RAP2) has gained attention in the last years following the discovery, in 2005, that recessive mutations cause primary autosomal recessive microcephaly. This disease is seen as an isolated developmental defect of the brain, particularly of the cerebral cortex, and was thus historically also referred to as microcephalia vera. Unraveling the pathomechanisms leading to this human disease is fascinating scientists because it can convey insight into basic mechanisms of physiologic brain development (particularly of cortex formation). It also finds itself in the spotlight because of its implication in trends in mammalian evolution with a massive increase in the size of the cerebral cortex in primates. Here, we provide a timely overview of the current knowledge on the function of CDK5RAP2 and mechanisms that might lead to disease in humans when the function of this protein is disturbed.
Collapse
Affiliation(s)
- Nadine Kraemer
- Department of Pediatric Neurology, Charité, Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
- Institute of Neuroanatomy and Cell Biology, Center for Anatomy, Charité, Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Lina Issa
- Department of Pediatric Neurology, Charité, Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
- Institute of Neuroanatomy and Cell Biology, Center for Anatomy, Charité, Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Stefanie C. R. Hauck
- Department of Pediatric Neurology, Charité, Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
- Institute of Neuroanatomy and Cell Biology, Center for Anatomy, Charité, Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Shyamala Mani
- Center for Neuroscience, Indian Institute of Science, Bangalore, 560 012 India
| | - Olaf Ninnemann
- Institute of Neuroanatomy and Cell Biology, Center for Anatomy, Charité, Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Angela M. Kaindl
- Department of Pediatric Neurology, Charité, Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
- Institute of Neuroanatomy and Cell Biology, Center for Anatomy, Charité, Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
- Institute of Neuroanatomy and Cell Biology and Department of Pediatric Neurology, Charité, Universitätsmedizin Berlin, Center for Anatomy, Charité, Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
214
|
Gao Y, Niu Y, Wang X, Wei L, Zhang R, Lv S, Yu Q, Yang X. Chromosome aberrations associated with centrosome defects: a study of comparative genomic hybridization in breast cancer. Hum Pathol 2011; 42:1693-701. [PMID: 21531002 DOI: 10.1016/j.humpath.2010.12.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Revised: 12/11/2010] [Accepted: 12/21/2010] [Indexed: 10/18/2022]
Abstract
Centrosome abnormalities occur frequently in various tumors and can cause chromosomal instability and eventually promote cancer development. We investigated the chromosome aberrations associated with centrosome abnormalities in 30 cases of breast cancer, combining immunohistochemical staining and comparative genomic hybridization. Except for some common chromosome alterations (including gains of 1q, 8q, 17q, 20q, and Xq and losses of 8p, 11q, 13q, 14q, 16q, 17p, 22q, and Xp) that have also been seen more frequently in other studies, we discovered some new changes that have rarely been reported, including gains at 2p, 5p, 10p, 15q, 16p, 18q, 21q, and 22q and losses at 6p, 8p23, 11p13-pter, 13q34, and 14q32-qter. We also identified some changes (such as gains of 17q, 20q, and Xq and losses of 17p, 13q, and 14q) harboring candidate genes. We also explored the expression of centrosome protein in different molecular subtypes of breast cancer. Our findings provide a new way to explore the molecular mechanisms of breast tumorigenesis and accordingly potential new targets for therapy for this disease.
Collapse
Affiliation(s)
- Yuxia Gao
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education and Key Laboratory of Cancer Prevention and Therapy, Tianjin, Medical University Cancer Institute and Hospital, He Xi District, Tianjin, 300060 China
| | | | | | | | | | | | | | | |
Collapse
|
215
|
Li J, Zhan Q. The role of centrosomal Nlp in the control of mitotic progression and tumourigenesis. Br J Cancer 2011; 104:1523-8. [PMID: 21505454 PMCID: PMC3101908 DOI: 10.1038/bjc.2011.130] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The human centrosomal ninein-like protein (Nlp) is a new member of the γ-tubulin complexes binding proteins (GTBPs) that is essential for proper execution of various mitotic events. The primary function of Nlp is to promote microtubule nucleation that contributes to centrosome maturation, spindle formation and chromosome segregation. Its subcellular localisation and protein stability are regulated by several crucial mitotic kinases, such as Plk1, Nek2, Cdc2 and Aurora B. Several lines of evidence have linked Nlp to human cancer. Deregulation of Nlp in cell models results in aberrant spindle, chromosomal missegregation and multinulei, and induces chromosomal instability and renders cells tumourigenic. Overexpression of Nlp induces anchorage-independent growth and immortalised primary cell transformation. In addition, we first demonstrate that the expression of Nlp is elevated primarily due to NLP gene amplification in human breast cancer and lung carcinoma. Consistently, transgenic mice overexpressing Nlp display spontaneous tumours in breast, ovary and testicle, and show rapid onset of radiation-induced lymphoma, indicating that Nlp is involved in tumourigenesis. This review summarises our current knowledge of physiological roles of Nlp, with an emphasis on its potentials in tumourigenesis.
Collapse
Affiliation(s)
- J Li
- State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | | |
Collapse
|
216
|
Hornick JE, Mader CC, Tribble EK, Bagne CC, Vaughan KT, Shaw SL, Hinchcliffe EH. Amphiastral mitotic spindle assembly in vertebrate cells lacking centrosomes. Curr Biol 2011; 21:598-605. [PMID: 21439826 PMCID: PMC3075362 DOI: 10.1016/j.cub.2011.02.049] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 01/26/2011] [Accepted: 02/28/2011] [Indexed: 01/11/2023]
Abstract
The role of centrosomes and centrioles during mitotic spindle assembly in vertebrates remains controversial. In cell-free extracts and experimentally derived acentrosomal cells, randomly oriented microtubules (MTs) self-organize around mitotic chromosomes and assemble anastral spindles. However, vertebrate somatic cells normally assemble a connected pair of polarized, astral MT arrays--termed an amphiaster ("a star on both sides")--that is formed by the splitting and separation of the microtubule-organizing center (MTOC) well before nuclear envelope breakdown (NEB). Whether amphiaster formation requires splitting of duplicated centrosomes is not known. We found that when centrosomes were removed from living vertebrate cells early in their cell cycle, an acentriolar MTOC reassembled, and, prior to NEB, a functional amphiastral spindle formed. Cytoplasmic dynein, dynactin, and pericentrin are all recruited to the interphase aMTOC, and the activity of kinesin-5 is needed for amphiaster formation. Mitosis proceeded on time and these karyoplasts divided in two. However, ~35% of aMTOCs failed to split and separate before NEB, and these entered mitosis with persistent monastral spindles. Chromatin-associated RAN-GTP--the small GTPase Ran in its GTP bound state--could not restore bipolarity to monastral spindles, and these cells exited mitosis as single daughters. Our data reveal the novel finding that MTOC separation and amphiaster formation does not absolutely require the centrosome, but, in its absence, the fidelity of bipolar spindle assembly is highly compromised.
