201
|
Viney ME, Bullock AJ, Day MJ, MacNeil S. Co-culture of intestinal epithelial and stromal cells in 3D collagen-based environments. Regen Med 2009; 4:397-406. [PMID: 19438315 PMCID: PMC2869023 DOI: 10.2217/rme.09.4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
AIM To investigate the co-culture of established intestinal epithelial cell lines and stromal cells in a series of collagen-based environments for production of tissue-engineered intestinal epithelium for in vitro investigations. MATERIALS & METHODS Intestinal epithelial cells were co-cultured with fibroblasts on a range of supporting collagen matrices including commercially available Promogran and on collagen-based gels. RESULTS Epithelial growth was achieved with one combination of vimentin-expressing stromal and cytokeratin-expressing intestinal epithelial cells grown on collagen gels supplemented with Matrigel, and held at an air-liquid interface. CONCLUSIONS Collagen-based gels can support the co-culture of intestinal epithelial and stromal cells resulting in the growth of an epithelium that has some morphological similarity to normal intestinal tissue.
Collapse
|
202
|
Suer S, Ampasala D, Walsh MF, Basson MD. Role of ERK/mTOR signaling in TGFbeta-modulated focal adhesion kinase mRNA stability and protein synthesis in cultured rat IEC-6 intestinal epithelial cells. Cell Tissue Res 2009; 336:213-223. [PMID: 19340459 PMCID: PMC5702499 DOI: 10.1007/s00441-009-0776-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 02/02/2009] [Indexed: 12/14/2022]
Abstract
Increasing evidence is available showing the importance of the FAK (focal adhesion kinase) protein level in the migration and homeostasis of intestinal cells. TGFbeta (transforming growth factor beta) modulates FAK protein expression in a complex fashion not only by inducing the activation of p38 and Smad signaling resulting in increased fak promoter activity and increased FAK protein levels, but also by activating ERK (extracellular signal regulated kinases), p38, and the Smad pathway. We show that the blockade of ERK signaling by a specific MEK (MAPK kinase) inhibitor attenuates TGFbeta-induced FAK mRNA stability and reduces FAK protein levels in rat IEC-6 intestinal epithelial cells. The mTOR (mammalian target of rapamycin)-specific inhibitor rapamycin and small interfering RNAs for mTOR and p70(S6) kinase also block TGFbeta-induced FAK protein synthesis. Furthermore, we have found that a TGFbeta-induced increase in wound closures in monolayers of these cells is abolished in the presence ERK or mTOR inhibition. Thus, TGFbeta also modulates FAK protein levels in cultured rat IEC-6 intestinal epithelial cells via ERK activation, acting at the transcriptional level to complement Smad signaling and at on the translational level via the mTOR pathway downstream of ERK, which in turn promotes intestinal epithelial cell migration.
Collapse
Affiliation(s)
- Silke Suer
- Department of Surgery, Michigan State University, Lansing, MI 48912, USA
| | | | | | | |
Collapse
|
203
|
Bhattacharya S, Ray RM, Johnson LR. Role of polyamines in p53-dependent apoptosis of intestinal epithelial cells. Cell Signal 2009; 21:509-22. [DOI: 10.1016/j.cellsig.2008.12.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 12/05/2008] [Accepted: 12/08/2008] [Indexed: 01/18/2023]
|
204
|
Greenspon J, Li R, Xiao L, Rao JN, Marasa BS, Strauch ED, Wang JY, Turner DJ. Sphingosine-1-phosphate protects intestinal epithelial cells from apoptosis through the Akt signaling pathway. Dig Dis Sci 2009; 54:499-510. [PMID: 18654850 PMCID: PMC2696985 DOI: 10.1007/s10620-008-0393-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 06/17/2008] [Indexed: 12/09/2022]
Abstract
OBJECTIVE The regulation of apoptosis of intestinal mucosal cells is important in maintenance of normal intestinal physiology. SUMMARY Sphingosine-1-phosphate (S1P) has been shown to play a critical role in cellular protection to otherwise lethal stimuli in several nonintestinal tissues. METHODS The current study determines whether S1P protected normal intestinal epithelial cells (IECs) from apoptosis and whether Akt activation was the central pathway for this effect. RESULTS S1P demonstrated significantly reduced levels of apoptosis induced by tumor necrosis factor-alpha (TNF-alpha)/cycloheximide (CHX). S1P induced increased levels of phosphorylated Akt and increased Akt activity, but did not affect total amounts of Akt. This activation of Akt was associated with decreased levels of both caspase-3 protein levels and of caspase-3 activity. Inactivation of Akt by treatment with the PI3K chemical inhibitor LY294002 or by overexpression of the dominant negative mutant of Akt (DNMAkt) prevented the protective effect of S1P on apoptosis. Additionally, silencing of the S1P-1 receptor by specific siRNA demonstrated a lesser decrease in apoptosis to S1P exposure. CONCLUSION These results indicate that S1P protects intestinal epithelial cells from apoptosis via an Akt-dependent pathway.
Collapse
Affiliation(s)
- Jose Greenspon
- Department of Surgery, Cell Biology Group, Baltimore Veterans Affairs Medical Center, University of Maryland School of Medicine, 10 N. Greene Street, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
205
|
Pareja-Santos A, Saraiva TC, Costa EP, Santos MF, Zorn TT, Souza VMO, Lopes-Ferreira M, Lima C. Delayed local inflammatory response induced by Thalassophryne nattereri venom is related to extracellular matrix degradation. Int J Exp Pathol 2009; 90:34-43. [PMID: 19200249 PMCID: PMC2669617 DOI: 10.1111/j.1365-2613.2008.00603.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2008] [Accepted: 06/15/2008] [Indexed: 11/27/2022] Open
Abstract
Symptoms evoked by Thalassophryne nattereri fish envenomation include local oedema, severe pain and intense necrosis with strikingly inefficient healing, continuing for several weeks or months. Investigations carried out in our laboratory showed that, in the venom-induced acute inflammation, thrombosis in venules and constrictions in arterioles were highly visible, in contrast to a notable lack of inflammatory cell. Nevertheless, the reason that the venom toxins favour delayed local inflammatory response is poorly defined. In this study, we analysed the movement of leucocytes after T. nattereri venom injection in the intraplantar region of Swiss mice, the production of pro-inflammatory mediators and the venom potential to elicit matrix metalloproteinase production and extracellular matrix degradation. Total absence of mononuclear and neutrophil influx was observed until 14 days, but the venom stimulates pro-inflammatory mediator secretion. Matrix metalloproteinases (MMP)-2 and MMP-9 were detected in greater quantities, accompanied by tissue degradation of collagenous fibre. An influx of mononuclear cells was noted very late and at this time the levels of IL-6, IL-1beta and MMP-2 remained high. Additionally, the action of venom on the cytoskeletal organization was assessed in vitro. Swift F-actin disruption and subsequent loss of focal adhesion was noted. Collectively these findings show that the altered specific interaction cell-matrix during the inflammatory process creates an inadequate environment for infiltration of inflammatory cells.
Collapse
Affiliation(s)
| | | | - Erica Pereira Costa
- Department of Developmental and Cell Biology, Institute of Biomedical SciencesUniversity of São Paulo
| | - Marinilce Fagundes Santos
- Department of Developmental and Cell Biology, Institute of Biomedical SciencesUniversity of São Paulo
| | - Telma Tenorio Zorn
- Department of Developmental and Cell Biology, Institute of Biomedical SciencesUniversity of São Paulo
| | | | | | - Carla Lima
- Special Laboratory of Applied Toxinology (CAT/CEPID), Butantan InstituteSao Paulo
| |
Collapse
|
206
|
Walsh MF, Ampasala DR, Rishi AK, Basson MD. TGF-beta1 modulates focal adhesion kinase expression in rat intestinal epithelial IEC-6 cells via stimulatory and inhibitory Smad binding elements. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1789:88-98. [PMID: 19059368 PMCID: PMC2730956 DOI: 10.1016/j.bbagrm.2008.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 10/30/2008] [Accepted: 11/06/2008] [Indexed: 12/21/2022]
Abstract
TGF-beta and FAK modulate cell migration, differentiation, proliferation and apoptosis, and TGF-beta promotes FAK transcription in intestinal epithelial cells via Smad-dependent and independent pathways. We utilized a 1320 bp FAK promoter-luciferase construct to characterize basal and TGF-beta-mediated FAK gene transcription in IEC-6 cells. Inhibiting JNK or Akt negated TGF-beta-stimulated promoter activity; ERK inhibition did not block the TGF-beta effect but increased basal activity. Co-transfection with Co-Smad4 enhanced the TGF-beta response while the inhibitory Smad7 abolished it. Serial deletions sequentially removing the four Smad binding elements (SBE) in the 5' untranslated region of the promoter revealed that the two most distal SBE's are positive regulators while SBE3 exerts a negative influence. Mutational deletion of two upstream p53 sites enhanced basal but did not affect TGF-beta-stimulated increases in promoter activity. TGF-beta increased DNA binding of Smad4, phospho-Smad2/3 and Runx1/AML1a to the most distal 435 bp containing 3 SBE and 2 AML1a sites by ChIP assay. However, although point mutation of SBE1 ablated the TGF-beta-mediated rise in SV40-promoter activity, mutation of AML1a sites did not. TGF-beta regulation of FAK transcription reflects a complex interplay between positive and negative non-Smad signals and SBE's, the last independent of p53 or AML1a.
Collapse
Affiliation(s)
- Mary F. Walsh
- Department of Surgery, Wayne State University, Detroit, Michigan
| | | | - Arun K. Rishi
- Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Marc D. Basson
- Department of Surgery, John D. Dingell VA Medical Center, Detroit, Michigan
- Department of Surgery, Wayne State University, Detroit, Michigan
- Department of Anesthesiology, Wayne State University, Detroit, Michigan
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, Michigan
| |
Collapse
|
207
|
Liu L, Guo X, Rao JN, Zou T, Xiao L, Yu T, Timmons JA, Turner DJ, Wang JY. Polyamines regulate E-cadherin transcription through c-Myc modulating intestinal epithelial barrier function. Am J Physiol Cell Physiol 2009; 296:C801-10. [PMID: 19176757 DOI: 10.1152/ajpcell.00620.2008] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The integrity of the intestinal epithelial barrier depends on intercellular junctions that are highly regulated by numerous extracellular and intracellular factors. E-cadherin is found primarily at the adherens junctions in the intestinal mucosa and mediates strong cell-cell contacts that have a functional role in forming and regulating the epithelial barrier. Polyamines are necessary for E-cadherin expression, but the exact mechanism underlying polyamines remains elusive. The current study was performed to determine whether polyamines induce E-cadherin expression through the transcription factor c-Myc and whether polyamine-regulated E-cadherin plays a role in maintenance of the epithelial barrier integrity. Decreasing cellular polyamines reduced c-Myc and repressed E-cadherin transcription as indicated by a decrease in levels of E-cadherin promoter activity and its mRNA. Forced expression of the c-myc gene by infection with adenoviral vector containing c-Myc cDNA stimulated E-cadherin promoter activity and increased E-cadherin mRNA and protein levels in polyamine-deficient cells. Experiments using different E-cadherin promoter mutants revealed that induction of E-cadherin transcription by c-Myc was mediated through the E-Pal box located at the proximal region of the E-cadherin promoter. Decreased levels of E-cadherin in polyamine-deficient cells marginally increased basal levels of paracellular permeability but, remarkably, potentiated H(2)O(2)-induced epithelial barrier dysfunction. E-cadherin silencing by transfection with its specific small interfering RNA also increased vulnerability of the epithelial barrier to H(2)O(2). These results indicate that polyamines enhance E-cadherin transcription by activating c-Myc, thus promoting function of the epithelial barrier.
