201
|
Li M, Zhang W, Liu S, Liu Y, Zheng D. v-Fos transformation effector binds with CD2 cytoplasmic tail. ACTA ACUST UNITED AC 2006. [DOI: 10.1007/s11434-005-1509-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
202
|
Bonen L, Calixte S. Comparative analysis of bacterial-origin genes for plant mitochondrial ribosomal proteins. Mol Biol Evol 2005; 23:701-12. [PMID: 16368778 DOI: 10.1093/molbev/msj080] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mitochondrial ribosomes contain bacterial-type proteins reflecting their endosymbiotic heritage, and a subset of these genes is retained within the mitochondrion in land plants. Variation in gene location is observed, however, because migration to the nucleus is still an ongoing evolutionary process in plants. To gain insights into adaptation events related to successful gene transfer, we have compiled data for bacterial-origin mitochondrial-type ribosomal protein genes from the completely sequenced Arabidopsis and rice genomes. Approximately 75% of such nuclear-located genes encode amino-terminal extensions relative to their Escherichia coli counterparts, and of that set, only about 30% have introns at (or near) the junction in support of an exon shuffling-type recruitment of upstream expression/targeting signals. We find that genes that were transferred to the nucleus early in eukaryotic evolution have, on average, about twofold higher density of introns within the core ribosomal protein sequences than do those that moved to the nucleus more recently. About 20% of such introns are at positions identical to those in human orthologs, consistent with their ancestral presence. Plant mitochondrial-type ribosomal protein genes have dispersed chromosomal locations in the nucleus, and about 20% of them are present in multiple unlinked copies. This study provides new insights into the evolutionary history of endosymbiotic bacterial-type genes that have been transferred from the mitochondrion to the nucleus.
Collapse
Affiliation(s)
- Linda Bonen
- Biology Department, University of Ottawa, Ottawa, Canada.
| | | |
Collapse
|
203
|
Ojha S, Sirois M, Macinnes JI. Identification of Actinobacillus suis genes essential for the colonization of the upper respiratory tract of swine. Infect Immun 2005; 73:7032-9. [PMID: 16177387 PMCID: PMC1230937 DOI: 10.1128/iai.73.10.7032-7039.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Actinobacillus suis has emerged as an important opportunistic pathogen of high-health-status swine. A colonization challenge method was developed, and using PCR-based signature-tagged transposon mutagenesis, 13 genes belonging to 9 different functional classes were identified that were necessary for A. suis colonization of the upper respiratory tract of swine.
Collapse
|
204
|
Gray JP, Davis JW, Gopinathan L, Leas TL, Nugent CA, Vanden Heuvel JP. The ribosomal protein rpL11 associates with and inhibits the transcriptional activity of peroxisome proliferator-activated receptor-alpha. Toxicol Sci 2005; 89:535-46. [PMID: 16280383 DOI: 10.1093/toxsci/kfj040] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Peroxisome proliferator-activated receptor alpha (PPARalpha) is a member of the nuclear receptor superfamily whose ligands, the peroxisome proliferators (PPs), are liver tumor promoters in rodents. Interaction cloning was performed using bacterially expressed PPARalpha to identify proteins involved in PP signaling. The ribosomal protein L11 (rpL11), a component of the large 60S subunit, was identified as a PPARalpha-associated protein. Since rpL11 is a regulator of p53 and the cell cycle, the association between this protein and PPARalpha was examined in detail. PPARalpha-rpL11 interaction was confirmed using yeast and mammalian two-hybrid systems as well as in vitro pull-down assays. The association with rpL11 occurs within the D-domain (hinge-region) of PPARalpha. Unlike PPARalpha, the two closely related isoforms PPARbeta and gamma do not interact with rpL11. Cotransfection of mammalian cells with rpL11 resulted in ligand-dependent inhibition of transcriptional activity of PPARalpha. Ribosomal protein L11-mediated inhibition of gene expression is associated with decreased binding to the PPAR-response element (PPRE) DNA sequence. Release of rpL11 from the ribosome by serum deprivation or low-dose actinomycin D did not dramatically affect PPRE-driven luciferase activity when PPARalpha was overexpressed by cotransfection. However, when endogenous levels of PPARalpha are examined and rpL11 concentration is manipulated by expression by small interference RNA, the ability of peroxisome proliferator to induce PPRE-driven reporter activity and target gene mRNA is affected. These studies show that rpL11 inhibits PPARalpha activity and adds further evidence that ribosomal proteins play roles in the control of transcriptional regulation.
Collapse
Affiliation(s)
- Joshua P Gray
- Department of Veterinary Sciences and Center for Molecular Toxicology and Carcinogenesis, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | |
Collapse
|
205
|
Nishimura T, Wada T, Yamamoto KT, Okada K. The Arabidopsis STV1 protein, responsible for translation reinitiation, is required for auxin-mediated gynoecium patterning. THE PLANT CELL 2005; 17:2940-53. [PMID: 16227452 PMCID: PMC1276021 DOI: 10.1105/tpc.105.036533] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Ribosomal protein L24 (RPL24) is implicated in translation reinitiation of polycistronic genes. A newly isolated Arabidopsis thaliana short valve1 (stv1) mutant, in which one of the RPL24-encoding genes, RPL24B, is deleted, shows specific defects in the apical-basal patterning of the gynoecium, in addition to phenotypes induced by ribosome deficiency. A similar gynoecium phenotype is caused by mutations in the auxin response factor (ARF) genes ETTIN (ETT) and MONOPTEROS (MP), which have upstream open reading frames (uORFs) in their 5'-transcript leader sequences. Gynoecia of a double mutant of stv1 and a weak ett mutant allele are similar to those of a strong ett allele, and transformation with a uORF-eliminated ETT construct partially suppressed the stv1 gynoecium phenotype, implying that STV1 could influence ETT translation through its uORFs. Analyses of 5'-leader-reporter gene fusions showed that the uORFs of ETT and MP negatively regulate the translation of the downstream major ORFs, indicating that translation reinitiation is an important step for the expression of these proteins. Taken together, we propose that perturbation of translation reinitiation of the ARF transcripts causes the defects in gynoecium patterning observed in the stv1 mutant.
Collapse
Affiliation(s)
- Taisuke Nishimura
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
206
|
Jeffery CJ. Mass spectrometry and the search for moonlighting proteins. MASS SPECTROMETRY REVIEWS 2005; 24:772-82. [PMID: 15605385 DOI: 10.1002/mas.20041] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Mass spectrometry has become one of the most important techniques in proteomics because of its use to identify the proteins found in different cell types, organelles, and multiprotein complexes. This information about protein location and binding partners can provide valuable clues to infer a protein's function. However, more and more proteins are found that "moonlight," or have more than one function, and the presence of moonlighting proteins can make more difficult the identification of protein function in those studies. This review discusses examples of moonlighting proteins and how their presence can affect the results of mass spectrometry studies that identify the locations, levels, and changes in protein expression. Although the presence of moonlighting proteins can complicate the results of those studies, mass spectrometry-derived protein-expression profiles potentially provides a very powerful method to find additional moonlighting proteins because they do not require a prior hypothesis of the protein's function.
Collapse
Affiliation(s)
- Constance J Jeffery
- Laboratory for Molecular Biology, Department of Biological Sciences, MC567, University of Illinois, 900 S. Ashland Ave, Chicago, Illinois 60607, USA.
| |
Collapse
|
207
|
Brosius J. Echoes from the past--are we still in an RNP world? Cytogenet Genome Res 2005; 110:8-24. [PMID: 16093654 DOI: 10.1159/000084934] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Accepted: 05/04/2004] [Indexed: 11/19/2022] Open
Abstract
Availability of the human genome sequence and those of other species is unmeasured in their value for a comprehensive understanding of the architecture, function and evolution of genomes and cells. Various mechanisms keep genomes in flux and generate intra- and interspecies variation. The conversion of RNA modules into DNA and their more or less random integration into chromosomes (retroposition) is in many lineages including our own the most pervasive and perhaps the most enigmatic. The proclivity of such events in extant multicellular eukaryotes, even in more recent evolutionary times, gives the impression that the transition period from the RNP (ribonucleoprotein) world to the emergence of modern cells, where DNA became the predominant carrier of genetic information, has lasted billions of years and is an endlessly drawn-out process rather than the punctuated event one might expect. Apart from the impact of such RNA-mediated processes as retroposition, the role of RNA in a wide variety of cellular functions has only recently become more widely appreciated.
