201
|
A Comprehensive Identification of Synaptic Vesicle Proteins in Rat Brains by cRPLC/MS-MS and 2DE/MALDI-TOF-MS. B KOREAN CHEM SOC 2007. [DOI: 10.5012/bkcs.2007.28.9.1499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
202
|
Abstract
Excitatory (glutamatergic) synapses in the mammalian brain are usually situated on dendritic spines, a postsynaptic microcompartment that also harbors organelles involved in protein synthesis, membrane trafficking, and calcium metabolism. The postsynaptic membrane contains a high concentration of glutamate receptors, associated signaling proteins, and cytoskeletal elements, all assembled by a variety of scaffold proteins into an organized structure called the postsynaptic density (PSD). A complex machine made of hundreds of distinct proteins, the PSD dynamically changes its structure and composition during development and in response to synaptic activity. The molecular size of the PSD and the stoichiometry of many major constituents have been recently measured. The structures of some intact PSD proteins, as well as the spatial arrangement of several proteins within the PSD, have been determined at low resolution by electron microscopy. On the basis of such studies, a more quantitative and geometrically realistic view of PSD architecture is emerging.
Collapse
Affiliation(s)
- Morgan Sheng
- The Picower Institute for Learning and Memory, Howard Hughes Medical Institute, Departments of Brain and Cognitive Sciences, and Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
203
|
Silverman JB, Restituito S, Lu W, Lee-Edwards L, Khatri L, Ziff EB. Synaptic anchorage of AMPA receptors by cadherins through neural plakophilin-related arm protein AMPA receptor-binding protein complexes. J Neurosci 2007; 27:8505-16. [PMID: 17687028 PMCID: PMC6672939 DOI: 10.1523/jneurosci.1395-07.2007] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cadherins function in the adhesion of presynaptic and postsynaptic membranes at excitatory synapses. Here we show that the cadherin-associated protein neural plakophilin-related arm protein (NPRAP; also called delta-catenin) binds via a postsynaptic density-95 (PSD-95)/discs large/zona occludens-1 (PDZ) interaction to AMPA receptor (AMPAR)-binding protein (ABP) and the related glutamate receptor (GluR)-interacting protein (GRIP), two multi-PDZ proteins that bind the GluR2 and GluR3 AMPAR subunits. The resulting cadherin-NPRAP-ABP/GRIP complexes serve as anchorages for AMPARs. Exogenous NPRAP that was bound to cadherins at adherens junctions of Madin-Darby canine kidney cells recruited ABP from the cytosol to form cadherin-NPRAP-ABP complexes, dependent on NPRAP interaction with the ABP PDZ domain 2. The cadherin-NPRAP-ABP complexes also bound GluR2. In cultured hippocampal neurons, dominant-negative mutants of NPRAP designed to disrupt tethering of ABP to NPRAP-cadherin complexes reduced surface levels of endogenous GluR2, indicating that interaction with cadherin-NPRAP-ABP complexes stabilized GluR2 at the neuronal plasma membrane. Cadherins, NPRAP, GRIP, and GluR2 copurified in the fractionation of synaptosomes and the postsynaptic density, two fractions enriched in synaptic proteins. Furthermore, synaptosomes contain NPRAP-GRIP complexes, and NPRAP localizes with the postsynaptic marker PSD-95 and with AMPARs and GRIP at spines of hippocampal neurons. Thus, tethering is likely to take place at synaptic or perisynaptic sites. NPRAP also binds PSD-95, which is a scaffold for NMDA receptors, for AMPARs in complexes with auxiliary subunits, the TARPs (transmembrane AMPA receptor regulator proteins), and for adhesion molecules. Thus, the interaction of scaffolding proteins with cadherin-NPRAP complexes may anchor diverse signaling and adhesion molecules at cadherins.
Collapse
Affiliation(s)
| | | | - Wei Lu
- Program in Neuroscience and Physiology, New York University School of Medicine, New York, New York 10016
| | | | | | | |
Collapse
|
204
|
Abstract
It is now apparent that multiprotein signalling complexes or "signalling machines" are responsible for orchestrating many complex signalling pathways in the cell. The synapse is a sub-cellular specialisation which transmits and converts patterns of electrical activity into cellular memory. This processing of electrical information is mediated by the protein components of the synapse. The organisation of synaptic proteins has been investigated over the last number of years using proteomic methods and with the application ofbioinformatics; a landscape of modular protein complexes at the synapse is emerging. Many share a common organisation centred on a receptor/channel, a protein scaffold, (in which the signalling molecules are localised) and membrane to cytoskeleton interactions. The use of PDZ-domain based protein scaffolds is a particularly common feature in the construction of neuronal protein complexes and the differential presence of these proteins in complexes can have functional consequences. Here we overview current proteomic methodologies for the analysis of multiprotein complexes. In addition, we describe the characterisation of a number of multiprotein complexes associated with ion channels (NMDAR, P2X7 and Kir2) and GPCRs (5-HT2A/5-HT2C, D2 and mGluR5) and discuss common their common components and organisation.
Collapse
|
205
|
Rindler MJ, Xu CF, Gumper I, Smith NN, Neubert TA. Proteomic analysis of pancreatic zymogen granules: identification of new granule proteins. J Proteome Res 2007; 6:2978-92. [PMID: 17583932 PMCID: PMC2582026 DOI: 10.1021/pr0607029] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The composition of zymogen granules from rat pancreas was determined by LC-MS/MS. Enriched intragranular content, peripheral membrane, and integral membrane protein fractions were analyzed after one-dimensional SDS-PAGE and tryptic digestion of gel slices. A total of 371 proteins was identified with high confidence, including 84 previously identified granule proteins. The 287 remaining proteins included 37 GTP-binding proteins and effectors, 8 tetraspan membrane proteins, and 22 channels and transporters. Seven proteins, pantophysin, cyclic nucleotide phosphodiesterase, carboxypeptidase D, ecto-nucleotide phosphodiesterase 3, aminopeptidase N, ral, and the potassium channel TWIK-2, were confirmed by immunofluorescence microscopy or by immunoblotting to be new zymogen granule membrane proteins.
Collapse
Affiliation(s)
- Michael J Rindler
- Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA.
| | | | | | | | | |
Collapse
|
206
|
Li X, Serwanski DR, Miralles CP, Bahr BA, De Blas AL. Two pools of Triton X-100-insoluble GABA(A) receptors are present in the brain, one associated to lipid rafts and another one to the post-synaptic GABAergic complex. J Neurochem 2007; 102:1329-45. [PMID: 17663755 PMCID: PMC2766244 DOI: 10.1111/j.1471-4159.2007.04635.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rat forebrain synaptosomes were extracted with Triton X-100 at 4 degrees C and the insoluble material, which is enriched in post-synaptic densities (PSDs), was subjected to sedimentation on a continuous sucrose gradient. Two pools of Triton X-100-insoluble gamma-aminobutyric acid type-A receptors (GABA(A)Rs) were identified: (i) a higher-density pool (rho = 1.10-1.15 mg/mL) of GABA(A)Rs that contains the gamma2 subunit (plus alpha and beta subunits) and that is associated to gephyrin and the GABAergic post-synaptic complex and (ii) a lower-density pool (rho = 1.06-1.09 mg/mL) of GABA(A)Rs associated to detergent-resistant membranes (DRMs) that contain alpha and beta subunits but not the gamma2 subunit. Some of these GABA(A)Rs contain the delta subunit. Two pools of GABA(A)Rs insoluble in Triton X-100 at 4 degrees C were also identified in cultured hippocampal neurons: (i) a GABA(A)R pool that forms clusters that co-localize with gephyrin and remains Triton X-100-insoluble after cholesterol depletion and (ii) a GABA(A)R pool that is diffusely distributed at the neuronal surface that can be induced to form GABA(A)R clusters by capping with an anti-alpha1 GABA(A)R subunit antibody and that becomes solubilized in Triton X-100 at 4 degrees C after cholesterol depletion. Thus, there is a pool of GABA(A)Rs associated to lipid rafts that is non-synaptic and that has a subunit composition different from that of the synaptic GABA(A)Rs. Some of the lipid raft-associated GABA(A)Rs might be involved in tonic inhibition.
