201
|
Liang J, Dai W, Liu C, Wen Y, Chen C, Xu Y, Huang S, Hou S, Li C, Chen Y, Wang W, Tang H. Gingerenone A Attenuates Ulcerative Colitis via Targeting IL-17RA to Inhibit Inflammation and Restore Intestinal Barrier Function. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400206. [PMID: 38639442 PMCID: PMC11267284 DOI: 10.1002/advs.202400206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/27/2024] [Indexed: 04/20/2024]
Abstract
Ulcerative colitis (UC) is a complicated and recurrent intestinal disease. Currently available drugs for UC treatment are scarce, therefore, novel therapeutic drugs for the UC are urgently to be developed. Gingerenone A (GA) is a phenolic compound known for its anti-inflammatory effect, but its effect on UC remains unknown. Here, it is shown that GA protects mice against UC, which is closely associated with inhibiting intestinal mucosal inflammation and enhancing intestinal barrier integrity in vivo and in vitro. Of note, RNA sequencing analysis demonstrates an evident correlation with IL-17 signaling pathway after GA treatment, and this effect is further corroborated by Western blot. Mechanistically, GA directly interacts with IL-17RA protein through pull-down, surface plasmon resonance analysis and molecular dynamics simulation. Importantly, lentivirus-mediated IL-17RA/Act1 knock-down or GA co-treatment with brodalumab/ixekizumab significantly impairs the protective effects of GA against DSS-induced inflammation and barrier dysfunction, suggesting a critical role of IL-17RA signaling for GA-mediated protection against UC. Overall, these results indicate that GA is an effective agent against UC mainly through the direct binding of IL-17RA to inhibit inflammatory signaling activation.
Collapse
Affiliation(s)
- Jian Liang
- School of Pharmaceutical SciencesState Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhou University of Chinese MedicineGuangzhou510006China
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhou510060China
- Dongguan Institute of Guangzhou University of Chinese MedicineDongguan523808China
| | - Weigang Dai
- Center of Ganstric CancerThe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510062China
| | - Chuanghui Liu
- School of Pharmaceutical SciencesState Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Yifan Wen
- School of Pharmaceutical SciencesState Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Chen Chen
- School of Pharmaceutical SciencesState Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Yifei Xu
- Shenzhen Traditional Chinese Medicine HospitalThe Fourth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhen518033China
| | - Song Huang
- School of Pharmaceutical SciencesState Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhou University of Chinese MedicineGuangzhou510006China
- Dongguan Institute of Guangzhou University of Chinese MedicineDongguan523808China
| | - Shaozhen Hou
- School of Pharmaceutical SciencesState Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Chun Li
- School of Pharmaceutical SciencesState Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Yongming Chen
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhou510060China
| | - Wei Wang
- School of Pharmaceutical SciencesState Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Hailin Tang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhou510060China
| |
Collapse
|
202
|
Baudron E, Martinez de Lizarrondo S, Gauberti M, Delaunay-Piednoir B, Fournier AP, Vivien D, Docagne F, Bardou I. Intestinal MAdCAM-1 imaging as biomarker for prognostic in murine models of multiple sclerosis. Brain Behav Immun 2024; 119:381-393. [PMID: 38604270 DOI: 10.1016/j.bbi.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/13/2024] Open
Abstract
INTRODUCTION Multiple sclerosis (MS) is an autoimmune disease of the central nervous system. Recent evidence suggests that lymphocyte trafficking in the intestines could play a key role in its etiology. Nevertheless, it is not clear how intestinal tissue is involved in the disease onset nor its evolution. In the present study, we aimed to evaluate intestinal inflammation dynamic throughout the disease course and its potential impact on disease progression. METHODS We used tissue immunophenotyping (immunohistofluorescence and flow cytometry) and a recently described molecular magnetic resonance imaging (MRI) method targeting mucosal addressin cell adhesion molecule-1 (MAdCAM-1) to assess intestinal inflammation in vivo in two distinct animal models of MS (Experimental Autoimmune Encephalomyelitis - EAE) at several time points of disease progression. RESULTS We report a positive correlation between disease severity and MAdCAM-1 MRI signal in two EAE models. Moreover, high MAdCAM-1 MRI signal during the asymptomatic phase is associated with a delayed disease onset in progressive EAE and to a lower risk of conversion to a secondary-progressive form in relapsing-remitting EAE. During disease evolution, in line with a bi-directional immune communication between the gut and the central nervous system, we observed a decrease in T-CD4+ and B lymphocytes in the ileum concomitantly with their increase in the spinal cord. CONCLUSION Altogether, these data unveil a crosstalk between intestinal and central inflammation in EAE and support the use of molecular MRI of intestinal MAdCAM-1 as a new biomarker for prognostic in MS patients.
Collapse
Affiliation(s)
- Erwan Baudron
- Normandie Univ, UNICAEN, INSERM, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000, Caen, France
| | - Sara Martinez de Lizarrondo
- Normandie Univ, UNICAEN, INSERM, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000, Caen, France
| | - Maxime Gauberti
- Normandie Univ, UNICAEN, INSERM, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000, Caen, France; Department of Diagnostic Imaging and Interventional Radiology, CHU Côte de Nacre, Caen, France
| | - Barbara Delaunay-Piednoir
- Normandie Univ, UNICAEN, INSERM, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000, Caen, France
| | - Antoine P Fournier
- Normandie Univ, UNICAEN, INSERM, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000, Caen, France
| | - Denis Vivien
- Normandie Univ, UNICAEN, INSERM, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000, Caen, France; Department of Clinical Research, CHU Côte de Nacre, Caen, France
| | - Fabian Docagne
- Normandie Univ, UNICAEN, INSERM, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000, Caen, France; Current address: INSERM, Département de l'information scientifique et de la communication (DISC), 75654 Paris Cedex 13, France
| | - Isabelle Bardou
- Normandie Univ, UNICAEN, INSERM, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000, Caen, France.
| |
Collapse
|
203
|
Chang C, Louie A, Zhou Y, Gupta R, Liang F, Xanthou G, Ereso J, Koletic C, Yang JC, Sedighian F, Lagishetty V, Arias-Jayo N, Altuwayjiri A, Tohidi R, Navab M, Reddy ST, Sioutas C, Hsiai T, Araujo JA, Jacobs JP. Ambient Particulate Matter Induces In Vitro Toxicity to Intestinal Epithelial Cells without Exacerbating Acute Colitis Induced by Dextran Sodium Sulfate or 2,4,6-Trinitrobenzenesulfonic Acid. Int J Mol Sci 2024; 25:7184. [PMID: 39000289 PMCID: PMC11241079 DOI: 10.3390/ijms25137184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Inflammatory bowel disease (IBD) is an immunologically complex disorder involving genetic, microbial, and environmental risk factors. Its global burden has continued to rise since industrialization, with epidemiological studies suggesting that ambient particulate matter (PM) in air pollution could be a contributing factor. Prior animal studies have shown that oral PM10 exposure promotes intestinal inflammation in a genetic IBD model and that PM2.5 inhalation exposure can increase intestinal levels of pro-inflammatory cytokines. PM10 and PM2.5 include ultrafine particles (UFP), which have an aerodynamic diameter of <0.10 μm and biophysical and biochemical properties that promote toxicity. UFP inhalation, however, has not been previously studied in the context of murine models of IBD. Here, we demonstrated that ambient PM is toxic to cultured Caco-2 intestinal epithelial cells and examined whether UFP inhalation affected acute colitis induced by dextran sodium sulfate and 2,4,6-trinitrobenzenesulfonic acid. C57BL/6J mice were exposed to filtered air (FA) or various types of ambient PM reaerosolized in the ultrafine size range at ~300 μg/m3, 6 h/day, 3-5 days/week, starting 7-10 days before disease induction. No differences in weight change, clinical disease activity, or histology were observed between the PM and FA-exposed groups. In conclusion, UFP inhalation exposure did not exacerbate intestinal inflammation in acute, chemically-induced colitis models.
Collapse
Affiliation(s)
- Candace Chang
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (Y.Z.); (F.L.); (G.X.); (J.E.); (C.K.); (J.C.Y.); (F.S.); (V.L.); (N.A.-J.)
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.L.); (R.G.); (M.N.); (S.T.R.); (T.H.)
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Allen Louie
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.L.); (R.G.); (M.N.); (S.T.R.); (T.H.)
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Yi Zhou
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (Y.Z.); (F.L.); (G.X.); (J.E.); (C.K.); (J.C.Y.); (F.S.); (V.L.); (N.A.-J.)
- West China Medical Center, Sichuan University, Chengdu 610017, China
| | - Rajat Gupta
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.L.); (R.G.); (M.N.); (S.T.R.); (T.H.)
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Fengting Liang
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (Y.Z.); (F.L.); (G.X.); (J.E.); (C.K.); (J.C.Y.); (F.S.); (V.L.); (N.A.-J.)
| | - Georgina Xanthou
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (Y.Z.); (F.L.); (G.X.); (J.E.); (C.K.); (J.C.Y.); (F.S.); (V.L.); (N.A.-J.)
| | - Jason Ereso
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (Y.Z.); (F.L.); (G.X.); (J.E.); (C.K.); (J.C.Y.); (F.S.); (V.L.); (N.A.-J.)
| | - Carolina Koletic
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (Y.Z.); (F.L.); (G.X.); (J.E.); (C.K.); (J.C.Y.); (F.S.); (V.L.); (N.A.-J.)
| | - Julianne Ching Yang
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (Y.Z.); (F.L.); (G.X.); (J.E.); (C.K.); (J.C.Y.); (F.S.); (V.L.); (N.A.-J.)
| | - Farzaneh Sedighian
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (Y.Z.); (F.L.); (G.X.); (J.E.); (C.K.); (J.C.Y.); (F.S.); (V.L.); (N.A.-J.)
| | - Venu Lagishetty
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (Y.Z.); (F.L.); (G.X.); (J.E.); (C.K.); (J.C.Y.); (F.S.); (V.L.); (N.A.-J.)
| | - Nerea Arias-Jayo
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (Y.Z.); (F.L.); (G.X.); (J.E.); (C.K.); (J.C.Y.); (F.S.); (V.L.); (N.A.-J.)
| | - Abdulmalik Altuwayjiri
- USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA; (A.A.); (R.T.); (C.S.)
- Department of Civil and Environmental Engineering, College of Engineering, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Ramin Tohidi
- USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA; (A.A.); (R.T.); (C.S.)
- Air Quality Planning and Science Division, California Air Resources Board, 4001 Iowa Avenue, Riverside, CA 92507, USA
| | - Mohamad Navab
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.L.); (R.G.); (M.N.); (S.T.R.); (T.H.)
| | - Srinivasa Tadiparthi Reddy
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.L.); (R.G.); (M.N.); (S.T.R.); (T.H.)
- West China Medical Center, Sichuan University, Chengdu 610017, China
- Molecular & Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Constantinos Sioutas
- USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA; (A.A.); (R.T.); (C.S.)
| | - Tzung Hsiai
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.L.); (R.G.); (M.N.); (S.T.R.); (T.H.)
- Henry Samueli School of Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jesus A. Araujo
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.L.); (R.G.); (M.N.); (S.T.R.); (T.H.)
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jonathan P. Jacobs
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (Y.Z.); (F.L.); (G.X.); (J.E.); (C.K.); (J.C.Y.); (F.S.); (V.L.); (N.A.-J.)
- Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
- Goodman-Luskin Microbiome Center, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
204
|
Da Silva VC, Guerra GCB, Araújo DFDS, De Araújo ER, De Araújo AA, Dantas-Medeiros R, Zanatta AC, Da Silva ILG, De Araújo Júnior RF, Esposito D, Moncada M, Zucolotto SM. Chemopreventive and immunomodulatory effects of phenolic-rich extract of Commiphora leptophloeos against inflammatory bowel disease: Preclinical evidence. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118025. [PMID: 38458342 DOI: 10.1016/j.jep.2024.118025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/23/2024] [Accepted: 03/06/2024] [Indexed: 03/10/2024]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Commiphora leptophloeos (Mart.) J.B. Gillet (Burseraceae) is a medicinal plant native to Brazil, popularly known as "imburana". Homemade leaf decoction and maceration were used to treat general inflammatory problems in the Brazilian Northeast population. Our previous research confirmed the anti-inflammatory activity of the C. leptophloeos hydroalcoholic leaf extract. AIM OF THE STUDY Inflammatory bowel disease (IBD) is a chronic and relapsing inflammatory disorder of the gut with no ideal treatment to maintain the remissive status. This work aimed to characterize the phytochemical composition and physicochemical properties of the C. leptophloeos hydroalcoholic leaf extract and its efficacy in chemopreventive and immunomodulatory responses in inflammatory bowel disease in non-clinical models. MATERIALS AND METHODS Mass spectrometry and physicochemical tests determined the phytochemical profile and physicochemical characteristics of the Commiphora leptophloeos (CL) extract. The chemopreventive and immunomodulatory effects of CL extract (50 and 125 μg/mL) were evaluated in vitro in the RAW 264.7 lipopolysaccharide (LPS) induced cell assay and in vivo in the model of intestinal inflammation induced by 2,4-Dinitrobenzenesulfonic acid (DNBS) in mice when they were treated with CL extract by intragastric gavage (i.g.) at doses of 300, 400 and 500 mg/kg. RESULTS Phytochemical annotation of CL extract showed a complex phenolic composition, characterized as phenolic acids and flavonoids, and satisfactory physicochemical characteristics. In addition, CL extract maintained the viability of RAW macrophages, reduced ROS and NO production, and negatively regulated COX-2, iNOS, TNF-α, IL-1β, IL-6, and IL-17 (p < 0.05). In the intestinal inflammation model, CL extract was able to downregulate NF-κB p65/COX-2, mTOR, iNOS, IL-17, decrease levels of malondialdehyde and myeloperoxidase and cytokines TNF-α, IL-1β and IL-6 (p < 0.05). CONCLUSION Based on these findings, CL extract reduced inflammatory responses by down-regulating pro-inflammatory markers in macrophages induced by LPS and DNBS-induced colitis in mice through NF-κB p65/COX-2 signaling. CL leaf extract requires further investigation as a candidate for treating inflammatory bowel disease.
Collapse
Affiliation(s)
- Valéria Costa Da Silva
- Health Sciences Center, Postgraduate Program in Development and Technological Innovation in Medicines, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| | | | | | - Edilane Rodrigues De Araújo
- Health Sciences Center, Research Group on Bioactive Natural Products, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| | | | - Renato Dantas-Medeiros
- Health Sciences Center, Postgraduate Program in Development and Technological Innovation in Medicines, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| | - Ana Caroline Zanatta
- Research Center for Natural and Synthetic Products, São Paulo University, Ribeirão Preto, SP, Brazil.
| | - Isadora Luisa Gomes Da Silva
- Biosciences Center, Cancer and Inflammation Research Laboratory, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| | | | - Debora Esposito
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA.
| | - Marvin Moncada
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA; Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA.
| | - Silvana Maria Zucolotto
- Health Sciences Center, Postgraduate Program in Development and Technological Innovation in Medicines, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Health Sciences Center, Research Group on Bioactive Natural Products, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
205
|
El Morr Y, Fürstenheim M, Mestdagh M, Franciszkiewicz K, Salou M, Morvan C, Dupré T, Vorobev A, Jneid B, Premel V, Darbois A, Perrin L, Mondot S, Colombeau L, Bugaut H, du Halgouet A, Richon S, Procopio E, Maurin M, Philippe C, Rodriguez R, Lantz O, Legoux F. MAIT cells monitor intestinal dysbiosis and contribute to host protection during colitis. Sci Immunol 2024; 9:eadi8954. [PMID: 38905325 PMCID: PMC7616241 DOI: 10.1126/sciimmunol.adi8954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 05/29/2024] [Indexed: 06/23/2024]
Abstract
Intestinal inflammation shifts microbiota composition and metabolism. How the host monitors and responds to such changes remains unclear. Here, we describe a protective mechanism by which mucosal-associated invariant T (MAIT) cells detect microbiota metabolites produced upon intestinal inflammation and promote tissue repair. At steady state, MAIT ligands derived from the riboflavin biosynthesis pathway were produced by aerotolerant bacteria residing in the colonic mucosa. Experimental colitis triggered luminal expansion of riboflavin-producing bacteria, leading to increased production of MAIT ligands. Modulation of intestinal oxygen levels suggested a role for oxygen in inducing MAIT ligand production. MAIT ligands produced in the colon rapidly crossed the intestinal barrier and activated MAIT cells, which expressed tissue-repair genes and produced barrier-promoting mediators during colitis. Mice lacking MAIT cells were more susceptible to colitis and colitis-driven colorectal cancer. Thus, MAIT cells are sensitive to a bacterial metabolic pathway indicative of intestinal inflammation.