Collapse
Affiliation(s)
- J Brosius
- Institute of Experimental Pathology, ZMBE, University of Munster, Munster, Germany.
| |
Collapse
|
208
|
Loreni F, Iadevaia V, Tino E, Caldarola S, Amaldi F. RACK1 mRNA translation is regulated via a rapamycin-sensitive pathway and coordinated with ribosomal protein synthesis. FEBS Lett 2005; 579:5517-20. [PMID: 16212959 DOI: 10.1016/j.febslet.2005.09.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 07/28/2005] [Accepted: 09/08/2005] [Indexed: 10/25/2022]
Abstract
RACK1 has been shown to interact with several proteins, this suggesting that it may play a central role in cell growth regulation. Some recent articles have described RACK1 as a component of the small ribosomal subunit. To investigate the relationship between RACK1 and ribosome, we analyzed RACK1 mRNA structure and regulation. Translational regulation was studied in HeLa cells subjected to serum or amino acid deprivation and stimulation. The results show that RACK1 mRNA has a 5' terminal oligopyrimidine sequence and that its translation is dependent on the availability of serum and amino acids in exactly the same way as any other vertebrate ribosomal protein mRNA.
Collapse
|
209
|
Abstract
The cell, as a molecular system, is often interpreted in terms of complex clockworks, and the design charts of mechanical and electrical engineering are assumed to provide adequate approximations for the description of cellular organization. However, a growing body of experimental evidence obtained through the observation and analysis of real-time dynamics of fluorescently labeled molecules inside living cells is increasingly inconsistent with the classico-mechanistic perception of the cell. An overview of recent studies favors an emerging alternative image of the cell as a dynamic integrated system of interconnected and interdependent metastable molecular organizations realized through stochasticity and self-organization.
Collapse
|
210
|
Li L, Fallon AM. Recovery of cDNAs encoding ribosomal proteins S9 and L26 from Aedes albopictus mosquito cells and identification of their homologs in the malaria vector, Anopheles gambiae. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2005; 60:44-53. [PMID: 16116622 DOI: 10.1002/arch.20083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We used PCR-based approaches to obtain the full-length cDNA sequences encoding ribosomal protein (Rp) S9 and L26 from a mosquito (Aedes albopictus) C7-10 cell line. The deduced mosquito RpS9 protein has a mass of 22,826 Da and a pI of 11.41, while RpL26 had a mass of 17,442 Da and a pI of 11.52. Both cDNAs initiated with the 5'-polypyrimidine motif characteristic of ribosomal protein transcripts. Using the Aedes protein and nucleic acid sequences, we identified rpS9 and rpL26 as single copy genes in the Anopheles gambiae genome. In An. gambiae, the RpS9 coding region was distributed over 3 exons, spanning 2.6 kb, but the Anopheles rpL26 protein coding region lacked introns. The Aedes and Anopheles RpS9 and RpL26 proteins shared 96 and 92% identity, respectively. Despite low numbers of parsimony-informative amino acid substitutions, phylogenies based on the ribosomal protein sequences accurately group the Aedes and Anopheles proteins with high bootstrap values.
Collapse
Affiliation(s)
- Lei Li
- Department of Entomology, University of Minnesota, St. Paul, 55108, USA
| | | |
Collapse
|
211
|
An J, Yuan Q, Wang C, Liu L, Tang K, Tian HY, Jing NH, Zhao FK. Differential display of proteins involved in the neural differentiation of mouse embryonic carcinoma P19 cells by comparative proteomic analysis. Proteomics 2005; 5:1656-68. [PMID: 15789344 DOI: 10.1002/pmic.200401049] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mouse embryonic carcinoma P19 cell has been used extensively as a model to study molecular mechanisms of neural differentiation in vitro. After retinoic acid (RA) treatment and aggregation, P19 cells can differentiate into neural cells including neurons and glial cells. In this study, comparative proteomic analysis is utilized to approach the protein profiles associated with the RA-induced neural differentiation of P19 cells. Image analysis of silver stained two-dimensional gels indicated that 28 protein spots had significantly differential expression patterns in both quantity and quality. With mass spectrometry analysis and protein functional exploration, many proteins demonstrated an association with distinct aspects of neural differentiation. These proteins were gag polyprotein, rod cGMP-specific 3',5'-cyclic phosphodiesterase, 53 kDa BRG1-associated factor A, N-myc downstream regulated 1, Vitamin D receptor associated factor 1, stromal cell derived factor receptor 1, phosphoglycerate mutase, Ran-specific GTPase-activating protein, and retinoic acid (RA)-binding protein. While some cytoskeleton-related proteins such as beta cytoskeletal actin, gamma-actin, actin-related protein 1, tropomyosin 1, and cofilin 1 are related to cell migration and aggregation, other proteins have shown a relationship with distinct aspects of neural differentiation including energy production and utilization, protein synthesis and folding, cell signaling transduction, and self-protection. The differential expression patterns of these 28 proteins indicate their different roles during the neural differentiation of P19 cells. As an initial step toward unveiling the regulations involved in the commitment of pluripotent cells to a neural fate, information from this study may be helpful to uncover the molecular mechanisms of neural differentiation.
Collapse
Affiliation(s)
- Jie An
- Key Laboratory of Proteomics, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
212
|
Krause R, von Mering C, Bork P, Dandekar T. Shared components of protein complexes--versatile building blocks or biochemical artefacts? Bioessays 2005; 26:1333-43. [PMID: 15551274 DOI: 10.1002/bies.20141] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Protein complexes perform many important functions in the cell. Large-scale studies of protein-protein interactions have not only revealed new complexes but have also placed many proteins into multiple complexes. Whilst the advocates of hypothesis-free research touted the discovery of these shared components as new links between diverse cellular processes, critical commentators denounced many of the findings as artefacts, thus questioning the usefulness of large-scale approaches. Here, we survey proteins known to be shared between complexes, as established in the literature, and compare them to shared components found in high-throughput screens. We discuss the various challenges to the identification and functional interpretation of bona fide shared components, namely contaminants, variant and megacomplexes, and transient interactions, and suggest that many of the novel shared components found in high-throughput screens are neither the results of contamination nor central components, but appear to be primarily regulatory links in cellular processes.
Collapse
Affiliation(s)
- Roland Krause
- Cellzome AG, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | | | | | | |
Collapse
|
213
|
Dresios J, Aschrafi A, Owens GC, Vanderklish PW, Edelman GM, Mauro VP. Cold stress-induced protein Rbm3 binds 60S ribosomal subunits, alters microRNA levels, and enhances global protein synthesis. Proc Natl Acad Sci U S A 2005; 102:1865-70. [PMID: 15684048 PMCID: PMC548588 DOI: 10.1073/pnas.0409764102] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The expression of Rbm3, a glycine-rich RNA-binding protein, is enhanced under conditions of mild hypothermia, and Rbm3 has been postulated to facilitate protein synthesis at colder temperatures. To investigate this possibility, Rbm3 was overexpressed as a c-Myc fusion protein in mouse neuroblastoma N2a cells. Cells expressing this fusion protein showed a 3-fold increase in protein synthesis at both 37 degrees C and 32 degrees C compared with control cells. Although polysome profiles of cells expressing the fusion protein and control cells were similar, several differences were noted, suggesting that Rbm3 might enhance the association of 40S and 60S ribosomal subunits at 32 degrees C. Studies to assess a direct interaction of Rbm3 with ribosomes showed that a fraction of Rbm3 was associated with 60S ribosomal subunits in an RNA-independent manner. It appeared unlikely that this association could explain the global enhancement of protein synthesis, however, because cells expressing the Rbm3 fusion protein showed no substantial increase in the size of their monosome and polysome peaks, suggesting that similar numbers of mRNAs were being translated at approximately the same rates. In contrast, a complex that sedimented between the top of the gradient and 40S subunits was less abundant in cells expressing recombinant Rbm3. Further analysis showed that the RNA component of this fraction was microRNA. We discuss the possibility that Rbm3 expression alters global protein synthesis by affecting microRNA levels and suggest that both Rbm3 and microRNAs are part of a homeostatic mechanism that regulates global levels of protein synthesis under normal and cold-stress conditions.
Collapse
Affiliation(s)
- John Dresios
- Department of Neurobiology, The Scripps Research Institute and The Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
214
|
Schulze SR, Sinclair DAR, Fitzpatrick KA, Honda BM. A genetic and molecular characterization of two proximal heterochromatic genes on chromosome 3 of Drosophila melanogaster. Genetics 2005; 169:2165-77. [PMID: 15687284 PMCID: PMC1449577 DOI: 10.1534/genetics.103.023341] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heterochromatin comprises a transcriptionally repressive chromosome compartment in the eukaryotic nucleus; this is exemplified by the silencing effect it has on euchromatic genes that have been relocated nearby, a phenomenon known as position-effect variegation (PEV), first demonstrated in Drosophila melanogaster. However, the expression of essential heterochromatic genes within these apparently repressive regions of the genome presents a paradox, an understanding of which could provide key insights into the effects of chromatin structure on gene expression. To date, very few of these resident heterochromatic genes have been characterized to any extent, and their expression and regulation remain poorly understood. Here we report the cloning and characterization of two proximal heterochromatic genes in D. melanogaster, located deep within the centric heterochromatin of the left arm of chromosome 3. One of these genes, RpL15, is uncharacteristically small, is highly expressed, and encodes an essential ribosomal protein. Its expression appears to be compromised in a genetic background deficient for heterochromatin protein 1 (HP1), a protein associated with gene silencing in these regions. The second gene in this study, Dbp80, is very large and also appears to show a transcriptional dependence upon HP1; however, it does not correspond to any known lethal complementation group and is likely to be a nonessential gene.