Collapse
Affiliation(s)
- Xuejing Li
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269, USA
| | - David R. Serwanski
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269, USA
| | - Celia P. Miralles
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269, USA
| | - Ben A. Bahr
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, 06269, USA
| | - Angel L. De Blas
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269, USA
| |
Collapse
|
207
|
Li KW, Miller S, Klychnikov O, Loos M, Stahl-Zeng J, Spijker S, Mayford M, Smit AB. Quantitative Proteomics and Protein Network Analysis of Hippocampal Synapses of CaMKIIα Mutant Mice. J Proteome Res 2007; 6:3127-33. [PMID: 17625814 DOI: 10.1021/pr070086w] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Quantitative analysis of synaptic proteomes from specific brain regions is important for our understanding of the molecular basis of neuroplasticity and brain disorders. In the present study we have optimized comparative synaptic proteome analysis to quantitate proteins of the synaptic membrane fraction isolated from the hippocampus of wild type mice and 3'UTR-calcium/calmodulin-dependent kinase II alpha mutant mice. Synaptic proteins were solubilized in 0.85% RapiGest and digested with trypsin without prior dilution of the detergent, and the peptides from two groups of wild type mice and two groups of CaMKIIalpha 3'UTR mutants were tagged with iTRAQ reagents 114, 115, 116, and 117, respectively. The experiment was repeated once with independent biological replicates. Peptides were fractionated with tandem liquid chromatography and collected off-line onto MALDI metal plates. The first iTRAQ experiment was analyzed on an ABI 4700 proteomics analyzer, and the second experiment was analyzed on an ABI 4800 proteomics analyzer. Using the criteria that the proteins should be matched with at least three peptides with the highest CI% of a peptide at least 95%, 623 and 259 proteins were quantified by a 4800 proteomics analyzer and a 4700 proteomics analyzer, respectively, from which 249 proteins overlapped in the two experiments. There was a 3 fold decrease of calcium/calmodulin-dependent kinase II alpha in the synaptic membrane fraction of the 3'UTR mutant mice. No other major changes were observed, suggesting that the synapse protein constituents of the mutant mice were not substantially altered. A first draft of a synaptic protein interaction network has been constructed using commercial available software, and the synaptic proteins were organized into 10 (interconnecting) functional groups belonging to the pre- and postsynaptic compartments, e.g., receptors and ion channels, scaffolding proteins, cytoskeletal proteins, signaling proteins, adhesion molecules, and proteins of synaptic vesicles and those involved in membrane recycling.
Collapse
Affiliation(s)
- Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Faculty of Earth and Life Sciences, Vrije Universiteit, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
208
|
Jaworski J. ARF6 in the nervous system. Eur J Cell Biol 2007; 86:513-24. [PMID: 17559968 DOI: 10.1016/j.ejcb.2007.04.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Revised: 04/11/2007] [Accepted: 04/18/2007] [Indexed: 01/19/2023] Open
Abstract
Actin cytoskeleton dynamics and membrane trafficking are tightly connected and are among the most important driving forces of neuronal development, basic synaptic transmission events, and synaptic plasticity. One group of proteins involved in coordination of these two processes is the family of ADP ribosylation factors (ARFs) regulating actin dynamics, lipid modification and membrane trafficking. ARF6 is the only member of the ARF family that can simultaneously regulate actin cytoskeleton changes and membrane exchange between plasma membrane and endocytic compartments. The presence of ARF6 and its guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) in the brain, as well as its capability to regulate several aspects of neuronal development and synaptic plasticity, has been recently demonstrated. The main purpose of this review is to present the current knowledge about how ARF6 can influence morphological processes crucial for proper formation of the neuronal circuits in the brain, including dendrite and axon differentiation, development of dendritic arbor complexity and dendritic spine formation. Potential effects of ARF6 on synaptic events resulting from its ability to control exo- and endocytosis will be also discussed.
Collapse
Affiliation(s)
- Jacek Jaworski
- Laboratory of Molecular and Cell Neurobiology, International Institute of Molecular and Cell Biology, Ks. Trojdena St. 4, PL-02-109, Warsaw, Poland.
| |
Collapse
|
209
|
Grant SGN. Toward a molecular catalogue of synapses. ACTA ACUST UNITED AC 2007; 55:445-9. [PMID: 17572504 DOI: 10.1016/j.brainresrev.2007.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 04/30/2007] [Accepted: 05/07/2007] [Indexed: 11/30/2022]
Abstract
1906 was a landmark year in the history of the study of the nervous system, most notably for the first 'neuroscience' Nobel prize given to the anatomists Ramon Y Cajal and Camillo Golgi. 1906 is less well known for another event, also of great significance for neuroscience, namely the publication of Charles Sherrington's book 'The Integrative Action of the Nervous system'. It was Cajal and Golgi who debated the anatomical evidence for the synapse and it was Sherrington who laid its foundation in electrophysiological function. In tribute to these pioneers in synaptic biology, this article will address the issue of synapse diversity from the molecular point of view. In particular I will reflect upon efforts to obtain a complete molecular characterisation of the synapse and the unexpectedly high degree of molecular complexity found within it. A case will be made for developing approaches that can be used to generate a general catalogue of synapse types based on molecular markers, which should have wide application.
Collapse
Affiliation(s)
- Seth G N Grant
- Genes to Cognition Programme, The Wellcome Trust Sanger Institute, Hinxton, Cambridge, Cambridgeshire, UK.
| |
Collapse
|
210
|
Sekino Y, Kojima N, Shirao T. Role of actin cytoskeleton in dendritic spine morphogenesis. Neurochem Int 2007; 51:92-104. [PMID: 17590478 DOI: 10.1016/j.neuint.2007.04.029] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 04/25/2007] [Accepted: 04/27/2007] [Indexed: 11/20/2022]
Abstract
Dendritic spines are the postsynaptic receptive regions of most excitatory synapses, and their morphological plasticity play a pivotal role in higher brain functions, such as learning and memory. The dynamics of spine morphology is due to the actin cytoskeleton concentrated highly in spines. Filopodia, which are thin and headless protrusions, are thought to be precursors of dendritic spines. Drebrin, a spine-resident side-binding protein of filamentous actin (F-actin), is responsible for recruiting F-actin and PSD-95 into filopodia, and is suggested to govern spine morphogenesis. Interestingly, some recent studies on neurological disorders accompanied by cognitive deficits suggested that the loss of drebrin from dendritic spines is a common pathognomonic feature of synaptic dysfunction. In this review, to understand the importance of actin-binding proteins in spine morphogenesis, we first outline the well-established knowledge pertaining to the actin cytoskeleton in non-neuronal cells, such as the mechanism of regulation by small GTPases, the equilibrium between globular actin (G-actin) and F-actin, and the distinct roles of various actin-binding proteins. Then, we review the dynamic changes in the localization of drebrin during synaptogenesis and in response to glutamate receptor activation. Because side-binding proteins are located upstream of the regulatory pathway for actin organization via other actin-binding proteins, we discuss the significance of drebrin in the regulatory mechanism of spine morphology through the reorganization of the actin cytoskeleton. In addition, we discuss the possible involvement of an actin-myosin interaction in the morphological plasticity of spines.
Collapse
Affiliation(s)
- Yuko Sekino
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | | | | |
Collapse
|
211
|
Abstract
In spite of the rapid advances in the development of the new proteomic technologies, there are, to date, relatively fewer studies aiming to explore the neuronal proteome. One of the reasons is the complexity of the brain, which presents high cellular heterogeneity and a unique subcellular compartmentalization. Therefore, tissue fractionation of the brain to enrich proteins of interest will reduce the complexity of the proteomics approach leading to the production of manageable and meaningful results. In this review, general considerations and strategies of proteomics, the advantages and challenges to exploring the neuronal proteome are described and summarized. In addition, this article presents an overview of recent advances of proteomic technologies and shows that proteomics can serve as a valuable tool to globally explore the changes in brain proteome during various disease states. Understanding the molecular basis of brain function will be extremely useful in identifying novel targets for the treatment of brain diseases.
