201
|
Pathan SI, Arfaioli P, Taskin E, Ceccherini MT, Puglisi E, Pietramellara G. The extracellular DNA can baffle the assessment of soil bacterial community, but the effect varies with microscale spatial distribution. FEMS Microbiol Lett 2021; 368:6298223. [PMID: 34124758 DOI: 10.1093/femsle/fnab074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022] Open
Abstract
Environmental DNA is made-up of intracellular (iDNA) and extracellular (eDNA) pools. In soils, eDNA can be present up to 40% and could distort the assessment of living microorganisms. Distribution of microbial community is inconsistent among different size-aggregates, and the persistence and turnover of eDNA are thus uneven. Uneven persistence and distribution of eDNA could lead to heterogeneity in community analysis biases that arise due to eDNA sequences at micro-scale distribution. Here, we investigated the diversity and structure of eDNA and iDNA bacterial communities in bulk soil and different size-aggregates. Significant differences were observed between eDNA and iDNA bacterial diversity and composition. Changes in community composition are more important than the amount of eDNA to assess the biases caused by eDNA in community analysis. Furthermore, variations were also observed in aggregates-levels for eDNA and iDNA community which indicates that colonization pattern of iDNA community and protection of eDNA through absorbance on particle surface within soil-matrix is heterogeneous. Our work provides empirical evidence that eDNA presence could mask the detection of aggregates-level spatial dynamics in soil microbial community and have potential to qualitatively baffle observed live effects of given treatment by adequately muting the actual response dynamics of the soil microbiome.
Collapse
Affiliation(s)
- Shamina Imran Pathan
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, Università degli Studi di Firenze, Piazzale delle Cascine 28, 50144 Florence, Italy
| | - Paola Arfaioli
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, Università degli Studi di Firenze, Piazzale delle Cascine 28, 50144 Florence, Italy
| | - Eren Taskin
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Maria Teresa Ceccherini
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, Università degli Studi di Firenze, Piazzale delle Cascine 28, 50144 Florence, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Giacomo Pietramellara
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, Università degli Studi di Firenze, Piazzale delle Cascine 28, 50144 Florence, Italy
| |
Collapse
|
202
|
Huaraca-Meza F, Custodio M, Peñaloza R, Alvarado-Ibañez J, Paredes R, De la Cruz H, Arzapalo L, Lazarte-Pariona F. Bacterial diversity in high Andean grassland soils disturbed with Lepidium meyenii crops evaluated by metagenomics. BRAZ J BIOL 2021; 82:e240184. [PMID: 34133559 DOI: 10.1590/1519-6984.240184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 11/30/2020] [Indexed: 11/22/2022] Open
Abstract
Soil quality is usually determined by its physical-chemical characteristics without taking into account the bacterial communities that play a fundamental role in the chemical decomposition of plant nutrients. In this context, the objective of the study was to evaluate bacterial diversity in high Andean grassland soils disturbed with Lepidium meyenii cultivation under different gradients of use (first, second and third use) and crop development (pre-sowing, hypocotyl development and post-harvest). The sampling was carried out in the Bombón plateau in the central Andes of Peru, during the rainy and low water seasons, by the systematic method based on a specific pattern assigned in a geometric rectangular shape at a depth of 0 - 20 cm. The characterization of the bacterial communities was carried out through the metagenomic sequencing of the 16S rRNA. 376 families of bacteria were reported, of which it was determined that there was a significant change in bacterial composition and distribution in relation to use pressure. There were no major changes due to the development of Lepidium meyenii. The families most sensitive to use pressure and soil poverty indicators were Verrucomicrobiaceae, Acidobacteraceae and Aakkermansiaceae.
Collapse
Affiliation(s)
- F Huaraca-Meza
- Universidad Nacional del Centro del Perú, Centro de Investigación en Medicina de Altura y Medio Ambiente, Huancayo, Perú
| | - M Custodio
- Universidad Nacional del Centro del Perú, Centro de Investigación en Medicina de Altura y Medio Ambiente, Huancayo, Perú
| | - R Peñaloza
- Universidad Nacional del Centro del Perú, Centro de Investigación en Medicina de Altura y Medio Ambiente, Huancayo, Perú
| | - J Alvarado-Ibañez
- Universidad Nacional Intercultural "Fabiola Salazar Leguía" de Bagua, Bagua, Perú
| | - R Paredes
- Universidad Nacional del Centro del Perú, Centro de Investigación en Medicina de Altura y Medio Ambiente, Huancayo, Perú
| | - H De la Cruz
- Universidad Nacional del Centro del Perú, Centro de Investigación en Medicina de Altura y Medio Ambiente, Huancayo, Perú
| | - L Arzapalo
- Universidad Nacional del Centro del Perú, Centro de Investigación en Medicina de Altura y Medio Ambiente, Huancayo, Perú
| | | |
Collapse
|
203
|
Amar Y, Lagkouvardos I, Silva RL, Ishola OA, Foesel BU, Kublik S, Schöler A, Niedermeier S, Bleuel R, Zink A, Neuhaus K, Schloter M, Biedermann T, Köberle M. Pre-digest of unprotected DNA by Benzonase improves the representation of living skin bacteria and efficiently depletes host DNA. MICROBIOME 2021; 9:123. [PMID: 34039428 PMCID: PMC8157445 DOI: 10.1186/s40168-021-01067-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/01/2021] [Indexed: 05/09/2023]
Abstract
BACKGROUND The identification of microbiota based on next-generation sequencing (NGS) of extracted DNA has drastically improved our understanding of the role of microbial communities in health and disease. However, DNA-based microbiome analysis cannot per se differentiate between living and dead microorganisms. In environments such as the skin, host defense mechanisms including antimicrobial peptides and low cutaneous pH result in a high microbial turnover, likely resulting in high numbers of dead cells present and releasing substantial amounts of microbial DNA. NGS analyses may thus lead to inaccurate estimations of microbiome structures and consequently functional capacities. RESULTS We investigated in this study the feasibility of a Benzonase-based approach (BDA) to pre-digest unprotected DNA, i.e., of dead microbial cells, as a method to overcome these limitations, thus offering a more accurate assessment of the living microbiome. A skin mock community as well as skin microbiome samples were analyzed using 16S rRNA gene sequencing and metagenomics sequencing after DNA extraction with and without a Benzonase digest to assess bacterial diversity patterns. The BDA method resulted in less reads from dead bacteria both in the skin mock community and skin swabs spiked with either heat-inactivated bacteria or bacterial-free DNA. This approach also efficiently depleted host DNA reads in samples with high human-to-microbial DNA ratios, with no obvious impact on the microbiome profile. We further observed that low biomass samples generate an α-diversity bias when the bacterial load is lower than 105 CFU and that Benzonase digest is not sufficient to overcome this bias. CONCLUSIONS The BDA approach enables both a better assessment of the living microbiota and depletion of host DNA reads. Video abstract.
Collapse
Affiliation(s)
- Yacine Amar
- Department of Dermatology and Allergology, Technical University of Munich, School of Medicine, Munich, Germany
- Clinical Unit Allergology Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Ilias Lagkouvardos
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), HCMR, Heraklion, Greece
- Core Facility Microbiome, Technische Universität München, 85354, Freising, Germany
| | - Rafaela L Silva
- Department of Dermatology and Allergology, Technical University of Munich, School of Medicine, Munich, Germany
- Clinical Unit Allergology Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Oluwaseun Ayodeji Ishola
- Research Unit Comparative Microbiome Analysis, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Bärbel U Foesel
- Research Unit Comparative Microbiome Analysis, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Susanne Kublik
- Research Unit Comparative Microbiome Analysis, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Anne Schöler
- Research Unit Comparative Microbiome Analysis, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Helmholtz Zentrum München, 85764, Neuherberg, Germany
- DKFZ German Cancer Research Center, Berlin, Germany
| | - Sebastian Niedermeier
- Department of Dermatology and Allergology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Rachela Bleuel
- Department of Dermatology and Allergology, Technical University of Munich, School of Medicine, Munich, Germany
- Clinical Unit Allergology Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Alexander Zink
- Department of Dermatology and Allergology, Technical University of Munich, School of Medicine, Munich, Germany
- Clinical Unit Allergology Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Klaus Neuhaus
- Core Facility Microbiome, Technische Universität München, 85354, Freising, Germany
- ZIEL - Institute for Food & Health, Technische Universität München, 85354, Freising, Germany
| | - Michael Schloter
- Research Unit Comparative Microbiome Analysis, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Helmholtz Zentrum München, 85764, Neuherberg, Germany
- ZIEL - Institute for Food & Health, Technische Universität München, 85354, Freising, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergology, Technical University of Munich, School of Medicine, Munich, Germany.
- Clinical Unit Allergology Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Helmholtz Zentrum München, 85764, Neuherberg, Germany.
| | - Martin Köberle
- Department of Dermatology and Allergology, Technical University of Munich, School of Medicine, Munich, Germany
| |
Collapse
|
204
|
Yang Y. Emerging Patterns of Microbial Functional Traits. Trends Microbiol 2021; 29:874-882. [PMID: 34030967 DOI: 10.1016/j.tim.2021.04.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 01/03/2023]
Abstract
Functional traits are measurable characteristics that affect an organism's fitness under certain environmental conditions. The use of functional traits in microbial ecology holds great promise for improving our ability to develop biogeochemical models and predict ecosystem responses to global changes. Notably, functional traits could be decoupled from taxonomic relatedness, owing to horizontal gene transfer among microorganisms and adaptive evolution. In recent years, our knowledge about microbial functional traits has been substantially enhanced, thereby revealing the multitude of ecological processes in driving community assembly and dynamics. Here, I summarize the emerging patterns of how microbial functional traits respond to changing environments, which considerably differ from better-studied microbial taxonomy. I use niche and neutral theories to explain microbial functional traits. Finally, I highlight future challenges to analyze, elucidate, and utilize functional traits in microbial ecology.
Collapse
Affiliation(s)
- Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
205
|
Microbial Community Resilience across Ecosystems and Multiple Disturbances. Microbiol Mol Biol Rev 2021; 85:85/2/e00026-20. [PMID: 33789927 DOI: 10.1128/mmbr.00026-20] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The ability of ecosystems to withstand disturbances and maintain their functions is being increasingly tested as rates of change intensify due to climate change and other human activities. Microorganisms are crucial players underpinning ecosystem functions, and the recovery of microbial communities from disturbances is therefore a key part of the complex processes determining the fate of ecosystem functioning. However, despite global environmental change consisting of numerous pressures, it is unclear and controversial how multiple disturbances affect microbial community stability and what consequences this has for ecosystem functions. This is particularly the case for those multiple or compounded disturbances that occur more frequently than the normal recovery time. The aim of this review is to provide an overview of the mechanisms that can govern the responses of microbes to multiple disturbances across aquatic and terrestrial ecosystems. We first summarize and discuss properties and mechanisms that influence resilience in aquatic and soil biomes to determine whether there are generally applicable principles. Following, we focus on interactions resulting from inherent characteristics of compounded disturbances, such as the nature of the disturbance, timing, and chronology that can lead to complex and nonadditive effects that are modulating the response of microorganisms.
Collapse
|
206
|
Wei X, Ge T, Wu C, Wang S, Mason-Jones K, Li Y, Zhu Z, Hu Y, Liang C, Shen J, Wu J, Kuzyakov Y. T4-like Phages Reveal the Potential Role of Viruses in Soil Organic Matter Mineralization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6440-6448. [PMID: 33852292 DOI: 10.1021/acs.est.0c06014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Viruses are the most abundant biological entities in the world, but their ecological functions in soil are virtually unknown. We hypothesized that greater abundance of T4-like phages will increase bacterial death and thereby suppress soil organic carbon (SOC) mineralization. A range of phage and bacterial abundances were established in sterilized soil by reinoculation with 10-3 and 10-6 dilutions of suspensions of unsterilized soil. The total and viable 16S rRNA gene abundance (a universal marker for bacteria) was measured by qPCR to determine bacterial abundance, with propidium monoazide (PMA) preapplication to eliminate DNA from non-viable cells. Abundance of the g23 marker gene was used to quantify T4-like phages. A close negative correlation between g23 abundance and viable 16S rRNA gene abundance was observed. High abundance of g23 led to lower viable ratios for bacteria, which suggested that phages drove microbial necromass production. The CO2 efflux from soil increased with bacterial abundance but decreased with higher abundance of T4-like phages. Elimination of extracellular DNA by PMA strengthened the relationship between CO2 efflux and bacterial abundance, suggesting that SOC mineralization by bacteria is strongly reduced by the T4-like phages. A random forest model revealed that abundance of T4-like phages and the abundance ratio of T4-like phages to bacteria are better predictors of SOC mineralization (measured as CO2 efflux) than bacterial abundance. Our study provides experimental evidence of phages' role in organic matter turnover in soil: they can retard SOC decomposition but accelerate bacterial turnover.