Collapse
Affiliation(s)
- Jessica E. Hornick
- Department of Obstetrics and Gynecology, and the Robert H. Lurie Cancer Center, Northwestern University School of Medicine, Chicago, IL 60611 USA
| | - Christopher C. Mader
- Department of Cell Biology, Yale University, New Haven, CT 06510 USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208 USA
| | - Emily K. Tribble
- Department of Cell and Developmental Biology, University of North Carolina, School of Medicine, Chapel Hill, NC 27599 USA
| | - Cydney C. Bagne
- Cellular Dynamics Section, The Hormel Institute, University of Minnesota Austin, MN 55912 USA
| | - Kevin T. Vaughan
- Department of Biological Sciences, and the Notre Dame Integrated Imaging Facility, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Sidney L. Shaw
- Departments of Biology and Physics, Indiana University, Bloomington, IN 47405 USA
| | - Edward H. Hinchcliffe
- Cellular Dynamics Section, The Hormel Institute, University of Minnesota Austin, MN 55912 USA
| |
Collapse
|
217
|
Karna P, Rida PCG, Pannu V, Gupta KK, Dalton WB, Joshi H, Yang VW, Zhou J, Aneja R. A novel microtubule-modulating noscapinoid triggers apoptosis by inducing spindle multipolarity via centrosome amplification and declustering. Cell Death Differ 2011; 18:632-44. [PMID: 21052096 PMCID: PMC3131906 DOI: 10.1038/cdd.2010.133] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 07/30/2010] [Accepted: 08/30/2010] [Indexed: 01/01/2023] Open
Abstract
We have previously shown that a non-toxic noscapinoid, EM011 binds tubulin without altering its monomer/polymer ratio. EM011 is more active than the parent molecule, noscapine, in inducing G2/M arrest, inhibiting cellular proliferation and tumor growth in various human xenograft models. However, the mechanisms of mitotic-block and subsequent cell death have remained elusive. Here, we show that EM011-induced attenuation of microtubule dynamics was associated with impaired association of microtubule plus-end tracking proteins, such as EB1 and CLIP-170. EM011 treatment then led to the formation of multipolar spindles containing 'real' centrioles indicating drug-induced centrosome amplification and persistent centrosome declustering. Centrosome amplification was accompanied by an upregulation of Aurora A and Plk4 protein levels, as well as a surge in the kinase activity of Aurora A, suggesting a deregulation of the centrosome duplication cycle. Cell-cycle phase-specific experiments showed that the 'cytotoxicity-window' of the drug encompasses the late S-G2 period. Drug-treatment, excluding S-phase, not only resulted in lower sub-G1 population but also attenuated centrosome amplification and spindle multipolarity, suggesting that drug-induced centrosome amplification is essential for maximal cell death. Subsequent to a robust mitotic arrest, EM011-treated cells displayed diverse cellular fates suggesting a high degree of intraline variation. Some 'apoptosis-evasive' cells underwent aberrant cytokinesis to generate rampant aneuploidy that perhaps contributed to drug-induced cell death. These data indicate that spindle multipolarity induction by means of centrosome amplification has an exciting chemotherapeutic potential that merits further investigation.
Collapse
Affiliation(s)
- P Karna
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - P C G Rida
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - V Pannu
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - K K Gupta
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - W B Dalton
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - H Joshi
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - V W Yang
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - J Zhou
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - R Aneja
- Department of Biology, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
218
|
Novel asymmetrically localizing components of human centrosomes identified by complementary proteomics methods. EMBO J 2011; 30:1520-35. [PMID: 21399614 DOI: 10.1038/emboj.2011.63] [Citation(s) in RCA: 259] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 02/11/2011] [Indexed: 01/19/2023] Open
Abstract
Centrosomes in animal cells are dynamic organelles with a proteinaceous matrix of pericentriolar material assembled around a pair of centrioles. They organize the microtubule cytoskeleton and the mitotic spindle apparatus. Mature centrioles are essential for biogenesis of primary cilia that mediate key signalling events. Despite recent advances, the molecular basis for the plethora of processes coordinated by centrosomes is not fully understood. We have combined protein identification and localization, using PCP-SILAC mass spectrometry, BAC transgeneOmics, and antibodies to define the constituents of human centrosomes. From a background of non-specific proteins, we distinguished 126 known and 40 candidate centrosomal proteins, of which 22 were confirmed as novel components. An antibody screen covering 4000 genes revealed an additional 113 candidates. We illustrate the power of our methods by identifying a novel set of five proteins preferentially associated with mother or daughter centrioles, comprising genes implicated in cell polarity. Pulsed labelling demonstrates a remarkable variation in the stability of centrosomal protein complexes. These spatiotemporal proteomics data provide leads to the further functional characterization of centrosomal proteins.
Collapse
|
219
|
The dynactin complex enhances the speed of microtubule-dependent motions of adenovirus both towards and away from the nucleus. Viruses 2011; 3:233-253. [PMID: 21994728 PMCID: PMC3185697 DOI: 10.3390/v3030233] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 02/28/2011] [Indexed: 12/29/2022] Open
Abstract
Unlike transport vesicles or organelles, human adenovirus (HAdV) directly binds to the microtubule minus end-directed motor dynein for transport to the nucleus. The dynein cofactor dynactin enhances nuclear transport of HAdV and boosts infection. To determine if dynactin has a specific role in cytoplasmic trafficking of incoming HAdV on microtubules, we used live cell spinning disc confocal microscopy at 25 Hz acquisition frequency and automated tracking of single virus particles at 20–50 nm spatial resolution. Computational dissection by machine-learning algorithms extracted specific motion patterns of viral trajectories. We found that unperturbed cells supported two kinds of microtubule-dependent motions, directed motions (DM) and fast drifts (FD). DM had speeds of 0.2 to 2 μm/s and run lengths of 0.4 up to 7 μm, while FD were slower and less extensive at 0.02 to 0.4 μm/s and 0.05 to 2.5 μm. Dynactin interference by overexpression of p50/dynamitin or a coiled-coil domain of p150/Glued reduced the speeds and amounts of both center- and periphery-directed DM but not FD, and inhibited infection. These results indicate that dynactin enhances adenovirus infection by increasing the speed and efficiency of dynein-mediated virus motion to the nucleus, and, surprisingly, also supports a hereto unknown motor activity for virus transport to the cell periphery.
Collapse
|
220
|
Ibi M, Zou P, Inoko A, Shiromizu T, Matsuyama M, Hayashi Y, Enomoto M, Mori D, Hirotsune S, Kiyono T, Tsukita S, Goto H, Inagaki M. Trichoplein controls microtubule anchoring at the centrosome by binding to Odf2 and ninein. J Cell Sci 2011; 124:857-64. [PMID: 21325031 DOI: 10.1242/jcs.075705] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The keratin cytoskeleton performs several functions in epithelial cells and provides regulated interaction sites for scaffold proteins, including trichoplein. Previously, we found that trichoplein was localized on keratin intermediate filaments and desmosomes in well-differentiated, non-dividing epithelia. Here, we report that trichoplein is widely expressed and has a major function in the correct localization of the centrosomal protein ninein in epithelial and non-epithelial cells. Immunocytochemical analysis also revealed that this protein is concentrated at the subdistal to medial zone of both mother and daughter centrioles. Trichoplein binds the centrosomal proteins Odf2 and ninein, which are localized at the distal to subdistal ends of the mother centriole. Trichoplein depletion abolished the recruitment of ninein, but not Odf2, specifically at the subdistal end. However, Odf2 depletion inhibited the recruitment of trichoplein to a mother centriole, whereas ninein depletion did not. In addition, the depletion of each molecule impaired MT anchoring at the centrosome. These results suggest that trichoplein has a crucial role in MT-anchoring activity at the centrosome in proliferating cells, probably through its complex formation with Odf2 and ninein.