Collapse
Affiliation(s)
- Lan Liu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Hormi-Carver K, Zhang X, Zhang HY, Whitehead RH, Terada LS, Spechler SJ, Souza RF. Unlike esophageal squamous cells, Barrett's epithelial cells resist apoptosis by activating the nuclear factor-kappaB pathway. Cancer Res 2009; 69:672-7. [PMID: 19147583 PMCID: PMC2629390 DOI: 10.1158/0008-5472.can-08-3703] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Apoptosis is an important mechanism for maintaining tissue homeostasis and for preventing the proliferation of cells with mutations that could result in malignancy. Barrett's epithelium has been reported to be more resistant to apoptosis than normal esophageal squamous epithelium. We have explored the contribution of the nuclear factor-kappaB (NF-kappaB) pathway to apoptotic resistance in non-neoplastic, telomerase-immortalized esophageal squamous (NES) and Barrett's (BAR-T) epithelial cell lines. We exposed these cells to UV-B irradiation in doses known to cause DNA damage and to induce apoptosis in normal cells, and studied apoptosis as well as the expression of phospho-H2AX, NF-kappaB, Bcl-2, XIAP, cIAP-1, and survivin proteins. We also used Bay 11-7085 and siRNAs to NF-kappaB and Bcl-2 to assess the effects of NF-kappaB and Bcl2 inhibition on apoptosis. UV-B irradiation at low doses (50 and 100 J/m(2)) caused DNA damage in both NES and BAR-T cells but significantly increased apoptosis only in NES cells. UV-B irradiation caused a decrease in the levels of NF-kappaB, Bcl-2, cIAP-1, XIAP, and survivin in NES cells but increased the levels of those proteins in BAR-T cells. The resistance of BAR-T cells to apoptosis induced by low-dose UV-B irradiation was abolished by Bay 11-7085 and by siRNA for NF-kappaB and was decreased significantly by siRNA for Bcl-2. We conclude that the ability of Barrett's epithelial cells to activate the NF-kappaB pathway when they have sustained DNA damage allows them to resist apoptosis. This capacity to avoid apoptosis despite genotoxic damage may underlie the persistence and malignant predisposition of Barrett's metaplasia.
Collapse
Affiliation(s)
- Kathy Hormi-Carver
- Departments of Medicine, VA North Texas Health Care System and the University of Texas-Southwestern Medical School, Dallas, TX
| | - Xi Zhang
- Departments of Medicine, VA North Texas Health Care System and the University of Texas-Southwestern Medical School, Dallas, TX
| | - Hui Ying Zhang
- Departments of Medicine, VA North Texas Health Care System and the University of Texas-Southwestern Medical School, Dallas, TX
| | | | - Lance S. Terada
- Departments of Medicine, VA North Texas Health Care System and the University of Texas-Southwestern Medical School, Dallas, TX
| | - Stuart J. Spechler
- Departments of Medicine, VA North Texas Health Care System and the University of Texas-Southwestern Medical School, Dallas, TX
| | - Rhonda F. Souza
- Departments of Medicine, VA North Texas Health Care System and the University of Texas-Southwestern Medical School, Dallas, TX
- The Harold C. Simmons Comprehensive Cancer Center, University of Texas-Southwestern Medical Center at Dallas, Dallas, TX
| |
Collapse
|
209
|
Sadykov R, Digel I, Artmann AT, Porst D, Linder P, Kayser P, Artmann G, Savitskaya I, Zhubanova A. Oral lead exposure induces dysbacteriosis in rats. J Occup Health 2008; 51:64-73. [PMID: 19096199 DOI: 10.1539/joh.m8009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES Lead's (Pb(II)) possible role in intestinal pathologies of microbial etiology remains mostly unknown. The aim of this study was to examine the effects of lead on the gut microbial community and its interactions with rat intestinal epithelium. METHODS The lead-induced changes in different intestinal microbial groups (lactose-positive lac(+) and -negative lac(-) E.coli strains, lactobacilli and yeasts) were followed separately by the colony-forming unit (CFU) method. Samples were taken from outbred white rats subjected to different exposure schedules. Additionally, the impact of different lead doses on microbial adhesion to cultured intestinal cells (IEC-6) was investigated. Finally, the lead accumulation and distribution were measured by means of atomic absorption spectrometry. RESULTS For the first time it was shown that oral lead exposure causes drastic changes in the gut microbial community. Proportional to the lead dose received, the relative number of lactose-negative E.coli cells increased dramatically (up to 1,000-fold) in comparison to the other microbial groups during 2 wk of exposure. Considering the number of microbes in the intestine, such a shift in intestinal microflora (dysbacteriosis) is very significant. Adhesion studies showed certain stimulating effects of lead on E. coli attachment to rat intestinal epithelium as compared to Lactobacillus attachment. CONCLUSIONS The mechanisms providing the apparent competitive success of the lac(-) group are unclear but could be related to changes in surface interactions between microbial and host cells. This study may provide important clues for understanding the pathological effects of metal dietary toxins in human beings.
Collapse
Affiliation(s)
- Rustam Sadykov
- Kazakh National University Named after Al-Farabi, Republic of Kazakhstan
| | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Kolinska J, Lisa V, Clark JA, Kozakova H, Zakostelecka M, Khailova L, Sinkora M, Kitanovicova A, Dvorak B. Constitutive expression of IL-18 and IL-18R in differentiated IEC-6 cells: effect of TNF-alpha and IFN-gamma treatment. J Interferon Cytokine Res 2008; 28:287-96. [PMID: 18547159 DOI: 10.1089/jir.2006.0130] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The multifunctional cytokine interleukin-18 (IL-18) is an important mediator in intestinal inflammatory processes. The aim of this study was to evaluate the constitutive expression of IL-18 and its receptors (IL-18Ralpha and IL-18Rbeta) in intestinal epithelial cells (IEC) stimulated by tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma). In addition, cellular proliferation and evaluation of brush border enzymes as differentiation markers were studied. Nontransformed rat intestinal epithelial IEC-6 cells were grown on an extracellular matrix (ECM) in medium with or without TNF-alpha, IFN-gamma, or a combination of both. Gene expression of IL-18, its receptors and apoptotic markers was evaluated using real-time PCR. Expression of IL-18Ralpha protein was demonstrated by flow cytometry and Western blot. Enzymatic activities of brush border enzymes and caspase-1 were determined. The constitutive expression of IL-18, IL-18Ralpha and IL-18Rbeta mRNAs and proteins were detected in IEC-6 cells. The biologically active form of IL-18 was released in response to TNF-alpha and IFN-gamma treatment. Exogenous IL-18 had no effect on cellular proliferation, brush border enzyme activities, and gene expression of apoptotic markers. However, the addition of IL-18 stimulated production and release of the chemokine IL-8. These data suggest that IEC-6 cells may be not only a source of IL-18 but also a target for its action.
Collapse
Affiliation(s)
- Jirina Kolinska
- Institute of Physiology of the Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Nicola JP, Basquin C, Portulano C, Reyna-Neyra A, Paroder M, Carrasco N. The Na+/I- symporter mediates active iodide uptake in the intestine. Am J Physiol Cell Physiol 2008; 296:C654-62. [PMID: 19052257 DOI: 10.1152/ajpcell.00509.2008] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Absorption of dietary iodide, presumably in the small intestine, is the first step in iodide (I(-)) utilization. From the bloodstream, I(-) is actively taken up via the Na(+)/I(-) symporter (NIS) in the thyroid for thyroid hormone biosynthesis and in such other tissues as lactating breast, which supplies I(-) to the newborn in the milk. The molecular basis for intestinal I(-) absorption is unknown. We sought to determine whether I(-) is actively accumulated by enterocytes and, if so, whether this process is mediated by NIS and regulated by I(-) itself. NIS expression was localized exclusively at the apical surface of rat and mouse enterocytes. In vivo intestine-to-blood transport of pertechnetate, a NIS substrate, was sensitive to the NIS inhibitor perchlorate. Brush border membrane vesicles accumulated I(-) in a sodium-dependent, perchlorate-sensitive manner with kinetic parameters similar to those of thyroid cells. NIS was expressed in intestinal epithelial cell line 6, and I(-) uptake in these cells was also kinetically similar to that in thyrocytes. I(-) downregulated NIS protein expression and its own NIS-mediated transport both in vitro and in vivo. We conclude that NIS is functionally expressed on the apical surface of enterocytes, where it mediates active I(-) accumulation. Therefore, NIS is a significant and possibly central component of the I(-) absorption system in the small intestine, a system of key importance for thyroid hormone biosynthesis and thus systemic intermediary metabolism.
Collapse
Affiliation(s)
- Juan Pablo Nicola
- Dept. of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
212
|
Mayer K, Iolyeva ME, Meyer-Grahle U, Brix K. Intestine-specific expression of green fluorescent protein-tagged cathepsin B: proof-of-principle experiments. Biol Chem 2008; 389:1085-96. [PMID: 18979632 DOI: 10.1515/bc.2008.112] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We hypothesized that tissue-specific expression of cathepsin B-enhanced green fluorescent protein (CB-EGFP) can be driven by the A33-antigen promoter that contains positive cis-regulatory elements, including caudal-related homeobox (CDX) binding sites. The intestine-specific transcription factor Cdx1 is crucial for A33-antigen promoter activation and could thereby induce expression of CB-EGFP. This concept was tested by construction of the vector pA33-CathB-EGFP encoding CB-EGFP downstream of the A33-antigen promoter. Its Cdx1 dependence, as an indication of its intestine-specific expression, was tested in Cdx1-negative CHO-K1 cells. Cdx1 expression was achieved upon transfection with pCdx1-DsRed-Express and was indicated by red fluorescence of the simultaneously translated reporter protein. Immunolabeling with Cdx1-specific antibodies showed correct targeting of the transcription factor to its point of action in nuclei of transfected cells. Co-transfection experiments with plasmids pA33-CathB-EGFP and pCdx1-DsRed-Express confirmed the hypothesis that Cdx1 indeed activates CB-EGFP expression in a manner dependent on the A33-antigen promoter. Co-localization with compartment-specific markers and subcellular fractionation confirmed CB-EGFP trafficking along the expected route to endolysosomal compartments. Hence, the A33-antigen promoter represents a potent tool for induction of Cdx1-dependent CB-EGFP expression in vitro. Our proof-of-principle studies confirm the suitability of this approach in visualizing protease transport in Cdx1-positive tissues of the gastrointestinal tract.
Collapse
Affiliation(s)
- Kristina Mayer
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 6, D-28759 Bremen, Germany
| | | | | | | |
Collapse
|
213
|
Voisin L, Julien C, Duhamel S, Gopalbhai K, Claveau I, Saba-El-Leil MK, Rodrigue-Gervais IG, Gaboury L, Lamarre D, Basik M, Meloche S. Activation of MEK1 or MEK2 isoform is sufficient to fully transform intestinal epithelial cells and induce the formation of metastatic tumors. BMC Cancer 2008; 8:337. [PMID: 19014680 PMCID: PMC2596176 DOI: 10.1186/1471-2407-8-337] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 11/17/2008] [Indexed: 12/30/2022] Open
Abstract
Background The Ras-dependent ERK1/2 MAP kinase signaling pathway plays a central role in cell proliferation control and is frequently activated in human colorectal cancer. Small-molecule inhibitors of MEK1/MEK2 are therefore viewed as attractive drug candidates for the targeted therapy of this malignancy. However, the exact contribution of MEK1 and MEK2 to the pathogenesis of colorectal cancer remains to be established. Methods Wild type and constitutively active forms of MEK1 and MEK2 were ectopically expressed by retroviral gene transfer in the normal intestinal epithelial cell line IEC-6. We studied the impact of MEK1 and MEK2 activation on cellular morphology, cell proliferation, survival, migration, invasiveness, and tumorigenesis in mice. RNA interference was used to test the requirement for MEK1 and MEK2 function in maintaining the proliferation of human colorectal cancer cells. Results We found that expression of activated MEK1 or MEK2 is sufficient to morphologically transform intestinal epithelial cells, dysregulate cell proliferation and induce the formation of high-grade adenocarcinomas after orthotopic transplantation in mice. A large proportion of these intestinal tumors metastasize to the liver and lung. Mechanistically, activation of MEK1 or MEK2 up-regulates the expression of matrix metalloproteinases, promotes invasiveness and protects cells from undergoing anoikis. Importantly, we show that silencing of MEK2 expression completely suppresses the proliferation of human colon carcinoma cell lines, whereas inactivation of MEK1 has a much weaker effect. Conclusion MEK1 and MEK2 isoforms have similar transforming properties and are able to induce the formation of metastatic intestinal tumors in mice. Our results suggest that MEK2 plays a more important role than MEK1 in sustaining the proliferation of human colorectal cancer cells.