Collapse
MESH Headings
- Alleles
- Animals
- Base Sequence
- Binding Sites
- Blotting, Northern
- Blotting, Southern
- Cell Survival
- Chromatin/genetics
- Chromosome Mapping
- Cloning, Molecular
- Crosses, Genetic
- DNA, Complementary/metabolism
- Drosophila Proteins/biosynthesis
- Drosophila Proteins/genetics
- Drosophila melanogaster/genetics
- Exons
- Female
- Gene Silencing
- Genetic Complementation Test
- Germ-Line Mutation
- Heterochromatin/chemistry
- Heterochromatin/genetics
- Heterozygote
- Introns
- Male
- Models, Genetic
- Molecular Sequence Data
- Mutation
- Phenotype
- Polymerase Chain Reaction
- Ribosomal Proteins/biosynthesis
- Ribosomal Proteins/genetics
- Sequence Analysis, DNA
- Sex Factors
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- Transcription, Genetic
- Transgenes
- Wings, Animal/embryology
- Wings, Animal/pathology
Collapse
Affiliation(s)
- Sandra R Schulze
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | | | |
Collapse
|
215
|
Abstract
Many kinds of multifunctional regulatory proteins have been identified that perform distinct biochemical functions in the nucleus, the cytoplasm, or both. Here we describe the recent discovery by Hall et al. (2004) of a new type of multifunctional protein: a metabolic enzyme that doubles as a transcription factor. This enzyme, Arg5,6, functions as a catalytic enzyme in ornithine biosynthesis and also binds and regulates the promoters of nuclear and mitochondrial genes. It may also regulate precursor mRNA metabolism. We discuss how proteins that serve as both metabolic enzymes and transcription factors might have evolved.
Collapse
Affiliation(s)
- Anjana Bhardwaj
- Department of Immunology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030-4009, USA
| | | |
Collapse
|
216
|
Ohkia A, Hu Y, Wang M, Garcia FU, Stearns ME. Evidence for prostate cancer-associated diagnostic marker-1: immunohistochemistry and in situ hybridization studies. Clin Cancer Res 2004; 10:2452-8. [PMID: 15073124 DOI: 10.1158/1078-0432.ccr-03-0170] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The purpose of this study was to characterize a novel gene/protein associated with prostate cancer, termed prostate cancer-associated diagnostic marker-1 [PCADM-1 (Hu Y, Wang M, Garcia FU, Aoyaki K, Stearns ME. Identification of PCADM-1 as a novel diagnostic marker for prostate cancer, submitted for publication)]. EXPERIMENTAL DESIGN AND RESULTS Immunological studies revealed that rabbit polyclonal antibodies generated against recombinant PCADM-1 specifically recognize the protein in crude protein extracts from a variety of prostate cancer cell lines (i.e., PC-3 ML, LNCaP, DU145, and CPTX-1532) and prostate cancer tissue. Combined immunolabeling and in situ hybridization studies demonstrated that PCADM-1 mRNA was expressed by the luminal epithelial cells of prostate cancer glands and was not expressed by high-grade prostatic intraepithelial neoplasia or HPV-MLC7 cells. Immunolabeling studies of tissue arrays from biopsies of archival material (n = 200 samples) confirmed that PCADM-1 was expressed by the luminal epithelial cells of prostate cancer. CONCLUSIONS Taken together, the data suggest that PCADM-1 is a specific marker for human prostate cancer.
Collapse
Affiliation(s)
- Akira Ohkia
- Drexel University College of Medicine, Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania 19102, USA
| | | | | | | | | |
Collapse
|
217
|
Bureau M, Leh V, Haas M, Geldreich A, Ryabova L, Yot P, Keller M. P6 protein of Cauliflower mosaic virus, a translation reinitiator, interacts with ribosomal protein L13 from Arabidopsis thaliana. J Gen Virol 2004; 85:3765-3775. [PMID: 15557250 DOI: 10.1099/vir.0.80242-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The P6 protein of Cauliflower mosaic virus (CaMV) transactivates translation of the CaMV 35S polycistronic pregenomic RNA and its spliced versions, and thus allows synthesis of a complete set of viral proteins. Previous studies have shown that P6 interacts with plant L18 and L24 ribosomal proteins and initiation factor eIF3, and it has been proposed that these interactions are involved in the reinitiation of translation of polycistronic viral RNAs. This study characterizes a novel cellular partner of P6, the ribosomal protein L13 from Arabidopsis thaliana. Far-Western assays performed with several P6 deletion mutants have shown that L13 interacts with the miniTAV of P6, which represents the minimal domain for transactivation, suggesting that the P6-L13 interaction might also be involved in this process. L13 and L18 were found to bind to the same region within the miniTAV. Competition assays between L18 and L13 for binding to miniTAV suggest that interactions between P6 and these ribosomal proteins involve separate P6 molecules, and/or occur at different stages of translation or in the context of another function also mediated by P6.
Collapse
Affiliation(s)
- Marina Bureau
- Institut de Biologie Moléculaire des Plantes, UPR CNRS 2357, Université Louis Pasteur, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | - Véronique Leh
- Institut de Biologie Moléculaire des Plantes, UPR CNRS 2357, Université Louis Pasteur, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | - Muriel Haas
- Institut de Biologie Moléculaire des Plantes, UPR CNRS 2357, Université Louis Pasteur, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | - Angèle Geldreich
- Institut de Biologie Moléculaire des Plantes, UPR CNRS 2357, Université Louis Pasteur, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | - Lyubov Ryabova
- Institut de Biologie Moléculaire des Plantes, UPR CNRS 2357, Université Louis Pasteur, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | - Pierre Yot
- Institut de Biologie Moléculaire des Plantes, UPR CNRS 2357, Université Louis Pasteur, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | - Mario Keller
- Institut de Biologie Moléculaire des Plantes, UPR CNRS 2357, Université Louis Pasteur, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France
| |
Collapse
|
218
|
Stack BC, Hollenbeak CS, Lee CM, Dunphy FR, Lowe VJ, Hamilton PD. Metallopanstimulin as a marker for head and neck cancer. World J Surg Oncol 2004; 2:45. [PMID: 15598348 PMCID: PMC544581 DOI: 10.1186/1477-7819-2-45] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Accepted: 12/14/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Metallopanstimulin (MPS-1) is a ribosomal protein that is found in elevated amounts in the sera of patients with head and neck squamous cell carcinoma (HNSCC). We used a test, denoted MPS-H, which detects MPS-1 and MPS-1-like proteins, to determine the relationship between MPS-H serum levels and clinical status of patients with, or at risk for, HNSCC. PATIENTS AND METHODS A total of 125 patients were prospectively enrolled from a university head and neck oncology clinic. Participants included only newly diagnosed HNSCC patients. Two control groups, including 25 non-smokers and 64 smokers, were studied for comparison. A total of 821 serum samples collected over a twenty-four month period were analyzed by the MPS-H radioimmunoassay. RESULTS HNSCC, non-smokers, and smokers had average MPS-H values of 41.5 ng/mL, 10.2 ng/mL, and 12.8 ng/mL, respectively (p = 0.0001). CONCLUSION We conclude that MPS-1 and MPS-1-like proteins are elevated in patients with HNSCC, and that MPS-H appears to be a promising marker of presence of disease and response to treatment in HNSCC patients.
Collapse
Affiliation(s)
- Brendan C Stack
- Division of Otolaryngology-Head and Neck Surgery, Penn State College of Medicine, Hershey, PA, USA
| | - Christopher S Hollenbeak
- Departments of Surgery and Health Evaluation Sciences, Penn State College of Medicine, Hershey, PA, USA
- Department of Health Studies, Lehigh Valley Hospital, Allentown, PA, USA
| | - Christopher M Lee
- Department of Radiation Oncology, University of Utah Medical Center, SLC, UT, USA
| | - Frank R Dunphy
- Department of Medicine, Division of Oncology, Duke University Medical Center, Durham, NC, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
219
|
Chintharlapalli SR, Jasti M, Malladi S, Parsa KVL, Ballestero RP, González-García M. BMRP is a Bcl-2 binding protein that induces apoptosis. J Cell Biochem 2004; 94:611-26. [PMID: 15547950 DOI: 10.1002/jcb.20292] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Members of the Bcl-2 family of proteins play important roles in the regulation of cell death by apoptosis. The yeast Two-Hybrid system was utilized to identify a protein that interacts with the anti-apoptotic protein Bcl-2, designated BMRP. This protein corresponds to a previously known mitochondrial ribosomal protein (MRPL41). Binding experiments confirmed the interaction of BMRP to Bcl-2 in mammalian cells. Subcellular fractionation by differential centrifugation studies showed that both Bcl-2 and BMRP are localized to the same fractions (fractions that are rich in mitochondria). Northern blot analysis revealed a major bmrp mRNA band of approximately 0.8 kb in several human tissues. Additionally, a larger 2.2 kb mRNA species was also observed in some tissues. Western blot analysis showed that endogenous BMRP runs as a band of 16-17 kDa in SDS-PAGE. Overexpression of BMRP induced cell death in primary embryonic fibroblasts and NIH/3T3 cells. Transfection of BMRP showed similar effects to those observed by overexpression of the pro-apoptotic proteins Bax or Bad. BMRP-stimulated cell death was counteracted by co-expression of Bcl-2. The baculoviral caspase inhibitor p35 also protected cells from BMRP-induced cell death. These findings suggest that BMRP is a mitochondrial ribosomal protein involved in the regulation of cell death by apoptosis, probably affecting pathways mediated by Bcl-2 and caspases.
