201
|
Solimani F, Mesas-Fernández A, Bodner E, Carevic-Neri M, Hasheminasab M, Jakovljevicova T, Philipp A, Nast A, Worm M, Hilke FJ, Meier K, Ghoreschi K. Clinical and immunological impact of booster immunization with recombinant mRNA vaccines for SARS-CoV-2 in patients with pemphigus and bullous pemphigoid. J Eur Acad Dermatol Venereol 2023; 37:e695-e697. [PMID: 36786360 DOI: 10.1111/jdv.18967] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/08/2023] [Indexed: 02/15/2023]
Affiliation(s)
- F Solimani
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin, Germany
| | - A Mesas-Fernández
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - E Bodner
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - M Carevic-Neri
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - M Hasheminasab
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - T Jakovljevicova
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - A Philipp
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - A Nast
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - M Worm
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - F J Hilke
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - K Meier
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - K Ghoreschi
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
202
|
Scola L, Ferraro D, Sanfilippo GL, De Grazia S, Lio D, Giammanco GM. Age and Cytokine Gene Variants Modulate the Immunogenicity and Protective Effect of SARS-CoV-2 mRNA-Based Vaccination. Vaccines (Basel) 2023; 11:vaccines11020413. [PMID: 36851291 PMCID: PMC9962548 DOI: 10.3390/vaccines11020413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
The introduction of anti-SARS-CoV-2 vaccines in late 2020 substantially changed the pandemic picture, inducing effective protection in the population. However, individual variability was observed with different levels of cellular response and neutralizing antibodies. We report data on the impact of age, gender, and 16 single nucleotide polymorphisms (SNPs) of cytokine genes on the anti-SARS-CoV-2 IgG titers measured 31 and 105 days after administration of the second dose of BNT162b2 vaccine to 122 healthy subjects from the health care staff of the Palermo University Hospital, Italy. The higher titers at 31 days were measured in the younger subjects and in subjects bearing T-positive genotypes of IL-1R1 rs2234650 or the GG homozygous genotype of IL-6 rs1800795 SNP. T-positive genotypes are also significantly more common in subjects with higher titers at day 105. In addition, in this group of subjects, the frequency of the CT genotype of IL-4 rs2243250 is higher among those vaccinated with higher titers. Moreover, these SNPs and TNFA rs1800629 are differently distributed in a group of subjects that were found infected by SARS-CoV-2 at day 105 of evaluation. Finally, subjects that were found to be infected by SARS-CoV-2 at day 105 were significantly older than the uninfected subjects. Taken together, these data seem to suggest that age and polymorphisms of key cytokines, which regulate inflammation and humoral immune response, might influence the magnitude of the antibody response to vaccination with BNT162B2, prompting speculation about the possible benefit of a genetic background-based assessment of a personalized approach to the anti-COVID vaccination schedule.
Collapse
Affiliation(s)
- Letizia Scola
- Clinical Pathology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Corso Tukory, 211, 90134 Palermo, Italy
| | - Donatella Ferraro
- Microbiology, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90133 Palermo, Italy
| | - Giuseppa Luisa Sanfilippo
- Microbiology, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90133 Palermo, Italy
| | - Simona De Grazia
- Microbiology, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90133 Palermo, Italy
| | - Domenico Lio
- Interdepartmental Research Center “Migrate”, University of Palermo, 90133 Palermo, Italy
- Correspondence: ; Tel.: +39-91-6555913
| | - Giovanni Maurizio Giammanco
- Microbiology, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90133 Palermo, Italy
| |
Collapse
|
203
|
Zhao M, Slotkin R, Sheth AH, Pischel L, Kyriakides TC, Emu B, McNamara C, Shi Q, Delgobbo J, Xu J, Marhoffer E, Mercer-Falkoff A, Holleck J, Ardito D, Sutton RE, Gupta S. Serum Neutralizing Antibody Titers 12 Months After Coronavirus Disease 2019 Messenger RNA Vaccination: Correlation to Clinical Variables in an Adult, US Population. Clin Infect Dis 2023; 76:e391-e399. [PMID: 35639598 PMCID: PMC9278145 DOI: 10.1093/cid/ciac416] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND We studied whether comorbid conditions affect strength and duration of immune responses after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) messenger RNA vaccination in a US-based, adult population. METHODS Sera (before and after BNT162b2 vaccination) were tested serially up to 12 months after 2 doses of vaccine for SARS-CoV-2-anti-Spike neutralizing capacity by pseudotyping assay in 124 individuals; neutralizing titers were correlated to clinical variables with multivariate regression. Postbooster (third dose) effect was measured at 1 and 3 months in 72 and 88 subjects, respectively. RESULTS After completion of primary vaccine series, neutralizing antibody half maximal inhibitory concentration (IC50) values were high at 1 month (14-fold increase from prevaccination), declined at 6 months (3.3-fold increase), and increased at 1 month postbooster (41.5-fold increase). Three months postbooster, IC50 decreased in coronavirus disease (COVID)-naïve individuals (18-fold increase) and increased in prior COVID 2019 (COVID-19+) individuals (132-fold increase). Age >65 years (β = -0.94, P = .001) and malignancy (β = -0.88, P = .002) reduced strength of response at 1 month. Both neutralization strength and durability at 6 months, respectively, were negatively affected by end-stage renal disease ([β = -1.10, P = .004]; [β = -0.66, P = .014]), diabetes mellitus ([β = -0.57, P = .032]; [β = -0.44, P = .028]), and systemic steroid use ([β = -0.066, P = .032]; [β = -0.55, P = .037]). Postbooster IC50 was robust against WA-1 and B.1.617.2. Postbooster neutralization increased with prior COVID-19 (β = 2.9, P < .0001), and malignancy reduced neutralization response (β = -0.68, P = .03), regardless of infection status. CONCLUSIONS Multiple clinical factors affect the strength and duration of neutralization response after primary series vaccination, but not the postbooster dose strength. Malignancy was associated with lower booster-dose response regardless of prior COVID infection, suggesting a need for clinically guided vaccine regimens.
Collapse
Affiliation(s)
- Min Zhao
- Department of Medicine, Division of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Amar H Sheth
- Yale School of Medicine, New Haven, Connecticut, USA
| | - Lauren Pischel
- Department of Medicine, Division of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
- Yale School of Public Health, New Haven, Connecticut, USA
| | - Tassos C Kyriakides
- Department of Veterans Affairs Office of Research and Development, Cooperative Studies Program Coordinating Center, West Haven, Connecticut, USA
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Brinda Emu
- Department of Medicine, Division of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Medicine, Division of Infectious Diseases, Veterans Affairs Healthcare Systems of Connecticut, West Haven, Connecticut, USA
| | - Cynthia McNamara
- Department of Medicine, Veterans Affairs Healthcare Systems of Connecticut, West Haven, Connecticut, USA
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Qiaosu Shi
- Department of Medicine, Division of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jaden Delgobbo
- Department of Medicine, Veterans Affairs Healthcare Systems of Connecticut, West Haven, Connecticut, USA
- University of Connecticut, Storrs, Connecticut, USA
| | - Jin Xu
- Department of Medicine, Veterans Affairs Healthcare Systems of Connecticut, West Haven, Connecticut, USA
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Elizabeth Marhoffer
- Department of Medicine, Veterans Affairs Healthcare Systems of Connecticut, West Haven, Connecticut, USA
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Aleagia Mercer-Falkoff
- Department of Medicine, Veterans Affairs Healthcare Systems of Connecticut, West Haven, Connecticut, USA
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jürgen Holleck
- Department of Medicine, Veterans Affairs Healthcare Systems of Connecticut, West Haven, Connecticut, USA
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - David Ardito
- Department of Medicine, Veterans Affairs Healthcare Systems of Connecticut, West Haven, Connecticut, USA
| | - Richard E Sutton
- Department of Medicine, Division of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Medicine, Division of Infectious Diseases, Veterans Affairs Healthcare Systems of Connecticut, West Haven, Connecticut, USA
| | - Shaili Gupta
- Department of Medicine, Division of Infectious Diseases, Veterans Affairs Healthcare Systems of Connecticut, West Haven, Connecticut, USA
- Department of Medicine, Veterans Affairs Healthcare Systems of Connecticut, West Haven, Connecticut, USA
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
204
|
T-Cell Mediated Response after Primary and Booster SARS-CoV-2 Messenger RNA Vaccination in Nursing Home Residents. J Am Med Dir Assoc 2023; 24:140-147.e2. [PMID: 36587928 PMCID: PMC9726683 DOI: 10.1016/j.jamda.2022.11.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Nursing home (NH) residents have been significantly affected by the coronavirus disease 2019 (COVID-19) pandemic. Studies addressing the immune responses induced by COVID-19 vaccines in NH residents have documented a good postvaccination antibody response and the beneficial effect of a third booster vaccine dose. Less is known about vaccine-induced activation of cell-mediated immune response in frail older individuals in the long term. The aim of the present study is to monitor messenger RNA SARS-CoV-2 vaccine-induced T-cell responses in a sample of Italian NH residents who received primary vaccine series and a third booster dose and to assess the interaction between T-cell responses and humoral immunity. DESIGN Longitudinal cohort study. SETTING AND PARTICIPANTS Thirty-four residents vaccinated with BNT162b2 messenger RNA SARS-CoV-2 vaccine between February and April 2021 and who received a third BNT162b2 booster dose between October and November 2021 were assessed for vaccine-induced immunity 6 (prebooster) and 12 (postbooster) months after the first BNT162b2 vaccine dose. METHODS Pre- and postbooster cell-mediated immunity was assessed by intracellular cytokine staining of peripheral blood mononuclear cells stimulated in vitro with peptides covering the immunodominant sequence of SARS-CoV-2 spike protein. The simultaneous production of interferon-γ, tumor necrosis factor-α, and interleukin-2 was measured. Humoral immunity was assessed in parallel by measuring serum concentration of antitrimeric spike IgG antibodies. RESULTS Before the booster vaccination, 31 out of 34 NH residents had a positive cell-mediated immunity response to spike. Postbooster, 28 out of 34 had a positive response. Residents without a previous history of SARS-CoV-2 infection, who had a lower response prior the booster administration, showed a greater increase of T-cell responses after the vaccine booster dose. Humoral and cell-mediated immunity were, in part, correlated but only before booster vaccine administration. CONCLUSIONS AND IMPLICATIONS The administration of the booster vaccine dose restored spike-specific T-cell responses in SARS-CoV-2 naïve residents who responded poorly to the first immunization, while a previous SARS-CoV-2 infection had an impact on the magnitude of vaccine-induced cell-mediated immunity at earlier time points. Our findings imply the need for a continuous monitoring of the immune status of frail NH residents to adapt future SARS-CoV-2 vaccination strategies.
Collapse
|
205
|
Shishido AA, Barnes AH, Narayanan S, Chua JV. COVID-19 Vaccines-All You Want to Know. Semin Respir Crit Care Med 2023; 44:143-172. [PMID: 36646092 DOI: 10.1055/s-0042-1759779] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) pandemic has led to an unprecedented public health crisis. The collective global response has led to production of multiple safe and effective vaccines utilizing novel platforms to combat the virus that have propelled the field of vaccinology forward. Significant challenges to universal vaccine effectiveness remain, including immune evasion by SARS-CoV-2 variants, waning of immune response, inadequate knowledge of correlates of protection, and dosing in special populations. This review serves as a detailed evaluation of the development of the current SARS-CoV-2 vaccines, their effectiveness, and challenges to their deployment as a preventive tool.
Collapse
Affiliation(s)
- Akira A Shishido
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland.,Division of Infectious Diseases, Virginia Commonwealth University, Richmond, Virginia
| | - Ashley H Barnes
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Shivakumar Narayanan
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Joel V Chua
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
206
|
Cellular and humoral immune response to the fourth Pfizer-BioNTech COVID-19 vaccine dose in individuals aged 60 years and older. Vaccine 2023; 41:914-921. [PMID: 36572602 PMCID: PMC9767892 DOI: 10.1016/j.vaccine.2022.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/08/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
With the emergence of the severe acute respiratory syndrome 2 (SARS-CoV-2) B.1.1.529/BA.1 (Omicron) variant in early 2022, Israel began vaccinating individuals 6o years of age or older with a fourth BNT162b2 vaccine. While the decision was based on little experimental data, longer follow-up showed clinical effectiveness of the fourth dose with reduction in the number of severely affected individuals. However, the immune response to fourth vaccine dose in this age group was not yet characterized, and little is known about the immunogenicity of repeated vaccine dosing in this age group. We therefore aimed to evaluate the humoral and cellular immune response pre- and 3-week post- the fourth vaccine dose in patients age 60 years or older. For this purpose, blood samples were collected from donors age 60 years or older, all received their 3rd vaccine dose 5 months prior. Serum samples were evaluated for the presence of anti-Spike protein (anti-S) antibodies (N = 133), and peripheral blood mononuclear cells (PBMCs) were evaluated by flow cytometry for their ability to respond to the SARS-CoV-2 wild type Spike-glycoprotein peptide mix, Membrane-glycoprotein (M) peptide mix and to the mutated Spike-regions of the Omicron variant (N = 34). Three weeks after the fourth vaccine dose, 24 out of 34 donors (70.5%) showed significant increase in the number of cells responding to the wild type S-peptide mix. Of note, out of 34 donors, 11 donors (32.3%) had pre-boost anti-M T-cell response, none of which had history of confirmed COVID-19, suggesting possible asymptomatic exposure. Interestingly, in M non-responding individuals, no statistically significant increase in the cellular response was observed following stimulation with omicron S-mutated regions. While there are limited data regarding the longevity of the observed response, our results are in accordance with the described clinical efficacy, provide mechanistic evidence to support it and argue against vaccine-induced or age-related immunosenescence.
Collapse
|
207
|
Onifade AA, Fowotade A, Rahamon SK, Edem VF, Yaqub SA, Akande OK, Arinola OG. Seroprevalence of anti-SARS-CoV-2 specific antibodies in vaccinated and vaccine naïve adult Nigerians. PLoS One 2023; 18:e0280276. [PMID: 36689402 PMCID: PMC9870169 DOI: 10.1371/journal.pone.0280276] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/26/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Reports on the evaluation of immune responses to different COVID-19 vaccines are limited. Similarly, effects of age and gender have not been well explored as variables that could impact on the vaccine-induced antibody response. Therefore, seroprevalence of anti-SARS-CoV-2 specific antibodies in vaccinated and vaccine naïve adult Nigerians was determined in this study. METHODOLOGY A total of 141 adults were enrolled into this study. Presence or absence of SARS-CoV-2 infection was confirmed by real-time reverse-transcriptase polymerase-chain reaction (RT-PCR) assay on nasopharyngeal and oropharyngeal swab specimens. Anti-SARS-CoV-2 Specific IgG and IgM antibodies were qualitatively detected using a Rapid Diagnostic Test kit. RESULTS Pre-vaccination, 77% of the study participants had never had PCR-confirmed COVID-19 test yet 66.7% of them were seropositive for SARS-CoV-2 antibodies. Of 111 COVID-19 vaccinated participants, 69.2% and 73.8% of them had SARS-CoV-2 specific IgG post-first and second doses of COVID-19 vaccine respectively. However, 23.1% and 21.4% of the participants who have had first and second doses respectively had no detectable anti-SARS-CoV-2 antibodies. The proportion of participants with SARS-CoV-2 specific IgG was insignificantly higher in those between the ages of 18-40 years and 41-59 years compared with individuals aged ≥60 years. No significant association was observed between gender and seropositivity for SARS-CoV-2 antibodies. CONCLUSION There is high SARS-CoV-2 antibody seroprevalence among Nigerian adults who never had PCR-confirmed COVID-19. Also, there is the need for anti-SARS-CoV-2 antibodies screening post vaccination as this could be essential in achieving herd immunity. Age and gender do not seem to have significant association with seropositivity.
Collapse
Affiliation(s)
| | - Adeola Fowotade
- Biorepository Clinical Virology Laboratory, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Medical Microbiology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Sheu Kadiri Rahamon
- Department of Immunology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Victory Fabian Edem
- Department of Immunology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Olatunji Kadri Akande
- Biorepository Clinical Virology Laboratory, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | |
Collapse
|
208
|
Zhang J, Xia Y, Liu X, Liu G. Advanced Vaccine Design Strategies against SARS-CoV-2 and Emerging Variants. Bioengineering (Basel) 2023; 10:148. [PMID: 36829642 PMCID: PMC9951973 DOI: 10.3390/bioengineering10020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Vaccination is the most cost-effective means in the fight against infectious diseases. Various kinds of vaccines have been developed since the outbreak of COVID-19, some of which have been approved for clinical application. Though vaccines available achieved partial success in protecting vaccinated subjects from infection or hospitalization, numerous efforts are still needed to end the global pandemic, especially in the case of emerging new variants. Safe and efficient vaccines are the key elements to stop the pandemic from attacking the world now; novel and evolving vaccine technologies are urged in the course of fighting (re)-emerging infectious diseases. Advances in biotechnology offered the progress of vaccinology in the past few years, and lots of innovative approaches have been applied to the vaccine design during the ongoing pandemic. In this review, we summarize the state-of-the-art vaccine strategies involved in controlling the transmission of SARS-CoV-2 and its variants. In addition, challenges and future directions for rational vaccine design are discussed.