Collapse
Affiliation(s)
- Laure Voisin
- Institut de Recherche en Immunologie et Cancérologie, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Babyatsky M, Lin J, Yio X, Chen A, Zhang JY, Zheng Y, Twyman C, Bao X, Schwartz M, Thung S, Lawrence Werther J, Itzkowitz S. Trefoil factor-3 expression in human colon cancer liver metastasis. Clin Exp Metastasis 2008; 26:143-151. [PMID: 18979216 DOI: 10.1007/s10585-008-9224-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 10/15/2008] [Indexed: 01/11/2023]
Abstract
Deaths from colorectal cancer are often due to liver metastasis. Trefoil factor-3 (TFF3) is expressed by normal intestinal epithelial cells and its expression is maintained throughout the colon adenoma-carcinoma sequence. Our previous work demonstrated a correlation between TFF3 expression and metastatic potential in an animal model of colon cancer. The aim of this study was to determine whether TFF3 is expressed in human colon cancer liver metastasis (CCLM) and whether inhibiting TFF3 expression in colon cancer cells would alter their invasive potential in vitro. Human CCLMs were analyzed at the mRNA and protein level for TFF3 expression. Two highly metastatic rat colon cancer cell lines that either natively express TFF3 (LN cells) or were transfected with TFF3 (LPCRI-2 cells), were treated with two rat TFF3 siRNA constructs (si78 and si365), and analyzed in an in vitro invasion assay. At the mRNA and protein level, TFF3 was expressed in 17/17 (100%) CCLMs and 10/11 (91%) primary colon cancers, but not in normal liver tissue. By real time PCR, TFF3 expression was markedly inhibited by both siRNA constructs in LN and LPCRI-2 cells. The si365 and si78 constructs inhibited invasion by 44% and 53%, respectively, in LN cells, and by 74% and 50%, respectively, in LPCRI-2 cells. These results provide further evidence that TFF3 contributes to the malignant behavior of colon cancer cells. These observations may have relevance for designing new diagnostic and treatment approaches to colorectal cancer.
Collapse
Affiliation(s)
- Mark Babyatsky
- The Dr. Henry D. Janowitz Division of Gastroenterology, Department of Medicine, The Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1069, New York, NY 10029-6574, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
215
|
|
216
|
Jacob S, Kaphalia BS, Jacob N, Ahmed AE. The Water Disinfectant Byproduct Dibromoacetonitrile Induces Apoptosis in Rat Intestinal Epithelial Cells: Possible Role of Redox Imbalance. Toxicol Mech Methods 2008; 16:227-34. [DOI: 10.1080/15376520600626239] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
217
|
Expression of apoptotic epithelial cells within lamina propria beneath the basement membrane triggers dextran sulfate sodium-induced colitis. Dig Dis Sci 2008; 53:2443-51. [PMID: 18236156 DOI: 10.1007/s10620-007-0160-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 11/26/2007] [Indexed: 02/08/2023]
Abstract
We postulated that nuclear dust within the lamina propria beneath the basement membrane of the epithelium in colonic mucosa is a form of apoptotic epithelial cells and that its expression triggers dextran sulfate sodium-induced colitis. The aim was to determine the origin of nuclear dust and to explore the correlation between nuclear dust expression and clinicopathologic parameters of colitis. Rats were treated with 3% dextran sulfate sodium. Cells showing double positive staining with cytokeratin and TdT-mediated uUTP-biotin nick-end labeling technique were apoptotic cells derived from epithelial cells. Nuclear dust expression on day 5 correlated with bloody stools and a decrease of mitotic colonic cells just before ulceration. Examination of cultures under light and fluorescent microscopy showed that dextran sulfate sodium caused early apoptosis and late apoptosis or necrosis. Our results suggest that interventions directed toward the apoptotic process may be beneficial in the treatment of ulcerative colitis.
Collapse
|
218
|
Chen J, Xiao L, Rao JN, Zou T, Liu L, Bellavance E, Gorospe M, Wang JY. JunD represses transcription and translation of the tight junction protein zona occludens-1 modulating intestinal epithelial barrier function. Mol Biol Cell 2008; 19:3701-12. [PMID: 18562690 PMCID: PMC2526696 DOI: 10.1091/mbc.e08-02-0175] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 05/30/2008] [Accepted: 06/09/2008] [Indexed: 01/22/2023] Open
Abstract
The AP-1 transcription factor JunD is highly expressed in intestinal epithelial cells, but its exact role in maintaining the integrity of intestinal epithelial barrier remains unknown. The tight junction (TJ) protein zonula occludens (ZO)-1 links the intracellular domain of TJ-transmembrane proteins occludin, claudins, and junctional adhesion molecules to many cytoplasmic proteins and the actin cytoskeleton and is crucial for assembly of the TJ complex. Here, we show that JunD negatively regulates expression of ZO-1 and is implicated in the regulation of intestinal epithelial barrier function. Increased JunD levels by ectopic overexpression of the junD gene or by depleting cellular polyamines repressed ZO-1 expression and increased epithelial paracellular permeability. JunD regulated ZO-1 expression at the levels of transcription and translation. Transcriptional repression of ZO-1 by JunD was mediated through cAMP response element-binding protein-binding site within its proximal region of the ZO-1-promoter, whereas induced JunD inhibited ZO-1 mRNA translation by enhancing the interaction of the ZO-1 3'-untranslated region with RNA-binding protein T cell-restricted intracellular antigen 1-related protein. These results indicate that JunD is a biological suppressor of ZO-1 expression in intestinal epithelial cells and plays a critical role in maintaining epithelial barrier function.
Collapse
Affiliation(s)
- Jie Chen
- *Cell Biology Group, Department of Surgery and
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201; and
| | - Lan Xiao
- *Cell Biology Group, Department of Surgery and
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201; and
| | - Jaladanki N. Rao
- *Cell Biology Group, Department of Surgery and
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201; and
| | - Tongtong Zou
- *Cell Biology Group, Department of Surgery and
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201; and
| | - Lan Liu
- *Cell Biology Group, Department of Surgery and
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201; and
| | - Emily Bellavance
- *Cell Biology Group, Department of Surgery and
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201; and
| | - Myriam Gorospe
- Laboratory of Cellular and Molecular Biology, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224
| | - Jian-Ying Wang
- *Cell Biology Group, Department of Surgery and
- Department of Pathology, University of Maryland School of Medicine and
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201; and
| |
Collapse
|
219
|
Leaphart CL, Dai S, Gribar SC, Richardson W, Ozolek J, Shi XH, Bruns JR, Branca M, Li J, Weisz OA, Sodhi C, Hackam DJ. Interferon-gamma inhibits enterocyte migration by reversibly displacing connexin43 from lipid rafts. Am J Physiol Gastrointest Liver Physiol 2008; 295:G559-69. [PMID: 18635599 PMCID: PMC2536784 DOI: 10.1152/ajpgi.90320.2008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Necrotizing enterocolitis (NEC) is associated with the release of interferon-gamma (IFN) by enterocytes and delayed intestinal restitution. Our laboratory has recently demonstrated that IFN inhibits enterocyte migration by impairing enterocyte gap junctions, intercellular channels that are composed of connexin43 (Cx43) monomers and that are required for enterocyte migration to occur. The mechanisms by which IFN inhibits gap junctions are incompletely understood. Lipid rafts are cholesterol-sphingolipid-rich microdomains of the plasma membrane that play a central role in the trafficking and signaling of various proteins. We now hypothesize that Cx43 is present on enterocyte lipid rafts and that IFN inhibits enterocyte migration by displacing Cx43 from lipid rafts in enterocytes. We now confirm our previous observations that intestinal restitution is impaired in NEC and demonstrate that Cx43 is present on lipid rafts in IEC-6 enterocytes. We show that lipid rafts are required for enterocyte migration, that IFN displaces Cx43 from lipid rafts, and that the phorbol ester phorbol 12-myristate 13-acetate (PMA) restores Cx43 to lipid rafts after treatment with IFN in a protein kinase C-dependent manner. IFN also reversibly decreased the phosphorylation of Cx43 on lipid rafts, which was restored by PMA. Strikingly, restoration of Cx43 to lipid rafts by PMA or by transfection of enterocytes with adenoviruses expressing wild-type Cx43 but not mutant Cx43 is associated with the restoration of enterocyte migration after IFN treatment. Taken together, these findings suggest an important role for lipid raft-Cx43 interactions in the regulation of enterocyte migration during exposure to IFN, such as NEC.
Collapse
Affiliation(s)
- Cynthia L. Leaphart
- Division of Pediatric Surgery, Children's Hospital of Pittsburgh and Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shipan Dai
- Division of Pediatric Surgery, Children's Hospital of Pittsburgh and Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Steven C. Gribar
- Division of Pediatric Surgery, Children's Hospital of Pittsburgh and Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ward Richardson
- Division of Pediatric Surgery, Children's Hospital of Pittsburgh and Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - John Ozolek
- Division of Pediatric Surgery, Children's Hospital of Pittsburgh and Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xia-hua Shi
- Division of Pediatric Surgery, Children's Hospital of Pittsburgh and Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jennifer R. Bruns
- Division of Pediatric Surgery, Children's Hospital of Pittsburgh and Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Maria Branca
- Division of Pediatric Surgery, Children's Hospital of Pittsburgh and Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jun Li
- Division of Pediatric Surgery, Children's Hospital of Pittsburgh and Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ora A. Weisz
- Division of Pediatric Surgery, Children's Hospital of Pittsburgh and Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Chhinder Sodhi
- Division of Pediatric Surgery, Children's Hospital of Pittsburgh and Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David J. Hackam
- Division of Pediatric Surgery, Children's Hospital of Pittsburgh and Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
220
|
Mayer K, Iolyeva ME, Meyer-Grahle U, Brix K. Intestine-specific expression of green fluorescent protein-tagged cathepsin B: proof-of-principle experiments. Biol Chem 2008. [DOI: 10.1515/bc.2008.112_bchm.just-accepted] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
221
|
Li T, Ito K, Sumi SI, Fuwa T, Horie T. Protective effect of aged garlic extract (AGE) on the apoptosis of intestinal epithelial cells caused by methotrexate. Cancer Chemother Pharmacol 2008; 63:873-80. [DOI: 10.1007/s00280-008-0809-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2008] [Accepted: 07/18/2008] [Indexed: 02/05/2023]
|
222
|
Walsh MF, Ampasala DR, Hatfield J, Vander Heide R, Suer S, Rishi AK, Basson MD. Transforming growth factor-beta stimulates intestinal epithelial focal adhesion kinase synthesis via Smad- and p38-dependent mechanisms. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:385-399. [PMID: 18583311 PMCID: PMC2475776 DOI: 10.2353/ajpath.2008.070729] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/24/2008] [Indexed: 01/18/2023]
Abstract
Focal adhesion kinase (FAK) regulates cell migration, proliferation, and apoptosis. FAK protein is reduced at the edge of migrating gut epithelial sheets in vitro, but it has not been characterized in restitutive gut mucosa in vivo. Here we show that FAK and activated phospho-FAK (FAK(397)) immunoreactivity was lower in epithelial cells immediately adjacent to human gastric and colonic ulcers in vivo, but dramatically increased in epithelia near the ulcers, possibly reflecting stimulation by growth factors absent in vitro. Transforming growth factor (TGF)-beta, but not fibroblast growth factor, platelet-derived growth factor, or vascular endothelial growth factor, increased FAK levels in Caco-2 and IEC-6 cells. Epithelial immunoreactivity to TGF-beta and phospho-Smad3 was also higher near the ulcers, varying in parallel with FAK. The TGF-beta receptor antagonist SB431542 completely blocked TGF-beta-induced Smad2/3 and p38 activation in IEC-6 cells. SB431542, the p38 antagonist SB203580, and siRNA-mediated reduction of Smad2 and p38alpha prevented TGF-beta stimulation of both FAK transcription and translation (as measured via a FAK promoter-luciferase construct). FAK(397) levels were directly related to total FAK protein expression. Although gut epithelial motility is associated with direct inhibition of FAK protein adjacent to mucosal wounds, TGF-beta may increase FAK protein near but not bordering mucosal ulcers via Smad2/3 and p38 signals. Our results show that regulation of FAK expression may be as important as FAK phosphorylation in critically influencing gut epithelial cell migration after mucosal injury.