Collapse
Affiliation(s)
- Jose A Morón
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, New York 10029, USA
| | | |
Collapse
|
212
|
Okabe S. Molecular anatomy of the postsynaptic density. Mol Cell Neurosci 2007; 34:503-18. [PMID: 17321751 DOI: 10.1016/j.mcn.2007.01.006] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 01/18/2007] [Accepted: 01/18/2007] [Indexed: 10/23/2022] Open
Abstract
The postsynaptic density (PSD) is a structure composed of both membranous and cytoplasmic proteins localized at the postsynaptic plasma membrane of excitatory synapses. Biochemical and molecular biological studies have identified a number of proteins present in the PSD. Glutamate receptors are important constituents of the PSD and membrane proteins involved in synaptic signal transduction and cell adhesion are also essential components. Scaffolding proteins containing multiple protein interaction motifs are thought to provide the framework of the PSD through their interactions with both membrane proteins and the cytoplasmic proteins. Among the cytoplasmic signaling molecules, calcium-calmodulin-dependent protein kinase II stands out as a major component of the PSD and its dynamic translocation to the PSD in response to neuronal activity is crucial in synaptic signal transduction. Recent advancements in molecular biological, structural and electrophysiological techniques have enabled us to directly measure the number, distribution and interactions of PSD molecules with high sensitivity and precision. In this review, I describe the structure and molecular composition of the PSD as well as the molecular interactions between the major constituents. This information will be combined with recent quantitative analyses of the PSD protein contents per synapse, in order to provide a current view of the PSD molecular architecture and its dynamics.
Collapse
Affiliation(s)
- Shigeo Okabe
- Department of Cell Biology, School of Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8519, Japan.
| |
Collapse
|
213
|
Jordan BA, Fernholz BD, Khatri L, Ziff EB. Activity-dependent AIDA-1 nuclear signaling regulates nucleolar numbers and protein synthesis in neurons. Nat Neurosci 2007; 10:427-35. [PMID: 17334360 DOI: 10.1038/nn1867] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 02/08/2007] [Indexed: 11/08/2022]
Abstract
Neuronal development, plasticity and survival require activity-dependent synapse-to-nucleus signaling. Most studies implicate an activity-dependent regulation of gene expression in this phenomenon. However, little is known about other nuclear functions that are regulated by synaptic activity. Here we show that a newly identified component of rat postsynaptic densities (PSDs), AIDA-1d, can regulate global protein synthesis by altering nucleolar numbers. AIDA-1d binds to the first two postsynaptic density-95/Discs large/zona occludens-1 (PDZ) domains of the scaffolding protein PSD-95 via its C-terminal three amino acids. Stimulation of NMDA receptors (NMDARs), which are also bound to PSD-95, results in a Ca2+-independent translocation of AIDA-1d to the nucleus, where it couples to Cajal bodies and induces Cajal body-nucleolar association. Long-term neuronal stimulation results in an AIDA-1-dependent increase in nucleolar numbers and protein synthesis. We propose that AIDA-1d mediates a link between synaptic activity and control of protein biosynthetic capacity by regulating nucleolar assembly.
Collapse
Affiliation(s)
- Bryen A Jordan
- Department of Biochemistry, New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA.
| | | | | | | |
Collapse
|
214
|
Laumonnier F, Cuthbert PC, Grant SGN. The role of neuronal complexes in human X-linked brain diseases. Am J Hum Genet 2007; 80:205-20. [PMID: 17236127 PMCID: PMC1785339 DOI: 10.1086/511441] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 11/28/2006] [Indexed: 01/28/2023] Open
Abstract
Beyond finding individual genes that are involved in medical disorders, an important challenge is the integration of sets of disease genes with the complexities of basic biological processes. We examine this issue by focusing on neuronal multiprotein complexes and their components encoded on the human X chromosome. Multiprotein signaling complexes in the postsynaptic terminal of central nervous system synapses are essential for the induction of neuronal plasticity and cognitive processes in animals. The prototype complex is the N-methyl-D-aspartate receptor complex/membrane-associated guanylate kinase-associated signaling complex (NRC/MASC) comprising 185 proteins and embedded within the postsynaptic density (PSD), which is a set of complexes totaling approximately 1,100 proteins. It is striking that 86% (6 of 7) of X-linked NRC/MASC genes and 49% (19 of 39) of X-chromosomal PSD genes are already known to be involved in human psychiatric disorders. Moreover, of the 69 known proteins mutated in X-linked mental retardation, 19 (28%) encode postsynaptic proteins. The high incidence of involvement in cognitive disorders is also found in mouse mutants and indicates that the complexes are functioning as integrated entities or molecular machines and that disruption of different components impairs their overall role in cognitive processes. We also noticed that NRC/MASC genes appear to be more strongly associated with mental retardation and autism spectrum disorders. We propose that systematic studies of PSD and NRC/MASC genes in mice and humans will give a high yield of novel genes important for human disease and new mechanistic insights into higher cognitive functions.
Collapse
Affiliation(s)
- Frédéric Laumonnier
- Genes to Cognition Programme, Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, UK
| | | | | |
Collapse
|
215
|
Morón JA, Abul-Husn NS, Rozenfeld R, Dolios G, Wang R, Devi LA. Morphine Administration Alters the Profile of Hippocampal Postsynaptic Density-associated Proteins. Mol Cell Proteomics 2007; 6:29-42. [PMID: 17028301 DOI: 10.1074/mcp.m600184-mcp200] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Numerous studies have shown that drugs of abuse induce changes in protein expression in the brain that are thought to play a role in synaptic plasticity. Drug-induced plasticity can be mediated by changes at the synapse and more specifically at the postsynaptic density (PSD), which receives and transduces synaptic information. To date, the majority of studies examining synaptic protein profiles have focused on identifying the synaptic proteome. Only a handful of studies have examined the changes in synaptic profile by drug administration. We applied a quantitative proteomics analysis technique with the cleavable ICAT reagent to quantitate relative changes in protein levels of the hippocampal PSD in response to morphine administration. We identified a total of 102 proteins in the mouse hippocampal PSD. The majority of these were signaling, trafficking, and cytoskeletal proteins involved in synaptic plasticity, learning, and memory. Among the proteins whose levels were found to be altered by morphine administration, clathrin levels were increased to the largest extent. Immunoblotting and electron microscopy studies showed that this increase was localized to the PSD. Morphine treatment was also found to lead to a local increase in two other components of the endocytic machinery, dynamin and AP-2, suggesting a critical involvement of the endocytic machinery in the modulatory effects of morphine. Because alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are thought to undergo clathrin-mediated endocytosis, we examined the effect of morphine administration on the association of the AMPA receptor subunit, GluR1, with clathrin. We found a substantial decrease in the levels of GluR1 associated with clathrin. Taken together, these results suggest that, by causing a redistribution of endocytic proteins at the synapse, morphine modulates synaptic plasticity at hippocampal glutamatergic synapses.
Collapse
Affiliation(s)
- José A Morón
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | |
Collapse
|
216
|
Abstract
Our knowledge of the complex synaptic proteome and its relationship to physiological or pathological conditions is rapidly expanding. This has been greatly accelerated by the application of various evolving proteomic techniques, enabling more efficient protein resolution, more accurate protein identification, and more comprehensive characterization of proteins undergoing quantitative and qualitative changes. More recently, the combination of the classical subcellular fractionation techniques for the isolation of synaptosomes from the brain with the various proteomic analyses has facilitated this effort. This has resulted from the enrichment of many low abundant proteins comprising the fundamental structure and molecular machinery of brain neurotransmission and neuroplasticity. The analysis of various subproteomes obtained from the synapse, such as synaptic vesicles, synaptic membranes, presynaptic particles, synaptodendrosomes, and postsynaptic densities (PSD) holds great promise for improving our understanding of the temporal and spatial processes that coordinate synaptic proteins in closely related complexes under both normal and diseased states. This chapter will summarize a selection of recent studies that have drawn upon established and emerging proteomic technologies, along with fractionation techniques that are essential to the isolation and analysis of specific synaptic components, in an effort to understand the complexity and plasticity of the synapse proteome.