Collapse
Affiliation(s)
- Jianzhong Zhang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yutian Xia
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xuan Liu
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Gang Liu
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
- Innovation Center for Cell Biology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
209
|
Jangra S, Landers JJ, Laghlali G, Rathnasinghe R, O’Konek JJ, Janczak KW, García-Sastre A, Baker JR, Schotsaert M, Wong PT. A multicomponent intranasal adjuvant drives durable humoral, cellular, and mucosal immune responses to SARS-CoV-2 in young and aged mice. RESEARCH SQUARE 2023:rs.3.rs-2457013. [PMID: 36711479 PMCID: PMC9882683 DOI: 10.21203/rs.3.rs-2457013/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Multiple FDA-approved SARS-CoV-2 vaccines provide excellent protection against severe disease. Despite this, immunity can wane relatively fast, particularly in the elderly and novel viral variants capable of evading infection- and vaccination-induced immunity continue to emerge. Intranasal (IN) vaccination more effectively induces mucosal immune responses than parenteral vaccines, which would improve protection and reduce viral transmission. Here, we developed a rationally designed IN adjuvant consisting of a combined nanoemulsion (NE)-based adjuvant and an RNA-based RIG-I agonist (IVT DI) to drive more robust, broadly protective antibody and T cell responses. We previously demonstrated this combination adjuvant (NE/IVT) potently induces protective immunity through synergistic activation of an array of innate receptors. We now demonstrate that NE/IVT with the SARS-CoV-2 receptor binding domain (RBD), induces robust and durable humoral, mucosal, and cellular immune responses of equivalent magnitude and quality in young and aged mice. This contrasted with the MF59-like intramuscular adjuvant, Addavax, which showed a marked decrease in immunogenicity with age. Robust antigen-specific IFNγ/IL-2/TNF-α was induced in both young and aged NE/IVT-immunized animals, which is significant as their reduced production is associated with suboptimal protective immunity in the elderly. These findings highlight the potential of adjuvanted mucosal vaccines for improving protection against COVID-19.
Collapse
Affiliation(s)
- Sonia Jangra
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jeffrey J. Landers
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI, United States
- Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Gabriel Laghlali
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Raveen Rathnasinghe
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jessica. J. O’Konek
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI, United States
- Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Katarzyna W. Janczak
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI, United States
- Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Department of of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - James R. Baker
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI, United States
- Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Pamela T. Wong
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI, United States
- Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
210
|
Djaïleb A, Lavallée É, Parker MF, Cayer MP, Desautels F, de Grandmont MJ, Stuible M, Gervais C, Durocher Y, Trottier S, Boudreau D, Masson JF, Brouard D, Pelletier JN. Assessment of the longitudinal humoral response in non-hospitalized SARS-CoV-2-positive individuals at decentralized sites: Outcomes and concordance. Front Immunol 2023; 13:1052424. [PMID: 36741379 PMCID: PMC9895839 DOI: 10.3389/fimmu.2022.1052424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/13/2022] [Indexed: 01/22/2023] Open
Abstract
Introduction Early in the COVID-19 pandemic, reagent availability was not uniform, and infrastructure had to be urgently adapted to undertake COVID-19 surveillance. Methods Before the validation of centralized testing, two enzyme-linked immunosorbent assays (ELISA) were established independently at two decentralized sites using different reagents and instrumentation. We compared the results of these assays to assess the longitudinal humoral response of SARS-CoV-2-positive (i.e., PCR-confirmed), non-hospitalized individuals with mild to moderate symptoms, who had contracted SARSCoV-2 prior to the appearance of variants of concern in Québec, Canada. Results The two assays exhibited a high degree of concordance to identify seropositive individuals, thus validating the robustness of the methods. The results also confirmed that serum immunoglobulins persist ≥ 6 months post-infection among non-hospitalized adults and that the antibodies elicited by infection cross-reacted with the antigens from P.1 (Gamma) and B.1.617.2 (Delta) variants of concern. Discussion Together, these results demonstrate that immune surveillance assays can be rapidly and reliably established when centralized testing is not available or not yet validated, allowing for robust immune surveillance.
Collapse
Affiliation(s)
- Abdelhadi Djaïleb
- Département de Chimie, Université de Montréal, Montréal, QC, Canada
- PROTEO, Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des Protéines, Québec, QC, Canada
- Centre en Chimie Verte et Catalyse, Université de Montréal, Montréal, QC, Canada
| | - Étienne Lavallée
- Département de Chimie, Université de Montréal, Montréal, QC, Canada
- PROTEO, Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des Protéines, Québec, QC, Canada
- Centre en Chimie Verte et Catalyse, Université de Montréal, Montréal, QC, Canada
| | - Megan-Faye Parker
- PROTEO, Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des Protéines, Québec, QC, Canada
- Centre en Chimie Verte et Catalyse, Université de Montréal, Montréal, QC, Canada
- Départment de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | | | | | | | - Matthew Stuible
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, QC, Canada
| | - Christian Gervais
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, QC, Canada
| | - Yves Durocher
- PROTEO, Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des Protéines, Québec, QC, Canada
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, QC, Canada
| | - Sylvie Trottier
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC, Canada
- Département de Microbiologie-Infectiologie et d’Immunologie, Université Laval, Québec, QC, Canada
| | - Denis Boudreau
- Départment de Chimie, Université Laval, Québec, QC, Canada
- Centre d’Optique, Photonique et Laser, Université Laval, Québec, QC, Canada
| | - Jean-Francois Masson
- Département de Chimie, Université de Montréal, Montréal, QC, Canada
- Centre Québécois sur les Matériaux Fonctionnels, Montréal, QC, Canada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l’Apprentissage, Université de Montréal, Montréal, QC, Canada
| | - Danny Brouard
- Héma‐Québec, Affaires Médicales et Innovation, Québec, QC, Canada
| | - Joelle N. Pelletier
- Département de Chimie, Université de Montréal, Montréal, QC, Canada
- PROTEO, Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des Protéines, Québec, QC, Canada
- Centre en Chimie Verte et Catalyse, Université de Montréal, Montréal, QC, Canada
- Départment de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
211
|
Brandolini M, Gatti G, Grumiro L, Zannoli S, Arfilli V, Cricca M, Dirani G, Denicolò A, Marino MM, Manera M, Mancini A, Taddei F, Semprini S, Sambri V. Omicron Sub-Lineage BA.5 and Recombinant XBB Evasion from Antibody Neutralisation in BNT162b2 Vaccine Recipients. Microorganisms 2023; 11:microorganisms11010191. [PMID: 36677483 PMCID: PMC9866687 DOI: 10.3390/microorganisms11010191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
The recent emergence of a number of new SARS-CoV-2 variants resulting from recombination between two distinct parental lineages or sub-lineages within the same lineage has sparked the debate regarding potential enhanced viral infectivity and immune escape. Among these, XBB, recombinant of BA.2.10 and BA.2.75, has caused major concern in some countries due to its rapid increase in prevalence. In this study, we tested XBB escape capacity from mRNA-vaccine-induced (BNT162b2) neutralising antibodies compared to B.1 ancestral lineage and another co-circulating variant (B.1.1.529 BA.5) by analysing sera collected 30 days after the second dose in 92 healthcare workers. Our data highlighted an enhanced and statistically significant immune escape ability of the XBB recombinant. Although these are preliminary results, this study highlights the importance of immune escape monitoring of new and forthcoming variants and of the reformulation of existing vaccines.
Collapse
Affiliation(s)
- Martina Brandolini
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522 Cesena, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)—Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
| | - Giulia Gatti
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522 Cesena, Italy
| | - Laura Grumiro
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522 Cesena, Italy
| | - Silvia Zannoli
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522 Cesena, Italy
| | - Valentina Arfilli
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522 Cesena, Italy
| | - Monica Cricca
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522 Cesena, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)—Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
| | - Giorgio Dirani
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522 Cesena, Italy
| | - Agnese Denicolò
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522 Cesena, Italy
| | - Maria Michela Marino
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522 Cesena, Italy
| | - Martina Manera
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522 Cesena, Italy
| | - Andrea Mancini
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522 Cesena, Italy
| | - Francesca Taddei
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522 Cesena, Italy
| | - Simona Semprini
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522 Cesena, Italy
| | - Vittorio Sambri
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522 Cesena, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)—Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
- Correspondence:
| |
Collapse
|
212
|
Wu W, Cheng Y, Zhou H, Sun C, Zhang S. The SARS-CoV-2 nucleocapsid protein: its role in the viral life cycle, structure and functions, and use as a potential target in the development of vaccines and diagnostics. Virol J 2023; 20:6. [PMID: 36627683 PMCID: PMC9831023 DOI: 10.1186/s12985-023-01968-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) continues to take a heavy toll on personal health, healthcare systems, and economies around the globe. Scientists are expending tremendous effort to develop diagnostic technologies for detecting positive infections within the shortest possible time, and vaccines and drugs specifically for the prevention and treatment of COVID-19 disease. At the same time, emerging novel variants have raised serious concerns about vaccine efficacy. The SARS-CoV-2 nucleocapsid (N) protein plays an important role in the coronavirus life cycle, and participates in various vital activities after virus invasion. It has attracted a large amount of attention for vaccine and drug development. Here, we summarize the latest research of the N protein, including its role in the SARS-CoV-2 life cycle, structure and function, and post-translational modifications in addition to its involvement in liquid-liquid phase separation (LLPS) and use as a basis for the development of vaccines and diagnostic techniques.
Collapse
Affiliation(s)
- Wenbing Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Ying Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Hong Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Changzhen Sun
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Shujun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
213
|
Hernandez SPA, Hersby DS, Munk KK, Tamhane T, Trubach D, Tagliamonte M, Buonaguro L, Gang AO, Hadrup SR, Saini SK. Three doses of BNT162b2 COVID-19 mRNA vaccine establish long-lasting CD8 + T cell immunity in CLL and MDS patients. Front Immunol 2023; 13:1035344. [PMID: 36703960 PMCID: PMC9873231 DOI: 10.3389/fimmu.2022.1035344] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Patients with hematological malignancies are prioritized for COVID-19 vaccine due to their high risk for severe SARS-CoV-2 infection-related disease and mortality. To understand T cell immunity, its long-term persistence, and its correlation with antibody response, we evaluated the BNT162b2 COVID-19 mRNA vaccine-specific immune response in chronic lymphocytic leukemia (CLL) and myeloid dysplastic syndrome (MDS) patients. Longitudinal analysis of CD8+ T cells using DNA-barcoded peptide-MHC multimers covering the full SARS-CoV-2 Spike-protein (415 peptides) showed vaccine-specific T cell activation and persistence of memory T cells up to six months post-vaccination. Surprisingly, a higher frequency of vaccine-induced antigen-specific CD8+ T cells was observed in the patient group compared to a healthy donor group. Furthermore, and importantly, immunization with the second booster dose significantly increased the frequency of antigen-specific CD8+ T cells as well as the total number of T cell specificities. Altogether 59 BNT162b2 mRNA vaccine-derived immunogenic responses were identified, of which 23 established long-term CD8+ T cell memory response with a strong immunodominance for NYNYLYRLF (HLA-A24:02) and YLQPRTFLL (HLA-A02:01) epitopes. In summary, we mapped the vaccine-induced antigen-specific CD8+ T cells and showed a booster-specific activation and enrichment of memory T cells that could be important for long-term disease protection in this patient group.
Collapse
Affiliation(s)
- Susana Patricia Amaya Hernandez
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ditte Stampe Hersby
- Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Kamilla Kjærgaard Munk
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Tripti Tamhane
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Darya Trubach
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Maria Tagliamonte
- Innovative Immunological Models Unit, National Cancer Institute Pascale Foundation – IRCCS, Napoli, Italy
| | - Luigi Buonaguro
- Innovative Immunological Models Unit, National Cancer Institute Pascale Foundation – IRCCS, Napoli, Italy
| | - Anne Ortved Gang
- Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Sine Reker Hadrup
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sunil Kumar Saini
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, Kongens Lyngby, Denmark,*Correspondence: Sunil Kumar Saini,
| |
Collapse
|
214
|
Kirste I, Hortsch S, Grunert VP, Legault H, Maglinao M, Eichenlaub U, Kashlan B, Pajon R, Jochum S. Quantifying the Vaccine-Induced Humoral Immune Response to Spike-Receptor Binding Domain as a Surrogate for Neutralization Testing Following mRNA-1273 (Spikevax) Vaccination Against COVID-19. Infect Dis Ther 2023; 12:177-191. [PMID: 36376733 PMCID: PMC9663276 DOI: 10.1007/s40121-022-00711-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION There is a need for automated, high-throughput assays to quantify immune response after SARS-CoV-2 vaccination. This study assessed the combined utility of the Elecsys® Anti-SARS-CoV-2 S (ACOV2S) and the Elecsys Anti-SARS-CoV-2 (ACOV2N) assays using samples from the mRNA-1273 (Spikevax™) phase 2 trial (NCT04405076). METHODS Samples from 593 healthy participants in two age cohorts (18-54 and ≥ 55 years), who received two injections with placebo (n = 198) or mRNA-1273 (50 μg [n = 197] or 100 μg [n = 198]), were collected at days 1 (first vaccination), 15, 29 (second vaccination), 43, and 57. ACOV2S results were used to assess humoral response to vaccination in different subgroups and were compared to live virus microneutralization assay. Samples from patients with either previous or concomitant infection (identified per ACOV2N) were analyzed separately. RESULTS Receptor-binding domain-specific antibodies were readily detectable by ACOV2S for the vast majority of participants (174/189, 92.1% [50 μg dose] and 178/192, 92.7% [100 μg dose]) at the first post-vaccination assessment, with non-converters predominantly older in age. Seroconversion for all participants was observed at day 29 (before the second vaccine dose). Two weeks after the first dose, geometric mean concentration (GMC) of antibody levels was 1.37-fold higher in the 100 versus 50 μg group (p = 0.0098), reducing to 1.09-fold 2 weeks after the second dose (p = 0.0539, n.s.). In both dose groups, a more pronounced response was observed in the younger versus older age group on day 15 (50 μg, 2.49-fold [p < 0.0001]; 100 μg, 3.94-fold [p < 0.0001] higher GMC, respectively), and day 29 (1.93-fold, p = 0.0002, and 2.44-fold, p < 0.0001). Eight subjects had previous or concomitant SARS-CoV-2 infection; vaccination boosted their humoral response to very high ACOV2S results compared to infection-naïve recipients. ACOV2S strongly correlated with microneutralization (Pearson's r = 0.779; p < 0.0001), including good qualitative agreement. CONCLUSION These results confirmed that ACOV2S is a highly valuable assay for tracking vaccine-related immune responses. Combined application with ACOV2N enables monitoring for breakthrough infection or stratification of previous natively infected individuals. The adaptive measuring range and high resolution of ACOV2S allow for early identification of seroconversion and resolution of very high titers and longitudinal differences between subgroups. Additionally, good correlation with live virus microneutralization suggests that ACOV2S is a reliable estimate of neutralization capacity in routine diagnostic settings.