Collapse
Affiliation(s)
- Mary F Walsh
- Departments of Surgery and Pathology, John D. Dingell VA Medical Center, Wayne State University, 4646 John R Detroit, MI 48201-1932, USA
| | | | | | | | | | | | | |
Collapse
|
223
|
Kanaya T, Miyazawa K, Takakura I, Itani W, Watanabe K, Ohwada S, Kitazawa H, Rose MT, McConochie HR, Okano H, Yamaguchi T, Aso H. Differentiation of a murine intestinal epithelial cell line (MIE) toward the M cell lineage. Am J Physiol Gastrointest Liver Physiol 2008; 295:G273-84. [PMID: 18556421 DOI: 10.1152/ajpgi.00378.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
M cells are a kind of intestinal epithelial cell in the follicle-associated epithelium of Peyer's patches. These cells can transport antigens and microorganisms into underlying lymphoid tissues. Despite the important role of M cells in mucosal immune responses, the origin and mechanisms of differentiation as well as cell death of M cells remain unclear. To clarify the mechanism of M cell differentiation, we established a novel murine intestinal epithelial cell line (MIE) from the C57BL/6 mouse. MIE cells grow rapidly and have a cobblestone morphology, which is a typical feature of intestinal epithelial cells. Additionally, they express cytokeratin, villin, cell-cell junctional proteins, and alkaline phosphatase activity and can form microvilli. Their expression of Musashi-1 antigen indicates that they may be close to intestinal stem cells or transit-amplifying cells. MIE cells are able to differentiate into the M cell lineage following coculture with intestinal lymphocytes, but not with Peyer's patch lymphocytes (PPL). However, PPL costimulated with anti-CD3/CD28 MAbs caused MIE cells to display typical features of M cells, such as transcytosis activity, the disorganization of microvilli, and the expression of M cell markers. This transcytosis activity of MIE cells was not induced by T cells isolated from PPL costimulated with the same MAbs and was reduced by the depletion of the T cell population from PPL. A mixture of T cells treated with MAbs and B cells both from PPL led MIE cells to differentiate into M cells. We report here that MIE cells have the potential ability to differentiate into M cells and that this differentiation required activated T cells and B cells.
Collapse
Affiliation(s)
- Takashi Kanaya
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku Univ., 1-1 Tsutsumidori Amamiyamachi, Aoba-ku, 981-8555 Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Pham H, Vincenti R, Slice LW. COX-2 promoter activation by AT1R-Gq-PAK-p38β signaling in intestinal epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1779:408-13. [DOI: 10.1016/j.bbagrm.2008.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 04/04/2008] [Accepted: 05/06/2008] [Indexed: 11/16/2022]
|
225
|
Mollen KP, Gribar SC, Anand RJ, Kaczorowski DJ, Kohler JW, Branca MF, Dubowski TD, Sodhi CP, Hackam DJ. Increased expression and internalization of the endotoxin coreceptor CD14 in enterocytes occur as an early event in the development of experimental necrotizing enterocolitis. J Pediatr Surg 2008; 43:1175-81. [PMID: 18558203 PMCID: PMC2603609 DOI: 10.1016/j.jpedsurg.2008.02.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 02/09/2008] [Indexed: 11/23/2022]
Abstract
BACKGROUND The early signaling events in the development of necrotizing enterocolitis (NEC) remain undefined. We have recently shown that the endotoxin (lipopolysaccharide [LPS]) receptor toll-like receptor 4 (TLR4) on enterocytes is critical in the pathogenesis of experimental NEC. Given that the membrane receptor CD14 is known to facilitate the activation of TLR4, we now hypothesize that endotoxemia induces an early upregulation of CD14 in enterocytes and that this participates in the early intestinal inflammatory response in the development of NEC. METHODS IEC-6 enterocytes were treated with LPS (50 microg/mL), and the subcellular localization of CD14 and TLR4 was assessed by confocal microscopy. C57/Bl6 or CD14-/- mice were treated with LPS (5 mg/kg), whereas experimental NEC was induced using a combination of gavage formula feeding and intermittent hypoxia. CD14 expression was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and reverse transcriptase-polymerase chain reaction, and interleukin 6 was quantified by enzyme-linked immunosorbent assay and reverse transcriptase-polymerase chain reaction. RESULTS Exposure of IEC-6 enterocytes to LPS led to an initial, transient increase in CD14 expression. The early increase in CD14 expression was associated with internalization of CD14 to a perinuclear compartment where increased colocalization with TLR4 was noted. The in vivo significance of these findings is suggested as treatment of mice with LPS led to an early increase in CD14 expression in the intestinal mucosa, whereas the persistent endotoxemia of experimental NEC was associated with decreased CD14 expression within enterocytes. CONCLUSIONS LPS signaling in the enterocyte is marked by an early, transient increase in expression of CD14 and redistribution of the receptor. This process may contribute to the early activation of the intestinal inflammatory response that is observed in the development of NEC.
Collapse
Affiliation(s)
- Kevin P. Mollen
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Steven C. Gribar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Rahul J. Anand
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | | | - Jeffrey W. Kohler
- Children’s Hospital of Pittsburgh, Division of Pediatric Surgery, Pittsburgh, PA 15213
| | - Maria F. Branca
- Children’s Hospital of Pittsburgh, Division of Pediatric Surgery, Pittsburgh, PA 15213
| | - Theresa D. Dubowski
- Children’s Hospital of Pittsburgh, Division of Pediatric Surgery, Pittsburgh, PA 15213
| | - Chhinder P. Sodhi
- Children’s Hospital of Pittsburgh, Division of Pediatric Surgery, Pittsburgh, PA 15213
| | - David J. Hackam
- Children’s Hospital of Pittsburgh, Division of Pediatric Surgery, Pittsburgh, PA 15213
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15213
| |
Collapse
|
226
|
Powell DW, Berschneider HM, Lawson LD, Martens H. Regulation of water and ion movement in intestine. CIBA FOUNDATION SYMPOSIUM 2008; 112:14-33. [PMID: 2408830 DOI: 10.1002/9780470720936.ch2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The direction of net fluid transport in the gut is determined by the algebraic sum of Na+ absorption and Cl- secretion. Na+ absorption by small intestinal villous cells and colonic surface cells is controlled primarily by electrically neutral (NaCl) and electrogenic (Na+-glucose, Na+-amino acid, amiloride-insensitive, and amiloride-sensitive Na+ conductance) entry processes in the apical membrane. Neutral NaCl entry appears to be the result of parallel Na+:H- and Cl-:HCO3- exchangers operating at equal stoichiometry. Uncoupled exchangers operating at different stoichiometry may result in net HCO3- absorption (jejunum), net HCO3- secretion (ileum and proximal colon) or HCO3-:Cl- exchange (distal colon). Increases in intracellular cyclic nucleotides and/or ionized Ca2+ inhibit NaCl entry and, in vivo, promote HCO3- and Cl- secretion. Cl- secretion by crypt cells is the result of cyclic nucleotide-mediated or Ca2+-mediated Cl- conductance channels in the apical membrane which allow Cl- to exit down an electrochemical gradient created by a basolateral NaKCl2 entry process. Cyclic nucleotides may act via specific A and G protein kinases. They also release Ca2+ from intracellular stores and thus could alter transport via Ca2+ (and calmodulin)-activated kinases. Ca2+-dependent secretory agents initiate phospholipid hydrolysis and stimulate secretion via the resulting hydrolytic products: arachidonic acid metabolites when bradykinin is the stimulus or diacylglycerol and/or inositol trisphosphate when acetylcholine is the stimulus. The arachidonic acid metabolites may then stimulate cyclic nucleotide production, while diacylglycerol activates a specific Ca2+/phospholipid-dependent protein kinase (C kinase), and inositol trisphosphate releases Ca2+ from the endoplasmic reticulum. The interrelationships between these intracellular messengers and their exact modes of action remain to be clarified.
Collapse
|
227
|
Hauri HP. Biosynthesis and transport of plasma membrane glycoproteins in the rat intestinal epithelial cell: studies with sucrase-isomaltase. CIBA FOUNDATION SYMPOSIUM 2008; 95:132-63. [PMID: 6303720 DOI: 10.1002/9780470720769.ch9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Sucrase-isomaltase (SI), an integral heterodimeric glycoprotein of the intestinal microvillus membrane, is synthesized as a single enzymically active precursor protein (pro-SI) of high relative molecular mass. After glycosylation in the Golgi complex pro-SI is transferred to the microvillus membrane where it is cleaved into the two subunits by pancreatic elastase. Pro-SI was purified by monoclonal antibody-affinity chromatography from microvillus membranes of fetal intestinal transplants in which SI is found exclusively in the non-cleaved precursor form. The N-terminal amino acid sequence of pro-SI was identical to that of the isomaltase subunit of SI which anchors the mature enzyme complex to the lipid bilayer, but it differed from the N-terminal sequence of the sucrase subunit of SI. This structural comparison indirectly gave insight into the mechanisms of membrane insertion and assembly of pro-SI during its biosynthesis. Subcellular fractionation studies indicate transient structural association of newly synthesized pro-SI with the basolateral membrane on its transfer from the Golgi complex to the microvillus membrane, suggesting that part of the basolateral membrane or its associated structures might be involved in the sorting-out processes of microvillar membrane proteins. This concept may have general relevance for the mechanisms of membrane insertion, intracellular transport and sorting of other microvillar membrane glycoproteins in the intestinal epithelial cell.
Collapse
|
228
|
Raveendran NN, Silver K, Freeman LC, Narvaez D, Weng K, Ganta S, Lillich JD. Drug-induced alterations to gene and protein expression in intestinal epithelial cell 6 cells suggest a role for calpains in the gastrointestinal toxicity of nonsteroidal anti-inflammatory agents. J Pharmacol Exp Ther 2008; 325:389-99. [PMID: 18281595 DOI: 10.1124/jpet.107.127720] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are used extensively as therapeutic agents, despite their well documented gastrointestinal (GI) toxicity. At this time, the mechanisms responsible for NSAID-associated GI damage are incompletely understood. In this study, we used microarray analysis to generate a novel hypothesis about cellular mechanisms that underlie the GI toxicity of NSAIDs. Monolayers of intestinal epithelial cells (IEC-6) were treated with NSAIDs that either exhibit (indomethacin, NS-398 [N-[2-(cyclohexyloxy)-4-nitrophenyl]-methanesulfonamide]) or lack (SC-560 [5-(4-chlorphenyl)-1-(4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazole]) inhibitory effects on IEC-6 migration. Bioinformatic analysis of array data identified the calpain cysteine proteases and their endogenous inhibitor calpastatin as potential targets of NSAIDs shown previously to retard IEC-6 migration. Accordingly, quantitative real-time reverse transcription polymerase chain reaction and immunoblotting were performed to assess the effects of NSAIDs on the expression of mRNA and protein for calpain 8, calpain 2, calpain 1, and calpastatin. In treated IEC-6 monolayers, NS-398 decreased the expression of mRNA for calpain 2 and calpain 8. Both NS-398 and indomethacin decreased the protein expression of calpains 8, 2, and 1. None of the NSAIDs affected expression of calpastatin mRNA or protein. The calpain inhibitors, N-acetyl-Leu-Leu-methioninal and N-acetyl-Leu-Leu-Nle-CHO, retarded IEC-6 cell migration in a concentration-dependant fashion, and these inhibitory effects were additive with those of indomethacin and NS-398. Our experimental results suggest that the altered expression of calpain proteins may contribute to the adverse effects of NSAIDs on intestinal epithelial restitution.