Collapse
Affiliation(s)
- Miho Ibi
- Division of Biochemistry, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya 464-8681, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Bang SW, Ko MJ, Kang S, Kim GS, Kang D, Lee J, Hwang DS. Human TopBP1 localization to the mitotic centrosome mediates mitotic progression. Exp Cell Res 2011; 317:994-1004. [PMID: 21291884 DOI: 10.1016/j.yexcr.2011.01.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 12/27/2010] [Accepted: 01/24/2011] [Indexed: 11/25/2022]
Abstract
TopBP1 contains repeats of the BRCA1 C-terminal (BRCT) domain and plays important roles in DNA damage response, DNA replication, and other cellular regulatory functions during the interphase. In prometaphase, metaphase, and anaphase, TopBP1 localizes to the mitotic centrosomes, which function as spindle-poles for the bipolar separation of sister chromatids. The localization of TopBP1 to the mitotic centrosomes is mediated by amino acid residues 1259 to 1420 in the TopBP1 C-terminal region (TbpCtr). GST and DsRed2 tags fused to TbpCtr were localized in the mitotic centrosomes, thereby suggesting that TbpCtr functions as a mitosis-specific centrosome localization signal (CLS). Mutations of Ser 1273 and/or Lys 1317, which were predicted to interact with a putative phosphoprotein, inhibited CLS function. Ectopic expression of TbpCtr specifically eliminated endogenous TopBP1 from the mitotic centrosomes, whereas mutant TbpCtr derivatives, containing substitutions at Ser 1273 and/or Lys 1317, did not. The specific elimination of TopBP1 from the mitotic centrosomes prolonged the durations of prometaphase and metaphase and shortened the inter-kinetochore distances of metaphase sister chromatids while maintaining the spindle assembly checkpoint. These results suggest that the localization of TopBP1 to the mitotic centrosomes is necessary for proper mitotic progression.
Collapse
Affiliation(s)
- Sung Woong Bang
- Department of Biological Sciences, and Institute for Molecular Biology and Genetics, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
222
|
Abstract
Centrioles are conserved microtubule-based organelles that lie at the core of the animal centrosome and play a crucial role in nucleating the formation of cilia and flagella in most eukaryotes. Centrioles have a complex ultrastructure with ninefold symmetry and a well-defined length. This structure is assembled from a host of proteins, including a variety of disease gene products. Over a century after the discovery of centrioles, the mechanisms underlying the assembly of these fascinating organelles, in particular the establishment of ninefold symmetry and the control of centriole length, are now starting to be uncovered.
Collapse
Affiliation(s)
- Juliette Azimzadeh
- Department of Biochemistry and Biophysics, University of California, San Francisco, 94143, USA
| | | |
Collapse
|
223
|
Abstract
In preparation for mitosis, the centrosome doubles once and only once to provide the two poles of the mitotic spindle. The presence of more than two centrosomes increases the chances that mitosis will be multipolar, and chromosomes will be distributed unequally. Since the number of mother-daughter centriole pairs determines the number of centrosomes, it is important that only one daughter centriole is assembled at, but slightly separated from, the proximal end of each mother centriole. This numerical and spatial specificity has led to the belief that a 'template' on the mother centriole provides a unique site for procentriole assembly. We review observations that are leading to the demise of this intuitively attractive idea. In its place, we are left with the notion that pericentriolar material at the wall of the mother centriole provides a local environment that promotes the assembly of a macromolecular complex that seeds the daughter centriole. Even though the system normally behaves in a digital fashion to go from zero to just one daughter centriole per mother, this behaviour appears to be based in the precise analogue control of multiple proteins, their activities, and the structure provided by the mother centriole.
Collapse
Affiliation(s)
- Greenfield Sluder
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | |
Collapse
|
224
|
Goodwin SS, Vale RD. Patronin regulates the microtubule network by protecting microtubule minus ends. Cell 2010; 143:263-74. [PMID: 20946984 PMCID: PMC3008421 DOI: 10.1016/j.cell.2010.09.022] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 07/12/2010] [Accepted: 09/13/2010] [Indexed: 11/18/2022]
Abstract
Tubulin assembles into microtubule polymers that have distinct plus and minus ends. Most microtubule plus ends in living cells are dynamic; the transitions between growth and shrinkage are regulated by assembly-promoting and destabilizing proteins. In contrast, minus ends are generally not dynamic, suggesting their stabilization by some unknown protein. Here, we have identified Patronin (also known as ssp4) as a protein that stabilizes microtubule minus ends in Drosophila S2 cells. In the absence of Patronin, minus ends lose subunits through the actions of the Kinesin-13 microtubule depolymerase, leading to a sparse interphase microtubule array and short, disorganized mitotic spindles. In vitro, the selective binding of purified Patronin to microtubule minus ends is sufficient to protect them against Kinesin-13-induced depolymerization. We propose that Patronin caps and stabilizes microtubule minus ends, an activity that serves a critical role in the organization of the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Sarah S. Goodwin
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158-2200, USA
| | - Ronald D. Vale
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158-2200, USA
| |
Collapse
|
225
|
Müller H, Schmidt D, Steinbrink S, Mirgorodskaya E, Lehmann V, Habermann K, Dreher F, Gustavsson N, Kessler T, Lehrach H, Herwig R, Gobom J, Ploubidou A, Boutros M, Lange BMH. Proteomic and functional analysis of the mitotic Drosophila centrosome. EMBO J 2010; 29:3344-57. [PMID: 20818332 PMCID: PMC2957212 DOI: 10.1038/emboj.2010.210] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 08/04/2010] [Indexed: 11/09/2022] Open
Abstract
Regulation of centrosome structure, duplication and segregation is integrated into cellular pathways that control cell cycle progression and growth. As part of these pathways, numerous proteins with well-established non-centrosomal localization and function associate with the centrosome to fulfill regulatory functions. In turn, classical centrosomal components take up functional and structural roles as part of other cellular organelles and compartments. Thus, although a comprehensive inventory of centrosome components is missing, emerging evidence indicates that its molecular composition reflects the complexity of its functions. We analysed the Drosophila embryonic centrosomal proteome using immunoisolation in combination with mass spectrometry. The 251 identified components were functionally characterized by RNA interference. Among those, a core group of 11 proteins was critical for centrosome structure maintenance. Depletion of any of these proteins in Drosophila SL2 cells resulted in centrosome disintegration, revealing a molecular dependency of centrosome structure on components of the protein translation machinery, actin- and RNA-binding proteins. In total, we assigned novel centrosome-related functions to 24 proteins and confirmed 13 of these in human cells.
Collapse
Affiliation(s)
- Hannah Müller
- Department of Vertebrate Genomics, Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - David Schmidt
- Leibniz Institute for Age Research—Fritz Lipmann Institute, Jena, Germany
| | - Sandra Steinbrink
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics and University of Heidelberg, Faculty of Medicine Mannheim, Department of Cell and Molecular Biology, Heidelberg, Germany
| | - Ekaterina Mirgorodskaya
- Department of Vertebrate Genomics, Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - Verena Lehmann
- Department of Vertebrate Genomics, Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - Karin Habermann
- Department of Vertebrate Genomics, Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - Felix Dreher
- Department of Vertebrate Genomics, Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - Niklas Gustavsson
- Department of Vertebrate Genomics, Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - Thomas Kessler
- Department of Vertebrate Genomics, Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - Hans Lehrach
- Department of Vertebrate Genomics, Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - Ralf Herwig
- Department of Vertebrate Genomics, Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - Johan Gobom
- Department of Vertebrate Genomics, Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - Aspasia Ploubidou
- Leibniz Institute for Age Research—Fritz Lipmann Institute, Jena, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics and University of Heidelberg, Faculty of Medicine Mannheim, Department of Cell and Molecular Biology, Heidelberg, Germany
| | - Bodo M H Lange
- Department of Vertebrate Genomics, Max-Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
226
|
Cunha-Ferreira I, Bento I, Bettencourt-Dias M. From zero to many: control of centriole number in development and disease. Traffic 2010; 10:482-98. [PMID: 19416494 DOI: 10.1111/j.1600-0854.2009.00905.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Centrioles are essential for the formation of microtubule-derived structures, including cilia, flagella and centrosomes. These structures are involved in a variety of functions, from cell motility to division. In most dividing animal cells, centriole formation is coupled to the chromosome cycle. However, this is not the case in certain specialized divisions, such as meiosis, and in some differentiating cells. For example, oocytes loose their centrioles upon differentiation, whereas multiciliated epithelial cells make several of those structures after they exit the cell cycle. Aberrations of centriole number are seen in many cancer cells. Recent studies began to shed light on the molecular control of centriole number, its variations in development, and how centriole number changes in human disease. Here we review the recent developments in this field.