Collapse
Affiliation(s)
- Sudhakar R Chintharlapalli
- Departments of Biology and Chemistry, Texas A&M University-Kingsville, 700 University Blvd., Kingsville, Texas 78363, USA
| | | | | | | | | | | |
Collapse
|
220
|
Lee WJ, Keefer K, Hollenbeak CS, Stack BC. A new assay to screen for head and neck squamous cell carcinoma using the tumor marker metallopanstimulin. Otolaryngol Head Neck Surg 2004; 131:466-71. [PMID: 15467619 DOI: 10.1016/j.otohns.2004.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To date, no serologic marker has proven effective as a diagnostic test for head and neck squamous cell carcinoma (HNSCC). Levels of metallopanstimulin (MPS), as measured by a difficult to reproduce radioimmunoassay, are significantly elevated in untreated HNSCC patients. Our objective was to develop a simpler MPS assay. METHODS Serum was obtained from HNSCC patients through Institutional Review Board approved protocols at the Penn State University College of Medicine and healthy volunteers donating blood at the hospital blood bank from 2000 to present. Serum MPS was immunoprecipitated, slot blotted, and Western blotted. MPS levels were quantified by densitometry. RESULTS Forty-eight blood donors and 45 known HNSCC patients were studied. The MPS level was 14 ng/mL +/- 1 (SEM) for blood donors and 36 ng/mL +/- 3 (SEM) for known HNSCC patients. The difference was statistically significant (P < 0.0001). CONCLUSION Slot blot analysis of MPS is a safe, effective, and reproducible assay that may be used to screen for HNSCC in high-risk populations.
Collapse
Affiliation(s)
- Wha-Joon Lee
- Division of Otolaryngology, The Milton S. Hershey Medical Center, Penn State University College of Medicine, Hershey, PA 17033-0850, USA
| | | | | | | |
Collapse
|
221
|
Taulan M, Paquet F, Maubert C, Delissen O, Demaille J, Romey MC. Renal toxicogenomic response to chronic uranyl nitrate insult in mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2004; 112:1628-35. [PMID: 15598614 PMCID: PMC1247660 DOI: 10.1289/txg.7296] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Although the nephrotoxicity of uranium has been established through numerous animal studies, relatively little is known about the effects of long-term environmental uranium exposure. Using a combination of conventional biochemical studies and serial analysis of gene expression (SAGE), we examined the renal responses to uranyl nitrate (UN) chronic exposure. Renal uranium levels were significantly increased 4 months after ingestion of uranium in drinking water. Creatinine levels in serum were slightly but significantly increased compared with those in controls. Although no further significant differences in other parameters were noted, substantial molecular changes were observed in toxicogenomic profiles. UN induced dramatic alterations in expression levels of more than 200 genes, mainly up-regulated, including oxidative-response-related genes, genes encoding for cellular metabolism, ribosomal proteins, signal transduction, and solute transporters. Seven differentially expressed transcripts were confirmed by real-time quantitative polymerase chain reaction. In addition, significantly increased peroxide levels support the implication of oxidative stress in UN toxicant response. This report highlights the potential of SAGE for the discovery of novel toxicant-induced gene expression alterations. Here, we present, for the first time, a comprehensive view of renal molecular events after uranium long-term exposure.
Collapse
Affiliation(s)
- Magali Taulan
- Institut de Radioprotection et de Sûreté Nucléaire, Laboratoire de Radiotoxicologie Expérimentale, Pierrelatte, France
| | | | | | | | | | | |
Collapse
|
222
|
Oliver ER, Saunders TL, Tarlé SA, Glaser T. Ribosomal protein L24 defect in belly spot and tail (Bst), a mouse Minute. Development 2004; 131:3907-20. [PMID: 15289434 PMCID: PMC2262800 DOI: 10.1242/dev.01268] [Citation(s) in RCA: 237] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ribosomal protein mutations, termed Minutes, have been instrumental in studying the coordination of cell and tissue growth in Drosophila. Although abundant in flies, equivalent defects in mammals are relatively unknown. Belly spot and tail (Bst) is a semidominant mouse mutation that disrupts pigmentation, somitogenesis and retinal cell fate determination. Here, we identify Bst as a deletion within the Rpl24 riboprotein gene. Bst significantly impairs Rpl24 splicing and ribosome biogenesis. Bst/+ cells have decreased rates of protein synthesis and proliferation, and are outcompeted by wild-type cells in C57BLKS<-->ROSA26 chimeras. Bacterial artificial chromosome (BAC) and cDNA transgenes correct the mutant phenotypes. Our findings establish Bst as a mouse Minute and provide the first detailed characterization of a mammalian ribosomal protein mutation.
Collapse
Affiliation(s)
- Edward R. Oliver
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Thomas L. Saunders
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Susan A. Tarlé
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tom Glaser
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- *Author for correspondence (e-mail: )
| |
Collapse
|
223
|
Nagahama M, Hara Y, Seki A, Yamazoe T, Kawate Y, Shinohara T, Hatsuzawa K, Tani K, Tagaya M. NVL2 is a nucleolar AAA-ATPase that interacts with ribosomal protein L5 through its nucleolar localization sequence. Mol Biol Cell 2004; 15:5712-23. [PMID: 15469983 PMCID: PMC532049 DOI: 10.1091/mbc.e04-08-0692] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
NVL (nuclear VCP-like protein), a member of the AAA-ATPase family, is known to exist in two forms with N-terminal extensions of different lengths in mammalian cells. Here, we show that they are localized differently in the nucleus; NVL2, the major species, is mainly present in the nucleolus, whereas NVL1 is nucleoplasmic. Mutational analysis demonstrated the presence of two nuclear localization signals in NVL2, one of which is shared with NVL1. In addition, a nucleolar localization signal was found to exist in the N-terminal extra region of NVL2. The nucleolar localization signal is critical for interaction with ribosomal protein L5, which was identified as a specific interaction partner of NVL2 on yeast two-hybrid screening. The interaction of NVL2 with L5 is ATP-dependent and likely contributes to the nucleolar translocation of NVL2. The physiological implication of this interaction was suggested by the finding that a dominant negative NVL2 mutant inhibits ribosome biosynthesis, which is known to take place in the nucleolus.
Collapse
Affiliation(s)
- Masami Nagahama
- School of Life Science, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Jin A, Itahana K, O'Keefe K, Zhang Y. Inhibition of HDM2 and activation of p53 by ribosomal protein L23. Mol Cell Biol 2004; 24:7669-80. [PMID: 15314174 PMCID: PMC506972 DOI: 10.1128/mcb.24.17.7669-7680.2004] [Citation(s) in RCA: 290] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The importance of coordinating cell growth with proliferation has been recognized for a long time. The molecular basis of this relationship, however, is poorly understood. Here we show that the ribosomal protein L23 interacts with HDM2. The interaction involves the central acidic domain of HDM2 and an N-terminal domain of L23. L23 and L11, another HDM2-interacting ribosomal protein, can simultaneously yet distinctly interact with HDM2 together to form a ternary complex. We show that, when overexpressed, L23 inhibits HDM2-induced p53 polyubiquitination and degradation and causes a p53-dependent cell cycle arrest. On the other hand, knocking down L23 causes nucleolar stress and triggers translocation of B23 from the nucleolus to the nucleoplasm, leading to stabilization and activation of p53. Our data suggest that cells may maintain a steady-state level of L23 during normal growth; alternating the levels of L23 in response to changing growth conditions could impinge on the HDM2-p53 pathway by interrupting the integrity of the nucleolus.