Collapse
Affiliation(s)
- N N Raveendran
- Department of Clinical Sciences, VCS-Q-203 Moiser Hall, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | | | | | | |
Collapse
|
229
|
Claud EC, Lu J, Wang XQ, Abe M, Petrof EO, Sun J, Nelson DJ, Marks J, Jilling T. Platelet-activating factor-induced chloride channel activation is associated with intracellular acidosis and apoptosis of intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2008; 294:G1191-200. [PMID: 18339705 PMCID: PMC2675178 DOI: 10.1152/ajpgi.00318.2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Platelet-activating factor (PAF) is a phospholipid inter- and intracellular mediator implicated in intestinal injury primarily via induction of an inflammatory cascade. We find that PAF also has direct pathological effects on intestinal epithelial cells (IEC). PAF induces Cl(-) channel activation, which is associated with intracellular acidosis and apoptosis. Using the rat small IEC line IEC-6, electrophysiological experiments demonstrated that PAF induces Cl(-) channel activation. This PAF-activated Cl(-) current was inhibited by Ca(2+) chelation and a calcium calmodulin kinase II inhibitor, suggesting PAF activation of a Ca(2+)-activated Cl(-) channel. To determine the pathological consequences of Cl(-) channel activation, microfluorimetry experiments were performed, which revealed PAF-induced intracellular acidosis, which is also inhibited by the Cl(-) channel inhibitor 4,4'diisothiocyanostilbene-2,2'disulfonic acid and Ca(2+) chelation. PAF-induced intracellular acidosis is associated with caspase 3 activation and DNA fragmentation. PAF-induced caspase activation was abolished in cells transfected with a pH compensatory Na/H exchanger construct to enhance H(+) extruding ability and prevent intracellular acidosis. As ClC-3 is a known intestinal Cl(-) channel dependent on both Ca(2+) and calcium calmodulin kinase II phosphorylation, we generated ClC-3 knockdown cells using short hairpin RNA. PAF induced Cl(-) current; acidosis and apoptosis were all significantly decreased in ClC-3 knockdown cells. Our data suggest a novel mechanism of PAF-induced injury by which PAF induces intracellular acidosis via activation of the Ca(2+)-dependent Cl(-) channel ClC-3, resulting in apoptosis of IEC.
Collapse
Affiliation(s)
- Erika C Claud
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Jin S, Ray RM, Johnson LR. TNF-alpha/cycloheximide-induced apoptosis in intestinal epithelial cells requires Rac1-regulated reactive oxygen species. Am J Physiol Gastrointest Liver Physiol 2008; 294:G928-37. [PMID: 18218673 DOI: 10.1152/ajpgi.00219.2007] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Previously we have shown that both Rac1 and c-Jun NH(2)-terminal kinase (JNK1/2) are key proapoptotic molecules in tumor necrosis factor (TNF)-alpha/cycloheximide (CHX)-induced apoptosis in intestinal epithelial cells, whereas the role of reactive oxygen species (ROS) in apoptosis is unclear. The present studies tested the hypothesis that Rac1-mediated ROS production is involved in TNF-alpha-induced apoptosis. In this study, we showed that TNF-alpha/CHX-induced ROS production and hydrogen peroxide (H(2)O(2))-induced oxidative stress increased apoptosis. Inhibition of Rac1 by a specific inhibitor NSC23766 prevented TNF-alpha-induced ROS production. The antioxidant, N-acetylcysteine (NAC), or rotenone (Rot), the mitochondrial electron transport chain inhibitor, attenuated mitochondrial ROS production and apoptosis. Rot also prevented JNK1/2 activation during apoptosis. Inhibition of Rac1 by expression of dominant negative Rac1 decreased TNF-alpha-induced mitochondrial ROS production. Moreover, TNF-alpha-induced cytosolic ROS production was inhibited by Rac1 inhibition, diphenyleneiodonium (DPI, an inhibitor of NADPH oxidase), and NAC. In addition, DPI inhibited TNF-alpha-induced apoptosis as judged by morphological changes, DNA fragmentation, and JNK1/2 activation. Mitochondrial membrane potential change is Rac1 or cytosolic ROS dependent. Lastly, all ROS inhibitors inhibited caspase-3 activity. Thus these results indicate that TNF-alpha-induced apoptosis requires Rac1-dependent ROS production in intestinal epithelial cells.
Collapse
Affiliation(s)
- Shi Jin
- Dept. of Physiology, Univ. of Tennessee Health Science Center, 894 Union Ave., Memphis, TN 38163, USA
| | | | | |
Collapse
|
231
|
Marasa BS, Xiao L, Rao JN, Zou T, Liu L, Wang J, Bellavance E, Turner DJ, Wang JY. Induced TRPC1 expression increases protein phosphatase 2A sensitizing intestinal epithelial cells to apoptosis through inhibition of NF-kappaB activation. Am J Physiol Cell Physiol 2008; 294:C1277-87. [PMID: 18322138 DOI: 10.1152/ajpcell.90635.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transient receptor potential canonical-1 (TRPC1) functions as a store-operated Ca2+ channel in intestinal epithelial cells (IECs), and induced TRPC1 expression sensitizes IECs to apoptosis by inhibiting NF-kappaB activation. However, the exact mechanism by which increased TRPC1 results in NF-kappaB inactivation remains elusive. Protein phosphatase 2A (PP2A) is a widely conserved protein serine/threonine phosphatase that is implicated in the regulation of a wide array of cellular functions including apoptosis. The present study tests the hypothesis that induced TRPC1 expression inhibits NF-kappaB activation by increasing PP2A activity through Ca2+ influx in IECs. The expression of TRPC1 induced by stable transfection with the wild-type TRPC1 gene increased PP2A activity as indicated by increases in levels of PP2A proteins and their phosphatase activity. Increased levels of PP2A activity in stable TRPC1-transfected IEC-6 cells (IEC-TRPC1) were associated with decreased nuclear levels of NF-kappaB proteins and a reduction in NF-kappaB-dependent transcriptional activity, although there were no changes in total NF-kappaB protein levels. Inhibition of PP2A activity by treatment with okadaic acid or PP2A silencing with small interfering RNA not only enhanced NF-kappaB transactivation but also prevented the increased susceptibility of IEC-TRPC1 cells to apoptosis induced by treatment with tumor necrosis factor-alpha (TNF-alpha)/cycloheximide (CHX). Decreasing Ca2+ influx by exposure to the Ca2+-free medium reduced PP2A mRNA levels, destabilized PP2A proteins, and induced NF-kappaB activation, thus blocking the increased sensitivity of IEC-TRPC1 cells to TNF-alpha/CHX-induced apoptosis. These results indicate that induced TRPC1 expression increases PP2A activity through Ca2+ influx and that increased PP2A sensitizes IECs to apoptosis as a result of NF-kappaB inactivation.
Collapse
Affiliation(s)
- Bernard S Marasa
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Lussier CR, Babeu JP, Auclair BA, Perreault N, Boudreau F. Hepatocyte nuclear factor-4alpha promotes differentiation of intestinal epithelial cells in a coculture system. Am J Physiol Gastrointest Liver Physiol 2008; 294:G418-28. [PMID: 18032476 DOI: 10.1152/ajpgi.00418.2007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Normal cellular models able to efficiently recapitulate intestinal epithelial cell differentiation in culture are not yet available. The aim of this work was to establish and genetically characterize a mesenchymal-epithelial coculture system to identify transcriptional regulators involved in this process. The deposition of rat intestinal epithelial cells on human intestinal mesenchymal cells led to the formation of clustered structures that expanded shortly after seeding. These structures were composed of polarized epithelial cells with brush borders and cell junction complexes. A rat GeneChip statistical analysis performed at different time points during this process identified hepatocyte nuclear factor-4alpha (HNF-4alpha) and hepatocyte nuclear factor-1alpha (HNF-1alpha) as being induced coincidently with the apparition of polarized epithelial structures. Stable introduction of HNF-4alpha in undifferentiated epithelial cells alone led to the rapid induction of HNF-1alpha and several intestinal-specific markers and metabolism-related genes for which mRNA was identified to be upregulated during epithelial differentiation. HNF-4alpha was capable to transactivate the calbindin 3 gene promoter, a process that was synergistically increased in the presence of HNF-1alpha. When HNF-4alpha-expressing cells were plated on mesenchymal cells, an epithelial monolayer formed rapidly with the apparition of dome structures that are characteristics of vectorial ion transport. Forced expression of HNF-1alpha alone did not result in dome structures formation. In sum, this novel coculture system functionally identified for the first time HNF-4alpha as an important modulator of intestinal epithelial differentiation and offers an innovative opportunity to investigate molecular mechanisms involved in this process.
Collapse
Affiliation(s)
- Carine R Lussier
- Canadian Institute of Health Research Team on Digestive Epithelium, Département d'Anatomie et de Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada, J1H 5N4
| | | | | | | | | |
Collapse
|
233
|
Zou T, Liu L, Rao JN, Marasa BS, Chen J, Xiao L, Zhou H, Gorospe M, Wang JY. Polyamines modulate the subcellular localization of RNA-binding protein HuR through AMP-activated protein kinase-regulated phosphorylation and acetylation of importin alpha1. Biochem J 2008; 409:389-98. [PMID: 17919121 PMCID: PMC8482010 DOI: 10.1042/bj20070860] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Polyamines are required for maintenance of intestinal epithelial integrity, and a decrease in cellular polyamines increases the cytoplasmic levels of RNA-binding protein HuR stabilizing p53 and nucleophosmin mRNAs, thus inhibiting IEC (intestinal epithelial cell) proliferation. The AMPK (AMP-activated protein kinase), an enzyme involved in responding to metabolic stress, was recently found to be implicated in regulating the nuclear import of HuR. Here, we provide evidence showing that polyamines modulate subcellular localization of HuR through AMPK-regulated phosphorylation and acetylation of Impalpha1 (importin alpha1) in IECs. Decreased levels of cellular polyamines as a result of inhibiting ODC (ornithine decarboxylase) with DFMO (D,L-alpha-difluoromethylornithine) repressed AMPK activity and reduced Impalpha1 levels, whereas increased levels of polyamines as a result of ODC overexpression induced both AMPK and Impalpha1 levels. AMPK activation by overexpression of the AMPK gene increased Impalpha1 but reduced the cytoplasmic levels of HuR in control and polyamine-deficient cells. IECs overexpressing wild-type Impalpha1 exhibited a decrease in cytoplasmic HuR abundance, while cells overexpressing Impalpha1 proteins bearing K22R (lacking acetylation site), S105A (lacking phosphorylation site) or K22R/S105A (lacking both sites) mutations displayed increased levels of cytoplasmic HuR. Ectopic expression of these Impalpha1 mutants also prevented the increased levels of cytoplasmic HuR following polyamine depletion. These results indicate that polyamine-mediated AMPK activation triggers HuR nuclear import through phosphorylation and acetylation of Impalpha1 in IECs and that polyamine depletion increases cytoplasmic levels of HuR as a result of inactivation of the AMPK-driven Impalpha1 pathway.