Collapse
Affiliation(s)
- Xiaomeng Wei
- Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, PR China
| | - Tida Ge
- Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, PR China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, PR China
| | - Chuanfa Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, PR China
| | - Shuang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, PR China
| | - Kyle Mason-Jones
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen 106708, The Netherlands
| | - Yong Li
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Zhenke Zhu
- Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, PR China
| | - Yajun Hu
- Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, PR China
| | - Chao Liang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China
| | - JianLin Shen
- Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, PR China
| | - Jinshui Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, PR China
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Goettingen, Goettingen 37073, Germany
- Agro-Technological Institute, RUDN University, 117198 Moscow, Russia
| |
Collapse
|
207
|
Liu YX, Qin Y, Chen T, Lu M, Qian X, Guo X, Bai Y. A practical guide to amplicon and metagenomic analysis of microbiome data. Protein Cell 2021; 12:315-330. [PMID: 32394199 PMCID: PMC8106563 DOI: 10.1007/s13238-020-00724-8] [Citation(s) in RCA: 409] [Impact Index Per Article: 102.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/10/2020] [Indexed: 12/22/2022] Open
Abstract
Advances in high-throughput sequencing (HTS) have fostered rapid developments in the field of microbiome research, and massive microbiome datasets are now being generated. However, the diversity of software tools and the complexity of analysis pipelines make it difficult to access this field. Here, we systematically summarize the advantages and limitations of microbiome methods. Then, we recommend specific pipelines for amplicon and metagenomic analyses, and describe commonly-used software and databases, to help researchers select the appropriate tools. Furthermore, we introduce statistical and visualization methods suitable for microbiome analysis, including alpha- and beta-diversity, taxonomic composition, difference comparisons, correlation, networks, machine learning, evolution, source tracing, and common visualization styles to help researchers make informed choices. Finally, a step-by-step reproducible analysis guide is introduced. We hope this review will allow researchers to carry out data analysis more effectively and to quickly select the appropriate tools in order to efficiently mine the biological significance behind the data.
Collapse
Affiliation(s)
- Yong-Xin Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
- CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yuan Qin
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tong Chen
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Meiping Lu
- Department of Rheumatology Immunology & Allergy, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310053, China
| | - Xubo Qian
- Department of Rheumatology Immunology & Allergy, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310053, China
| | - Xiaoxuan Guo
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yang Bai
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
- CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
208
|
|
209
|
Probst M, Ascher-Jenull J, Insam H, Gómez-Brandón M. The Molecular Information About Deadwood Bacteriomes Partly Depends on the Targeted Environmental DNA. Front Microbiol 2021; 12:640386. [PMID: 33986733 PMCID: PMC8110828 DOI: 10.3389/fmicb.2021.640386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/22/2021] [Indexed: 01/04/2023] Open
Abstract
Microbiome studies mostly rely on total DNA extracts obtained directly from environmental samples. The total DNA consists of both intra- and extracellular DNA, which differ in terms of their ecological interpretation. In the present study, we have investigated for the first time the differences among the three DNA types using microbiome sequencing of Picea abies deadwood logs (Hunter decay classes I, III, and V). While the bacterial compositions of all DNA types were comparable in terms of more abundant organisms and mainly depended on the decay class, we found substantial differences between DNA types with regard to less abundant amplicon sequence variants (ASVs). The analysis of the sequentially extracted intra- and extracellular DNA fraction, respectively, increased the ecological depth of analysis compared to the directly extracted total DNA pool. Both DNA fractions were comparable in proportions and the extracellular DNA appeared to persist in the P. abies deadwood logs, thereby causing its masking effect. Indeed, the extracellular DNA masked the compositional dynamics of intact cells in the total DNA pool. Our results provide evidence that the choice of DNA type for analysis might benefit a study’s answer to its respective ecological question. In the deadwood environment researched here, the differential analysis of the DNA types underlined the relevance of Burkholderiales, Rhizobiales and other taxa for P. abies deadwood decomposition and revealed that the role of Acidobacteriota under this scenario might be underestimated, especially compared to Actinobacteriota.
Collapse
Affiliation(s)
- Maraike Probst
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | | | - Heribert Insam
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | - María Gómez-Brandón
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria.,Grupo de Ecoloxía Animal (GEA), Universidade de Vigo, Vigo, Spain
| |
Collapse
|
210
|
J J Schreven S, de Vries H, D A Hermes G, Smidt H, Dicke M, J A van Loon J. Relative contributions of egg-associated and substrate-associated microorganisms to black soldier fly larval performance and microbiota. FEMS Microbiol Ecol 2021; 97:6204668. [PMID: 33784380 PMCID: PMC8044291 DOI: 10.1093/femsec/fiab054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/26/2021] [Indexed: 11/23/2022] Open
Abstract
Larvae of the black soldier fly (BSF) can be used to convert organic waste into insect biomass for animal feed. In this process, they interact with microorganisms originating from the substrate, the insect and the environment. The substrate is the main determinant of the larval gut microbiota composition, but inoculation of the substrate with egg-associated bacteria can improve larval performance. We aimed to quantify the relative importance of substrate-associated and egg-associated microorganisms in BSF larval performance, bacterial abundance and bacterial community composition, when larvae were fed with chicken feed or chicken manure. For this, we inactivated substrate-associated microorganisms by autoclaving, or disinfected BSF eggs. Larval survival, weight and proportion of prepupae were determined on day 15. We collected substrate and larval samples on days 0 and 15 and performed 16S rRNA gene-targeted qPCR and amplicon sequencing. In both chicken feed and chicken manure, egg disinfection did not cause any difference in larval performance or overall microbiota composition. In contrast, in chicken manure, substrate-associated microorganisms increased larval biomass and sterilizing the substrate caused major shifts in microbiota. Thus, substrate-associated microorganisms impact not only larval microbiota but also larval performance, whereas egg-associated microorganisms have a minor role in the densities present.
Collapse
Affiliation(s)
- Stijn J J Schreven
- Laboratory of Entomology, Plant Sciences Group, Wageningen University & Research, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - Hugo de Vries
- Laboratory of Microbiology, Agrotechnology & Food Sciences Group, Wageningen University & Research, PO Box 8033, 6700 EH Wageningen, The Netherlands
| | - Gerben D A Hermes
- Laboratory of Microbiology, Agrotechnology & Food Sciences Group, Wageningen University & Research, PO Box 8033, 6700 EH Wageningen, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Agrotechnology & Food Sciences Group, Wageningen University & Research, PO Box 8033, 6700 EH Wageningen, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Plant Sciences Group, Wageningen University & Research, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - Joop J A van Loon
- Laboratory of Entomology, Plant Sciences Group, Wageningen University & Research, PO Box 16, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
211
|
Walker T, Quek S, Jeffries CL, Bandibabone J, Dhokiya V, Bamou R, Kristan M, Messenger LA, Gidley A, Hornett EA, Anderson ER, Cansado-Utrilla C, Hegde S, Bantuzeko C, Stevenson JC, Lobo NF, Wagstaff SC, Nkondjio CA, Irish SR, Heinz E, Hughes GL. Stable high-density and maternally inherited Wolbachia infections in Anopheles moucheti and Anopheles demeilloni mosquitoes. Curr Biol 2021; 31:2310-2320.e5. [PMID: 33857432 PMCID: PMC8210651 DOI: 10.1016/j.cub.2021.03.056] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/15/2021] [Accepted: 03/16/2021] [Indexed: 12/24/2022]
Abstract
Wolbachia, a widespread bacterium that can reduce pathogen transmission in mosquitoes, has recently been reported to be present in Anopheles (An.) species. In wild populations of the An. gambiae complex, the primary vectors of Plasmodium malaria in Sub-Saharan Africa, Wolbachia DNA sequences at low density and infection frequencies have been detected. As the majority of studies have used highly sensitive nested PCR as the only method of detection, more robust evidence is required to determine whether Wolbachia strains are established as endosymbionts in Anopheles species. Here, we describe high-density Wolbachia infections in geographically diverse populations of An. moucheti and An. demeilloni. Fluorescent in situ hybridization localized a heavy infection in the ovaries of An. moucheti, and maternal transmission was observed. Genome sequencing of both Wolbachia strains obtained genome depths and coverages comparable to those of other known infections. Notably, homologs of cytoplasmic incompatibility factor (cif) genes were present, indicating that these strains possess the capacity to induce the cytoplasmic incompatibility phenotype, which allows Wolbachia to spread through host populations. These strains should be further investigated as candidates for use in Wolbachia biocontrol strategies in Anopheles aiming to reduce the transmission of malaria. High-density Wolbachia strains found in An. moucheti and An. demeilloni mosquitoes Infections are visualized in the ovaries, and maternal transmission was observed Sequencing at depths and coverages comparable to other known Wolbachia strains Homologs of cytoplasmic incompatibility factor genes are present in both genomes
Collapse
Affiliation(s)
- Thomas Walker
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK.
| | - Shannon Quek
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Claire L Jeffries
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Janvier Bandibabone
- Laboratoire d'entomologie médicale et parasitologie, Centre de Recherche en Sciences Naturelles (CRSN/LWIRO), Sud-Kivu, Democratic Republic of Congo
| | - Vishaal Dhokiya
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Roland Bamou
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B.P. 288, Yaoundé, Cameroon; Vector Borne Diseases Laboratory of the Applied Biology and Ecology Research Unit (VBID-URBEA), Department of Animal Biology, Faculty of Science of the University of Dschang, P.O. Box 067, Dschang, Cameroon
| | - Mojca Kristan
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Louisa A Messenger
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Alexandra Gidley
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Emily A Hornett
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, UK; Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Enyia R Anderson
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Cintia Cansado-Utrilla
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Shivanand Hegde
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Chimanuka Bantuzeko
- Laboratoire d'entomologie médicale et parasitologie, Centre de Recherche en Sciences Naturelles (CRSN/LWIRO), Sud-Kivu, Democratic Republic of Congo
| | - Jennifer C Stevenson
- Macha Research Trust, Choma District, Zambia; Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Neil F Lobo
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Simon C Wagstaff
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Christophe Antonio Nkondjio
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B.P. 288, Yaoundé, Cameroon
| | - Seth R Irish
- Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30033, USA
| | - Eva Heinz
- Departments of Vector Biology and Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
212
|
Differential Resilience of Soil Microbes and Ecosystem Functions Following Cessation of Long-Term Fertilization. Ecosystems 2021. [DOI: 10.1007/s10021-021-00633-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
213
|
Jeffries CL, Cansado-Utrilla C, Beavogui AH, Stica C, Lama EK, Kristan M, Irish SR, Walker T. Evidence for natural hybridization and novel Wolbachia strain superinfections in the Anopheles gambiae complex from Guinea. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202032. [PMID: 33868697 PMCID: PMC8025300 DOI: 10.1098/rsos.202032] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/15/2021] [Indexed: 05/05/2023]
Abstract
Wolbachia, a widespread bacterium which can influence mosquito-borne pathogen transmission, has recently been detected within Anopheles (An.) species that are malaria vectors in Sub-Saharan Africa. Although studies have reported Wolbachia strains in the An. gambiae complex, apparent low density and prevalence rates require confirmation. In this study, wild Anopheles mosquitoes collected from two regions of Guinea were investigated. In contrast with previous studies, RNA was extracted from adult females (n = 516) to increase the chances for the detection of actively expressed Wolbachia genes, determine Wolbachia prevalence rates and estimate relative strain densities. Molecular confirmation of mosquito species and Wolbachia multilocus sequence typing (MLST) were carried out to analyse phylogenetic relationships of mosquito hosts and newly discovered Wolbachia strains. Strains were detected in An. melas (prevalence rate of 11.6%-16/138) and hybrids between An. melas and An. gambiae sensu stricto (prevalence rate of 40.0%-6/15) from Senguelen in the Maferinyah region. Furthermore, a novel high-density strain, termed wAnsX, was found in an unclassified Anopheles species. The discovery of novel Wolbachia strains (particularly in members, and hybrids, of the An. gambiae complex) provides further candidate strains that could be used for future Wolbachia-based malaria biocontrol strategies.
Collapse
Affiliation(s)
- Claire L. Jeffries
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Cintia Cansado-Utrilla
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Abdoul H. Beavogui
- Centre National de Formation et de Recherche en Santé Rurale de Mafèrinyah B.P. 2649, Conakry, Guinea
| | - Caleb Stica
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Eugene K. Lama
- Programme National de Lutte contre le Paludisme, Guinée, B.P. 6339 Conakry, Guinea
| | - Mojca Kristan
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Seth R. Irish
- The US President's Malaria Initiative and Entomology Branch, Centers for Disease Control and Prevention, Atlanta, GA 30329-4027, USA
| | - Thomas Walker
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| |
Collapse
|
214
|
Liang Y, Pan F, Ma J, Yang Z, Yan P. Long-term forest restoration influences succession patterns of soil bacterial communities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:20598-20607. [PMID: 33405107 DOI: 10.1007/s11356-020-11849-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Microorganisms have a major influence on soil biogeochemical processes and vegetation establishment. However, their long-term succession patterns and short-term turnover are not well-understood in artificial forest ecosystems. The aim of the present study was to investigate the effects of stand ages and seasons on soil bacterial community in a chronosequence of Chinese Pinus massoniana plantations, in 3, 19, and 58-year-old plots. Soil physicochemical properties were measured in three stand ages between two seasons (dry-rainy). The soil bacterial community composition was determined by 16S rRNA Illumina HiSeq sequencing. The results showed that soil bacterial community diversity and structure significantly differed among three stand ages, but was not different between two seasons. The diversity of soil bacterial community increased with an increase in stand age. Proteobacteria, Acidobacteria, and Actinobacteria were the dominant phyla in the three stands. The soil bacterial community structure in all the stands was influenced by soil pH, available phosphorus content, and litter phosphorus content. With the accumulation of available phosphorus, the relative abundance of Acidobacteria decreased, while that of Proteobacteria increased. These shifts suggested that dominant microbial communities transitioned from oligotrophic to copiotrophic with increasing stand age. Extending rotation periods could increase soil bacterial diversity, and in turn help improving soil quality of P. massoniana plantations.