Collapse
Affiliation(s)
- Yara El Morr
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Mariela Fürstenheim
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
- Université Paris Cité, Paris, France
| | - Martin Mestdagh
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | | | - Marion Salou
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Claire Morvan
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015Paris, France
| | - Thierry Dupré
- Laboratoire de Biochimie, Hôpital Bichat AP-HP, Université de Paris, Paris, France
| | - Alexey Vorobev
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Bakhos Jneid
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Virginie Premel
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Aurélie Darbois
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Laetitia Perrin
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Stanislas Mondot
- Institut Micalis, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Ludovic Colombeau
- CNRS UMR 3666, INSERM U1143, Chemical Biology of Cancer Laboratory, PSL University, Institut Curie, 75005Paris, France
| | - Hélène Bugaut
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | | | - Sophie Richon
- Institut Curie, PSL Research University, CNRS UMR144, Paris, France
| | - Emanuele Procopio
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Mathieu Maurin
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Catherine Philippe
- Institut Micalis, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Raphael Rodriguez
- CNRS UMR 3666, INSERM U1143, Chemical Biology of Cancer Laboratory, PSL University, Institut Curie, 75005Paris, France
| | - Olivier Lantz
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
- Laboratoire d’immunologie clinique, Institut Curie, 75005Paris, France
- Centre d’investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428), Paris, France
| | - François Legoux
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
- INSERM ERL1305, CNRS UMR6290, Université de Rennes, Institut de Génétique & Développement de Rennes, Rennes, France
| |
Collapse
|
206
|
Fang M, Yao J, Zhang H, Sun J, Yin Y, Shi H, Jiang G, Shi X. Specific deletion of Mettl3 in IECs triggers the development of spontaneous colitis and dysbiosis of T lymphocytes in mice. Clin Exp Immunol 2024; 217:57-77. [PMID: 38507548 PMCID: PMC11188546 DOI: 10.1093/cei/uxae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/23/2024] [Accepted: 03/19/2024] [Indexed: 03/22/2024] Open
Abstract
The enzymatic core component of m6A writer complex, Mettl3, plays a crucial role in facilitating the development and progress of gastric and colorectal cancer (CRC). However, its underlying mechanism in regulating intestinal inflammation remains unclear and poorly investigated. First, the characteristics of Mettl3 expression in inflammatory bowel diseases (IBD) patients were examined. Afterward, we generated the mice line with intestinal epithelial cells (IECs)-specific deletion of Mettl3 verified by various experiments. We continuously recorded and compared the physiological status including survival rate etc. between the two groups. Subsequently, we took advantage of staining assays to analyze mucosal damage and immune infiltration of Mettl3WT and Mettl3KO primary IECs. Bulk RNA sequencing was used to pursuit the differential expression of genes (DEGs) and associated signaling pathways after losing Mettl3. Pyroptosis-related proteins were to determine whether cell death was caused by pyroptosis. Eventually, CyTOF was performed to probe the difference of CD45+ cells, especially CD3e+ T-cell clusters after losing Mettl3. In IBD patients, Mettl3 was highly expressed in the inner-nucleus of IECs while significantly decreased upon acute intestinal inflammation. IECs-specific deletion of Mettl3 KO mice triggered a wasting phenotype and developed spontaneous colitis. The survival rate, body weight, and intestinal length observed from 2 to 8 weeks of Mettl3KO mice were significantly lower than Mettl3WT mice. The degree of mucosal damage and immune infiltration in Mettl3KO were even more serious than in their WT littermate. Bulk RNA sequencing demonstrated that DEGs were dramatically enriched in NOD-signaling pathways due to the loss of Mettl3. The colonic epithelium was more prone to pyroptosis after losing Mettl3. Subsequently, CyTOF revealed that T cells have altered significantly in Mettl3KO. Furthermore, there was abnormal proliferation of CD4+ T and markedly exhaustion of CD8 + T in Mettl3KO mice. In severe IBD patients, Mettl3 is located in the inner-nucleus of IECs and declined when intestinal inflammation occurs. Subsequently, Mettl3 prevented mice from developing colitis.
Collapse
Affiliation(s)
- Miao Fang
- School of Medicine, Southeast University, Nanjing, PR China
| | - Jie Yao
- School of Medicine, Southeast University, Nanjing, PR China
- Department of General Surgery, Nantong Haimen People’s Hospital, Nantong, PR China
| | - Haifeng Zhang
- School of Medicine, Southeast University, Nanjing, PR China
| | - Jiahui Sun
- School of Public Health, Southeast University, Nanjing, PR China
| | - Yiping Yin
- School of Medicine, Southeast University, Nanjing, PR China
| | - Hongzhou Shi
- School of Medicine, Southeast University, Nanjing, PR China
| | | | - Xin Shi
- School of Medicine, Southeast University, Nanjing, PR China
| |
Collapse
|
207
|
Wang X, Qiu H, Chu C, Wang K, Lu B, Yang C, Liu B, Lan G, Ding W. Dual-Responsive Microsphere Based on Natural Sunflower Pollen for Hemostasis and Repair in Inflammatory Bowel Disease. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30658-30670. [PMID: 38856560 DOI: 10.1021/acsami.4c02408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Noninvasive treatment of inflammatory bowel disease with lower gastrointestinal bleeding is a major clinical challenge. In this study, we designed an orally targeted microsphere based on sunflower pollen microcapsules to localize the site of inflammatory injury and promote hemostasis and tissue repair. Due to the Eudragit and ascorbate palmitate coatings, EL/AP@PS(t+Dex) demonstrates pH- and enzyme-responsive release of loaded drugs and helps to resist the harsh environment of the gastrointestinal tract. Both in vitro and in vivo experiments show the characteristics of inflammation targeting and mucosal adhesion, which reduce the systematic exposure and increase the local drug concentration. In the DSS model, orally administered EL/AP@PS(t+Dex) significantly alleviates hematochezia, inhabits intestinal inflammation, and remarkably promotes the recovery of the intestinal epithelial barrier to reduce the exposure of intestinal microvessels. Furthermore, EL/AP@PS(t+Dex) optimized the composition of intestinal microbiota, which benefits intestinal homeostasis. This finding provides a fundamental solution for the treatment of intestinal bleeding caused by inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Xinyu Wang
- Division of Trauma and Acute Care Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Haoyu Qiu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- National Engineering Research Center for Biomaterials, School of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Chengnan Chu
- Division of Trauma and Acute Care Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Kai Wang
- Division of Trauma and Acute Care Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Bitao Lu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Chao Yang
- Division of Trauma and Acute Care Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Baochen Liu
- Division of Trauma and Acute Care Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Guangqian Lan
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Weiwei Ding
- Division of Trauma and Acute Care Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, China
| |
Collapse
|
208
|
Xin S, Liu X, He C, Gao H, Wang B, Hua R, Gao L, Shang H, Sun F, Xu J. Inflammation accelerating intestinal fibrosis: from mechanism to clinic. Eur J Med Res 2024; 29:335. [PMID: 38890719 PMCID: PMC11184829 DOI: 10.1186/s40001-024-01932-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024] Open
Abstract
Intestinal fibrosis is a prevalent complication of IBD that that can frequently be triggered by prolonged inflammation. Fibrosis in the gut can cause a number of issues, which continue as an ongoing challenge to healthcare systems worldwide. The primary causes of intestinal fibrosis are soluble molecules, G protein-coupled receptors, epithelial-to-mesenchymal or endothelial-to-mesenchymal transition, and the gut microbiota. Fresh perspectives coming from in vivo and in vitro experimental models demonstrate that fibrogenic pathways might be different, at least to some extent, independent of the ones that influence inflammation. Understanding the distinctive procedures of intestinal fibrogenesis should provide a realistic foundation for targeting and blocking specific fibrogenic pathways, estimating the risk of fibrotic consequences, detecting early fibrotic alterations, and eventually allowing therapy development. Here, we first summarize the inflammatory and non-inflammatory components of fibrosis, and then we elaborate on the underlying mechanism associated with multiple cytokines in fibrosis, providing the framework for future clinical practice. Following that, we discuss the relationship between modernization and disease, as well as the shortcomings of current studies. We outline fibrosis diagnosis and therapy, as well as our recommendations for the future treatment of intestinal fibrosis. We anticipate that the global review will provides a wealth of fresh knowledge and suggestions for future fibrosis clinical practice.
Collapse
Affiliation(s)
- Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xiaohui Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Han Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Department of Clinical Laboratory, Aerospace Clinical Medical College, Aerospace Central Hospital, Beijing, 100039, China
| | - Boya Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Rongxuan Hua
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Lei Gao
- Department of Intelligent Medical Engineering, School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China
| | - Hongwei Shang
- Experimental Center for Morphological Research Platform, Capital Medical University, Beijing, 100069, China
| | - Fangling Sun
- Department of Laboratory Animal Research, Xuan Wu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
209
|
Mao N, Yu Y, He J, Yang Y, Liu Z, Lu Y, Wang D. Matrine Ameliorates DSS-Induced Colitis by Suppressing Inflammation, Modulating Oxidative Stress and Remodeling the Gut Microbiota. Int J Mol Sci 2024; 25:6613. [PMID: 38928319 PMCID: PMC11204106 DOI: 10.3390/ijms25126613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Matrine (MT) possesses anti-inflammatory, anti-allergic and antioxidative properties. However, the impact and underlying mechanisms of matrine on colitis are unclear. The purpose of this research was to examine the protective impact and regulatory mechanism of matrine on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice. MT alleviated DSS-induced UC by inhibiting weight loss, relieving colon shortening and reducing the disease activity index (DAI). Moreover, DSS-induced intestinal injury and the number of goblet cells were reversed by MT, as were alterations in the expression of zonula occludens-1 (ZO-1) and occludin in colon. Simultaneously, matrine not only effectively restored DSS-induced oxidative stress in colonic tissues but also reduced the production of inflammatory cytokines. Furthermore, MT could treat colitis mice by regulating the regulatory T cell (Treg)/T helper 17 (Th17) cell imbalance. We observed further evidence that MT alleviated the decrease in intestinal flora diversity, reduced the proportion of Firmicutes and Bacteroidetes, decreased the proportion of Proteobacteria and increased the relative abundance of Lactobacillus and Akkermansia in colitis mice. In conclusion, these results suggest that MT may mitigate DSS-induced colitis by enhancing the colon barrier integrity, reducing the Treg/Th17 cell imbalance, inhibiting intestinal inflammation, modulating oxidative stress and regulating the gut microbiota. These findings provide strong evidence for the development and application of MT as a dietary treatment for UC.
Collapse
MESH Headings
- Animals
- Alkaloids/pharmacology
- Gastrointestinal Microbiome/drug effects
- Oxidative Stress/drug effects
- Quinolizines/pharmacology
- Quinolizines/therapeutic use
- Dextran Sulfate
- Matrines
- Mice
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- Male
- Colitis/chemically induced
- Colitis/drug therapy
- Colitis/metabolism
- Colitis/microbiology
- Inflammation/drug therapy
- Inflammation/metabolism
- Inflammation/pathology
- Zonula Occludens-1 Protein/metabolism
- Colon/pathology
- Colon/metabolism
- Colon/drug effects
- Colon/microbiology
- Th17 Cells/drug effects
- Th17 Cells/metabolism
- Th17 Cells/immunology
- Disease Models, Animal
- Cytokines/metabolism
- Mice, Inbred C57BL
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/therapeutic use
- Colitis, Ulcerative/drug therapy
- Colitis, Ulcerative/chemically induced
- Colitis, Ulcerative/microbiology
- Colitis, Ulcerative/metabolism
- Colitis, Ulcerative/pathology
- Occludin/metabolism
Collapse
Affiliation(s)
- Ningning Mao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (Y.Y.); (J.H.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaming Yu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (Y.Y.); (J.H.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin He
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (Y.Y.); (J.H.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (Y.Y.); (J.H.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenguang Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (Y.Y.); (J.H.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Lu
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (Y.Y.); (J.H.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
210
|
Zhang B, Sun C, Zhu Y, Qin H, Kong D, Zhang J, Shao B, Li X, Ren S, Wang H, Hao J, Wang H. Upregulation of TCPTP in Macrophages Is Involved in IL-35 Mediated Attenuation of Experimental Colitis. Mediators Inflamm 2024; 2024:3282679. [PMID: 38962170 PMCID: PMC11221972 DOI: 10.1155/2024/3282679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 04/11/2024] [Accepted: 06/01/2024] [Indexed: 07/05/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic intestinal inflammatory disease with complex etiology. Interleukin-35 (IL-35), as a cytokine with immunomodulatory function, has been shown to have therapeutic effects on UC, but its mechanism is not yet clear. Therefore, we constructed Pichia pastoris stably expressing IL-35 which enables the cytokines to reach the diseased mucosa, and explored whether upregulation of T-cell protein tyrosine phosphatase (TCPTP) in macrophages is involved in the mechanisms of IL-35-mediated attenuation of UC. After the successful construction of engineered bacteria expressing IL-35, a colitis model was successfully induced by giving BALB/c mice a solution containing 3% dextran sulfate sodium (DSS). Mice were treated with Pichia/IL-35, empty plasmid-transformed Pichia (Pichia/0), or PBS by gavage, respectively. The expression of TCPTP in macrophages (RAW264.7, BMDMs) and intestinal tissues after IL-35 treatment was detected. After administration of Pichia/IL-35, the mice showed significant improvement in weight loss, bloody stools, and shortened colon. Colon pathology also showed that the inflammatory condition of mice in the Pichia/IL-35 treatment group was alleviated. Notably, Pichia/IL-35 treatment not only increases local M2 macrophages but also decreases the expression of inflammatory cytokine IL-6 in the colon. With Pichia/IL-35 treatment, the proportion of M1 macrophages, Th17, and Th1 cells in mouse MLNs were markedly decreased, while Tregs were significantly increased. In vitro experiments, IL-35 significantly promoted the expression of TCPTP in macrophages stimulated with LPS. Similarly, the mice in the Pichia/IL-35 group also expressed more TCPTP than that of the untreated group and the Pichia/0 group.
Collapse
Affiliation(s)
- Baoren Zhang
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Chenglu Sun
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Yanglin Zhu
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Hong Qin
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Dejun Kong
- School of MedicineNankai University, Tianjin, China
| | - Jingyi Zhang
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Bo Shao
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Xiang Li
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Shaohua Ren
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Hongda Wang
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Jingpeng Hao
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
- Department of Anorectal SurgeryTianjin Medical University Second Hospital, Tianjin, China
| | - Hao Wang
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
- Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, Tianjin, China
| |
Collapse
|
211
|
Li C, Zhang P, Xie Y, Wang S, Guo M, Wei X, Zhang K, Cao D, Zhou R, Wang S, Song X, Zhu S, Pan W. Enterococcus-derived tyramine hijacks α 2A-adrenergic receptor in intestinal stem cells to exacerbate colitis. Cell Host Microbe 2024; 32:950-963.e8. [PMID: 38788722 DOI: 10.1016/j.chom.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/28/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
Inflammatory bowel disease (IBD) is characterized by dysbiosis of the gut microbiota and dysfunction of intestinal stem cells (ISCs). However, the direct interactions between IBD microbial factors and ISCs are undescribed. Here, we identify α2A-adrenergic receptor (ADRA2A) as a highly expressed GPCR in ISCs. Through PRESTO-Tango screening, we demonstrate that tyramine, primarily produced by Enterococcus via tyrosine decarboxylase (tyrDC), serves as a microbial ligand for ADRA2A. Using an engineered tyrDC-deficient Enterococcus faecalis strain and intestinal epithelial cell-specific Adra2a knockout mice, we show that Enterococcus-derived tyramine suppresses ISC proliferation, thereby impairing epithelial regeneration and exacerbating DSS-induced colitis through ADRA2A. Importantly, blocking the axis with an ADRA2A antagonist, yohimbine, disrupts tyramine-mediated suppression on ISCs and alleviates colitis. Our findings highlight a microbial ligand-GPCR pair in ISCs, revealing a causal link between microbial regulation of ISCs and colitis exacerbation and yielding a targeted therapeutic approach to restore ISC function in colitis.