Collapse
Affiliation(s)
- Inês Cunha-Ferreira
- Cell Cycle Regulation Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6P-2780-156 Oeiras, Portugal
| | | | | |
Collapse
|
227
|
Müller-Reichert T, Greenan G, O’Toole E, Srayko M. The elegans of spindle assembly. Cell Mol Life Sci 2010; 67:2195-213. [PMID: 20339898 PMCID: PMC2883083 DOI: 10.1007/s00018-010-0324-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 02/17/2010] [Indexed: 11/26/2022]
Abstract
The Caenorhabditis elegans one-cell embryo is a powerful system in which to study microtubule organization because this large cell assembles both meiotic and mitotic spindles within the same cytoplasm over the course of 1 h in a stereotypical manner. The fertilized oocyte assembles two consecutive acentrosomal meiotic spindles that function to reduce the replicated maternal diploid set of chromosomes to a single-copy haploid set. The resulting maternal DNA then unites with the paternal DNA to form a zygotic diploid complement, around which a centrosome-based mitotic spindle forms. The early C. elegans embryo is amenable to live-cell imaging and electron tomography, permitting a detailed structural comparison of the meiotic and mitotic modes of spindle assembly.
Collapse
Affiliation(s)
| | - Garrett Greenan
- Max Planck Institute of Molecular Cell Biology and Genetics (MPICBG), Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Eileen O’Toole
- Boulder Laboratory for 3D Electron Microscopy of Cells, University of Colorado, Boulder, CO 80309 USA
| | - Martin Srayko
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9 Canada
| |
Collapse
|
228
|
Debec A, Sullivan W, Bettencourt-Dias M. Centrioles: active players or passengers during mitosis? Cell Mol Life Sci 2010; 67:2173-94. [PMID: 20300952 PMCID: PMC2883084 DOI: 10.1007/s00018-010-0323-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 02/17/2010] [Indexed: 12/31/2022]
Abstract
Centrioles are cylinders made of nine microtubule (MT) triplets present in many eukaryotes. Early studies, where centrosomes were seen at the poles of the mitotic spindle led to their coining as "the organ for cell division". However, a variety of subsequent observational and functional studies showed that centrosomes might not always be essential for mitosis. Here we review the arguments in this debate. We describe the centriole structure and its distribution in the eukaryotic tree of life and clarify its role in the organization of the centrosome and cilia, with an historical perspective. An important aspect of the debate addressed in this review is how centrioles are inherited and the role of the spindle in this process. In particular, germline inheritance of centrosomes, such as their de novo formation in parthenogenetic species, poses many interesting questions. We finish by discussing the most likely functions of centrioles and laying out new research avenues.
Collapse
Affiliation(s)
- Alain Debec
- Polarity and Morphogenesis Group, Jacques Monod Institute, University Paris Diderot, UPMC Univ Paris 6, Bâtiment Buffon, 15 rue Hélène Brion, 75205, Paris Cedex 13, France.
| | | | | |
Collapse
|
229
|
Barrera JA, Kao LR, Hammer RE, Seemann J, Fuchs JL, Megraw TL. CDK5RAP2 regulates centriole engagement and cohesion in mice. Dev Cell 2010; 18:913-26. [PMID: 20627074 PMCID: PMC3078807 DOI: 10.1016/j.devcel.2010.05.017] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 12/04/2009] [Accepted: 04/20/2010] [Indexed: 01/11/2023]
Abstract
Centriole duplication occurs once per cell cycle, ensuring that each cell contains two centrosomes, each containing a mother-daughter pair of tightly engaged centrioles at mitotic entry. Loss of the tight engagement between mother and daughter centrioles appears to license the next round of centriole duplication. However, the molecular mechanisms regulating this process remain largely unknown. Mutations in CDK5RAP2, which encodes a centrosomal protein, cause autosomal recessive primary microcephaly in humans. Here we show that CDK5RAP2 loss of function in mice causes centriole amplification with a preponderance of single, unpaired centrioles and increased numbers of daughter-daughter centriole pairs. These results indicate that CDK5RAP2 is required to maintain centriole engagement and cohesion, thereby restricting centriole replication. Early in mitosis, amplified centrosomes assemble multipolar spindles in CDK5RAP2 mutant cells. Moreover, both mother and daughter centrioles are amplified and the excess mother centrioles template multiple primary cilia in CDK5RAP2 mutant cells.
Collapse
Affiliation(s)
- Jose A. Barrera
- Department of Pediatrics, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9063, USA
| | - Ling-Rong Kao
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306-4300, USA
| | - Robert E. Hammer
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9051, USA
- The Cecil and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9051, USA
| | - Joachim Seemann
- Department of Cell Biology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9039, USA
| | - Jannon L. Fuchs
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Timothy L. Megraw
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306-4300, USA
| |
Collapse
|
230
|
Guderian G, Westendorf J, Uldschmid A, Nigg EA. Plk4 trans-autophosphorylation regulates centriole number by controlling betaTrCP-mediated degradation. J Cell Sci 2010; 123:2163-9. [PMID: 20516151 DOI: 10.1242/jcs.068502] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Centrioles are the main constituents of the mammalian centrosome and act as basal bodies for ciliogenesis. Centrosomes organize the cytoplasmic microtubule network during interphase and the mitotic spindle during mitosis, and aberrations in centrosome number have been implicated in chromosomal instability and tumor formation. The centriolar protein Polo-like kinase 4 (Plk4) is a key regulator of centriole biogenesis and is crucial for maintaining constant centriole number, but the mechanisms regulating its activity and expression are only beginning to emerge. Here, we show that human Plk4 is subject to betaTrCP-dependent proteasomal degradation, indicating that this pathway is conserved from Drosophila to human. Unexpectedly, we found that stable overexpression of kinase-dead Plk4 leads to centriole overduplication. This phenotype depends on the presence of endogenous wild-type Plk4. Our data indicate that centriole overduplication results from disruption of Plk4 trans-autophosphorylation by kinase-dead Plk4, which then shields endogenous Plk4 from recognition by betaTrCP. We conclude that active Plk4 promotes its own degradation by catalyzing betaTrCP binding through trans-autophosphorylation (phosphorylation by the other kinase in the dimer) within homodimers.
Collapse
Affiliation(s)
- Gernot Guderian
- Department of Cell Biology, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | | | |
Collapse
|
231
|
Hayashi-Takagi A, Sawa A. Disturbed synaptic connectivity in schizophrenia: convergence of genetic risk factors during neurodevelopment. Brain Res Bull 2010; 83:140-6. [PMID: 20433911 DOI: 10.1016/j.brainresbull.2010.04.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 02/07/2010] [Accepted: 04/19/2010] [Indexed: 12/13/2022]
Abstract
The pathological mechanisms underlying schizophrenia are unclear. Although genetic susceptibility factors for schizophrenia likely influence neurodevelopmental processes, the onset of the disease is in adolescence and young adulthood. Here we review recent literatures implicating neurodevelopmental deficits in schizophrenia and discuss how genetic factors are involved in the processes toward onset of the disease. We emphasize the importance of postnatal glutamate synapse development in the pathology of the disorder. These genetic risk factors contribute to the process possibly in a synergistic manner. The notion of signal pathways involving more than one genetic factor is in accord with the multifactorial nature of schizophrenia.