Collapse
Affiliation(s)
- Yueming Liang
- Key Laboratory of Karst Dynamics, Ministry of Natural and Resources & Guangxi Zhuangzu Autonomy Region, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, 541000, China
| | - Fujing Pan
- College of Environmental and Engineering, Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541000, China.
| | - Jiangming Ma
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Normal University, Guilin, 541000, China
| | - Zhangqi Yang
- Guangxi Forestry Research Institute, Nanning, 530000, China
| | - Peidong Yan
- Guangxi Forestry Research Institute, Nanning, 530000, China
| |
Collapse
|
215
|
Crossing Kingdoms: How the Mycobiota and Fungal-Bacterial Interactions Impact Host Health and Disease. Infect Immun 2021; 89:IAI.00648-20. [PMID: 33526565 PMCID: PMC8090948 DOI: 10.1128/iai.00648-20] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The term “microbiota” invokes images of mucosal surfaces densely populated with bacteria. These surfaces and the luminal compartments they form indeed predominantly harbor bacteria. The term “microbiota” invokes images of mucosal surfaces densely populated with bacteria. These surfaces and the luminal compartments they form indeed predominantly harbor bacteria. However, research from this past decade has started to complete the picture by focusing on important but largely neglected constituents of the microbiota: fungi, viruses, and archaea. The community of commensal fungi, also called the mycobiota, interacts with commensal bacteria and the host. It is thus not surprising that changes in the mycobiota have significant impact on host health and are associated with pathological conditions such as inflammatory bowel disease (IBD). In this review we will give an overview of why the mycobiota is an important research area and different mycobiota research tools. We will specifically focus on distinguishing transient and actively colonizing fungi of the oral and gut mycobiota and their roles in health and disease. In addition to correlative and observational studies, we will discuss mechanistic studies on specific cross-kingdom interactions of fungi, bacteria, and the host.
Collapse
|
216
|
Microbial metabolism and necromass mediated fertilization effect on soil organic carbon after long-term community incubation in different climates. ISME JOURNAL 2021; 15:2561-2573. [PMID: 33712697 DOI: 10.1038/s41396-021-00950-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 02/23/2021] [Indexed: 11/08/2022]
Abstract
Understanding the effects of changing climate and long-term human activities on soil organic carbon (SOC) and the mediating roles of microorganisms is critical to maintain soil C stability in agricultural ecosystem. Here, we took samples from a long-term soil transplantation experiment, in which large transects of Mollisol soil in a cold temperate region were translocated to warm temperate and mid-subtropical regions to simulate different climate conditions, with a fertilization treatment on top. This study aimed to understand fertilization effect on SOC and the role of soil microorganisms featured after long-term community incubation in warm climates. After 12 years of soil transplantation, fertilization led to less reduction of SOC, in which aromatic C increased and the consumption of O-alkyl C and carbonyl C decreased. Soil live microbes were analyzed using propidium monoazide to remove DNAs from dead cells, and their network modulization explained 60.4% of variations in soil labile C. Single-cell Raman spectroscopy combined with D2O isotope labeling indicated a higher metabolic activity of live microbes to use easily degradable C after soil transplantation. Compared with non-fertilization, there was a significant decrease in soil α- and β-glucosidase and delay on microbial growth with fertilization in warmer climate. Moreover, fertilization significantly increased microbial necromass as indicated by amino sugar content, and its contribution to soil resistant C reached 22.3%. This study evidentially highlights the substantial contribution of soil microbial metabolism and necromass to refractory C of SOC with addition of nutrients in the long-term.
Collapse
|
217
|
Canini F, Zucconi L, Coleine C, D'Alò F, Onofri S, Geml J. Expansion of shrubs could result in local loss of soil bacterial richness in Western Greenland. FEMS Microbiol Ecol 2021; 96:5865694. [PMID: 32609325 DOI: 10.1093/femsec/fiaa089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/08/2020] [Indexed: 12/28/2022] Open
Abstract
Climate warming in Greenland is facilitating the expansion of shrubs across wide areas of tundra. Given the close association between plants and soil microorganisms and the important role of soil bacteria in ecosystem functioning, it is of utmost importance to characterize microbial communities of arctic soil habitats and assess the influence of plant edaphic factors on their composition. We used 16S rRNA gene amplicons to explore the bacterial assemblages of three different soil habitats representative of a plant coverage gradient: bare ground, biological soil crusts dominated by mosses and lichens and vascular vegetation dominated by shrubs. We investigated how bacterial richness and community composition were affected by the vegetation coverage, and soil pH, moisture and carbon (C), nitrogen (N) and phosphorus (P) contents. Bacterial richness did not correlate with plant coverage complexity, while community structure varied between habitats. Edaphic variables affected both the taxonomic richness and community composition. The high number of Amplicon Sequence Variants (ASVs) indicators of bare ground plots suggests a risk of local bacterial diversity loss due to expansion of vascular vegetation.
Collapse
Affiliation(s)
- Fabiana Canini
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy.,Biodiversity Dynamics Research Group, Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Federica D'Alò
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - József Geml
- Biodiversity Dynamics Research Group, Naturalis Biodiversity Center, Leiden, The Netherlands.,MTA-EKE Lendület Environmental Microbiome Research Group, Eszterházy Károly University, Eger, Hungary
| |
Collapse
|
218
|
Saia SM, Carrick HJ, Buda AR, Regan JM, Walter MT. Critical Review of Polyphosphate and Polyphosphate Accumulating Organisms for Agricultural Water Quality Management. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2722-2742. [PMID: 33559467 DOI: 10.1021/acs.est.0c03566] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Despite ongoing management efforts, phosphorus (P) loading from agricultural landscapes continues to impair water quality. Wastewater treatment research has enhanced our knowledge of microbial mechanisms influencing P cycling, especially regarding microbes known as polyphosphate accumulating organisms (PAOs) that store P as polyphosphate (polyP) under oxic conditions and release P under anoxic conditions. However, there is limited application of PAO research to reduce agricultural P loading and improve water quality. Herein, we conducted a meta-analysis to identify articles in Web of Science on polyP and its use by PAOs across five disciplines (i.e., wastewater treatment, terrestrial, freshwater, marine, and agriculture). We also summarized research that provides preliminary support for PAO-mediated P cycling in natural habitats. Terrestrial, freshwater, marine, and agriculture disciplines had fewer polyP and PAO articles compared to wastewater treatment, with agriculture consistently having the least. Most meta-analysis articles did not overlap disciplines. We found preliminary support for PAOs in natural habitats and identified several knowledge gaps and research opportunities. There is an urgent need for interdisciplinary research linking PAOs, polyP, and oxygen availability with existing knowledge of P forms and cycling mechanisms in natural and agricultural environments to improve agricultural P management strategies and achieve water quality goals.
Collapse
Affiliation(s)
- Sheila M Saia
- Depatment of Biological and Agricultural Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Hunter J Carrick
- Department of Biology and Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - Anthony R Buda
- Pasture Systems and Watershed Management Research Unit, Agricultural Research Service, United States Department of Agriculture, University Park, Pennsylvania 16802, United States
| | - John M Regan
- Department of Civil and Environmental Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - M Todd Walter
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
219
|
Arraiano-Castilho R, Bidartondo MI, Niskanen T, Clarkson JJ, Brunner I, Zimmermann S, Senn-Irlet B, Frey B, Peintner U, Mrak T, Suz LM. Habitat specialisation controls ectomycorrhizal fungi above the treeline in the European Alps. THE NEW PHYTOLOGIST 2021; 229:2901-2916. [PMID: 33107606 DOI: 10.1111/nph.17033] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
Alpine habitats are one of the most vulnerable ecosystems to environmental change, however, little information is known about the drivers of plant-fungal interactions in these ecosystems and their resilience to climate change. We investigated the influence of the main drivers of ectomycorrhizal (EM) fungal communities along elevation and environmental gradients in the alpine zone of the European Alps and measured their degree of specialisation using network analysis. We sampled ectomycorrhizas of Dryas octopetala, Bistorta vivipara and Salix herbacea, and soil fungal communities at 28 locations across five countries, from the treeline to the nival zone. We found that: (1) EM fungal community composition, but not richness, changes along elevation, (2) there is no strong evidence of host specialisation, however, EM fungal networks in the alpine zone and within these, EM fungi associated with snowbed communities, are more specialised than in other alpine habitats, (3) plant host population structure does not influence EM fungal communities, and (4) most variability in EM fungal communities is explained by fine-scale changes in edaphic properties, like soil pH and total nitrogen. The higher specialisation and narrower ecological niches of these plant-fungal interactions in snowbed habitats make these habitats particularly vulnerable to environmental change in alpine ecosystems.
Collapse
Affiliation(s)
- Ricardo Arraiano-Castilho
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, TW9 3DS, UK
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Martin I Bidartondo
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, TW9 3DS, UK
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Tuula Niskanen
- Identification and Naming, Royal Botanic Gardens, Kew, TW9 3DS, UK
| | - James J Clarkson
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, TW9 3DS, UK
| | - Ivano Brunner
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Stephan Zimmermann
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Beatrice Senn-Irlet
- Biodiversity and Conservation Biology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Beat Frey
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Ursula Peintner
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25d, Innsbruck, 6020, Austria
| | - Tanja Mrak
- Slovenian Forestry Institute, Večna pot 2, Ljubljana, 1000, Slovenia
| | - Laura M Suz
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, TW9 3DS, UK
| |
Collapse
|
220
|
Kroeger ME, Meredith LK, Meyer KM, Webster KD, de Camargo PB, de Souza LF, Tsai SM, van Haren J, Saleska S, Bohannan BJM, Rodrigues JLM, Berenguer E, Barlow J, Nüsslein K. Rainforest-to-pasture conversion stimulates soil methanogenesis across the Brazilian Amazon. THE ISME JOURNAL 2021; 15:658-672. [PMID: 33082572 PMCID: PMC8027882 DOI: 10.1038/s41396-020-00804-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/03/2020] [Accepted: 10/02/2020] [Indexed: 01/30/2023]
Abstract
The Amazon rainforest is a biodiversity hotspot and large terrestrial carbon sink threatened by agricultural conversion. Rainforest-to-pasture conversion stimulates the release of methane, a potent greenhouse gas. The biotic methane cycle is driven by microorganisms; therefore, this study focused on active methane-cycling microorganisms and their functions across land-use types. We collected intact soil cores from three land use types (primary rainforest, pasture, and secondary rainforest) of two geographically distinct areas of the Brazilian Amazon (Santarém, Pará and Ariquemes, Rondônia) and performed DNA stable-isotope probing coupled with metagenomics to identify the active methanotrophs and methanogens. At both locations, we observed a significant change in the composition of the isotope-labeled methane-cycling microbial community across land use types, specifically an increase in the abundance and diversity of active methanogens in pastures. We conclude that a significant increase in the abundance and activity of methanogens in pasture soils could drive increased soil methane emissions. Furthermore, we found that secondary rainforests had decreased methanogenic activity similar to primary rainforests, and thus a potential to recover as methane sinks, making it conceivable for forest restoration to offset greenhouse gas emissions in the tropics. These findings are critical for informing land management practices and global tropical rainforest conservation.