Collapse
Affiliation(s)
- Imke Kirste
- Clinical Development & Medical Affairs, Roche Diagnostics Operations, Indianapolis, USA
| | - Sayuri Hortsch
- Biostatistics and Data Science, Roche Diagnostics GmbH, Penzberg, Germany
| | - Veit Peter Grunert
- Biostatistics and Data Science, Roche Diagnostics GmbH, Penzberg, Germany
| | - Holly Legault
- Clinical Biomarkers, Moderna, Inc, 200 Technology Square, Cambridge, MA 02139 USA
| | - Maha Maglinao
- Clinical Biomarkers, Moderna, Inc, 200 Technology Square, Cambridge, MA 02139 USA
| | - Udo Eichenlaub
- Clinical Development & Medical Affairs, Roche Diagnostics Operations, Indianapolis, USA
| | - Basel Kashlan
- Lab Operations, PPD, Part of Thermo Fisher Scientific, Highland Heights, KY USA
| | - Rolando Pajon
- Clinical Biomarkers, Moderna, Inc, 200 Technology Square, Cambridge, MA 02139 USA
| | - Simon Jochum
- Research and Development Immunoassays, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| |
Collapse
|
215
|
Shafiekhani M, Mirjalili M, Gholami S, Vatankhah P, Roozbeh J, Mehrdad G, Haem E, Zare Z, Jalali SS, Golshan M, Nikeghbalian S, Chamanpara P, Shamsaeefar A, Moghadami M, Nikoupour H, Malekhosseini SA, Sohrevardi SM, Jamialahmadi T, Sahebkar A, Geramizadeh B. Immunogenicity of Inactivated SARS-CoV-2 Vaccine (BBIBP-CorV; Sinopharm) and Short-Term Clinical Outcomes in Vaccinated Solid Organ Transplant Recipients: A Prospective Cohort Study. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1412:357-374. [PMID: 37378777 DOI: 10.1007/978-3-031-28012-2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
BackgroundImmunocompromised patients have lower seroconversion rate in response to COVID-19 vaccination. The aim of this study is to evaluate the humoral immune response with short-term clinical outcomes in solid organ transplant recipients vaccinated with SARS-CoV-2 vaccine (BBIBP-CorV; Sinopharm).MethodsThis prospective cohort was conducted from March to December 2021 in Abu Ali Sina hospital, Iran. All transplant recipients, older than 18 years were recruited. The patients received two doses of Sinopharm vaccine 4 weeks apart. Immunogenicity was evaluated through assessment of antibodies against the receptor-binding domain (RBD) of SARS-CoV-2 after the first and second dose of vaccine. The patients were followed up for 6 months after vaccination.ResultsOut of 921 transplant patients, 115 (12.5%) and 239 (26%) had acceptable anti S-RBD immunoglobulin G (IgG) levels after the first and second dose, respectively. Eighty patients (8.68%) got infected with COVID-19 which led to 45 (4.9%) of patients being hospitalized. None of the patients died during follow-up period. Twenty-four (10.9%) liver transplant recipients developed liver enzyme elevation, and increased serum creatinine was observed in 86 (13.5%) kidney transplant patients. Two patients experienced biopsy-proven rejection without any graft loss.ConclusionOur study revealed that humoral response rate of solid organ transplant recipients to Sinopharm vaccine was low.
Collapse
Affiliation(s)
- Mojtaba Shafiekhani
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Transplant Center, Abu-Ali Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahtabalsadat Mirjalili
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Siavash Gholami
- Shiraz Transplant Center, Abu-Ali Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooya Vatankhah
- Shiraz Transplant Center, Abu-Ali Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
- Anesthesiology and Critical Care Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jamshid Roozbeh
- Shiraz Transplant Center, Abu-Ali Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Goli Mehrdad
- Shiraz Transplant Center, Abu-Ali Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Haem
- Department of Biostatistics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Zare
- Shiraz Transplant Center, Abu-Ali Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Soroush Jalali
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Golshan
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saman Nikeghbalian
- Shiraz Transplant Center, Abu-Ali Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Chamanpara
- Department of Biostatistics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Shamsaeefar
- Shiraz Transplant Center, Abu-Ali Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Moghadami
- Department of Internal Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Nikoupour
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Transplant Center, Abu-Ali Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Ali Malekhosseini
- Shiraz Transplant Center, Abu-Ali Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mojtaba Sohrevardi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Tannaz Jamialahmadi
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bita Geramizadeh
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
216
|
Tut G, Lancaster T, Krutikov M, Sylla P, Bone D, Spalkova E, Bentley C, Amin U, Jadir A, Hulme S, Kaur N, Tut E, Bruton R, Wu MY, Harvey R, Carr EJ, Beale R, Stirrup O, Shrotri M, Azmi B, Fuller C, Baynton V, Irwin-Singer A, Hayward A, Copas A, Shallcross L, Moss P. Strong peak immunogenicity but rapid antibody waning following third vaccine dose in older residents of care homes. NATURE AGING 2023; 3:93-104. [PMID: 37118525 PMCID: PMC10154221 DOI: 10.1038/s43587-022-00328-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/03/2022] [Indexed: 04/30/2023]
Abstract
Third-dose coronavirus disease 2019 vaccines are being deployed widely but their efficacy has not been assessed adequately in vulnerable older people who exhibit suboptimal responses after primary vaccination series. This observational study, which was carried out by the VIVALDI study based in England, looked at spike-specific immune responses in 341 staff and residents in long-term care facilities who received an mRNA vaccine following dual primary series vaccination with BNT162b2 or ChAdOx1. Third-dose vaccination strongly increased antibody responses with preferential relative enhancement in older people and was required to elicit neutralization of Omicron. Cellular immune responses were also enhanced with strong cross-reactive recognition of Omicron. However, antibody titers fell 21-78% within 100 d after vaccine and 27% of participants developed a breakthrough Omicron infection. These findings reveal strong immunogenicity of a third vaccine in one of the most vulnerable population groups and endorse an approach for widespread delivery across this population. Ongoing assessment will be required to determine the stability of immune protection.
Collapse
Affiliation(s)
- Gokhan Tut
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Tara Lancaster
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | | | - Panagiota Sylla
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - David Bone
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Eliska Spalkova
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Christopher Bentley
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Umayr Amin
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Azar Jadir
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Samuel Hulme
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Nayandeep Kaur
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Elif Tut
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Rachel Bruton
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Mary Y Wu
- Covid Surveillance Unit, The Francis Crick Institute, London, UK
| | - Ruth Harvey
- Worldwide Influenza Centre, The Francis Crick Institute London, London, UK
| | | | - Rupert Beale
- The Francis Crick Institute, London, UK
- Genotype-to-Phenotype UK National Virology Consortium (G2P-UK), London, UK
- UCL Department of Renal Medicine, Royal Free Hospital, London, UK
| | | | | | | | | | | | | | | | | | | | - Paul Moss
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.
| |
Collapse
|
217
|
Jo N, Hidaka Y, Kikuchi O, Fukahori M, Sawada T, Aoki M, Yamamoto M, Nagao M, Morita S, Nakajima TE, Muto M, Hamazaki Y. Impaired CD4 + T cell response in older adults is associated with reduced immunogenicity and reactogenicity of mRNA COVID-19 vaccination. NATURE AGING 2023; 3:82-92. [PMID: 37118516 PMCID: PMC10154196 DOI: 10.1038/s43587-022-00343-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/29/2022] [Indexed: 04/30/2023]
Abstract
Whether age-associated defects in T cells impact the immunogenicity and reactogenicity of mRNA vaccines remains unclear. Using a vaccinated cohort (n = 216), we demonstrated that older adults (aged ≥65 years) had fewer vaccine-induced spike-specific CD4+ T cells including CXCR3+ circulating follicular helper T cells and the TH1 subset of helper T cells after the first dose, which correlated with their lower peak IgG levels and fewer systemic adverse effects after the second dose, compared with younger adults. Moreover, spike-specific TH1 cells in older adults expressed higher levels of programmed cell death protein 1, a negative regulator of T cell activation, which was associated with low spike-specific CD8+ T cell responses. Thus, an inefficient CD4+ T cell response after the first dose may reduce the production of helper T cytokines, even after the second dose, thereby lowering humoral and cellular immunity and reducing systemic reactogenicity. Therefore, enhancing CD4+ T cell response following the first dose is key to improving vaccine efficacy in older adults.
Collapse
Affiliation(s)
- Norihide Jo
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Alliance Laboratory for Advanced Medical Research, Graduate school of Medicine, Kyoto University, Kyoto, Japan
| | - Yu Hidaka
- Department of Biomedical Statistics and Bioinformatics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Osamu Kikuchi
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Clinical Bio-Resource Center, Kyoto University Hospital, Kyoto, Japan
| | - Masaru Fukahori
- Department of Early Clinical Development, Graduate school of Medicine, Kyoto University, Kyoto, Japan
- Kyoto Innovation Center for Next Generation Clinical Trials and iPS Cell Therapy (Ki-CONNECT), Kyoto University Hospital, Kyoto, Japan
| | - Takeshi Sawada
- Department of Early Clinical Development, Graduate school of Medicine, Kyoto University, Kyoto, Japan
- Kyoto Innovation Center for Next Generation Clinical Trials and iPS Cell Therapy (Ki-CONNECT), Kyoto University Hospital, Kyoto, Japan
| | - Masahiko Aoki
- Department of Early Clinical Development, Graduate school of Medicine, Kyoto University, Kyoto, Japan
- Kyoto Innovation Center for Next Generation Clinical Trials and iPS Cell Therapy (Ki-CONNECT), Kyoto University Hospital, Kyoto, Japan
| | - Masaki Yamamoto
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Miki Nagao
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoshi Morita
- Department of Biomedical Statistics and Bioinformatics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takako E Nakajima
- Department of Early Clinical Development, Graduate school of Medicine, Kyoto University, Kyoto, Japan
- Kyoto Innovation Center for Next Generation Clinical Trials and iPS Cell Therapy (Ki-CONNECT), Kyoto University Hospital, Kyoto, Japan
| | - Manabu Muto
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Clinical Bio-Resource Center, Kyoto University Hospital, Kyoto, Japan
- Kyoto Innovation Center for Next Generation Clinical Trials and iPS Cell Therapy (Ki-CONNECT), Kyoto University Hospital, Kyoto, Japan
| | - Yoko Hamazaki
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.
- Laboratory of Immunobiology, Graduate school of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
218
|
Gao R, Zheng C, Yang M, Dai L, Chen C, Yao J, Zhang Z, Tang L, Shi Y, Han X. Immunogenicity assessment of elder hepatocellular carcinoma patients after inactivated whole-virion SARS-CoV-2 vaccination. Expert Rev Vaccines 2023; 22:1102-1113. [PMID: 37878494 DOI: 10.1080/14760584.2023.2274484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Research on immunogenicity after 3rd SARS-CoV-2 vaccine in elder hepatocellular carcinoma (HCC) was limited. This study aimed to investigate the efficacy and influencing factors of inactivated SARS-CoV-2 vaccine in elder HCC. RESEARCH DESIGN AND METHODS We assessed total antibodies, anti-RBD IgG, and neutralizing antibodies (NAb) toward SARS-CoV-2 wild type (WT) as well as BA.4/5 in 304 uninfected HCC, 147 matched healthy control (HC), and 53 SARS-CoV-2 infected HCC, all aged over 60 years. The levels of antibodies were compared in the period 7-90, 91-180, and >180 days after 2nd or 3rd vaccination, respectively. RESULTS HCC had lower seropositivity than HC after 2nd dose (total antibodies, 64% vs. 92%, P < 0.0001; anti-RBD IgG, 50% vs. 77%, P < 0.0001). But 3rd dose can efficaciously close the gap (total antibodies, 96% vs. 100%, P = 0.1212; anti-RBD IgG: 87% vs. 87%, P > 0.9999). Booster effect of 3rd dose can persist >180 days in HCC (2nd vs. 3rd: total antibodies, 0.60 vs. 3.20, P < 0.0001; anti-RBD IgG, 13.86 vs. 68.85, P < 0.0001; WT NAb, 11.70 vs. 22.47, P < 0.0001). Vaccinated HCC had more evident humoral responses than unvaccinated ones after infection (total antibodies: 3.85 vs. 3.20, P < 0.0001; anti-RBD IgG: 910.92 vs. 68.85, P < 0.0001; WT NAb: 96.09 vs. 22.47, P < 0.0001; BA.4/5 NAb: 86.53 vs. 5.59, P < 0.0001). CONCLUSIONS Our findings highlight the booster effect and protective role of 3rd dose. Our results could provide a theoretical foundation for informing decisions regarding SARS-CoV-2 vaccination in elder HCC.
Collapse
Affiliation(s)
- Ruyun Gao
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, Chaoyang District, China
| | - Cuiling Zheng
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, Chaoyang District, China
| | - Mengwei Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, Chaoyang District, China
| | - Liyuan Dai
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, Chaoyang District, China
| | - Chen Chen
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, Dongcheng District, China
| | - Jiarui Yao
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, Chaoyang District, China
| | - Zhishang Zhang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, Chaoyang District, China
| | - Le Tang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, Chaoyang District, China
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, Chaoyang District, China
| | - Xiaohong Han
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, Dongcheng District, China
| |
Collapse
|
219
|
Mentzer AJ, O'Connor D, Bibi S, Chelysheva I, Clutterbuck EA, Demissie T, Dinesh T, Edwards NJ, Felle S, Feng S, Flaxman AL, Karp-Tatham E, Li G, Liu X, Marchevsky N, Godfrey L, Makinson R, Bull MB, Fowler J, Alamad B, Malinauskas T, Chong AY, Sanders K, Shaw RH, Voysey M, Snape MD, Pollard AJ, Lambe T, Knight JC. Human leukocyte antigen alleles associate with COVID-19 vaccine immunogenicity and risk of breakthrough infection. Nat Med 2023; 29:147-157. [PMID: 36228659 PMCID: PMC9873562 DOI: 10.1038/s41591-022-02078-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 10/07/2022] [Indexed: 02/01/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine immunogenicity varies between individuals, and immune responses correlate with vaccine efficacy. Using data from 1,076 participants enrolled in ChAdOx1 nCov-19 vaccine efficacy trials in the United Kingdom, we found that inter-individual variation in normalized antibody responses against SARS-CoV-2 spike and its receptor-binding domain (RBD) at 28 days after first vaccination shows genome-wide significant association with major histocompatibility complex (MHC) class II alleles. The most statistically significant association with higher levels of anti-RBD antibody was HLA-DQB1*06 (P = 3.2 × 10-9), which we replicated in 1,677 additional vaccinees. Individuals carrying HLA-DQB1*06 alleles were less likely to experience PCR-confirmed breakthrough infection during the ancestral SARS-CoV-2 virus and subsequent Alpha variant waves compared to non-carriers (hazard ratio = 0.63, 0.42-0.93, P = 0.02). We identified a distinct spike-derived peptide that is predicted to bind differentially to HLA-DQB1*06 compared to other similar alleles, and we found evidence of increased spike-specific memory B cell responses in HLA-DQB1*06 carriers at 84 days after first vaccination. Our results demonstrate association of HLA type with Coronavirus Disease 2019 (COVID-19) vaccine antibody response and risk of breakthrough infection, with implications for future vaccine design and implementation.
Collapse
Affiliation(s)
- Alexander J Mentzer
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Daniel O'Connor
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Sagida Bibi
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Irina Chelysheva
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Elizabeth A Clutterbuck
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Tesfaye Demissie
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Tanya Dinesh
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Nick J Edwards
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sally Felle
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Shuo Feng
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Amy L Flaxman
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Eleanor Karp-Tatham
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Grace Li
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Xinxue Liu
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Natalie Marchevsky
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Leila Godfrey
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Rebecca Makinson
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Maireid B Bull
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute, University of Oxford, Oxford, UK
| | - Jamie Fowler
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Bana Alamad
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Tomas Malinauskas
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Amanda Y Chong
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Katherine Sanders
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Robert H Shaw
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Merryn Voysey
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Matthew D Snape
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Teresa Lambe
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute, University of Oxford, Oxford, UK
| | - Julian C Knight
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
- Chinese Academy of Medical Science (CAMS) Oxford Institute, University of Oxford, Oxford, UK.
| |
Collapse
|
220
|
Majid S, Khan MS, Nisar N, Bhat JA, Haq I, Khan SMS. Impact of clinico-biochemical and inflammatory biomarkers on the immunogenicity and efficacy of SARS-CoV-2 adenoviral vaccine: a longitudinal study. J Circ Biomark 2023; 12:34-43. [PMID: 37744159 PMCID: PMC10515580 DOI: 10.33393/jcb.2023.2480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/04/2023] [Indexed: 09/26/2023] Open
Abstract
Purpose Due to a lack of effective antiviral treatment, several vaccines have been put forth to curb SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection and to reduce the mortality and morbidity rate by eliciting a protective immune response, primarily through virus-neutralizing antibodies specific for SARS-CoV-2 spike protein. This longitudinal study was designed to evaluate the vaccine effectiveness and immune response following the administration of adenoviral vaccine, COVISHIELD, in Indian population who were previously uninfected with SARS-CoV-2 and to reveal the effect of various sociodemographic, inflammatory and biochemical factors on antibody response. Methods Briefly, the total immunoglobulin G (IgG) against SARS-CoV-2 spike and nucleocapsid protein along with the immunological markers were estimated by chemiluminescent microparticle immunoassay (CMIA) technology. Biochemical parameters were estimated by spectrometry. Results A total of 348 subjects received two doses of COVISHIELD (224 males, 124 females). The mean age of the study subjects was 42.03 ± 13.54 years. Although both the doses of COVISHIELD against SARS-CoV-2 spike protein induced a robust immune response that lasted for months in all the subjects, the total IgG titer against SARS-CoV-2 spike protein was found significantly higher in subjects ≥50 years of age, and those with obesity, elevated triglycerides and elevated lactate dehydrogenase levels. Conclusions There is a definite effect of age and biochemical factors on the immunogenicity of COVISHIELD. An understanding of these factors could not only impact the design of vaccines and help improve vaccine immunogenicity and efficacy but also assist in decisions on vaccination schedules, in order to combat this deadly pandemic.