Collapse
Affiliation(s)
- Akiko Hayashi-Takagi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States.
| | | |
Collapse
|
232
|
Romé P, Prigent C, Giet R. [Centrosomes, mitotic spindle and cancer: find the odd one out!]. Med Sci (Paris) 2010; 26:377-83. [PMID: 20412742 DOI: 10.1051/medsci/2010264377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Centrosomes are essential protagonists during cell division through microtubule nucleation and spindle formation which are key to the harmonious distribution of sister chromatids in the two daughter cells. However, during the past decade, a wealth of new observations has extended their role beyond mitosis, particularly in the asymmetrical partition of cell fate determinants. Remarkably, asymmetric centrosome inheritance per se, through the segregation of differently aged mother -centrioles, seems to regulate the differential behaviour of daughter cells, in part through asynchronous expression of primary cilia, governing the response to environmental signals. It is thus understandable why any quantitative or qualitative dysfunction of centrioles contributes to genomic -instability and thus -tumorigenesis.
Collapse
Affiliation(s)
- Pierre Romé
- Institut de génétique et développement de Rennes, UMR 6061, Faculté de médecine, professeur Léon Bernard, CS 34317, 35043 Rennes Cedex, France.
| | | | | |
Collapse
|
233
|
Ferretti R, Palumbo V, Di Savino A, Velasco S, Sbroggiò M, Sportoletti P, Micale L, Turco E, Silengo L, Palumbo G, Hirsch E, Teruya-Feldstein J, Bonaccorsi S, Pandolfi PP, Gatti M, Tarone G, Brancaccio M. Morgana/chp-1, a ROCK inhibitor involved in centrosome duplication and tumorigenesis. Dev Cell 2010; 18:486-95. [PMID: 20230755 DOI: 10.1016/j.devcel.2009.12.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 11/04/2009] [Accepted: 12/28/2009] [Indexed: 11/19/2022]
Abstract
Centrosome abnormalities lead to genomic instability and are a common feature of many cancer cells. Here we show that mutations in morgana/chp-1 result in centrosome amplification and lethality in both Drosophila and mouse, and that the fly centrosome phenotype is fully rescued by the human ortholog of morgana. In mouse cells, morgana forms a complex with Hsp90 and ROCK I and II, and directly binds ROCK II. Morgana downregulation promotes the interaction between ROCK II and nucleophosmin (NPM), leading to an increased ROCK II kinase activity, which results in centrosome amplification. Morgana(+/-) primary cells and mice display an increased susceptibility to neoplastic transformation. In addition, tumor tissue array histochemical analysis revealed that morgana is underexpressed in a large fraction of breast and lung human cancers. Thus, morgana/chp-1 appears to prevent both centrosome amplification and tumorigenesis.
Collapse
Affiliation(s)
- Roberta Ferretti
- Dipartimento di Genetica, Biologia e Biochimica, Università di Torino, 10126 Torino, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Ma C, Tran J, Gu F, Ochoa R, Li C, Sept D, Werbovetz K, Morrissette N. Dinitroaniline activity in Toxoplasma gondii expressing wild-type or mutant alpha-tubulin. Antimicrob Agents Chemother 2010; 54:1453-60. [PMID: 20145086 PMCID: PMC2849357 DOI: 10.1128/aac.01150-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 11/30/2009] [Accepted: 01/26/2010] [Indexed: 11/20/2022] Open
Abstract
The human parasite Toxoplasma gondii is sensitive to dinitroaniline compounds which selectively disrupt microtubules in diverse protozoa but which have no detectable effect on vertebrate host cell microtubules or other functions. Replication of wild-type T. gondii is inhibited by 0.5 to 2.5 microM oryzalin, but mutant parasites harboring amino acid substitutions in the predicted dinitroaniline binding site confer resistance up to 40 microM oryzalin. However, the precise interaction between dinitroanilines and the binding site in alpha-tubulin remains unclear. We have investigated the activity of 12 dinitroanilines and the related compound amiprophos methyl on wild-type and dinitroaniline-resistant parasite lines that contain proposed binding site mutations. These data indicate that dinitramine is the most effective dinitroaniline to inhibit Toxoplasma growth in wild-type parasites and most resistant lines. Dinitramine has an amine group at the meta position not present in any of the other dinitroanilines tested here that is predicted to form hydrogen bonds with residues Arg2 and Gln133 according to docking data. Remarkably, although the binding site mutation Ile235Val confers increased resistance to most dinitroanilines, it confers increased sensitivity to GB-II-5, a compound optimized for activity against kinetoplastid tubulin. Kinetoplastid parasites have a valine at position 235 of alpha-tubulin, whereas apicomplexan parasites have an isoleucine at this site. We suggest that this heterogeneity in binding site environment influences relative dinitroaniline sensitivity in distinct protozoan lineages and hypothesize that a mutation that makes the apicomplexan dinitroaniline binding site more like the kinetoplastid site increases sensitivity to a dinitroaniline optimized for activity in the latter parasites.
Collapse
Affiliation(s)
- Christopher Ma
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697, Department of Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, Michigan 48109-2099, Division of Medicinal Chemistry & Pharmacognosy, Ohio State University, 332 Parks Hall, 500 West 12th Avenue, Columbus, Ohio 43210-1291, Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Johnson Tran
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697, Department of Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, Michigan 48109-2099, Division of Medicinal Chemistry & Pharmacognosy, Ohio State University, 332 Parks Hall, 500 West 12th Avenue, Columbus, Ohio 43210-1291, Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Frank Gu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697, Department of Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, Michigan 48109-2099, Division of Medicinal Chemistry & Pharmacognosy, Ohio State University, 332 Parks Hall, 500 West 12th Avenue, Columbus, Ohio 43210-1291, Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Roxanna Ochoa
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697, Department of Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, Michigan 48109-2099, Division of Medicinal Chemistry & Pharmacognosy, Ohio State University, 332 Parks Hall, 500 West 12th Avenue, Columbus, Ohio 43210-1291, Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Catherine Li
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697, Department of Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, Michigan 48109-2099, Division of Medicinal Chemistry & Pharmacognosy, Ohio State University, 332 Parks Hall, 500 West 12th Avenue, Columbus, Ohio 43210-1291, Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - David Sept
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697, Department of Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, Michigan 48109-2099, Division of Medicinal Chemistry & Pharmacognosy, Ohio State University, 332 Parks Hall, 500 West 12th Avenue, Columbus, Ohio 43210-1291, Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Karl Werbovetz
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697, Department of Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, Michigan 48109-2099, Division of Medicinal Chemistry & Pharmacognosy, Ohio State University, 332 Parks Hall, 500 West 12th Avenue, Columbus, Ohio 43210-1291, Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Naomi Morrissette
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697, Department of Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, Michigan 48109-2099, Division of Medicinal Chemistry & Pharmacognosy, Ohio State University, 332 Parks Hall, 500 West 12th Avenue, Columbus, Ohio 43210-1291, Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
235
|
The insect centriole: A land of discovery. Tissue Cell 2010; 42:69-80. [DOI: 10.1016/j.tice.2010.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 01/11/2010] [Accepted: 01/11/2010] [Indexed: 12/26/2022]
|
236
|
Lindeman RE, Pelegri F. Vertebrate maternal-effect genes: Insights into fertilization, early cleavage divisions, and germ cell determinant localization from studies in the zebrafish. Mol Reprod Dev 2010; 77:299-313. [PMID: 19908256 PMCID: PMC4276564 DOI: 10.1002/mrd.21128] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the earliest stages of animal development prior to the commencement of zygotic transcription, all critical cellular processes are carried out by maternally-provided molecular products accumulated in the egg during oogenesis. Disruption of these maternal products can lead to defective embryogenesis. In this review, we focus on maternal genes with roles in the fundamental processes of fertilization, cell division, centrosome regulation, and germ cell development with emphasis on findings from the zebrafish, as this is a unique and valuable model system for vertebrate reproduction.