Collapse
Affiliation(s)
- Fengju Bai
- Safety Sciences, Charles River Laboratories Preclinical Services, Worcester, Massachusetts, USA
| | | |
Collapse
|
217
|
Kim E, Ko J. Molecular organization and assembly of the postsynaptic density of excitatory brain synapses. Results Probl Cell Differ 2006; 43:1-23. [PMID: 17068965 DOI: 10.1007/400_011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
The postsynaptic density (PSD) is a postsynaptic membrane specialization at excitatory synapses. The PSD is made of macromolecular multiprotein complexes, which contain a variety of synaptic proteins including membrane, scaffolding, and signaling proteins. By coaggregating with postsynaptic cell adhesion molecules, PSD proteins promote the formation and maturation of excitatory synapses. PSD proteins organize signaling pathways to coordinate structural and functional changes in synapses, and they regulate trafficking and recycling of glutamate receptors, which determines synaptic strength and plasticity. Synaptic activity dynamically regulates the assembly of the PSD through mechanisms including protein phosphorylation, palmitoylation, and protein degradation. PSD proteins associate with diverse motor proteins, suggesting that they function as adaptors linking motors to their specific cargoes.
Collapse
Affiliation(s)
- Eunjoon Kim
- National Creative Research Initiative Center for Synaptogenesis and Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon.
| | | |
Collapse
|
218
|
Suzuki T, Tian QB, Kuromitsu J, Kawai T, Endo S. Characterization of mRNA species that are associated with postsynaptic density fraction by gene chip microarray analysis. Neurosci Res 2006; 57:61-85. [PMID: 17049655 DOI: 10.1016/j.neures.2006.09.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2006] [Revised: 09/12/2006] [Accepted: 09/14/2006] [Indexed: 11/18/2022]
Abstract
We previously reported the partial identification by random sequencing of mRNA species that are associated with the postsynaptic density (PSD) fraction prepared from the rat forebrain [Tian et al., 1999. Mol. Brain Res. 72, 147-157]. We report here further characterization by gene chip analysis of the PSD fraction-associated mRNAs, which were prepared in the presence of RNase inhibitor. We found that mRNAs encoding various postsynaptic proteins, such as channels, receptors for neurotransmitters and neuromodulators, proteins involved in signaling, scaffold and adaptor proteins and cytoskeletal proteins, were highly concentrated in the PSD fraction, whereas those encoding housekeeping proteins, such as enzymes in the glycolytic pathway, were not. We extracted approximately 1900 mRNA species that were highly concentrated in the PSD fraction. mRNAs related to certain neuronal diseases were also enriched in the PSD fraction. We also constructed a cDNA library using the PSD fraction-associated mRNAs as templates, and identified 1152 randomly selected clones by sequencing. Our data suggested that the PSD fraction-associated mRNAs are a very useful resource, in which a number of as yet uncharacterized mRNAs are concentrated. Identification and functional characterization of them are essential for complete understanding of synaptic function.
Collapse
Affiliation(s)
- Tatsuo Suzuki
- Department of Neuroplasticity, Institute on Aging and Adaptation, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan.
| | | | | | | | | |
Collapse
|
219
|
Murphy JA, Jensen ON, Walikonis RS. BRAG1, a Sec7 domain-containing protein, is a component of the postsynaptic density of excitatory synapses. Brain Res 2006; 1120:35-45. [PMID: 17045249 DOI: 10.1016/j.brainres.2006.08.096] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2006] [Revised: 08/16/2006] [Accepted: 08/21/2006] [Indexed: 12/13/2022]
Abstract
The postsynaptic density (PSD) at excitatory synapses is a dynamic complex of glutamatergic receptors and associated proteins that governs synaptic structure and coordinates signal transduction. In this study, we report that BRAG1, a putative guanine nucleotide exchange factor for the Arf family of GTP-binding proteins, is a major component of the PSD. BRAG1 was identified in a 190 kDa band in the PSD fraction with the use of mass spectrometry coupled to searching of a protein sequence database. BRAG1 expression is abundant in the adult rat forebrain, and it is strongly enriched in the PSD fraction compared to forebrain homogenate and synaptosomes. Immunocytochemical localization of BRAG1 in dissociated hippocampal neurons shows that it forms discrete clusters that colocalize with the postsynaptic marker PSD-95 at sites along dendrites. BRAG1 contains a Sec7 domain, a domain that catalyzes exchange of GDP for GTP on the Arf family of small GTP-binding proteins. In their GTP-bound active state, Arfs regulate trafficking of vesicles and cytoskeletal structure. We demonstrate that the Sec7 domain of BRAG1 promotes binding of GTP to Arf in vitro. These data suggest that BRAG1 may modulate the functions of Arfs at synaptic sites.
Collapse
Affiliation(s)
- Jessica A Murphy
- Department of Physiology and Neurobiology, University of Connecticut, 75 North Eagleville Road, U-3156, Storrs, CT 06269, USA
| | | | | |
Collapse
|
220
|
Oláh J, Tokési N, Vincze O, Horváth I, Lehotzky A, Erdei A, Szájli E, Medzihradszky KF, Orosz F, Kovács GG, Ovádi J. Interaction of TPPP/p25 protein with glyceraldehyde-3-phosphate dehydrogenase and their co-localization in Lewy bodies. FEBS Lett 2006; 580:5807-14. [PMID: 17027006 DOI: 10.1016/j.febslet.2006.09.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 09/04/2006] [Accepted: 09/13/2006] [Indexed: 10/24/2022]
Abstract
TPPP/p25, a flexible unstructured protein, binds to tubulin and induces aberrant microtubule assemblies. We identified hereby glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a new interacting partner of TPPP/p25. The immunoprecipitation and affinity chromatographic experiments with bovine brain cell-free extract revealed that the interaction was salt and NAD(+) sensitive while ELISA showed resistant and firm association of the two isolated proteins. In transfected HeLa cells at low expression level of EGFP-TPPP/p25, while the green fusion protein aligned at the microtubular network, GAPDH distributed uniformly in the cytosol. However, at high expression level, GAPDH co-localized with TPPP/p25 in the aggresome-like aggregate. Immunohistochemistry showed enrichment of TPPP/p25 and GAPDH within the alpha-synuclein positive Lewy body.
Collapse
Affiliation(s)
- Judit Oláh
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Karolina út 29, H-1113 Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Cheng HH, Liu SH, Lee HC, Lin YS, Huang ZH, Hsu CI, Chen YC, Chang YC. Heavy chain of cytoplasmic dynein is a major component of the postsynaptic density fraction. J Neurosci Res 2006; 84:244-54. [PMID: 16721762 DOI: 10.1002/jnr.20898] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A protein with an apparent molecular size of 490 kDa was found in the postsynaptic density (PSD) fraction isolated from porcine cerebral cortices and rat forebrains, and this 490 kDa protein accounted for approximately 3% of the total protein of these samples. Matrix-assisted laser desorption ionization-time of flight mass spectrometric and Western blotting analyses consistently indicated that this 490 kDa protein consisted primarily of the heavy chain of cytoplasmic dynein (cDHC). Immunocytochemical analyses showed that cDHC was found in 92% and 89% of the phalloidin-positive protrusions that were themselves associated with discrete clusters of synaptophysin, a presynaptic terminal marker, and PSD-95, a postsynaptic marker, on neuronal processes, respectively. Quantitative Western blotting analyses of various subcellular fractions isolated from porcine cerebral cortices and rat forebrains further showed that not only the heavy but also the intermediate chains of dynein are enriched in the PSD fraction. Cytoplasmic dynein is a microtubule-associated motor protein complex that drives the movement of various cargos toward the minus ends of microtubules and plays many other diverse functions in the cell. Our results that cDHC is a major component of the PSD fraction, that both dynein heavy and intermediate chains are enriched in the PSD fraction and that cDHC is present in dendritic spines raise the possibilities that cytoplasmic dynein may play structural and functional roles in the postsynaptic terminal.