Collapse
Affiliation(s)
- Chaoliang Li
- Department of Digestive Disease, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Panrui Zhang
- Department of Digestive Disease, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Yadong Xie
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Shishan Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Meng Guo
- Department of Digestive Disease, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Xiaowei Wei
- Department of Digestive Disease, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Kaiguang Zhang
- Department of Digestive Disease, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Dan Cao
- Department of Digestive Disease, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Rongbin Zhou
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Sheng Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinyang Song
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| | - Shu Zhu
- Department of Digestive Disease, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Wen Pan
- Department of Digestive Disease, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
212
|
Qiu X, Luo W, Li H, Li T, Huang Y, Huang Q, Zhou R. A Traditional Chinese Medicine, Zhenqi Granule, Potentially Alleviates Dextran Sulfate Sodium-Induced Mouse Colitis Symptoms. BIOLOGY 2024; 13:427. [PMID: 38927307 PMCID: PMC11200386 DOI: 10.3390/biology13060427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease that causes chronic inflammation in the large intestine. The etiology of UC is complex and incompletely understood, with potential contributing factors including genetic susceptibility, environmental influences, immune dysregulation, and gut barrier dysfunction. Despite available therapeutic drugs, the suboptimal cure rate for UC emphasizes the necessity of developing novel therapeutics. Traditional Chinese Medicine (TCM) has attracted great interest in the treatment of such chronic inflammatory diseases due to its advantages, such as multi-targets and low side effects. In this study, a mouse model of Dextran Sulfate Sodium (DSS)-induced acute colitis was established and the efficacy of Zhenqi Granule, a TCM preparation composed of the extractives from Astragali Radix and Fructus Ligustri Lucidi, was evaluated. The results showed that treatment with Zhenqi Granule prior to or post-DSS induction could alleviate the symptoms of colitis, including weight loss, diarrhea, hematochezia, colon length shortening, and pathological damage of colon tissues of the DSS-treated mice. Further, network pharmacology analysis showed that there were 98 common targets between the active components of Zhenqi Granule and the targets of UC, and the common targets were involved in the regulation of inflammatory signaling pathways. Our results showed that Zhenqi Granule had preventive and therapeutic effects on acute colitis in mice, and the mechanism may be that the active components of Zhenqi Granule participated in the regulation of inflammatory response. This study provided data reference for further exploring the mechanism of Zhenqi Granule and also provided potential treatment strategies for UC.
Collapse
Affiliation(s)
- Xiuxiu Qiu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Q.); (W.L.); (H.L.); (T.L.); (Y.H.)
| | - Wentao Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Q.); (W.L.); (H.L.); (T.L.); (Y.H.)
| | - Haotian Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Q.); (W.L.); (H.L.); (T.L.); (Y.H.)
| | - Tingting Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Q.); (W.L.); (H.L.); (T.L.); (Y.H.)
| | - Yaxue Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Q.); (W.L.); (H.L.); (T.L.); (Y.H.)
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Q.); (W.L.); (H.L.); (T.L.); (Y.H.)
- International Research Center for Animal Disease, Ministry of Science & Technology of China, Wuhan 430070, China
- The Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Q.); (W.L.); (H.L.); (T.L.); (Y.H.)
- International Research Center for Animal Disease, Ministry of Science & Technology of China, Wuhan 430070, China
- The Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
213
|
Cao B, Xu Q, Shi Y, Zhao R, Li H, Zheng J, Liu F, Wan Y, Wei B. Pathology of pain and its implications for therapeutic interventions. Signal Transduct Target Ther 2024; 9:155. [PMID: 38851750 PMCID: PMC11162504 DOI: 10.1038/s41392-024-01845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/10/2024] Open
Abstract
Pain is estimated to affect more than 20% of the global population, imposing incalculable health and economic burdens. Effective pain management is crucial for individuals suffering from pain. However, the current methods for pain assessment and treatment fall short of clinical needs. Benefiting from advances in neuroscience and biotechnology, the neuronal circuits and molecular mechanisms critically involved in pain modulation have been elucidated. These research achievements have incited progress in identifying new diagnostic and therapeutic targets. In this review, we first introduce fundamental knowledge about pain, setting the stage for the subsequent contents. The review next delves into the molecular mechanisms underlying pain disorders, including gene mutation, epigenetic modification, posttranslational modification, inflammasome, signaling pathways and microbiota. To better present a comprehensive view of pain research, two prominent issues, sexual dimorphism and pain comorbidities, are discussed in detail based on current findings. The status quo of pain evaluation and manipulation is summarized. A series of improved and innovative pain management strategies, such as gene therapy, monoclonal antibody, brain-computer interface and microbial intervention, are making strides towards clinical application. We highlight existing limitations and future directions for enhancing the quality of preclinical and clinical research. Efforts to decipher the complexities of pain pathology will be instrumental in translating scientific discoveries into clinical practice, thereby improving pain management from bench to bedside.
Collapse
Affiliation(s)
- Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qixuan Xu
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Yajiao Shi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Ruiyang Zhao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Hanghang Li
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Fengyu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - Bo Wei
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
214
|
Ma L, Li M, Lv J, Yuan Q, Yin X, Lu W, Lin W, Wang P, Cui J, Lv Q, Liu J, Hu L. Design, synthesis, and biological evaluation of novel sesquiterpene lactone derivatives as PKM2 activators with potent anti-ulcerative colitis activities. Eur J Med Chem 2024; 272:116426. [PMID: 38718622 DOI: 10.1016/j.ejmech.2024.116426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 05/27/2024]
Abstract
Pyruvate kinase isoform 2 (PKM2) is closely related to the regulation of Th17/Treg balance, which is considered to be an effective strategy for UC therapy. Parthenolide (PTL), a natural product, only possesses moderate PKM2-activating activity. Thus, five series of PTL derivatives are designed and synthesized to improve PKM2-activated activities and anti-UC abilities. Through detailed structure optimization, B4 demonstrates potent T-cell anti-proliferation activity (IC50 = 0.43 μM) and excellent PKM2-activated ability (AC50 = 0.144 μM). Subsequently, through mass spectrometry analysis, B4 is identified to interact with Cys423 of PKM2 via covalent-bond. Molecular docking and molecular dynamic simulation results reveal that the trifluoromethoxy of B4 forms a stronger hydrophobic interaction with Ala401, Pro402, and Ile403. In addition, B4 has a significant effect only on Th17 cell differentiation, thereby regulating the Th17/Treg balance. The effect of B4 on Th17/Treg imbalance can be attributed to inhibition of PKM2 dimer translocation and suppression of glucose metabolism. Finally, B4 can notably ameliorate the symptoms of dextran sulfate sodium (DSS)-induced colitis in mouse model in vivo. Thus, B4 is confirmed as a potent PKM2 activator, and has the potential to develop as a novel anti-UC agent.
Collapse
Affiliation(s)
- Lingyu Ma
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mengting Li
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiahao Lv
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qingxin Yuan
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xunkai Yin
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wenyu Lu
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weijiang Lin
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ping Wang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jian Cui
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qi Lv
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jian Liu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lihong Hu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
215
|
Zhang Z, Hu Y, Zhang N, Li J, Lu J, Wei H. Dietary supplementation with non-digestible isomaltooligosaccharide and Lactiplantibacillus plantarum ZDY2013 ameliorates DSS-induced colitis via modulating intestinal barrier integrity and the gut microbiota. Food Funct 2024; 15:5908-5920. [PMID: 38738338 DOI: 10.1039/d4fo00421c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Non-digestible oligosaccharides have attracted attention due to their critical role in maintaining the balance of a host's gut microbiota. Lactiplantibacillus plantarum ZDY2013 was isolated from traditional fermented acid beans, which could metabolize many complex carbohydrates and had intestinal immunomodulatory effects. In our study, the ameliorative effect of a combination of non-digestible isomaltooligosaccharide (IMO) and L. plantarum ZDY2013 was investigated in dextran sulfate sodium (DSS)-induced colitis mice. The results showed that IMO could specifically promote L. plantarum ZDY2013 intestinal colonization after five days of gavage and ameliorate the symptoms of colitis (survival rate, DAI score, colon length, etc.) as well as colon tissue integrity. IMO combined with L. plantarum ZDY2013 increased the levels of intestinal tight junction proteins (ZO-1 and claudin) and mucin (MUC-2), followed by alleviation of inflammatory responses (decreased the expression of IL-1β, TNF-α, and IL-6 and increased the expression of IL-10 and IL-22) and the level of oxidative stress (decreased the level of COX-2 and iNOS and increased the expression of T-AOC and SOD). Furthermore, the combination increased the diversity of the gut microbiota and modulated the microbial structural component (decreased the abundance of Escherichia and Helicobacter and increased the abundance of Lactobacillus and SCFA-producing related species). Taken together, our results suggested that the consumption of IMO and L. plantarum ZDY2013 could improve the symptoms of colitis in mice by improving the intestinal barrier along with regulating the composition and metabolites of the gut microbiota.
Collapse
Affiliation(s)
- Zhihong Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
- Chongqing Research Institute, Nanchang University, Chongqing 402660, China
| | - Yingsheng Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Na Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jinmei Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jinlin Lu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Hua Wei
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
216
|
Hu C, Yuan X, Zhao R, Hong B, Chen C, Zhu Q, Zheng Y, Hu J, Yuan Y, Wu Z, Zhang J, Tang C. Scale-Up Preparation of Manganese-Iron Prussian Blue Nanozymes as Potent Oral Nanomedicines for Acute Ulcerative Colitis. Adv Healthc Mater 2024; 13:e2400083. [PMID: 38447228 DOI: 10.1002/adhm.202400083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/04/2024] [Indexed: 03/08/2024]
Abstract
Prussian blue (PB) nanozymes are demonstrated as effective therapeutics for ulcerative colitis (UC), yet an unmet practical challenge remains in the scalable production of these nanozymes and uncertainty over their efficacy. With a novel approach, a series of porous manganese-iron PB (MnPB) colloids, which are shown to be efficient scavengers for reactive oxygen species (ROS) including hydroxyl radical, superoxide anion, and hydrogen peroxide, are prepared. In vitro cellular experiments confirm the capability of the nanozyme to protect cells from ROS attack. In vivo, the administration of MnPB nanozyme through gavage at a dosage of 10 mg kg-1 per day for three doses in total potently ameliorates the pathological symptoms of acute UC in a murine model, resulting in mitigated inflammatory responses and improved viability rate. Significantly, the nanozyme produced at a large scale can be achieved at an unprecedented yield weighting ≈11 g per batch of reaction, demonstrating comparable anti-ROS activities and treatment efficacy to its small-scale counterpart. This work represents the first demonstration of the scale-up preparation of PB analog nanozymes for UC without compromising treatment efficacy, laying the foundation for further testing of these nanozymes on larger animals and promising clinical translation.
Collapse
Affiliation(s)
- Chengyun Hu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Xue Yuan
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Ronghua Zhao
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Biao Hong
- College & Hospital of Stomatology, Anhui Provincial Key Laboratory of Oral Diseases Research, Anhui Medical University, Hefei, 230032, China
| | - Chuang Chen
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Qingjun Zhu
- Anhui Provincial Key Laboratory of High Magnetic Resonance Image, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Yanmin Zheng
- Anhui Provincial Key Laboratory of High Magnetic Resonance Image, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yue Yuan
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Zhengyan Wu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Jia Zhang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Chaoliang Tang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| |
Collapse
|
217
|
Andretto V, Rosso A, Zilio S, Sidi-Boumedine J, Boschetti G, Sankar S, Buffier M, Miele AE, Denis M, Choffour PA, Briançon S, Nancey S, Kryza D, Lollo G. Peptide-Based Hydrogel for Nanosystems Encapsulation: the Next Generation of Localized Delivery Systems for the Treatment of Intestinal Inflammations. Adv Healthc Mater 2024; 13:e2303280. [PMID: 38445812 DOI: 10.1002/adhm.202303280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/10/2024] [Indexed: 03/07/2024]
Abstract
Conventional therapies for inflammatory bowel diseases are mainly based on systemic treatments which cause side effects and toxicity over long-term administration. Nanoparticles appear as a valid alternative to allow a preferential accumulation in inflamed tissues following oral administration while reducing systemic drug exposure. To increase their residence time in the inflamed intestine, the nanoparticles are here associated with a hydrogel matrix. A bioadhesive peptide-based hydrogel is mixed with nanoemulsions, creating a hybrid lipid-polymer nanocomposite. Mucopenetrating nanoemulsions of 100 nm are embedded in a scaffold constituted of the self-assembling peptide hydrogel product PuraStat. The nanocomposite is fully characterized to study the impact of lipid particles in the hydrogel structure. Rheological measurements and circular dichroism analyses are performed to investigate the system's microstructure and physical properties. Biodistribution studies demonstrate that the nanocomposite acts as a depot in the stomach and facilitates the slow release of the nanoemulsions in the intestine. Efficacy studies upon oral administration of the drug-loaded system show the improvement of the disease score in a mouse model of intestinal inflammation.
Collapse
Affiliation(s)
- Valentina Andretto
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne, F-69622, France
| | - Annalisa Rosso
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne, F-69622, France
| | - Serena Zilio
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne, F-69622, France
- SATT, Ouest Valorisation, 14C Rue du Patis Tatelin, Renne, 35708, France
| | - Jacqueline Sidi-Boumedine
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne, F-69622, France
| | - Gilles Boschetti
- Department of Gastroenterology, Lyon Sud Hospital, Hospices Civil de Lyon and CIRI, Lyon, 69495, France
| | - Sharanya Sankar
- 3-D Matrix Europe SAS, Medical Technology, Caluire-et-Cuire, 69300, France
| | - Marie Buffier
- 3-D Matrix Europe SAS, Medical Technology, Caluire-et-Cuire, 69300, France
| | - Adriana Erica Miele
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ISA UMR 5280, 5 rue de la Doua, Villeurbanne, F-69100, France
- Dept Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, Rome, I-00185, Italy
| | - Morgane Denis
- Univ Lyon, Université Claude Bernard Lyon, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France
- Antineo, R&D Department, Lyon, 69008, France
| | | | - Stéphanie Briançon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne, F-69622, France
| | - Stéphane Nancey
- Department of Gastroenterology, Lyon Sud Hospital, Hospices Civil de Lyon and CIRI, Lyon, 69495, France
| | - David Kryza
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne, F-69622, France
- Hospices Civils de Lyon, Lyon, 69437, France
| | - Giovanna Lollo
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne, F-69622, France
| |
Collapse
|
218
|
Xu K, Yang H, Fang J, Qiu K, Shen H, Huang G, Zheng Q, Wang C, Xu T, Yu X, Wang J, Lin Y, Dai J, Zhong Y, Song H, Zhu S, Wang S, Zhou Z, Yang G, Mao Z, Pan Z, Dai X. Self-adaptive pyroptosis-responsive nanoliposomes block pyroptosis in autoimmune inflammatory diseases. Bioact Mater 2024; 36:272-286. [PMID: 38496034 PMCID: PMC10940868 DOI: 10.1016/j.bioactmat.2024.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/03/2024] [Accepted: 02/19/2024] [Indexed: 03/19/2024] Open
Abstract
Nanoliposomes have a broad range of applications in the treatment of autoimmune inflammatory diseases because of their ability to considerably enhance drug transport. For their clinical application, nanoliposomes must be able to realize on-demand release of drugs at disease sites to maximize drug-delivery efficacy and minimize side effects. Therefore, responsive drug-release strategies for inflammation treatment have been explored; however, no specific design has been realized for a responsive drug-delivery system based on pyroptosis-related inflammation. Herein, we report a pioneering strategy for self-adaptive pyroptosis-responsive liposomes (R8-cardiolipin-containing nanoliposomes encapsulating dimethyl fumarate, RC-NL@DMF) that precisely release encapsulated anti-pyroptotic drugs into pyroptotic cells. The activated key pyroptotic protein, the N-terminal domain of gasdermin E, selectively integrates with the cardiolipin of liposomes, thus forming pores for controlled drug release, pyroptosis, and inflammation inhibition. Therefore, RC-NL@DMF exhibited effective therapeutic efficacies to alleviate autoimmune inflammatory damages in zymosan-induced arthritis mice and dextran sulfate sodium-induced inflammatory bowel disease mice. Our novel approach holds great promise for self-adaptive pyroptosis-responsive on-demand drug delivery, suppressing pyroptosis and treating autoimmune inflammatory diseases.