Collapse
Affiliation(s)
- Robin E. Lindeman
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, Wisconsin
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, Wisconsin
| |
Collapse
|
237
|
Singla V, Romaguera-Ros M, Garcia-Verdugo JM, Reiter JF. Ofd1, a human disease gene, regulates the length and distal structure of centrioles. Dev Cell 2010; 18:410-24. [PMID: 20230748 PMCID: PMC2841064 DOI: 10.1016/j.devcel.2009.12.022] [Citation(s) in RCA: 207] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 12/01/2009] [Accepted: 12/29/2009] [Indexed: 12/12/2022]
Abstract
Centrosomes and their component centrioles represent the principal microtubule organizing centers of animal cells. Here, we show that the gene underlying orofaciodigital syndrome 1, Ofd1, is a component of the distal centriole that controls centriole length. In the absence of Ofd1, distal regions of centrioles, but not procentrioles, elongate abnormally. These long centrioles are structurally similar to normal centrioles but contain destabilized microtubules with abnormal posttranslational modifications. Ofd1 is also important for centriole distal appendage formation and centriolar recruitment of the intraflagellar transport protein Ift88. To model OFD1 syndrome in embryonic stem cells, we replaced the Ofd1 gene with missense alleles from human OFD1 patients. Distinct disease-associated mutations cause different degrees of excessive or decreased centriole elongation, all of which are associated with diminished ciliogenesis. Our results indicate that Ofd1 acts at the distal centriole to build distal appendages, recruit Ift88, and stabilize centriolar microtubules at a defined length.
Collapse
Affiliation(s)
- Veena Singla
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158-2324, USA
| | | | | | | |
Collapse
|
238
|
Shankar H, Michal A, Kern RC, Kang DS, Gurevich VV, Benovic JL. Non-visual arrestins are constitutively associated with the centrosome and regulate centrosome function. J Biol Chem 2010; 285:8316-8329. [PMID: 20056609 PMCID: PMC2832982 DOI: 10.1074/jbc.m109.062521] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 01/06/2010] [Indexed: 01/14/2023] Open
Abstract
In addition to regulating receptor activity, non-visual arrestins function as scaffolds for numerous intracellular signaling cascades and as regulators of gene transcription. Here we report that the two non-visual arrestins, arrestin2 and arrestin3, localize to the centrosome, a key organelle involved in microtubule nucleation and bipolar mitotic spindle assembly. Both arrestins co-localized with the centrosomal marker gamma-tubulin during interphase and mitosis and were found in purified centrosome preparations. In vitro binding assays demonstrated that both arrestins directly interact with gamma-tubulin. Knockdown of either arrestin by RNA interference resulted in multinucleation, centrosome amplification, and mitotic defects, although only the loss of arrestin2 triggered aberrant microtubule nucleation. Importantly, overexpression of wild type arrestin rescued the multinucleation phenotype and restored normal centrosome number in arrestin siRNA-transfected cells. Moreover, overexpression of arrestin2 or -3 rescued the multinucleation defect observed in MDA-MB-231 breast cancer cells. Taken together, our data reveal that non-visual arrestins are novel centrosomal components and regulate normal centrosome function.
Collapse
Affiliation(s)
- Haripriya Shankar
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 and
| | - Allison Michal
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 and
| | - Ronald C. Kern
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 and
| | - Dong Soo Kang
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 and
| | - Vsevolod V. Gurevich
- the Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Jeffrey L. Benovic
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 and
| |
Collapse
|
239
|
Hergovich A, Kohler RS, Schmitz D, Vichalkovski A, Cornils H, Hemmings BA. The MST1 and hMOB1 tumor suppressors control human centrosome duplication by regulating NDR kinase phosphorylation. Curr Biol 2010; 19:1692-702. [PMID: 19836237 DOI: 10.1016/j.cub.2009.09.020] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 09/07/2009] [Accepted: 09/08/2009] [Indexed: 01/11/2023]
Abstract
BACKGROUND Human MST/hSAV/LATS/hMOB tumor suppressor cascades are regulators of cell death and proliferation; however, little is known about other functions of MST/hMOB signaling. Mob1p, one of two MOB proteins in yeast, appears to play a role in spindle pole body duplication (the equivalent of mammalian centrosome duplication). We therefore investigated the role of human MOB proteins in centrosome duplication. We also addressed the regulation of human centrosome duplication by mammalian serine/threonine Ste20-like (MST) kinases, considering that MOB proteins can function together with Ste20-like kinases in eukaryotes. RESULTS By studying the six human MOB proteins and five MST kinases, we found that MST1/hMOB1 signaling controls centrosome duplication. Overexpression of hMOB1 caused centrosome overduplication, whereas RNAi depletion of hMOB1 or MST1 impaired centriole duplication. Significantly, we delineated an hMOB1/MST1/NDR1 signaling pathway regulating centrosome duplication. More specifically, analysis of shRNA-resistant hMOB1 and NDR1 mutants revealed that a functional NDR/hMOB1 complex is critical for MST1 to phosphorylate NDR on the hydrophobic motif that in turn is required for human centrosome duplication. Furthermore, shRNA-resistant MST1 variants revealed that MST1 kinase activity is crucial for centrosome duplication whereas MST1 binding to the hSAV and RASSF1A tumor suppressor proteins is dispensable. Finally, by studying the PLK4/HsSAS-6/CP110 centriole assembly machinery, we also observed that normal daughter centriole formation depends on intact MST1/hMOB1/NDR signaling, although HsSAS-6 centriolar localization is not affected. CONCLUSIONS Our observations propose a novel pathway in control of human centriole duplication after recruitment of HsSAS-6 to centrioles.
Collapse
|
240
|
Abstract
AbstractThe centrosome functions as the microtubule-organizing center and plays a vital role in organizing spindle poles during mitosis. Recently, we identified a centrosomal protein called CLERC (Centrosomal leucine-rich repeat and coiled-coil containing protein) which is a human ortholog of Chlamydomonas Vfl1 protein. The bibliography as well as database searches provided evidence that the human proteome contains at least seven centrosomal leucine-rich repeat proteins including CLERC. CLERC and four other centrosomal leucine-rich repeat proteins contain the SDS22-like leucine-rich repeat motifs, whereas the remaining two proteins contain the RI-like and the cysteine-containing leucine-rich repeat motifs. Individual leucine-rich repeat motifs are highly conserved and present in evolutionarily diverse organisms. Here, we provide an overview of CLERC and other centrosomal leucine-rich repeat proteins, their structures, their evolutionary relationships, and their functional properties.
Collapse
|
241
|
Bahmanyar S, Nelson WJ, Barth AIM. Role of APC and its binding partners in regulating microtubules in mitosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 656:65-74. [PMID: 19928353 DOI: 10.1007/978-1-4419-1145-2_6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Adenomatous polyposis coli (APC) is a multifunctional protein commonly mutated in colon cancer. APC contains binding sites for multiple proteins with diverse roles in signaling and the structural and functional organization of cells. Recent evidence suggests roles for APC and some of its binding partners in regulating microtubules in mitosis. APC localizes to three key locations in mitosis: kinetochores, the cortex and centrosomes. Here, we discuss possible mechanisms for APC function at these sites and suggest new pathways by which APC mutations promote tumorigenesis.