Collapse
Affiliation(s)
- Aiwen Jin
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, USA
| | | | | | | |
Collapse
|
225
|
Verras M, Theodoraki MA, Mintzas AC. Cloning, characterization, and developmental expression of the ribosomal protein S21 gene of the Mediterranean fruit fly Ceratitis capitata. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2004; 56:133-142. [PMID: 15211551 DOI: 10.1002/arch.20004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Ribosomal protein S21 (RpS21) belongs to a small group of ribosomal or ribosome-associated proteins. Mutations in the RpS21 gene cause dominant Minute and recessive lethal tumorous phenotypes in Drosophila melanogaster. Studies in several organisms suggest that RpS21 is involved in the regulation of protein synthesis and cell growth. In this report, we used an RT-PCR fragment of D. melanogaster RpS21 mRNA to clone a RpS21 cDNA from the Mediterranean fruit fly, Ceratitis capitata. The isolated cDNA contained both 5' and 3' untranslated regions, and encoded a polypeptide of 83 amino acids with a predicted molecular mass of 9.1 kDa. The deduced protein sequence showed 91% amino acid identity to D. melanogaster RpS21 and strong homology with all known ribosomal S21 proteins. DNA blot hybridization indicated the existence of a single RpS21 gene in the Ceratitis capitata genome. Analysis of the 5' untranslated region revealed the occurrence of a major oligopyrimidine tract at the 5' end, which characterizes most mRNAs undergoing a growth-dependent translational control. Study of the mRNA patterns during development suggested that the expression of Ceratitis RpS21 is temporally regulated at the level of transcription.
Collapse
Affiliation(s)
- Meletis Verras
- Division of Genetics, Cell and Developmental Biology, Department of Biology, University of Patras, Rion, Greece
| | | | | |
Collapse
|
226
|
Matsson H, Davey EJ, Draptchinskaia N, Hamaguchi I, Ooka A, Levéen P, Forsberg E, Karlsson S, Dahl N. Targeted disruption of the ribosomal protein S19 gene is lethal prior to implantation. Mol Cell Biol 2004; 24:4032-7. [PMID: 15082795 PMCID: PMC387766 DOI: 10.1128/mcb.24.9.4032-4037.2004] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ribosomal protein S19 (RPS19) is located in the small (40S) subunit and is one of 79 ribosomal proteins. The gene encoding RPS19 is mutated in approximately 25% of patients with Diamond-Blackfan anemia, which is a rare congenital erythroblastopenia. Affected individuals present with decreased numbers or the absence of erythroid precursors in the bone marrow, and associated malformations of various organs are common. We produced C57BL/6J mice with a targeted disruption of murine Rps19 to study its role in erythropoiesis and development. Mice homozygous for the disrupted Rps19 were not identified as early as the blastocyst stage, indicating a lethal effect. In contrast, mice heterozygous for the disrupted Rps19 allele have normal growth and organ development, including that of the hematopoietic system. Our findings indicate that zygotes which are Rps19(-/-) do not form blastocysts, whereas one normal Rps19 allele in C57BL/6J mice is sufficient to maintain normal ribosomal and possibly extraribosomal functions.
Collapse
Affiliation(s)
- Hans Matsson
- Department of Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Amsterdam A, Sadler KC, Lai K, Farrington S, Bronson RT, Lees JA, Hopkins N. Many ribosomal protein genes are cancer genes in zebrafish. PLoS Biol 2004; 2:E139. [PMID: 15138505 PMCID: PMC406397 DOI: 10.1371/journal.pbio.0020139] [Citation(s) in RCA: 329] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2003] [Accepted: 03/10/2004] [Indexed: 01/21/2023] Open
Abstract
We have generated several hundred lines of zebrafish (Danio rerio), each heterozygous for a recessive embryonic lethal mutation. Since many tumor suppressor genes are recessive lethals, we screened our colony for lines that display early mortality and/or gross evidence of tumors. We identified 12 lines with elevated cancer incidence. Fish from these lines develop malignant peripheral nerve sheath tumors, and in some cases also other tumor types, with moderate to very high frequencies. Surprisingly, 11 of the 12 lines were each heterozygous for a mutation in a different ribosomal protein (RP) gene, while one line was heterozygous for a mutation in a zebrafish paralog of the human and mouse tumor suppressor gene, neurofibromatosis type 2. Our findings suggest that many RP genes may act as haploinsufficient tumor suppressors in fish. Many RP genes might also be cancer genes in humans, where their role in tumorigenesis could easily have escaped detection up to now.
Collapse
Affiliation(s)
- Adam Amsterdam
- 1Center for Cancer Research, Massachusetts Institute of TechnologyCambridge, MassachusettsUnited States of America
| | - Kirsten C Sadler
- 1Center for Cancer Research, Massachusetts Institute of TechnologyCambridge, MassachusettsUnited States of America
| | - Kevin Lai
- 1Center for Cancer Research, Massachusetts Institute of TechnologyCambridge, MassachusettsUnited States of America
| | - Sarah Farrington
- 1Center for Cancer Research, Massachusetts Institute of TechnologyCambridge, MassachusettsUnited States of America
| | - Roderick T Bronson
- 2Department of Pathology, Tufts University School of Veterinary MedicineBoston, MassachusettsUnited States of America
| | - Jacqueline A Lees
- 1Center for Cancer Research, Massachusetts Institute of TechnologyCambridge, MassachusettsUnited States of America
| | - Nancy Hopkins
- 1Center for Cancer Research, Massachusetts Institute of TechnologyCambridge, MassachusettsUnited States of America
| |
Collapse
|
228
|
Karlin S, Theriot J, Mrázek J. Comparative analysis of gene expression among low G+C gram-positive genomes. Proc Natl Acad Sci U S A 2004; 101:6182-7. [PMID: 15069198 PMCID: PMC395943 DOI: 10.1073/pnas.0401504101] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present a comparative analysis of predicted highly expressed (PHX) genes in the low G+C Gram-positive genomes of Bacillus subtilis, Bacillus halodurans, Listeria monocytogenes, Listeria innocua, Lactococcus lactis, Streptococcus pyogenes, Streptococcus pneumoniae, Staphylococcus aureus, Clostridium acetobutylicum, and Clostridium perfringens. Most enzymes acting in glycolysis and fermentation pathways are PHX in these genomes, but not those involved in the TCA cycle and respiration, suggesting that these organisms have predominantly adapted to grow rapidly in an anaerobic environment. Only B. subtilis and B. halodurans have several TCA cycle PHX genes, whereas the TCA pathway is entirely missing from the metabolic repertoire of the two Streptococcus species and is incomplete in Listeria, Lactococcus, and Clostridium. Pyruvate-formate lyase, an enzyme critical in mixed acid fermentation, is among the highest PHX genes in all these genomes except for C. acetobutylicum (not PHX), and B. subtilis, and B. halodurans (missing). Pyruvate-formate lyase is also prominently PHX in enteric gamma-proteobacteria, but not in other prokaryotes. Phosphotransferase system genes are generally PHX with selection of different substrates in different genomes. The various substrate specificities among phosphotransferase systems in different genomes apparently reflect on differences in habitat, lifestyle, and nutrient sources.
Collapse
Affiliation(s)
- Samuel Karlin
- Department of Mathematics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
229
|
|
230
|
Wong ML, O'Kirwan F, Hannestad JP, Irizarry KJL, Elashoff D, Licinio J. St John's wort and imipramine-induced gene expression profiles identify cellular functions relevant to antidepressant action and novel pharmacogenetic candidates for the phenotype of antidepressant treatment response. Mol Psychiatry 2004; 9:237-51. [PMID: 14743185 DOI: 10.1038/sj.mp.4001470] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Both the prototypic tricyclic antidepressant imipramine (IMI) and the herbal product St John's wort (SJW) can be effective in the treatment of major depressive disorder. We studied hypothalamic gene expression in rats treated with SJW or IMI to test the hypothesis that chronic antidepressant treatment by various classes of drugs results in shared patterns of gene expression that may underlie their therapeutic effects. Individual hypothalami were hybridized to individual Affymetrix chips; we studied three arrays per group treatment. We constructed 95% confidence intervals for expression fold change for genes present in at least one treatment condition and we considered genes to be differentially expressed if they had a confidence interval excluding 1 (or -1) and had absolute difference in expression value of 10 or greater. SJW treatment differentially regulated 66 genes and expression sequence tags (ESTs) and IMI treatment differentially regulated 74 genes and ESTs. We found six common transcripts in response to both treatments. The likelihood of this occurring by chance is 1.14 x 10(-23). These transcripts are relevant to two molecular machines, namely the ribosomes and microtubules, and one cellular organelle, the mitochondria. Both treatments also affected different genes that are part of the same cell function processes, such as glycolytic pathways and synaptic function. We identified single-nucleotide polymorphisms in the human orthologs of genes regulated both treatments, as those genes may be novel candidates for pharmacogenetic studies. Our data support the hypothesis that chronic antidepressant treatment by drugs of various classes may result in a common, final pathway of changes in gene expression in a discrete brain region.
Collapse
Affiliation(s)
- M-L Wong
- Department of Psychiatry, Center for Pharmacogenomics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1761, USA.
| | | | | | | | | | | |
Collapse
|
231
|
Skretting G, Espenes A, Ulvund MJ, Olsaker I. cDNA representational difference analysis of ileal Peyer’s patches in lambs after oral inoculation with scrapie. Biochem Biophys Res Commun 2004; 316:272-9. [PMID: 15003541 DOI: 10.1016/j.bbrc.2004.02.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Indexed: 11/28/2022]
Abstract
cDNA representational difference analysis (RDA) was used to study gene expression profiles in the ileal Peyer's patch of a lamb 1 week after oral inoculation with the scrapie agent. Twenty-five differentially expressed cDNA fragments were identified and cloned. Sequence analysis indicated seven novel gene sequences. Other clones shared sequence homology with genes encoding ribosomal and mitochondrial proteins, the translation initiation factor EIF4GII and the bovine pancreatic thread protein. Reverse Northern was used to confirm the differential expression in another four lambs inoculated with scrapie and the tissue distribution of the novel genes was examined using Northern blot analysis.