Collapse
Affiliation(s)
- Kaiwang Xu
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Orthopedics Research Institute, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310009, China
| | - Huang Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jinghua Fang
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Orthopedics Research Institute, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310009, China
| | - Kaijie Qiu
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Orthopedics Research Institute, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310009, China
| | | | | | - Qiangqiang Zheng
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Canlong Wang
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Orthopedics Research Institute, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310009, China
| | - Tengjing Xu
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Orthopedics Research Institute, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310009, China
| | - Xinning Yu
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Orthopedics Research Institute, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310009, China
| | - Jiajie Wang
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Orthopedics Research Institute, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310009, China
| | - Yunting Lin
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Orthopedics Research Institute, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310009, China
| | - Jiacheng Dai
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Orthopedics Research Institute, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310009, China
| | - Yuting Zhong
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Orthopedics Research Institute, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310009, China
| | - Hongyun Song
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Orthopedics Research Institute, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310009, China
| | - Sunan Zhu
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Orthopedics Research Institute, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310009, China
| | - Siheng Wang
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Orthopedics Research Institute, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310009, China
| | - Zhuxing Zhou
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Orthopedics Research Institute, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310009, China
| | - Guang Yang
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Orthopedics Research Institute, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310009, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Zongyou Pan
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Orthopedics Research Institute, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310009, China
| | - Xuesong Dai
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Orthopedics Research Institute, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310009, China
| |
Collapse
|
219
|
de Jesus LCL, Freitas ADS, Dutra JDCF, Campos GM, Américo MF, Laguna JG, Dornelas EG, Carvalho RDDO, Vital KD, Fernandes SOA, Cardoso VN, de Oliveira JS, de Oliveira MFA, Faria AMC, Ferreira E, Souza RDO, Martins FS, Barroso FAL, Azevedo V. Lactobacillus delbrueckii CIDCA 133 fermented milk modulates inflammation and gut microbiota to alleviate acute colitis. Food Res Int 2024; 186:114322. [PMID: 38729712 DOI: 10.1016/j.foodres.2024.114322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
Lactobacillus delbrueckii subsp. lactis CIDCA 133 is a health-promoting bacterium that can alleviate gut inflammation and improve the epithelial barrier in a mouse model of mucositis. Despite these beneficial effects, the protective potential of this strain in other inflammation models, such as inflammatory bowel disease, remains unexplored. Herein, we examined for the first time the efficacy of Lactobacillus delbrueckii CIDCA 133 incorporated into a fermented milk formulation in the recovery of inflammation, epithelial damage, and restoration of gut microbiota in mice with dextran sulfate sodium-induced colitis. Oral administration of Lactobacillus delbrueckii CIDCA 133 fermented milk relieved colitis by decreasing levels of inflammatory factors (myeloperoxidase, N-acetyl-β-D-glucosaminidase, toll-like receptor 2, nuclear factor-κB, interleukins 10 and 6, and tumor necrosis factor), secretory immunoglobulin A levels, and intestinal paracellular permeability. This immunobiotic also modulated the expression of tight junction proteins (zonulin and occludin) and the activation of short-chain fatty acids-related receptors (G-protein coupled receptors 43 and 109A). Colonic protection was effectively associated with acetate production and restoration of gut microbiota composition. Treatment with Lactobacillus delbrueckii CIDCA 133 fermented milk increased the abundance of Firmicutes members (Lactobacillus genus) while decreasing the abundance of Proteobacteria (Helicobacter genus) and Bacteroidetes members (Bacteroides genus). These promising outcomes influenced the mice's mucosal healing, colon length, body weight, and disease activity index, demonstrating that this immunobiotic could be explored as an alternative approach for managing inflammatory bowel disease.
Collapse
Affiliation(s)
- Luís Cláudio Lima de Jesus
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil
| | - Andria Dos Santos Freitas
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil
| | - Joyce da Cruz Ferraz Dutra
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil
| | - Gabriela Munis Campos
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil
| | - Monique Ferrary Américo
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana Guimarães Laguna
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil
| | - Evandro Gonçalves Dornelas
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil
| | | | - Kátia Duarte Vital
- Federal University of Minas Gerais, Department of Clinical and Toxicological Analysis, Belo Horizonte, Minas Gerais, Brazil
| | | | - Valbert Nascimento Cardoso
- Federal University of Minas Gerais, Department of Clinical and Toxicological Analysis, Belo Horizonte, Minas Gerais, Brazil
| | - Jamil Silvano de Oliveira
- Federal University of Minas Gerais, Department of Biochemistry and Immunology, Belo Horizonte, Minas Gerais, Brazil
| | | | - Ana Maria Caetano Faria
- Federal University of Minas Gerais, Department of Biochemistry and Immunology, Belo Horizonte, Minas Gerais, Brazil
| | - Enio Ferreira
- Federal University of Minas Gerais, Department of General Pathology, Belo Horizonte, Minas Gerais, Brazil
| | - Ramon de Oliveira Souza
- Federal University of Minas Gerais, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil; Ezequiel Dias Foundation, Research and Development Board, Belo Horizonte, Minas Gerais, Brazil
| | - Flaviano Santos Martins
- Federal University of Minas Gerais, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| | | | - Vasco Azevedo
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
220
|
Lai W, Wang Y, Huang C, Xu H, Zheng X, Li K, Wang J, Lou Z. DIREN mitigates DSS-induced colitis in mice and attenuates collagen deposition via inhibiting the Wnt/β-catenin and focal adhesion pathways. Biomed Pharmacother 2024; 175:116671. [PMID: 38678963 DOI: 10.1016/j.biopha.2024.116671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND DIREN is a SHE ethnic medicine with stasis-resolving, hemostasis, clearing heat, and removing toxin effects. It is clinically used in the treatment of gastrointestinal bleeding, such as ulcerative colitis (UC). AIM OF THE STUDY Fibrosis is one of the pathological changes in the progression of UC, which can make it challenging to respond to a treatment. We aimed to illuminate the role of DIREN in DSS-induced UC and tried to unveil its related mechanisms from two perspectives: intestinal inflammation and collagen deposition. MATERIALS AND METHODS A 2.5 % dextran sulfate sodium (DSS) water solution was used to induce colitis in mice. The therapeutic effect of DIREN was assessed using the disease activity index, histopathological score, and colon length. Masson and Sirius Red staining was used to observe the fibrosis in the colon. Apoptosis of colonic epithelial cells was observed by TUNEL immunofluorescence staining. RNA-seq observed differential genes and enrichment pathways. Immunohistochemistry and RT-qPCR were used to detect the expression of molecules related to fibrosis and focal adhesion signaling in colon tissue. RESULTS The administration of DIREN resulted in a reduction of disease activity index (DAI) in mice with UC while simultaneously promoting an increase in colon length. DIREN mitigated the loss of goblet cells in the colon of UC mice and maintained the integrity of the intestinal mucosa barrier. Masson staining revealed a reduction in colonic fibrosis with DIREN treatment, while Sirius red staining demonstrated a decrease in collagen Ⅰ deposition. DIREN reduced apoptosis of colonic epithelial cells and the expression of genes, such as CDH2, ITGA1, and TGF-β2. Additionally, the results of GSEA analysis of colon tissue transcriptome showed that the differentially expressed genes were enriched in the focal adhesion pathway. DIREN was found to downregulate the protein expression of BAX, N-cadherin, β-catenin, Integrin A1, and Vinculin while upregulating the protein expression of BCL2. Additionally, it led to the co-expression of N-cadherin and α-SMA. CONCLUSION DIREN exerts a protective effect against DSS-induced UC by ameliorating colonic fibrosis via regulation of focal adhesion and the WNT/β-catenin signaling pathway, thereby inhibiting fibroblast migration and reducing collagen secretion.
Collapse
Affiliation(s)
- Weizhi Lai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yingying Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Chen Huang
- The First School of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Hao Xu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Xunjie Zheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Ke Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Jue Wang
- Department of Oncology, the Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China
| | - Zhaohuan Lou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Songyang Institute of Zhejiang Chinese Medical University, Lishui, Zhejiang 323400, China.
| |
Collapse
|
221
|
Zheng J, Zhang J, Zhou Y, Zhang D, Guo H, Li B, Cui S. Taurine Alleviates Experimental Colitis by Enhancing Intestinal Barrier Function and Inhibiting Inflammatory Response through TLR4/NF-κB Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12119-12129. [PMID: 38761152 DOI: 10.1021/acs.jafc.4c00662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Taurine (Tau) is a semiessential amino acid in mammals with preventive and therapeutic effects on several intestinal disorders. However, the exact function of taurine in ulcerative colitis (UC) is still largely unclear. In this study, we used two taurine-deficient mouse models (CSAD-/- and TauT-/- mice) to explore the influence of taurine on the progression of UC in both dextran sulfate sodium (DSS)-induced colitis and LPS-stimulated Caco-2 cells. We found that cysteine sulfinic acid decarboxylase (CSAD) and taurine transporter (TauT) expressions and taurine levels were markedly reduced in colonic tissues of mice treated with DSS. The CSAD and TauT knockouts exacerbated DSS-induced clinical symptoms and pathological damage and aggravated the intestinal barrier dysfunction and the colonic mucosal inflammatory response. Conversely, taurine pretreatment enhanced the intestinal barrier functions by increasing goblet cells and upregulating tight junction protein expression. Importantly, taurine bound with TLR4 and inhibited the TLR4/NF-κB pathway, ultimately reducing proinflammatory factors (TNF-α and IL-6) and oxidative stress. Our findings highlight the essential role of taurine in maintaining the intestinal barrier integrity and inhibiting intestinal inflammation, indicating that taurine is a promising supplement for colitis treatment.
Collapse
Affiliation(s)
- Jiaming Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, People's Republic of China
| | - Jinglin Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, People's Republic of China
| | - Yewen Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, People's Republic of China
| | - Di Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, People's Republic of China
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou 225009, People's Republic of China
| | - Hongzhou Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, People's Republic of China
| | - Bin Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, People's Republic of China
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou 225009, People's Republic of China
| | - Sheng Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, People's Republic of China
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou 225009, People's Republic of China
| |
Collapse
|
222
|
Zhang H, Wang X, Zhao L, Zhang K, Cui J, Xu G. Biochanin a ameliorates DSS-induced ulcerative colitis by improving colonic barrier function and protects against the development of spontaneous colitis in the Muc2 deficient mice. Chem Biol Interact 2024; 395:111014. [PMID: 38648921 DOI: 10.1016/j.cbi.2024.111014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/25/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
There is an increasing appreciation that colonic barrier function is closely related to the development and progression of colitis. The mucus layer is a crucial component of the colonic barrier, responsible for preventing harmful bacteria from invading the intestinal epithelium and causing inflammation. Furthermore, a defective mucus barrier is also a significant characteristic of ulcerative colitis (UC). Biochanin A (BCA), an isoflavonoid, has garnered increasing interest due to its significant biological activities. However, the impact of BCA on UC has not been reported yet. In this study, we used a dextran sodium sulfate (DSS)-induced ulcerative colitis model and the Muc2 deficient (Muc2-/-) mice spontaneous colitis model to explore the mechanisms of BCA in the treatment of UC. Here, we verified that DSS-induced UC was observably attenuated and spontaneous colitis in Muc2-/- mice was relieved by BCA. Treatment with BCA improved colitis-related symptoms and reduced intestinal permeability by upregulating the levels of goblet cells and tight junction (TJ) proteins. In addition, we confirmed that BCA promotes autophagy through the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR)/Unc-51-like kinase 1 (ULK1) pathway, thereby alleviating DSS-induced UC. In addition, the administration of BCA was able to reduce apoptosis and promote proliferation by suppressing Cleaved Caspase-3 (Cleaved Cas-3) expression, and increasing PCNA and Ki67 levels. Further research revealed that BCA treatment ameliorated spontaneous colitis and alleviated epithelial damage in Muc2-/- mice by restoring the intestinal barrier and promoting autophagy. Our results demonstrated that BCA alleviated UC by enhancing intestinal barrier function and promoting autophagy. These findings indicate that BCA may be a novel treatment alternative for UC.
Collapse
Affiliation(s)
- Haina Zhang
- Department of Rehabilitation, The Second Hospital of Jilin University, Jilin University, Changchun, 130000, PR China
| | - Xueqi Wang
- Department of Cell Biology and Biophysics, Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130000, PR China
| | - Linxian Zhao
- Department of General Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, 130000, PR China
| | - Kai Zhang
- Department of General Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, 130000, PR China
| | - Jiaming Cui
- Changchun University of Chinese Medicine, Jilin University, Changchun, 130000, PR China
| | - Guangmeng Xu
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, 130000, PR China.
| |
Collapse
|
223
|
Guo H, Xie W, Ji Z, Wang B, Ren W, Gao W, Yuan B. Oyster Peptides Ameliorate Dextran Sulfate Sodium-Induced Ulcerative Colitis via Modulating the Gut Microbiota and Inhibiting the TLR4/NF-κB Pathway. Nutrients 2024; 16:1591. [PMID: 38892524 PMCID: PMC11175164 DOI: 10.3390/nu16111591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease with an increasing prevalence year over year, and the medications used to treat patients with UC clinically have severe side effects. Oyster peptides (OPs) have anti-inflammatory and antioxidant properties as functional foods that can alleviate a wide range of inflammatory conditions. However, the application of oyster peptides in ulcerative colitis is not well studied. In this work, an animal model of acute colitis was established using 3% dextran sulfate sodium (DSS), and the impact of OP therapy on colitis in mice was examined. Supplementing with OPs prevented DSS-induced colitis from worsening, reduced the expression of oxidative stress and inflammatory markers, and restored the intestinal barrier damage caused by DSS-induced colitis in mice. The 16S rDNA results showed that the OP treatment improved the gut microbiota structure of the UC mice, including increasing microbial diversity, increasing beneficial bacteria, and decreasing harmful bacteria. In the UC mice, the OP therapy decreased the relative abundance of Family_XIII_AD3011_group and Prevotella_9 and increased the relative abundance of Alistipes. In conclusion, OP treatment can inhibit the TLR4/NF-κB pathway and improve the intestinal microbiota in UC mice, which in turn alleviates DSS-induced colitis, providing a reference for the treatment of clinical UC patients.
Collapse
Affiliation(s)
- Haixiang Guo
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (H.G.); (W.X.); (Z.J.); (B.W.); (W.R.)
| | - Wenyin Xie
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (H.G.); (W.X.); (Z.J.); (B.W.); (W.R.)
| | - Zhonghao Ji
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (H.G.); (W.X.); (Z.J.); (B.W.); (W.R.)
- Department of Basic Medicine, Changzhi Medical College, Changzhi 046000, China
| | - Bingbing Wang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (H.G.); (W.X.); (Z.J.); (B.W.); (W.R.)
| | - Wenzhi Ren
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (H.G.); (W.X.); (Z.J.); (B.W.); (W.R.)
| | - Wei Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (H.G.); (W.X.); (Z.J.); (B.W.); (W.R.)
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (H.G.); (W.X.); (Z.J.); (B.W.); (W.R.)
| |
Collapse
|
224
|
Chen L, Patil S, Barbon J, Waire J, Laroux S, McCarthy D, Pratibha M, Zhong S, Dong F, Orsi K, Nguyen G, Yang Y, Crosbie N, Dominguez E, Deora A, Veldman G, Westmoreland S, Jin L, Radstake T, White K, Wei HJ. Agonistic anti-DCIR antibody inhibits ITAM-mediated inflammatory signaling and promotes immune resolution. JCI Insight 2024; 9:e176064. [PMID: 38781017 PMCID: PMC11383175 DOI: 10.1172/jci.insight.176064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
DC inhibitory receptor (DCIR) is a C-type lectin receptor selectively expressed on myeloid cells, including monocytes, macrophages, DCs, and neutrophils. Its role in immune regulation has been implicated in murine models and human genome-wide association studies, suggesting defective DCIR function associates with increased susceptibility to autoimmune diseases such as rheumatoid arthritis, lupus, and Sjögren's syndrome. However, little is known about the mechanisms underlying DCIR activation to dampen inflammation. Here, we developed anti-DCIR agonistic antibodies that promote phosphorylation on DCIR's immunoreceptor tyrosine-based inhibitory motifs and recruitment of SH2 containing protein tyrosine phosphatase-2 for reducing inflammation. We also explored the inflammation resolution by depleting DCIR+ cells with antibodies. Utilizing a human DCIR-knock-in mouse model, we validated the antiinflammatory properties of the agonistic anti-DCIR antibody in experimental peritonitis and colitis. These findings provide critical evidence for targeting DCIR to develop transformative therapies for inflammatory diseases.
