201
|
Shutt JD, Boger P, Neale JR, Patel P, Sampson AP. Activity of the leukotriene pathway in Barrett's metaplasia and oesophageal adenocarcinoma. Inflamm Res 2012; 61:1379-84. [PMID: 22851204 DOI: 10.1007/s00011-012-0539-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 07/17/2012] [Accepted: 07/19/2012] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Leukotriene (LT) B(4) is a lipid inflammatory mediator implicated in tumorigenesis in animal models of Barrett's oesophagitis, but little is known about the cysteinyl-leukotrienes (LTC(4), LTD(4), LTE(4)), which have distinct inflammatory and tumorigenic actions in other tissues. We recently showed that the terminal enzymes for the synthesis of both LT families are highly expressed in human oesophageal adenocarcinoma (OA) tissues. This study therefore examined the capacity of Barrett's metaplasia (BM) and OA tissues to synthesise LTs in vitro. SUBJECTS AND METHODS Oesophageal biopsies from patients with BM (n = 14), high-grade dysplasia (n = 2), OA (n = 11), and squamous control tissues (n = 11) were cultured with calcium ionophore A32187 (2 μM) for 60 min. LTB(4) and cysteinyl-leukotrienes were extracted and measured by specific enzyme immunoassays. RESULTS Levels of LTB(4) and cysteinyl-leukotrienes were 8.6-fold (P < 0.01) and 2.4-fold (P < 0.02) higher, respectively, in OA tissues than in squamous control tissues, but levels in BM tissues (n = 14) were not altered. Production of the two LT families correlated across all tissue types (r = 0.62, p < 0.00005). CONCLUSIONS Increased synthesis of LTB(4) and cysteinyl-leukotrienes has not previously been shown in human OA tissue and our results may indicate a role of these lipids in Barrett's disease progression.
Collapse
Affiliation(s)
- James David Shutt
- Department of Luminal Gastroenterology, University Hospitals Southampton NHS Foundation Trust, Southampton General Hospital, Southampton, UK
| | | | | | | | | |
Collapse
|
202
|
Schäfer D, Maune S. Pathogenic Mechanisms and In Vitro Diagnosis of AERD. J Allergy (Cairo) 2012; 2012:789232. [PMID: 22654920 PMCID: PMC3357963 DOI: 10.1155/2012/789232] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 02/27/2012] [Indexed: 12/30/2022] Open
Abstract
Aspirin-exacerbated respiratory disease (AERD) refers to chronic rhinosinusitis, nasal polyposis, bronchoconstriction, and/or eosinophilic inflammation in asthmatics following the exposure to nonsteroidal anti-inflammatory drugs (NSAIDs). A key pathogenic mechanism associated with AERD is the imbalance of eicosanoid metabolism focusing on prostanoid and leukotriene pathways in airway mucosa as well as blood cells. Genetic and functional metabolic studies on vital and non-vital cells pointed to the variability and the crucial role of lipid mediators in disease susceptibility and their response to medication. Eicosanoids, exemplified by prostaglandin E(2) (PGE(2)) and peptidoleukotrienes (pLT), are potential metabolic biomarkers contributing to the AERD phenotype. Also other mediators are implicated in the progress of AERD. Considering the various pathogenic mechanisms of AERD, a multitude of metabolic and genetic markers is suggested to be implicated and were introduced as potential biomarkers for in vitro diagnosis during the past decades. Deduced from an eicosanoid-related pathogenic mechanism, functional tests balancing PGE(2) and pLT as well as other eicosanoids from preferentially vital leukocytes demonstrated their applicability for in vitro diagnosis of AERD.
Collapse
Affiliation(s)
- Dirk Schäfer
- Allergie- und Intoleranzlabor, Medizinisch Klinik III, Friedrich-Alexander-Universität Erlangen-Nürnberg, Glückstraße 4a, 91054 Erlangen, Germany
| | - Steffen Maune
- Klinik für HNO-Heilkunde, Kopf- und Halschirurgie, Krankenhaus Holweide, Neufelder Straße 32, 51067 Köln, Germany
| |
Collapse
|
203
|
Boeynaems JM, Communi D, Robaye B. Overview of the pharmacology and physiological roles of P2Y receptors. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/wmts.44] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
204
|
Capra V, Bäck M, Barbieri SS, Camera M, Tremoli E, Rovati GE. Eicosanoids and Their Drugs in Cardiovascular Diseases: Focus on Atherosclerosis and Stroke. Med Res Rev 2012; 33:364-438. [DOI: 10.1002/med.21251] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Valérie Capra
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
| | - Magnus Bäck
- Department of Cardiology and Center for Molecular Medicine; Karolinska University Hospital; Stockholm Sweden
| | | | - Marina Camera
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
- Centro Cardiologico Monzino; I.R.C.C.S Milan Italy
| | - Elena Tremoli
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
- Centro Cardiologico Monzino; I.R.C.C.S Milan Italy
| | - G. Enrico Rovati
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
| |
Collapse
|
205
|
Bertin J, Barat C, Bélanger D, Tremblay MJ. Leukotrienes inhibit early stages of HIV-1 infection in monocyte-derived microglia-like cells. J Neuroinflammation 2012; 9:55. [PMID: 22424294 PMCID: PMC3334677 DOI: 10.1186/1742-2094-9-55] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 03/16/2012] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Microglia are one of the main cell types to be productively infected by HIV-1 in the central nervous system (CNS). Leukotriene B4 (LTB4) and cysteinyl-leukotrienes such as LTC4 are some of the proinflammatory molecules produced in infected individuals that contribute to neuroinflammation. We therefore sought to investigate the role of leukotrienes (LTs) in HIV-1 infection of microglial cells. METHODS To evaluate the role of LTs on HIV-1 infection in the CNS, monocyte-derived microglial-like cells (MDMis) were utilized in this study. Leukotriene-treated MDMis were infected with either fully replicative brain-derived HIV-1 isolates (YU2) or R5-tropic luciferase-encoding particles in order to assess viral production and expression. The efficacy of various steps of the replication cycle was evaluated by means of p24 quantification by ELISA, luciferase activity determination and quantitative real-time polymerase chain reaction (RT-PCR). RESULTS We report in this study that virus replication is reduced upon treatment of MDMis with LTB4 and LTC4. Additional experiments indicate that these proinflammatory molecules alter the pH-independent entry and early post-fusion events of the viral life cycle. Indeed, LT treatment induced a diminution in integrated proviral DNA while reverse-transcribed viral products remained unaffected. Furthermore, decreased C-C chemokine receptor type 5 (CCR5) surface expression was observed in LT-treated MDMis. Finally, the effect of LTs on HIV-1 infection in MDMis appears to be mediated partly via a signal transduction pathway involving protein kinase C. CONCLUSIONS These data show for the first time that LTs influence microglial cell infection by HIV-1, and may be a factor in the control of viral load in the CNS.
Collapse
Affiliation(s)
- Jonathan Bertin
- Centre de Recherche en Infectiologie, RC709, Centre Hospitalier Universitaire de Québec-CHUL, 2705 Boul, Laurier, Québec, QC G1V 4G2, Canada
| | | | | | | |
Collapse
|
206
|
Abstract
It has been recognized for many years that leukotrienes play an important role in mediating various effects of the allergic reaction. Recent evidence has shown that they play a role in other diseases including chronic sinusitis, particularly those sub-types involving eosinophils. Leukotrienes can be separated into the fairly well characterized cysteinyl leukotrienes and less well characterized leukotriene B(4). Effects of the leukotrienes are mediated through receptors that are expressed on a variety of cell types and can be modulated based on the inflammatory environment present. The pharmaceutical industry has long been interested in blocking leukotriene action and as such, two approaches have been developed that led to drugs approved for treatment of allergic disease. The most widely used class is the cysteinyl type 1 receptor antagonists, which block binding of the cysteinyl leukotrienes to the cell. The second class is an inhibitor of the 5-lipoxygenase enzyme that prevents synthesis of both the cysteinyl leukotrienes and leukotriene B(4). This review will focus on the role that leukotrienes play in chronic sinusitis and consider the rationale for choosing either a leukotriene antagonist or synthesis inhibitor as a treatment option. We will also discuss off-label uses for other medications that might be useful in these diseases as they relate to their ability to modulate leukotriene action.
Collapse
Affiliation(s)
- John W Steinke
- Asthma and Allergic Diseases Center, University of Virginia Health System, Charlottesville, VA, 22908-1355, USA,
| | | |
Collapse
|
207
|
Bertin J, Barat C, Méthot S, Tremblay MJ. Interactions between prostaglandins, leukotrienes and HIV-1: possible implications for the central nervous system. Retrovirology 2012; 9:4. [PMID: 22236409 PMCID: PMC3268096 DOI: 10.1186/1742-4690-9-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 01/11/2012] [Indexed: 12/29/2022] Open
Abstract
In HIV-1-infected individuals, there is often discordance between viremia in peripheral blood and viral load found in the central nervous system (CNS). Although the viral burden is often lower in the CNS compartment than in the plasma, neuroinflammation is present in most infected individuals, albeit attenuated by the current combined antiretroviral therapy. The HIV-1-associated neurological complications are thought to result not only from direct viral replication, but also from the subsequent neuroinflammatory processes. The eicosanoids - prostanoids and leukotrienes - are known as potent inflammatory lipid mediators. They are often present in neuroinflammatory diseases, notably HIV-1 infection. Their exact modulatory role in HIV-1 infection is, however, still poorly understood, especially in the CNS compartment. Nonetheless, a handful of studies have provided evidence as to how these lipid mediators can modulate HIV-1 infection. This review summarizes findings indicating how eicosanoids may influence the progression of neuroAIDS.
Collapse
Affiliation(s)
- Jonathan Bertin
- Centre de Recherche en Infectiologie, Centre Hospitalier Universitaire de Québec - CHUL, 2705 boul, Laurier, Québec (QC), Canada, G1V 4G2
| | | | | | | |
Collapse
|
208
|
Development and maturation of the spinal cord: implications of molecular and genetic defects. HANDBOOK OF CLINICAL NEUROLOGY 2012; 109:3-30. [PMID: 23098703 DOI: 10.1016/b978-0-444-52137-8.00001-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The human central nervous system (CNS) may be the most complex structure in the universe. Its development and appropriate specification into phenotypically and spatially distinct neural subpopulations involves a precisely orchestrated response, with thousands of transcriptional regulators combining with epigenetic controls and specific temporal cues in perfect synchrony. Understandably, our insight into the sophisticated molecular mechanisms which underlie spinal cord development are as yet limited. Even less is known about abnormalities of this process - putative genetic and molecular causes of well-described defects have only begun to emerge in recent years. Nonetheless, modern scientific techniques are beginning to demonstrate common patterns and principles amid the tremendous complexity of spinal cord development and maldevelopment. These advances are important, given that developmental anomalies of the spinal cord are an important cause of mortality and morbidity (Sadler, 2000); it is hoped that research advances will lead to better methods to detect, treat, and prevent these lesions.