Collapse
Affiliation(s)
- Sabhiya Majid
- Department of Biochemistry, Government Medical College and Associated SMHS and Super Speciality Hospital, Srinagar, J&K - India
| | - Mosin S Khan
- Department of Biochemistry, Government Medical College and Associated SMHS and Super Speciality Hospital, Srinagar, J&K - India
- Department of Biochemistry, Government Medical College Baramulla and Associated Hospitals, Baramulla, J&K - India
| | - Najila Nisar
- Department of Biochemistry, Government Medical College and Associated SMHS and Super Speciality Hospital, Srinagar, J&K - India
| | - Javid A Bhat
- Department of Biochemistry, Government Medical College and Associated SMHS and Super Speciality Hospital, Srinagar, J&K - India
| | - Inaamul Haq
- Department of Social and Preventive Medicine, Government Medical College Srinagar and Associated SMHS and Super Speciality Hospital, Srinagar, J&K - India
| | - S Muhammad Salim Khan
- Department of Social and Preventive Medicine, Government Medical College Srinagar and Associated SMHS and Super Speciality Hospital, Srinagar, J&K - India
| |
Collapse
|
221
|
Kung YA, Huang SY, Huang CG, Liu KT, Huang PN, Yu KY, Yang SL, Chen CP, Cheng CY, Lee IK, Lin SM, Chang HP, Lin YT, Liu YC, Chen GW, Shih SR. Factors influencing neutralizing antibody titers elicited by coronavirus disease 2019 vaccines. Microbes Infect 2023; 25:105044. [PMID: 36096357 PMCID: PMC9461341 DOI: 10.1016/j.micinf.2022.105044] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/02/2022] [Indexed: 02/04/2023]
Abstract
The World Health Organization has highlighted the importance of an international standard (IS) for severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) neutralizing antibody titer detection to calibrate diagnostic techniques. We applied an IS to calibrate neutralizing antibody titers (NTs) (international units/mL) in response to coronavirus disease 2019 (COVID-19) vaccination. Moreover, the association between different factors and neutralizing antibodies was analyzed. A total of 1667 serum samples were collected from participants receiving different COVID-19 vaccines. Antibody titers were determined by a microneutralization assay using live viruses in a biosafety level 3 (BSL-3) laboratory and a commercial serological MeDiPro kit. The titer determined using the MeDiPro kit was highly correlated with the NT determined using live viruses and calibrated using IS. Fever and antipyretic analgesic treatment were related to neutralizing antibody responses in ChAdOx1-S and BNT162b2 vaccinations. Individuals with diabetes showed a low NT elicited by MVC-COV1901. Individuals with hypertension receiving the BNT162b2 vaccine had lower NTs than those without hypertension. Our study provided the international unit (IU) values of NTs in vaccinated individuals for the development of vaccines and implementation of non-inferiority trials. Correlation of the influencing factors with NTs can provide an indicator for selecting COVID-19 vaccines based on personal attributes.
Collapse
Affiliation(s)
- Yu-An Kung
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Sheng-Yu Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chung-Guei Huang
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuan-Ting Liu
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan,Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Peng-Nien Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan,Division of Pediatric Infectious Diseases, Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kar-Yee Yu
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan,Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shu-Li Yang
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chia-Pei Chen
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ching-Yun Cheng
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ing-Kit Lee
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shu-Min Lin
- College of Medicine, Chang Gung University, Taoyuan, Taiwan,Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan,Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Han-Pin Chang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yueh-Te Lin
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan,Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yen-Chin Liu
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Guang-Wu Chen
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; Artificial Intelligence Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Computer Science and Information Engineering, School of Electrical and Computer Engineering, College of Engineering, Chang Gung University, Taoyuan, Taiwan.
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, And Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
222
|
Ma M, Santosa A, Fong W, Chew LC, Low AHL, Law A, Poh YJ, Yeo SI, Leung YY, Ng VWW, Koh JZE, Tay SH, Mak A, Teng GG, Xu C, Tang JGX, Kong KO, Angkodjojo S, Goh WR, Chuah TY, Roslan NE, Arkachaisri T, Teh KL, Sriranganathan M, Tan TC, Phang KF, Yap QV, Chan YH, Cheung PPM, Lahiri M. Post-mRNA vaccine flares in autoimmune inflammatory rheumatic diseases: Results from the COronavirus National Vaccine registry for ImmuNe diseases SINGapore (CONVIN-SING). J Autoimmun 2023; 134:102959. [PMID: 36473406 PMCID: PMC9705203 DOI: 10.1016/j.jaut.2022.102959] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Studies of flares of autoimmune inflammatory rheumatic diseases (AIIRD) after COVID-19 mRNA vaccination are limited by small sample size, short follow up or at risk of selection bias. METHODS A national retrospective cohort study of consecutive AIIRD patients ≥12 years old, across 8 hospitals who received at least one dose of a COVID-19 mRNA vaccine. Patients were included from the date of 1st vaccine dose and censored at the time of flare or on the date of the clinic visit at least 3 months from cohort entry, whichever came first. Predictors of flare were determined by Cox proportional hazards analysis. FINDINGS 4627 patients (73% Chinese, 71% female) of median (IQR) age 61 (48, 70) years were included; 42% Rheumatoid arthritis, 14% Systemic lupus erythematosus and 11% Psoriatic arthritis. 47% were in remission, 41% low disease activity, 10% moderate disease activity and 1% in high disease activity. 18% patients flared, of which 11.7% were within the 3-month period of interest. 11.8% patients improved. Median (IQR) time-to-flare was 60 (30, 114) days. 25% flares were self-limiting, 61% mild-moderate and 14% severe. Older patients (53-65 years and >66 years) had a lower risk of flare [HR 0.6 (95% CI 0.5-0.8) and 0.7 (0.6-0.8) respectively]. Patients with inflammatory arthritis and with active disease had a higher risk of flare [HR 1.5 (1.2-2.0) and 1.4 (1.2-1.6), respectively]. Treatment with conventional synthetic disease-modifying anti-rheumatic drugs (csDMARDs), immunosuppression and prednisolone was also associated with an increased risk of flare [HR 1.5 (1.1-2), 1.2 (1.1-1.4) and 1.5 (1.2-1.8) for prednisolone ≤7.5 mg respectively]. INTERPRETATION There was a moderately high rate of AIIRD flares after mRNA vaccination but also improvement in several patients. Severe flares and hospitalisation were rare. Thus, vaccination remains safe and highly recommended.
Collapse
Affiliation(s)
- Margaret Ma
- Division of Rheumatology, Department of Medicine, National University Hospital, Singapore,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Amelia Santosa
- Division of Rheumatology, Department of Medicine, National University Hospital, Singapore,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Warren Fong
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,Department of Rheumatology and Immunology, Singapore General Hospital, Singapore,Duke-NUS Medical School, Singapore
| | - Li-Ching Chew
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,Department of Rheumatology and Immunology, Singapore General Hospital, Singapore,Duke-NUS Medical School, Singapore
| | - Andrea HL Low
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,Department of Rheumatology and Immunology, Singapore General Hospital, Singapore,Duke-NUS Medical School, Singapore
| | - Annie Law
- Department of Rheumatology and Immunology, Singapore General Hospital, Singapore,Duke-NUS Medical School, Singapore
| | - Yih Jia Poh
- Department of Rheumatology and Immunology, Singapore General Hospital, Singapore
| | - Siaw Ing Yeo
- Department of Rheumatology and Immunology, Singapore General Hospital, Singapore
| | - Ying Ying Leung
- Department of Rheumatology and Immunology, Singapore General Hospital, Singapore,Duke-NUS Medical School, Singapore
| | - Victoria WW Ng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Joshua ZE Koh
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sen Hee Tay
- Division of Rheumatology, Department of Medicine, National University Hospital, Singapore,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Anselm Mak
- Division of Rheumatology, Department of Medicine, National University Hospital, Singapore,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gim Gee Teng
- Division of Rheumatology, Department of Medicine, National University Hospital, Singapore,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,Chronic Programme, Alexandra Hospital, Singapore
| | - Chuanhui Xu
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore
| | - Johnston GX Tang
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore
| | - Kok Ooi Kong
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore
| | - Stanley Angkodjojo
- Rheumatology Service, Department of General Medicine, Sengkang General Hospital, Singapore
| | - Wei-Rui Goh
- Rheumatology Service, Department of General Medicine, Sengkang General Hospital, Singapore
| | - Tyng Yu Chuah
- Rheumatology Service, Department of General Medicine, Sengkang General Hospital, Singapore
| | - Nur Emillia Roslan
- Rheumatology Service, Department of General Medicine, Sengkang General Hospital, Singapore
| | - Thaschawee Arkachaisri
- Duke-NUS Medical School, Singapore,Rheumatology and Immunology Service, Department of Paediatric Subspecialties, KK Women's and Children's Hospital, Singapore
| | - Kai Liang Teh
- Rheumatology and Immunology Service, Department of Paediatric Subspecialties, KK Women's and Children's Hospital, Singapore
| | | | - Teck Choon Tan
- Division of Rheumatology, Department of Medicine, Khoo Teck Puat Hospital, Singapore
| | - Kee Fong Phang
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,Chronic Programme, Alexandra Hospital, Singapore
| | - Qai Ven Yap
- Biostatistics Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yiong Huak Chan
- Biostatistics Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Peter PM Cheung
- Division of Rheumatology, Department of Medicine, National University Hospital, Singapore,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Manjari Lahiri
- Division of Rheumatology, Department of Medicine, National University Hospital, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
223
|
Mihaylova A, Lesichkova S, Baleva M, Nikolova‐Vlahova M, Kundurzhiev T, Kolevski A, Naumova E. Durability of humoral and cell-mediated immune response after SARS-CoV-2 mRNA vaccine administration. J Med Virol 2023; 95:e28360. [PMID: 36448089 PMCID: PMC9878094 DOI: 10.1002/jmv.28360] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/17/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022]
Abstract
Vaccination against the SARS-Cov-2 virus is an effective way to protect against the disease and the severe course of COVID-19. Forty-nine fully vaccinated with mRNA vaccines (BNT162b2 or mRNA-1273) SARS-CoV-2 infection-naïve volunteers aged 33-89 were enrolled in the study. Evaluation of the cellular and humoral immune response was performed within 1 to 3 months (T1) and 6-9 months (T2) after the second injection, and within 2-3 months (T3) after a booster dose. Additionally, a comparative analysis of the specific immune status was made between two age groups-below 60 (n = 22) and over 60 (n = 27) years. SARS-CoV-2-specific T-cell response was evaluated by IFN-γ-producing spot forming cells (SFCs) using a standardized ELISPOT assay. Virus neutralizing antibodies (VNA) against SARS-CoV-2 were measured by a blocking ELISA test and spike protein specific IgG (S-IgG) and IgA (S-IgA) antibodies-by semiquantitative ELISA. IFN-γ-producing SFCs, S-IgG, S-IgA and VNA significantly decreased 6-9 months after the second dose. After the third injection S-IgG and S-IgA markedly increased compared to T2 and reached the levels at T1. Of note, the highest values of VNA were observed at T3. No differences in the tested immune parameters were found between the two age groups. Data obtained showed that for a long period-6-9 months after a full course of immunization with mRNA vaccine, immune reactivity is present, but both cellular and humoral immune responses gradually decrease. The administration of a third dose mainly restores the specific humoral immune response against the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Anastasiya Mihaylova
- Clinic of Clinical Immunology and Stem Cell BankUniversity Hospital AlexandrovskaSofiaBulgaria
| | - Spaska Lesichkova
- Clinic of Clinical Immunology and Stem Cell BankUniversity Hospital AlexandrovskaSofiaBulgaria
- Department of Clinical ImmunologyMedical UniversitySofiaBulgaria
| | | | - Milena Nikolova‐Vlahova
- Clinic of NephrologyUniversity Hospital St.Ivan RilskiSofiaBulgaria
- Department of Internal MedicineMedical UniversitySofiaBulgaria
| | - Todor Kundurzhiev
- Department of Occupational Medicine, Biostatistics and Medical InformaticsMedical UniversitySofiaBulgaria
| | - Alexander Kolevski
- Laboratory of MicrobiologyUniversity Hospital AlexandrovskaSofiaBulgaria
| | - Elissaveta Naumova
- Clinic of Clinical Immunology and Stem Cell BankUniversity Hospital AlexandrovskaSofiaBulgaria
- Department of Clinical ImmunologyMedical UniversitySofiaBulgaria
| |
Collapse
|
224
|
SARS-CoV-2 mRNA Dual Immunization Induces Innate Transcriptional Signatures, Establishes T-Cell Memory and Coordinates the Recall Response. Vaccines (Basel) 2023; 11:vaccines11010103. [PMID: 36679948 PMCID: PMC9861479 DOI: 10.3390/vaccines11010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND mRNA vaccines have played a crucial role in controlling the SARS-CoV-2 global pandemic. However, the immunological mechanisms involved in the induction, magnitude and longevity of mRNA-vaccine-induced protective immunity are still unclear. METHODS In our study, we used whole-RNA sequencing along with detailed immunophenotyping of antigen-specific T cells and humoral RBD-specific response to dual immunization with the Pfizer-BioNTech mRNA vaccine (BNT162b2) and correlated them with response to an additional dose, administered 10 months later, in order to comprehensively profile the immune response of healthy volunteers to BNT162b2. RESULTS Primary dual immunization induced upregulation of the Type I interferon pathway and generated spike protein (S)-specific IFN-γ+ and TNF-α+ CD4 T cells, S-specific memory CD4 T cells, and RBD-specific antibodies against SARS-CoV-2. S-specific CD4 T cells induced by the primary series correlated with the RBD-specific antibody titers to a third dose. CONCLUSIONS This study demonstrates the induction of both innate and adaptive immunity in response to the BNT162b2 mRNA vaccine in a coordinated manner and identifies the central role of primarily induced CD4+ T cells as a predictive biomarker of the magnitude of anamnestic immune response.
Collapse
|
225
|
Memenga F, Kueppers ST, Borof K, Kirchhof P, Duengelhoef PM, Barten MJ, Lütgehetmann M, Berisha F, Fluschnik N, Becher PM, Kondziella C, Bernhardt AM, Reichenspurner H, Blankenberg S, Magnussen C, Rybczynski M. SARS-CoV-2 Vaccination-Induced Immunogenicity in Heart Transplant Recipients. Transpl Int 2023; 36:10883. [PMID: 36814697 PMCID: PMC9939437 DOI: 10.3389/ti.2023.10883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/19/2023] [Indexed: 02/07/2023]
Abstract
Among heart transplant (HT) recipients, a reduced immunological response to SARS-CoV-2 vaccination has been reported. We aimed to assess the humoral and T-cell response to SARS-CoV-2 vaccination in HT recipients to understand determinants of immunogenicity. HT recipients were prospectively enrolled from January 2021 until March 2022. Anti-SARS-CoV-2-Spike IgG levels were quantified after two and three doses of a SARS-CoV-2 vaccine (BNT162b2, mRNA1273, or AZD1222). Spike-specific T-cell responses were assessed using flow cytometry. Ninety-one patients were included in the study (69% male, median age 55 years, median time from HT to first vaccination 6.1 years). Seroconversion rates were 34% after two and 63% after three doses. Older patient age (p = 0.003) and shorter time since HT (p = 0.001) were associated with lower antibody concentrations after three vaccinations. There were no associations between vaccine types or immunosuppressive regimens and humoral response, except for prednisolone, which was predictive of a reduced response after two (p = 0.001), but not after three doses (p = 0.434). A T-cell response was observed in 50% after two and in 74% after three doses. Despite three vaccine doses, a large proportion of HT recipients exhibits a reduced immune response. Additional strategies are desirable to improve vaccine immunogenicity in this vulnerable group of patients.