Collapse
Affiliation(s)
- Tongtong Zou
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- Baltimore Veterans Affairs Medical Center, 10 North Greene Street, Baltimore, MD 21201, U.S.A
| | - Lan Liu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- Baltimore Veterans Affairs Medical Center, 10 North Greene Street, Baltimore, MD 21201, U.S.A
| | - Jaladanki N. Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- Baltimore Veterans Affairs Medical Center, 10 North Greene Street, Baltimore, MD 21201, U.S.A
| | - Bernard S. Marasa
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
| | - Jie Chen
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- Baltimore Veterans Affairs Medical Center, 10 North Greene Street, Baltimore, MD 21201, U.S.A
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- Baltimore Veterans Affairs Medical Center, 10 North Greene Street, Baltimore, MD 21201, U.S.A
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, U.S.A
| | - Myriam Gorospe
- Laboratory of Cellular and Molecular Biology, NIA (National Institute on Aging)-IRP (Intramural Research Program), NIH (National Institutes of Health), Baltimore, MD 21224, U.S.A
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- Baltimore Veterans Affairs Medical Center, 10 North Greene Street, Baltimore, MD 21201, U.S.A
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
| |
Collapse
|
234
|
Bhattacharya S, Guo H, Ray RM, Johnson LR. Basic helix-loop-helix protein E47-mediated p21Waf1/Cip1 gene expression regulates apoptosis of intestinal epithelial cells. Biochem J 2008; 407:243-54. [PMID: 17617061 PMCID: PMC2049013 DOI: 10.1042/bj20070293] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Inhibition of ornithine decarboxylase by DFMO (alpha-difluromethylornithine) and subsequent polyamine depletion increases p21Cip1 protein, induces cell cycle arrest and confers resistance to apoptosis on intestinal epithelial cells. However, the mechanism by which polyamines regulate p21Cip1 expression and apoptosis is unknown. On the basis of the involvement of p21Cip1 as an anti-apoptotic protein, we tested the role of p21Cip1 in providing protection from apoptosis. Simultaneously, we investigated the role of E47, a basic helix-loop-helix protein, in the regulation of p21Cip1 gene transcription. Gene-specific siRNA (small interfering RNA) decreased E47 protein levels, increased p21Cip1 promoter activity and protein levels and protected cells from TNFalpha (tumour necrosis factor alpha)-induced apoptosis. Knockdown of p21Cip1 protein by siRNA resulted in cells becoming more susceptible to apoptosis. In contrast, incubation with EGF (epidermal growth factor) stimulated p21Cip1 mRNA and protein levels and rescued cells from apoptosis. During apoptosis, the level of E47 mRNA increased, causing a concomitant decrease in p21Cip1 mRNA and protein levels. Polyamine depletion decreased E47 mRNA levels and cell survival. Caspase 3-mediated cleavage of p130Cas has been implicated in p21Cip1 transcription. The progression of apoptosis led to a caspase 3-dependent cleavage of p130Cas and generated a 31 kDa fragment, which translocated to the nucleus, associated with nuclear E47 and inhibited p21Cip1 transcription. Polyamine depletion inhibited all these effects. Transient expression of the 31 kDa fragment prevented the expression of p21Cip1 protein and increased apoptosis. These results implicate p21Cip1 as an anti-apoptotic protein and suggest a role for polyamines in the regulation of p21Cip1 via the transcription repressor E47. Caspase-mediated cleavage of p130Cas generates a 31 kDa fragment, inhibits p21Cip1 transcription and acts as an amplifier of apoptotic signalling.
Collapse
Affiliation(s)
- Sujoy Bhattacharya
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | | | | | |
Collapse
|
235
|
Pham H, Chong B, Vincenti R, Slice LW. Ang II and EGF synergistically induce COX-2 expression via CREB in intestinal epithelial cells. J Cell Physiol 2007; 214:96-109. [PMID: 17559081 DOI: 10.1002/jcp.21167] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cyclooxygenase (COX)-2 derived prostaglandins (PGs) play a major role in intestinal inflammation and colorectal carcinogenesis. Because COX-2 is the rate-limiting step in the production of PGs, mechanisms that regulate COX-2 expression control PG production in the cell. Using the non-tumorigenic, rat intestinal epithelial cell, IEC-18, we demonstrate that co-activation of endogenously expressed AT(1) receptor and EGFR resulted in synergistic expression of COX-2 mRNA and protein involving transcriptional and post-transcriptional mechanisms. Ang II and EGF induced transient phosphorylation of ERK, p38(MAPK) and CREB. Co-stimulation with Ang II and EGF prolonged phosphorylation of ERK, p38(MAPK), and CREB. The p38(MAPK) selective inhibitor, SB202190, but not the MEK selective inhibitor, PD98059, or the EGFR kinase inhibitor, AG1478, inhibited Ang II-dependent COX-2 expression and CREB phosphorylation. EGF-dependent COX-2 expression and CREB phosphorylation were inhibited by SB202190, PD98059, and AG1478. Inhibition of CREB expression using two separate RNAi methods blocked COX-2 expression by Ang II and EGF. Expression of a dominant negative CREB mutant inhibited Ang II- and EGF-dependent induction of the COX-2 promoter. Ang II induced luciferase expression in cells transfected with the CRE-luc reporter vector and cells co-transfected with Gal4-luc reporter vector and a Gal4-CREB expression vector. Chromatin immunoprecipitation assays demonstrated CREB binding to the proximal rat COX-2 promoter region containing a CRE cis-acting element. These results indicate that co-stimulation with Ang II and EGF synergistically induced COX-2 expression in these intestinal epithelial cells through p38(MAPK) mediated signaling cascades that converge onto CREB.
Collapse
Affiliation(s)
- Hung Pham
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California 90095-1786, USA
| | | | | | | |
Collapse
|
236
|
Bhattacharya S, Ray RM, Johnson LR. Decreased apoptosis in polyamine depleted IEC-6 cells depends on Akt-mediated NF-kappaB activation but not GSK3beta activity. Apoptosis 2007; 10:759-76. [PMID: 16133867 DOI: 10.1007/s10495-005-2943-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The PI3-kinase/Akt pathway promotes cell survival in many different cell types including intestinal epithelial cells. Increased AKT activation in polyamine depleted intestinal epithelial cells correlated well with the decrease in TNF-alpha-induced apoptosis. Increased Akt activation and GSK3beta (Ser 9) phosphorylation without significant effect on Bad (Ser136) phosphorylation indicate that Akt-mediated protection is independent of Bad phosphorylation but may depend on GSK3beta. Pretreatment of polyamine-depleted cells with LY294002 increased caspase-9 and caspase-3 activation and decreased basal levels of GSK-3beta phosphorylation. Inhibition of GSK3beta activity using AR-A014418 or lithium chloride or siRNA-mediated downregulation of its expression had no effect on apoptosis. Inhibition of PI3-kinase and over-expression of dominant negative Akt (DN-AKT), significantly increased apoptosis in polyamine depleted cells. DN-Akt expression reversed the protective effect of polyamine depletion on apoptosis. DN-Akt, as well as the PI3-kinase inhibitors, prevented Akt activation and subsequent translocation of NF-kappaB to the nucleus. Constitutively active Akt (CA-AKT) expression increased resistance to TNF-alpha-induced apoptosis. Constitutively active-Akt expression increased nuclear staining of NF-kappaB. Moreover, polyamine depletion of DN-Akt cells prevented basal and TNF-alpha-induced IkappaBalpha phosphorylation. Prevention of NF-kappaB activation in DN-IkappaBalpha-transfected cells increased apoptosis in control cells and restored it in polyamine-depleted cells to control levels. These data indicate that Akt regulates the mitochondrial pathway, preventing activation of caspase-9 and thereby caspase-3 via NF-kappaB and these effects are independent of GSK-3beta activity.
Collapse
Affiliation(s)
- S Bhattacharya
- Department of Physiology, The University of Tennessee Health Science Center, 894 Union Ave., Memphis, Tennessee 38163, USA
| | | | | |
Collapse
|
237
|
Castro-Muñozledo F. Corneal epithelial cell cultures as a tool for research, drug screening and testing. Exp Eye Res 2007; 86:459-69. [PMID: 18191836 DOI: 10.1016/j.exer.2007.11.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 11/27/2007] [Accepted: 11/28/2007] [Indexed: 11/29/2022]
Abstract
Understanding of visual system function and the development of new therapies for corneal diseases and damages depend upon comprehension of the biological roles of the tissue. The in vitro cultivation of corneal epithelial cells and cell lines derived from them has become a powerful tool to analyze and understand such issues. Currently, researchers have developed well-defined and precisely described culture protocols and a collection of corneal epithelial cell lines. These cell lines have been obtained through different experimental approaches: (1) the ectopic expression of oncogenes, (2) the inactivation of p16 and p53 pathways and hTERT expression, and (3) the spontaneous establishment after serial cultivation of cells. The advantages or disadvantages for these approaches are discussed. In conclusion, the availability of several culture protocols and immortalized cell lines that express corneal epithelial phenotype will be useful for investigating issues such as gene regulation and tissue development, or for validating alternative methods in toxicology.
Collapse
Affiliation(s)
- Federico Castro-Muñozledo
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN, México City, Mexico.
| |
Collapse
|
238
|
Ray RM, Bhattacharya S, Johnson LR. EGFR plays a pivotal role in the regulation of polyamine-dependent apoptosis in intestinal epithelial cells. Cell Signal 2007; 19:2519-27. [PMID: 17825525 PMCID: PMC2699668 DOI: 10.1016/j.cellsig.2007.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Accepted: 08/06/2007] [Indexed: 11/16/2022]
Abstract
Intracellular polyamine synthesis is regulated by the enzyme ornithine decarboxylase (ODC), and its inhibition by alpha-difluromethylornithine (DFMO), confers resistance to apoptosis. We have previously shown that DFMO leads to the inhibition of de novo polyamine synthesis, which in turn rapidly activates Src, STAT3 and NF-kappaB via integrin beta3 in intestinal epithelial cells. One mechanism to explain these effects involves the activation of upstream growth factor receptors, such as the epidermal growth factor receptor (EGFR). We therefore hypothesized that EGFR phosphorylation regulates the early response to polyamine depletion. DFMO increased EGFR phosphorylation on tyrosine residues 1173 (pY1173) and 845 (pY845) within 5 min. Phosphorylation declined after 10 min and was prevented by the addition of exogenous putrescine to DFMO containing medium. Phosphorylation of EGFR was concomitant with the activation of ERK1/2. Pretreatment with either DFMO or EGF for 1 h protected cells from TNF-alpha/CHX-induced apoptosis. Exogenous addition of polyamines prevented the protective effect of DFMO. In addition, inhibition of integrin beta3 activity (with RGDS), Src activity (with PP2), or EGFR kinase activity (with AG1478), increased basal apoptosis and prevented protection conferred by either DFMO or EGF. Polyamine depletion failed to protect B82L fibroblasts lacking the EGFR (PRN) and PRN cells expressing either a kinase dead EGFR (K721A) or an EGFR (Y845F) mutant lacking the Src phosphorylation site. Conversely, expression of WT-EGFR (WT) restored the protective effect of polyamine depletion. Fibronectin activated the EGFR, Src, ERKs and protected cells from apoptosis. Taken together, our data indicate an essential role of EGFR kinase activity in MEK/ERK-mediated protection, which synergizes with integrin beta3 leading to Src-mediated protective responses in polyamine depleted cells.
Collapse
Affiliation(s)
- Ramesh M Ray
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | | | |
Collapse
|
239
|
Grenier E, Maupas FS, Beaulieu JF, Seidman E, Delvin E, Sane A, Tremblay E, Garofalo C, Levy E. Effect of retinoic acid on cell proliferation and differentiation as well as on lipid synthesis, lipoprotein secretion, and apolipoprotein biogenesis. Am J Physiol Gastrointest Liver Physiol 2007; 293:G1178-89. [PMID: 17916647 DOI: 10.1152/ajpgi.00295.2007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Dietary vitamin A and its active metabolites are essential nutrients for many functions as well as potent regulators of gene transcription and growth. Although the epithelium of the small intestine is characterized by rapid and constant renewal and enterocytes play a central role in the absorption and metabolism of alimentary retinol, very little is known about the function of retinoids in the human gastrointestinal epithelium and mechanisms by which programs engage the cell cycle are poorly understood. We have assessed the effects of 10 microM 9- and 13-cis-retinoic acid (RA) on proliferation and differentiation processes, lipid esterification, apolipoprotein (apo) biogenesis and lipoprotein secretion along with nuclear factor gene transcription. Treatment of Caco-2 cells with RA at different concentrations and incubation periods revealed the reduction of thymidine incorporation in 60% preconfluent or 100% confluent cells. Concomitantly, RA 1) modulated D-type cyclins by reducing the mitogen-sensitive cyclin D1 and upregulating cyclin D3 expressions and 2) caused a trend of increase in p38 MAPK, which triggers CDX2, a central protein in cell differentiation. RA remained without effect on lipoprotein output and apo synthesis, even for apo A-I that possesses RARE in its promoter. RA, in combination with 22-hydroxycholesterol, could induce apo A-I gene expression without any impact on apo A-I mass. Only the gene expression of peroxisome proliferator-activated receptor (PPAR)beta, retinoic receptor (RAR)beta, and RARgamma was augmented and no alteration was noted in PPARalpha, PPARgamma, liver X receptor (LXR)alpha, LXRbeta, and retinoid X receptors. Taken together, these data highlight RA-induced cell differentiation via specific signaling without a significant impact on apo A-I synthesis.