Collapse
|
209
|
Trincavelli ML, Daniele S, Orlandini E, Navarro G, Casadó V, Giacomelli C, Nencetti S, Nuti E, Macchia M, Huebner H, Gmeiner P, Rossello A, Lluís C, Martini C. A new D₂ dopamine receptor agonist allosterically modulates A(2A) adenosine receptor signalling by interacting with the A(2A)/D₂ receptor heteromer. Cell Signal 2011; 24:951-60. [PMID: 22230688 DOI: 10.1016/j.cellsig.2011.12.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 12/05/2011] [Accepted: 12/21/2011] [Indexed: 10/14/2022]
Abstract
The structural and functional interaction between D₂ dopamine receptor (DR) and A(2A) adenosine receptor (AR) has suggested these two receptors as a pharmacological target in pathologies associated with dopamine dysfunction, such as Parkinson's disease. In transfected cell lines it has been demonstrated the activation of D₂DR induces a significant negative regulation of A(2A)AR-mediated responses, whereas few data are at now available about the regulation of A(2A)AR by D₂DR agonists at receptor recognition site. In this work we confirmed that in A(2A)AR/D₂DR co-transfected cells, these receptors exist as homo- and hetero-dimers. The classical D₂DR agonists were able to negatively modulate both A(2A)AR affinity and functionality. These effects occurred even if any significant changes in A(2A)AR/D₂DR energy transfer interaction could be detected in BRET experiments. Since the development of new molecules able to target A(2A)/D₂ dimers may represent an attractive tool for innovative pharmacological therapy, we also identified a new small molecule, 3-(3,4-dimethylphenyl)-1-(2-piperidin-1-yl)ethyl)piperidine (compound 1), full agonist of D₂DR and modulator of A(2A)-D₂ receptor dimer. This compound was able to negatively modulate A(2A)AR binding properties and functional responsiveness in a manner comparable to classical D₂R agonists. In contrast to classical agonists, compound 1 led to conformational changes in the quaternary structure in D₂DR homomers and heteromers and induced A(2A)AR/D₂DR co-internalization. These results suggest that compound 1 exerts a high control of the function of heteromers and could represent a starting point for the development of new drugs targeting A(2A)AR/D₂ DR heteromers.
Collapse
Affiliation(s)
- Maria Letizia Trincavelli
- Department of Psychiatry, Neurobiology, Pharmacology and Biotechnology, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Magnusson C, Bengtsson AM, Liu M, Liu J, Ceder Y, Ehrnström R, Sjölander A. Regulation of cysteinyl leukotriene receptor 2 expression--a potential anti-tumor mechanism. PLoS One 2011; 6:e29060. [PMID: 22194989 PMCID: PMC3240642 DOI: 10.1371/journal.pone.0029060] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 11/20/2011] [Indexed: 12/15/2022] Open
Abstract
Background The cysteinyl leukotrienes receptors (CysLTRs) are implicated in many different pathological conditions, such as inflammation and cancer. We have previously shown that colon cancer patients with high CysLT1R and low CysLT2R expression demonstrate poor prognosis. Therefore, we wanted to investigate ways for the transcriptional regulation of CysLT2R, which still remains to be poorly understood. Methodology/Principal Findings We investigated the potential role of the anti-tumorigenic interferon α (IFN-α) and the mitogenic epidermal growth factor (EGF) on CysLT2R regulation using non-transformed intestinal epithelial cell lines and colon cancer cells to elucidate the effects on the CysLT2R expression and regulation. This was done using Western blot, qPCR, luciferase reporter assay and a colon cancer patient array. We found a binding site for the transcription factor IRF-7 in the putative promoter region of CysLT2R. This site was involved in the IFN-α induced activity of the CysLT2R luciferase reporter assay. In addition, IFN-α induced the activity of the differentiation marker alkaline phosphatase along with the expression of mucin-2, which protects the epithelial layer from damage. Interestingly, EGF suppressed both the expression and promoter activity of the CysLT2R. E-boxes present in the CysLT2R putative promoter region were involved in the suppressing effect. CysLT2R signaling was able to suppress cell migration that was induced by EGF signaling. Conclusions/Significance The patient array showed that aggressive tumors generally expressed less IFN-α receptor and more EGFR. Interestingly, there was a negative correlation between CysLT2R and EGFR expression. Our data strengthens the idea that there is a protective role against tumor progression for CysLT2R and that it highlights new possibilities to regulate the CysLT2R.
Collapse
Affiliation(s)
- Cecilia Magnusson
- Cell and Experimental Pathology, Department of Laboratory Medicine, Lund University, Skånes University Hospital, Malmö, Sweden
| | - Astrid M. Bengtsson
- Cell and Experimental Pathology, Department of Laboratory Medicine, Lund University, Skånes University Hospital, Malmö, Sweden
| | - Minghui Liu
- Cell and Experimental Pathology, Department of Laboratory Medicine, Lund University, Skånes University Hospital, Malmö, Sweden
| | - Jian Liu
- Cell and Experimental Pathology, Department of Laboratory Medicine, Lund University, Skånes University Hospital, Malmö, Sweden
| | - Yvonne Ceder
- Clinical Chemistry, Department of Laboratory Medicine, Lund University, Skånes University Hospital, Malmö, Sweden
| | - Roy Ehrnström
- Pathology, Department of Laboratory Medicine, Lund University, Skånes University Hospital, Malmö, Sweden
| | - Anita Sjölander
- Cell and Experimental Pathology, Department of Laboratory Medicine, Lund University, Skånes University Hospital, Malmö, Sweden
- * E-mail:
| |
Collapse
|
211
|
Zhao B, Zhao CZ, Zhang XY, Huang XQ, Shi WZ, Fang SH, Lu YB, Zhang WP, Xia Q, Wei EQ. The new P2Y-like receptor G protein-coupled receptor 17 mediates acute neuronal injury and late microgliosis after focal cerebral ischemia in rats. Neuroscience 2011; 202:42-57. [PMID: 22155652 DOI: 10.1016/j.neuroscience.2011.11.066] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 11/25/2011] [Accepted: 11/28/2011] [Indexed: 12/29/2022]
Abstract
G protein-coupled receptor 17 (GPR17), the new P2Y-like receptor, is phylogenetically related to the P2Y and cysteinyl leukotriene receptors, and responds to both uracil nucleotides and cysteinyl leukotrienes. GPR17 has been proposed to be a damage sensor in ischemic stroke; however, its role in brain inflammation needs further detailed investigation. Here, we extended previous studies on the spatiotemporal profiles of GPR17 expression and localization, and their implications for brain injury after focal cerebral ischemia. We found that in the ischemic core, GPR17 mRNA and protein levels were upregulated at both 12-24 h and 7-14 days, but in the boundary zone the levels increased 7-14 days after reperfusion. The spatiotemporal pattern of GPR17 expression well matched the acute and late (subacute/chronic) responses in the ischemic brain. According to previous findings, in the acute phase, after ischemia (24 h), upregulated GPR17 was localized in injured neurons in the ischemic core and in a few microglia in the ischemic core and boundary zone. In the late phase (14 days), it was localized in microglia, especially in activated (ED1-positive) microglia in the ischemic core, but weakly in most microglia in the boundary zone. No GPR17 was detectable in astrocytes. GPR17 knockdown by a small interfering RNA attenuated the neurological dysfunction, infarction, and neuron loss at 24 h, and brain atrophy, neuron loss, and microglial activation at 14 days after reperfusion. Thus, GPR17 might mediate acute neuronal injury and late microgliosis after focal cerebral ischemia.
Collapse
Affiliation(s)
- B Zhao
- Department of Pharmacology, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Ni NC, Yan D, Ballantyne LL, Barajas-Espinosa A, St Amand T, Pratt DA, Funk CD. A selective cysteinyl leukotriene receptor 2 antagonist blocks myocardial ischemia/reperfusion injury and vascular permeability in mice. J Pharmacol Exp Ther 2011; 339:768-78. [PMID: 21903747 DOI: 10.1124/jpet.111.186031] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
Cysteinyl leukotrienes (CysLTs) are potent inflammatory mediators that predominantly exert their effects by binding to cysteinyl leukotriene receptors of the G protein-coupled receptor family. CysLT receptor 2 (CysLT(2)R), expressed in endothelial cells of some vascular beds, has been implicated in a variety of cardiovascular functions. Endothelium-specific overexpression of human CysLT(2)R in transgenic mice (hEC-CysLT(2)R) greatly increases myocardial infarction damage. Investigation of this receptor, however, has been hindered by the lack of selective pharmacological antagonists. Here, we describe the characterization of 3-(((3-carboxycyclohexyl)amino)carbonyl)-4-(3-(4-(4-phenoxybutoxy)phenyl)-propoxy)benzoic acid (BayCysLT(2)) and explore the selective effects of this compound in attenuating myocardial ischemia/reperfusion damage and vascular leakage. Using a recently developed β-galactosidase-β-arrestin complementation assay for CysLT(2)R activity (Mol Pharmacol 79:270-278, 2011), we determined BayCysLT(2) to be ∼20-fold more potent than the nonselective dual CysLT receptor 1 (CysLT(1)R)/CysLT(2)R antagonist 4-(((1R,2E,4E,6Z,9Z)-1-((1S)-4-carboxy-1-hydroxybutyl)-2,4,6,9-pentadecatetraen-1-yl)thio)benzoic acid (Bay-u9773) (IC(50) 274 nM versus 4.6 μM, respectively). Intracellular calcium mobilization in response to cysteinyl leukotriene administration showed that BayCysLT(2) was >500-fold more selective for CysLT(2)R compared with CysLT(1)R. Intraperitoneal injection of BayCysLT(2) in mice significantly attenuated leukotriene D(4)-induced Evans blue dye leakage in the murine ear vasculature. BayCysLT(2) administration either before or after ischemia/reperfusion attenuated the aforementioned increased myocardial infarction damage in hEC-CysLT(2)R mice. Finally, decreased neutrophil infiltration and leukocyte adhesion molecule mRNA expression were observed in mice treated with antagonist compared with untreated controls. In conclusion, we present the characterization of a potent and selective antagonist for CysLT(2)R that is useful for discerning biological activities of this receptor.