Collapse
Affiliation(s)
- Grethe Skretting
- Department of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, P.O. Box 8146 Dep., N-0033 Oslo, Norway.
| | | | | | | |
Collapse
|
232
|
Aruna K, Chakraborty T, Nambeesan S, Mannan AB, Sehgal A, Bhalchandara SR, Sharma S. Identification of a hypothetical membrane protein interactor of ribosomal phosphoprotein P0. J Biosci 2004; 29:33-43. [PMID: 15286401 DOI: 10.1007/bf02702559] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ribosomal phosphoprotein P0 of the human malarial parasite Plasmodium falciparum (PfP0) has been identified as a protective surface protein. In Drosophila, P0 protein functions in the nucleus. The ribosomal function of P0 is mediated at the stalk of the large ribosomal subunit at the GTPase centre, where the elongation factor eEF2 binds. The multiple roles of the P0 protein presumably occur through interactions with other proteins. To identify such interacting protein domains, a yeast two-hybrid screen was carried out. Out of a set of sixty clones isolated, twelve clones that interacted strongly with both PfP0 and the Saccharomyces cerevisiae P0 (ScP0) protein were analysed. These belonged to three broad classes: namely (i) ribosomal proteins; (ii) proteins involved in nucleotide binding; and (iii) hypothetical integral membrane proteins. One of the strongest interactors (clone 67B) mapped to the gene YFL034W which codes for a hypothetical integral membrane protein, and is conserved amongst several eukaryotic organisms. The insert of clone 67B was expressed as a recombinant protein, and immunoprecipitaion (IP) reaction with anti-P0 antibodies pulled down this protein along with PfP0 as well as ScP0 protein. Using deletion constructions, the domain of ScP0, which interacted with clone 67B, was mapped to 60-148 amino acids. It is envisaged that the surface localization of P0 protein may be mediated through interactions with putative YFL034W-like proteins in P. falciparum.
Collapse
Affiliation(s)
- K Aruna
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | | | | | | | | | | | | |
Collapse
|
233
|
Sato M, Kong CJ, Yoshida H, Nakamura T, Wada A, Shimoda C, Kaneda Y. Ribosomal proteins S0 and S21 are involved in the stability of 18S rRNA in fission yeast, Schizosaccharomyces pombe. Biochem Biophys Res Commun 2004; 311:942-7. [PMID: 14623272 DOI: 10.1016/j.bbrc.2003.10.086] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Stability of ribosomal RNA (rRNA) is not only essential for ribosome biogenesis but also crucial to the maintenance of proper translational level for cell viability. rRNA processing (maturation) is one of the key steps to derive functional rRNA, and to date, a large number of factors involved in this process have been identified. We investigated Rps0 binding proteins in fission yeast, Schizosaccharomyces pombe, and revealed that Rps0p is associated with Rps21 protein, similar to that of our previous observation in human cells. We demonstrated that both rps0(+)s and rps21(+) are essential genes for S. pombe analyzed by tetrad dissection assay. To study the functions of both genes, we established disruption strains transformed with inducible rescue plasmids. Using the strains our studies revealed that the loss of rps0(+)s or rps21(+) led to a deficiency of 40S ribosomal subunit formation. Additional functional studies indicate that this phenomenon is likely to be caused by insufficient 18S rRNA stability. The possible role of Rps0p and Rps21 that contribute to 18S rRNA maturation is further discussed.
Collapse
Affiliation(s)
- Manabu Sato
- Department of Gene Therapy Science, Osaka University Graduate School of Medicine, Yamada-oka 2-2, 565-0871, Suita, Japan
| | | | | | | | | | | | | |
Collapse
|
234
|
Yin E, Nelson DO, Coleman MA, Peterson LE, Wyrobek AJ. Gene expression changes in mouse brain after exposure to low-dose ionizing radiation. Int J Radiat Biol 2004; 79:759-75. [PMID: 14630535 DOI: 10.1080/09553000310001610961] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE To characterize the cellular functions associated with the altered transcript profiles of mouse brain exposed to low-dose in vivo gamma-irradiation. MATERIALS AND METHODS Cerebral RNA was isolated at 30 min and 4 h after whole-body irradiation at 0.1 or 2 Gy, hybridized to random oligonucleotide arrays, and evaluated for time and dose-response patterns by multifactorial analyses. RESULTS Brain irradiation modulated the expression patterns of 1574 genes, of which 855 showed more than 1.5-fold variation. about 30% of genes showed dose-dependent variations, including genes exclusively affected by 0.1 Gy. About 60% of genes showed time-dependent variation with more genes affected at 30 min than at 4 h. Early changes involved signal transduction, ion regulation and synaptic signalling. Later changes involved metabolic functions including myelin and protein synthesis. Low-dose radiation also modulated the expression of genes involved in stress response, cell-cycle control and DNA synthesis/repair. CONCLUSIONS Doses of 0.1 Gy induced changes in gene expression that were qualitatively different from those at 2 Gy. The findings suggest that low-dose irradiation of the brain induces the expression of genes involved in protective and reparative functions, while down-modulating genes involved in neural signalling activity.
Collapse
Affiliation(s)
- E Yin
- Biology and Biotechnology Research Program Lawrence Livermore National Laboratory Livermore CA 94 550 USA
| | | | | | | | | |
Collapse
|
235
|
Chang MH, Chou CM, Hsieh YC, Lu IC, Devi MKN, Chang JP, Kuo TF, Huang CJ. Identification of 5'-upstream region of pufferfish ribosomal protein L29 gene as a strong constitutive promoter to drive GFP expression in zebrafish. Biochem Biophys Res Commun 2004; 314:249-58. [PMID: 14715273 DOI: 10.1016/j.bbrc.2003.12.080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The genomic structure of Tetraodon fluviatilis L29 gene was determined and its promoter activity was analyzed in COS-1 cells and zebrafish embryos. The TfL29 gene comprises four exons and three introns, spanning approximately 1.7kb. The 5(')-upstream 2.2-kb of the first exon contains 10 E-boxes and many putative binding motifs for transcription factors GATA-1, AML-1a, c-Myb, Oct-1, CdxA, and NRF-2. Promoter activity assay showed that the distal 2.2-kb fragment not only had high luciferase activity in COS-1 cells, but also strong and ubiquitous GFP expression in a variety of tissues in zebrafish embryos. On the other hand, there are no TATA or CAAT boxes within a 300-bp region upstream from the transcription initiation site. Although this region has high luciferase activity in COS-1 cells, it is not sufficient to drive GFP expression in zebrafish embryos. In this proximal 300-bp region, there are two E-boxes, two CdxA sites, and one NRF-2 site that is immediately downstream of the transcription start site.
Collapse
Affiliation(s)
- Ming-Huang Chang
- Graduate Institute of Veterinary Medicine, National Taiwan University, Taipei, Taiwan, TOC
| | | | | | | | | | | | | | | |
Collapse
|
236
|
Wahl M, Shukunami C, Heinzmann U, Hamajima K, Hiraki Y, Imai K. Transcriptome analysis of early chondrogenesis in ATDC5 cells induced by bone morphogenetic protein 4. Genomics 2004; 83:45-58. [PMID: 14667808 DOI: 10.1016/s0888-7543(03)00201-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We performed serial analysis of gene expression (SAGE) profiling in mouse chondrogenic ATDC5 cells before and 6 h after the onset of chondrogenesis induced by BMP4. A total of 43,656 SAGE tags (21,875 and 21,781 tags from the uninduced and induced libraries, respectively) were analyzed. Our analysis predicted that 139 transcripts were differentially represented in the two libraries (p < 0.05), including 72 downregulated and 67 upregulated transcripts. Ninety-five of them matched single UniGene entries (77 known genes and 18 ESTs), while 12 tags corresponded to potentially novel genes. Surprisingly, many of these known genes have never been implicated in chondrogenic differentiation. Interestingly, we found that a significant fraction of these genes formed physical linkage groups. This suggests that the transcriptional control by BMP signaling is in part targeted to genes in certain chromosomal domains. Together, our results provide novel insights into molecular events regulated by BMP signaling in chondrogenesis.
Collapse
Affiliation(s)
- Matthias Wahl
- Institute of Developmental Genetics, GSF-National Research Center for Environment and Health, Ingolstädter Landstrasse 1, D-85764, Neuherberg, Germany
| | | | | | | | | | | |
Collapse
|
237
|
Abstract
Many integral proteins of the ribosome also carry out extra-ribosomal functions as independent polypeptides, raising questions as to their evolutionary derivation. In this issue of Cell, Mazumder et al. report a surprising new twist in the dual life of these molecules: as part of a cellular response to interferon, a large-subunit protein dramatically exits the ribosome to bind and inhibit the translation of a specific mRNA.