Collapse
Affiliation(s)
- Marie E. Kroeger
- grid.266683.f0000 0001 2184 9220Department of Microbiology, University of Massachusetts Amherst, Amherst, MA USA ,grid.148313.c0000 0004 0428 3079Present Address: Bioenergy and Biome Sciences, Los Alamos National Laboratory, Los Alamos, NM USA
| | - Laura K. Meredith
- grid.134563.60000 0001 2168 186XSchool of Natural Resources and the Environment, University of Arizona, Tucson, AZ USA ,grid.134563.60000 0001 2168 186XBiosphere 2, University of Arizona, Tucson, AZ USA
| | - Kyle M. Meyer
- grid.170202.60000 0004 1936 8008Institute of Ecology and Evolution, University of Oregon, Eugene, OR USA ,grid.47840.3f0000 0001 2181 7878Department of Integrative Biology, University of California–Berkeley, Berkeley, CA USA
| | - Kevin D. Webster
- grid.423138.f0000 0004 0637 3991Planetary Science Institute, Tucson, AZ USA
| | - Plinio Barbosa de Camargo
- grid.11899.380000 0004 1937 0722Center for Nuclear Energy in Agriculture, University of São Paulo, São Paulo, SP Brazil
| | - Leandro Fonseca de Souza
- grid.11899.380000 0004 1937 0722Center for Nuclear Energy in Agriculture, University of São Paulo, São Paulo, SP Brazil
| | - Siu Mui Tsai
- grid.11899.380000 0004 1937 0722Center for Nuclear Energy in Agriculture, University of São Paulo, São Paulo, SP Brazil
| | - Joost van Haren
- grid.134563.60000 0001 2168 186XBiosphere 2, University of Arizona, Tucson, AZ USA ,grid.134563.60000 0001 2168 186XHonors College, University of Arizona, Tucson, AZ USA
| | - Scott Saleska
- grid.134563.60000 0001 2168 186XDepartment of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ USA
| | - Brendan J. M. Bohannan
- grid.170202.60000 0004 1936 8008Institute of Ecology and Evolution, University of Oregon, Eugene, OR USA
| | - Jorge L. Mazza Rodrigues
- grid.27860.3b0000 0004 1936 9684Department of Land, Air and Water Resources, University of California, Davis, CA USA
| | - Erika Berenguer
- grid.9835.70000 0000 8190 6402Lancaster Environment Centre, Lancaster University, Lancaster, UK ,grid.4991.50000 0004 1936 8948Environmental Change Institute, University of Oxford, Oxford, UK
| | - Jos Barlow
- grid.9835.70000 0000 8190 6402Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Klaus Nüsslein
- grid.266683.f0000 0001 2184 9220Department of Microbiology, University of Massachusetts Amherst, Amherst, MA USA
| |
Collapse
|
221
|
Donia A, Hassan SU, Zhang X, Al-Madboly L, Bokhari H. COVID-19 Crisis Creates Opportunity towards Global Monitoring & Surveillance. Pathogens 2021; 10:256. [PMID: 33668358 PMCID: PMC7996165 DOI: 10.3390/pathogens10030256] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/13/2021] [Accepted: 02/22/2021] [Indexed: 01/07/2023] Open
Abstract
The spectrum of emerging new diseases as well as re-emerging old diseases is broadening as infectious agents evolve, adapt, and spread at enormous speeds in response to changing ecosystems. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recent phenomenon and may take a while to understand its transmission routes from less traveled territories, ranging from fomite exposure routes to wastewater transmission. The critical challenge is how to negotiate with such catastrophic pandemics in high-income countries (HICs ~20% of the global population) and low-and middle-income countries (LMICs ~ 80% of the global population) with a total global population size of approximately eight billion, where practical mass testing and tracing is only a remote possibility, particularly in low-and middle-income countries (LMICs). Keeping in mind the population distribution disparities of high-income countries (HICs) and LMICs and urbanisation trends over recent years, traditional wastewater-based surveillance such as that used to combat polio may help in addressing this challenge. The COVID-19 era differs from any previous pandemics or global health challenges in the sense that there is a great deal of curiosity within the global community to find out everything about this virus, ranging from diagnostics, potential vaccines/therapeutics, and possible routes of transmission. In this regard, the fact that the gut is the common niche for both poliovirus and SARS-CoV-2, and due to the shedding of the virus through faecal material into sewerage systems, the need for long-term wastewater surveillance and developing early warning systems for better preparedness at local and global levels is increasingly apparent. This paper aims to provide an insight into the ongoing COVID-19 crisis, how it can be managed, and what measures are required to deal with a current global international public health concern. Additionally, it shed light on the importance of using wastewater surveillance strategy as an early warning practical tool suitable for massive passive screening, as well as the urgent need for microfluidic technology as a rapid and cost-effective approach tracking SARS-CoV-2 in wastewater.
Collapse
Affiliation(s)
- Ahmed Donia
- Biosciences Department, Faculty of Science, Comsats University Islamabad, Islamabad 45550, Pakistan;
| | - Sammer-ul Hassan
- Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK;
| | - Xunli Zhang
- Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK;
| | - Lamiaa Al-Madboly
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | - Habib Bokhari
- Biosciences Department, Faculty of Science, Comsats University Islamabad, Islamabad 45550, Pakistan;
| |
Collapse
|
222
|
Semenov MV. Metabarcoding and Metagenomics in Soil Ecology Research: Achievements, Challenges, and Prospects. ACTA ACUST UNITED AC 2021. [DOI: 10.1134/s2079086421010084] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
223
|
Comparative Fungal Community Analyses Using Metatranscriptomics and Internal Transcribed Spacer Amplicon Sequencing from Norway Spruce. mSystems 2021; 6:6/1/e00884-20. [PMID: 33594001 PMCID: PMC8573963 DOI: 10.1128/msystems.00884-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The health, growth, and fitness of boreal forest trees are impacted and improved by their associated microbiomes. Microbial gene expression and functional activity can be assayed with RNA sequencing (RNA-Seq) data from host samples. In contrast, phylogenetic marker gene amplicon sequencing data are used to assess taxonomic composition and community structure of the microbiome. Few studies have considered how much of this structural and taxonomic information is included in transcriptomic data from matched samples. Here, we described fungal communities using both host-derived RNA-Seq and fungal ITS1 DNA amplicon sequencing to compare the outcomes between the methods. We used a panel of root and needle samples from the coniferous tree species Picea abies (Norway spruce) growing in untreated (nutrient-deficient) and nutrient-enriched plots at the Flakaliden forest research site in boreal northern Sweden. We show that the relationship between samples and alpha and beta diversity indicated by the fungal transcriptome is in agreement with that generated by the ITS data, while also identifying a lack of taxonomic overlap due to limitations imposed by current database coverage. Furthermore, we demonstrate how metatranscriptomics data additionally provide biologically informative functional insights. At the community level, there were changes in starch and sucrose metabolism, biosynthesis of amino acids, and pentose and glucuronate interconversions, while processing of organic macromolecules, including aromatic and heterocyclic compounds, was enriched in transcripts assigned to the genus Cortinarius. IMPORTANCE A deeper understanding of microbial communities associated with plants is revealing their importance for plant health and productivity. RNA extracted from plant field samples represents the host and other organisms present. Typically, gene expression studies focus on the plant component or, in a limited number of studies, expression in one or more associated organisms. However, metatranscriptomic data are rarely used for taxonomic profiling, which is currently performed using amplicon approaches. We created an assembly-based, reproducible, and hardware-agnostic workflow to taxonomically and functionally annotate fungal RNA-Seq data obtained from Norway spruce roots, which we compared to matching ITS amplicon sequencing data. While we identified some limitations and caveats, we show that functional, taxonomic, and compositional insights can all be obtained from RNA-Seq data. These findings highlight the potential of metatranscriptomics to advance our understanding of interaction, response, and effect between host plants and their associated microbial communities.
Collapse
|
224
|
Lee J, Kim HS, Jo HY, Kwon MJ. Revisiting soil bacterial counting methods: Optimal soil storage and pretreatment methods and comparison of culture-dependent and -independent methods. PLoS One 2021; 16:e0246142. [PMID: 33566842 PMCID: PMC7875414 DOI: 10.1371/journal.pone.0246142] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/13/2021] [Indexed: 11/19/2022] Open
Abstract
Although a number of different methods have been used to quantify soil bacteria, identifying the optimal method(s) for soil bacterial abundance is still in question. No single method exists for undertaking an absolute microbial count using culture-dependent methods (CDMs) or even culture-independent methods (CIMs). This study investigated soil storage and pretreatment methods for optimal bacterial counts. Appropriate storage temperature (4°C) and optimal pretreatment methods (sonication time for 3 min and centrifugation at 1400 g) were necessary to preserve bacterial cell viability and eliminate interference from soil particles. To better estimate soil bacterial numbers under various cellular state and respiration, this study also evaluated three CDMs (i.e., colony forming unit, spotting, and most probable number (MPN) and three CIMs (i.e., flow cytometry (FCM), epifluorescence microscopy (EM) count, and DNA quantitation). Each counting method was tested using 72 soil samples collected from a local arable farm site at three different depths (i.e., 10-20, 90-100, and 180-190 cm). Among all CDMs, MPN was found to be rapid, simple, and reliable. However, the number of bacteria quantified by MPN was 1-2 orders lower than that quantified by CIMs, likely due to the inability of MPN to count anaerobic bacteria. The DNA quantitation method appeared to overestimate soil bacterial numbers, which may be attributed to DNA from dead bacteria and free DNA in the soil matrix. FCM was found to be ineffective in counting soil bacteria as it was difficult to separate the bacterial cells from the soil particles. Dyes used in FCM stained the bacterial DNA and clay particles. The EM count was deemed a highly effective method as it provided information on soil mineral particles, live bacteria, and dead bacteria; however, it was a time-consuming and labor-intensive process. Combining both types of methods was considered the best approach to acquire better information on the characteristics of indigenous soil microorganisms (aerobic versus anaerobic, live versus dead).
Collapse
Affiliation(s)
- Jeonggil Lee
- KU-KIST Green School, Korea University, Seoul, Republic of Korea
| | - Han-Suk Kim
- Department of Earth and Environmental Sciences, Korea University, Seoul, Republic of Korea
| | - Ho Young Jo
- Department of Earth and Environmental Sciences, Korea University, Seoul, Republic of Korea
| | - Man Jae Kwon
- KU-KIST Green School, Korea University, Seoul, Republic of Korea
- Department of Earth and Environmental Sciences, Korea University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
225
|
Ruiz-González C, Rodellas V, Garcia-Orellana J. The microbial dimension of submarine groundwater discharge: current challenges and future directions. FEMS Microbiol Rev 2021; 45:6128669. [PMID: 33538813 PMCID: PMC8498565 DOI: 10.1093/femsre/fuab010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/28/2021] [Indexed: 12/22/2022] Open
Abstract
Despite the relevance of submarine groundwater discharge (SGD) for ocean biogeochemistry, the microbial dimension of SGD remains poorly understood. SGD can influence marine microbial communities through supplying chemical compounds and microorganisms, and in turn, microbes at the land–ocean transition zone determine the chemistry of the groundwater reaching the ocean. However, compared with inland groundwater, little is known about microbial communities in coastal aquifers. Here, we review the state of the art of the microbial dimension of SGD, with emphasis on prokaryotes, and identify current challenges and future directions. Main challenges include improving the diversity description of groundwater microbiota, characterized by ultrasmall, inactive and novel taxa, and by high ratios of sediment-attached versus free-living cells. Studies should explore microbial dynamics and their role in chemical cycles in coastal aquifers, the bidirectional dispersal of groundwater and seawater microorganisms, and marine bacterioplankton responses to SGD. This will require not only combining sequencing methods, visualization and linking taxonomy to activity but also considering the entire groundwater–marine continuum. Interactions between traditionally independent disciplines (e.g. hydrogeology, microbial ecology) are needed to frame the study of terrestrial and aquatic microorganisms beyond the limits of their presumed habitats, and to foster our understanding of SGD processes and their influence in coastal biogeochemical cycles.
Collapse
Affiliation(s)
- Clara Ruiz-González
- Institut de Ciències del Mar (ICM-CSIC). Passeig Marítim de la Barceloneta 37-49, E08003 Barcelona, Spain
| | - Valentí Rodellas
- Institut de Ciència i Tecnologia Ambientals (ICTA-UAB), Universitat Autònoma de Barcelona, E08193 Bellaterra, Spain
| | - Jordi Garcia-Orellana
- Institut de Ciència i Tecnologia Ambientals (ICTA-UAB), Universitat Autònoma de Barcelona, E08193 Bellaterra, Spain.,Departament de Física, Universitat Autònoma de Barcelona, E08193 Bellaterra, Spain
| |
Collapse
|
226
|
Szymańska S, Sikora M, Hrynkiewicz K, Tyburski J, Tretyn A, Gołębiewski M. Choosing source of microorganisms and processing technology for next generation beet bioinoculant. Sci Rep 2021; 11:2829. [PMID: 33531601 PMCID: PMC7854725 DOI: 10.1038/s41598-021-82436-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 01/12/2021] [Indexed: 11/09/2022] Open
Abstract
The increase of human population and associated increasing demand for agricultural products lead to soil over-exploitation. Biofertilizers based on lyophilized plant material containing living plant growth-promoting microorganisms (PGPM) could be an alternative to conventional fertilizers that fits into sustainable agricultural technologies ideas. We aimed to: (1) assess the diversity of endophytic bacteria in sugar and sea beet roots and (2) determine the influence of osmoprotectants (trehalose and ectoine) addition during lyophilization on bacterial density, viability and salt tolerance. Microbiome diversity was assessed based on 16S rRNA amplicons sequencing, bacterial density and salt tolerance was evaluated in cultures, while bacterial viability was calculated by using fluorescence microscopy and flow cytometry. Here we show that plant genotype shapes its endophytic microbiome diversity and determines rhizosphere soil properties. Sea beet endophytic microbiome, consisting of genera characteristic for extreme environments, is more diverse and salt resistant than its crop relative. Supplementing osmoprotectants during root tissue lyophilization exerts a positive effect on bacterial community salt stress tolerance, viability and density. Trehalose improves the above-mentioned parameters more effectively than ectoine, moreover its use is economically advantageous, thus it may be used to formulate improved biofertilizers.