Collapse
Affiliation(s)
- Nathan C Ni
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
213
|
Barajas‐Espinosa A, Ni NC, Yan D, Zarini S, Murphy RC, Funk CD. The cysteinyl leukotriene 2 receptor mediates retinal edema and pathological neovascularization in a murine model of oxygen‐induced retinopathy. FASEB J 2011; 26:1100-9. [DOI: 10.1096/fj.11-195792] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Alma Barajas‐Espinosa
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonOntarioCanada
| | - Nathan C. Ni
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonOntarioCanada
| | - Dong Yan
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonOntarioCanada
| | - Simona Zarini
- Department of PharmacologyUniversity of Colorado–DenverAuroraColoradoUSA
| | - Robert C. Murphy
- Department of PharmacologyUniversity of Colorado–DenverAuroraColoradoUSA
| | - Colin D. Funk
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonOntarioCanada
| |
Collapse
|
214
|
Stock NS, Bain G, Zunic J, Li Y, Ziff J, Roppe J, Santini A, Darlington J, Prodanovich P, King CD, Baccei C, Lee C, Rong H, Chapman C, Broadhead A, Lorrain D, Correa L, Hutchinson JH, Evans JF, Prasit P. 5-Lipoxygenase-Activating Protein (FLAP) Inhibitors. Part 4: Development of 3-[3-tert-Butylsulfanyl-1-[4-(6-ethoxypyridin-3-yl)benzyl]-5-(5-methylpyridin-2-ylmethoxy)-1H-indol-2-yl]-2,2-dimethylpropionic Acid (AM803), a Potent, Oral, Once Daily FLAP Inhibitor. J Med Chem 2011; 54:8013-29. [DOI: 10.1021/jm2008369] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Nicholas S. Stock
- Departments
of †Chemistry, ‡Biology, and §Drug Metabolism, Amira Pharmaceuticals, 9535 Waples Road,
Suite 100, San Diego, California 92121, United
States
| | - Gretchen Bain
- Departments
of †Chemistry, ‡Biology, and §Drug Metabolism, Amira Pharmaceuticals, 9535 Waples Road,
Suite 100, San Diego, California 92121, United
States
| | - Jasmine Zunic
- Departments
of †Chemistry, ‡Biology, and §Drug Metabolism, Amira Pharmaceuticals, 9535 Waples Road,
Suite 100, San Diego, California 92121, United
States
| | - Yiwei Li
- Departments
of †Chemistry, ‡Biology, and §Drug Metabolism, Amira Pharmaceuticals, 9535 Waples Road,
Suite 100, San Diego, California 92121, United
States
| | - Jeannie Ziff
- Departments
of †Chemistry, ‡Biology, and §Drug Metabolism, Amira Pharmaceuticals, 9535 Waples Road,
Suite 100, San Diego, California 92121, United
States
| | - Jeffrey Roppe
- Departments
of †Chemistry, ‡Biology, and §Drug Metabolism, Amira Pharmaceuticals, 9535 Waples Road,
Suite 100, San Diego, California 92121, United
States
| | - Angelina Santini
- Departments
of †Chemistry, ‡Biology, and §Drug Metabolism, Amira Pharmaceuticals, 9535 Waples Road,
Suite 100, San Diego, California 92121, United
States
| | - Janice Darlington
- Departments
of †Chemistry, ‡Biology, and §Drug Metabolism, Amira Pharmaceuticals, 9535 Waples Road,
Suite 100, San Diego, California 92121, United
States
| | - Pat Prodanovich
- Departments
of †Chemistry, ‡Biology, and §Drug Metabolism, Amira Pharmaceuticals, 9535 Waples Road,
Suite 100, San Diego, California 92121, United
States
| | - Christopher D. King
- Departments
of †Chemistry, ‡Biology, and §Drug Metabolism, Amira Pharmaceuticals, 9535 Waples Road,
Suite 100, San Diego, California 92121, United
States
| | - Christopher Baccei
- Departments
of †Chemistry, ‡Biology, and §Drug Metabolism, Amira Pharmaceuticals, 9535 Waples Road,
Suite 100, San Diego, California 92121, United
States
| | - Catherine Lee
- Departments
of †Chemistry, ‡Biology, and §Drug Metabolism, Amira Pharmaceuticals, 9535 Waples Road,
Suite 100, San Diego, California 92121, United
States
| | - Haojing Rong
- Departments
of †Chemistry, ‡Biology, and §Drug Metabolism, Amira Pharmaceuticals, 9535 Waples Road,
Suite 100, San Diego, California 92121, United
States
| | - Charles Chapman
- Departments
of †Chemistry, ‡Biology, and §Drug Metabolism, Amira Pharmaceuticals, 9535 Waples Road,
Suite 100, San Diego, California 92121, United
States
| | - Alex Broadhead
- Departments
of †Chemistry, ‡Biology, and §Drug Metabolism, Amira Pharmaceuticals, 9535 Waples Road,
Suite 100, San Diego, California 92121, United
States
| | - Dan Lorrain
- Departments
of †Chemistry, ‡Biology, and §Drug Metabolism, Amira Pharmaceuticals, 9535 Waples Road,
Suite 100, San Diego, California 92121, United
States
| | - Lucia Correa
- Departments
of †Chemistry, ‡Biology, and §Drug Metabolism, Amira Pharmaceuticals, 9535 Waples Road,
Suite 100, San Diego, California 92121, United
States
| | - John H. Hutchinson
- Departments
of †Chemistry, ‡Biology, and §Drug Metabolism, Amira Pharmaceuticals, 9535 Waples Road,
Suite 100, San Diego, California 92121, United
States
| | - Jilly F. Evans
- Departments
of †Chemistry, ‡Biology, and §Drug Metabolism, Amira Pharmaceuticals, 9535 Waples Road,
Suite 100, San Diego, California 92121, United
States
| | - Peppi Prasit
- Departments
of †Chemistry, ‡Biology, and §Drug Metabolism, Amira Pharmaceuticals, 9535 Waples Road,
Suite 100, San Diego, California 92121, United
States
| |
Collapse
|
215
|
Okunishi K, Peters-Golden M. Leukotrienes and airway inflammation. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1810:1096-102. [PMID: 21352897 PMCID: PMC3136588 DOI: 10.1016/j.bbagen.2011.02.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 01/28/2011] [Accepted: 02/11/2011] [Indexed: 01/26/2023]
Abstract
BACKGROUND Asthma is a common chronic inflammatory disease of the airways characterized by airway obstruction and hyperresponsiveness. Leukotrienes (LTs) are lipid mediators that contribute to many aspects of asthma pathogenesis. As the LT pathway is relatively steroid-resistant, its blockade by alternative strategies is a desirable component of asthma management. Cysteinyl LT (cysLT) receptor 1 antagonists (LTRAs) have been utilized worldwide for more than 10years, and while their efficacy in asthma is well accepted, their limitations are also evident. SCOPE OF REVIEW In this review, we summarize the biological effects of LTs in asthma, review recent advances in LT receptors, and consider possible new therapeutic targets in the LT pathway that offer the potential to achieve better control of asthma in the future. MAJOR CONCLUSIONS CysLTs play pathogenetic roles in many aspects of asthma, and blockade of cysLT receptor 1 by currently available LTRAs is certainly beneficial in disease management. On the other hand, the limitations of LTRAs are also apparent. Recent studies have revealed new receptors for cysLTs other than classical cysLT receptors 1 and 2, as well as the potential importance of LTB(4) in asthma. GENERAL SIGNIFICANCE Recent findings provide clues to new approaches for targeting the LT pathway that may overcome the current limitations of LTRAs and achieve superior control of asthma. This article is part of a Special Issue entitled: Biochemistry of Asthma.
Collapse
Affiliation(s)
- Katsuhide Okunishi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System
| | - Marc Peters-Golden
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System
| |
Collapse
|
216
|
Hoyle CH. Evolution of neuronal signalling: Transmitters and receptors. Auton Neurosci 2011; 165:28-53. [DOI: 10.1016/j.autneu.2010.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 05/09/2010] [Accepted: 05/18/2010] [Indexed: 11/16/2022]
|
217
|
Chen LY, Eberlein M, Alsaaty S, Martinez-Anton A, Barb J, Munson PJ, Danner RL, Liu Y, Logun C, Shelhamer JH, Woszczek G. Cooperative and redundant signaling of leukotriene B4 and leukotriene D4 in human monocytes. Allergy 2011; 66:1304-11. [PMID: 21605126 PMCID: PMC3170431 DOI: 10.1111/j.1398-9995.2011.02647.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Leukotriene B(4) (LTB(4)) and cysteinyl leukotrienes (cysLTs) are important immune mediators, often found concomitantly at sites of inflammation. Although some of the leukotriene-mediated actions are distinctive (e.g., bronchial constriction for cysLTs), many activities such as leukocyte recruitment to tissues and amplification of inflammatory responses are shared by both classes of leukotrienes. OBJECTIVE We used human monocytes to characterize leukotriene-specific signaling, gene expression signatures, and functions and to identify interactions between LTB(4)- and cysLTs-induced pathways. METHODS Responsiveness to leukotrienes was assessed using oligonucleotide microarrays, real-time PCR, calcium mobilization, kinase activation, and chemotaxis assays. RESULTS Human monocytes were found to express mRNA for high- and low-affinity LTB(4) receptors, BLT(1) and BLT(2), but signal predominantly through BLT(1) in response to LTB(4) stimulation as shown using selective agonists, inhibitors, and gene knock down experiments. LTB(4) acting through BLT(1) coupled to G-protein α inhibitory subunit activated calcium signaling, p44/42 mitogen-activated protein kinase, gene expression, and chemotaxis. Twenty-seven genes, including immediate early genes (IEG), transcription factors, cytokines, and membrane receptors were significantly up-regulated by LTB(4). LTB(4) and LTD(4) had similar effects on signaling, gene expression, and chemotaxis indicating redundant cell activation pathways but costimulation with both lipid mediators was additive for many monocyte functions. CONCLUSION Leukotriene B(4) and LTD(4) display both redundant and cooperative effects on intracellular signaling, gene expression, and chemotaxis in human monocytes. These findings suggest that therapies targeting either leukotriene alone may be less effective than approaches directed at both.