Collapse
Affiliation(s)
- Robert A Zimmermann
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
238
|
Chappell SA, Mauro VP. The internal ribosome entry site (IRES) contained within the RNA-binding motif protein 3 (Rbm3) mRNA is composed of functionally distinct elements. J Biol Chem 2003; 278:33793-800. [PMID: 12824175 DOI: 10.1074/jbc.m303495200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Although the internal ribosome entry sites (IRESes) of viral mRNAs are highly structured and comprise several hundred nucleotides, there is a variety of evidence indicating that very short nucleotide sequences, both naturally occurring and synthetic, can similarly mediate internal initiation of translation. In this study, we performed deletion and mutational analyses of an IRES contained within the 720-nucleotide (nt) 5' leader of the Rbm3 mRNA and demonstrated that this IRES is highly modular, with at least 9 discrete cis-acting sequences. These cis-acting sequences include a 22-nt IRES module, a 10-nt enhancer, and 2 inhibitory sequences. The 22-nt sequence was shown to function as an IRES when tested in isolation, and we demonstrated that it did not enhance translation by functioning as a transcriptional promoter, enhancer, or splice site. The activities of all 4 cis-acting sequences were further confirmed by their mutation in the context of the full IRES. Interestingly, one of the inhibitory cis-acting sequences is contained within an upstream open reading frame (uORF), and its activity seems to be masked by translation of this uORF. Binding studies revealed that all 4 cis-acting sequences could bind specifically to distinct cytoplasmic proteins. In addition, the 22-nt IRES module was shown to bind specifically to 40 S ribosomal subunits. The results demonstrate that different types of cis-acting sequences mediate or modulate translation of the Rbm3 mRNA and suggest that one of the IRES modules contained within the 5' leader facilitates translation initiation by binding directly to 40 S ribosomal subunits.
Collapse
Affiliation(s)
- Stephen A Chappell
- Department of Neurobiology, The Scripps Research Institute, and The Skaggs Institute for Chemical Biology, La Jolla, California 92037, USA
| | | |
Collapse
|
239
|
Kasai H, Nadano D, Hidaka E, Higuchi K, Kawakubo M, Sato TA, Nakayama J. Differential expression of ribosomal proteins in human normal and neoplastic colorectum. J Histochem Cytochem 2003; 51:567-74. [PMID: 12704204 DOI: 10.1177/002215540305100502] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ribosomal proteins are a major component of ribosomes and play critical roles in protein biosynthesis. Recently it has been shown that the ribosomal proteins also function during various cellular processes that are independent of protein biosynthesis therefore called extraribosomal functions. In this study we have, for the first time, determined the expression profile of 12 ribosomal proteins (Sa, S8, S11, S12, S18, S24, L7, L13a, L18, L28, L32, and L35a) in normal epithelia of human colorectal mucosa using immunohistochemistry (IHC) and then compared their expression patterns with those of colorectal cancer. In the normal mucosa, ribosomal proteins were largely associated with the ribosomes of mucosal epithelia, and the expression level of ribosomal proteins, except for S11 and L7 proteins, was markedly increased in associated with maturation of the mucosal cells. On the other hand, these ribosomal proteins were markedly decreased in colorectal cancer compared with the normal mucosa. By contrast, S11 and L7 ribosomal proteins were rarely associated with the ribosomes of colorectal epithilia except immature mucosal cells, whereas their expression levels were significantly enhanced in colorectal cancer cells. In addition, L7 ribosomal protein was detected in the secretory granules of the enterochromaffin cells in the colorectal mucosa and in carcinoma cells expressing chromogranin A. These results indicate that the expression of ribosomal proteins is differentially regulated not only in normal mucosa but also in carcinoma of human colorectum, and suggest an extraribosomal function of L7 ribosomal protein in neuroendocrine function.
Collapse
Affiliation(s)
- Hide Kasai
- Department of Pathology, Shinshu University School of Medicine, Matsumoto, Japan
| | | | | | | | | | | | | |
Collapse
|
240
|
Khanna N, Sen S, Sharma H, Singh N. S29 ribosomal protein induces apoptosis in H520 cells and sensitizes them to chemotherapy. Biochem Biophys Res Commun 2003; 304:26-35. [PMID: 12705879 DOI: 10.1016/s0006-291x(03)00532-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Non-small cell lung cancer (NSCLC) is the most prevalent type of lung cancer especially in India and displays resistance to anticancer treatment. In our earlier study we had isolated a cDNA clone from rat thymocytes induced to undergo apoptosis, which was found to encode S29 ribosomal protein [Biochem. Biophys. Res. Commun. 277 (2000) 476]. In the present study an attempt has been made to find out whether enhanced expression of S29 cDNA can kill NSCLC H520 cells. We found that S29 induced apoptosis and augmented the effect of anticancer drugs. Expressions of several molecular determinants of apoptosis were analyzed in order to understand the mechanism of apoptosis induced by S29. We observed downregulation of the expression of inhibitors of apoptosis proteins (IAPs) Bcl-2, Bcl-X(L), and survivin and upregulation of pro-apoptotic p53 and Bax as assessed by Western blotting. Mitochondrial release of cytochrome c and activation of initiator caspase-8 and -9 and effector caspase-3, followed by cleavage of nuclear substrate poly(ADP-ribose) polymerase, were also observed. Permeability transition as determined by changes in DeltaPsi(m) was not a requirement for cytochrome c release. There was a marginal increase in the release of apoptosis inducing factor (AIF) and reduction of NF-kappaB dependent transcriptional activity. There was non-involvement of calcium and the telomerase activity, a proliferation marker.
Collapse
Affiliation(s)
- Neeru Khanna
- Department of Biochemistry, All India Institute of Medical Sciences, Room No. 3027-A, Ansari Nagar, 110029, New Delhi, India
| | | | | | | |
Collapse
|
241
|
Kazmin DA, Chinenov Y, Larson E, Starkey JR. Comparative modeling of the N-terminal domain of the 67kDa laminin-binding protein: implications for putative ribosomal function. Biochem Biophys Res Commun 2003; 300:161-6. [PMID: 12480536 DOI: 10.1016/s0006-291x(02)02772-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Laminin-binding protein/p40 (LBP/p40) precursor appears to be involved in two seemingly unrelated activities-cell adhesion and ribosomal biogenesis. Analysis of primary structure revealed a two-domain organization of the LBP/p40. The N-terminal portion of LBP is similar to the S2 family of prokaryotic ribosomal proteins, while the C-terminus is unique for Metazoa and is involved in extraribosomal functions. To gain insight into putative ribosomal functions of LBP we performed comparative modeling of the N-terminal domain using crystal structures of S2p from Thermus thermophilus. The LBP model assumes an alpha-beta sandwich fold similar to that of S2. Modeling revealed the loss of a significant portion of ribosomal RNA (rRNA) interaction domain, lack of conservation of many residues involved in interactions with rRNA, and a major shift in surface charge distribution (compared to the S2 protein). The overall stability of the fold argues against a proposed transmembrane domain in the central part of the protein. Partial overlap in S2 and laminin-binding domains suggests that ribosomal and surface receptor functions would be mutually exclusive. The possible biological role of LBP/p40 bifunctionality is discussed.
Collapse
Affiliation(s)
- Dmitri A Kazmin
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | | | | | | |
Collapse
|
242
|
Abstract
Adding to the difficulty of interpreting the human genome sequence and annotating protein sequence databases is the observation that a single protein can 'moonlight' or perform multiple, apparently unrelated, functions. This review summarizes examples of moonlighting proteins in cellular activities and biochemical pathways important in cancer and other diseases. The proteins include a variety of combinations of functions and mechanisms to switch between functions. Moonlighting proteins can be beneficial to the organism, such as by coordinating cellular activities. However, moonlighting proteins can potentially make more difficult the determination of the molecular mechanisms of disease and the process of rational drug design.
Collapse
Affiliation(s)
- Constance J Jeffery
- Laboratory for Molecular Biology, Department of Biological Sciences, University of Illinois, Chicago, Illinois 60607, USA.
| |
Collapse
|
243
|
Evolution of the Fungi and their Mitochondrial Genomes. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1874-5334(03)80010-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
244
|
Abstract
A variety of posttranscriptional mechanisms affects the processing, subcellular localization, and translation of messenger RNAs (mRNAs). Translational control appears to occur primarily at the initiation rather than the elongation stage. It has been suggested that translation is mediated largely by means of a cap-binding/scanning mechanism. On the basis of recent findings, we propose here that differential binding of particular mRNAs to eukaryotic 40S ribosomal subunits before translation may also selectively affect rates of polypeptide chain production. In this view, ribosomal subunits themselves are considered to be regulatory elements or filters that mediate interactions between particular mRNAs and components of the translation machinery. Differences in these interactions affect how efficiently individual mRNAs compete for ribosomal subunits. These competitive interactions would depend in part on the complementarity between sequences in mRNA and rRNA, as well as on structural differences among ribosomes in different cell types. By these means, translation may either be enhanced through increased recruitment of ribosomes or inhibited through strong interactions that sequester mRNAs. We propose that ribosomal filters may be important in cell differentiation and describe experimental tests for the filter hypothesis.