Collapse
Affiliation(s)
- Huei-Hsuan Cheng
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
222
|
Khaing ZZ, Fidler L, Nandy N, Phillips GR. Structural stabilization of CNS synapses during postnatal development in rat cortex. J Neurochem 2006; 98:471-80. [PMID: 16805840 DOI: 10.1111/j.1471-4159.2006.03898.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
CNS synapses are produced rapidly upon pre- and post-synaptic recruitment. However, their composition is known to change during development and we reasoned that this may be reflected in the gross biochemical properties of synapses. We found synaptic structure in adult cortical synaptosomes to be resistant to digestion with trypsin in the presence and absence of calcium ions, contrasting with previous observations. We evaluated the divalent cation dependence and trypsin sensitivities of synapses using synaptosomes from different developmental stages. In contrast to adult synapses, at postnatal day (P) 10 EDTA treatment eliminated approximately 60% of the synapses, and trypsin and EDTA, together, eliminated all junctions. Trypsinization in the presence of calcium eliminated approximately 60% of the junctions at P10. By P35, all synapses were calcium independent, whereas full trypsin resistance was not attained until P49. To compare the calcium dependence and trypsin sensitivity of synapses in another region of the adult brain, we examined synapses from adult (P50) hippocampus. Adult hippocampus maintained a population of synapses that resembled that of P35 cortex. Our results show that synapses are modified over a long time period in the developing cortex. We propose a model in which the addition of synergistic calcium-dependent and -independent adhesive systems stabilize synapses.
Collapse
Affiliation(s)
- Zin Z Khaing
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, New York 10029, USA
| | | | | | | |
Collapse
|
223
|
Garner CC, Waites CL, Ziv NE. Synapse development: still looking for the forest, still lost in the trees. Cell Tissue Res 2006; 326:249-62. [PMID: 16909256 DOI: 10.1007/s00441-006-0278-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Accepted: 06/08/2006] [Indexed: 01/23/2023]
Abstract
Synapse development in the vertebrate central nervous system is a highly orchestrated process occurring not only during early stages of brain development, but also (to a lesser extent) in the mature nervous system. During development, the formation of synapses is intimately linked to the differentiation of neuronal cells, the extension of their axons and dendrites, and the course wiring of the nervous system. Subsequently, the stabilization, elimination, and strengthening of synaptic contacts is coupled to the refinement of axonal and dendritic arbors, to the establishment of functionally meaningful connections, and probably also to the day-to-day acquisition, storage, and retrieval of memories, higher order thought processes, and behavioral patterns.
Collapse
Affiliation(s)
- Craig C Garner
- Department of Psychiatry and Behavioral Science, Nancy Pritzer Laboratory, Stanford University, Palo Alto, CA 94304-5485, USA.
| | | | | |
Collapse
|
224
|
Abstract
Proteomic analyses of brain tissues are becoming an integral component of neuroscientific research. In particular, the essential role of the synapse in neurotransmission and plasticity has brought about extensive efforts to identify its protein constituents. Recent studies have used a combination of subcellular fractionation and proteomic techniques to identify proteins associated with different components of the synapse. Thus, a coherent map of the synapse proteome is rapidly emerging, and a timely review of these data is warranted. In the first part of this review, neuroproteomic techniques that have been used to analyze the synapse proteome are described. We then summarize the results from several recent proteomic analyses of mammalian synapses and discuss the similarities and differences in their profiling of synaptic proteins. Important advances in this field of research include the use of proteomics to analyze synaptic function and drug effects on synaptic proteins. This article presents an overview of proteomic analyses of the phosphorylation states of synaptic proteins and recent applications of neuroproteomic techniques to the study of drug addiction. Finally, we discuss the challenges in comparing proteomic studies of drug addiction and the future directions of this field in furthering our understanding of the molecular mechanisms underlying synaptic function and drug addiction.
Collapse
Affiliation(s)
- Noura S Abul-Husn
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | |
Collapse
|
225
|
Tribl F, Marcus K, Bringmann G, Meyer HE, Gerlach M, Riederer P. Proteomics of the human brain: sub-proteomes might hold the key to handle brain complexity. J Neural Transm (Vienna) 2006; 113:1041-54. [PMID: 16835691 DOI: 10.1007/s00702-006-0513-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 02/24/2006] [Indexed: 10/24/2022]
Abstract
Proteomics is a promising approach, which provides information about the expression of proteins and increasingly finds application in life science and disease research. Meanwhile, proteomics has proven to be applicable even on post mortem human brain tissue and has opened a new area in neuroproteomics. Thereby, neuroproteomics is usually employed to generate large protein profiles of brain tissue, which mostly reflect the expression of highly abundant proteins. As a complementary approach, the focus on sub-proteomes would enhance more specific insight into brain function. Sub-proteomes are accessible via several strategies, including affinity pull-down approaches, immunoprecipitation or subcellular fractionation. The extraordinary potential of subcellular proteomics to reveal even minute differences in the protein constitution of related cellular organelles is exemplified by a recent global description of neuromelanin granules from the human brain, which could be identified as pigmented lysosome-related organelles.
Collapse
Affiliation(s)
- F Tribl
- The National Parkinson Foundation (NPF) Research Laboratories, Miami, FL, USA.
| | | | | | | | | | | |
Collapse
|
226
|
Liu SH, Cheng HH, Huang SY, Yiu PC, Chang YC. Studying the Protein Organization of the Postsynaptic Density by a Novel Solid Phase- and Chemical Cross-linking-based Technology. Mol Cell Proteomics 2006; 5:1019-32. [PMID: 16501281 DOI: 10.1074/mcp.m500299-mcp200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Agarose beads carrying a cleavable, fluorescent, and photoreactive cross-linking reagent on the surface were synthesized and used to selectively pull out the proteins lining the surface of supramolecules. A quantitative comparison of the abundances of various proteins in the sample pulled out by the beads from supramolecules with their original abundances could provide information on the spatial arrangement of these proteins in the supramolecule. The usefulness of these synthetic beads was successfully verified by trials using a synthetic protein complex consisting of three layers of different proteins on glass coverslips. By using these beads, we determined the interior or superficial locations of five major and 19 minor constituent proteins in the postsynaptic density (PSD), a large protein complex and the landmark structure of asymmetric synapses in the mammalian central nervous system. The results indicate that alpha,beta-tubulins, dynein heavy chain, microtubule-associated protein 2, spectrin, neurofilament H and M subunits, an hsp70 protein, alpha-internexin, dynamin, and PSD-95 protein reside in the interior of the PSD. Dynein intermediate chain, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors, kainate receptors, N-cadherin, beta-catenin, N-ethylmaleimide-sensitive factor, an hsc70 protein, and actin reside on the surface of the PSD. The results further suggest that the N-methyl-d-aspartate receptors and the alpha-subunits of calcium/calmodulin-dependent protein kinase II are likely to reside on the surface of the PSD although with unique local protein organizations. Based on our results and the known interactions between various PSD proteins from data mining, a model for the molecular organization of the PSD is proposed.
Collapse
Affiliation(s)
- Szu-Heng Liu
- Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
227
|
Choi S, Ko J, Lee JR, Lee HW, Kim K, Chung HS, Kim H, Kim E. ARF6 and EFA6A regulate the development and maintenance of dendritic spines. J Neurosci 2006; 26:4811-9. [PMID: 16672654 PMCID: PMC6674147 DOI: 10.1523/jneurosci.4182-05.2006] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The cellular and molecular mechanisms underlying the development and maintenance of dendritic spines are not fully understood. ADP-ribosylation factor 6 (ARF6) is a small GTPase known to regulate actin remodeling and membrane traffic. Here, we report involvement of ARF6 and exchange factor for ARF6 (EFA6A) in the regulation of spine development and maintenance. An active form of ARF6 promotes the formation of dendritic spines at the expense of filopodia. EFA6A promotes spine formation in an ARF6 activation-dependent manner. Knockdown of ARF6 and EFA6A by small interfering RNA decreases spine formation. Live imaging indicates that ARF6 knockdown decreases the conversion of filopodia to spines and the stability of early spines. The spine-promoting effect of ARF6 is partially blocked by Rac1. ARF6 and EFA6A protect mature spines from inactivity-induced destabilization. These results suggest that ARF6 and EFA6A may regulate the conversion of filopodia to spines and the stability of both early and mature spines.