Collapse
Affiliation(s)
- L Y Chen
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Boda E, Viganò F, Rosa P, Fumagalli M, Labat-Gest V, Tempia F, Abbracchio MP, Dimou L, Buffo A. The GPR17 receptor in NG2 expressing cells: focus on in vivo cell maturation and participation in acute trauma and chronic damage. Glia 2011; 59:1958-73. [PMID: 21956849 DOI: 10.1002/glia.21237] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 08/02/2011] [Indexed: 12/31/2022]
Abstract
NG2-expressing cells comprise a population of cycling precursors that can exit the cell cycle and differentiate into mature oligodendrocytes. As a whole, they display heterogeneous properties and behaviors that remain unresolved at the molecular level, although partly interpretable as distinct maturation stages. To address this issue, we analyzed the expression of the GPR17 receptor, recently shown to decorate NG2-expressing cells and to operate as an early sensor of brain damage, in immature and adult oligodendrocyte progenitors in the intact brain and after injury. In both the early postnatal and adult cerebral cortex, distinct GPR17 protein localizations and expression levels define different stages of oligodendroglial maturation, ranging from the precursor phase to the premyelinating phenotype. As soon as cells exit mitosis, a fraction of NG2-expressing cells displays accumulation of GPR17 protein in the Golgi apparatus. GPR17 expression is subsequently upregulated and distributed to processes of cells that stop dividing, progressively lose NG2 positivity and assume premyelinating features. Absence of colabeling with mature markers or myelin proteins indicates that GPR17 is downregulated when cells complete their final maturation. BrdU-based fate-mapping demonstrated that a significant fraction of newly generated oligodendrocyte progenitors transiently upregulates GPR17 during maturation. Importantly, we also found that GPR17 does not participate to the early reaction of NG2-expressing cells to damage, while it is induced at postacute stages after injury. These findings identify GPR17 as a marker for progenitor progression within the oligodendroglial lineage and highlight its participation to postacute reactivity of NG2 cells in different injury paradigms.
Collapse
Affiliation(s)
- Enrica Boda
- Department of Neuroscience, University of Turin, Turin, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Haeggström JZ, Funk CD. Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease. Chem Rev 2011; 111:5866-98. [PMID: 21936577 DOI: 10.1021/cr200246d] [Citation(s) in RCA: 654] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jesper Z Haeggström
- Department of Medical Biochemistry and Biophysics, Division of Chemistry 2, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | | |
Collapse
|
220
|
Burnstock G, Krügel U, Abbracchio MP, Illes P. Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol 2011; 95:229-74. [PMID: 21907261 DOI: 10.1016/j.pneurobio.2011.08.006] [Citation(s) in RCA: 320] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 08/12/2011] [Accepted: 08/15/2011] [Indexed: 02/07/2023]
Abstract
Purinergic neurotransmission, involving release of ATP as an efferent neurotransmitter was first proposed in 1972. Later, ATP was recognised as a cotransmitter in peripheral nerves and more recently as a cotransmitter with glutamate, noradrenaline, GABA, acetylcholine and dopamine in the CNS. Both ATP, together with some of its enzymatic breakdown products (ADP and adenosine) and uracil nucleotides are now recognised to act via P2X ion channels and P1 and P2Y G protein-coupled receptors, which are widely expressed in the brain. They mediate both fast signalling in neurotransmission and neuromodulation and long-term (trophic) signalling in cell proliferation, differentiation and death. Purinergic signalling is prominent in neurone-glial cell interactions. In this review we discuss first the evidence implicating purinergic signalling in normal behaviour, including learning and memory, sleep and arousal, locomotor activity and exploration, feeding behaviour and mood and motivation. Then we turn to the involvement of P1 and P2 receptors in pathological brain function; firstly in trauma, ischemia and stroke, then in neurodegenerative diseases, including Alzheimer's, Parkinson's and Huntington's, as well as multiple sclerosis and amyotrophic lateral sclerosis. Finally, the role of purinergic signalling in neuropsychiatric diseases (including schizophrenia), epilepsy, migraine, cognitive impairment and neuropathic pain will be considered.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London NW3 2PF, UK.
| | | | | | | |
Collapse
|
221
|
Bäck M, Dahlén SE, Drazen JM, Evans JF, Serhan CN, Shimizu T, Yokomizo T, Rovati GE. International Union of Basic and Clinical Pharmacology. LXXXIV: leukotriene receptor nomenclature, distribution, and pathophysiological functions. Pharmacol Rev 2011; 63:539-84. [PMID: 21771892 DOI: 10.1124/pr.110.004184] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
The seven-transmembrane G protein-coupled receptors activated by leukotrienes are divided into two subclasses based on their ligand specificity for either leukotriene B(4) or the cysteinyl leukotrienes (LTC(4), LTD(4), and LTE(4)). These receptors have been designated BLT and CysLT receptors, respectively, and a subdivision into BLT(1) and BLT(2) receptors and CysLT(1) and CysLT(2) receptors has been established. However, recent findings have also indicated the existence of putative additional leukotriene receptor subtypes. Furthermore, other ligands interact with the leukotriene receptors. Finally, leukotrienes may also activate other receptor classes, such as purinergic receptors. The aim of this review is to provide an update on the pharmacology, expression patterns, and pathophysiological roles of the leukotriene receptors as well as the therapeutic developments in this area of research.
Collapse
Affiliation(s)
- Magnus Bäck
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
222
|
Jacobson KA, Deflorian F, Mishra S, Costanzi S. Pharmacochemistry of the platelet purinergic receptors. Purinergic Signal 2011; 7:305-24. [PMID: 21484092 PMCID: PMC3166987 DOI: 10.1007/s11302-011-9216-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 01/11/2011] [Indexed: 10/18/2022] Open
Abstract
Platelets contain at least five purinergic G protein-coupled receptors, e.g., the pro-aggregatory P2Y(1) and P2Y(12) receptors, a P2Y(14) receptor (GPR105) of unknown function, and anti-aggregatory A(2A) and A(2B) adenosine receptor (ARs), in addition to the ligand-gated P2X1 ion channel. Probing the structure-activity relationships (SARs) of the P2X and P2Y receptors for extracellular nucleotides has resulted in numerous new agonist and antagonist ligands. Selective agents derived from known ligands and novel chemotypes can be used to help define the subtypes pharmacologically. Some of these agents have entered into clinical trials in spite of the challenges of drug development for these classes of receptors. The functional architecture of P2 receptors was extensively explored using mutagenesis and molecular modeling, which are useful tools in drug discovery. In general, novel drug delivery methods, prodrug approaches, allosteric modulation, and biased agonism would be desirable to overcome side effects that tend to occur even with receptor subtype-selective ligands. Detailed SAR analyses have been constructed for nucleotide and non-nucleotide ligands at the P2Y(1), P2Y(12), and P2Y(14) receptors. The thienopyridine antithrombotic drugs Clopidogrel and Prasugrel require enzymatic pre-activation in vivo and react irreversibly with the P2Y(12) receptor. There is much pharmaceutical development activity aimed at identifying reversible P2Y(12) receptor antagonists. The screening of chemically diverse compound libraries has identified novel chemotypes that act as competitive, non-nucleotide antagonists of the P2Y(1) receptor or the P2Y(12) receptor, and antithrombotic properties of the structurally optimized analogues were demonstrated. In silico screening at the A(2A) AR has identified antagonist molecules having novel chemotypes. Fluorescent and other reporter groups incorporated into ligands can enable new technology for receptor assays and imaging. The A(2A) agonist CGS21680 and the P2Y(1) receptor antagonist MRS2500 were derivatized for covalent attachment to polyamidoamine dendrimeric carriers of MW 20,000, and the resulting multivalent conjugates inhibited ADP-promoted platelet aggregation. In conclusion, a wide range of new pharmacological tools is available to control platelet function by interacting with cell surface purine receptors.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 8A, Rm. B1A-19, NIH, NIDDK, LBC, Bethesda, MD, 20892-0810, USA,
| | | | | | | |
Collapse
|
223
|
Kukulski F, Lévesque SA, Sévigny J. Impact of ectoenzymes on p2 and p1 receptor signaling. ADVANCES IN PHARMACOLOGY 2011; 61:263-99. [PMID: 21586362 DOI: 10.1016/b978-0-12-385526-8.00009-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
P2 receptors that are activated by extracellular nucleotides (e.g., ATP, ADP, UTP, UDP, Ap(n)A) and P1 receptors activated by adenosine control a diversity of biological processes. The activation of these receptors is tightly regulated by ectoenzymes that metabolize their ligands. This review presents these enzymes as well as their roles in the regulation of P2 and P1 receptor activation. We focus specifically on the role of ectoenzymes in processes of our interest, that is, inflammation, vascular tone, and neurotransmission. An update on the development of ectonucleotidase inhibitors is also presented.
Collapse
Affiliation(s)
- Filip Kukulski
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | | | | |
Collapse
|
224
|
Genetic mechanisms in aspirin-exacerbated respiratory disease. J Allergy (Cairo) 2011; 2012:794890. [PMID: 21837245 PMCID: PMC3151506 DOI: 10.1155/2012/794890] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 06/14/2011] [Indexed: 12/14/2022] Open
Abstract
Aspirin-exacerbated respiratory disease (AERD) refers to the development of bronchoconstriction in asthmatics following the exposure to aspirin or other nonsteroidal anti-inflammatory drugs. The key pathogenic mechanisms associated with AERD are the overproduction of cysteinyl leukotrienes (CysLTs) and increased CysLTR1 expression in the airway mucosa and decreased lipoxin and PGE2 synthesis. Genetic studies have suggested a role for variability of genes in disease susceptibility and the response to medication. Potential genetic biomarkers contributing to the AERD phenotype include HLA-DPB1, LTC4S, ALOX5, CYSLT, PGE2, TBXA2R, TBX21, MS4A2, IL10, ACE, IL13, KIF3A, SLC22A2, CEP68, PTGER, and CRTH2 and a four-locus SNP set composed of B2ADR, CCR3, CysLTR1, and FCER1B. Future areas of investigation need to focus on comprehensive approaches to identifying biomarkers for early diagnosis.