Collapse
Affiliation(s)
- Felix Memenga
- Department of Cardiology, University Heart and Vascular Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon Thomas Kueppers
- Department of Cardiology, University Heart and Vascular Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Katrin Borof
- Department of Cardiology, University Heart and Vascular Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paulus Kirchhof
- Department of Cardiology, University Heart and Vascular Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | | | - Markus Johannes Barten
- Department of Cardiovascular Surgery, University Heart and Vascular Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marc Lütgehetmann
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg/Lübeck/Borstel/Riems, Hamburg, Germany
| | - Filip Berisha
- Department of Cardiology, University Heart and Vascular Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Nina Fluschnik
- Department of Cardiology, University Heart and Vascular Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Peter Moritz Becher
- Department of Cardiology, University Heart and Vascular Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Christoph Kondziella
- Department of Cardiology, University Heart and Vascular Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander M Bernhardt
- Department of Cardiovascular Surgery, University Heart and Vascular Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hermann Reichenspurner
- Department of Cardiovascular Surgery, University Heart and Vascular Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Stefan Blankenberg
- Department of Cardiology, University Heart and Vascular Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Christina Magnussen
- Department of Cardiology, University Heart and Vascular Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Meike Rybczynski
- Department of Cardiology, University Heart and Vascular Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
226
|
Taus E, Hofmann C, Ibarrondo FJ, Gong LS, Hausner MA, Fulcher JA, Krogstad P, Kitchen SG, Ferbas KG, Tobin NH, Rimoin AW, Aldrovandi GM, Yang OO. Persistent memory despite rapid contraction of circulating T Cell responses to SARS-CoV-2 mRNA vaccination. Front Immunol 2023; 14:1100594. [PMID: 36860850 PMCID: PMC9968837 DOI: 10.3389/fimmu.2023.1100594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/24/2023] [Indexed: 02/17/2023] Open
Abstract
Introduction While antibodies raised by SARS-CoV-2 mRNA vaccines have had compromised efficacy to prevent breakthrough infections due to both limited durability and spike sequence variation, the vaccines have remained highly protective against severe illness. This protection is mediated through cellular immunity, particularly CD8+ T cells, and lasts at least a few months. Although several studies have documented rapidly waning levels of vaccine-elicited antibodies, the kinetics of T cell responses have not been well defined. Methods Interferon (IFN)-γ enzyme-linked immunosorbent spot (ELISpot) assay and intracellular cytokine staining (ICS) were utilized to assess cellular immune responses (in isolated CD8+ T cells or whole peripheral blood mononuclear cells, PBMCs) to pooled peptides spanning spike. ELISA was performed to quantitate serum antibodies against the spike receptor binding domain (RBD). Results In two persons receiving primary vaccination, tightly serially evaluated frequencies of anti-spike CD8+ T cells using ELISpot assays revealed strikingly short-lived responses, peaking after about 10 days and becoming undetectable by about 20 days after each dose. This pattern was also observed in cross-sectional analyses of persons after the first and second doses during primary vaccination with mRNA vaccines. In contrast, cross-sectional analysis of COVID-19-recovered persons using the same assay showed persisting responses in most persons through 45 days after symptom onset. Cross-sectional analysis using IFN-γ ICS of PBMCs from persons 13 to 235 days after mRNA vaccination also demonstrated undetectable CD8+ T cells against spike soon after vaccination, and extended the observation to include CD4+ T cells. However, ICS analyses of the same PBMCs after culturing with the mRNA-1273 vaccine in vitro showed CD4+ and CD8+ T cell responses that were readily detectable in most persons out to 235 days after vaccination. Discussion Overall, we find that detection of spike-targeted responses from mRNA vaccines using typical IFN-γ assays is remarkably transient, which may be a function of the mRNA vaccine platform and an intrinsic property of the spike protein as an immune target. However, robust memory, as demonstrated by capacity for rapid expansion of T cells responding to spike, is maintained at least several months after vaccination. This is consistent with the clinical observation of vaccine protection from severe illness lasting months. The level of such memory responsiveness required for clinical protection remains to be defined.
Collapse
Affiliation(s)
- Ellie Taus
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Christian Hofmann
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - F Javier Ibarrondo
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Laura S Gong
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Mary Ann Hausner
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Jennifer A Fulcher
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Paul Krogstad
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Scott G Kitchen
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Kathie G Ferbas
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Nicole H Tobin
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Anne W Rimoin
- Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, United States
| | - Grace M Aldrovandi
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Otto O Yang
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States.,Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
227
|
Chen P, Shi X, He W, Zhong G, Tang Y, Wang H, Zhang P. mRNA vaccine-a desirable therapeutic strategy for surmounting COVID-19 pandemic. Hum Vaccin Immunother 2022; 18:2040330. [PMID: 35321627 PMCID: PMC8973374 DOI: 10.1080/21645515.2022.2040330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/24/2022] [Accepted: 02/07/2022] [Indexed: 12/18/2022] Open
Abstract
As an acute respiratory infectious disease, COVID-19 threatens the safety of global public health. Given the current lack of specific treatment against this disease, research and development of vaccines have become sharp weapons for overcoming the pandemic. mRNA vaccines have become the lead in COVID-19 vaccination strategies due to their advantages, such as rapid industrial production and efficacy. A total of 137 COVID-19 vaccines have entered the clinical trial stage, among which 23 are mRNA vaccines, accounting for 17% of the total vaccines. Herein, we summarize the research and developmental processes of mRNA vaccines as well as the approach for protecting the human body against infection. Focusing on the latest clinical trial data of two COVID-19 mRNA vaccines from Pfizer and Modena, we discuss their effectiveness and safety. Finally, we analyze the challenges and problems that mRNA vaccines face in controlling the COVID-19 pandemic.
Collapse
Affiliation(s)
- Peixian Chen
- Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, Peopleʻs Republic of China
| | - Xiaoye Shi
- Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, Peopleʻs Republic of China
| | - Weixin He
- Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, No, Guangzhou, Guangdong, Peopleʻs Republic of China
| | - Guowei Zhong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, Peopleʻs Republic of China
| | - Yan Tang
- Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, Peopleʻs Republic of China
| | - Hailin Wang
- Department of Cardiology, Heart Center, Peopleʻs Hospital of Guangning County, Zhaoqing City, Guangdong, Peopleʻs Republic of China
| | - Peidong Zhang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, Peopleʻs Republic of China
| |
Collapse
|
228
|
Wan EYF, Mok AHY, Yan VKC, Chan CIY, Wang B, Lai FTT, Chui CSL, Li X, Wong CKH, Lau CS, Wong ICK, Chan EWY. Effectiveness of BNT162b2 and CoronaVac vaccinations against SARS-CoV-2 omicron infection in people aged 60 years or above: a case-control study. J Travel Med 2022; 29:6761907. [PMID: 36250571 PMCID: PMC9619717 DOI: 10.1093/jtm/taac119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND In view of limited evidence that specifically addresses vaccine effectiveness (VE) in the older population, this study aims to evaluate the real-world effectiveness of BNT162b2 and CoronaVac in older adults during the Omicron BA.2 outbreak. METHODS This case-control study analyzed data available between January and March 2022 from the electronic health databases in Hong Kong and enrolled individuals aged 60 or above. Each case was matched with up to 10 controls by age, sex, index date and Charlson Comorbidity Index for the four outcomes (COVID-19 infection, COVID-19-related hospitalization, severe complications, and all-cause mortality) independently. Conditional logistic regression was conducted to evaluate VE of BNT162b2 and CoronaVac against COVID-19-related outcomes within 28 days after COVID-19 infection among participants stratified by age groups (60-79, ≥80 years old). RESULTS A dose-response relationship between the number of vaccine doses received and protection against severe or fatal disease was observed. Highest VE (95% CI) against COVID-19 infection was observed in individuals aged ≥80 who received three doses of BNT162b2 [75.5% (73.1-77.7%)] or three doses of CoronaVac [53.9% (51.0-56.5%)] compared to those in the younger age group who received three doses of BNT162b2 [51.1% (49.9-52.4%)] or three doses of CoronaVac [2.0% (-0.1-4.1%)]. VE (95% CI) was higher for other outcomes, reaching 91.9% (89.4-93.8%) and 86.7% (84.3-88.8%) against COVID-19-related hospitalization; 85.8% (61.2-94.8%) and 89.8% (72.4-96.3%) against COVID-19-related severe complications; and 96.4% (92.9-98.2%) and 95.0% (92.1-96.8%) against COVID-19-related mortality after three doses of BNT162b2 and CoronaVac in older vaccine recipients, respectively. A similar dose-response relationship was established in younger vaccine recipients and after stratification by sex and Charlson Comorbidity Index. CONCLUSION Both BNT162b2 and CoronaVac vaccination were effective in protecting older adults against COVID-19 infection and COVID-19-related severe outcomes amidst the Omicron BA.2 pandemic, and VE increased further with the third dose.
Collapse
Affiliation(s)
- Eric Yuk Fai Wan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, Centre for Safe Medication Practice and Research, The University of Hong Kong, Hong Kong Special Administrative Region, China.,Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China.,Department of Family Medicine and Primary Care, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Anna Hoi Ying Mok
- Department of Family Medicine and Primary Care, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Vincent Ka Chun Yan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, Centre for Safe Medication Practice and Research, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Cheyenne I Ying Chan
- Department of Family Medicine and Primary Care, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Boyuan Wang
- Department of Family Medicine and Primary Care, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Francisco Tsz Tsun Lai
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, Centre for Safe Medication Practice and Research, The University of Hong Kong, Hong Kong Special Administrative Region, China.,Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Celine Sze Ling Chui
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China.,School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.,School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xue Li
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, Centre for Safe Medication Practice and Research, The University of Hong Kong, Hong Kong Special Administrative Region, China.,Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China.,Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Carlos King Ho Wong
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, Centre for Safe Medication Practice and Research, The University of Hong Kong, Hong Kong Special Administrative Region, China.,Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China.,Department of Family Medicine and Primary Care, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Chak Sing Lau
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Ian Chi Kei Wong
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, Centre for Safe Medication Practice and Research, The University of Hong Kong, Hong Kong Special Administrative Region, China.,Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China.,Research Department of Practice and Policy, School of Pharmacy, University College London, London, UK.,Aston Pharmacy School, Aston University, Birmingham, UK.,Department of Pharmacy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Esther Wai Yin Chan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, Centre for Safe Medication Practice and Research, The University of Hong Kong, Hong Kong Special Administrative Region, China.,Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China.,Department of Pharmacy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.,The University of Hong Kong Shenzhen Institute of Research and Innovation, Shenzhen, China
| |
Collapse
|
229
|
Brook B, Fatou B, Kumar Checkervarty A, Barman S, Sweitzer C, Bosco AN, Sherman AC, Baden LR, Morrocchi E, Sanchez-Schmitz G, Palma P, Nanishi E, O'Meara TR, McGrath ME, Frieman MB, Soni D, van Haren SD, Ozonoff A, Diray-Arce J, Steen H, Dowling DJ, Levy O. The mRNA vaccine BNT162b2 demonstrates impaired T H1 immunogenicity in human elders in vitro and aged mice in vivo. RESEARCH SQUARE 2022:rs.3.rs-2395118. [PMID: 36597547 PMCID: PMC9810224 DOI: 10.21203/rs.3.rs-2395118/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
mRNA vaccines have been key to addressing the SARS-CoV-2 pandemic but have impaired immunogenicity and durability in vulnerable older populations. We evaluated the mRNA vaccine BNT162b2 in human in vitro whole blood assays with supernatants from adult (18-50 years) and elder (≥60 years) participants measured by mass spectrometry and proximity extension assay proteomics. BNT162b2 induced increased expression of soluble proteins in adult blood (e.g., C1S, PSMC6, CPN1), but demonstrated reduced proteins in elder blood (e.g., TPM4, APOF, APOC2, CPN1, and PI16), including 30-85% lower induction of TH1-polarizing cytokines and chemokines (e.g., IFNγ, and CXCL10). Elder TH1 impairment was validated in mice in vivo and associated with impaired humoral and cellular immunogenicity. Our study demonstrates the utility of a human in vitro platform to model age-specific mRNA vaccine activity, highlights impaired TH1 immunogenicity in older adults, and provides rationale for developing enhanced mRNA vaccines with greater immunogenicity in vulnerable populations.
Collapse
Affiliation(s)
- Byron Brook
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Benoit Fatou
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Abhinav Kumar Checkervarty
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Prevention of Organ Failure (PROOF) Centre of Excellence, St Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
- UBC Centre for Heart Lung Innovation, Providence Research, St Paul's Hospital, Vancouver, BC, Canada
| | - Soumik Barman
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Cali Sweitzer
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Anna-Nicole Bosco
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Amy C Sherman
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Lindsey R Baden
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Elena Morrocchi
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Guzman Sanchez-Schmitz
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Paolo Palma
- Bambino Gesù Children's Hospital, Rome, Italy
- Chair of Pediatrics, University of Rome, Tor Vergata, Italy
| | - Etsuro Nanishi
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Timothy R O'Meara
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Marisa E McGrath
- Center for Pathogen Research, Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matthew B Frieman
- Center for Pathogen Research, Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dheeraj Soni
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Simon D van Haren
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Al Ozonoff
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Joann Diray-Arce
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Hanno Steen
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - David J Dowling
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT & Harvard, Cambridge, MA, USA
| |
Collapse
|
230
|
Kutikuppala LVS, Kandi V, Sarangi AK, Mishra S, Mohapatra RK. COVID-19 Era and the Constantly Reemerging Novel SARS-CoV-2 Variants Calls for Special Attention for the Geriatrics: A Real Challenge. Geriatrics (Basel) 2022; 7:geriatrics7060143. [PMID: 36547279 PMCID: PMC9778067 DOI: 10.3390/geriatrics7060143] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Global public health is significantly challenged due to the continuing COrona VIrus Disease 2019 (COVID-19) outbreak brought forth by the severe Acute Respiratory Syndrome Corona Virus-2 (SARS-CoV-2) [...].
Collapse
Affiliation(s)
| | - Venkataramana Kandi
- Department of Microbiology, Prathima Institute of Medical Sciences, Karimnagar 505417, Telangana, India
- Correspondence: (V.K.); (R.K.M.)
| | - Ashish K. Sarangi
- Department of Chemistry, School of Applied Sciences, Centurion University of Technology and Management, Balangir Campus, Parlakhemundi 767001, Odisha, India
| | - Snehasish Mishra
- School of Biotechnology, Campus-11, KIIT Deemed-to-be-University, Bhubaneswar 751024, Odisha, India
| | - Ranjan K. Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar 758002, Odisha, India
- Correspondence: (V.K.); (R.K.M.)
| |
Collapse
|
231
|
Planas D, Staropoli I, Porot F, Guivel-Benhassine F, Handala L, Prot M, Bolland WH, Puech J, Péré H, Veyer D, Sève A, Simon-Lorière E, Bruel T, Prazuck T, Stefic K, Hocqueloux L, Schwartz O. Duration of BA.5 neutralization in sera and nasal swabs from SARS-CoV-2 vaccinated individuals, with or without omicron breakthrough infection. MED 2022; 3:838-847.e3. [PMID: 36228619 PMCID: PMC9533668 DOI: 10.1016/j.medj.2022.09.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Since early 2022, Omicron BA.1 has been eclipsed by BA.2, which was in turn outcompeted by BA.5, which displays enhanced antibody escape properties. METHODS Here, we evaluated the duration of the neutralizing antibody (Nab) response, up to 18 months after Pfizer BNT162b2 vaccination, in individuals with or without BA.1/BA.2 breakthrough infection. We measured neutralization of the ancestral D614G lineage, Delta, and Omicron BA.1, BA.2, and BA.5 variants in 300 sera and 35 nasal swabs from 27 individuals. FINDINGS Upon vaccination, serum Nab titers were decreased by 10-, 15-, and 25-fold for BA.1, BA.2, and BA.5, respectively, compared with D614G. We estimated that, after boosting, the duration of neutralization was markedly shortened from 11.5 months with D614G to 5.5 months with BA.5. After breakthrough, we observed a sharp increase of Nabs against Omicron subvariants, followed by a plateau and a slow decline after 5-6 months. In nasal swabs, infection, but not vaccination, triggered a strong immunoglobulin A (IgA) response and a detectable Omicron-neutralizing activity. CONCLUSIONS BA.5 spread is partly due to abbreviated vaccine efficacy, particularly in individuals who were not infected with previous Omicron variants. FUNDING Work in O.S.'s laboratory is funded by the Institut Pasteur, Urgence COVID-19 Fundraising Campaign of Institut Pasteur, Fondation pour la Recherche Médicale (FRM), ANRS, the Vaccine Research Institute (ANR-10-LABX-77), Labex IBEID (ANR-10-LABX-62-IBEID), ANR/FRM Flash Covid PROTEO-SARS-CoV-2, ANR Coronamito, and IDISCOVR, Laboratoire d'Excellence 'Integrative Biology of Emerging Infectious Diseases' (grant no. ANR-10-LABX-62-IBEID), HERA european funding and the NIH PICREID (grant no U01AI151758).