Collapse
Affiliation(s)
- Liang Chen
- AbbVie, Cambridge Research Center, Cambridge, Massachusetts, USA
| | - Suresh Patil
- AbbVie, Cambridge Research Center, Cambridge, Massachusetts, USA
| | - Jeffrey Barbon
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - James Waire
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Stephen Laroux
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Donna McCarthy
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Mishra Pratibha
- AbbVie, Cambridge Research Center, Cambridge, Massachusetts, USA
| | - Suju Zhong
- AbbVie, Cambridge Research Center, Cambridge, Massachusetts, USA
| | - Feng Dong
- AbbVie, Cambridge Research Center, Cambridge, Massachusetts, USA
| | - Karin Orsi
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Gunarso Nguyen
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Yingli Yang
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Nancy Crosbie
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Eric Dominguez
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Arun Deora
- AbbVie, Cambridge Research Center, Cambridge, Massachusetts, USA
| | | | | | - Liang Jin
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Timothy Radstake
- AbbVie, Cambridge Research Center, Cambridge, Massachusetts, USA
| | - Kevin White
- AbbVie, Cambridge Research Center, Cambridge, Massachusetts, USA
| | - Hsi-Ju Wei
- AbbVie Bay Area, South San Francisco, California, USA
| |
Collapse
|
225
|
Ge Y, Chen R, Ling T, Liu B, Huang J, Cheng Y, Lin Y, Chen H, Xie X, Xia G, Luo G, Yuan S, Xu A. Elevated WTAP promotes hyperinflammation by increasing m6A modification in inflammatory disease models. J Clin Invest 2024; 134:e177932. [PMID: 39007267 PMCID: PMC11245160 DOI: 10.1172/jci177932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/15/2024] [Indexed: 07/16/2024] Open
Abstract
Emerging evidence has linked the dysregulation of N6-methyladenosine (m6A) modification to inflammation and inflammatory diseases, but the underlying mechanism still needs investigation. Here, we found that high levels of m6A modification in a variety of hyperinflammatory states are p65-dependent because Wilms tumor 1-associated protein (WTAP), a key component of the "writer" complex, is transcriptionally regulated by p65, and its overexpression can lead to increased levels of m6A modification. Mechanistically, upregulated WTAP is more prone to phase separation to facilitate the aggregation of the writer complex to nuclear speckles and the deposition of m6A marks on transcriptionally active inflammatory transcripts, thereby accelerating the proinflammatory response. Further, a myeloid deficiency in WTAP attenuates the severity of LPS-induced sepsis and DSS-induced IBD. Thus, the proinflammatory effect of WTAP is a general risk-increasing mechanism, and interrupting the assembly of the m6A writer complex to reduce the global m6A levels by targeting the phase separation of WTAP may be a potential and promising therapeutic strategy for alleviating hyperinflammation.
Collapse
Affiliation(s)
- Yong Ge
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Rong Chen
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Tao Ling
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Biaodi Liu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jingrong Huang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Youxiang Cheng
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Yi Lin
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Hongxuan Chen
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xiongmei Xie
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Guomeng Xia
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Guanzheng Luo
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Shaochun Yuan
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Anlong Xu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
226
|
Lin Z, Luo W, Zhang K, Dai S. Environmental and Microbial Factors in Inflammatory Bowel Disease Model Establishment: A Review Partly through Mendelian Randomization. Gut Liver 2024; 18:370-390. [PMID: 37814898 PMCID: PMC11096900 DOI: 10.5009/gnl230179] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/09/2023] [Accepted: 07/24/2023] [Indexed: 10/11/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a complex condition resulting from environmental, microbial, immunologic, and genetic factors. With the advancement of Mendelian randomization research in IBD, we have gained new insights into the relationship between these factors and IBD. Many animal models of IBD have been developed using different methods, but few studies have attempted to model IBD by combining environmental factors and microbial factors. In this review, we examine how environmental factors and microbial factors affect the development and progression of IBD, and how they interact with each other and with the intestinal microbiota. We also summarize the current methods for creating animal models of IBD and compare their advantages and disadvantages. Based on the latest findings from Mendelian randomization studies on the role of environmental factors in IBD, we discuss which environmental and microbial factors could be used to construct a more realistic and reliable IBD experimental model. We propose that animal models of IBD should consider both environmental and microbial factors to better mimic human IBD pathogenesis and to reveal the underlying mechanisms of IBD at the immune and genetic levels. We highlight the importance of environmental and microbial factors in IBD pathogenesis and offer new perspectives and suggestions for improving experimental animal modeling. Our goal is to create a model that closely resembles the clinical picture of IBD.
Collapse
Affiliation(s)
- Zesheng Lin
- The First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Wenjing Luo
- The Second Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Kaijun Zhang
- Department of Gastroenterology, Guangdong Provincial Geriatrics Institute, Guangzhou, ChinaNational Key Clinical Specialty, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Shixue Dai
- Department of Gastroenterology, Guangdong Provincial Geriatrics Institute, Guangzhou, ChinaNational Key Clinical Specialty, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Gastroenterology, Geriatric Center, National Regional Medical Center, Ganzhou Hospital Affiliated to Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Ganzhou, China
| |
Collapse
|
227
|
Jin JJ, Ko IG, Hwang L, Kim SH, Jee YS, Jeon H, Park SB, Jeon JW. Simultaneous Treatment of 5-Aminosalicylic Acid and Treadmill Exercise More Effectively Improves Ulcerative Colitis in Mice. Int J Mol Sci 2024; 25:5076. [PMID: 38791116 PMCID: PMC11120947 DOI: 10.3390/ijms25105076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Ulcerative colitis (UC) is characterized by continuous mucosal ulceration of the colon, starting in the rectum. 5-Aminosalicylic acid (5-ASA) is the main therapy for ulcerative colitis; however, it has side effects. Physical exercise effectively increases the number of anti-inflammatory and anti-immune cells in the body. In the current study, the effects of simultaneous treatment of treadmill exercise and 5-ASA were compared with monotherapy with physical exercise or 5-ASA in UC mice. To induce the UC animal model, the mice consumed 2% dextran sulfate sodium dissolved in drinking water for 7 days. The mice in the exercise groups exercised on a treadmill for 1 h once a day for 14 days after UC induction. The 5-ASA-treated groups received 5-ASA by enema injection using a 200 μL polyethylene catheter once a day for 14 days. Simultaneous treatment improved histological damage and increased body weight, colon weight, and colon length, whereas the disease activity index score and collagen deposition were decreased. Simultaneous treatment with treadmill exercise and 5-ASA suppressed pro-inflammatory cytokines and apoptosis following UC. The benefits of this simultaneous treatment may be due to inhibition on nuclear factor-κB/mitogen-activated protein kinase signaling activation. Based on this study, simultaneous treatment of treadmill exercise and 5-ASA can be considered as a new therapy of UC.
Collapse
Affiliation(s)
- Jun-Jang Jin
- Team of Efficacy Evaluation, Orient Genia Inc., Seongnam 13201, Republic of Korea; (J.-J.J.); (L.H.)
| | - Il-Gyu Ko
- Research Support Center, School of Medicine, Keimyung University, Deagu 42601, Republic of Korea;
| | - Lakkyong Hwang
- Team of Efficacy Evaluation, Orient Genia Inc., Seongnam 13201, Republic of Korea; (J.-J.J.); (L.H.)
| | - Sang-Hoon Kim
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, The Stat University of New Jersey, Piscataway, NJ 08854, USA;
| | - Yong-Seok Jee
- Research Institute of Sports and Industry Science, Hanseo University, Seosan 31962, Republic of Korea;
| | - Hyeon Jeon
- Department of Computer Science and Engineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea;
| | - Su Bee Park
- Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul 05278, Republic of Korea;
| | - Jung Won Jeon
- Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul 05278, Republic of Korea;
| |
Collapse
|
228
|
Yang C, Merlin D. Unveiling Colitis: A Journey through the Dextran Sodium Sulfate-induced Model. Inflamm Bowel Dis 2024; 30:844-853. [PMID: 38280217 PMCID: PMC11063560 DOI: 10.1093/ibd/izad312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Indexed: 01/29/2024]
Abstract
Animal models of inflammatory bowel disease (IBD) are valuable tools for investigating the factors involved in IBD pathogenesis and evaluating new therapeutic options. The dextran sodium sulfate (DSS)-induced model of colitis is arguably the most widely used animal model for studying the pathogenesis of and potential treatments for ulcerative colitis (UC), which is a primary form of IBD. This model offers several advantages as a research tool: it is highly reproducible, relatively easy to generate and maintain, and mimics many critical features of human IBD. Recently, it has also been used to study the role of gut microbiota in the development and progression of IBD and to investigate the effects of other factors, such as diet and genetics, on colitis severity. However, although DSS-induced colitis is the most popular and flexible model for preclinical IBD research, it is not an exact replica of human colitis, and some results obtained from this model cannot be directly applied to humans. This review aims to comprehensively discuss different factors that may be involved in the pathogenesis of DSS-induced colitis and the issues that should be considered when using this model for translational purposes.
Collapse
Affiliation(s)
- Chunhua Yang
- Institute for Biomedical Sciences, Digestive Disease Research Group, Georgia State University, Atlanta, GA, 30303, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, 30033, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Digestive Disease Research Group, Georgia State University, Atlanta, GA, 30303, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, 30033, USA
| |
Collapse
|
229
|
Deng Y, Song L, Huang J, Zhou W, Liu Y, Lu X, Zhao H, Liu D. Astragalus polysaccharides ameliorates experimental colitis by regulating memory B cells metabolism. Chem Biol Interact 2024; 394:110969. [PMID: 38522565 DOI: 10.1016/j.cbi.2024.110969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
It is well-established that the reduced Memory B cells (MBCs) play an important role in the pathogenesis of ulcerative colitis (UC), rendering them a potential therapeutic target for UC intervention. Astragalus polysaccharide (APS), a primary active constituent derived from the classic traditional Chinese medicine Astragalus membranaceus (AM), has been used for centuries in the treatment of UC in both human and animal subjects due to its renowned immunomodulatory properties. However, it is unknown whether APS can regulate MBCs to alleviate experimental colitis. In the present investigation, the murine colitis was successfully induced using dextran sulphate sodium (DSS) and subsequently treated with APS for a duration of 7 days. APS exhibited significant efficacy in reducing the disease activity index (DAI), colonic weight index, the index of colonic weight/colonic length. Furthermore, APS mitigated colonic pathological injuries, restored the colonic length, elevated the immunoglobulin A (IgA), transforming growth factor-β1 (TGF-β1) and interleukin (IL)-10 levels, while concurrently suppressing IgG, IgM, IL-6, tumor necrosis factor alpha (TNF-α) levels. Crucially, the quantities of MBCs, IgA+MBCs and forkhead box P3 (Foxp3+) MBCs were notably increased along with a concurrent decrease in IgG1+MBCs, IG2a+MBCs, IgG2b+MBCs after APS administration in colitis mice. Additionally, the Mitotracker red expressions of MBCs and their subgroups demonstrated a significantly up-regulation. Meanwhile, the transcriptomics analysis identified mitochondrial metabolism as the predominant and pivotal mechanism underlying APS-mediated mitigation of DSS-induced colitis. Key differentially expressed genes, including B-cell linker (BLNK), aldehyde dehydrogenase 1A1 (ALDH1A1), B-cell lymphoma 6 (BCL-6), B-lymphocyte-induced maturation protein 1 (Blimp-1), paired box gene 5 (PAX5), purinergic 2 × 7 receptor (P2X7R), B Cell activation factor (BAFF), B Cell activation factor receptor (BAFFR), CD40, nuclear factor kappa-B (NF-κB), IL-6 and so on were implicated in this process. These mRNA expressions were validated through quantitative polymerase chain reaction (qPCR) and immunohistochemistry. These findings revealed that APS effectively restored MBCs and their balance to ameliorate DSS-induced colitis, which was potentially realized via promoting mitochondrial metabolism to maintain MBCs activation.
Collapse
Affiliation(s)
- Yifei Deng
- Clinical Medical School, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Lizhao Song
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Jiaqi Huang
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Wen Zhou
- Nanchang Medical College, Nanchang, 330052, Jiangxi Province, China
| | - Yali Liu
- Nanchang Medical College, Nanchang, 330052, Jiangxi Province, China
| | - Xiuyun Lu
- Nanchang Medical College, Nanchang, 330052, Jiangxi Province, China.
| | - Haimei Zhao
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China; Formula-Pattern Research Center of Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Duanyong Liu
- Formula-Pattern Research Center of Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China; School of Nursing, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| |
Collapse
|
230
|
Wang X, Dong F, Liu G, Ye L, Xiao F, Li X, Zhang T, Wang Y. Probiotic properties and the ameliorative effect on DSS-induced colitis of human milk-derived Lactobacillus gasseri SHMB 0001. J Food Sci 2024; 89:3078-3093. [PMID: 38605580 DOI: 10.1111/1750-3841.17057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 04/13/2024]
Abstract
Human milk contains a variety of microorganisms that exert benefit for human health. In the current study, we isolated a novel Lactobacillus gasseri strain named Lactobacillus gasseri (L. gasseri) SHMB 0001 from human milk and aimed to evaluate the probiotic characteristics and protective effects on murine colitis of the strain. The results showed that L. gasseri SHMB 0001 possessed promising potential probiotic characteristics, including good tolerance against artificial gastric and intestinal fluids, adhesion to Caco-2 cells, susceptibility to antibiotic, no hemolytic activity, and without signs of toxicity or infection in mice. Administration of L. gasseri SHMB 0001 (1 × 108 CFU per gram of mouse weight per day) reduced weight loss, the disease activity index, and colon shortening in mice during murine colitis conditions. Histopathological analysis revealed that L. gasseri SHMB 0001 treatment attenuated epithelial damage and inflammatory infiltration in the colon. L. gasseri SHMB 0001 treatment increased the expression of colonic occludin and claudin-1 while decreasing the expression of pro-inflammatory cytokine genes. L. gasseri SHMB 0001 modified the composition and structure of the gut microbiota community and partially recovered the Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways altered by dextran sulfate sodium (DSS). Overall, our results indicated that the human breast milk-derived L. gasseri SHMB 0001 exhibited promising probiotic properties and ameliorative effect on DSS-induced colitis in mice. L. gasseri SHMB 0001 may be applied as a promising probiotic against intestinal inflammation in the future. PRACTICAL APPLICATION: L. gasseri SHMB 0001 isolated from human breast milk showed good tolerance to gastrointestinal environment, safety, and protective effect against DSS-induced mice colitis via enforcing gut barrier, downregulating pro-inflammatory cytokines, and modulating gut microbiota. L. gasseri SHMB 0001 may be a promising probiotic candidate for the treatment of intestinal inflammation.