Collapse
|
228
|
Collins MO, Husi H, Yu L, Brandon JM, Anderson CNG, Blackstock WP, Choudhary JS, Grant SGN. Molecular characterization and comparison of the components and multiprotein complexes in the postsynaptic proteome. J Neurochem 2006; 97 Suppl 1:16-23. [PMID: 16635246 DOI: 10.1111/j.1471-4159.2005.03507.x] [Citation(s) in RCA: 329] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Characterization of the composition of the postsynaptic proteome (PSP) provides a framework for understanding the overall organization and function of the synapse in normal and pathological conditions. We have identified 698 proteins from the postsynaptic terminal of mouse CNS synapses using a series of purification strategies and analysis by liquid chromatography tandem mass spectrometry and large-scale immunoblotting. Some 620 proteins were found in purified postsynaptic densities (PSDs), nine in AMPA-receptor immuno-purifications, 100 in isolates using an antibody against the NMDA receptor subunit NR1, and 170 by peptide-affinity purification of complexes with the C-terminus of NR2B. Together, the NR1 and NR2B complexes contain 186 proteins, collectively referred to as membrane-associated guanylate kinase-associated signalling complexes. We extracted data from six other synapse proteome experiments and combined these with our data to provide a consensus on the composition of the PSP. In total, 1124 proteins are present in the PSP, of which 466 were validated by their detection in two or more studies, forming what we have designated the Consensus PSD. These synapse proteome data sets offer a basis for future research in synaptic biology and will provide useful information in brain disease and mental disorder studies.
Collapse
Affiliation(s)
- Mark O Collins
- Genes to Cognition, The Wellcome Trust Sanger Institute, Hinxton, UK
| | | | | | | | | | | | | | | |
Collapse
|
229
|
Trinidad JC, Specht CG, Thalhammer A, Schoepfer R, Burlingame AL. Comprehensive Identification of Phosphorylation Sites in Postsynaptic Density Preparations. Mol Cell Proteomics 2006; 5:914-22. [PMID: 16452087 DOI: 10.1074/mcp.t500041-mcp200] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the mammalian central nervous system, the structure known as the postsynaptic density (PSD) is a dense complex of proteins whose function is to detect and respond to neurotransmitter released from presynaptic axon terminals. Regulation of protein phosphorylation in this molecular machinery is critical to the activity of its components, which include neurotransmitter receptors, kinases/phosphatases, scaffolding molecules, and proteins regulating cytoskeletal structure. To characterize the phosphorylation state of proteins in PSD samples, we combined strong cation exchange (SCX) chromatography with IMAC. Initially, tryptic peptides were separated by cation exchange and analyzed by reverse phase chromatography coupled to tandem mass spectrometry, which led to the identification of phosphopeptides in most SCX fractions. Because each of these individual fractions was too complex to characterize completely in single LC-MS/MS runs, we enriched for phosphopeptides by performing IMAC on each SCX fraction, yielding at least a 3-fold increase in identified phosphopeptides relative to either approach alone (SCX or IMAC). This enabled us to identify at least one site of phosphorylation on 23% (287 of 1,264) of all proteins found to be present in the postsynaptic density preparation. In total, we identified 998 unique phosphorylated peptides, mapping to 723 unique sites of phosphorylation. At least one exact site of phosphorylation was determined on 62% (621 of 998) of all phosphopeptides, and approximately 80% of identified phosphorylation sites are novel.
Collapse
Affiliation(s)
- Jonathan C Trinidad
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, USA
| | | | | | | | | |
Collapse
|
230
|
Abstract
A systems biology approach using network maps and annotated functions of synaptic components has identified biologically relevant networks within a synaptic neurotransmitter receptor complex. Large numbers of synaptic components have been identified, but the effect so far on our understanding of synaptic function is limited. Now, network maps and annotated functions of individual components have been used in a systems biology approach to analyzing the function of NMDA receptor complexes at synapses, identifying biologically relevant modular networks within the complex.
Collapse
Affiliation(s)
- Bryen A Jordan
- Department of Biochemistry, New York University School of Medicine, New York, NY 10016, USA
| | - Edward B Ziff
- Department of Biochemistry and Program in Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
231
|
Elste AM, Benson DL. Structural basis for developmentally regulated changes in cadherin function at synapses. J Comp Neurol 2006; 495:324-35. [PMID: 16440298 DOI: 10.1002/cne.20876] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Members of the cadherin family of calcium-dependent cell adhesion molecules can bind homophilically across central nervous system (CNS) synapses, but experimental evidence indicates the nature of their contribution to synapse structure and function changes over time. We asked whether changes in function correspond to differences in intrasynaptic distribution. Using quantitative immuno-electronmicroscopy, we determined where cadherins are localized within synapses at key developmental stages in cultured hippocampal neurons and in hippocampus in vivo. At 5-6 days in culture, when most synapses are newly formed, cadherins are regularly and evenly distributed at synaptic clefts throughout the active zone. In contrast, at 14 days, when the majority of synapses are comparatively mature, cadherin labeling concentrates in discrete clusters. Such clusters can occur at any place within or immediately surrounding synaptic clefts. To assess whether this change in distribution is unique to neurons grown in culture, we compared the distribution of cadherins in the CA1 region of hippocampus at postnatal days 2, 3 (P2-3) and in adult. Consistent with our observations in cultured neurons, synapses in P2-3 hippocampus most often exhibit cadherins distributed regularly throughout the cleft, while adult synapses show predominantly discrete concentrations at single sites. The early developmental pattern of cadherin distribution can also be detected at occasional synapses in adult tissue. Such synapses also have morphological features consistent with immature synapses, suggesting that intrasynaptic cadherin distribution is a feature that may distinguish synapse age.
Collapse
Affiliation(s)
- Alice M Elste
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
232
|
Cheng D, Hoogenraad CC, Rush J, Ramm E, Schlager MA, Duong DM, Xu P, Wijayawardana SR, Hanfelt J, Nakagawa T, Sheng M, Peng J. Relative and absolute quantification of postsynaptic density proteome isolated from rat forebrain and cerebellum. Mol Cell Proteomics 2006; 5:1158-70. [PMID: 16507876 DOI: 10.1074/mcp.d500009-mcp200] [Citation(s) in RCA: 378] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The postsynaptic density (PSD) of central excitatory synapses is essential for postsynaptic signaling, and its components are heterogeneous among different neuronal subtypes and brain structures. Here we report large scale relative and absolute quantification of proteins in PSDs purified from adult rat forebrain and cerebellum. PSD protein profiles were determined using the cleavable ICAT strategy and LC-MS/MS. A total of 296 proteins were identified and quantified with 43 proteins exhibiting statistically significant abundance change between forebrain and cerebellum, indicating marked molecular heterogeneity of PSDs between different brain regions. Moreover we utilized absolute quantification strategy, in which synthetic isotope-labeled peptides were used as internal standards, to measure the molar abundance of 32 key PSD proteins in forebrain and cerebellum. These data confirm the abundance of calcium/calmodulin-dependent protein kinase II and PSD-95 and reveal unexpected stoichiometric ratios between glutamate receptors, scaffold proteins, and signaling molecules in the PSD. Our data also demonstrate that the absolute quantification method is well suited for targeted quantitative proteomic analysis. Overall this study delineates a crucial molecular difference between forebrain and cerebellar PSDs and provides a quantitative framework for measuring the molecular stoichiometry of the PSD.