Collapse
Affiliation(s)
- Vincent P Mauro
- Department of Neurobiology, The Scripps Research Institute and The Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
245
|
Malki A, Caldas T, Parmeggiani A, Kohiyama M, Richarme G. Specificity of elongation factor EF-TU for hydrophobic peptides. Biochem Biophys Res Commun 2002; 296:749-54. [PMID: 12176046 DOI: 10.1016/s0006-291x(02)00935-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The elongation factor EF-Tu carries aminoacyl-tRNAs to the A-site of the ribosome during the elongation process of protein biosynthesis. We, and others, have recently reported that the Escherichia coli EF-Tu interacts with unfolded and denatured proteins and behaves like a chaperone in protein folding and protection against protein thermal denaturation. In this study, we have identified EF-Tu binding sites in protein substrates by screening cellulose-bound peptides scanning the sequences of several proteins. The binding motifs recognized by EF-Tu in protein substrates are also recognized by the chaperone DnaK and mainly consist of hydrophobic clusters. EF-Tu interacts as efficiently as DnaK with the membrane spanning sequence of the membrane protein phospholemman and with the signal sequence of alkaline phosphatase. It interacts less efficiently with several other hydrophobic clusters of lysozyme and alkaline phosphatase, which are also DnaK substrates and fails to bind to several DnaK binding sites. Our results suggest that EF-Tu, like DnaK, interacts albeit more weakly with the hydrophobic regions of substrate protein and are consistent with the hypothesis that it possesses chaperone properties.
Collapse
Affiliation(s)
- Abdelharim Malki
- Stress Molecules, Institut Jacques Monod, Université Paris 7, 2 place Jussieu, 75251 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
246
|
Blasi F, Ciarrocchi A, Luddi A, Strazza M, Riccio M, Santi S, Arcone R, Pietropaolo C, D'Angelo R, Costantino-Ceccarini E, Melli M. Stage-specific gene expression in early differentiating oligodendrocytes. Glia 2002; 39:114-23. [PMID: 12112363 DOI: 10.1002/glia.10092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The screening of a differential library from precursor and differentiated oligodendrocytes, obtained through the representational difference analysis (RDA) technique, has generated a number of cDNA recombinants corresponding to mRNA coding for known and unknown proteins: (1) mRNA coding for proteins involved in protein synthesis, (2) mRNA coding for proteins involved in the organization of the cytoskeleton, and (3) mRNA coding for proteins of unknown function. The expression profile of the mRNA was studied by Northern blot hybridization to the poly-A(+) mRNA from primary rat progenitor and differentiated oligodendrocytes. In most cases, hybridization to the precursor was higher than hybridization to the differentiated mRNA, supporting the validity of the differential screening. Hybridization of the cDNA to rat cerebral hemisphere and brain stem poly-A(+) mRNA, isolated from 1- to 90-day-old rats, confirms the results obtained with the mRNA from differentiating oligodendrocytes. The intensity of the hybridization bands decreases as differentiation proceeds. The pattern of expression observed in oligodendrocytes is different from that found in the brain only in the case of the nexin-1 mRNA, the level of which remains essentially constant throughout differentiation both in the brain stem and in the cerebral hemispheres, in agreement with the published data. In contrast, the intensity of hybridization to the oligodendrocyte mRNA is dramatically lower in the differentiated cells compared with the progenitor oligodendrocyte cells. Some of the recombinant cDNA represent mRNA sequences present at high frequency distribution in the cells, while others belong to the rare sequences group. Six recombinants code for proteins of the ribosomal family, suggesting that of approximately 70 known ribosomal proteins, only a few are upregulated during oligodendrocyte differentiation. The third category of open reading frame (ORF) is represented by rare messengers coding for proteins of unknown functions and includes six clones: RDA 279, 11, 95, 96, 254, and 288.
Collapse
|
247
|
Lyamouri M, Enerly E, Lambertsson A. Organization, sequence, and phylogenetic analysis of the ribosomal protein S3 gene from Drosophila virilis. Gene 2002; 294:147-56. [PMID: 12234676 DOI: 10.1016/s0378-1119(02)00763-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ribosomal protein S3 (RPS3) is a multifunctional ribosomal protein: it is a structural and functional component of the ribosome, and also a DNA repair enzyme involved in the DNA base excision repair pathway. Here we cloned and characterized the genomic organization of the ribosomal protein S3 gene (RpS3) homolog in Drosophila virilis. We then compared gene structure and protein sequences of RpS3 from vertebrates, invertebrates, and plants. These comparisons revealed that RpS3 genes from plants to mammals have highly conserved coding and amino acid sequences, and also protein size. Further comparisons of the protein sequences show that important domains are well conserved in both localization and sequence. In contrast, comparison of gene size and organization reveals differing patterns and levels of conservation. Whereas invertebrate RpS3 genes are small in size and gene organization is variable (from zero to four introns), vertebrates have a considerably larger (but variable) gene size and a uniform gene organization. The larger gene size in vertebrates is due to increased number and expansion of introns. Although the plant RpS3 genes are relatively small ( approximately 1.8 kb), their organization resembles that seen in vertebrates. The high conservation through different phyla may suggest that RPS3 might be under great functional constraints, both in its capacity as a component of the ribosome and as a component of a DNA repair system. Finally, electrophoretic mobility shift assays indicate that an upstream element binds a nuclear protein(s).
Collapse
Affiliation(s)
- May Lyamouri
- Division of Molecular Biology, Insitute of Biology, University of Oslo, P.O. Box 1031, Blindern, N-0315, Oslo, Norway
| | | | | |
Collapse
|
248
|
Abstract
Genomic array analysis of endogenous mammalian ribonucleoproteins has recently revealed three novel findings: (1) mRNA binding proteins are associated with unique subpopulations of messages, (2) the compositions of these mRNA subsets can vary with growth conditions, and (3) the same mRNA species can be found in multiple mRNP complexes. Based on these and other findings, we propose a model of posttranscriptional gene expression in which mRNA binding proteins regulate mRNAs as subpopulations during cell growth and development. This model predicts that functionally related genes are regulated posttranscriptionally as groups by specific mRNA binding proteins that recognize sequence elements in common among the mRNAs.
Collapse
Affiliation(s)
- Jack D Keene
- Center for RNA Biology, Department of Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
249
|
Cheng Q, Lau WM, Tay SK, Chew SH, Ho TH, Hui KM. Identification and characterization of genes involved in the carcinogenesis of human squamous cell cervical carcinoma. Int J Cancer 2002; 98:419-26. [PMID: 11920594 DOI: 10.1002/ijc.10177] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We utilized RT-PCR differential display and cDNA microarrays to identify cellular genes involved in the multi-step carcinogenesis of squamous cell cervical carcinoma. Thirty-eight cervical cancer patients in various stages of the disease and 5 non-cervical cancer patients were studied. Twenty-five cDNA clones were identified and these were subsequently demonstrated to be consistently over-expressed in squamous cell cervical carcinoma biopsies of various FIGO stages. To further evaluate the possible role that these genes may play in the progression of disease, we performed Northern blot analysis and RNA-RNA in situ hybridization studies using cervical cancer biopsies of various FIGO stages. Of particular interest are the 2 clones G32C4B and G30CC that have been identified to be the NADH dehydrogenase 4 gene and the gene that encodes ribosomal protein S12 respectively when compared to sequences available in the GenBank database. Increased expression of these 2 genes were detected in the matched normal tissues collected together with the late FIGO stages of cervical cancer biopsies. In comparison, upregulation of these 2 genes was not detected in cervical squamous epithelium collected from patients admitted for surgery for non-malignant conditions, suggesting that expression of these 2 genes may have altered in the adjacent histopathologically "normal" cervical squamous epithelial tissue from cervical cancer patients. The ribosomal protein S12 and the NADH dehydrogenase 4 genes may therefore be potentially useful as early pre-transformation diagnostic markers for human cervical cancer.
Collapse
Affiliation(s)
- Qing Cheng
- Laboratory of Gene Structure and Expression, Division of Cellular and Molecular Research, National Cancer Centre, Singapore
| | | | | | | | | | | |
Collapse
|
250
|
Avruch J, Belham C, Weng Q, Hara K, Yonezawa K. The p70 S6 kinase integrates nutrient and growth signals to control translational capacity. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2002; 26:115-54. [PMID: 11575164 DOI: 10.1007/978-3-642-56688-2_5] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- J Avruch
- Diabetes Unit and Medical Services, Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | |
Collapse
|