Collapse
Affiliation(s)
- Xufei Wang
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Gut Microbiota and Metabolic Research Center, Institute of Pediatric Infection, Immunity and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Dong
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Gut Microbiota and Metabolic Research Center, Institute of Pediatric Infection, Immunity and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gaojie Liu
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Gut Microbiota and Metabolic Research Center, Institute of Pediatric Infection, Immunity and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Ye
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Gut Microbiota and Metabolic Research Center, Institute of Pediatric Infection, Immunity and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangfei Xiao
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Gut Microbiota and Metabolic Research Center, Institute of Pediatric Infection, Immunity and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolu Li
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Gut Microbiota and Metabolic Research Center, Institute of Pediatric Infection, Immunity and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Zhang
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Gut Microbiota and Metabolic Research Center, Institute of Pediatric Infection, Immunity and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Donor Human Milk Bank, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yizhong Wang
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Gut Microbiota and Metabolic Research Center, Institute of Pediatric Infection, Immunity and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Donor Human Milk Bank, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
231
|
Caetano-Silva ME, Rund L, Vailati-Riboni M, Matt S, Soto-Diaz K, Beever J, Allen JM, Woods JA, Steelman AJ, Johnson RW. The emergence of inflammatory microglia during gut inflammation is not affected by FFAR2 expression in intestinal epithelial cells or peripheral myeloid cells. Brain Behav Immun 2024; 118:423-436. [PMID: 38467381 DOI: 10.1016/j.bbi.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/14/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024] Open
Abstract
Gut inflammation can trigger neuroinflammation and is linked to mood disorders. Microbiota-derived short-chain fatty acids (SCFAs) can modulate microglia, yet the mechanism remains elusive. Since microglia do not express free-fatty acid receptor (FFAR)2, but intestinal epithelial cells (IEC) and peripheral myeloid cells do, we hypothesized that SCFA-mediated FFAR2 activation within the gut or peripheral myeloid cells may impact microglia inflammation. To test this hypothesis, we developed a tamoxifen-inducible conditional knockout mouse model targeting FFAR2 exclusively on IEC and induced intestinal inflammation with dextran sodium sulfate (DSS), a well-established colitis model. Given FFAR2's high expression in myeloid cells, we also investigated its role by selectively deleting it in these populations of cells. In an initial study, male and female wild-type mice received 0 or 2% DSS for 5d and microglia were isolated 3d later to assess inflammatory status. DSS induced intestinal inflammation and upregulated inflammatory gene expression in microglia, indicating inflammatory signaling via the gut-brain axis. Despite the lack of significant effects of sex in the intestinal phenotype, male mice showed higher microglial inflammatory response than females. Subsequent studies using FFAR2 knockout models revealed that FFAR2 expression in IECs or immune myeloid cells did not affect DSS-induced colonic pathology (i.e. clinical and histological scores and colon length), or colonic expression of inflammatory genes. However, FFAR2 knockout led to an upregulation of several microglial inflammatory genes in control mice and downregulation in DSS-treated mice, suggesting that FFAR2 may constrain neuroinflammatory gene expression under healthy homeostatic conditions but may permit it during intestinal inflammation. No interactions with sex were observed, suggesting sex does not play a role on FFAR2 potential function in gut-brain communication in the context of colitis. To evaluate the role of FFAR2 activated by microbiota-derived SCFAs, we employed the same knockout and DSS models adding fermentable dietary fiber (0 or 2.5% inulin for 8 wks). Despite no genotype or fiber main effects, contrary to our hypothesis, inulin feeding augmented DSS-induced inflammation and signs of colitis, suggesting context-dependent effects of fiber. These findings highlight microglial involvement in colitis-associated neuroinflammation and advance our understanding of FFAR2's role in the gut-brain axis. Although not integral, we observed that the role of FFAR2 differs between homeostatic and inflammatory conditions, underscoring the need to consider different inflammatory conditions and disease contexts when investigating the role of FFAR2 and SCFAs in the gut-brain axis.
Collapse
Affiliation(s)
- Maria Elisa Caetano-Silva
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Laurie Rund
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Mario Vailati-Riboni
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Stephanie Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Katiria Soto-Diaz
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jon Beever
- Institute of Agriculture, University of Tennessee, Knoxville, TN, USA
| | - Jacob M Allen
- Department of Healh and Kinesiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jeffrey A Woods
- Department of Healh and Kinesiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Andrew J Steelman
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rodney W Johnson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
232
|
Tang YF, Xie WY, Wu HY, Guo HX, Wei FH, Ren WZ, Gao W, Yuan B. Huaier Polysaccharide Alleviates Dextran Sulphate Sodium Salt-Induced Colitis by Inhibiting Inflammation and Oxidative Stress, Maintaining the Intestinal Barrier, and Modulating Gut Microbiota. Nutrients 2024; 16:1368. [PMID: 38732614 PMCID: PMC11085394 DOI: 10.3390/nu16091368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
The incidence of ulcerative colitis (UC) is increasing annually, and UC has a serious impact on patients' lives. Polysaccharides have gained attention as potential drug candidates for treating ulcerative colitis (UC) in recent years. Huaier (Trametes robiniophila Murr) is a fungus that has been used clinically for more than 1000 years, and its bioactive polysaccharide components have been reported to possess immunomodulatory effects, antitumour potential, and renoprotective effects. In this study, we aimed to examine the protective effects and mechanisms of Huaier polysaccharide (HP) against UC. Based on the H2O2-induced oxidative stress model in HT-29 cells and the dextran sulphate sodium salt (DSS)-induced UC model, we demonstrated that Huaier polysaccharides significantly alleviated DSS-induced colitis (weight loss, elevated disease activity index (DAI) scores, and colonic shortening). In addition, HP inhibited oxidative stress and inflammation and alleviated DSS-induced intestinal barrier damage. It also significantly promoted the expression of the mucin Muc2. Furthermore, HP reduced the abundance of harmful bacteria Escherichia-Shigella and promoted the abundance of beneficial bacteria Muribaculaceae_unclassified, Anaerotruncus, and Ruminococcaceae_unclassified to regulate the intestinal flora disturbance caused by DSS. Nontargeted metabolomics revealed that HP intervention would modulate metabolism by promoting levels of 3-hydroxybutyric acid, phosphatidylcholine (PC), and phosphatidylethanolamine (PE). These results demonstrated that HP had the ability to mitigate DSS-induced UC by suppressing oxidative stress and inflammation, maintaining the intestinal barrier, and modulating the intestinal flora. These findings will expand our knowledge of how HP functions and offer a theoretical foundation for using HP as a potential prebiotic to prevent UC.
Collapse
Affiliation(s)
- Yi-Fei Tang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Y.-F.T.); (W.-Y.X.); (H.-Y.W.); (H.-X.G.); (F.-H.W.); (W.-Z.R.)
| | - Wen-Yin Xie
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Y.-F.T.); (W.-Y.X.); (H.-Y.W.); (H.-X.G.); (F.-H.W.); (W.-Z.R.)
| | - Hong-Yu Wu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Y.-F.T.); (W.-Y.X.); (H.-Y.W.); (H.-X.G.); (F.-H.W.); (W.-Z.R.)
| | - Hai-Xiang Guo
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Y.-F.T.); (W.-Y.X.); (H.-Y.W.); (H.-X.G.); (F.-H.W.); (W.-Z.R.)
| | - Fan-Hao Wei
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Y.-F.T.); (W.-Y.X.); (H.-Y.W.); (H.-X.G.); (F.-H.W.); (W.-Z.R.)
| | - Wen-Zhi Ren
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Y.-F.T.); (W.-Y.X.); (H.-Y.W.); (H.-X.G.); (F.-H.W.); (W.-Z.R.)
| | - Wei Gao
- Changchun National Experimental Animal Center, Jilin University, Changchun 130062, China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Y.-F.T.); (W.-Y.X.); (H.-Y.W.); (H.-X.G.); (F.-H.W.); (W.-Z.R.)
| |
Collapse
|
233
|
Luiskari L, Lindén J, Lehto M, Salmenkari H, Korpela R. Ketogenic Diet Protects from Experimental Colitis in a Mouse Model Regardless of Dietary Fat Source. Nutrients 2024; 16:1348. [PMID: 38732595 PMCID: PMC11085069 DOI: 10.3390/nu16091348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
While ketogenic diets (KDs) may have potential as adjunct treatments for gastrointestinal diseases, there is little knowledge on how the fat source of these diets impacts intestinal health. The objective of this study was to investigate how the source of dietary fat of KD influences experimental colitis. We fed nine-week-old male C57BL/6J mice (n = 36) with a low-fat control diet or KD high either in saturated fatty acids (SFA-KD) or polyunsaturated linoleic acid (LA-KD) for four weeks and then induced colitis with dextran sodium sulfate (DSS). To compare the diets, we analyzed macroscopic and histological changes in the colon, intestinal permeability to fluorescein isothiocyanate-dextran (FITC-dextran), and the colonic expression of tight junction proteins and inflammatory markers. While the effects were more pronounced with LA-KD, both KDs markedly alleviated DSS-induced histological lesions. LA-KD prevented inflammation-related weight loss and the shortening of the colon, as well as preserved Il1b and Tnf expression at a healthy level. Despite no significant between-group differences in permeability to FITC-dextran, LA-KD mitigated changes in tight junction protein expression. Thus, KDs may have preventive potential against intestinal inflammation, with the level of the effect being dependent on the dietary fat source.
Collapse
Affiliation(s)
- Lotta Luiskari
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Jere Lindén
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland;
- Finnish Centre for Laboratory Animal Pathology, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Markku Lehto
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, 00290 Helsinki, Finland; (M.L.); (H.S.)
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Hanne Salmenkari
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, 00290 Helsinki, Finland; (M.L.); (H.S.)
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Riitta Korpela
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
234
|
Senent Y, Remírez A, Tavira B, Ajona D. A mouse model to assess immunotherapy-related colitis. Methods Cell Biol 2024; 192:33-38. [PMID: 39863392 DOI: 10.1016/bs.mcb.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
Combined blockade of the immune checkpoints PD-1 and CTLA-4 has shown remarkable efficacy in patients with melanoma, renal cell carcinoma, non-small-cell lung cancer and mesothelioma, among other tumor types. However, a proportion of patients suffer from serious immune-related adverse events (irAEs). In severe cases, a reduction of the doses or the complete cessation of the treatment is required, limiting the antitumor efficacy of these treatments. Colitis is among the most frequent and problematic irAE associated with immune checkpoint blockade. In this context, animal models that recapitulate the pathophysiological features of immunotherapy-related colitis are needed. In this manuscript, we describe our experience with a mouse model in which the combined CTLA-4 and PD-1 blockade exacerbates the deleterious effects of dextran sulfate sodium (DSS)-induced colitis. This model may constitute a valuable tool for the study of immunotherapy-related colitis.
Collapse
Affiliation(s)
- Yaiza Senent
- Laboratory of Translational Oncology, Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain; Department of Biochemistry and Genetics, School of Sciences, Universidad de Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain
| | - Ana Remírez
- Laboratory of Translational Oncology, Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Beatriz Tavira
- Laboratory of Translational Oncology, Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Daniel Ajona
- Laboratory of Translational Oncology, Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain; Department of Biochemistry and Genetics, School of Sciences, Universidad de Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
235
|
Zhao H, Zhou Y, Xu J, Zhang Y, Wang H, Zhao C, Huang H, Yang J, Huang C, Li Y, Wang L, Nie Y. Short-chain fatty acid-producing bacterial strains attenuate experimental ulcerative colitis by promoting M2 macrophage polarization via JAK/STAT3/FOXO3 axis inactivation. J Transl Med 2024; 22:369. [PMID: 38637862 PMCID: PMC11025230 DOI: 10.1186/s12967-024-05122-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/20/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Patients with inflammatory bowel disease (IBD), dysbiosis, and immunosuppression who receive fecal microbiota transplantation (FMT) from healthy donors are at an increased risk of developing bacteremia. This study investigates the efficacy of a mixture of seven short-chain fatty acid (SCFA)-producing bacterial strains (7-mix), the resulting culture supernatant mixture (mix-sup), and FMT for treating experimental ulcerative colitis (UC) and evaluates underlying mechanisms. METHODS Utilizing culturomics, we isolated and cultured SCFA-producing bacteria from the stool of healthy donors. We used a mouse model of acute UC induced by dextran sulfate sodium (DSS) to assess the effects of 7-mix, mix-sup, and FMT on intestinal inflammation and barrier function, microbial abundance and diversity, and gut macrophage polarization by flow cytometry, immunohistochemistry, 16S rRNA gene sequencing, and transwell assays. RESULTS The abundance of several SCFA-producing bacterial taxa decreased in patients with UC. Seven-mix and mix-sup suppressed the inflammatory response and enhanced intestinal mucosal barrier function in the mouse model of UC to an extent similar to or superior to that of FMT. Moreover, 7-mix and mix-sup increased the abundance of SCFA-producing bacteria and SCFA concentrations in colitic mice. The effects of these interventions on the inflammatory response and gut barrier function were mediated by JAK/STAT3/FOXO3 axis inactivation in macrophages by inducing M2 macrophage polarization in vivo and in vitro. CONCLUSIONS Our approach provides new opportunities to rationally harness live gut probiotic strains and metabolites to reduce intestinal inflammation, restore gut microbial composition, and expedite the development of safe and effective treatments for IBD.
Collapse
Affiliation(s)
- Hailan Zhao
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
- The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Youlian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Yong Zhang
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Hong Wang
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Chong Zhao
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Hongli Huang
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Jing Yang
- Department of Pathology, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Chen Huang
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Yingfei Li
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Lisheng Wang
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China.
| | - Yuqiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
236
|
Wen C, Chen D, Zhong R, Peng X. Animal models of inflammatory bowel disease: category and evaluation indexes. Gastroenterol Rep (Oxf) 2024; 12:goae021. [PMID: 38634007 PMCID: PMC11021814 DOI: 10.1093/gastro/goae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/12/2024] [Accepted: 02/29/2024] [Indexed: 04/19/2024] Open
Abstract
Inflammatory bowel disease (IBD) research often relies on animal models to study the etiology, pathophysiology, and management of IBD. Among these models, rats and mice are frequently employed due to their practicality and genetic manipulability. However, for studies aiming to closely mimic human pathology, non-human primates such as monkeys and dogs offer valuable physiological parallels. Guinea pigs, while less commonly used, present unique advantages for investigating the intricate interplay between neurological and immunological factors in IBD. Additionally, New Zealand rabbits excel in endoscopic biopsy techniques, providing insights into mucosal inflammation and healing processes. Pigs, with their physiological similarities to humans, serve as ideal models for exploring the complex relationships between nutrition, metabolism, and immunity in IBD. Beyond mammals, non-mammalian organisms including zebrafish, Drosophila melanogaster, and nematodes offer specialized insights into specific aspects of IBD pathology, highlighting the diverse array of model systems available for advancing our understanding of this multifaceted disease. In this review, we conduct a thorough analysis of various animal models employed in IBD research, detailing their applications and essential experimental parameters. These include clinical observation, Disease Activity Index score, pathological assessment, intestinal barrier integrity, fibrosis, inflammatory markers, intestinal microbiome, and other critical parameters that are crucial for evaluating modeling success and drug efficacy in experimental mammalian studies. Overall, this review will serve as a valuable resource for researchers in the field of IBD, offering insights into the diverse array of animal models available and their respective applications in studying IBD.
Collapse
Affiliation(s)
- Changlin Wen
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P. R. China
| | - Dan Chen
- Acupuncture and Moxibustion School of Teaching, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, P. R. China
| | - Rao Zhong
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P. R. China
| | - Xi Peng
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
237
|
Abrehame S, Hung MY, Chen YY, Liu YT, Chen YT, Liu FC, Lin YC, Chen YP. Selection of Fermentation Supernatant from Probiotic Strains Exhibiting Intestinal Epithelial Barrier Protective Ability and Evaluation of Their Effects on Colitis Mouse and Weaned Piglet Models. Nutrients 2024; 16:1138. [PMID: 38674829 PMCID: PMC11053620 DOI: 10.3390/nu16081138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The intestinal epithelial barrier can prevent the invasion of pathogenic microorganisms and food antigens to maintain a consistent intestinal homeostasis. However, an imbalance in this barrier can result in various diseases, such as inflammatory bowel disease, malnutrition, and metabolic disease. Thus, the aim of this study was to select probiotic strains with epithelial barrier-enhancing ability in cell-based model and further investigate them for their improving effects on colitis mouse and weaned piglet models. The results showed that selected specific cell-free fermentation supernatants (CFSs) from Ligilactobacillus salivarius P1, Lactobacillus gasseri P12, and Limosilactobacillus reuteri G7 promoted intestinal epithelial cell growth and proliferation, strengthening the intestinal barrier in an intestinal epithelial cell line Caco-2 model. Further, the administration of CFSs of L. salivarius P1, L. gasseri P12, and L. reuteri G7 were found to ameliorate DSS-induced colitis in mice. Additionally, spray-dried powders of CFS from the three strains were examined in a weaned piglet model, only CFS powder of L. reuteri G7 could ameliorate the feed/gain ratio and serum levels of D-lactate and endotoxin. In conclusion, a new potential probiotic strain, L. reuteri G7, was selected and showed ameliorating effects in both colitis mouse and weaned piglet models.