Collapse
Affiliation(s)
- Dongmei Cheng
- Department of Human Genetics, Center for Neurodegenerative Disease, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
233
|
Ryu J, Liu L, Wong TP, Wu DC, Burette A, Weinberg R, Wang YT, Sheng M. A critical role for myosin IIb in dendritic spine morphology and synaptic function. Neuron 2006; 49:175-82. [PMID: 16423692 DOI: 10.1016/j.neuron.2005.12.017] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 11/07/2005] [Accepted: 12/09/2005] [Indexed: 11/22/2022]
Abstract
Dendritic spines show rapid motility and plastic morphology, which may mediate information storage in the brain. It is presently believed that polymerization/depolymerization of actin is the primary determinant of spine motility and morphogenesis. Here, we show that myosin IIB, a molecular motor that binds and contracts actin filaments, is essential for normal spine morphology and dynamics and represents a distinct biophysical pathway to control spine size and shape. Myosin IIB is enriched in the postsynaptic density (PSD) of neurons. Pharmacologic or genetic inhibition of myosin IIB alters protrusive motility of spines, destabilizes their classical mushroom-head morphology, and impairs excitatory synaptic transmission. Thus, the structure and function of spines is regulated by an actin-based motor in addition to the polymerization state of actin.
Collapse
Affiliation(s)
- Jubin Ryu
- The Picower Institute for Learning and Memory, RIKEN-MIT Neuroscience Research Center, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
234
|
Abstract
Synapse proteomics has recently resulted in a quantum leap in knowledge of the protein composition of brain synapses and its phosphorylation. We now have the first draft picture of the synapse, comprising ∼1000 proteins. This is not matched by available methods of functional analysis either in reduced systems or in whole animals. Fewer than 20% of synapse proteome proteins have a known function in the nervous system. A concerted effort is required to establish new technical approaches before we can understand the diversity of functions conferred by the synapse proteome on the synapse, the neuron and the animal. This review will highlight this change in knowledge and discuss current technical and interpretative limitations challenged by synapse proteomics.
Collapse
Affiliation(s)
- S G N Grant
- Genes to Cognition Programme, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK.
| |
Collapse
|
235
|
Melone M, Burette A, Weinberg RJ. Light microscopic identification and immunocytochemical characterization of glutamatergic synapses in brain sections. J Comp Neurol 2006; 492:495-509. [PMID: 16228991 DOI: 10.1002/cne.20743] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Presynaptic proteins are readily identified by light microscopic immunocytochemistry, but immunodetection of postsynaptic proteins in brain sections proves difficult. We performed immunofluorescent double labeling for the NR1 subunit of the N-methyl-D-aspartate receptor (NMDAR) and the vesicular glutamate transporter 1 (VGLUT1). In material fixed with 4% paraformaldehyde, NMDAR staining in somatosensory cortex was restricted to the section surface, whereas presynaptic staining extended deeper into the tissue. Staining for postsynaptic proteins was enhanced in weakly fixed material and in tissue treated with pepsin, as previously reported, but tissue quality was impaired. Staining was also markedly enhanced, and without impairment of tissue quality, by treatment during perfusion with a mixture of inhibitors of proteases and the ubiquitin/proteosome system. We performed quantitative analysis of confocal images to study how immunostaining varies with depth into the tissue. Virtually all puncta immunopositive for VGLUT1 colocalized with synaptophysin puncta; these presynaptic puncta were most numerous 1-2 microm beneath the section surface. In contrast, puncta immunopositive for the NR1 subunit were most numerous at the surface, as were puncta immunopositive for the NR2 subunit, SynGAP, and CaMKII. Punctate staining for all postsynaptic proteins, but not presynaptic markers, was substantially enhanced in material pretreated with antiproteolytic agents. The large majority of NR1-positive puncta at the surface associated with VGLUT1 in this material are likely to represent synaptic contacts. Approximately eighty-five percent of VGLUT1-positive puncta in layers II-III of SI are associated with NR1-positive puncta, and approximately 80% are associated with NR2, SynGAP, and CaMKII. This approach may permit systematic analysis of the chemistry of glutamatergic synapses with light microscopic immunocytochemistry.
Collapse
Affiliation(s)
- Marcello Melone
- Department of Neuroscience, Section of Human Physiology, Universitá Politecnica delle Marche, Ancona, Italy
| | | | | |
Collapse
|
236
|
Racz B, Weinberg RJ. Spatial organization of cofilin in dendritic spines. Neuroscience 2006; 138:447-56. [PMID: 16388910 DOI: 10.1016/j.neuroscience.2005.11.025] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 11/09/2005] [Accepted: 11/14/2005] [Indexed: 11/19/2022]
Abstract
Synaptic plasticity is associated with morphological changes in dendritic spines. The actin-based cytoskeleton plays a key role in regulating spine structure, and actin reorganization in spines is critical for the maintenance of long term potentiation. To test the hypothesis that a stable pool of F-actin rests in the spine "core," while a dynamic pool lies peripherally in its "shell," we performed immunoelectron microscopy in the stratum radiatum of rat hippocampus to elucidate the subcellular distribution of cofilin, an actin-depolymerizing protein that mediates reorganization of the actin cytoskeleton. We provide direct evidence that cofilin in spines avoids the core, and instead concentrates in the shell and within the postsynaptic density. These data suggest that cofilin may link synaptic plasticity to the actin remodeling that underlies changes in spine morphology.
Collapse
Affiliation(s)
- B Racz
- Department of Cell and Developmental Biology, and Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
237
|
Phillips GR, Florens L, Tanaka H, Khaing ZZ, Fidler L, Yates JR, Colman DR. Proteomic comparison of two fractions derived from the transsynaptic scaffold. J Neurosci Res 2005; 81:762-75. [PMID: 16047384 DOI: 10.1002/jnr.20614] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A fraction derived from presynaptic specializations (presynaptic particle fraction; PPF) can be separated from postsynaptic densities (PSD) by adjusting the pH of Triton X-100 (TX-100) extraction of isolated transsynaptic scaffolds. Solubilization of the PPF corresponds to disruption of the presynaptic specialization. We show that the PPF is insoluble to repeated TX-100 extraction at pH 6.0 but becomes soluble in detergent at pH 8.0. By immunolocalization, we find that the major proteins of the PPF, clathrin and dynamin, are concentrated in the presynaptic compartment. By using multidimensional protein identification technology, we compared the protein compositions of the PPF and the PSD fraction. We identified a total of 341 proteins, 50 of which were uniquely found in the PPF, 231 in the PSD fraction, and 60 in both fractions. Comparison of the two fractions revealed a relatively low proportion of actin and associated proteins and a high proportion of vesicle or intracellular compartment proteins in the PPF. We conclude that the PPF consists of presynaptic proteins not connected to the actin-based synaptic framework; its insolubility in pH 6 and solubility in pH 8 buffered detergent suggests that clathrin might be an anchorage scaffold for many proteins in the PPF.
Collapse
Affiliation(s)
- Greg R Phillips
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | | | | | |
Collapse
|
238
|
Dosemeci A, Tao-Cheng JH, Vinade L, Jaffe H. Preparation of postsynaptic density fraction from hippocampal slices and proteomic analysis. Biochem Biophys Res Commun 2005; 339:687-94. [PMID: 16332460 DOI: 10.1016/j.bbrc.2005.11.069] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Accepted: 11/12/2005] [Indexed: 10/25/2022]
Abstract
Hippocampal slices offer an excellent experimental system for the study of activity-induced changes in the postsynaptic density (PSD). While studies have documented electrophysiological and structural changes at synapses in response to precise manipulations of hippocampal slices, parallel biochemical and proteomic analyses were hampered by the lack of subcellular fractionation techniques applicable to starting tissue about three orders of magnitude smaller than that used in conventional protocols. Here, we describe a simple and convenient method for the preparation of PSD fractions from hippocampal slices and the identification of its components by proteomic techniques. The "micro PSD fraction" obtained following two consecutive extractions of a synaptosomal fraction with Triton X-100 shows a significant enrichment in the marker protein PSD-95. Thin section electron microscopy shows PSDs similar to those observed in situ. However, other particulate material, especially myelin, and membrane vesicles are also present. The composition of the PSD fraction from hippocampal slices was analyzed by 2D LC/MS/MS. The proteomic approach which utilizes as little as 10microg total protein allowed the identification of >100 proteins. Many of the proteins detected in the fraction are the same as those identified in conventional PSD preparations including specialized PSD-scaffolding proteins, signaling molecules, cytoskeletal elements as well as certain contaminants. The results show the feasibility of the preparation of a PSD fraction from hippocampal slices of reasonable purity and of sufficient yield for proteomic analyses. In addition, we show that further purification of PSDs is possible using magnetic beads coated with a PSD-95 antibody.