Collapse
Affiliation(s)
- Sonia Szymańska
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University (NCU), Lwowska 1, 87-100, Toruń, Poland
| | - Marcin Sikora
- Center for Modern Interdisciplinary Technologies, Nicolaus Copernicus University (NCU), Toruń, Poland
| | - Katarzyna Hrynkiewicz
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University (NCU), Lwowska 1, 87-100, Toruń, Poland.
| | - Jarosław Tyburski
- Center for Modern Interdisciplinary Technologies, Nicolaus Copernicus University (NCU), Toruń, Poland.,Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University (NCU), Lwowska 1, 87-100, Toruń, Poland
| | - Andrzej Tretyn
- Center for Modern Interdisciplinary Technologies, Nicolaus Copernicus University (NCU), Toruń, Poland.,Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University (NCU), Lwowska 1, 87-100, Toruń, Poland
| | - Marcin Gołębiewski
- Center for Modern Interdisciplinary Technologies, Nicolaus Copernicus University (NCU), Toruń, Poland. .,Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University (NCU), Lwowska 1, 87-100, Toruń, Poland.
| |
Collapse
|
227
|
Wahdan SFM, Heintz-Buschart A, Sansupa C, Tanunchai B, Wu YT, Schädler M, Noll M, Purahong W, Buscot F. Targeting the Active Rhizosphere Microbiome of Trifolium pratense in Grassland Evidences a Stronger-Than-Expected Belowground Biodiversity-Ecosystem Functioning Link. Front Microbiol 2021; 12:629169. [PMID: 33597941 PMCID: PMC7882529 DOI: 10.3389/fmicb.2021.629169] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
The relationship between biodiversity and ecosystem functioning (BEF) is a central issue in soil and microbial ecology. To date, most belowground BEF studies focus on the diversity of microbes analyzed by barcoding on total DNA, which targets both active and inactive microbes. This approach creates a bias as it mixes the part of the microbiome currently steering processes that provide actual ecosystem functions with the part not directly involved. Using experimental extensive grasslands under current and future climate, we used the bromodeoxyuridine (BrdU) immunocapture technique combined with pair-end Illumina sequencing to characterize both total and active microbiomes (including both bacteria and fungi) in the rhizosphere of Trifolium pratense. Rhizosphere function was assessed by measuring the activity of three microbial extracellular enzymes (β-glucosidase, N-acetyl-glucosaminidase, and acid phosphatase), which play central roles in the C, N, and P acquisition. We showed that the richness of overall and specific functional groups of active microbes in rhizosphere soil significantly correlated with the measured enzyme activities, while total microbial richness did not. Active microbes of the rhizosphere represented 42.8 and 32.1% of the total bacterial and fungal taxa, respectively, and were taxonomically and functionally diverse. Nitrogen fixing bacteria were highly active in this system with 71% of the total operational taxonomic units (OTUs) assigned to this group detected as active. We found the total and active microbiomes to display different responses to variations in soil physicochemical factors in the grassland, but with some degree of resistance to a manipulation mimicking future climate. Our findings provide critical insights into the role of active microbes in defining soil ecosystem functions in a grassland ecosystem. We demonstrate that the relationship between biodiversity-ecosystem functioning in soil may be stronger than previously thought.
Collapse
Affiliation(s)
- Sara Fareed Mohamed Wahdan
- Department of Soil Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle (Saale), Germany.,Department of Biology, Leipzig University, Leipzig, Germany.,Department of Botany, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Anna Heintz-Buschart
- Department of Soil Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle (Saale), Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Chakriya Sansupa
- Department of Soil Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle (Saale), Germany
| | - Benjawan Tanunchai
- Department of Soil Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle (Saale), Germany
| | - Yu-Ting Wu
- Department of Forestry, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Martin Schädler
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Department of Community Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle (Saale), Germany
| | - Matthias Noll
- Institute for Bioanalysis, Coburg University of Applied Sciences and Arts, Coburg, Germany
| | - Witoon Purahong
- Department of Soil Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle (Saale), Germany
| | - François Buscot
- Department of Soil Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle (Saale), Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
228
|
Genderjahn S, Lewin S, Horn F, Schleicher AM, Mangelsdorf K, Wagner D. Living Lithic and Sublithic Bacterial Communities in Namibian Drylands. Microorganisms 2021; 9:235. [PMID: 33498742 PMCID: PMC7911874 DOI: 10.3390/microorganisms9020235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 12/26/2022] Open
Abstract
Dryland xeric conditions exert a deterministic effect on microbial communities, forcing life into refuge niches. Deposited rocks can form a lithic niche for microorganisms in desert regions. Mineral weathering is a key process in soil formation and the importance of microbial-driven mineral weathering for nutrient extraction is increasingly accepted. Advances in geobiology provide insight into the interactions between microorganisms and minerals that play an important role in weathering processes. In this study, we present the examination of the microbial diversity in dryland rocks from the Tsauchab River banks in Namibia. We paired culture-independent 16S rRNA gene amplicon sequencing with culture-dependent (isolation of bacteria) techniques to assess the community structure and diversity patterns. Bacteria isolated from dryland rocks are typical of xeric environments and are described as being involved in rock weathering processes. For the first time, we extracted extra- and intracellular DNA from rocks to enhance our understanding of potentially rock-weathering microorganisms. We compared the microbial community structure in different rock types (limestone, quartz-rich sandstone and quartz-rich shale) with adjacent soils below the rocks. Our results indicate differences in the living lithic and sublithic microbial communities.
Collapse
Affiliation(s)
- Steffi Genderjahn
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany; (S.L.); (F.H.); (D.W.)
| | - Simon Lewin
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany; (S.L.); (F.H.); (D.W.)
| | - Fabian Horn
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany; (S.L.); (F.H.); (D.W.)
| | - Anja M. Schleicher
- GFZ German Research Centre for Geosciences, Section Organic Geochemistry, Telegrafenberg, 14473 Potsdam, Germany;
| | - Kai Mangelsdorf
- GFZ German Research Centre for Geosciences, Section Anorganic Chemistry, Telegrafenberg, 14473 Potsdam, Germany;
| | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany; (S.L.); (F.H.); (D.W.)
- Institute of Geosciences, University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
229
|
Wang Y, Yan Y, Thompson KN, Bae S, Accorsi EK, Zhang Y, Shen J, Vlamakis H, Hartmann EM, Huttenhower C. Whole microbial community viability is not quantitatively reflected by propidium monoazide sequencing approach. MICROBIOME 2021; 9:17. [PMID: 33478576 PMCID: PMC7819323 DOI: 10.1186/s40168-020-00961-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/06/2020] [Indexed: 05/11/2023]
Abstract
BACKGROUND High-throughput sequencing provides a powerful window into the structural and functional profiling of microbial communities, but it is unable to characterize only the viable portion of microbial communities at scale. There is as yet not one best solution to this problem. Previous studies have established viability assessments using propidium monoazide (PMA) treatment coupled with downstream molecular profiling (e.g., qPCR or sequencing). While these studies have met with moderate success, most of them focused on the resulting "viable" communities without systematic evaluations of the technique. Here, we present our work to rigorously benchmark "PMA-seq" (PMA treatment followed by 16S rRNA gene amplicon sequencing) for viability assessment in synthetic and realistic microbial communities. RESULTS PMA-seq was able to successfully reconstruct simple synthetic communities comprising viable/heat-killed Escherichia coli and Streptococcus sanguinis. However, in realistically complex communities (computer screens, computer mice, soil, and human saliva) with E. coli spike-in controls, PMA-seq did not accurately quantify viability (even relative to variability in amplicon sequencing), with its performance largely affected by community properties such as initial biomass, sample types, and compositional diversity. We then applied this technique to environmental swabs from the Boston subway system. Several taxa differed significantly after PMA treatment, while not all microorganisms responded consistently. To elucidate the "PMA-responsive" microbes, we compared our results with previous PMA-based studies and found that PMA responsiveness varied widely when microbes were sourced from different ecosystems but were reproducible within similar environments across studies. CONCLUSIONS This study provides a comprehensive evaluation of PMA-seq exploring its quantitative potential in synthetic and complex microbial communities, where the technique was effective for semi-quantitative purposes in simple synthetic communities but provided only qualitative assessments in realistically complex community samples. Video abstract.
Collapse
Affiliation(s)
- Ya Wang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, 655 Huntington Avenue, Boston, MA 02115 USA
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 USA
| | - Yan Yan
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, 655 Huntington Avenue, Boston, MA 02115 USA
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 USA
| | - Kelsey N. Thompson
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, 655 Huntington Avenue, Boston, MA 02115 USA
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 USA
| | - Sena Bae
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, 655 Huntington Avenue, Boston, MA 02115 USA
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 USA
| | - Emma K. Accorsi
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, 655 Huntington Avenue, Boston, MA 02115 USA
| | - Yancong Zhang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, 655 Huntington Avenue, Boston, MA 02115 USA
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 USA
| | - Jiaxian Shen
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
| | - Hera Vlamakis
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 USA
| | - Erica M. Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, 655 Huntington Avenue, Boston, MA 02115 USA
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 USA
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Harvard University, 655 Huntington Avenue, Boston, MA 02115 USA
| |
Collapse
|
230
|
Bang-Andreasen T, Peltre M, Ellegaard-Jensen L, Hansen LH, Ingerslev M, Rønn R, Jacobsen CS, Kjøller R. Application of wood ash leads to strong vertical gradients in soil pH changing prokaryotic community structure in forest top soil. Sci Rep 2021; 11:742. [PMID: 33436951 PMCID: PMC7804945 DOI: 10.1038/s41598-020-80732-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 12/21/2020] [Indexed: 01/29/2023] Open
Abstract
Wood ash is alkaline and contains base-cations. Application of wood ash to forests therefore counteracts soil acidification and recycle nutrients removed during harvest. Wood ash application to soil leads to strong vertical gradients in physicochemical parameters. Consequently, we designed an experimental system where small-scale vertical changes in soil properties and prokaryotic community structure could be followed after wood ash application. A mixed fly and bottom ash was applied in dosages of 3 and 9 t ha-1 to the surface of soil mesocosms, simulating a typical coniferous podzol. Soil pH, exchangeable cations and 16S prokaryotic community was subsequently assessed at small depth intervals to 5 cm depth at regular intervals for one year. Wood ash significantly changed the prokaryotic community in the top of the soil column. Also, the largest increases in pH and concentrations of exchangeable cations was found here. The relative abundance of prokaryotic groups directionally changed, suggesting that wood ash favors copiotrophic prokaryotes at the expense of oligotrophic and acidophilic taxa. The effect of wood ash were negligible both in terms of pH- and biological changes in lower soil layers. Consequently, by micro-vertical profiling we showed that wood ash causes a steep gradient of abiotic factors driving biotic changes but only in the top-most soil layers.
Collapse
Affiliation(s)
- Toke Bang-Andreasen
- grid.7048.b0000 0001 1956 2722Department of Environmental Science, Aarhus University, Roskilde, Denmark ,grid.5254.60000 0001 0674 042XDepartment of Biology, University of Copenhagen, Copenhagen Ø, Denmark
| | - Mette Peltre
- grid.5254.60000 0001 0674 042XDepartment of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Denmark
| | - Lea Ellegaard-Jensen
- grid.7048.b0000 0001 1956 2722Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Lars Hestbjerg Hansen
- grid.7048.b0000 0001 1956 2722Department of Environmental Science, Aarhus University, Roskilde, Denmark ,grid.5254.60000 0001 0674 042XDepartment of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Morten Ingerslev
- grid.5254.60000 0001 0674 042XDepartment of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Denmark
| | - Regin Rønn
- grid.5254.60000 0001 0674 042XDepartment of Biology, University of Copenhagen, Copenhagen Ø, Denmark
| | - Carsten Suhr Jacobsen
- grid.7048.b0000 0001 1956 2722Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Rasmus Kjøller
- grid.5254.60000 0001 0674 042XDepartment of Biology, University of Copenhagen, Copenhagen Ø, Denmark
| |
Collapse
|
231
|
Galitskaya P, Biktasheva L, Blagodatsky S, Selivanovskaya S. Response of bacterial and fungal communities to high petroleum pollution in different soils. Sci Rep 2021; 11:164. [PMID: 33420266 PMCID: PMC7794381 DOI: 10.1038/s41598-020-80631-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 12/21/2020] [Indexed: 01/29/2023] Open
Abstract
Petroleum pollution of soils is a major environmental problem. Soil microorganisms can decompose a significant fraction of petroleum hydrocarbons in soil at low concentrations (1-5%). This characteristic can be used for soil remediation after oil pollution. Microbial community dynamics and functions are well studied in cases of moderate petroleum pollution, while cases with heavy soil pollution have received much less attention. We studied bacterial and fungal successions in three different soils with high petroleum contents (6 and 25%) in a laboratory experiment. The proportion of aliphatic and aromatic compounds decreased by 4-7% in samples with 6% pollution after 120 days of incubation but remained unchanged in samples with 25% hydrocarbons. The composition of the microbial community changed significantly in all cases. Oil pollution led to an increase in the relative abundance of bacteria such as Actinobacteria and the candidate TM7 phylum (Saccaribacteria) and to a decrease in that of Bacteroidetes. The gene abundance (number of OTUs) of oil-degrading bacteria (Rhodococcus sp., candidate class TM7-3 representative) became dominant in all soil samples, irrespective of the petroleum pollution level and soil type. The fungal communities in unpolluted soil samples differed more significantly than the bacterial communities. Nonmetric multidimensional scaling revealed that in the polluted soil, successions of fungal communities differed between soils, in contrast to bacterial communities. However, these successions showed similar trends: fungi capable of lignin and cellulose decomposition, e.g., from the genera Fusarium and Mortierella, were dominant during the incubation period.