Collapse
Affiliation(s)
- Delphine Planas
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France; Vaccine Research Institute, Créteil, France.
| | - Isabelle Staropoli
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Françoise Porot
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | | | - Lynda Handala
- INSERM U1259, Université de Tours, Tours, France; CHRU de Tours, National Reference Center for HIV-Associated Laboratory, Tours, France
| | - Matthieu Prot
- G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Université Paris Cité, Paris, France
| | - William-Henry Bolland
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France; École Doctorale BioSPC 562, Université de Paris, Paris, France
| | - Julien Puech
- Laboratoire de Virologie, Service de Microbiologie, Hôpital Européen Georges Pompidou, Paris, France
| | - Hélène Péré
- Laboratoire de Virologie, Service de Microbiologie, Hôpital Européen Georges Pompidou, Paris, France; Functional Genomics of Solid Tumors (FunGeST), Centre de Recherche des Cordelier, INSERM, Université de Paris, Sorbonne Université, Paris, France
| | - David Veyer
- Laboratoire de Virologie, Service de Microbiologie, Hôpital Européen Georges Pompidou, Paris, France; Functional Genomics of Solid Tumors (FunGeST), Centre de Recherche des Cordelier, INSERM, Université de Paris, Sorbonne Université, Paris, France
| | - Aymeric Sève
- Service de Maladies Infectieuses, CHR d'Orléans, Orléans, France
| | - Etienne Simon-Lorière
- G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Université Paris Cité, Paris, France
| | - Timothée Bruel
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France; Vaccine Research Institute, Créteil, France
| | - Thierry Prazuck
- Service de Maladies Infectieuses, CHR d'Orléans, Orléans, France
| | - Karl Stefic
- INSERM U1259, Université de Tours, Tours, France; CHRU de Tours, National Reference Center for HIV-Associated Laboratory, Tours, France
| | | | - Olivier Schwartz
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France; Vaccine Research Institute, Créteil, France.
| |
Collapse
|
232
|
Pozo-Balado MDM, Bulnes-Ramos Á, Garrido-Rodríguez V, Olivas-Martínez I, Lozano C, González-Escribano MF, Leal M, Pacheco YM. Longitudinal age differences in humoral responses to the COVID-19 vaccine in the elderly are lost after the third dose. J Infect 2022; 86:154-225. [PMID: 36503017 PMCID: PMC9729577 DOI: 10.1016/j.jinf.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Affiliation(s)
- María del Mar Pozo-Balado
- Clinic Unit of Clinic Laboratories, Immunology Laboratory, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital (HUVR)/CSIC/University of Seville, Ave. Manuel Siurot s/n, 41013, Seville, Spain
| | - Ángel Bulnes-Ramos
- Clinic Unit of Clinic Laboratories, Immunology Laboratory, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital (HUVR)/CSIC/University of Seville, Ave. Manuel Siurot s/n, 41013, Seville, Spain
| | - Vanesa Garrido-Rodríguez
- Clinic Unit of Clinic Laboratories, Immunology Laboratory, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital (HUVR)/CSIC/University of Seville, Ave. Manuel Siurot s/n, 41013, Seville, Spain
| | - Israel Olivas-Martínez
- Clinic Unit of Clinic Laboratories, Immunology Laboratory, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital (HUVR)/CSIC/University of Seville, Ave. Manuel Siurot s/n, 41013, Seville, Spain
| | - Carmen Lozano
- Microbiology Service, Virgen del Rocío University Hospital (HUVR), Seville, Spain
| | - María Francisca González-Escribano
- Clinic Unit of Clinic Laboratories, Immunology Laboratory, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital (HUVR)/CSIC/University of Seville, Ave. Manuel Siurot s/n, 41013, Seville, Spain,Immunology Service, Virgen del Rocío University Hospital (HUVR), Seville, Spain
| | - Manuel Leal
- Immunovirology Unit, Internal Medicine Service, Viamed Hospital, Santa Ángela de la Cruz, Seville, Spain,Hogar Residencia de la Santa Caridad, Seville, Spain
| | - Yolanda M Pacheco
- Clinic Unit of Clinic Laboratories, Immunology Laboratory, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital (HUVR)/CSIC/University of Seville, Ave. Manuel Siurot s/n, 41013, Seville, Spain.
| |
Collapse
|
233
|
Geers D, Sablerolles RS, van Baarle D, Kootstra NA, Rietdijk WJ, Schmitz KS, Gommers L, Bogers S, Nieuwkoop NJ, van Dijk LL, van Haren E, Lafeber M, Dalm VA, Goorhuis A, Postma DF, Visser LG, Huckriede AL, Sette A, Grifoni A, de Swart RL, Koopmans MP, van der Kuy PHM, GeurtsvanKessel CH, de Vries RD, SWITCH research group. Ad26.COV2.S priming provided a solid immunological base for mRNA-based COVID-19 booster vaccination. iScience 2022; 26:105753. [PMID: 36507223 PMCID: PMC9726653 DOI: 10.1016/j.isci.2022.105753] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/10/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
The emergence of novel SARS-CoV-2 variants led to the recommendation of booster vaccinations after Ad26.COV2.S priming. It was previously shown that heterologous booster vaccination induces high antibody levels, but how heterologous boosters affect other functional aspects of the immune response remained unknown. Here, we performed immunological profiling of Ad26.COV2.S-primed individuals before and after homologous or heterologous (mRNA-1273 or BNT162b2) booster. Booster vaccinations increased functional antibodies targeting ancestral SARS-CoV-2 and emerging variants. Especially heterologous booster vaccinations induced high levels of functional antibodies. In contrast, T-cell responses were similar in magnitude following homologous or heterologous booster vaccination and retained cross-reactivity towards variants. Booster vaccination led to a minimal expansion of SARS-CoV-2-specific T-cell clones and no increase in the breadth of the T-cell repertoire. In conclusion, we show that Ad26.COV2.S priming vaccination provided a solid immunological base for heterologous boosting, increasing humoral and cellular responses targeting emerging variants of concern.
Collapse
Affiliation(s)
- Daryl Geers
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Debbie van Baarle
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands,Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Neeltje A. Kootstra
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, the Netherlands
| | - Wim J.R. Rietdijk
- Department of Hospital Pharmacy, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Lennert Gommers
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Susanne Bogers
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Nella J. Nieuwkoop
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Laura L.A. van Dijk
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Eva van Haren
- Department of Hospital Pharmacy, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Melvin Lafeber
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Virgil A.S.H. Dalm
- Department of Internal Medicine, Division of Allergy & Clinical Immunology and Department of Immunology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Abraham Goorhuis
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centers, Amsterdam, the Netherlands,Infection & Immunity, Amsterdam Public Health, University of Amsterdam, Amsterdam, the Netherlands
| | - Douwe F. Postma
- Department of Internal Medicine and Infectious Diseases, University Medical Center Groningen, Groningen, the Netherlands
| | - Leo G. Visser
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Anke L.W. Huckriede
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA,Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, La Jolla, CA, USA
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
| | - Rik L. de Swart
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | | | | | - Rory D. de Vries
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands,Corresponding author
| | | |
Collapse
|
234
|
O’Meara TR, Nanishi E, McGrath ME, Barman S, Dong D, Dillen C, Menon M, Seo HS, Dhe-Paganon S, Ernst RK, Levy O, Frieman MB, Dowling DJ. Reduced SARS-CoV-2 mRNA vaccine immunogenicity and protection in mice with diet-induced obesity and insulin resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.12.07.519460. [PMID: 36523401 PMCID: PMC9753785 DOI: 10.1101/2022.12.07.519460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Background Obesity and Type 2 Diabetes Mellitus (T2DM) are associated with an increased risk of severe outcomes from infectious diseases, including COVID-19. These conditions are also associated with distinct responses to immunization, including an impaired response to widely used SARS-CoV-2 mRNA vaccines. Objective To establish a connection between reduced immunization efficacy via modeling the effects of metabolic diseases on vaccine immunogenicity that is essential for the development of more effective vaccines for this distinct vulnerable population. Methods We utilized a murine model of diet-induced obesity and insulin resistance to model the effects of comorbid T2DM and obesity on vaccine immunogenicity and protection. Results Mice fed a high-fat diet (HFD) developed obesity, hyperinsulinemia, and glucose intolerance. Relative to mice fed a normal diet (ND), HFD mice vaccinated with a SARS-CoV-2 mRNA vaccine exhibited significantly lower anti-spike IgG titers, predominantly in the IgG2c subclass, associated with a lower type 1 response, along with a 3.83-fold decrease in neutralizing titers. Furthermore, enhanced vaccine-induced spike-specific CD8 + T cell activation and protection from lung infection against SARS-CoV-2 challenge were seen only in ND mice but not in HFD mice. Conclusion We demonstrate impaired immunity following SARS-CoV-2 mRNA immunization in a murine model of comorbid T2DM and obesity, supporting the need for further research into the basis for impaired anti-SARS-CoV-2 immunity in T2DM and investigation of novel approaches to enhance vaccine immunogenicity among those with metabolic diseases. Capsule summary Obesity and type 2 diabetes impair SARS-CoV-2 mRNA vaccine efficacy in a murine model.
Collapse
Affiliation(s)
- Timothy R. O’Meara
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
| | - Etsuro Nanishi
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA 02115
| | - Marisa E. McGrath
- Center for Pathogen Research, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA 21201
| | - Soumik Barman
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA 02115
| | - Danica Dong
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
| | - Carly Dillen
- Center for Pathogen Research, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA 21201
| | - Manisha Menon
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA 02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA 02115
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA 02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA 02115
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD, USA 21201
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA 02115
- Broad Institute of MIT & Harvard, Cambridge, MA, USA 02142
| | - Matthew B. Frieman
- Center for Pathogen Research, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA 21201
| | - David J. Dowling
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA 02115
| |
Collapse
|
235
|
Nilles EJ, Paulino CT, de St Aubin M, Restrepo AC, Mayfield H, Dumas D, Finch E, Garnier S, Etienne MC, Iselin L, Duke W, Jarolim P, Oasan T, Yu J, Wan H, Peña F, Iihoshi N, Abdalla G, Lopez B, Cruz LDL, Henríquez B, Espinosa-Bode A, Puello YC, Durski K, Baldwin M, Baez AA, Merchant RC, Barouch DH, Skewes-Ramm R, Gutiérrez EZ, Kucharski A, Lau CL. SARS-CoV-2 seroprevalence, cumulative infections, and immunity to symptomatic infection - A multistage national household survey and modelling study, Dominican Republic, June-October 2021. LANCET REGIONAL HEALTH. AMERICAS 2022; 16:100390. [PMID: 36408529 PMCID: PMC9642112 DOI: 10.1016/j.lana.2022.100390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/26/2022] [Accepted: 10/19/2022] [Indexed: 11/10/2022]
Abstract
Background Population-level SARS-CoV-2 immunological protection is poorly understood but can guide vaccination and non-pharmaceutical intervention priorities. Our objective was to characterise cumulative infections and immunological protection in the Dominican Republic. Methods Household members ≥5 years were enrolled in a three-stage national household cluster serosurvey in the Dominican Republic. We measured pan-immunoglobulin antibodies against the SARS-CoV-2 spike (anti-S) and nucleocapsid glycoproteins, and pseudovirus neutralising activity against the ancestral and B.1.617.2 (Delta) strains. Seroprevalence and cumulative prior infections were weighted and adjusted for assay performance and seroreversion. Binary classification machine learning methods and pseudovirus neutralising correlates of protection were used to estimate 50% and 80% protection against symptomatic infection. Findings Between 30 Jun and 12 Oct 2021 we enrolled 6683 individuals from 3832 households. We estimate that 85.0% (CI 82.1-88.0) of the ≥5 years population had been immunologically exposed and 77.5% (CI 71.3-83) had been previously infected. Protective immunity sufficient to provide at least 50% protection against symptomatic SARS-CoV-2 infection was estimated in 78.1% (CI 74.3-82) and 66.3% (CI 62.8-70) of the population for the ancestral and Delta strains respectively. Younger (5-14 years, OR 0.47 [CI 0.36-0.61]) and older (≥75-years, 0.40 [CI 0.28-0.56]) age, working outdoors (0.53 [0.39-0.73]), smoking (0.66 [0.52-0.84]), urban setting (1.30 [1.14-1.49]), and three vs no vaccine doses (18.41 [10.69-35.04]) were associated with 50% protection against the ancestral strain. Interpretation Cumulative infections substantially exceeded prior estimates and overall immunological exposure was high. After controlling for confounders, markedly lower immunological protection was observed to the ancestral and Delta strains across certain subgroups, findings that can guide public health interventions and may be generalisable to other settings and viral strains. Funding This study was funded by the US CDC.
Collapse
Affiliation(s)
- Eric J Nilles
- Division of Global Emergency Care and Humanitarian Studies, Brigham and Womens Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Infectious Diseases and Epidemics Program, Harvard Humanitarian Initiative, Cambridge, MA, USA
| | | | - Michael de St Aubin
- Division of Global Emergency Care and Humanitarian Studies, Brigham and Womens Hospital, Boston, MA, USA.,Infectious Diseases and Epidemics Program, Harvard Humanitarian Initiative, Cambridge, MA, USA
| | | | - Helen Mayfield
- School of Public Health, University of Queensland, Brisbane, Australia
| | - Devan Dumas
- Division of Global Emergency Care and Humanitarian Studies, Brigham and Womens Hospital, Boston, MA, USA.,Infectious Diseases and Epidemics Program, Harvard Humanitarian Initiative, Cambridge, MA, USA
| | - Emilie Finch
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Salome Garnier
- Division of Global Emergency Care and Humanitarian Studies, Brigham and Womens Hospital, Boston, MA, USA.,Infectious Diseases and Epidemics Program, Harvard Humanitarian Initiative, Cambridge, MA, USA.,Harvard University, Cambridge, MA, USA
| | - Marie Caroline Etienne
- Division of Global Emergency Care and Humanitarian Studies, Brigham and Womens Hospital, Boston, MA, USA
| | | | - William Duke
- Pedro Henríquez Ureña National University, Santo Domingo, Dominican Republic
| | - Petr Jarolim
- Division of Global Emergency Care and Humanitarian Studies, Brigham and Womens Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Timothy Oasan
- Division of Global Emergency Care and Humanitarian Studies, Brigham and Womens Hospital, Boston, MA, USA
| | - Jingyou Yu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Huahua Wan
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Farah Peña
- Ministry of Health and Social Assistance, Santo Domingo, Dominican Republic
| | - Naomi Iihoshi
- Division of Global Emergency Care and Humanitarian Studies, Brigham and Womens Hospital, Boston, MA, USA
| | - Gabriela Abdalla
- Division of Global Emergency Care and Humanitarian Studies, Brigham and Womens Hospital, Boston, MA, USA
| | - Beatriz Lopez
- Centers for Disease Control and Prevention, Central America Regional Office, Guatemala City, Guatemala
| | - Lucia de la Cruz
- Ministry of Health and Social Assistance, Santo Domingo, Dominican Republic
| | - Bernarda Henríquez
- Ministry of Health and Social Assistance, Santo Domingo, Dominican Republic
| | - Andres Espinosa-Bode
- Centers for Disease Control and Prevention, Central America Regional Office, Guatemala City, Guatemala
| | | | - Kara Durski
- Division of Global Emergency Care and Humanitarian Studies, Brigham and Womens Hospital, Boston, MA, USA
| | - Margaret Baldwin
- Division of Global Emergency Care and Humanitarian Studies, Brigham and Womens Hospital, Boston, MA, USA.,Infectious Diseases and Epidemics Program, Harvard Humanitarian Initiative, Cambridge, MA, USA
| | - Amado Alejandro Baez
- Ministry of Health and Social Assistance, Santo Domingo, Dominican Republic.,Pedro Henríquez Ureña National University, Santo Domingo, Dominican Republic
| | - Roland C Merchant
- Department of Emergency Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ronald Skewes-Ramm
- Ministry of Health and Social Assistance, Santo Domingo, Dominican Republic
| | - Emily Zielinski Gutiérrez
- Centers for Disease Control and Prevention, Central America Regional Office, Guatemala City, Guatemala
| | - Adam Kucharski
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Colleen L Lau
- School of Public Health, University of Queensland, Brisbane, Australia
| |
Collapse
|
236
|
Picard E, Armstrong S, Andrew MK, Haynes L, Loeb M, Pawelec G, Kuchel GA, McElhaney JE, Verschoor CP. Markers of systemic inflammation are positively associated with influenza vaccine antibody responses with a possible role for ILT2(+)CD57(+) NK-cells. Immun Ageing 2022; 19:26. [PMID: 35619117 PMCID: PMC9134679 DOI: 10.1186/s12979-022-00284-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/15/2022] [Indexed: 02/06/2023]
Abstract
Background With increasing age, overall health declines while systemic levels of inflammatory mediators tend to increase. Although the underlying mechanisms are poorly understood, there is a wealth of data suggesting that this so-called “inflammaging” contributes to the risk of adverse outcomes in older adults. We sought to determine whether markers of systemic inflammation were associated with antibody responses to the seasonal influenza vaccine. Results Over four seasons, hemagglutination inhibition antibody titres and ex vivo bulk peripheral blood mononuclear cell (PBMC) responses to live influenza viruses assessed via interferon (IFN)-γ/interleukin (IL)-10 production, were measured pre- and 4-weeks post-vaccination in young adults (n = 79) and older adults randomized to standard- or high-dose inactivated vaccine (n = 612). Circulating tumour necrosis factor (TNF), interleukin (IL)-6 and C-reactive protein (CRP) were also measured pre-vaccination. Post-vaccination antibody titres were significantly associated with systemic inflammatory levels; specifically, IL-6 was positively associated with A/H3N2 titres in young adults (Cohen’s d = 0.36), and in older high-dose, but not standard-dose recipients, all systemic inflammatory mediators were positively associated with A/H1N1, A/H3N2 and B titres (d = 0.10–0.45). We further show that the frequency of ILT2(+)CD57(+) CD56-Dim natural killer (NK)-cells was positively associated with both plasma IL-6 and post-vaccination A/H3N2 titres in a follow-up cohort of older high-dose recipients (n = 63). Pathway analysis suggested that ILT2(+)CD57(+) Dim NK-cells mediated 40% of the association between IL-6 and A/H3N2 titres, which may be related to underlying participant frailty. Conclusions In summary, our data suggest a complex relationship amongst influenza vaccine responses, systemic inflammation and NK-cell phenotype in older adults, which depends heavily on age, vaccine dose and possibly overall health status. While our results suggest that “inflammaging” may increase vaccine immunogenicity in older adults, it is yet to be determined whether this enhancement contributes to improved protection against influenza disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12979-022-00284-x.