Collapse
|
225
|
Daniele S, Trincavelli ML, Gabelloni P, Lecca D, Rosa P, Abbracchio MP, Martini C. Agonist-induced desensitization/resensitization of human G protein-coupled receptor 17: a functional cross-talk between purinergic and cysteinyl-leukotriene ligands. J Pharmacol Exp Ther 2011; 338:559-67. [PMID: 21531793 DOI: 10.1124/jpet.110.178715] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
G protein-coupled receptor (GPR) 17 is a P2Y-like receptor that responds to both uracil nucleotides (as UDP-glucose) and cysteinyl-leukotrienes (cysLTs, as LTD(4)). By bioinformatic analysis, two distinct binding sites have been hypothesized to be present on GPR17, but little is known on their putative cross-regulation and on GPR17 desensitization/resensitization upon agonist exposure. In this study, we investigated in GPR17-expressing 1321N1 cells the cross-regulation between purinergic- and cysLT-mediated responses and analyzed GPR17 regulation after prolonged agonist exposure. Because GPR17 receptors couple to G(i) proteins and adenylyl cyclase inhibition, both guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPγS) binding and the cAMP assay have been used to investigate receptor functional activity. UDP-glucose was found to enhance LTD(4) potency in mediating activation of G proteins and vice versa, possibly through an allosteric mechanism. Both UDP-glucose and LTD(4) induced a time- and concentration-dependent GPR17 loss of response (homologous desensitization) with similar kinetics. GPR17 homologous desensitization was accompanied by internalization of receptors inside cells, which occurred in a time-dependent manner with similar kinetics for both agonists. Upon agonist removal, receptor resensitization occurred with the typical kinetics of G protein-coupled receptors. Finally, activation of GPR17 by UDP-glucose (but not vice versa) induced a partial heterologous desensitization of LTD(4)-mediated responses, suggesting that nucleotides have a hierarchy in producing desensitizing signals. These findings suggest a functional cross-talk between purinergic and cysLT ligands at GPR17. Because of the recently suggested key role of GPR17 in brain oligodendrogliogenesis and myelination, this cross-talk may have profound implications in fine-tuning cell responses to demyelinating and inflammatory conditions when these ligands accumulate at lesion sites.
Collapse
Affiliation(s)
- S Daniele
- Department of Psychiatry, Neurobiology, Pharmacology and Biotechnology, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
226
|
Gallego D, Gil V, Aleu J, Martinez-Cutillas M, Clavé P, Jimenez M. Pharmacological characterization of purinergic inhibitory neuromuscular transmission in the human colon. Neurogastroenterol Motil 2011; 23:792-e338. [PMID: 21585621 DOI: 10.1111/j.1365-2982.2011.01725.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND In the present study, we further characterize the purinergic receptors mediating the inhibitory junction potential (IJP) and smooth muscle relaxation in the human colon using a new, potent and selective agonist (MRS2365), and antagonists (MR2279 and MRS2500) of the P2Y(1) receptor. The P2Y(12) antagonist AR-C66096 was tested as well. Using this pharmacological approach, we tested whether β-nicotinamide adenine dinucleotide (β-NAD) fulfilled the criteria to be considered an inhibitory neurotransmitter in the human colon. METHODS We carried out muscle bath and microelectrode experiments on circular strips from the human colon and calcium imaging recordings on HEK293 cells, which constitutively express the human P2Y(1) receptor. KEY RESULTS Both the fast component of IJP and non-nitrergic relaxation was concentration-dependently inhibited by MRS2279 and MRS2500. This antagonism was confirmed in HEK293 cells. However, AR-C66096 did not modify either inhibitory response. Adenosine 5'-Ο-2-thiodiphosphate and MRS2365 caused a smooth muscle hyperpolarization and transient inhibition of spontaneous motility that was antagonized by MRS2279 and MRS2500. β-Nicotinamide adenine dinucleotide inhibited the spontaneous motility (IC(50) = 3.3 mmol L(-1) ). Nevertheless, this effect was not antagonized by high concentrations of P2Y(1) antagonists. CONCLUSIONS & INFERENCES Inhibitory purinergic neuromuscular transmission in the human colon was pharmacologically assessed by the use of new P2Y(1) receptor antagonists MRS2179, MRS2279, and MRS2500. The rank order of potency of the P2Y(1) antagonists is MRS2500 > MRS2279 > MRS2179. We found that β-NAD partially fulfills the criteria to be considered an inhibitory neurotransmitter in the human colon, but the relative contribution of each purine (ATP/ADP vsβ-NAD) requires further studies.
Collapse
Affiliation(s)
- D Gallego
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, (CIBERehd), Instituto de Salud Carlos III, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
227
|
Buccioni M, Marucci G, Dal Ben D, Giacobbe D, Lambertucci C, Soverchia L, Thomas A, Volpini R, Cristalli G. Innovative functional cAMP assay for studying G protein-coupled receptors: application to the pharmacological characterization of GPR17. Purinergic Signal 2011; 7:463-8. [PMID: 21773766 DOI: 10.1007/s11302-011-9245-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 06/20/2011] [Indexed: 10/18/2022] Open
Abstract
In this work, an innovative and non-radioactive functional cAMP assay was validated at the GPR17 receptor. This assay provides a simple and powerful new system to monitor G protein-coupled receptor activity through change in the intracellular cAMP concentration by using a mutant form of Photinus pyralis luciferase into which a cAMP-binding protein moiety has been inserted. Results, expressed as EC(50) or IC(50) values for agonists and antagonists, respectively, showed a strong correlation with those obtained with [(35)S]GTPγS binding assay, thus confirming the validity of this approach in the study of new ligands for GPR17. Moreover, this method allowed confirming that GPR17 is coupled with a G(αi).
Collapse
Affiliation(s)
- Michela Buccioni
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032, Camerino, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Carnini C, Accomazzo MR, Borroni E, Vitellaro‐Zuccarello L, Durand T, Folco G, Rovati GE, Capra V, Sala A. Synthesis of cysteinyl leukotrienes in human endothelial cells: subcellular localization and autocrine signaling through the CysLT
2
receptor. FASEB J 2011; 25:3519-28. [DOI: 10.1096/fj.10-177030] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Chiara Carnini
- Department of Pharmacological SciencesUniversity of Milan Milan Italy
| | | | - Emanuele Borroni
- Department of Pharmacological SciencesUniversity of Milan Milan Italy
| | | | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM)Unité Mixte de Recherche (UMR) 5247, Centre National de la Recherche Scientifique (CNRS)/UM I/UM II, Faculté de Pharmacie, Université de Montpellier Montpellier France
| | - Giancarlo Folco
- Department of Pharmacological SciencesUniversity of Milan Milan Italy
| | - G. Enrico Rovati
- Department of Pharmacological SciencesUniversity of Milan Milan Italy
| | - Valerie Capra
- Department of Pharmacological SciencesUniversity of Milan Milan Italy
| | - Angelo Sala
- Department of Pharmacological SciencesUniversity of Milan Milan Italy
| |
Collapse
|
229
|
Eberini I, Daniele S, Parravicini C, Sensi C, Trincavelli ML, Martini C, Abbracchio MP. In silico identification of new ligands for GPR17: a promising therapeutic target for neurodegenerative diseases. J Comput Aided Mol Des 2011; 25:743-52. [PMID: 21744154 DOI: 10.1007/s10822-011-9455-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 06/28/2011] [Indexed: 01/14/2023]
Abstract
GPR17, a previously orphan receptor responding to both uracil nucleotides and cysteinyl-leukotrienes, has been proposed as a novel promising target for human neurodegenerative diseases. Here, in order to specifically identify novel potent ligands of GPR17, we first modeled in silico the receptor by using a multiple template approach, in which extracellular loops of the receptor, quite complex to treat, were modeled making reference to the most similar parts of all the class-A GPCRs crystallized so far. A high-throughput virtual screening exploration of GPR17 binding site with more than 130,000 lead-like compounds was then applied, followed by the wet functional and pharmacological validation of the top-scoring chemical structures. This approach revealed successful for the proposed aim, and allowed us to identify five agonists or partial agonists with very diverse chemical structure. None of these compounds could have been expected 'a priori' to act on a GPCR, and all of them behaved as much more potent ligands than GPR17 endogenous activators.
Collapse
Affiliation(s)
- Ivano Eberini
- Gruppo di Studio per la Proteomica e la Struttura delle Proteine, Dipartimento di Scienze Farmacologiche, Università degli Studi di Milano, Italy.
| | | | | | | | | | | | | |
Collapse
|
230
|
Yoshikawa K, Palumbo S, Toscano CD, Bosetti F. Inhibition of 5-lipoxygenase activity in mice during cuprizone-induced demyelination attenuates neuroinflammation, motor dysfunction and axonal damage. Prostaglandins Leukot Essent Fatty Acids 2011; 85:43-52. [PMID: 21555210 PMCID: PMC3109232 DOI: 10.1016/j.plefa.2011.04.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 04/06/2011] [Accepted: 04/12/2011] [Indexed: 11/20/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS). Increased expression of 5-lipoxygenase (5-LO), a key enzyme in the biosynthesis of leukotrienes (LTs), has been reported in MS lesions and LT levels are elevated in the cerebrospinal fluid of MS patients. To determine whether pharmacological inhibition of 5-LO attenuates demyelination, MK886, a 5-LO inhibitor, was given to mice fed with cuprizone. Gene and protein expression of 5-LO were increased at the peak of cuprizone-induced demyelination. Although MK886 did not attenuate cuprizone-induced demyelination in the corpus callosum or in the cortex, it attenuated cuprizone-induced axonal damage and motor deficits and reduced microglial activation and IL-6 production. These data suggest that during cuprizone-induced demyelination, the 5-LO pathway contributes to microglial activation and neuroinflammation and to axonal damage resulting in motor dysfunction. Thus, 5-LO inhibition may be a useful therapeutic treatment in demyelinating diseases of the CNS.