Collapse
Affiliation(s)
- Ayse Dosemeci
- Laboratory of Neurobiology, NINDS, NIH, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
239
|
Morciano M, Burré J, Corvey C, Karas M, Zimmermann H, Volknandt W. Immunoisolation of two synaptic vesicle pools from synaptosomes: a proteomics analysis. J Neurochem 2005; 95:1732-45. [PMID: 16269012 DOI: 10.1111/j.1471-4159.2005.03506.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The nerve terminal proteome governs neurotransmitter release as well as the structural and functional dynamics of the presynaptic compartment. In order to further define specific presynaptic subproteomes we used subcellular fractionation and a monoclonal antibody against the synaptic vesicle protein SV2 for immunoaffinity purification of two major synaptosome-derived synaptic vesicle-containing fractions: one sedimenting at lower and one sedimenting at higher sucrose density. The less dense fraction contains free synaptic vesicles, the denser fraction synaptic vesicles as well as components of the presynaptic membrane compartment. These immunoisolated fractions were analyzed using the cationic benzyldimethyl-n-hexadecylammonium chloride (BAC) polyacrylamide gel system in the first and sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the second dimension. Protein spots were subjected to analysis by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI TOF MS). We identified 72 proteins in the free vesicle fraction and 81 proteins in the plasma membrane-containing denser fraction. Synaptic vesicles contain a considerably larger number of protein constituents than previously anticipated. The plasma membrane-containing fraction contains synaptic vesicle proteins, components of the presynaptic fusion and retrieval machinery and numerous other proteins potentially involved in regulating the functional and structural dynamics of the nerve terminal.
Collapse
Affiliation(s)
- Marco Morciano
- Neurochemistry, J.W. Goethe-University, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
240
|
Sugiyama Y, Kawabata I, Sobue K, Okabe S. Determination of absolute protein numbers in single synapses by a GFP-based calibration technique. Nat Methods 2005; 2:677-84. [PMID: 16118638 DOI: 10.1038/nmeth783] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 07/18/2005] [Indexed: 11/08/2022]
Abstract
To build a quantitative model of molecular organization of neurons, it is essential to have information about the number of protein molecules at individual synapses. Here we developed a method to estimate absolute numbers of individual proteins at actual excitatory synapses by calibrating the fluorescence intensity of microspheres with single EGFP molecules. In cultured hippocampal neurons, we observed a monotonous increase of postsynaptic protein numbers per single synapse during neuronal differentiation and subsequent stabilization. At maturity we calculated that a single excitatory postsynaptic site contains 100-450 of individual postsynaptic proteins, such as PSD-95, GKAP, Shank and Homer. This narrow range of postsynaptic protein content suggests relatively simple stoichiometry of postsynaptic molecular organization. The EGFP-based calibration technique provides an unprecedented general method for estimating the amounts of proteins in macromolecular complexes.
Collapse
Affiliation(s)
- Yoshiko Sugiyama
- Department of Cell Biology, School of Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | | | | | | |
Collapse
|
241
|
Li KW, Hornshaw MP, van Minnen J, Smalla KH, Gundelfinger ED, Smit AB. Organelle proteomics of rat synaptic proteins: correlation-profiling by isotope-coded affinity tagging in conjunction with liquid chromatography-tandem mass spectrometry to reveal post-synaptic density specific proteins. J Proteome Res 2005; 4:725-33. [PMID: 15952719 DOI: 10.1021/pr049802+] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Organelle proteomics is the method of choice for global analysis of cellular proteins. However, it is difficult to isolate organelles to homogeneity. Recently, correlation-profiling has been used to filter off the contaminants ad hoc and to disclose the genuine organelle-specific proteins. In the present study, we further extend the method to include subcellular compartments that contain proteins shared by multiple distinct subcellular domains. We performed correlation profiling of proteins contained in synaptic membrane and postsynaptic density (PSD) fractions isolated from rat brain. Proteins were labeled with isotope-coded affinity-tag reagents, digested with trypsin, and resulting peptides were resolved by cation exchange chromatography followed by reversed phase chromatography. Peptides were then subjected to mass spectrometry for quantification and identification. We confirm that the core PSD proteins were enriched in the PSD preparation. Other functional protein groups such as cytoskeleton-associated proteins, protein kinases and phosphatases, signaling components and regulators, as well as proteins involved in energy production partitioned to multiple organelles. When analyzed as groups, they were shown to accumulate to a lesser extent. Mitochondrial proteins and transporters were generally strongly depleted from the PSD fraction confirming that they were contaminants of the PSD preparation. Finally, immunoelectron microscopy was performed on selected proteins to validate the proteomics results, and confirm that synaptophysin that was highly depleted in the PSD preparation is localized in the presynaptic compartment, whereas LASP-1 that was slightly enriched in the PSD preparation is present in the PSD as well as other subdomains within the synapse.
Collapse
Affiliation(s)
- Ka wan Li
- Department of Molecular and Cellular Neurobiology, Center of Neurogenomics and Cognitive Research, Faculty of Earth and Life Sciences, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
242
|
Bingol B, Schuman EM. Synaptic protein degradation by the ubiquitin proteasome system. Curr Opin Neurobiol 2005; 15:536-41. [PMID: 16150592 DOI: 10.1016/j.conb.2005.08.016] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Accepted: 08/25/2005] [Indexed: 11/15/2022]
Abstract
Synaptic plasticity -- the modulation of synaptic strength between a presynaptic terminal and a postsynaptic dendrite -- is thought to be a mechanism that underlies learning and memory. It has become increasingly clear that regulated protein synthesis is an important mechanism used to regulate the protein content of synapses that results in changes in synaptic strength. Recent experiments have highlighted a role for the opposing process, that is, regulated protein degradation via the ubiquitin-proteasome system, in synaptic plasticity. These recent findings raise exciting questions as to how proteasomal activity can regulate synapses over different temporal and spatial scales.
Collapse
Affiliation(s)
- Baris Bingol
- Division of Biology 114-96, California Institute of Technology, Howard Hughes Medical Institute Pasadena, CA 91125, USA
| | | |
Collapse
|
243
|
Trinidad JC, Thalhammer A, Specht CG, Schoepfer R, Burlingame AL. Phosphorylation state of postsynaptic density proteins. J Neurochem 2005; 92:1306-16. [PMID: 15748150 DOI: 10.1111/j.1471-4159.2004.02943.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The postsynaptic density (PSD) is an electron-dense structure located at the synaptic contacts between neurons. Its considerable complexity includes cytoskeletal and scaffold proteins, receptors, ion channels and signaling molecules, in line with the role of PSDs in signal transduction and processing. The phosphorylation state of components of the PSD is central to synaptic transmission and is known to play a role in synaptic plasticity, learning and memory. The presence of a range of kinases and phosphatases in the PSD defines potential key players in this context. However, the substrates that these enzymes target have not been fully identified to date. We analyzed the protein composition of purified PSD samples from adult mouse brains by strong cation exchange chromatography fractionation of a tryptic digest followed by nano-reverse phase liquid chromatography coupled with electrospray ionization-quadrupole time of flight tandem mass spectrometry. This led to the identification of 244 proteins. To gain an insight into the phosphoproteome of the PSD we then purified phosphorylated tryptic peptides by immobilized metal ion affinity chromatography. This approach for the specific enrichment of phosphopeptides resulted in the identification of 42 phosphoproteins in the PSD preparation, 39 of which are known PSD components. Here we present a total of 83 in vivo phosphorylation sites.
Collapse
Affiliation(s)
- J C Trinidad
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|