Collapse
Affiliation(s)
- Solomon Abrehame
- Department of Animal Science, National Chung Hsing University, 145 Xingda Road, South District, Taichung City 402, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, 145 Xingda Road, South District, Taichung City 402, Taiwan
- Ethiopian Agricultural Authority, Ministry of Agriculture of Ethiopia (MoA), P.O. Box 62347, Addis Ababa 1000, Ethiopia
| | - Man-Yun Hung
- Department of Animal Science, National Chung Hsing University, 145 Xingda Road, South District, Taichung City 402, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, 145 Xingda Road, South District, Taichung City 402, Taiwan
| | - Yu-Yi Chen
- Department of Animal Science, National Chung Hsing University, 145 Xingda Road, South District, Taichung City 402, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, 145 Xingda Road, South District, Taichung City 402, Taiwan
| | - Yu-Tse Liu
- Department of Animal Science, National Chung Hsing University, 145 Xingda Road, South District, Taichung City 402, Taiwan
| | - Yung-Tsung Chen
- Department of Food Science, National Taiwan Ocean University, 2 Beining Road, Zhongzheng District, Keelung City 202, Taiwan
| | - Fang-Chueh Liu
- Animal Nutrition Division, Taiwan Livestock Research Institute, Ministry of Agriculture, 112 Farm Road, HsinHua District, Tainan City 712, Taiwan
| | - Yu-Chun Lin
- Animal Nutrition Division, Taiwan Livestock Research Institute, Ministry of Agriculture, 112 Farm Road, HsinHua District, Tainan City 712, Taiwan
- Fisheries Research Institute, Ministry of Agriculture, 199 Hou-Ih Road, Keelung City 202, Taiwan
| | - Yen-Po Chen
- Department of Animal Science, National Chung Hsing University, 145 Xingda Road, South District, Taichung City 402, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, 145 Xingda Road, South District, Taichung City 402, Taiwan
| |
Collapse
|
238
|
Peixoto C, Joncour A, Temal-Laib T, Tirera A, Dos Santos A, Jary H, Bucher D, Laenen W, Pereira Fernandes A, Lavazais S, Delachaume C, Merciris D, Saccomani C, Drennan M, López-Ramos M, Wakselman E, Dupont S, Borgonovi M, Roca Magadan C, Monjardet A, Brys R, De Vos S, Andrews M, Jimenez JM, Amantini D, Desroy N. Discovery of Clinical Candidate GLPG3970: A Potent and Selective Dual SIK2/SIK3 Inhibitor for the Treatment of Autoimmune and Inflammatory Diseases. J Med Chem 2024; 67:5233-5258. [PMID: 38552030 PMCID: PMC11017251 DOI: 10.1021/acs.jmedchem.3c02246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024]
Abstract
The salt-inducible kinases (SIKs) SIK1, SIK2, and SIK3 belong to the adenosine monophosphate-activated protein kinase (AMPK) family of serine/threonine kinases. SIK inhibition represents a new therapeutic approach modulating pro-inflammatory and immunoregulatory pathways that holds potential for the treatment of inflammatory diseases. Here, we describe the identification of GLPG3970 (32), a first-in-class dual SIK2/SIK3 inhibitor with selectivity against SIK1 (IC50 of 282.8 nM on SIK1, 7.8 nM on SIK2 and 3.8 nM on SIK3). We outline efforts made to increase selectivity against SIK1 and improve CYP time-dependent inhibition properties through the structure-activity relationship. The dual activity of 32 in modulating the pro-inflammatory cytokine TNFα and the immunoregulatory cytokine IL-10 is demonstrated in vitro in human primary myeloid cells and human whole blood, and in vivo in mice stimulated with lipopolysaccharide. Compound 32 shows dose-dependent activity in disease-relevant mouse pharmacological models.
Collapse
|
239
|
Li Y, Xu T, Zhao Y, Zhang H, Liu Z, Wang H, Huang C, Shu Z, Gao L, Xie R, Jiao T, Zhang D, Zhang D, Liang X, Zang Y, Sun Y, Liu H, Li J, Zhou Y. Discovery and Optimization of Novel Nonbile Acid FXR Agonists as Preclinical Candidates for the Treatment of Inflammatory Bowel Disease. J Med Chem 2024; 67:5642-5661. [PMID: 38547240 DOI: 10.1021/acs.jmedchem.3c02304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Inflammatory bowel disease (IBD) is a multifactorial chronic inflammation of the intestine and has become a global public health concern. A farnesoid X receptor (FXR) was recently reported to play a key role in hepatic-intestinal circulation, intestinal metabolism, immunity, and microbial regulation, and thus, it becomes a promising therapeutic target for IBD. In this study, we identified a series of nonbile acid FXR agonists, in which 33 novel compounds were designed and synthesized by the structure-based drug design strategy from our previously identified hit compound. Compound 33 exhibited a potent FXR agonistic activity, high intestinal distribution, good anti-inflammatory activity, and the ability to repair the colon epithelium in a DSS-induced acute enteritis model. Based on the results of RNA-seq analysis, we further investigated the therapeutic potential of the combination of compound 33 with 5-ASA. Overall, the results indicated that compound 33 is a promising drug candidate for IBD treatment.
Collapse
Affiliation(s)
- Yuan Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Tingting Xu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yue Zhao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hui Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zesheng Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hao Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chaoying Huang
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Zhihao Shu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lixin Gao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Rongrong Xie
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Tingying Jiao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Dan Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Dong Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xuewu Liang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yi Zang
- Lingang laboratory, Shanghai, 201203, China
| | - Yili Sun
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Hong Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Jia Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Yu Zhou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
240
|
Zheng J, Ahmad AA, Yang C, Liang Z, Shen W, Liu J, Yan Z, Han J, Yang Y, Dong P, Lan X, Salekdeh GH, Ding X. Orally Administered Lactobacillus rhamnosus CY12 Alleviates DSS-Induced Colitis in Mice by Restoring the Intestinal Barrier and Inhibiting the TLR4-MyD88-NF-κB Pathway via Intestinal Microbiota Modulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38598717 DOI: 10.1021/acs.jafc.3c07279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Oral ingestion of probiotics is a promising approach to relieving inflammatory disease through regulating the gut microbiota. A newly discovered strain, Lactobacillus rhamnosus CY12 (LCY12), obtained from cattle-yak milk, displayed numerous probiotic properties. These included enhanced viability in low pH and bile environments, adhesion capabilities, and potent antimicrobial effects. The research aimed to explore the beneficial impacts of the novel LCY12 strain on colitis in mice induced by dextran sulfate sodium (DSS) and to elucidate the underlying molecular mechanisms. The results of the study showed that administration of LCY12 effectively helped to reduce the negative effects of DSS-induced body weight loss, disease activity index score, colon length shortening, loss of goblet cells, and overall histopathological scores in the intestines. Simultaneously, LCY12 administration significantly alleviated intestinal inflammation and safeguarded intestinal barrier integrity by enhancing IL-10 levels, while dampening IL-6, IL-1β, and TNF-α production. Additionally, LCY12 boosted the presence of tight junction proteins. Furthermore, LCY12 hindered the TLR4/MyD88/NF-κB signaling pathway by downregulating TLR4 and MyD88 expression, inactivating phosphorylated IκBα, and preventing translocation of NF-κB p65 from the cytoplasm to the nucleus. The LCY12 also increased specific intestinal microbial communities and short-chain fatty acid (SCFA) production. Altogether, LCY12 oral administration alleviated colitis induced with DSS in mice by improving intestinal barrier function and regulating inflammatory cytokines, SCFA production, and intestinal microbiota.
Collapse
Affiliation(s)
- Juanshan Zheng
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs & Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Laboratory of Animal Genome and Gene Function, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Anum Ali Ahmad
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs & Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH8 9YL, U.K
| | - Chen Yang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs & Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Zeyi Liang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs & Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Wenxiang Shen
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Jing Liu
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs & Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Zuoting Yan
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Jianlin Han
- Livestock Genetics Program, International Livestock Research Institute (ILRI), 00100 Nairobi, Kenya
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Yayuan Yang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Pengcheng Dong
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xianyong Lan
- Laboratory of Animal Genome and Gene Function, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | - Xuezhi Ding
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs & Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| |
Collapse
|
241
|
Ren X, Liu Q, Zhou P, Zhou T, Wang D, Mei Q, Flavell RA, Liu Z, Li M, Pan W, Zhu S. DHX9 maintains epithelial homeostasis by restraining R-loop-mediated genomic instability in intestinal stem cells. Nat Commun 2024; 15:3080. [PMID: 38594251 PMCID: PMC11004185 DOI: 10.1038/s41467-024-47235-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
Epithelial barrier dysfunction and crypt destruction are hallmarks of inflammatory bowel disease (IBD). Intestinal stem cells (ISCs) residing in the crypts play a crucial role in the continuous self-renewal and rapid recovery of intestinal epithelial cells (IECs). However, how ISCs are dysregulated in IBD remains poorly understood. Here, we observe reduced DHX9 protein levels in IBD patients, and mice with conditional DHX9 depletion in the intestinal epithelium (Dhx9ΔIEC) exhibit an increased susceptibility to experimental colitis. Notably, Dhx9ΔIEC mice display a significant reduction in the numbers of ISCs and Paneth cells. Further investigation using ISC-specific or Paneth cell-specific Dhx9-deficient mice demonstrates the involvement of ISC-expressed DHX9 in maintaining epithelial homeostasis. Mechanistically, DHX9 deficiency leads to abnormal R-loop accumulation, resulting in genomic instability and the cGAS-STING-mediated inflammatory response, which together impair ISC function and contribute to the pathogenesis of IBD. Collectively, our findings highlight R-loop-mediated genomic instability in ISCs as a risk factor in IBD.
Collapse
Affiliation(s)
- Xingxing Ren
- Hefei National Research Center for Physical Sciences at the Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, China
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Gastroenterology, Third Affiliated Hospital of Guangzhou Medical University, 510145, Guangzhou, China
| | - Qiuyuan Liu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Peirong Zhou
- Department of Gastroenterology, Third Affiliated Hospital of Guangzhou Medical University, 510145, Guangzhou, China
| | - Tingyue Zhou
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Decai Wang
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qiao Mei
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Zhanju Liu
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Mingsong Li
- Department of Gastroenterology, Third Affiliated Hospital of Guangzhou Medical University, 510145, Guangzhou, China.
| | - Wen Pan
- Hefei National Research Center for Physical Sciences at the Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, China.
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Shu Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, China.
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- School of Data Science, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
242
|
Li H, Pu X, Lin Y, Yu X, Li J, Bo L, Wang H, Xu Y, Li X, Zheng D. Sijunzi decoction alleviates inflammation and intestinal epithelial barrier damage and modulates the gut microbiota in ulcerative colitis mice. Front Pharmacol 2024; 15:1360972. [PMID: 38650625 PMCID: PMC11033371 DOI: 10.3389/fphar.2024.1360972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Ethnopharmacological relevance As a representative classical prescription, Sijunzi decoction has powerful therapeutic effects on spleen-stomach qi insufficiency. Ulcerative colitis (UC) is a chronic, diffuse, and non-specifically inflammatory disorder, the etiology of which still remains unclear. In the traditional Chinese medicine (TCM) perspective, splenic asthenia is the primary cause of UC. Based on this, Sijunzi decoction has been extensively used in TCM clinical practice to alleviate UC in recent years. However, the pharmacological mechanism of Sijunzi decoction in modern medicine is still not completely clear, which limits its clinical application. Aim of the study The purpose of this study was to investigate the Sijunzi decoction's curative effect on acute UC mice and probe into its potential pharmacological mechanism. Materials and methods The UC mouse model was set up by freely ingesting a 3% dextran sulfate sodium (DSS) solution. The relieving role of Sijunzi decoction on UC in mice was analyzed by evaluating the changes in clinical parameters, colon morphology, histopathology, inflammatory factor content, intestinal epithelial barrier protein expression level, and gut microbiota balance state. Finally, multivariate statistical analysis was conducted to elucidate the relationship between inflammatory factors, intestinal epithelial barrier proteins, and gut microbiota. Results First, the research findings revealed that Sijunzi decoction could visibly ease the clinical manifestation of UC, lower the DAI score, and attenuate colonic damage. Moreover, Sijunzi decoction could also significantly inhibit IL-6, IL-1β, and TNF-α while increasing occludin and ZO-1 expression levels. Subsequently, further studies showed that Sijunzi decoction could remodel gut microbiota homeostasis. Sijunzi decoction was beneficial in regulating the levels of Alistipes, Akkermansia, Lachnospiraceae_NK4A136_group, and other bacteria. Finally, multivariate statistical analysis demonstrated that key gut microbes were closely associated with inflammatory factors and intestinal epithelial barrier proteins. Conclusion Sijunzi decoction can significantly prevent and treat UC. Its mechanism is strongly associated with the improvement of inflammation and intestinal epithelial barrier damage by regulating the gut microbiota.
Collapse
Affiliation(s)
- Hailun Li
- Department of Nephrology, Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, China
| | - Xing Pu
- Department of Nephrology, Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, China
| | - Yongtao Lin
- School of Nursing and Midwifery, Jiangsu College of Nursing, Huai’an, Jiangsu, China
| | - Xinxin Yu
- Department of Nephrology, Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, China
| | - Jing Li
- Department of Nephrology, Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, China
| | - Lin Bo
- Department of Nephrology, Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, China
| | - Hongwu Wang
- Department of Nephrology, Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, China
| | - Yong Xu
- Department of Nephrology, Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, China
| | - Xiang Li
- Department of Nephrology, Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, China
| | - Donghui Zheng
- Department of Nephrology, Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, China
| |
Collapse
|
243
|
Li H, Li H, Stanton C, Ross RP, Zhao J, Chen W, Yang B. Exopolysaccharides Produced by Bifidobacterium longum subsp. longum YS108R Ameliorates DSS-Induced Ulcerative Colitis in Mice by Improving the Gut Barrier and Regulating the Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7055-7073. [PMID: 38520351 DOI: 10.1021/acs.jafc.3c06421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Ulcerative colitis (UC) is a major disease that has endangered human health. Our previous study demonstrated that Bifidobacterium longum subsp. longum YS108R, a ropy exopolysaccharide (EPS)-producing bacterium, could alleviate UC in mice, but it is unclear whether EPS is the key substance responsible for its action. In this study, we proposed to investigate the remitting effect of EPS from B. longum subsp. longum YS108R on UC in a DSS-induced UC mouse model. Water extraction and alcohol precipitation were applied to extract EPS from the supernatant of B. longum subsp. longum YS108R culture. Then the animal trial was performed, and the results indicated that YS108R EPS ameliorated colonic pathological damage and the intestinal barrier. YS108R EPS suppressed inflammation via NF-κB signaling pathway inhibition and attenuated oxidative stress via the Nrf2 signaling pathway activation. Remarkably, YS108R EPS regulated gut microbiota, as evidenced by an increase in short-chain fatty acid (SCFA)-producing bacteria and a decline in Gram-negative bacteria, resulting in an increase of propionate and butyrate and a reduction of lipopolysaccharide (LPS). Collectively, YS108R EPS manipulated the intestinal microbiota and its metabolites, which further improved the intestinal barrier and inhibited inflammation and oxidative stress, thereby alleviating UC.
Collapse
Affiliation(s)
- Huizhen Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Haitao Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Catherine Stanton
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu 214122, China
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland
| | - R Paul Ross
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu 214122, China
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Bo Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
244
|
Liu C, Qi X, Liu X, Sun Y, Mao K, Shen G, Ma Y, Li Q. Anti-inflammatory probiotics HF05 and HF06 synergistically alleviate ulcerative colitis and secondary liver injury. Food Funct 2024; 15:3765-3777. [PMID: 38506656 DOI: 10.1039/d3fo04419j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Given the limited efficacy and adverse effects associated with conventional drugs, probiotics are emerging as a promising therapeutic strategy for mitigating the chronic nature of ulcerative colitis (UC) and its consequential secondary liver injury (SLI). Limosilactobacillus fermentum HF06 and Lactiplatibacillus plantarum HF05 are strains we screened with excellent anti-inflammatory and probiotic properties in vitro. In this study, the intervention of HF06 and HF05 in combination (MIXL) was found to be more effective in alleviating intestinal inflammation and secondary liver injury in UC mice compared to supplementing with the two strains individually. Results demonstrated that MIXL effectively attenuated colon shortening and weight loss, downregulated the expression of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 mRNA in the intestines, mitigated SLI, and augmented the enzymatic activities of SOD, CAT, and GSH-Px in the liver. MIXL enhances the intestinal barrier in UC mice, regulates the structure and composition of the gut microbiota, promotes the abundance of Lactobacillus, and suppresses the abundance of bacteria associated with inflammation and liver injury, including Clostridium_Sensu_Stricto_1, Escherichia, Shigella, Enterococcus, Corynebacterium, Desulfovibrio, and norank_f__Oscillospiraceae. This study demonstrated the synergistic effect of HF06 and HF05, providing a reliable foundation for the alleviation of UC.