Collapse
Affiliation(s)
- Polina Galitskaya
- grid.77268.3c0000 0004 0543 9688Institute of Environmental Sciences, Kazan Federal University, Kazan, 420008 Russia
| | - Liliya Biktasheva
- grid.77268.3c0000 0004 0543 9688Institute of Environmental Sciences, Kazan Federal University, Kazan, 420008 Russia
| | - Sergey Blagodatsky
- grid.9464.f0000 0001 2290 1502Institute of Plant Production and Agroecology in the Tropics and Subtropics, University of Hohenheim, 70599 Stuttgart, Germany ,grid.451005.5Institute of Physico-Chemical and Biological Problems of Soil Science, Pushchino, 142290 Russia
| | - Svetlana Selivanovskaya
- grid.77268.3c0000 0004 0543 9688Institute of Environmental Sciences, Kazan Federal University, Kazan, 420008 Russia
| |
Collapse
|
232
|
Stanish LF, Sherwood OA, Lackey G, Osborn S, Robertson CE, Harris JK, Pace N, Ryan JN. Microbial and Biogeochemical Indicators of Methane in Groundwater Aquifers of the Denver Basin, Colorado. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:292-303. [PMID: 33296185 DOI: 10.1021/acs.est.0c04228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The presence of methane and other hydrocarbons in domestic-use groundwater aquifers poses significant environmental and human health concerns. Isotopic measurements are often relied upon as indicators of groundwater aquifer contamination with methane. While these parameters are used to infer microbial metabolisms, there is growing evidence that isotopes present an incomplete picture of subsurface microbial processes. This study examined the relationships between microbiology and chemistry in groundwater wells located in the Denver-Julesburg Basin of Colorado, a rapidly urbanizing area with active oil and gas development. A primary goal was to determine if microbial data can reliably indicate the quantities and sources of groundwater methane. Comprehensive chemical and molecular analyses were performed on 39 groundwater well samples from five aquifers. Elevated methane concentrations were found in only one aquifer, and both isotopic and microbial data support a microbial origin. Microbial parameters had similar explanatory power as chemical parameters for predicting sample methane concentrations. Furthermore, a subset of samples with unique microbiology corresponded with unique chemical signatures that may be useful indicators of methane gas migration, potentially from nearby coal seams interacting with the aquifer. Microbial data may allow for more accurate determination of groundwater contamination and improved long-term water quality monitoring compared solely to isotopic and chemical data in areas with microbial methane.
Collapse
Affiliation(s)
- Lee F Stanish
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Owen A Sherwood
- Department of Earth and Environmental Sciences, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Greg Lackey
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, Boulder, Colorado 80309, United States
| | - Stephen Osborn
- Department of Geological Sciences, California State Polytechnic University, Pomona, California 91768, United States
| | | | | | - Norman Pace
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Joseph N Ryan
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
233
|
Trace gas oxidizers are widespread and active members of soil microbial communities. Nat Microbiol 2021; 6:246-256. [PMID: 33398096 DOI: 10.1038/s41564-020-00811-w] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/08/2020] [Indexed: 01/24/2023]
Abstract
Soil microorganisms globally are thought to be sustained primarily by organic carbon sources. Certain bacteria also consume inorganic energy sources such as trace gases, but they are presumed to be rare community members, except within some oligotrophic soils. Here we combined metagenomic, biogeochemical and modelling approaches to determine how soil microbial communities meet energy and carbon needs. Analysis of 40 metagenomes and 757 derived genomes indicated that over 70% of soil bacterial taxa encode enzymes to consume inorganic energy sources. Bacteria from 19 phyla encoded enzymes to use the trace gases hydrogen and carbon monoxide as supplemental electron donors for aerobic respiration. In addition, we identified a fourth phylum (Gemmatimonadota) potentially capable of aerobic methanotrophy. Consistent with the metagenomic profiling, communities within soil profiles from diverse habitats rapidly oxidized hydrogen, carbon monoxide and to a lesser extent methane below atmospheric concentrations. Thermodynamic modelling indicated that the power generated by oxidation of these three gases is sufficient to meet the maintenance needs of the bacterial cells capable of consuming them. Diverse bacteria also encode enzymes to use trace gases as electron donors to support carbon fixation. Altogether, these findings indicate that trace gas oxidation confers a major selective advantage in soil ecosystems, where availability of preferred organic substrates limits microbial growth. The observation that inorganic energy sources may sustain most soil bacteria also has broad implications for understanding atmospheric chemistry and microbial biodiversity in a changing world.
Collapse
|
234
|
Nagler M, Podmirseg SM, Mayr M, Ascher-Jenull J, Insam H. The masking effect of extracellular DNA and robustness of intracellular DNA in anaerobic digester NGS studies: A discriminatory study of the total DNA pool. Mol Ecol 2020; 30:438-450. [PMID: 33219564 PMCID: PMC7839673 DOI: 10.1111/mec.15740] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 11/06/2020] [Accepted: 11/13/2020] [Indexed: 01/08/2023]
Abstract
Most commonly, next generation sequencing-based microbiome studies are performed on the total DNA (totDNA) pool; however, this consists of extracellular- (exDNA) and intracellular (iDNA) DNA fractions. By investigating the microbiomes of different anaerobic digesters over time, we found that totDNA suggested lower species richness considering all and/or only common species and yielded fewer unique reads as compared to iDNA. Additionally, exDNA-derived sequences were more similar to those from totDNA than from iDNA and, finally, iDNA showed the best performance in tracking temporal changes in microbial communities. We postulate that abundant sequences present within the exDNA fraction mask the overall results of totDNA and provide evidence that exDNA has the potential to qualitatively bias microbiome studies at least in the anaerobic digester environment as it contains information about cells that were lysed hours or days ago. iDNA, however, was found to be more appropriate in providing reliable genetic information about potentially alive as well as rare microbes within the target habitat.
Collapse
Affiliation(s)
- Magdalena Nagler
- Institute of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | | | - Markus Mayr
- Institute of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | | | - Heribert Insam
- Institute of Microbiology, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
235
|
Hannula S, Morriën E, van der Putten W, de Boer W. Rhizosphere fungi actively assimilating plant-derived carbon in a grassland soil. FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2020.100988] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
236
|
Bang-Andreasen T, Anwar MZ, Lanzén A, Kjøller R, Rønn R, Ekelund F, Jacobsen CS. Total RNA sequencing reveals multilevel microbial community changes and functional responses to wood ash application in agricultural and forest soil. FEMS Microbiol Ecol 2020; 96:5721238. [PMID: 32009159 PMCID: PMC7028008 DOI: 10.1093/femsec/fiaa016] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/31/2020] [Indexed: 11/15/2022] Open
Abstract
Recycling of wood ash from energy production may counteract soil acidification and return essential nutrients to soils. However, wood ash amendment affects soil physicochemical parameters that control composition and functional expression of the soil microbial community. Here, we applied total RNA sequencing to simultaneously assess the impact of wood ash amendment on the active soil microbial communities and the expression of functional genes from all microbial taxa. Wood ash significantly affected the taxonomic (rRNA) as well as functional (mRNA) profiles of both agricultural and forest soil. Increase in pH, electrical conductivity, dissolved organic carbon and phosphate were the most important physicochemical drivers for the observed changes. Wood ash amendment increased the relative abundance of the copiotrophic groups Chitinonophagaceae (Bacteroidetes) and Rhizobiales (Alphaproteobacteria) and resulted in higher expression of genes involved in metabolism and cell growth. Finally, total RNA sequencing allowed us to show that some groups of bacterial feeding protozoa increased concomitantly to the enhanced bacterial growth, which shows their pivotal role in the regulation of bacterial abundance in soil.
Collapse
Affiliation(s)
- Toke Bang-Andreasen
- Department of Environmental Science, Aarhus University, RISØ Campus, Roskilde, 4000, Denmark.,Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Muhammad Zohaib Anwar
- Department of Environmental Science, Aarhus University, RISØ Campus, Roskilde, 4000, Denmark
| | - Anders Lanzén
- Department of Conservation of Natural Resources, NEIKER-Tecnalia, Bizkaia Technology Park, E-48160, Derio, Spain.,AZTI-Tecnalia, Herrera Kaia, E-20110, Pasaia, Spain.,Ikerbasque, Basque Foundation for Science, E-48013, Bilbao, Spain
| | - Rasmus Kjøller
- Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Regin Rønn
- Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark.,Arctic Station, University of Copenhagen, 3953, Qeqertarsuaq, Greenland
| | - Flemming Ekelund
- Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Carsten Suhr Jacobsen
- Department of Environmental Science, Aarhus University, RISØ Campus, Roskilde, 4000, Denmark
| |
Collapse
|
237
|
Tartaglia M, Bastida F, Sciarrillo R, Guarino C. Soil Metaproteomics for the Study of the Relationships Between Microorganisms and Plants: A Review of Extraction Protocols and Ecological Insights. Int J Mol Sci 2020; 21:ijms21228455. [PMID: 33187080 PMCID: PMC7697097 DOI: 10.3390/ijms21228455] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022] Open
Abstract
Soil is a complex matrix where biotic and abiotic components establish a still unclear network involving bacteria, fungi, archaea, protists, protozoa, and roots that are in constant communication with each other. Understanding these interactions has recently focused on metagenomics, metatranscriptomics and less on metaproteomics studies. Metaproteomic allows total extraction of intracellular and extracellular proteins from soil samples, providing a complete picture of the physiological and functional state of the “soil community”. The advancement of high-performance mass spectrometry technologies was more rapid than the development of ad hoc extraction techniques for soil proteins. The protein extraction from environmental samples is biased due to interfering substances and the lower amount of proteins in comparison to cell cultures. Soil sample preparation and extraction methodology are crucial steps to obtain high-quality resolution and yields of proteins. This review focuses on the several soil protein extraction protocols to date to highlight the methodological challenges and critical issues for the application of proteomics to soil samples. This review concludes that improvements in soil protein extraction, together with the employment of ad hoc metagenome database, may enhance the identification of proteins with low abundance or from non-dominant populations and increase our capacity to predict functional changes in soil.
Collapse
Affiliation(s)
- Maria Tartaglia
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100 Benevento, Italy; (M.T.); (R.S.)
| | - Felipe Bastida
- CEBAS-CSIC, Department of Soil and Water Conservation, Campus Universitario de Espinardo, 30100 Murcia, Spain;
| | - Rosaria Sciarrillo
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100 Benevento, Italy; (M.T.); (R.S.)
| | - Carmine Guarino
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100 Benevento, Italy; (M.T.); (R.S.)