Collapse
|
237
|
Depression, aging, and immunity: implications for COVID-19 vaccine immunogenicity. Immun Ageing 2022; 19:32. [PMID: 35836263 PMCID: PMC9281075 DOI: 10.1186/s12979-022-00288-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/06/2022] [Indexed: 11/26/2022]
Abstract
The aging process can have detrimental effects on the immune system rendering the elderly more susceptible to infectious disease and less responsive to vaccination. Major depressive disorder (MDD) has been hypothesized to show characteristics of accelerated biological aging. This raises the possibility that depressed individuals will show some overlap with elderly populations with respect to their immune response to infection and vaccination. Here we provide an umbrella review of this literature in the context of the SARS CoV-2 pandemic. On balance, the available data do indeed suggest that depression is a risk factor for both adverse outcomes following COVID-19 infection and for reduced COVID-19 vaccine immunogenicity. We conclude that MDD (and other major psychiatric disorders) should be recognized as vulnerable populations that receive priority for vaccination along with other at-risk groups.
Collapse
|
238
|
Hafızoğlu M, Bas AO, Tavukçuoğlu E, Sahiner Z, Oytun MG, Ulutürk S, Yanık H, Doğu BB, Cankurtaran M, Esendağlı G, Akbıyık F, Çakır B, Ünal S, Halil MG. Memory T cell responses in seronegative older adults following SARS-CoV-2 vaccination. CLINICAL IMMUNOLOGY COMMUNICATIONS 2022; 2:154-158. [PMID: 38013969 PMCID: PMC9529214 DOI: 10.1016/j.clicom.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
Abstract
Generating memory T cell responses besides humoral immune responses is essential when it comes to the efficacy of a vaccine. In this study, the presence of memory T cell responses after aluminum-adjuvanted inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac) in seronegative and seropositive elderly individuals were examined. CD4+ and CD8+ memory T cell proliferation and IFN-γ production capacities were evaluated. Additionally, clinical frailty scale (CFS) and FRAIL scales of the individuals were scored. CD4+ memory T cell responses more prominent than CD8+ memory T cells. In seronegative individuals, 80% of them had memory CD4+ and IFN-γ, whereas 50% of them had memory CD4+ and all of them had IFN-γ responses. Additionally, 40% of seronegative patients and 50% of seropositive patients had memory CD8+ responses. To sum up, humoral immune responses are not associated with memory T cell responses, and in seronegative individuals, memory T cell responses can be detected.
Collapse
Affiliation(s)
- Merve Hafızoğlu
- Department of Internal Medicine, Division of Geriatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Arzu Okyar Bas
- Department of Internal Medicine, Division of Geriatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ece Tavukçuoğlu
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Zeynep Sahiner
- Department of Internal Medicine, Division of Geriatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Merve Güner Oytun
- Department of Internal Medicine, Division of Geriatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Sıla Ulutürk
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Hamdullah Yanık
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Burcu Balam Doğu
- Department of Internal Medicine, Division of Geriatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Mustafa Cankurtaran
- Department of Internal Medicine, Division of Geriatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Güneş Esendağlı
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Filiz Akbıyık
- Ankara City Hospital Siemens Healthineers Laboratory, Enterprise Services & Solutions, Ankara, Turkey
| | - Banu Çakır
- Department of Public Health, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Serhat Ünal
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Meltem Gülhan Halil
- Department of Internal Medicine, Division of Geriatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
239
|
Deng L, Li P, Zhang X, Jiang Q, Turner D, Zhou C, Gao Y, Qian F, Zhang C, Lu H, Zou H, Vermund SH, Qian HZ. Risk of SARS-CoV-2 reinfection: a systematic review and meta-analysis. Sci Rep 2022; 12:20763. [PMID: 36456577 PMCID: PMC9714387 DOI: 10.1038/s41598-022-24220-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 11/11/2022] [Indexed: 12/02/2022] Open
Abstract
This meta-analysis aims to synthesize global evidence on the risk of reinfection among people previously infected with SARS-CoV-2. We systematically searched PubMed, Scopus, Embase and Web of Science as of April 5, 2021. We conducted: (1) meta-analysis of cohort studies containing data sufficient for calculating the incidence rate of SARS-CoV-2 reinfection; (2) systematic review of case reports with confirmed SARS-CoV-2 reinfection cases. The reinfection incidence was pooled by zero-inflated beta distribution. The hazard ratio (HR) between reinfection incidence among previously infected individuals and new infection incidence among infection-naïve individuals was calculated using random-effects models. Of 906 records retrieved and reviewed, 11 studies and 11 case reports were included in the meta-analysis and the systematic review, respectively. The pooled SARS-CoV-2 reinfection incidence rate was 0.70 (standard deviation [SD] 0.33) per 10,000 person-days. The incidence of reinfection was lower than the incidence of new infection (HR = 0.12, 95% confidence interval 0.09-0.17). Our meta-analysis of studies conducted prior to the emergency of the more transmissible Omicron variant showed that people with a prior SARS-CoV-2 infection could be re-infected, and they have a lower risk of infection than those without prior infection. Continuing reviews are needed as the reinfection risk may change due to the rapid evolution of SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Luojia Deng
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Peiqi Li
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuezhixing Zhang
- Yale School of Public Health, Yale University, 300 George Street, New Haven, CT, USA
| | - Qianxue Jiang
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | | | - Chao Zhou
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanxiao Gao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Frank Qian
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ci Zhang
- Xiangya Nursing School, Central South University, Changsha, China
| | - Hui Lu
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Huachun Zou
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Sten H Vermund
- Yale School of Public Health, Yale University, 300 George Street, New Haven, CT, USA
| | - Han-Zhu Qian
- Yale School of Public Health, Yale University, 300 George Street, New Haven, CT, USA.
- GSK plc, Rockville, MD, USA.
| |
Collapse
|
240
|
Chen J, Deng JC, Goldstein DR. How aging impacts vaccine efficacy: known molecular and cellular mechanisms and future directions. Trends Mol Med 2022; 28:1100-1111. [PMID: 36216643 PMCID: PMC9691569 DOI: 10.1016/j.molmed.2022.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 01/26/2023]
Abstract
Aging leads to a gradual dysregulation of immune functions, one consequence of which is reduced vaccine efficacy. In this review, we discuss several key contributing factors to the age-related decline in vaccine efficacy, such as alterations within the lymph nodes where germinal center (GC) reactions take place, alterations in the B cell compartment, alterations in the T cell compartment, and dysregulation of innate immune pathways. Additionally, we discuss several methods currently used in vaccine development to bolster vaccine efficacy in older adults. This review highlights the multifactorial defects that impair vaccine responses with aging.
Collapse
Affiliation(s)
- Judy Chen
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jane C Deng
- Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA; Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - Daniel R Goldstein
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
241
|
Chen Q, Zhu K, Liu X, Zhuang C, Huang X, Huang Y, Yao X, Quan J, Lin H, Huang S, Su Y, Wu T, Zhang J, Xia N. The Protection of Naturally Acquired Antibodies Against Subsequent SARS-CoV-2 Infection: A Systematic Review and Meta-Analysis. Emerg Microbes Infect 2022; 11:793-803. [PMID: 35195494 PMCID: PMC8920404 DOI: 10.1080/22221751.2022.2046446] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/21/2022] [Indexed: 01/18/2023]
Abstract
The specific antibodies induced by SARS-CoV-2 infection may provide protection against a subsequent infection. However, the efficacy and duration of protection provided by naturally acquired immunity against subsequent SARS-CoV-2 infection remain controversial. We systematically searched for the literature describing COVID-19 reinfection published before 07 February 2022. The outcomes were the pooled incidence rate ratio (IRR) for estimating the risk of subsequent infection. The Newcastle-Ottawa Scale (NOS) was used to assess the quality of the included studies. Statistical analyses were conducted using the R programming language 4.0.2. We identified 19 eligible studies including more than 3.5 million individuals without the history of COVID-19 vaccination. The efficacy of naturally acquired antibodies against reinfection was estimated at 84% (pooled IRR = 0.16, 95% CI: 0.14-0.18), with higher efficacy against symptomatic COVID-19 cases (pooled IRR = 0.09, 95% CI = 0.07-0.12) than asymptomatic infection (pooled IRR = 0.28, 95% CI = 0.14-0.54). In the subgroup analyses, the pooled IRRs of COVID-19 infection in health care workers (HCWs) and the general population were 0.22 (95% CI = 0.16-0.31) and 0.14 (95% CI = 0.12-0.17), respectively, with a significant difference (P = 0.02), and those in older (over 60 years) and younger (under 60 years) populations were 0.26 (95% CI = 0.15-0.48) and 0.16 (95% CI = 0.14-0.19), respectively. The risk of subsequent infection in the seropositive population appeared to increase slowly over time. In conclusion, naturally acquired antibodies against SARS-CoV-2 can significantly reduce the risk of subsequent infection, with a protection efficacy of 84%.Registration number: CRD42021286222.
Collapse
Affiliation(s)
- Qi Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Kongxin Zhu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Xiaohui Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Chunlan Zhuang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Xingcheng Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Yue Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Xingmei Yao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Jiali Quan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Hongyan Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Shoujie Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Yingying Su
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Ting Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
- The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen City, Fujian Province, People's Republic of China
| |
Collapse
|
242
|
Campagna R, Mazzuti L, Guerrizio G, Nonne C, Migliara G, De Vito C, Mezzaroma I, Chiaretti S, Fimiani C, Pistolesi V, Morabito S, Turriziani O. Humoral and T-cell mediated response after administration of mRNA vaccine BNT162b2 in frail populations. Vaccine X 2022; 12:100246. [PMID: 36506461 PMCID: PMC9721197 DOI: 10.1016/j.jvacx.2022.100246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Patients with frailty are considered to be at greater risk to get severe infection from SARS-CoV-2. One of the most effective strategies is vaccination. In our study we evaluated both the humoral immune response elicited by the vaccination at different time points, and the T-cell response in terms of interferon (IFN)-γ production in frail patients and healthy donors. Fifty-seven patients (31 patients undergoing hemodialysis and 26 HIV positive subjects) and 39 healthcare workers were enrolled. All participants received two doses of the mRNA vaccine BNT162b2. Healthcare workers showed a significantly higher antibody titer than patients twenty-one days after the first dose (p < 0.001). From the same time point we observed for both groups a decay of the antibody levels with a steeper slope of decline in the patients group. Regarding T-cell response the only significant difference between non-reactive and reactive subjects was found in median antibody levels, higher in the responders group than in non-responders. The healthcare workers seem to better respond to the vaccination in terms of antibodies production; the lack of T-cell response in about 50% of the participants seems to suggest that in our study population both humoral and cell-mediated response decline over time remarking the importance of the booster doses, particularly for frail patients.
Collapse
Affiliation(s)
- Roberta Campagna
- Department of Molecular Medicine Sapienza University of Rome, Viale dell’Università, 33, 000185 Rome, Italy,Corresponding author
| | - Laura Mazzuti
- Department of Molecular Medicine Sapienza University of Rome, Viale dell’Università, 33, 000185 Rome, Italy
| | - Giuliana Guerrizio
- Department of Molecular Medicine Sapienza University of Rome, Viale dell’Università, 33, 000185 Rome, Italy
| | - Chiara Nonne
- Department of Molecular Medicine Sapienza University of Rome, Viale dell’Università, 33, 000185 Rome, Italy
| | - Giuseppe Migliara
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Corrado De Vito
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Ivano Mezzaroma
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale dell'Università, 37, 00185 Rome, Italy
| | - Sabina Chiaretti
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale dell'Università, 37, 00185 Rome, Italy
| | - Caterina Fimiani
- Department of Internal Medicine, Endocrine-Metabolic Sciences and Infectious Disease, Policlinico Umberto I, 155, 00161, Italy
| | - Valentina Pistolesi
- Department of Internal Medicine and Medical Specialties Sapienza University of Rome, Policlinico, 155, 00161 Rome, Italy
| | - Santo Morabito
- Department of Internal Medicine and Medical Specialties Sapienza University of Rome, Policlinico, 155, 00161 Rome, Italy
| | - Ombretta Turriziani
- Department of Molecular Medicine Sapienza University of Rome, Viale dell’Università, 33, 000185 Rome, Italy
| |
Collapse
|
243
|
Sharma R, Diwan B, Sharma A, Witkowski JM. Emerging cellular senescence-centric understanding of immunological aging and its potential modulation through dietary bioactive components. Biogerontology 2022; 23:699-729. [PMID: 36261747 PMCID: PMC9581456 DOI: 10.1007/s10522-022-09995-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/12/2022] [Indexed: 12/13/2022]
Abstract
Immunological aging is strongly associated with the observable deleterious effects of human aging. Our understanding of the causes, effects, and therapeutics of aging immune cells has long been considered within the sole purview of immunosenescence. However, it is being progressively realized that immunosenescence may not be the only determinant of immunological aging. The cellular senescence-centric theory of aging proposes a more fundamental and specific role of immune cells in regulating senescent cell (SC) burden in aging tissues that has augmented the notion of senescence immunotherapy. Now, in addition, several emerging studies are suggesting that cellular senescence itself may be prevalent in aging immune cells, and that senescent immune cells exhibiting characteristic markers of cellular senescence, similar to non-leucocyte cells, could be among the key drivers of various facets of physiological aging. The present review integrates the current knowledge related to immunosenescence and cellular senescence in immune cells per se, and aims at providing a cohesive overview of these two phenomena and their significance in immunity and aging. We present evidence and rationalize that understanding the extent and impact of cellular senescence in immune cells vis-à-vis immunosenescence is necessary for truly comprehending the notion of an 'aged immune cell'. In addition, we also discuss the emerging significance of dietary factors such as phytochemicals, probiotic bacteria, fatty acids, and micronutrients as possible modulators of immunosenescence and cellular senescence. Evidence and opportunities related to nutritional bioactive components and immunological aging have been deliberated to augment potential nutrition-oriented immunotherapy during aging.
Collapse
Affiliation(s)
- Rohit Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India.
| | - Bhawna Diwan
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Anamika Sharma
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland.
| |
Collapse
|
244
|
Nanishi E, Levy O, Ozonoff A. Waning effectiveness of SARS-CoV-2 mRNA vaccines in older adults: a rapid review. Hum Vaccin Immunother 2022; 18:2045857. [PMID: 35240940 PMCID: PMC9196671 DOI: 10.1080/21645515.2022.2045857] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/07/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
The U.S. Centers for Disease Control and Prevention (CDC) and other health agencies have recently recommended a booster dose of COVID-19 vaccines for specific vulnerable groups including adults 65 years and older. There is limited evidence whether vaccine effectiveness (VE) in older adults decreases over time, especially against severe COVID-19. We performed a rapid review of published studies available through 4 November 2021 that provide effectiveness data on messenger RNA (mRNA) vaccines approved/licensed in the United States and identified eight eligible studies which evaluated VE in older adults. There is evidence of a decline in VE against both severe acute respiratory syndrome coronavirus 2 infection and severe COVID-19 in older adults among studies which analyzed data up to July-October 2021. Our findings suggest that VE diminishes in older adults, which supports the current recommendation for a booster dose in this population.
Collapse
Affiliation(s)
- Etsuro Nanishi
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT & Harvard, Cambridge, MA, USA
| | - Al Ozonoff
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT & Harvard, Cambridge, MA, USA
| |
Collapse
|
245
|
Higashimoto Y, Kozawa K, Miura H, Kawamura Y, Ihira M, Hiramatsu H, Suzuki R, Haga K, Takai-Todaka R, Sawada A, Katayama K, Yoshikawa T. Correlation between anti-S IgG and neutralizing antibody titers against three live SARS-CoV-2 variants in BNT162b2 vaccine recipients. Hum Vaccin Immunother 2022; 18:2105611. [PMID: 36094467 DOI: 10.1080/21645515.2022.2105611] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We analyzed serially collected serum samples from healthy adults who underwent BNT162b2 vaccination to elucidate the association between spike (S)-IgG antibody titers determined by ELISA using the WHO international standard (NIBSC code 20/136) and neutralizing antibody titers against three live SARS-CoV-2 variants. This study included 53 health care workers who received two doses of the BNT162b2 vaccine. S-IgG and nucleocapsid (N)-IgG antibody titers were measured by ELISA. Neutralizing (NT) antibody responses against three variants (Wuhan D614 G: KUH003, Alpha, and Delta) were evaluated before and after the first and second vaccination. N-IgG were not detected in any serum samples. S-IgG antibody titers remarkably increased after two BNT162b2 vaccine doses in all participants. S-IgG antibody titers were strongly correlated with NT titers against three variants of live viruses: KUH003 (r = 0.86), Alpha (r = 0.72), and Delta (r = 0.84). Serum samples from participants after one dose of BNT162b2 neutralized Alpha efficiently (median titer, 113.0), but median NT titers against KUH003 and Delta variants were lower, 57.0 and 28.0, respectively (p < .01). Two doses of the BNT162b2 vaccine elicited a strong immune response in this study. The second dose was required for induction of a strong booster effect. Serum collected from BNT162b2 vaccine recipients contained significantly lower neutralizing activity against Delta than that of against KUH003 (p < .0001) and Alpha (p < .0001). If a new variant emerges, live virus-based NT titers should be examined in serum obtained from vaccine recipients to evaluate vaccine efficacy for protection against infection.