Collapse
Affiliation(s)
| | - S. Palumbo
- Molecular Neuroscience Unit, Brain Physiology and Metabolism Section, National Institute on Aging, National Institute of Health, Bethesda, MD, USA
| | - C. D. Toscano
- Molecular Neuroscience Unit, Brain Physiology and Metabolism Section, National Institute on Aging, National Institute of Health, Bethesda, MD, USA
| | - F. Bosetti
- Corresponding author: Francesca Bosetti, Pharm.D., Ph.D., 9 Memorial Drive, Rm. 1S126 MSC 0947, Bethesda MD 20892-0947, Phone: (301) 594-5077, Fax: (301) 402-0074,
| |
Collapse
|
231
|
Kremer D, Aktas O, Hartung HP, Küry P. The complex world of oligodendroglial differentiation inhibitors. Ann Neurol 2011; 69:602-18. [PMID: 21520230 DOI: 10.1002/ana.22415] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Myelination is a central nervous system (CNS) process wherein oligodendrocyte-axon interactions lead to the establishment of myelin sheaths that stabilize, protect, and electrically insulate axons. In inflammatory demyelinating diseases such as multiple sclerosis (MS), the degeneration and eventual loss of functional myelin sheaths slows and blocks saltatory conduction in axons, which results in clinical impairment. However, remyelination can occur, and lesions can be partially repaired, resulting in clinical remission. The recruitment and activation of resident oligodendrocyte precursor cells (OPCs) play a critical role in the repair process because these cells have the capacity to differentiate into functional myelinating cells. Mature oligodendrocytes, however, are thought to have lost the capacity to develop new myelin sheaths and frequently undergo programmed cell death in MS. The endogenous capacity to generate new oligodendrocytes in MS is limited, and this is predominantly due to the presence of inhibitory components that block OPC differentiation and maturation. Here, we present an overview of recently identified negative regulators of oligodendroglial differentiation and their potential relevance for CNS repair in MS. Because currently available immunomodulatory drugs for MS mainly target inflammatory cascades outside the brain and fail to repair existing lesions, achieving more efficient lesion repair constitutes an important goal for future MS therapies.
Collapse
Affiliation(s)
- David Kremer
- Department of Neurology, Medical Faculty, Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany
| | | | | | | |
Collapse
|
232
|
Rink C, Khanna S. Significance of brain tissue oxygenation and the arachidonic acid cascade in stroke. Antioxid Redox Signal 2011; 14:1889-903. [PMID: 20673202 PMCID: PMC3078506 DOI: 10.1089/ars.2010.3474] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The significance of the hypoxia component of stroke injury is highlighted by hypermetabolic brain tissue enriched with arachidonic acid (AA), a 22:6n-3 polyunsaturated fatty acid. In an ischemic stroke environment in which cerebral blood flow is arrested, oxygen-starved brain tissue initiates the rapid cleavage of AA from the membrane phospholipid bilayer. Once free, AA undergoes both enzyme-independent and enzyme-mediated oxidative metabolism, resulting in the formation of number of biologically active metabolites which themselves contribute to pathological stroke outcomes. This review is intended to examine two divergent roles of molecular dioxygen in brain tissue as (1) a substrate for life-sustaining homeostatic metabolism of glucose and (2) a substrate for pathogenic metabolism of AA under conditions of stroke. Recent developments in research concerning supplemental oxygen therapy as an intervention to correct the hypoxic component of stroke injury are discussed.
Collapse
Affiliation(s)
- Cameron Rink
- Department of Surgery, The Ohio State University Medical Center, Columbus, Ohio 43210, USA
| | | |
Collapse
|
233
|
Affiliation(s)
- Motonao Nakamura
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Hongo, Tokyo, Japan.
| | | |
Collapse
|
234
|
Traini C, Pedata F, Cipriani S, Mello T, Galli A, Giovannini MG, Cerbai F, Volpini R, Cristalli G, Pugliese AM. P2 receptor antagonists prevent synaptic failure and extracellular signal-regulated kinase 1/2 activation induced by oxygen and glucose deprivation in rat CA1 hippocampus in vitro. Eur J Neurosci 2011; 33:2203-15. [PMID: 21453436 DOI: 10.1111/j.1460-9568.2011.07667.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
To investigate the role of purinergic P2 receptors under ischemia, we studied the effect of P2 receptor antagonists on synaptic transmission and mitogen-activated protein kinase (MAPK) activation under oxygen and glucose deprivation (OGD) in rat hippocampal slices. The effect of the P2 antagonists pyridoxalphosphate-6-azophenyl-2',4'-disulfonate (PPADS, unselective, 30 μm), N( 6) -methyl-2'-deoxyadenosine-3',5'-bisphosphate (MRS2179, selective for P2Y(1) receptor, 10 μm), Brilliant Blue G (BBG, selective for P2X(7) receptor, 1 μm), and 5-[[[(3-phenoxyphenyl)methyl][(1S)-1,2,3,4-tetrahydro-1-naphthalenyl]amino]carbonyl]-1,2,4-benzenetricarboxylic acid (A-317491, selective for P2X(3) receptor, 10 μm), and of the newly synthesized P2X(3) receptor antagonists 2-amino-9-(5-iodo-2-isopropyl-4-methoxybenzyl)adenine (PX21, 1 μm) and 2-amino-9-(5-iodo-2-isopropyl-4-methoxybenzyl)-N( 6)-methyladenine (PX24, 1 μm), on the depression of field excitatory postsynaptic potentials (fEPSPs) and anoxic depolarization (AD) elicited by 7 min of OGD were evaluated. All antagonists significantly prevented these effects. The extent of CA1 cell injury was assessed 3 h after the end of 7 min of OGD by propidium iodide staining. Substantial CA1 pyramidal neuronal damage, detected in untreated slices exposed to OGD injury, was significantly prevented by PPADS (30 μm), MRS2179 (10 μm), and BBG (1 μm). Western blot analysis showed that, 10 min after the end of the 7 min of OGD, extracellular signal-regulated kinase (ERK)1/2 MAPK activation was significantly increased. MRS2179, BBG, PPADS and A-317491 significantly counteracted ERK1/2 activation. Hippocampal slices incubated with the ERK1/2 inhibitors 1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio)butadiene (U0126, 10 μm) and α-[amino[(4-aminophenyl)thio]methylene]-2-(trifluoromethyl) benzeneacetonitrile (SL327, 10 μm) showed significant fEPSP recovery after OGD and delayed AD, supporting the involvement of ERK1/2 in neuronal damage induced by OGD. These results indicate that subtypes of hippocampal P2 purinergic receptors have a harmful effect on neurotransmission in the CA1 hippocampus by participating in AD appearance and activation of ERK1/2.
Collapse
Affiliation(s)
- Chiara Traini
- Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Fumagalli M, Daniele S, Lecca D, Lee PR, Parravicini C, Fields RD, Rosa P, Antonucci F, Verderio C, Trincavelli ML, Bramanti P, Martini C, Abbracchio MP. Phenotypic changes, signaling pathway, and functional correlates of GPR17-expressing neural precursor cells during oligodendrocyte differentiation. J Biol Chem 2011; 286:10593-604. [PMID: 21209081 PMCID: PMC3060511 DOI: 10.1074/jbc.m110.162867] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 12/29/2010] [Indexed: 11/06/2022] Open
Abstract
The developing and mature central nervous system contains neural precursor cells expressing the proteoglycan NG2. Some of these cells continuously differentiate to myelin-forming oligodendrocytes; knowledge of the destiny of NG2(+) precursors would benefit from the characterization of new key functional players. In this respect, the G protein-coupled membrane receptor GPR17 has recently emerged as a new timer of oligodendrogliogenesis. Here, we used purified oligodendrocyte precursor cells (OPCs) to fully define the immunophenotype of the GPR17-expressing cells during OPC differentiation, unveil its native signaling pathway, and assess the functional consequences of GPR17 activation by its putative endogenous ligands, uracil nucleotides and cysteinyl leukotrienes (cysLTs). GPR17 presence was restricted to very early differentiation stages and completely segregated from that of mature myelin. Specifically, GPR17 decorated two subsets of slowly proliferating NG2(+) OPCs: (i) morphologically immature cells expressing other early proteins like Olig2 and PDGF receptor-α, and (ii) ramified preoligodendrocytes already expressing more mature factors, like O4 and O1. Thus, GPR17 is a new marker of these transition stages. In OPCs, GPR17 activation by either uracil nucleotides or cysLTs resulted in potent inhibition of intracellular cAMP formation. This effect was counteracted by GPR17 antagonists and receptor silencing with siRNAs. Finally, uracil nucleotides promoted and GPR17 inhibition, by either antagonists or siRNAs, impaired the normal program of OPC differentiation. These data have implications for the in vivo behavior of NG2(+) OPCs and point to uracil nucleotides and cysLTs as main extrinsic local regulators of these cells under physiological conditions and during myelin repair.
Collapse
Affiliation(s)
- Marta Fumagalli
- From the Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological Sciences, University of Milan, 20133 Milan, Italy
| | - Simona Daniele
- the Department of Psychiatry, Neurobiology, Pharmacology, and Biotechnology, University of Pisa, 56126 Pisa, Italy
| | - Davide Lecca
- From the Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological Sciences, University of Milan, 20133 Milan, Italy
| | - Philip R. Lee
- the Nervous System Development and Plasticity Section, National Institutes of Health, Bethesda, Maryland 20817
| | - Chiara Parravicini
- From the Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological Sciences, University of Milan, 20133 Milan, Italy
| | - R. Douglas Fields
- the Nervous System Development and Plasticity Section, National Institutes of Health, Bethesda, Maryland 20817
| | - Patrizia Rosa
- the Department of Medical Pharmacology, Consiglio Nazionale delle Ricerche Institute of Neuroscience, 20129 Milan, Italy, and
| | - Flavia Antonucci
- the Department of Medical Pharmacology, Consiglio Nazionale delle Ricerche Institute of Neuroscience, 20129 Milan, Italy, and
| | - Claudia Verderio
- the Department of Medical Pharmacology, Consiglio Nazionale delle Ricerche Institute of Neuroscience, 20129 Milan, Italy, and
| | - M. Letizia Trincavelli
- the Department of Psychiatry, Neurobiology, Pharmacology, and Biotechnology, University of Pisa, 56126 Pisa, Italy
| | | | - Claudia Martini
- the Department of Psychiatry, Neurobiology, Pharmacology, and Biotechnology, University of Pisa, 56126 Pisa, Italy
| | - Maria P. Abbracchio
- From the Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological Sciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
236
|
Marucci G, Lammi C, Buccioni M, Dal Ben D, Lambertucci C, Amantini C, Santoni G, Kandhavelu M, Abbracchio MP, Lecca D, Volpini R, Cristalli G. Comparison and optimization of transient transfection methods at human astrocytoma cell line 1321N1. Anal Biochem 2011; 414:300-2. [PMID: 21354096 DOI: 10.1016/j.ab.2011.02.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 02/18/2011] [Indexed: 10/18/2022]
Abstract
Gene delivery to eukaryotic cells is the technique to study the regulation of gene expression. Human astrocytoma cell line 1321N1 could be useful to study G-protein-coupled receptors (GPCRs). Different transient transfection methods, namely calcium phosphate, Lipofectamine, FuGENE, Arrest-In, and microporation (Microporator), were investigated. Results were analyzed by fluorescence-activated cell sorting and fluorescence microscope using green fluorescent protein (GFP) as a reporter gene. To verify the transfection efficiency of these techniques, the expression of human GPR17 gene (hgpr17) was analyzed by transcription quantitative polymerase chain reaction. Microporation resulted in the best method to promote enriched hgpr17 delivery into the human astrocytoma cell line.