Collapse
Affiliation(s)
| | - Xiaofen Qi
- Harbin Institute of Technology, Harbin, China.
| | - Xiaolin Liu
- Harbin Institute of Technology, Harbin, China.
| | - Yue Sun
- Harbin Institute of Technology, Harbin, China.
| | - Kaidong Mao
- Jiangsu HOWYOU Biotechnology Co., Ltd, Qidong, China
| | - Guiqi Shen
- Jiangsu HOWYOU Biotechnology Co., Ltd, Qidong, China
| | - Ying Ma
- Harbin Institute of Technology, Harbin, China.
| | - Qingming Li
- New Hope Dairy Company Limited, China.
- Sichuan Engineering Laboratory for High-quality Dairy Product Preparation and Quality Control Technology, China
| |
Collapse
|
245
|
Zeng J, Lu QQ, Du XL, Yuan L, Yang XJ. Toll-like receptor 3 signaling drives enteric glial cells against dextran sulfate sodium-induced colitis in mice. J Mol Histol 2024; 55:201-210. [PMID: 38376631 DOI: 10.1007/s10735-024-10184-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/11/2024] [Indexed: 02/21/2024]
Abstract
The activation of toll-like receptor 3 (TLR3) has been reported to attenuate astrocytes injury in central nervous system, but its effect on enteric glial cells (EGCs) remains unknown. Here, we confirmed that the residence of EGCs was regulated by TLR3 agonist (polyinosinic-polycytidylic acid, PIC) or TLR3/dsRNA complex inhibitor in dextran sulfate sodium (DSS)-induced mice. In vitro, TLR3 signaling prevented apoptosis in EGCs and drove the secretion of EGCs-derived glial cell line-derived neurotrophic factor, 15-hydroxyeicosatetraenoic acid and S-nitrosoglutathione. PIC preconditioning enhanced the protective effects of EGCs against the dysfunction of intestinal epithelial barrier and the development of colitis in DSS-induced mice. Interestingly, PIC stimulation also promoted the effects of EGCs on converting macrophages to an M2-like phenotype and regulating the levels of inflammatory cytokines, including IL-1β, TNF-α and IL-10, in DSS-induced mice. These findings imply that TLR3 signaling in EGCs may provide a potential target for the prevention and treatment of colitis.
Collapse
Affiliation(s)
- Jian Zeng
- Department of Gastroenterology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China.
| | - Qiong-Qiong Lu
- Department of Gastroenterology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Xiao-Long Du
- Department of Gastroenterology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Ling Yuan
- Department of Gastroenterology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Xiao-Jun Yang
- Department of Gastroenterology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| |
Collapse
|
246
|
Fu Q, Ma X, Li S, Shi M, Song T, Cui J. New insights into the interactions between the gut microbiota and the inflammatory response to ulcerative colitis in a mouse model of dextran sodium sulfate and possible mechanisms of action for treatment with PE&AFWE. Animal Model Exp Med 2024; 7:83-97. [PMID: 38664929 PMCID: PMC11079155 DOI: 10.1002/ame2.12405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/07/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD), comprising Crohn's disease (CD) and ulcerative colitis (UC), is a heterogeneous state of chronic intestinal inflammation. Intestinal innate immunity, including innate immune cells, defends against pathogens and excessive entry of gut microbiota, while preserving immune tolerance to resident intestinal microbiota, and may be characterized by its capacity to produce a rapid and nonspecific reaction. The association between microbiota dysbiosis and the pathogenesis of IBD is complex and dynamic. When the intestinal ecosystem is in dysbiosis, the reduced abundance and diversity of intestinal gut microbiota make the host more vulnerable to the attack of exogenous and endogenous pathogenic gut microbiota. The aim of our study was to comprehensively assess the relationship between microbial populations within UC, the signaling pathways of pathogenic gut microbe therein and the inflammatory response, as well as to understand the effects of using PE&AFWE (poppy extract [Papaver nudicaule L.] and Artemisia frigida Willd. extract) on UC modulation. METHODS A UC mouse model was established by inducing SPF-grade C57BL/6 mice using dextrose sodium sulfate (DSS). Based on metagenomic sequencing to characterize the gut microbiome, the relationship between gut microbiota dysbiosis and gut microbiota was further studied using random forest and Bayesian network analysis methods, as well as histopathological analysis. RESULTS (1) We found that the 5 gut microbiota with the highest relative abundance of inflammatory bowel disease UC model gut microbiota were consistent with the top 5 ranked natural bacteria. There were three types of abundance changes in the model groups: increases (Chlamydiae/Proteobacteria and Deferribacteres), decreases (Firmicutes), and no significant changes (Bacteroidetes). The UC model group was significantly different from the control group, with 1308 differentially expressed species with abundance changes greater than or equal to 2-fold. (2) The proportion of the fecal flora in the UC group decreased by 37.5% in the Firmicutes and increased by 14.29% in the proportion of Proteobacteria compared to the control group before treatment. (3) The significantly enriched and increased signaling pathways screened were the 'arachidonic acid metabolic pathway' and the 'phagosomal pathway', which both showed a decreasing trend after drug administration. (4) Based on the causal relationship between different OTUs and the UC model/PE&AFWE administration, screening for directly relevant OTU networks, the UC group was found to directly affect OTU69, followed by a cascade of effects on OTU12, OTU121, OTU93, and OTU7, which may be the pathway of action that initiated the pathological changes in normal mice. (5) We identified a causal relationship between common differentially expressed OTUs and PE&AFWE and UC in the pre- and post-PE&AFWE-treated groups. Thereby, we learned that PE&AFWE can directly affect OTU90, after which it inhibits UC, inhibiting the activity of arachidonic acid metabolic pathway by affecting OTU118, which in turn inhibits the colonization of gut microbiota by OTU93 and OTU7. (6) Histopathological observation and scoring (HS) of the colon showed that there was a significant difference between the model group and the control group (p < 0.001), and that there was a significant recovery in both the sulfasalazine (SASP)and the PE&AFWE groups after the administration of the drug (p < 0.0001). CONCLUSION We demonstrated causal effects and inflammatory metabolic pathways in gut microbiota dysbiosis and IBD, with five opportunistic pathogens directly contributing to IBD. PE&AFWE reduced the abundance of proteobacteria in the gut microbiota, and histopathology showed significant improvement.
Collapse
Affiliation(s)
- Qianhui Fu
- Key Laboratory of Ethnomedicine of Ministry of Education, School of PharmacyMinzu University of ChinaBeijingChina
| | - Xiaoqin Ma
- Key Laboratory of Ethnomedicine of Ministry of Education, School of PharmacyMinzu University of ChinaBeijingChina
| | - Shuchun Li
- Key Laboratory of Ethnomedicine of Ministry of Education, School of PharmacyMinzu University of ChinaBeijingChina
| | - Mengni Shi
- Key Laboratory of Ethnomedicine of Ministry of Education, School of PharmacyMinzu University of ChinaBeijingChina
| | - Tianyuan Song
- Key Laboratory of Ethnomedicine of Ministry of Education, School of PharmacyMinzu University of ChinaBeijingChina
| | - Jian Cui
- Key Laboratory of Ethnomedicine of Ministry of Education, School of PharmacyMinzu University of ChinaBeijingChina
| |
Collapse
|
247
|
Wang W, Li K, Bai D, Wu J, Xiao W. Pterostilbene: a potential therapeutic agent for fibrotic diseases. Inflammopharmacology 2024; 32:975-989. [PMID: 38429613 DOI: 10.1007/s10787-024-01440-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/19/2024] [Indexed: 03/03/2024]
Abstract
Fibrosis is a prevailing pathology in chronic diseases and accounts for 45% of deaths in developed countries. This condition is primarily identified by the transformation of fibroblasts into myofibroblasts and the overproduction of extracellular matrix (ECM) by myofibroblasts. Pterostilbene (PTS) is a natural analogue of resveratrol and is most commonly found in blueberries. Research has shown that PTS exerts a wide range of pharmacological effects, such as antioxidant, anti-inflammatory, and anticancer effects. As a result, PTS has the potential to prevent and cure numerous diseases. Emerging evidence has indicated that PTS can alleviate myocardial fibrosis, renal fibrosis, pulmonary fibrosis, hepatic fibrosis, and colon fibrosis via the inhibition of inflammation, oxidative stress, and fibrogenesis effects in vivo and in vitro, and the potential mechanisms are linked to various pathways, including transforming growth factor-β1 (TGF-β1)/small mother against decapentaplegic proteins (Smads) signalling, the reactive oxygen species (ROS)-driven Pitx2c/mir-15b pathway, nuclear factor kappa B (NF-κB) signalling, Kelch-like epichlorohydrin-associated protein-1 (Keap-1)/NF-E2-related factor-2 (Nrf2) cascade, the NLR family pyridine structure domain 3 (NLRP3) pathway, the Janus kinase-2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway, and the Src/STAT3 pathway. In this review, we comprehensively summarize the antifibrotic effects of PTS both in vivo and in vitro and the pharmacological mechanisms, pharmacokinetics, and toxicology of PTS and provide insights into and strategies for exploring promising agents for the treatment of fibrosis.
Collapse
Affiliation(s)
- Wenhong Wang
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Yangpu District, 650 Qingyuan Ring Road, Shanghai, 200438, China
| | - Ke Li
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Yangpu District, 650 Qingyuan Ring Road, Shanghai, 200438, China
| | - Dandan Bai
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Yangpu District, 650 Qingyuan Ring Road, Shanghai, 200438, China
| | - Jiabin Wu
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Yangpu District, 650 Qingyuan Ring Road, Shanghai, 200438, China
| | - Weihua Xiao
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China.
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Yangpu District, 650 Qingyuan Ring Road, Shanghai, 200438, China.
| |
Collapse
|
248
|
Lan L, Huang C, Liu D, Cheng Y, Tang R, Gu J, Geng L, Cheng Y, Gong S. WNT2B activates macrophages via NF-κB signaling pathway in inflammatory bowel disease. FASEB J 2024; 38:e23551. [PMID: 38489235 DOI: 10.1096/fj.202302213r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/31/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024]
Abstract
Inflammation is a significant pathological manifestation of inflammatory bowel disease (IBD), yet its mechanism has remained unclear. Although WNT2B is enriched in the intestinal inflammatory tissue of IBD patients, the specific mechanism of WNT2B in the formation of intestinal inflammation remains unclear. This study was aimed to investigate whether macrophages expressing WNT2B can aggravate intestinal tissue inflammation. Samples were collected from both normal individuals and patients with IBD at multiple colon sites. Macrophages were identified using tissue immunofluorescence. IκB kinase (IKK)-interacting protein (IKIP), which interacts with WNT2B, was found by protein cross-linking and protein mass spectrometry. The expression of WNT2B, IKIP, the NF-κB pathway, and downstream molecules were analyzed. An acute colitis model of C57BL/6J mice was established using an adeno-associated virus (AAV)-mediated WNT2B knockdown system and 3% dextran sulfate sodium (DSS). The degree of intestinal inflammation in mice was assessed upon WNT2B knockdown in macrophages. Macrophages expressing WNT2B were found to be enriched in the colitis tissues of IBD patients. WNT2B in macrophages activated the NF-κB pathway and enhanced the expression of downstream inflammatory cytokines. By competitively binding IKIP, WNT2B reduced the binding of IKIP to IKKβ and promoted the activation of the NF-κB pathway. Using an AAV-mediated WNT2B knockdown system, WNT2B expression in intestinal macrophages was suppressed, leading to a reduction in intestinal inflammation. WNT2B activated the NF-κB pathway and enhanced the expression of downstream inflammatory cytokines by competitively binding to IKIP, potentially contributing to colon inflammatory injury in IBD.
Collapse
Affiliation(s)
- Lin Lan
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Digestive Diseases, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China
| | - Chuxiang Huang
- Department of Digestive Diseases, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China
| | - Danqiong Liu
- Department of Digestive Diseases, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China
| | - Yanling Cheng
- Department of Pediatrics, Shantou Central Hospital, Shantou, China
| | - Rui Tang
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China
| | - Jianbiao Gu
- Department of Digestive Diseases, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China
| | - Lanlan Geng
- Department of Digestive Diseases, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China
| | - Yang Cheng
- Department of Digestive Diseases, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China
| | - Sitang Gong
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Digestive Diseases, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
249
|
Jin J, Ye X, Huang Z, Jiang S, Lin D. Curcumin@Fe/Tannic Acid Complex Nanoparticles for Inflammatory Bowel Disease Treatment. ACS OMEGA 2024; 9:14316-14322. [PMID: 38559927 PMCID: PMC10976392 DOI: 10.1021/acsomega.3c10214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/25/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024]
Abstract
Inflammatory bowel disease (IBD) is a serious public health issue because of its chronic and incurable nature. Common IBD drugs have limited efficacy and produce adverse effects, leading to an urgent need to develop new drugs and drug delivery systems. Curcumin (Cur) is a natural and nontoxic drug that is increasingly used in the treatment of IBD owing to its anti-inflammatory and antioxidant effects. Metal-polyphenol networks constructed from metal ions and polyphenols exhibit biological functionality while acting as an adhesive nanomaterial to encapsulate nano-Cur, thereby improving its solubility and drug release behavior. In this study, we prepared a Cur@Fe&TA nanodrug delivery system by constructing an Fe3+/tannic acid (TA) metal-polyphenol network with encapsulated Cur. The Cur@Fe&TA nanodrug exhibited good stability, drug release behavior, and biocompatibility. Based on the anti-inflammatory and antioxidant effects of Cur@Fe&TA, the gastrointestinal cytopathology in an IBD mouse model was effectively improved. The proposed Cur@Fe&TA nanomedicine delivery system has promising application and research value for the treatment of IBD by regulating levels of antioxidants and inflammatory cytokines.
Collapse
Affiliation(s)
- Jiman Jin
- The Third Affiliated Hospital
of Wenzhou Medical University, Wenzhou 325200, China
| | - Xiuzhi Ye
- The Third Affiliated Hospital
of Wenzhou Medical University, Wenzhou 325200, China
| | - Zhenfeng Huang
- The Third Affiliated Hospital
of Wenzhou Medical University, Wenzhou 325200, China
| | - Shicui Jiang
- The Third Affiliated Hospital
of Wenzhou Medical University, Wenzhou 325200, China
| | - Dini Lin
- The Third Affiliated Hospital
of Wenzhou Medical University, Wenzhou 325200, China
| |
Collapse
|
250
|
Xu J, Xu H, Guo X, Zhao H, Wang J, Li J, He J, Huang H, Huang C, Zhao C, Li Y, Zhou Y, Peng Y, Nie Y. Pretreatment with an antibiotics cocktail enhances the protective effect of probiotics by regulating SCFA metabolism and Th1/Th2/Th17 cell immune responses. BMC Microbiol 2024; 24:91. [PMID: 38500062 PMCID: PMC10946100 DOI: 10.1186/s12866-024-03251-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/07/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Probiotics are a potentially effective therapy for inflammatory bowel disease (IBD); IBD is linked to impaired gut microbiota and intestinal immunity. However, the utilization of an antibiotic cocktail (Abx) prior to the probiotic intervention remains controversial. This study aims to identify the effect of Abx pretreatment from dextran sulfate sodium (DSS)-induced colitis and to evaluate whether Abx pretreatment has an enhanced effect on the protection of Clostridium butyricum Miyairi588 (CBM) from colitis. RESULTS The inflammation, dysbiosis, and dysfunction of gut microbiota as well as T cell response were both enhanced by Abx pretreatment. Additionally, CBM significantly alleviated the DSS-induced colitis and impaired gut epithelial barrier, and Abx pretreatment could enhance these protective effects. Furthermore, CBM increased the benefit bacteria abundance and short-chain fatty acids (SCFAs) level with Abx pretreatment. CBM intervention after Abx pretreatment regulated the imbalance of cytokines and transcription factors, which corresponded to lower infiltration of Th1 and Th17 cells, and increased Th2 cells. CONCLUSIONS Abx pretreatment reinforced the function of CBM in ameliorating inflammation and barrier damage by increasing beneficial taxa, eliminating pathogens, and inducing a protective Th2 cell response. This study reveals a link between Abx pretreatment, microbiota, and immune response changes in colitis, which provides a reference for the further application of Abx pretreatment before microbiota-based intervention.
Collapse
Affiliation(s)
- Jing Xu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Haoming Xu
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Xue Guo
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Hailan Zhao
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Jiaqi Wang
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Jianhong Li
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Jie He
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Hongli Huang
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Chen Huang
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Chong Zhao
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Yingfei Li
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Youlian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China.
| | - Yao Peng
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China.
| | - Yuqiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China.
| |
Collapse
|