Collapse
Affiliation(s)
- Shirin Bahmanyar
- Department of Biological Sciences and Molecular Cellular Physiology, Stanford University, Stanford, California 94305-5430, USA
| | | | | |
Collapse
|
242
|
Fanarraga ML, Bellido J, Jaén C, Villegas JC, Zabala JC. TBCD links centriologenesis, spindle microtubule dynamics, and midbody abscission in human cells. PLoS One 2010; 5:e8846. [PMID: 20107510 PMCID: PMC2809749 DOI: 10.1371/journal.pone.0008846] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 01/04/2010] [Indexed: 11/18/2022] Open
Abstract
Microtubule-organizing centers recruit alpha- and beta-tubulin polypeptides for microtubule nucleation. Tubulin synthesis is complex, requiring five specific cofactors, designated tubulin cofactors (TBCs) A-E, which contribute to various aspects of microtubule dynamics in vivo. Here, we show that tubulin cofactor D (TBCD) is concentrated at the centrosome and midbody, where it participates in centriologenesis, spindle organization, and cell abscission. TBCD exhibits a cell-cycle-specific pattern, localizing on the daughter centriole at G1 and on procentrioles by S, and disappearing from older centrioles at telophase as the protein is recruited to the midbody. Our data show that TBCD overexpression results in microtubule release from the centrosome and G1 arrest, whereas its depletion produces mitotic aberrations and incomplete microtubule retraction at the midbody during cytokinesis. TBCD is recruited to the centriole replication site at the onset of the centrosome duplication cycle. A role in centriologenesis is further supported in differentiating ciliated cells, where TBCD is organized into "centriolar rosettes". These data suggest that TBCD participates in both canonical and de novo centriolar assembly pathways.
Collapse
Affiliation(s)
- Mónica López Fanarraga
- Departamentos de Biología Molecular, Instituto de Formación e Investigación Marqués de Valdecilla Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Javier Bellido
- Departamentos de Biología Molecular, Instituto de Formación e Investigación Marqués de Valdecilla Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Cristina Jaén
- Departamentos de Biología Molecular, Instituto de Formación e Investigación Marqués de Valdecilla Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Juan Carlos Villegas
- Anatomía y Biología Celular, Instituto de Formación e Investigación Marqués de Valdecilla Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Juan Carlos Zabala
- Departamentos de Biología Molecular, Instituto de Formación e Investigación Marqués de Valdecilla Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| |
Collapse
|
243
|
Martins AR, Machado P, Callaini G, Bettencourt-Dias M. Microscopy methods for the study of centriole biogenesis and function in Drosophila. Methods Cell Biol 2010; 97:223-42. [PMID: 20719274 DOI: 10.1016/s0091-679x(10)97013-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Centrosomes regulate cell motility, adhesion, and polarity in interphase and participate in spindle formation in mitosis. They are composed of two centrioles, which are microtubule-based structures, and a proteinaceous matrix recruited by those, called pericentriolar material. Centrioles are also necessary for the nucleation of the axoneme, the microtubule inner structure of cilia and flagella. The fruit fly, Drosophila melanogaster, has played an important role in the study of cell biology processes and their contextualization in a variety of developmental phenomena. In this chapter, we describe immunofluorescence and electron microscopy methods used to study Drosophila early embryogenesis and spermatogenesis. These methods have been widely used to study centriole assembly and its function as a centrosome organizer during mitotic and meiotic cell divisions and as an axoneme nucleator in the formation of flagella.
Collapse
|
244
|
Sillibourne JE, Tack F, Vloemans N, Boeckx A, Thambirajah S, Bonnet P, Ramaekers FCS, Bornens M, Grand-Perret T. Autophosphorylation of polo-like kinase 4 and its role in centriole duplication. Mol Biol Cell 2009; 21:547-61. [PMID: 20032307 PMCID: PMC2820420 DOI: 10.1091/mbc.e09-06-0505] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
PLK4 is a key regulator of centriole duplication. Here, we show that PLK4 is active beyond the initiation of centriole duplication with the abundance of active kinase increasing to a peak in mitosis. Importantly, we show that differences in PLK4 abundance exist between mother and daughter centrioles and that active PLK4 is restricted to the centrosome. Centrosome duplication occurs once every cell cycle in a strictly controlled manner. Polo-like kinase 4 (PLK4) is a key regulator of this process whose kinase activity is essential for centriole duplication. Here, we show that PLK4 autophosphorylation of serine S305 is a consequence of kinase activation and enables the active fraction to be identified in the cell. Active PLK4 is detectable on the replicating mother centriole in G1/S, with the proportion of active kinase increasing through interphase to reach a maximum in mitosis. Activation of PLK4 at the replicating daughter centriole is delayed until G2, but a level equivalent to the replicating mother centriole is achieved in M phase. Active PLK4 is regulated by the proteasome, because either proteasome inhibition or mutation of the degron motif of PLK4 results in the accumulation of S305-phosphorylated PLK4. Autophosphorylation probably plays a role in the process of centriole duplication, because mimicking S305 phosphorylation enhances the ability of overexpressed PLK4 to induce centriole amplification. Importantly, we show that S305-phosphorylated PLK4 is specifically sequestered at the centrosome contrary to the nonphosphorylated form. These data suggest that PLK4 activity is restricted to the centrosome to prevent aberrant centriole assembly and sustained kinase activity is required for centriole duplication.
Collapse
Affiliation(s)
- James E Sillibourne
- Institut Curie, Centre de Recherche/Unité Mixte de Recherche 144 du Centre Nationale de la Recherche Scientifique, 75248 Paris Cedex 05, France
| | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Abstract
Cilia are microtubule-based structures that protrude from the cell surface and function as sensors for mechanical and chemical environmental cues that regulate cellular differentiation or division. In metazoans, ciliary signaling is important during organismal development and in the homeostasis controls of adult tissues, with receptors for the Hedgehog, platelet derived growth factor (PDGF), Wnt, and other signaling cascades arrayed and active along the ciliary membrane. In normal cells, cilia are dynamically regulated during cell cycle progression: present in G0 and G1 cells, and usually in S/G2 cells, but almost invariably resorbed before mitotic entry, to reappear post-cytokinesis. This periodic resorption and reassembly of cilia, specified by the intrinsic cell cycle the intrinsic cell cycle machinery, influences the susceptibility of cells to the influence of extrinsic signals with cilia-associated receptors. Pathogenic conditions of mammals associated with loss of or defects in ciliary integrity include a number of developmental disorders, cystic syndromes in adults, and some cancers. With the continuing expansion of the list of human diseases associated with ciliary abnormalities, the identification of the cellular mechanisms regulating ciliary growth and disassembly has become a topic of intense research interest. Although these mechanisms are far from being understood, a number of recent studies have begun to identify key regulatory factors that may begin to offer insight into disease pathogenesis and treatment. In this chapter we will discuss the current state of knowledge regarding cell cycle control of ciliary dynamics, and provide general methods that can be applied to investigate cell cycle-dependent ciliary growth and disassembly.