Collapse
Affiliation(s)
- Gabriella Marucci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Abstract
Leukotrienes (LTs), including cysteinyl LTs (CysLTs) and LTB(4) , are potent lipid mediators that have a role in the pathophysiology of asthma. At least two receptor subtypes for CysLTs, CysLT(1) and CysLT(2) , have been identified. The activation of the CysLT(1) receptor is responsible for most of the pathophysiological effects of CysLTs in asthma, including increased airway smooth muscle activity, microvascular permeability, and airway mucus secretion. LTB(4) might have a role in severe asthma, asthma exacerbations, and the development of airway hyperresponsiveness. CysLT(1) receptor antagonists can be given orally as monotherapy in patients with mild persistent asthma, but these drugs are generally less effective than inhaled glucocorticoids. Combination of CysLT(1) receptor antagonists and inhaled glucocorticoids in patients with more severe asthma may improve asthma control and enable the dose of inhaled glucocorticoids to be reduced while maintaining similar efficacy. The identification of subgroups of asthmatic patients who respond to CysLT(1) receptor antagonists is relevant for asthma management as the response to these drugs is variable. CysLT(1) receptor antagonists have a potential anti-remodelling effect that might be important for preventing or reversing airway structural changes in patients with asthma. This review discusses the role of LTs in asthma and the role of LT modifiers in asthma treatment.
Collapse
Affiliation(s)
- P Montuschi
- Department of Pharmacology, Faculty of Medicine, Catholic University of the Sacred Heart, Rome, Italy.
| | | |
Collapse
|
238
|
Trevethick MA. Is uridine a treatment for asthma? Clin Exp Allergy 2011; 40:1436-8. [PMID: 20937059 DOI: 10.1111/j.1365-2222.2010.03600.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
239
|
Fausther M, Sévigny J. Extracellular nucleosides and nucleotides regulate liver functions via a complex system of membrane proteins. C R Biol 2011; 334:100-17. [PMID: 21333941 DOI: 10.1016/j.crvi.2010.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 11/17/2010] [Accepted: 12/09/2010] [Indexed: 12/22/2022]
Abstract
Nucleosides and nucleotides are now considered as extracellular signalling molecules, like neurotransmitters and hormones. Hepatic cells, amongst other cells, ubiquitously express specific transmembrane receptors that transduce the physiological signals induced by extracellular nucleosides and nucleotides, as well as various cell surface enzymes that regulate the levels of these mediators in the extracellular medium. Here, we cover various aspects of the signalling pathways initiated by extracellular nucleosides and nucleotides in the liver, and discuss their overall impact on hepatic physiology.
Collapse
Affiliation(s)
- Michel Fausther
- Centre de recherche en rhumatologie et immunologie, CHU de Québec, QC, Canada
| | | |
Collapse
|
240
|
Köles L, Leichsenring A, Rubini P, Illes P. P2 receptor signaling in neurons and glial cells of the central nervous system. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2011; 61:441-93. [PMID: 21586367 DOI: 10.1016/b978-0-12-385526-8.00014-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Purine and pyrimidine nucleotides are extracellular signaling molecules in the central nervous system (CNS) leaving the intracellular space of various CNS cell types via nonexocytotic mechanisms. In addition, ATP is a neuro-and gliotransmitter released by exocytosis from neurons and neuroglia. These nucleotides activate P2 receptors of the P2X (ligand-gated cationic channels) and P2Y (G protein-coupled receptors) types. In mammalians, seven P2X and eight P2Y receptor subunits occur; three P2X subtypes form homomeric or heteromeric P2X receptors. P2Y subtypes may also hetero-oligomerize with each other as well as with other G protein-coupled receptors. P2X receptors are able to physically associate with various types of ligand-gated ion channels and thereby to interact with them. The P2 receptor homomers or heteromers exhibit specific sensitivities against pharmacological ligands and have preferential functional roles. They may be situated at both presynaptic (nerve terminals) and postsynaptic (somatodendritic) sites of neurons, where they modulate either transmitter release or the postsynaptic sensitivity to neurotransmitters. P2 receptors exist at neuroglia (e.g., astrocytes, oligodendrocytes) and microglia in the CNS. The neuroglial P2 receptors subserve the neuron-glia cross talk especially via their end-feets projecting to neighboring synapses. In addition, glial networks are able to communicate through coordinated oscillations of their intracellular Ca(2+) over considerable distances. P2 receptors are involved in the physiological regulation of CNS functions as well as in its pathophysiological dysregulation. Normal (motivation, reward, embryonic and postnatal development, neuroregeneration) and abnormal regulatory mechanisms (pain, neuroinflammation, neurodegeneration, epilepsy) are important examples for the significance of P2 receptor-mediated/modulated processes.
Collapse
Affiliation(s)
- Laszlo Köles
- Rudolph-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Germany
| | | | | | | |
Collapse
|
241
|
Huber C, Marschallinger J, Tempfer H, Furtner T, Couillard-Despres S, Bauer HC, Rivera FJ, Aigner L. Inhibition of Leukotriene Receptors Boosts Neural Progenitor Proliferation. Cell Physiol Biochem 2011; 28:793-804. [DOI: 10.1159/000335793] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2011] [Indexed: 12/21/2022] Open
|
242
|
Bhatnagar S, Mishra S, Pathak R. Mining human genome for novel purinergic P2Y receptors: a sequence analysis and molecular modeling approach. J Recept Signal Transduct Res 2010; 31:75-84. [PMID: 21142848 DOI: 10.3109/10799893.2010.529578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The purinergic P2Y receptors are G-protein coupled receptors (GPCRs) that control many physiological processes by mediating cellular responses to purines, pyrimidines and their analogues. They can be used as potential therapeutic targets in a variety of disease conditions. Therefore, it is critical to identify new members of this family of receptors from the human genome and characterize them for their role in health and disease. In the present work, molecular modeling was carried out for the 21 known P2Y receptors. Binding site analysis was done on the basis of docking and site-directed mutagenesis data. Thus, conserved features of P2Y receptors could be formulated. These features can be used to determine the purinergic nature of potential P2Y receptors in the human genome. We applied this knowledge to human genome GPCR sequences found by sensitive sequence search techniques and identified two orphan receptors, namely GPR34 and GP171 that have all the necessary conserved features of P2Y receptors.
Collapse
Affiliation(s)
- Sonika Bhatnagar
- Division of Biotechnology, Netaji Subhas Institute of Technology, New Delhi, India.
| | | | | |
Collapse
|
243
|
Pertwee RG, Howlett AC, Abood ME, Alexander SPH, Di Marzo V, Elphick MR, Greasley PJ, Hansen HS, Kunos G, Mackie K, Mechoulam R, Ross RA. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB₁ and CB₂. Pharmacol Rev 2010; 62:588-631. [PMID: 21079038 PMCID: PMC2993256 DOI: 10.1124/pr.110.003004] [Citation(s) in RCA: 1235] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There are at least two types of cannabinoid receptors (CB(1) and CB(2)). Ligands activating these G protein-coupled receptors (GPCRs) include the phytocannabinoid Δ(9)-tetrahydrocannabinol, numerous synthetic compounds, and endogenous compounds known as endocannabinoids. Cannabinoid receptor antagonists have also been developed. Some of these ligands activate or block one type of cannabinoid receptor more potently than the other type. This review summarizes current data indicating the extent to which cannabinoid receptor ligands undergo orthosteric or allosteric interactions with non-CB(1), non-CB(2) established GPCRs, deorphanized receptors such as GPR55, ligand-gated ion channels, transient receptor potential (TRP) channels, and other ion channels or peroxisome proliferator-activated nuclear receptors. From these data, it is clear that some ligands that interact similarly with CB(1) and/or CB(2) receptors are likely to display significantly different pharmacological profiles. The review also lists some criteria that any novel "CB(3)" cannabinoid receptor or channel should fulfil and concludes that these criteria are not currently met by any non-CB(1), non-CB(2) pharmacological receptor or channel. However, it does identify certain pharmacological targets that should be investigated further as potential CB(3) receptors or channels. These include TRP vanilloid 1, which possibly functions as an ionotropic cannabinoid receptor under physiological and/or pathological conditions, and some deorphanized GPCRs. Also discussed are 1) the ability of CB(1) receptors to form heteromeric complexes with certain other GPCRs, 2) phylogenetic relationships that exist between CB(1)/CB(2) receptors and other GPCRs, 3) evidence for the existence of several as-yet-uncharacterized non-CB(1), non-CB(2) cannabinoid receptors; and 4) current cannabinoid receptor nomenclature.