Collapse
Affiliation(s)
- Emilie Grenier
- Department of Nutrition, Université de Montréal, Montréal, Québec, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Leaphart CL, Cavallo J, Gribar SC, Cetin S, Li J, Branca MF, Dubowski TD, Sodhi CP, Hackam DJ. A critical role for TLR4 in the pathogenesis of necrotizing enterocolitis by modulating intestinal injury and repair. THE JOURNAL OF IMMUNOLOGY 2007; 179:4808-20. [PMID: 17878380 DOI: 10.4049/jimmunol.179.7.4808] [Citation(s) in RCA: 369] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Necrotizing enterocolitis (NEC) is the leading cause of death from gastrointestinal disease in preterm infants and is characterized by translocation of LPS across the inflamed intestine. We hypothesized that the LPS receptor (TLR4) plays a critical role in NEC development, and we sought to determine the mechanisms involved. We now demonstrate that NEC in mice and humans is associated with increased expression of TLR4 in the intestinal mucosa and that physiological stressors associated with NEC development, namely, exposure to LPS and hypoxia, sensitize the murine intestinal epithelium to LPS through up-regulation of TLR4. In support of a critical role for TLR4 in NEC development, TLR4-mutant C3H/HeJ mice were protected from the development of NEC compared with wild-type C3H/HeOUJ littermates. TLR4 activation in vitro led to increased enterocyte apoptosis and reduced enterocyte migration and proliferation, suggesting a role for TLR4 in intestinal repair. In support of this possibility, increased NEC severity in C3H/HeOUJ mice resulted from increased enterocyte apoptosis and reduced enterocyte restitution and proliferation after mucosal injury compared with mutant mice. TLR4 signaling also led to increased serine phosphorylation of intestinal focal adhesion kinase (FAK). Remarkably, TLR4 coimmunoprecipitated with FAK, and small interfering RNA-mediated FAK inhibition restored enterocyte migration after TLR4 activation, demonstrating that the FAK-TLR4 association regulates intestinal healing. These findings demonstrate a critical role for TLR4 in the development of NEC through effects on enterocyte injury and repair, identify a novel TLR4-FAK association in regulating enterocyte migration, and suggest TLR4/FAK as a therapeutic target in this disease.
Collapse
Affiliation(s)
- Cynthia L Leaphart
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh and the University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Makita N, Sato J, Rondard P, Fukamachi H, Yuasa Y, Aldred MA, Hashimoto M, Fujita T, Iiri T. Human G(salpha) mutant causes pseudohypoparathyroidism type Ia/neonatal diarrhea, a potential cell-specific role of the palmitoylation cycle. Proc Natl Acad Sci U S A 2007; 104:17424-9. [PMID: 17962410 PMCID: PMC2077272 DOI: 10.1073/pnas.0708561104] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Indexed: 01/08/2023] Open
Abstract
Pseudohypoparathyroidism type Ia (PHP-Ia) results from the loss of one allele of G(salpha), causing resistance to parathyroid hormone and other hormones that transduce signals via G(s). Most G(salpha)mutations cause the complete loss of protein expression, but some cause loss of function only, and these have provided valuable insights into the normal function of G proteins. Here we have analyzed a mutant G(salpha) (alphas-AVDT) harboring AVDT amino acid repeats within its GDP/GTP binding site, which was identified in unique patients with PHP-Ia accompanied by neonatal diarrhea. Biochemical and intact cell analyses showed that alphas-AVDT is unstable but constitutively active as a result of rapid GDP release and reduced GTP hydrolysis. This instability underlies the PHP-Ia phenotype. alphas-AVDT is predominantly localized in the cytosol, but in rat and mouse small intestine epithelial cells (IEC-6 and DIF-12 cells) alphas-AVDT was found to be localized predominantly in the membrane where adenylyl cyclase is present and constitutive increases in cAMP accumulation occur in parallel. The likely cause of this membrane localization is the inhibition of an activation-dependent decrease in alphas palmitoylation. Upon the overexpression of acyl-protein thioesterase 1, however, alphas-AVDT translocates from the membrane to the cytosol, and the constitutive accumulation of cAMP becomes attenuated. These results suggest that PHP-Ia results from the instability of alphas-AVDT and that the accompanying neonatal diarrhea may result from its enhanced constitutive activity in the intestine. Hence, palmitoylation may control the activity and localization of G(salpha) in a cell-specific manner.
Collapse
Affiliation(s)
- Noriko Makita
- *Department of Endocrinology and Nephrology, University of Tokyo School of Medicine, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Junichiro Sato
- *Department of Endocrinology and Nephrology, University of Tokyo School of Medicine, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Philippe Rondard
- Institut de Génomique Fonctionnelle, 141 Rue de la Cardonille, 34094 Montpellier Cedex 5, France
| | - Hiroshi Fukamachi
- Department of Molecular Oncology, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan; and
| | - Yasuhito Yuasa
- Department of Molecular Oncology, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan; and
| | - Micheala A. Aldred
- Division of Medical Genetics, University of Leicester and Leicestershire Genetics Service, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Makiko Hashimoto
- *Department of Endocrinology and Nephrology, University of Tokyo School of Medicine, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Toshiro Fujita
- *Department of Endocrinology and Nephrology, University of Tokyo School of Medicine, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Taroh Iiri
- *Department of Endocrinology and Nephrology, University of Tokyo School of Medicine, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
242
|
Xiao L, Rao JN, Zou T, Liu L, Marasa BS, Chen J, Turner DJ, Zhou H, Gorospe M, Wang JY. Polyamines regulate the stability of activating transcription factor-2 mRNA through RNA-binding protein HuR in intestinal epithelial cells. Mol Biol Cell 2007; 18:4579-90. [PMID: 17804813 PMCID: PMC2043536 DOI: 10.1091/mbc.e07-07-0675] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Maintenance of intestinal mucosal epithelial integrity requires polyamines that modulate the expression of various genes involved in cell proliferation and apoptosis. Recently, polyamines were shown to regulate the subcellular localization of the RNA-binding protein HuR, which stabilizes its target transcripts such as nucleophosmin and p53 mRNAs. The activating transcription factor-2 (ATF-2) mRNA encodes a member of the ATF/CRE-binding protein family of transcription factors and was computationally predicted to be a target of HuR. Here, we show that polyamines negatively regulate ATF-2 expression posttranscriptionally and that polyamine depletion stabilizes ATF-2 mRNA by enhancing the interaction of the 3'-untranslated region (UTR) of ATF-2 with cytoplasmic HuR. Decreasing cellular polyamines by inhibiting ornithine decarboxylase (ODC) with alpha-difluoromethylornithine increased the levels of ATF-2 mRNA and protein, whereas increasing polyamines by ectopic ODC overexpression repressed ATF-2 expression. Polyamine depletion did not alter transcription via the ATF-2 gene promoter but increased the stability of ATF-2 mRNA. Increased cytoplasmic HuR in polyamine-deficient cells formed ribonucleoprotein complexes with the endogenous ATF-2 mRNA and specifically bound to 3'-UTR of ATF-2 mRNA on multiple nonoverlapping 3'-UTR segments. Adenovirus-mediated HuR overexpression elevated ATF-2 mRNA and protein levels, whereas HuR silencing rendered the ATF-2 mRNA unstable and prevented increases in ATF-2 mRNA and protein. Furthermore, inhibition of ATF-2 expression prevented the increased resistance of polyamine-deficient cells to apoptosis induced by treatment with tumor necrosis factor-alpha and cycloheximide. These results indicate that polyamines modulate the stability of ATF-2 mRNA by altering cytoplasmic HuR levels and that polyamine-modulated ATF-2 expression plays a critical role in regulating epithelial apoptosis.
Collapse
Affiliation(s)
- Lan Xiao
- *Cell Biology Group, Department of Surgery, and
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| | - Jaladanki N. Rao
- *Cell Biology Group, Department of Surgery, and
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| | - Tongtong Zou
- *Cell Biology Group, Department of Surgery, and
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| | - Lan Liu
- *Cell Biology Group, Department of Surgery, and
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| | - Bernard S. Marasa
- *Cell Biology Group, Department of Surgery, and
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Jie Chen
- *Cell Biology Group, Department of Surgery, and
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| | - Douglas J. Turner
- *Cell Biology Group, Department of Surgery, and
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298; and
| | - Myriam Gorospe
- Laboratory of Cellular and Molecular Biology, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224
| | - Jian-Ying Wang
- *Cell Biology Group, Department of Surgery, and
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| |
Collapse
|
243
|
Chen J, Rao JN, Zou T, Liu L, Marasa BS, Xiao L, Zeng X, Turner DJ, Wang JY. Polyamines are required for expression of Toll-like receptor 2 modulating intestinal epithelial barrier integrity. Am J Physiol Gastrointest Liver Physiol 2007; 293:G568-76. [PMID: 17600044 DOI: 10.1152/ajpgi.00201.2007] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Toll-like receptors (TLRs) allow mammalian intestinal epithelium to detect various microbes and activate innate immunity after infection. TLR2 and TLR4 have been identified in intestinal epithelial cells (IECs) as fundamental components of the innate immune response to bacterial pathogens, but the exact mechanism involved in control of TLR expression remains unclear. Polyamines are implicated in a wide variety of biological functions, and regulation of cellular polyamines is a central convergence point for the multiple signaling pathways driving different epithelial cell functions. The current study determined whether polyamines regulate TLR expression, thereby modulating intestinal epithelial barrier function. Depletion of cellular polyamines by inhibiting ornithine decarboxylase (ODC) with alpha-difluoromethylornithine decreased levels of TLR2 mRNA and protein, whereas increased polyamines by ectopic overexpression of the ODC gene enhanced TLR2 expression. Neither intervention changed basal levels of TLR4. Exposure of normal IECs to low-dose (5 microg/ml) LPS increased ODC enzyme activity and stimulated expression of TLR2 but not TLR4, while polyamine depletion prevented this LPS-induced TLR2 expression. Decreased TLR2 in polyamine-deficient cells was associated with epithelial barrier dysfunction. In contrast, increased TLR2 by the low dose of LPS enhanced epithelial barrier function, which was abolished by inhibition of TLR2 expression with specific, small interfering RNA. These results indicate that polyamines are necessary for TLR2 expression and that polyamine-induced TLR2 activation plays an important role in regulating epithelial barrier function.
Collapse
Affiliation(s)
- Jie Chen
- Department of Surgery, Baltimore Veterans Affairs Medical Center, 10 North Greene Street, Baltimore, MD 21201, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Zhang AH, Rao JN, Zou T, Liu L, Marasa BS, Xiao L, Chen J, Turner DJ, Wang JY. p53-Dependent NDRG1 expression induces inhibition of intestinal epithelial cell proliferation but not apoptosis after polyamine depletion. Am J Physiol Cell Physiol 2007; 293:C379-89. [PMID: 17442733 DOI: 10.1152/ajpcell.00547.2006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Normal intestinal mucosal growth requires polyamines that regulate expression of various genes involved in cell proliferation, growth arrest, and apoptosis. Our previous studies have shown that polyamine depletion stabilizes p53, resulting in inhibition of intestinal epithelial cell (IEC) proliferation, but the exact downstream targets of induced p53 are still unclear. The NDRG1 (N- myc downregulated gene-1) gene encodes a growth-related protein, and its transcription can be induced in response to stress. The current study tests the hypothesis that induced p53 inhibits IEC proliferation by upregulating NDRG1 expression following polyamine depletion. Depletion of cellular polyamines by inhibiting ornithine decarboxylase (ODC) with α-difluoromethylornithine not only induced p53 but also increased NDRG1 transcription as indicated by induction of the NDRG1 promoter activity and increased levels of NDRG1 mRNA and protein, all of which were prevented by using specific p53 siRNA and in cells with a targeted deletion of p53. In contrast, increased levels of cellular polyamines by ectopic expression of the ODC gene decreased p53 and repressed expression of NDRG1. Consistently, polyamine depletion-induced activation of the NDRG1-promoter was decreased when p53-binding sites within the NDRG1 proximal promoter region were deleted. Ectopic expression of the wild-type NDRG1 gene inhibited DNA synthesis and decreased final cell numbers regardless of the presence or absence of endogenous p53, whereas silencing NDRG1 promoted cell growth. However, overexpression of NDRG1 failed to directly induce cell death and to alter susceptibility to apoptosis induced by tumor necrosis factor-α/cycloheximide. These results indicate that NDRG1 is one of the direct mediators of induced p53 following polyamine depletion and that p53-dependent NDRG1 expression plays a critical role in the negative control of IEC proliferation.