Collapse
Affiliation(s)
- Yuki Higashimoto
- Faculty of Medical Technology, Fujita Health University School of Medical Sciences, Toyoake, Aichi, Japan
| | - Kei Kozawa
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Hiroki Miura
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Yoshiki Kawamura
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Masaru Ihira
- Faculty of Clinical Engineering, Fujita Health University School of Medical Sciences, Toyoake, Aichi, Japan
| | - Hiroyuki Hiramatsu
- Department of Clinical Pharmacy, Fujita Health University Hospital, Toyoake, Aichi, Japan
| | - Ryota Suzuki
- Department of Clinical Pharmacy, Fujita Health University Hospital, Toyoake, Aichi, Japan
| | - Kei Haga
- Laboratory of Viral Infection Control, Department of Infection Control Science and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Reiko Takai-Todaka
- Laboratory of Viral Infection Control, Department of Infection Control Science and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Akihito Sawada
- Laboratory of Viral Infection Control, Department of Infection Control Science and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Kazuhiko Katayama
- Laboratory of Viral Infection Control, Department of Infection Control Science and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Tetsushi Yoshikawa
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| |
Collapse
|
246
|
SARS-CoV-2 Specific Humoral Immune Responses after BNT162b2 Vaccination in Hospital Healthcare Workers. Vaccines (Basel) 2022; 10:vaccines10122038. [PMID: 36560450 PMCID: PMC9782529 DOI: 10.3390/vaccines10122038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND COVID-19 pandemic has led to a loss of human life in millions and devastating socio-economic consequences worldwide. So far, vaccination is the most effective long-term strategy to control and prevent severe COVID-19 disease. The aim of the current study was to evaluate the humoral immune responses raised against the BNT162b2 vaccine in hospital healthcare workers. METHODS Total number of 173 healthcare workers enrolled in the study. Their blood samples were collected in three different time intervals after the second SARS-CoV-2 vaccination and evaluated by the ELISA method to detect anti-spike protein IgM and IgG antibodies. The baseline characteristics of all participants were collected using questionnaires and were evaluated for finding any significant data. RESULTS Our results demonstrated that the levels of antibodies were higher in the young group (21-30 years old) and also among male participants. Moreover, the highest levels of antibodies were detected from the group that received the third shot vaccination. CONCLUSIONS Our results indicate that age, gender and third-dose vaccination can affect the levels of humoral immune responses against the BNT162b2 vaccine in healthcare workers.
Collapse
|
247
|
Scotto R, Lanzardo A, Buonomo AR, Pinchera B, Cattaneo L, Sardanelli A, Mercinelli S, Viceconte G, Perrella A, Esposito V, Codella AV, Maggi P, Zappulo E, Villari R, Foggia M, Gentile I, Federico II COVID-Team. A Simple Non-Invasive Score Based on Baseline Parameters Can Predict Outcome in Patients with COVID-19. Vaccines (Basel) 2022; 10:2043. [PMID: 36560453 PMCID: PMC9781962 DOI: 10.3390/vaccines10122043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/02/2022] [Accepted: 11/12/2022] [Indexed: 12/03/2022] Open
Abstract
We evaluated the role of CRP and other laboratory parameters in predicting the worsening of clinical conditions during hospitalization, ICU admission, and fatal outcome among patients with COVID-19. Consecutive adult inpatients with SARS-CoV-2 infection and respiratory symptoms treated in three different COVID centres were enrolled, and they were tested for laboratory parameters within 48 h from admission. Three-hundred ninety patients were enrolled. Age, baseline CRP, and LDH were associated with a P/F ratio < 200 during hospitalization. Male gender and CRP > 60 mg/L were shown to be independently associated with ICU admission. Lymphocytes < 1000 cell/μL were associated with the worst P/F ratio. CRP > 60 mg/L predicted exitus. We subsequently devised an 11-points numeric ordinary scoring system based on age, sex, CRP, and LDH at admission (ASCL score). Patients with an ASCL score of 0 or 2 were shown to be protected against a P/F ratio < 200, while patients with an ASCL score of 6 to 8 were shown to be at risk for P/F ratio < 200. Patients with an ASCL score ≥ 7 had a significantly increased probability of death during hospitalization. In conclusion, patients with elevated CRP and LDH and an ASCL score > 6 at admission should be prioritized for careful respiratory function monitoring and early treatment to prevent a progression of the disease.
Collapse
Affiliation(s)
- Riccardo Scotto
- Department of Clinical Medicine and Surgery—Section of Infectious Diseases, University of Naples Federico II, 80131 Naples, Italy
| | - Amedeo Lanzardo
- Department of Clinical Medicine and Surgery—Section of Infectious Diseases, University of Naples Federico II, 80131 Naples, Italy
| | - Antonio Riccardo Buonomo
- Department of Clinical Medicine and Surgery—Section of Infectious Diseases, University of Naples Federico II, 80131 Naples, Italy
| | - Biagio Pinchera
- Department of Clinical Medicine and Surgery—Section of Infectious Diseases, University of Naples Federico II, 80131 Naples, Italy
| | - Letizia Cattaneo
- Department of Clinical Medicine and Surgery—Section of Infectious Diseases, University of Naples Federico II, 80131 Naples, Italy
| | - Alessia Sardanelli
- Department of Clinical Medicine and Surgery—Section of Infectious Diseases, University of Naples Federico II, 80131 Naples, Italy
| | - Simona Mercinelli
- Department of Clinical Medicine and Surgery—Section of Infectious Diseases, University of Naples Federico II, 80131 Naples, Italy
| | - Giulio Viceconte
- Department of Clinical Medicine and Surgery—Section of Infectious Diseases, University of Naples Federico II, 80131 Naples, Italy
| | - Alessandro Perrella
- Emerging Infectous Disease with High Contagiousness Unit, Cotugno Hospital, 80131 Naples, Italy
| | - Vincenzo Esposito
- IVth Division of Immunodeficiency and Gender Infectious Diseases, Cotugno Hospital, 80131 Naples, Italy
| | - Alessio Vinicio Codella
- Department of Medical Sciences—Unit of Infectious Diseases, "Gaetano Rummo” Hospital, 82100 Benevento, Italy
| | - Paolo Maggi
- Infectious and Tropical Diseases Clinic, AORN Sant'Anna and San Sebastiano, 81100 Caserta, Italy
| | - Emanuela Zappulo
- Department of Clinical Medicine and Surgery—Section of Infectious Diseases, University of Naples Federico II, 80131 Naples, Italy
| | - Riccardo Villari
- Department of Clinical Medicine and Surgery—Section of Infectious Diseases, University of Naples Federico II, 80131 Naples, Italy
| | - Maria Foggia
- Department of Clinical Medicine and Surgery—Section of Infectious Diseases, University of Naples Federico II, 80131 Naples, Italy
| | - Ivan Gentile
- Department of Clinical Medicine and Surgery—Section of Infectious Diseases, University of Naples Federico II, 80131 Naples, Italy
| | - Federico II COVID-Team
- Department of Clinical Medicine and Surgery—Section of Infectious Diseases, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
248
|
Meyers E, De Rop L, Deschepper E, Duysburgh E, De Burghgraeve T, Van Ngoc P, Digregorio M, Delogne S, Coen A, De Clercq N, Buret L, Coenen S, De Sutter A, Scholtes B, Verbakel JY, Cools P, Heytens S. Prevalence of SARS-CoV-2 antibodies among Belgian nursing home residents and staff during the primary COVID-19 vaccination campaign. Eur J Gen Pract 2022:1-9. [DOI: 10.1080/13814788.2022.2149732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Eline Meyers
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Liselore De Rop
- Department of Public Health and Primary Care, EPI-Centre, ACHG, Leuven, Belgium
| | - Ellen Deschepper
- Faculty of Medicine and Health Sciences, Biostatistics Unit, Ghent University, Ghent, Belgium
| | - Els Duysburgh
- Department of Epidemiology and Public Health, Sciensano, Brussels, Belgium
| | - Tine De Burghgraeve
- Department of Public Health and Primary Care, EPI-Centre, ACHG, Leuven, Belgium
| | - Pauline Van Ngoc
- Department of General Medicine, Faculty of Medicine, Research Unit of Primary Care and Health, University of Liège, Liège, Belgium
| | - Marina Digregorio
- Department of General Medicine, Faculty of Medicine, Research Unit of Primary Care and Health, University of Liège, Liège, Belgium
| | - Simon Delogne
- Department of General Medicine, Faculty of Medicine, Research Unit of Primary Care and Health, University of Liège, Liège, Belgium
| | - Anja Coen
- Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Nele De Clercq
- Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Laëtitia Buret
- Department of General Medicine, Faculty of Medicine, Research Unit of Primary Care and Health, University of Liège, Liège, Belgium
| | - Samuel Coenen
- Department of Family Medicine and Population Health (FAMPOP) and Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - An De Sutter
- Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Beatrice Scholtes
- Department of General Medicine, Faculty of Medicine, Research Unit of Primary Care and Health, University of Liège, Liège, Belgium
| | - Jan Y. Verbakel
- Department of Public Health and Primary Care, EPI-Centre, ACHG, Leuven, Belgium
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Piet Cools
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Stefan Heytens
- Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
249
|
Enhanced Vaccine Effectiveness during the Delta Phase of the COVID-19 Pandemic in the Medicare Population Supports a Multilayered Prevention Approach. BIOLOGY 2022; 11:biology11121700. [PMID: 36552210 PMCID: PMC9774613 DOI: 10.3390/biology11121700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
Throughout the pandemic, individuals 65 years and older have contributed most COVID-19 related deaths. To best formulate effective vaccination and other prevention policies to protect older adults, large scale observational studies of these higher risk individuals are needed. We conducted a Vaccine Effectiveness (VE) study during the B.1.617.2 Delta variant phase of the pandemic in July and August 2021 in a cohort of 17 million Medicare beneficiaries of which 5.7 million were fully vaccinated. We found that individuals fully vaccinated with the Pfizer-BioNTech BNT162b2 and Moderna mRNA-1273 vaccines in January 2021 had 2.5 times higher breakthrough infections and hospitalizations than those fully vaccinated in March 2021, consistent with waning of vaccine-induced immunity. Measuring VE weekly, we found that VE against hospitalization, and even more so against infection, increased from July 2021 through August 2021, suggesting that in addition to the protective role of vaccination, increased masking or social distancing might have contributed to the unexpected increase in VE. Ongoing monitoring of Medicare beneficiaries should be a priority as new variants continue to emerge, and the VE of the new bivalent vaccines remains to be established. This could be accomplished with a large Medicare claims database and the analytics platform used for this study.
Collapse
|
250
|
Valanparambil RM, Carlisle J, Linderman SL, Akthar A, Millett RL, Lai L, Chang A, McCook-Veal AA, Switchenko J, Nasti TH, Saini M, Wieland A, Manning KE, Ellis M, Moore KM, Foster SL, Floyd K, Davis-Gardner ME, Edara VV, Patel M, Steur C, Nooka AK, Green F, Johns MA, O'Brein F, Shanmugasundaram U, Zarnitsyna VI, Ahmed H, Nyhoff LE, Mantus G, Garett M, Edupuganti S, Behra M, Antia R, Wrammert J, Suthar MS, Dhodapkar MV, Ramalingam S, Ahmed R. Antibody Response to COVID-19 mRNA Vaccine in Patients With Lung Cancer After Primary Immunization and Booster: Reactivity to the SARS-CoV-2 WT Virus and Omicron Variant. J Clin Oncol 2022; 40:3808-3816. [PMID: 35759727 PMCID: PMC9671759 DOI: 10.1200/jco.21.02986] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/15/2022] [Accepted: 04/27/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE To examine COVID-19 mRNA vaccine-induced binding and neutralizing antibody responses in patients with non-small-cell lung cancer (NSCLC) to SARS-CoV-2 614D (wild type [WT]) strain and variants of concern after the primary 2-dose and booster vaccination. METHODS Eighty-two patients with NSCLC and 53 healthy volunteers who received SARS-CoV-2 mRNA vaccines were included in the study. Blood was collected longitudinally, and SARS-CoV-2-specific binding and neutralizing antibody responses were evaluated by Meso Scale Discovery assay and live virus Focus Reduction Neutralization Assay, respectively. RESULTS A majority of patients with NSCLC generated binding and neutralizing antibody titers comparable with the healthy vaccinees after mRNA vaccination, but a subset of patients with NSCLC (25%) made poor responses, resulting in overall lower (six- to seven-fold) titers compared with the healthy cohort (P = < .0001). Although patients age > 70 years had lower immunoglobulin G titers (P = < .01), patients receiving programmed death-1 monotherapy, chemotherapy, or a combination of both did not have a significant impact on the antibody response. Neutralizing antibody titers to the B.1.617.2 (Delta), B.1.351 (Beta), and in particular, B.1.1.529 (Omicron) variants were significantly lower (P = < .0001) compared with the 614D (WT) strain. Booster vaccination led to a significant increase (P = .0001) in the binding and neutralizing antibody titers to the WT and Omicron variant. However, 2-4 months after the booster, we observed a five- to seven-fold decrease in neutralizing titers to WT and Omicron viruses. CONCLUSION A subset of patients with NSCLC responded poorly to the SARS-CoV-2 mRNA vaccination and had low neutralizing antibodies to the B.1.1.529 Omicron variant. Booster vaccination increased binding and neutralizing antibody titers to Omicron, but antibody titers declined after 3 months. These data highlight the concern for patients with cancer given the rapid spread of SARS-CoV-2 Omicron variant.
Collapse
Affiliation(s)
- Rajesh M. Valanparambil
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA
| | | | - Susanne L. Linderman
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA
| | - Akil Akthar
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA
| | | | - Lilin Lai
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA
- Yerkes National Primate Center, Atlanta, GA
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Andres Chang
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA
- Winship Cancer Institute, Atlanta, GA
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA
| | - Ashley A. McCook-Veal
- Biostatistics Shared Resource, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Jeffrey Switchenko
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Tahseen H. Nasti
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA
| | - Manpreet Saini
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA
- ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Andreas Wieland
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA
- Department of Otolaryngology, The Ohio State University, Columbus, OH
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH
| | - Kelly E. Manning
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA
- Yerkes National Primate Center, Atlanta, GA
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Madison Ellis
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA
- Yerkes National Primate Center, Atlanta, GA
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Kathryn M. Moore
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA
- Yerkes National Primate Center, Atlanta, GA
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Stephanie L. Foster
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA
- Yerkes National Primate Center, Atlanta, GA
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Katharine Floyd
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA
- Yerkes National Primate Center, Atlanta, GA
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Meredith E. Davis-Gardner
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA
- Yerkes National Primate Center, Atlanta, GA
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Venkata-Viswanadh Edara
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA
- Yerkes National Primate Center, Atlanta, GA
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Mit Patel
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA
- Yerkes National Primate Center, Atlanta, GA
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Conor Steur
- Winship Cancer Institute, Atlanta, GA
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA
| | - Ajay K. Nooka
- Winship Cancer Institute, Atlanta, GA
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA
| | | | | | | | - Uma Shanmugasundaram
- Winship Cancer Institute, Atlanta, GA
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA
| | - Veronika I. Zarnitsyna
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA
- Department of Biology, Emory University, Atlanta, GA
| | - Hasan Ahmed
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA
- Department of Biology, Emory University, Atlanta, GA
| | - Lindsay E. Nyhoff
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA
- Department of Pediatrics, Emory University, Atlanta, GA
| | - Grace Mantus
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA
- Department of Pediatrics, Emory University, Atlanta, GA
| | - Michael Garett
- Department of Microbiology and Immunology, Emory University, Atlanta, GA
- Hope Clinic of Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA
| | - Srilatha Edupuganti
- Department of Microbiology and Immunology, Emory University, Atlanta, GA
- Hope Clinic of Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA
| | | | - Rustom Antia
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA
- Department of Biology, Emory University, Atlanta, GA
| | - Jens Wrammert
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA
- Department of Pediatrics, Emory University, Atlanta, GA
| | - Mehul S. Suthar
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA
- Yerkes National Primate Center, Atlanta, GA
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Madhav V. Dhodapkar
- Winship Cancer Institute, Atlanta, GA
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA
| | | | - Rafi Ahmed
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA
| |
Collapse
|