Collapse
MESH Headings
- Cannabinoid Receptor Agonists
- Cannabinoid Receptor Antagonists
- Cannabinoid Receptor Modulators/metabolism
- Cannabinoids/metabolism
- Humans
- Ligands
- Phylogeny
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/metabolism
- Receptors, Cannabinoid/metabolism
- Terminology as Topic
Collapse
Affiliation(s)
- R G Pertwee
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Poulin S, Thompson C, Thivierge M, Véronneau S, McMahon S, Dubois CM, Stankova J, Rola-Pleszczynski M. Cysteinyl-leukotrienes induce vascular endothelial growth factor production in human monocytes and bronchial smooth muscle cells. Clin Exp Allergy 2010; 41:204-17. [PMID: 21121979 DOI: 10.1111/j.1365-2222.2010.03653.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Cysteinyl leukotrienes (cysLTs) are suggested to be implicated in the process of airway remodelling in asthma. OBJECTIVE We investigated the potential for cysLTs to modulate vascular endothelial growth factor (VEGF) expression, a growth factor involved in the angiogenesis of airway remodelling. METHODS VEGF mRNA and protein were quantified by real-time PCR and ELISA, respectively. VEGF promoter activation was assessed using luciferase gene-tagged promoter constructs. RESULTS We found that LTD(4) induction of VEGF in human monocytes and bronchial smooth muscle cells is cysLT1 dependent. Stimulation of HEK293 cells stably expressing cysLT1 or cysLT2 with cysLTs showed a concentration-dependent activation of the VEGF promoter and a time-dependent increase in VEGF mRNA and protein. For the cysLT1-mediated response, mutations of hypoxia-induced factor-1 (HIF-1) sites failed to reduce cysLT-induced VEGF promoter activation and 5' deletions showed that the proximal region containing one AP-1 and four specificity protein 1 (Sp1) sites was necessary. Pretreatment with inhibitors of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK), but not p38, and an overexpression of dominant negative forms of c-Jun, c-Fos or Ras suggested the implication of mitogen-activated protein kinases and AP-1. Mutation of the AP-1-binding element failed to prevent VEGF transactivation suggesting that AP-1 might not act directly on the promoter. Moreover, inhibition of Sp1-dependent transcription by mithramycin completely inhibited VEGF promoter transactivation and VEGF mRNA expression by LTD(4) . Finally, mutations of Sp1 binding elements prevented VEGF promoter transactivation. CONCLUSION AND CLINICAL RELEVANCE Our data indicate for the first time that cysLTs can transcriptionally activate VEGF production via cysLT1 receptors, with the involvement of JNK, ERK, the AP-1 complex and Sp1. These findings suggest that cysLTs may be important in the angiogenic process of airway remodelling and potentially provide a previously unknown benefit of using cysLT1 receptor antagonists in the prevention or treatment of airway remodelling in asthma.
Collapse
Affiliation(s)
- S Poulin
- Department of Pediatrics, Division of Immunology and Allergy, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
245
|
Ceruti S, Viganò F, Boda E, Ferrario S, Magni G, Boccazzi M, Rosa P, Buffo A, Abbracchio MP. Expression of the new P2Y-like receptor GPR17 during oligodendrocyte precursor cell maturation regulates sensitivity to ATP-induced death. Glia 2010; 59:363-78. [PMID: 21264945 DOI: 10.1002/glia.21107] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 10/12/2010] [Indexed: 12/13/2022]
Abstract
The P2Y-like receptor GPR17 is expressed by adult neural progenitor cells, suggesting a role in lineage determination. Here, we characterized GPR17 expression and function in mouse cortical primary astrocytes/precursor cell cultures. GPR17 is expressed by a subpopulation of oligodendrocyte precursor cells (OPCs), but not by astrocytes. This expression pattern was also confirmed in vivo. In vitro, GPR17 expression was markedly influenced by culturing conditions. In the presence of growth factors (GFs), no significant GPR17 expression was found. When cultures were shifted to a differentiating medium, a dramatic, time-dependent increase in the number of highly branched GPR17-positive cells was observed. Under these conditions, GPR17 was induced in the totality of O4-positive immature oligodendrocytes. Instead, in cultures originally grown in the absence of GFs, GPR17 was already expressed in morphologically more mature OPCs. Shifting of these cultures to differentiating conditions induced GPR17 only in a subpopulation of O4-positive cells. Under both culture protocols, appearance of more mature CNPase- and MBP-positive cells was associated to a progressive loss of GPR17. GPR17 expression also sensitized cells to adenine nucleotide-induced cytotoxicity, whereas activation with uracil nucleotides promoted differentiation towards a more mature phenotype. We suggest that GFs may keep OPCs in a less differentiated stage by restraining GPR17 expression, and that, under permissive conditions, GPR17 contributes to OPCs differentiation. However, upon high extracellular adenine nucleotide concentrations, as during trauma and ischemia, GPR17 sensitizes cells to cytotoxicity. This double-edged sword role may be exploited to unveil new therapeutic approaches to acute and chronic brain disorders.
Collapse
Affiliation(s)
- Stefania Ceruti
- Department of Pharmacological Sciences, Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Schokker D, Smits MA, Hoekman AJW, Parmentier HK, Rebel JMJ. Effects of Salmonella on spatial-temporal processes of jejunal development in chickens. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:1090-1100. [PMID: 20541565 DOI: 10.1016/j.dci.2010.05.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 05/25/2010] [Accepted: 05/25/2010] [Indexed: 05/29/2023]
Abstract
To study effects of Salmonella enteritidis on morphological and functional changes in chicken jejunal development, we analysed gene expression profiles at seven points post-infection in 1-21 day-old broiler chickens. Nine clusters with different gene expression patterns were identified, and the genes in each cluster were further analyzed by a functional annotation clustering method (DAVID). Functional and morphological developmental processes dominated in all the nine clusters. Salmonella infection caused delays in several intestinal-morphological processes, whereas functional metabolic processes occurred in a similar spatial-temporal frame compared to normal jejunum development. A clear difference between normal developing- and Salmonella disturbed jejunum was the higher expression of genes involved in cell turn-over at early stages in the infected jejunum. Surprisingly, we found no clustered immune related processes in the infected birds. To compare the immunological processes between control and Salmonella infected chickens, the gene expression data was superimposed on known immunological KEGG pathways. Furthermore an in-depth analysis on the immune gene level was performed. As expected, we did find immunological processes in the Salmonella infected jejunum. Several of these processes could be verified by immunohistochemistry measurements of different immunological cell types. However, the well-ordered spatial-temporal development of the immune system, as observed in control non-infected animals, was completely abolished in the infected animals. Several immunological processes started much earlier in time, whereas other processes are disorganised. These data indicate that normal morphological and immunological development of jejunum is changed dramatically by a disturbance due to Salmonella infection. Due to the disturbance, the well-organized spatial-temporal development of morphological processes are delayed, those of the immunological development are scattered, whereas metabolic functional processes are almost not affected. This demonstrates the flexibility of developmental processes in the broiler chicken intestine.
Collapse
Affiliation(s)
- Dirkjan Schokker
- Wageningen UR Livestock Research, Animal Breeding and Genomics Centre, P.O. Box 65, 8200 AB, Lelystad, The Netherlands.
| | | | | | | | | |
Collapse
|
247
|
Stock N, Baccei C, Bain G, Chapman C, Correa L, Darlington J, King C, Lee C, Lorrain DS, Prodanovich P, Santini A, Schaab K, Evans JF, Hutchinson JH, Prasit P. 5-Lipoxygenase-activating protein inhibitors. Part 3: 3-{3-tert-Butylsulfanyl-1-[4-(5-methoxy-pyrimidin-2-yl)-benzyl]-5-(5-methyl-pyridin-2-ylmethoxy)-1H-indol-2-yl]-2,2-dimethyl-propionic acid (AM643)—A potent FLAP inhibitor suitable for topical administration. Bioorg Med Chem Lett 2010; 20:4598-601. [DOI: 10.1016/j.bmcl.2010.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 06/01/2010] [Accepted: 06/02/2010] [Indexed: 10/19/2022]
|
248
|
Pharmacology of AM803, a novel selective five-lipoxygenase-activating protein (FLAP) inhibitor in rodent models of acute inflammation. Eur J Pharmacol 2010; 640:211-8. [DOI: 10.1016/j.ejphar.2010.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 04/12/2010] [Accepted: 05/06/2010] [Indexed: 11/20/2022]
|
249
|
Maekawa A, Xing W, Austen KF, Kanaoka Y. GPR17 regulates immune pulmonary inflammation induced by house dust mites. THE JOURNAL OF IMMUNOLOGY 2010; 185:1846-54. [PMID: 20574000 DOI: 10.4049/jimmunol.1001131] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Antagonists of the type 1 cysteinyl leukotriene receptor (CysLT(1)R) are efficacious for bronchoconstriction in humans with bronchial asthma; however, the clinical response to these drugs is heterogeneous. In particular, how CysLT(1)R expression and function are constitutively regulated in vivo is not known. In this study, we show that a seven-transmembrane receptor, GPR17, negatively regulates the CysLT(1)R-mediated inflammatory cell accumulation in the bronchoalveolar lavage fluid and lung, the levels of IgE and specific IgG1 in serum, and Th2/Th17 cytokine expression in the lung after intranasal sensitization and challenge with the house dust mite (extract of Dermatophagoides farinae [Df]) in mice. Sensitization of naive wild-type recipients with Df-pulsed bone marrow-derived dendritic cells of each genotype or sensitization of each genotype with Df-pulsed wild-type bone marrow-derived dendritic cells and Df challenge revealed markedly increased pulmonary inflammatory and serum IgE responses for GPR17-deficient mice as compared with wild-type mice and reduced responses in the genotypes lacking CysLT(1)R. These findings reveal a constitutive negative regulation of CysLT(1)R functions by GPR17 in both the Ag presentation and downstream phases of allergic pulmonary inflammation.
Collapse
Affiliation(s)
- Akiko Maekawa
- Department of Medicine, Harvard Medical School and Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
250
|
Calleri E, Ceruti S, Cristalli G, Martini C, Temporini C, Parravicini C, Volpini R, Daniele S, Caccialanza G, Lecca D, Lambertucci C, Trincavelli ML, Marucci G, Wainer IW, Ranghino G, Fantucci P, Abbracchio MP, Massolini G. Frontal affinity chromatography-mass spectrometry useful for characterization of new ligands for GPR17 receptor. J Med Chem 2010; 53:3489-501. [PMID: 20394377 DOI: 10.1021/jm901691y] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The application of frontal affinity chromatography-mass spectrometry (FAC-MS), along with molecular modeling studies, to the screening of potential drug candidates toward the recently deorphanized G-protein-coupled receptor (GPCR) GPR17 is shown. GPR17 is dually activated by uracil nucleotides and cysteinyl-leukotrienes, and is expressed in organs typically undergoing ischemic damage (i.e., brain, heart and kidney), thus representing a new pharmacological target for acute and chronic neurodegeneration. GPR17 was entrapped on an immobilized artificial membrane (IAM), and this stationary phase was used to screen a library of nucleotide derivatives by FAC-MS to select high affinity ligands. The chromatographic results have been validated with a reference functional assay ([(35)S]GTPgammaS binding assay). The receptor nucleotide-binding site was studied by setting up a column where a mutated GPR17 receptor (Arg255Ile) has been immobilized. The chromatographic behavior of the tested nucleotide derivatives together with in silico studies have been used to gain insights into the structure requirement of GPR17 ligands.
Collapse
Affiliation(s)
- Enrica Calleri
- Department of Pharmaceutical Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|