Collapse
Affiliation(s)
- Olga V. Plotnikova
- Program in Molecular and Translational Medicine, Fox Chase Cancer Center, Philadelphia, PA 19111
- Department of Molecular Biology and Medical Biotechnology, Russian State Medical University, Moscow, Russia
| | - Elena N. Pugacheva
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506
| | - Erica A. Golemis
- Program in Molecular and Translational Medicine, Fox Chase Cancer Center, Philadelphia, PA 19111
| |
Collapse
|
246
|
Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. Nature 2009; 461:947-55. [PMID: 19829375 PMCID: PMC2764320 DOI: 10.1038/nature08435] [Citation(s) in RCA: 366] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 08/18/2009] [Indexed: 01/12/2023]
Abstract
Asymmetric divisions of radial glia progenitors produce self-renewing radial glia and differentiating cells simultaneously in the ventricular zone (VZ) of the developing neocortex. Whereas differentiating cells leave the VZ to constitute the future neocortex, renewing radial glia progenitors stay in the VZ for subsequent divisions. The differential behaviour of progenitors and their differentiating progeny is essential for neocortical development; however, the mechanisms that ensure these behavioural differences are unclear. Here we show that asymmetric centrosome inheritance regulates the differential behaviour of renewing progenitors and their differentiating progeny in the embryonic mouse neocortex. Centrosome duplication in dividing radial glia progenitors generates a pair of centrosomes with differently aged mother centrioles. During peak phases of neurogenesis, the centrosome retaining the old mother centriole stays in the VZ and is preferentially inherited by radial glia progenitors, whereas the centrosome containing the new mother centriole mostly leaves the VZ and is largely associated with differentiating cells. Removal of ninein, a mature centriole-specific protein, disrupts the asymmetric segregation and inheritance of the centrosome and causes premature depletion of progenitors from the VZ. These results indicate that preferential inheritance of the centrosome with the mature older mother centriole is required for maintaining radial glia progenitors in the developing mammalian neocortex.
Collapse
|
247
|
Nakamura A, Arai H, Fujita N. Centrosomal Aki1 and cohesin function in separase-regulated centriole disengagement. J Cell Biol 2009; 187:607-14. [PMID: 19948489 PMCID: PMC2806580 DOI: 10.1083/jcb.200906019] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 10/27/2009] [Indexed: 01/19/2023] Open
Abstract
Sister chromatid separation at anaphase is triggered by cleavage of the cohesin subunit Scc1, which is mediated by separase. Centriole disengagement also requires separase. This dual role of separase permits concurrent control of these events for accurate metaphase to anaphase transition. Although the molecular mechanism underlying sister chromatid cohesion has been clarified, that of centriole cohesion is poorly understood. In this study, we show that Akt kinase-interacting protein 1 (Aki1) localizes to centrosomes and regulates centriole cohesion. Aki1 depletion causes formation of multipolar spindles accompanied by centriole splitting, which is separase dependent. We also show that cohesin subunits localize to centrosomes and that centrosomal Scc1 is cleaved by separase coincidentally with chromatin Scc1, suggesting a role of Scc1 as a connector of centrioles as well as sister chromatids. Interestingly, Scc1 depletion strongly induces centriole splitting. Furthermore, Aki1 interacts with cohesin in centrosomes, and this interaction is required for centriole cohesion. We demonstrate that centrosome-associated Aki1 and cohesin play pivotal roles in preventing premature cleavage in centriole cohesion.
Collapse
Affiliation(s)
- Akito Nakamura
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroyuki Arai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Naoya Fujita
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| |
Collapse
|
248
|
Zhao L, Jin C, Chu Y, Varghese C, Hua S, Yan F, Miao Y, Liu J, Mann D, Ding X, Zhang J, Wang Z, Dou Z, Yao X. Dimerization of CPAP orchestrates centrosome cohesion plasticity. J Biol Chem 2009; 285:2488-97. [PMID: 19889632 DOI: 10.1074/jbc.m109.042614] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Centrosome cohesion and segregation are accurately regulated to prevent an aberrant separation of duplicated centrosomes and to ensure the correct formation of bipolar spindles by a tight coupling with cell cycle machinery. CPAP is a centrosome protein with five coiled-coil domains and plays an important role in the control of brain size in autosomal recessive primary microcephaly. Previous studies showed that CPAP interacts with tubulin and controls centriole length. Here, we reported that CPAP forms a homodimer during interphase, and the fifth coiled-coil domain of CPAP is required for its dimerization. Moreover, this self-interaction is required for maintaining centrosome cohesion and preventing the centrosome from splitting before the G(2)/M phase. Our biochemical studies show that CPAP forms homodimers in vivo. In addition, both monomeric and dimeric CPAP are required for accurate cell division, suggesting that the temporal dynamics of CPAP homodimerization is tightly regulated during the cell cycle. Significantly, our results provide evidence that CPAP is phosphorylated during mitosis, and this phosphorylation releases its intermolecular interaction. Taken together, these results suggest that cell cycle-regulated phosphorylation orchestrates the dynamics of CPAP molecular interaction and centrosome splitting to ensure genomic stability in cell division.
Collapse
Affiliation(s)
- Lingli Zhao
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology and Hefei National Laboratory for Physical Sciences at Nanoscale, Hefei 230027, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Hormeño S, Ibarra B, Chichón FJ, Habermann K, Lange BMH, Valpuesta JM, Carrascosa JL, Arias-Gonzalez JR. Single centrosome manipulation reveals its electric charge and associated dynamic structure. Biophys J 2009; 97:1022-30. [PMID: 19686649 DOI: 10.1016/j.bpj.2009.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 05/29/2009] [Accepted: 06/01/2009] [Indexed: 11/30/2022] Open
Abstract
The centrosome is the major microtubule-organizing center in animal cells and consists of a pair of centrioles surrounded by a pericentriolar material. We demonstrate laser manipulation of individual early Drosophila embryo centrosomes in between two microelectrodes to reveal that it is a net negatively charged organelle with a very low isoelectric region (3.1 +/- 0.1). From this single-organelle electrophoresis, we infer an effective charge smaller than or on the order of 10(3) electrons, which corresponds to a surface-charge density significantly smaller than that of microtubules. We show, however, that the charge of the centrosome has a remarkable influence over its own structure. Specifically, we investigate the hydrodynamic behavior of the centrosome by measuring its size by both Stokes law and thermal-fluctuation spectral analysis of force. We find, on the one hand, that the hydrodynamic size of the centrosome is 60% larger than its electron microscopy diameter, and on the other hand, that this physiological expansion is produced by the electric field that drains to the centrosome, a self-effect that modulates its structural behavior via environmental pH. This methodology further proves useful for studying the action of different environmental conditions, such as the presence of Ca(2+), over the thermally induced dynamic structure of the centrosome.
Collapse
Affiliation(s)
- S Hormeño
- Department of Macromolecular Structure, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
250
|
Norden C, Young S, Link BA, Harris WA. Actomyosin is the main driver of interkinetic nuclear migration in the retina. Cell 2009; 138:1195-208. [PMID: 19766571 PMCID: PMC2791877 DOI: 10.1016/j.cell.2009.06.032] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 04/28/2009] [Accepted: 06/12/2009] [Indexed: 12/16/2022]
Abstract
Progenitor cell nuclei in the rapidly expanding epithelium of the embryonic vertebrate central nervous system undergo a process called interkinetic nuclear migration (IKNM). Movements of IKNM are generally believed to involve smooth migration of nuclei from apical to basal and back during the G1 and G2 phases of the cell cycle, respectively. Yet, this has not been formally demonstrated, nor have the molecular mechanisms that drive IKNM been identified. Using time-lapse confocal microscopy to observe nuclear movements in zebrafish retinal neuroepithelial cells, we show that, except for brief apical nuclear translocations preceding mitosis, IKNM is stochastic rather than smooth and directed. We also show that IKNM is driven largely by actomyosin-dependent forces as it still occurs when the microtubule cytoskeleton is compromised but is blocked when MyosinII activity is inhibited.
Collapse
Affiliation(s)
- Caren Norden
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge, UK
| | | | | | | |
Collapse
|