- Correspondence: ; Tel.: +39-824-305145
| |
Collapse
|
238
|
Xia WW, Zhao J, Zheng Y, Zhang HM, Zhang JB, Chen RR, Lin XG, Jia ZJ. Active Soil Nitrifying Communities Revealed by In Situ Transcriptomics and Microcosm-Based Stable-Isotope Probing. Appl Environ Microbiol 2020; 86:e01807-20. [PMID: 32978127 PMCID: PMC7657639 DOI: 10.1128/aem.01807-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/17/2020] [Indexed: 01/19/2023] Open
Abstract
Long-term nitrogen field fertilization often results in significant changes in nitrifying communities that catalyze a key step in the global N cycle. However, whether microcosm studies are able to inform the dynamic changes in communities of ammonia-oxidizing bacteria (AOB) and archaea (AOA) under field conditions remains poorly understood. This study aimed to evaluate the transcriptional activities of nitrifying communities under in situ conditions, and we found that they were largely similar to those of 13C-labeled nitrifying communities in the urea-amended microcosms of soils that had received different N fertilization regimens for 22 years. High-throughput sequencing of 16S rRNA genes and transcripts suggested that Nitrosospira cluster 3-like AOB and Nitrososphaera viennensis-like AOA were significantly stimulated in N-fertilized fresh soils. Real-time quantitative PCR demonstrated that the significant increase of AOA and AOB in fresh soils upon nitrogen fertilization could be preserved in the air-dried soils. DNA-based stable-isotope probing (SIP) further revealed the greatest labeling of Nitrosospira cluster 3-like AOB and Nitrosospira viennensis-like AOA, despite the strong advantage of AOB over AOA in the N-fertilized soils. Nitrobacter-like nitrite-oxidizing bacteria (NOB) played more important roles than Nitrospira-like NOB in urea-amended SIP microcosms, while the situation was the opposite under field conditions. Our results suggest that long-term fertilization selected for physiologically versatile AOB and AOA that could have been adapted to a wide range of substrate ammonium concentrations. It also provides compelling evidence that the dominant communities of transcriptionally active nitrifiers under field conditions were largely similar to those revealed in 13C-labeled microcosms.IMPORTANCE The role of manipulated microcosms in microbial ecology has been much debated, because they cannot entirely represent the in situ situation. We collected soil samples from 20 field plots, including 5 different treatments with and without nitrogen fertilizers for 22 years, in order to assess active nitrifying communities by in situ transcriptomics and microcosm-based stable-isotope probing. The results showed that chronic N enrichment led to competitive advantages of Nitrosospira cluster 3-like AOB over N. viennensis-like AOA in soils under field conditions. Microcosm labeling revealed similar results for active AOA and AOB, although an apparent discrepancy was observed for nitrite-oxidizing bacteria. This study suggests that the soil microbiome represents a relatively stable community resulting from complex evolutionary processes over a large time scale, and microcosms can serve as powerful tools to test the theory of environmental filtering on the key functional microbial guilds.
Collapse
Affiliation(s)
- Wei-Wei Xia
- Jiangsu Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Jun Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yan Zheng
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Hui-Min Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Jia-Bao Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Rui-Rui Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Xian-Gui Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Zhong-Jun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
239
|
Chavez Rodriguez L, Ingalls B, Schwarz E, Streck T, Uksa M, Pagel H. Gene-Centric Model Approaches for Accurate Prediction of Pesticide Biodegradation in Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13638-13650. [PMID: 33064475 DOI: 10.1021/acs.est.0c03315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pesticides are widely used in agriculture despite their negative impact on ecosystems and human health. Biogeochemical modeling facilitates the mechanistic understanding of microbial controls on pesticide turnover in soils. We propose to inform models of coupled microbial dynamics and pesticide turnover with measurements of the abundance and expression of functional genes. To assess the advantages of informing models with genetic data, we developed a novel "gene-centric" model and compared model variants of differing structural complexity against a standard biomass-based model. The models were calibrated and validated using data from two batch experiments in which the degradation of the pesticides dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxyacetic acid (MCPA) were observed in soil. When calibrating against data on pesticide mineralization, the gene-centric and biomass-based models performed equally well. However, accounting for pesticide-triggered gene regulation allows improved performance in capturing microbial dynamics and in predicting pesticide mineralization. This novel modeling approach also reveals a hysteretic relationship between pesticide degradation rates and gene expression, implying that the biodegradation performance in soils cannot be directly assessed by measuring the expression of functional genes. Our gene-centric model provides an effective approach for exploiting molecular biology data to simulate pesticide degradation in soils.
Collapse
Affiliation(s)
- Luciana Chavez Rodriguez
- Institute of Soil Science and Land Evaluation, Biogeophysics Section, University of Hohenheim, Stuttgart, Germany
| | - Brian Ingalls
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada
| | - Erik Schwarz
- Institute of Soil Science and Land Evaluation, Biogeophysics Section, University of Hohenheim, Stuttgart, Germany
| | - Thilo Streck
- Institute of Soil Science and Land Evaluation, Biogeophysics Section, University of Hohenheim, Stuttgart, Germany
| | - Marie Uksa
- Institute of Soil Science and Land Evaluation, Soil Biology Section, University of Hohenheim, Stuttgart, Germany
| | - Holger Pagel
- Institute of Soil Science and Land Evaluation, Biogeophysics Section, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
240
|
Carrasco J, García‐Delgado C, Lavega R, Tello ML, De Toro M, Barba‐Vicente V, Rodríguez‐Cruz MS, Sánchez‐Martín MJ, Pérez M, Preston GM. Holistic assessment of the microbiome dynamics in the substrates used for commercial champignon (Agaricus bisporus) cultivation. Microb Biotechnol 2020; 13:1933-1947. [PMID: 32716608 PMCID: PMC7533343 DOI: 10.1111/1751-7915.13639] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/09/2020] [Indexed: 11/30/2022] Open
Abstract
Microorganisms strongly influence and are required to generate the selective substrate that provides nutrients and support for fungal growth, and ultimately to induce mushroom fructification under controlled environmental conditions. In this work, the fungal and bacterial microbiota living in the different substrates employed in a commercial crop (compost phase I, II and III, flush 1 and 2, and casing material on day 1, 6 and 8 after compost casing and during flush 1 and 2) have been characterized along the different stages of cultivation by metataxonomic analysis (16S rRNA and ITS2), analysis of phospholipid fatty acid content (PLFAs) and RT-qPCR. Additionally, laccase activity and the content of lignin and complex carbohydrates in compost and casing have been quantified. The bacterial diversity in compost and casing increased throughout the crop cycle boosted by the connection of both substrates. As reflected by the PLFAs, the total living bacterial biomass appears to be negatively correlated with the mycelium of the crop. Agaricus bisporus was the dominant fungal species in colonized substrates, displacing the pre-eminent Ascomycota, accompanied by a sustained increase in laccase activity, which is considered to be a major product of protein synthesis during the mycelial growth of champignon. From phase II onwards, the metabolic machinery of the fungal crop degrades lignin and carbohydrates in compost, while these components are hardly degraded in casing, which reflects the minor role of the casing for nourishing the crop. The techniques employed in this study provide a holistic and detailed characterization of the changing microbial composition in commercial champignon substrates. The knowledge generated will contribute to improve compost formulations (selection of base materials) and accelerate compost production, for instance, through biotechnological interventions in the form of tailored biostimulants and to design environmentally sustainable bio-based casing materials.
Collapse
Affiliation(s)
- Jaime Carrasco
- Department of Plant SciencesUniversity of OxfordS Parks RdOxfordOX1 3RBUK
- Centro Tecnológico de Investigación del Champiñón de La Rioja (CTICH)AutolSpain
| | - Carlos García‐Delgado
- Departamento de Geología y GeoquímicaUniversidad Autónoma de MadridMadridSpain
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA‐CSIC)SalamancaSpain
| | - Rebeca Lavega
- Centro Tecnológico de Investigación del Champiñón de La Rioja (CTICH)AutolSpain
| | - María L. Tello
- Centro Tecnológico de Investigación del Champiñón de La Rioja (CTICH)AutolSpain
| | - María De Toro
- Plataforma de Genómica y BioinformáticaCentro de Investigación Biomédica de La Rioja (CIBIR)LogroñoSpain
| | - Víctor Barba‐Vicente
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA‐CSIC)SalamancaSpain
| | | | | | - Margarita Pérez
- Centro Tecnológico de Investigación del Champiñón de La Rioja (CTICH)AutolSpain
| | - Gail M. Preston
- Department of Plant SciencesUniversity of OxfordS Parks RdOxfordOX1 3RBUK
| |
Collapse
|
241
|
Evidence for signatures of ancient microbial life in paleosols. Sci Rep 2020; 10:16830. [PMID: 33033361 PMCID: PMC7545160 DOI: 10.1038/s41598-020-73938-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 09/23/2020] [Indexed: 11/08/2022] Open
Abstract
Loess-paleosol sequences are terrestrial archives of past climate change. They may host traces of ancient microbial life, but little information is available on the recovery of microbial biomarkers from such deposits. We hypothesized that microbial communities in soil horizons up to an age of 127 kyr carry information related to past environments. We extracted DNA from a loess-paleosol sequence near Toshan, Northern Iran, with 26 m thick deposits showing different degrees of soil development, performed quantitative PCR and 16S rRNA gene amplicon sequencing. Periods of soil formation archived within the loess sediment led to higher diversity and bacterial abundance in the paleosol horizons. Community composition fluctuated over the loess-paleosol sequence and was mainly correlated with age and depth, (ADONIS R2 < 0.14, P ≤ 0.002), while responses to paleosol soil traits were weaker. Phyla like Bacteriodetes, Proteobacteria or Acidobacteria were more prevalent in paleosol horizons characterized by intense soil formation, while weakly developed paleosols or loess horizons hosted a higher percentage and diversity of Actinobacteria. Taken together, our findings indicate that the microbial community in loess-paleosol sequences carries signatures of earlier environmental conditions that are preserved until today.
Collapse
|
242
|
Louca S, Rubin IN, Madilao LL, Bohlmann J, Doebeli M, Wegener Parfrey L. Effects of forced taxonomic transitions on metabolic composition and function in microbial microcosms. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:514-524. [PMID: 32618124 DOI: 10.1111/1758-2229.12866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Surveys of microbial systems indicate that in many situations taxonomy and function may constitute largely independent ('decoupled') axes of variation. However, this decoupling is rarely explicitly tested experimentally, partly because it is hard to directly induce taxonomic variation without affecting functional composition. Here we experimentally evaluate this paradigm using microcosms resembling lake sediments and subjected to two different levels of salinity (0 and 19) and otherwise similar environmental conditions. We used DNA sequencing for taxonomic and functional profiling of bacteria and archaea and physicochemical measurements to monitor metabolic function, over 13 months. We found that the taxonomic composition of the saline systems gradually but strongly diverged from the fresh systems. In contrast, the metabolic composition (in terms of proportions of various genes) remained nearly identical across treatments and over time. Oxygen consumption rates and methane concentrations were substantially lower in the saline treatment, however, their similarity either increased (for oxygen) or did not change significantly (for methane) between the first and last sampling time, indicating that the lower metabolic activity in the saline treatments was directly and immediately caused by salinity rather than the gradual taxonomic divergence. Our experiment demonstrates that strong taxonomic shifts need not directly affect metabolic rates.
Collapse
Affiliation(s)
- Stilianos Louca
- Department of Biology, University of Oregon, Eugene, OR, USA
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Ilan N Rubin
- Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Lufiani L Madilao
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Wine Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Jörg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Wine Research Centre, University of British Columbia, Vancouver, BC, Canada
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Michael Doebeli
- Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
| | - Laura Wegener Parfrey
- Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
243
|
Houghton KM, Stewart LC. Temperature-gradient incubation isolates multiple competitive species from a single environmental sample. Access Microbiol 2020; 2:acmi000081. [PMID: 32974564 PMCID: PMC7470311 DOI: 10.1099/acmi.0.000081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022] Open
Abstract
High-throughput sequencing has allowed culture-independent investigation into a wide variety of microbiomes, but sequencing studies still require axenic culture experiments to determine ecological roles, confirm functional predictions and identify useful compounds and pathways. We have developed a new method for culturing and isolating multiple microbial species with overlapping ecological niches from a single environmental sample, using temperature-gradient incubation. This method was more effective than standard serial dilution-to-extinction at isolating methanotrophic bacteria. It also highlighted discrepancies between culture-dependent and -independent techniques; 16S rRNA gene amplicon sequencing of the same sample did not accurately reflect cultivatable strains using this method. We propose that temperature-gradient incubation could be used to separate out and study previously ‘unculturable’ strains, which co-exist in both natural and artificial environments.
Collapse
Affiliation(s)
- Karen M Houghton
- GNS Science, Wairakei Research Centre, 114 Karetoto Rd, Taupō 3384, New Zealand
| | - Lucy C Stewart
- GNS Science, 1 Fairway Drive, Avalon, Lower Hutt 5010, New Zealand
| |
Collapse
|
244
|
Tosi M, Gaiero J, Linton N, Mafa-Attoye T, Castillo A, Dunfield K. Bacterial Endophytes: Diversity, Functional Importance, and Potential for Manipulation. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/978-981-15-6125-2_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
245
|
Vischetti C, Casucci C, De Bernardi A, Monaci E, Tiano L, Marcheggiani F, Ciani M, Comitini F, Marini E, Taskin E, Puglisi E. Sub-Lethal Effects of Pesticides on the DNA of Soil Organisms as Early Ecotoxicological Biomarkers. Front Microbiol 2020; 11:1892. [PMID: 33013727 PMCID: PMC7461845 DOI: 10.3389/fmicb.2020.01892] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/20/2020] [Indexed: 01/13/2023] Open
Abstract
This review describes the researches performed in the last years to assess the impact of pesticide sub-lethal doses on soil microorganisms and non-target organisms in agricultural soil ecosystems. The overview was developed through the careful description and a critical analysis of three methodologies based on culture-independent approaches involving DNA extraction and sequencing (denaturing gradient gel electrophoresis, DGGE; next-generation sequencing, NGS) to characterize the microbial population and DNA damage assessment (comet assay) to determine the effect on soil invertebrates. The examination of the related published articles showed a continuous improvement of the possibility to detect the detrimental effect of the pesticides on soil microorganisms and non-target organisms at sub-lethal doses, i.e., doses which have no lethal effect on the organisms. Considering the overall critical discussion on microbial soil monitoring in the function of pesticide treatments, we can confirm the usefulness of PCR-DGGE as a screening technique to assess the genetic diversity of microbial communities. Nowadays, DGGE remains a preliminary technique to highlight rapidly the main differences in microbial community composition, which is able to give further information if coupled with culture-dependent microbiological approaches, while thorough assessments must be gained by high-throughput techniques such as NGS. The comet assay represents an elective technique for assessing genotoxicity in environmental biomonitoring, being mature after decades of implementation and widely used worldwide for its direct, simple, and affordable implementation. Nonetheless, in order to promote the consistency and reliability of results, regulatory bodies should provide guidelines on the optimal use of this tool, strongly indicating the most reliable indicators of DNA damage. This review may help the European Regulation Authority in deriving new ecotoxicological endpoints to be included in the Registration Procedure of new pesticides.
Collapse
Affiliation(s)
- Costantino Vischetti
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Cristiano Casucci
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Arianna De Bernardi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Elga Monaci
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Luca Tiano
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Maurizio Ciani
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Francesca Comitini
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Enrica Marini
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Eren Taskin
- Department for Sustainable Food Process, Faculty of Agriculture, Food and Environmental Sciences, Catholic University of Sacred Heart, Piacenza, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process, Faculty of Agriculture, Food and Environmental Sciences, Catholic University of Sacred Heart, Piacenza, Italy
| |
Collapse
|
246
|
Benucci GMN, Rennick B, Bonito G. Patient propagules: Do soil archives preserve the legacy of fungal and prokaryotic communities? PLoS One 2020; 15:e0237368. [PMID: 32780777 PMCID: PMC7418970 DOI: 10.1371/journal.pone.0237368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/23/2020] [Indexed: 01/09/2023] Open
Abstract
Soil archives are an important resource in agronomic and ecosystem sciences. If microbial communities could be reconstructed from archived soil DNA, as prehistoric plant communities are reconstructed via pollen data, soil archive resources would assume even greater value for reconstructing land-use history, forensic science, and biosphere modelling. Yet, the effects of long-term soil archival on the preservation of microbial DNA is still largely unknown. To address this, we assessed the capacity of high-throughput sequencing (Illumina MiSeq) of ITS (internal transcribed spacer) and prokaryotic 16S rRNA genes for reconstructing soil microbial communities across a 20 years time-series. We studied air-dried soil archives and fresh soil samples taken from Populus bioenergy and deciduous forest research plots at the Kellogg Biological Station. Habitat and archival time explained significant amounts of variation in soil microbial α- and β-diversity both in fungal and prokaryotic communities. We found that microbial richness, diversity, and abundance generally decreased with storage time, but varied between habitat and taxonomic groups. The high relative abundance of ectomycorrhizal species including Hebeloma and Cortinarius detected in older soil archives raises questions regarding traits such as long-term persistence and viability of ectomycorrhizal propagules in soils, with relevance to forest health and ecosystem succession. Talaromyces, Paecilomyces and Epicoccum spp. were detected in fresh and across 20-year-old archived soils and were also cultured from these soils demonstrating their long-term spore viability. In summary, we found that microbial DNA in air-dried soils archived over the past 20 years degraded with time, in a manner that differed between soil types and phylogenetic groups of microbes.
Collapse
Affiliation(s)
- Gian Maria Niccolò Benucci
- Plant, Soil and Microbial Science Department, Michigan State University, East Lansing, MI, United States of America
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, United States of America
- * E-mail:
| | - Bryan Rennick
- Plant, Soil and Microbial Science Department, Michigan State University, East Lansing, MI, United States of America
| | - Gregory Bonito
- Plant, Soil and Microbial Science Department, Michigan State University, East Lansing, MI, United States of America
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, United States of America
| |
Collapse
|
247
|
Nagler M, Podmirseg SM, Mayr M, Ascher-Jenull J, Insam H. Quantities of Intra- and Extracellular DNA Reveal Information About Activity and Physiological State of Methanogenic Archaea. Front Microbiol 2020; 11:1894. [PMID: 32849470 PMCID: PMC7419480 DOI: 10.3389/fmicb.2020.01894] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/20/2020] [Indexed: 11/13/2022] Open
Abstract
Although being a common aim of many microbial ecology studies, measuring individual physiological conditions of a microbial group or species within a complex consortium is still a challenge. Here, we propose a novel approach that is based on the quantification of sequentially extracted extracellular (exDNA) and intracellular DNA (iDNA) and reveals information about cell lysis and activity of methanogenic archaea within a biogas-producing microbial community. We monitored the methane production rates of differently treated batch anaerobic cultures and compared the concentrations of the alpha subunit of the methyl coenzyme M reductase gene of methanogenic archaea in extracellular and intracellular DNA fractions and in the classically extracted total DNA pool. Our results showed that this fine-tuned DNA approach coupled with the interpretation of the ratio between free exDNA and iDNA considerably improved microbial activity tracking compared to the classical extraction/quantification of total DNA. Additionally, it allowed to identify and quantify methanogenic populations that are inactive and those that are strongly influenced by cell lysis. We argue that despite the need of further studies, this method represents a novel approach to gain specific physiological information from a complex environmental sample and holds the potential to be applied to other microbes of interest.
Collapse
Affiliation(s)
- Magdalena Nagler
- Institute of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | | | - Markus Mayr
- Institute of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | | | - Heribert Insam
- Institute of Microbiology, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
248
|
Fu Y, Ye Z, Jia Y, Fan J, Hashmi MZ, Shen C. An Optimized Method to Assess Viable Escherichia coli O157:H7 in Agricultural Soil Using Combined Propidium Monoazide Staining and Quantitative PCR. Front Microbiol 2020; 11:1809. [PMID: 32849416 PMCID: PMC7411311 DOI: 10.3389/fmicb.2020.01809] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/09/2020] [Indexed: 11/29/2022] Open
Abstract
Agricultural soil contaminated by manure is becoming an important source for the transmission of foodborne pathogens. There is an urgent need for a rapid and accurate method for viable pathogen detection in agricultural soil samples. Propidium monoazide (PMA) is a DNA-binding dye that can inhibit the amplification of DNA from dead cells through subsequent quantitative polymerase chain reaction (qPCR), thus allowing for viable cells detection and quantification. The objective of this study was to detect viable Escherichia coli O157:H7 in the agricultural soils by PMA-qPCR. In this study, cell extraction and gradient density centrifugation were incorporated before PMA-qPCR to reduce the interference of soil particle including turbidity and a high ratio of dead cells. The optimized treatment conditions were determined as follows, the maximum removal of DNA from dead cells was achieved by 1.067 g/mL Percoll of centrifugation and 50 μM PMA treatment. Under these conditions, the turbidity of paddy soil suspensions decreased from 3500 to 28.4 nephelometric turbidity units (NTU), and the ratio of viable cells to dead cells increased from 0.001 to 1.025%. For typical agricultural soils collected in China, as low as 102colony-forming units (CFU)/g of viable cells could be accurately detected in the presence of a large number of dead cells (107 CFU/g) by the optimized PMA-qPCR. Significantly, with comparable accuracy, the optimized PMA-qPCR assay was more sensitive, accessible and rapid than conventional culture methods. In addition, the viable but non-culturable (VBNC) state of E. coli O157:H7 cells in paddy soils, which often escaped the detection by conventional culture methods, could be quantitatively characterized by the optimized PMA-qPCR method. Potentially, the optimized PMA-qPCR can be further applied for viable pathogens detection and give insight into the prevalence of VBNC E. coli O157:H7 in agricultural soil.
Collapse
Affiliation(s)
- Yulong Fu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Zhe Ye
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Yangyang Jia
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Jiahui Fan
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | | | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China
| |
Collapse
|
249
|
Impact of Glyphosate on the Honey Bee Gut Microbiota: Effects of Intensity, Duration, and Timing of Exposure. mSystems 2020; 5:5/4/e00268-20. [PMID: 32723788 PMCID: PMC7394351 DOI: 10.1128/msystems.00268-20] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Exposure to anthropogenic chemicals may indirectly compromise animal health by perturbing the gut microbiota. For example, the widely used herbicide glyphosate can affect the microbiota of honey bees, reducing the abundance of beneficial bacterial species that contribute to immune regulation and pathogen resistance. Previous studies have not addressed how this impact depends on concentration, duration of exposure, or stage of microbiota establishment. Worker bees acquire their microbiota from nestmates early in adult life, when they can also be exposed to chemicals collected by foragers or added to the hives. Here, we investigated how the gut microbiota of honey bees is affected by different concentrations of glyphosate and compared the effects with those caused by tylosin, an antibiotic commonly used to treat hives. We treated newly emerged workers at the stage at which they acquire the microbiota and also workers with established gut microbiota. Treatments consisted of exposure to sucrose syrup containing glyphosate in concentrations ranging from 0.01 mM to 1.0 mM or tylosin at 0.1 mM. Based on 16S rRNA amplicon sequencing and quantitative PCR (qPCR) determination of abundances, glyphosate perturbed the gut microbiota of honey bees regardless of age or period of exposure. Snodgrassella alvi was the most affected bacterial species and responded to glyphosate in a dose-dependent way. Tylosin also perturbed the microbiota, especially at the stage of acquisition, and the effects differed sharply from the effects of glyphosate. These findings show that sublethal doses of glyphosate (0.04 to 1.0 mM) and tylosin (0.1 mM) affect the microbiota of honey bees.IMPORTANCE As is true of many animal species, honey bees depend on their gut microbiota for health. The bee gut microbiota has been shown to regulate the host immune system and to protect against pathogenic diseases, and disruption of the normal microbiota leads to increased mortality. Understanding these effects can give broad insights into vulnerabilities of gut communities, and, in the case of honey bees, could provide information useful for promoting the health of these economically critical insects, which provide us with crop pollination services as well as honey and other products. The bee gut microbiota is acquired early in adult life and can be compromised by antibiotics and other chemicals. The globally used weed killer glyphosate was previously found to impact the gut microbiota of honey bees following sustained exposure. In the present study, we address how this impact depends on concentration, duration of exposure, and stage of community establishment. We found that sublethal doses of glyphosate reduce the abundance of beneficial bacteria and affect microbial diversity in the guts of honey bees, regardless of whether exposure occurs during or after microbiota acquisition. We also compared the effects of glyphosate to those of tylosin, an antibiotic used in beekeeping, and observed that tylosin effects diverge from those caused by glyphosate and are greater during microbiota acquisition. Such perturbations are not immediately lethal to bees but, depending on exposure level, can decrease survivorship under laboratory conditions.
Collapse
|
250
|
Vimercati L, Bueno de Mesquita CP, Schmidt SK. Limited Response of Indigenous Microbes to Water and Nutrient Pulses in High-Elevation Atacama Soils: Implications for the Cold-Dry Limits of Life on Earth. Microorganisms 2020; 8:E1061. [PMID: 32708721 PMCID: PMC7409055 DOI: 10.3390/microorganisms8071061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 01/05/2023] Open
Abstract
Soils on the world's highest volcanoes in the Atacama region represent some of the harshest ecosystems yet discovered on Earth. Life in these environments must cope with high UV flux, extreme diurnal freeze-thaw cycles, low atmospheric pressure and extremely low nutrient and water availability. Only a limited spectrum of bacterial and fungal lineages seems to have overcome the harshness of this environment and may have evolved the ability to function in situ. However, these communities may lay dormant for most of the time and spring to life only when enough water and nutrients become available during occasional snowfalls and aeolian depositions. We applied water and nutrients to high-elevation soils (5100 meters above sea level) from Volcán Llullaillaco, both in lab microcosms and in the field, to investigate how microbial communities respond when resource limitations are alleviated. The dominant taxon in these soils, the extremophilic yeast Naganishia sp., increased in relative sequence abundance and colony-forming unit counts after water + nutrient additions in microcosms, and marginally in the field after only 6 days. Among bacteria, only a Noviherbaspirillum sp. (Oxalobacteraceae) significantly increased in relative abundance both in the lab and field in response to water addition but not in response to water and nutrients together, indicating that it might be an oligotroph uniquely suited to this extreme environment. The community structure of both bacteria and eukaryotes changed significantly with water and water + nutrient additions in the microcosms and taxonomic richness declined with amendments to water and nutrients. These results indicate that only a fraction of the detected community is able to become active when water and nutrients limitations are alleviated in lab microcosms, and that water alone can dramatically change community structure. Our study sheds light on which extremophilic organisms are likely to respond when favorable conditions occur in extreme earthly environments and perhaps in extraterrestrial environments as well.
Collapse
Affiliation(s)
- Lara Vimercati
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA; (L.V.); (C.P.B.d.M.)
| | - Clifton P. Bueno de Mesquita
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA; (L.V.); (C.P.B.d.M.)
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO 80309-0450, USA
| | - Steven K. Schmidt
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA; (L.V.); (C.P.B.d.M.)
| |
Collapse
|