Collapse
Affiliation(s)
- Ai-Hong Zhang
- Dept. of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Freeman LC, Narvaez DF, McCoy A, von Stein FB, Young S, Silver K, Ganta S, Koch D, Hunter R, Gilmour RF, Lillich JD. Depolarization and decreased surface expression of K+ channels contribute to NSAID-inhibition of intestinal restitution. Biochem Pharmacol 2007; 74:74-85. [PMID: 17499219 PMCID: PMC3269908 DOI: 10.1016/j.bcp.2007.03.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 03/24/2007] [Accepted: 03/26/2007] [Indexed: 12/21/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) contribute to gastrointestinal ulcer formation by inhibiting epithelial cell migration and mucosal restitution; however, the drug-affected signaling pathways are poorly defined. We investigated whether NSAID inhibition of intestinal epithelial migration is associated with depletion of intracellular polyamines, depolarization of membrane potential (E(m)) and altered surface expression of K(+) channels. Epithelial cell migration in response to the wounding of confluent IEC-6 and IEC-Cdx2 monolayers was reduced by indomethacin (100 microM), phenylbutazone (100 microM) and NS-398 (100 microM) but not by SC-560 (1 microM). NSAID-inhibition of intestinal cell migration was not associated with depletion of intracellular polyamines. Treatment of IEC-6 and IEC-Cdx2 cells with indomethacin, phenylbutazone and NS-398 induced significant depolarization of E(m), whereas treatment with SC-560 had no effect on E(m). The E(m) of IEC-Cdx2 cells was: -38.5+/-1.8 mV under control conditions; -35.9+/-1.6 mV after treatment with SC-560; -18.8+/-1.2 mV after treatment with indomethacin; and -23.7+/-1.4 mV after treatment with NS-398. Whereas SC-560 had no significant effects on the total cellular expression of K(v)1.4 channel protein, indomethacin and NS-398 decreased not only the total cellular expression of K(v)1.4, but also the cell surface expression of both K(v)1.4 and K(v)1.6 channel subunits in IEC-Cdx2. Both K(v)1.4 and K(v)1.6 channel proteins were immunoprecipitated by K(v)1.4 antibody from IEC-Cdx2 lysates, indicating that these subunits co-assemble to form heteromeric K(v) channels. These results suggest that NSAID inhibition of epithelial cell migration is independent of polyamine-depletion, and is associated with depolarization of E(m) and decreased surface expression of heteromeric K(v)1 channels.
Collapse
Affiliation(s)
- LC Freeman
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506
| | - DF Narvaez
- Department of Clinical Sciences, Kansas State University, Manhattan, KS, 66506
| | - A McCoy
- Department of Clinical Sciences, Kansas State University, Manhattan, KS, 66506
| | - FB von Stein
- Department of Biomedical Sciences, Cornell University, Ithaca NY 14853
| | - S Young
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506
| | - K Silver
- Department of Clinical Sciences, Kansas State University, Manhattan, KS, 66506
| | - S. Ganta
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506
| | - D Koch
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506
| | - R Hunter
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506
| | - RF Gilmour
- Department of Biomedical Sciences, Cornell University, Ithaca NY 14853
| | - JD Lillich
- Department of Clinical Sciences, Kansas State University, Manhattan, KS, 66506
| |
Collapse
|
246
|
Kitisin K, Ganesan N, Tang Y, Jogunoori W, Volpe EA, Kim SS, Katuri V, Kallakury B, Pishvaian M, Albanese C, Mendelson J, Zasloff M, Rashid A, Fishbein T, Evans SRT, Sidawy A, Reddy EP, Mishra B, Johnson LB, Shetty K, Mishra L. Disruption of transforming growth factor-beta signaling through beta-spectrin ELF leads to hepatocellular cancer through cyclin D1 activation. Oncogene 2007; 26:7103-10. [PMID: 17546056 PMCID: PMC4211268 DOI: 10.1038/sj.onc.1210513] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transforming growth factor-beta (TGF-beta) signaling members, TGF-beta receptor type II (TBRII), Smad2, Smad4 and Smad adaptor, embryonic liver fodrin (ELF), are prominent tumor suppressors in gastrointestinal cancers. Here, we show that 40% of elf(+/-) mice spontaneously develop hepatocellular cancer (HCC) with markedly increased cyclin D1, cyclin-dependent kinase 4 (Cdk4), c-Myc and MDM2 expression. Reduced ELF but not TBRII, or Smad4 was observed in 8 of 9 human HCCs (P<0.017). ELF and TBRII are also markedly decreased in human HCC cell lines SNU-398 and SNU-475. Restoration of ELF and TBRII in SNU-398 cells markedly decreases cyclin D1 as well as hyperphosphorylated-retinoblastoma (hyperphosphorylated-pRb). Thus, we show that TGF-beta signaling and Smad adaptor ELF suppress human hepatocarcinogenesis, potentially through cyclin D1 deregulation. Loss of ELF could serve as a primary event in progression toward a fully transformed phenotype and could hold promise for new therapeutic approaches in human HCCs.
Collapse
Affiliation(s)
- K Kitisin
- Department of Surgical Sciences, School of Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - N Ganesan
- Department of Surgical Sciences, School of Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Y Tang
- Department of Surgical Sciences, School of Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - W Jogunoori
- Department of Surgical Sciences, School of Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - EA Volpe
- Department of Surgical Sciences, School of Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - SS Kim
- Department of Surgical Sciences, School of Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - V Katuri
- Department of Surgical Sciences, School of Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - B Kallakury
- Department of Pathology, School of Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - M Pishvaian
- Department of Medical Oncology, School of Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - C Albanese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - J Mendelson
- Department of Surgical Sciences, School of Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - M Zasloff
- Department of Surgical Sciences, School of Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - A Rashid
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - T Fishbein
- Department of Surgical Sciences, School of Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - SRT Evans
- Department of Surgical Sciences, School of Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - A Sidawy
- Department of Veterans Affairs Medical Center, Washington, DC, USA
| | - EP Reddy
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, USA
| | - B Mishra
- Department of Surgical Sciences, School of Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - LB Johnson
- Department of Surgical Sciences, School of Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - K Shetty
- Department of Surgical Sciences, School of Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - L Mishra
- Department of Surgical Sciences, School of Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
- Department of Veterans Affairs Medical Center, Washington, DC, USA
| |
Collapse
|
247
|
Leaphart CL, Qureshi F, Cetin S, Li J, Dubowski T, Baty C, Batey C, Beer-Stolz D, Guo F, Murray SA, Hackam DJ. Interferon-gamma inhibits intestinal restitution by preventing gap junction communication between enterocytes. Gastroenterology 2007; 132:2395-411. [PMID: 17570214 DOI: 10.1053/j.gastro.2007.03.029] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2006] [Accepted: 03/01/2007] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Necrotizing enterocolitis (NEC) is characterized by interferon-gamma (IFN-gamma) release and inadequate intestinal restitution. Because enterocytes migrate together, mucosal healing may require interenterocyte communication via connexin 43-mediated gap junctions. We hypothesize that enterocyte migration requires interenterocyte communication, that IFN impairs migration by impairing connexin 43, and that impaired healing during NEC is associated with reduced gap junctions. METHODS NEC was induced in Swiss-Webster or IFN(-/-) mice, and restitution was determined in the presence of the gap junction inhibitor oleamide, or via time-lapse microscopy of IEC-6 cells. Connexin 43 expression, trafficking, and localization were detected in cultured or primary enterocytes or mouse or human intestine by confocal microscopy and (35)S-labeling, and gap junction communication was assessed using live microscopy with oleamide or connexin 43 siRNA. RESULTS Enterocytes expressed connexin 43 in vitro and in vivo, and exchanged fluorescent dye via gap junctions. Gap junction inhibition significantly reduced enterocyte migration in vitro and in vivo. NEC was associated with IFN release and loss of enterocyte connexin 43 expression. IFN inhibited enterocyte migration by reducing gap junction communication through the dephosphorylation and internalization of connexin 43. Gap junction inhibition significantly increased NEC severity, whereas reversal of the inhibitory effects of IFN on gap junction communication restored enterocyte migration after IFN exposure. Strikingly, IFN(-/-) mice were protected from the development of NEC, and showed restored connexin 43 expression and intestinal restitution. CONCLUSIONS IFN inhibits enterocyte migration by preventing interenterocyte gap junction communication. Connexin 43 loss may provide insights into the development of NEC, in which restitution is impaired.
Collapse
Affiliation(s)
- Cynthia L Leaphart
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh and University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Turner DJ, Alaish SM, Zou T, Rao JN, Wang JY, Strauch ED. Bile salts induce resistance to apoptosis through NF-kappaB-mediated XIAP expression. Ann Surg 2007; 245:415-25. [PMID: 17435549 PMCID: PMC1877019 DOI: 10.1097/01.sla.0000236631.72698.99] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Apoptosis plays a critical role in intestinal mucosal homeostasis. We previously showed that the bile salt taurodeoxycholate has a beneficial effect on the intestinal mucosa through an increase in resistance to apoptosis mediated by nuclear factor (NF)-kappaB. The current study further characterizes the effect of bile salts on intestinal epithelial cell susceptibility to apoptosis and determines if the X-linked inhibitor of apoptosis protein (XIAP) regulates bile salt-induced resistance to apoptosis. Exposure of normal intestinal epithelial cells (IEC-6) to the conjugated bile salts taurodeoxycholate (TDCA) and taurochenodeoxycholate (TCDCA) resulted in an increase in resistance to tumor necrosis factor (TNF)-alpha and cycloheximide (CHX)-induced apoptosis, and NF-kappaB activation. Treatment with TDCA and TCDCA resulted in an increase in XIAP expression. Specific inhibition of NF-kappaB by infection with an adenoviral vector that expresses the IkappaBalpha super-repressor (IkappaBSR) prevented the induction of XIAP expression and the bile salt-mediated resistance to apoptosis. Treatment with the specific XIAP inhibitor Smac also overcame this increase in enterocyte resistance to apoptosis. Bile salts inhibited formation of the active caspase-3 from its precursor procaspase-3. Smac prevented the inhibitory effect of bile salts on caspase-3 activation. These results indicate that bile salts increase intestinal epithelial cell resistance to apoptosis through NF-kappaB-mediated XIAP expression. Bile salt-induced XIAP mediates resistance to TNF-alpha/CHX-induced apoptosis, at least partially, through inhibition of caspase-3 activity. These data support an important beneficial role of bile salts in regulation of mucosal integrity. Decreased enterocyte exposure to luminal bile salts, as occurs during starvation and parenteral nutrition, may have a detrimental effect on mucosal integrity.
Collapse
Affiliation(s)
- Douglas J Turner
- Departments of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.
| | | | | | | | | | | |
Collapse
|
249
|
Turner DJ, Martin PC, Rao JN, Greenspon J, Zou T, Bass BL, Wang JY, Strauch ED. Substance P regulates migration in rat intestinal epithelial cells. Ann Surg 2007; 245:408-14. [PMID: 17435548 PMCID: PMC1877018 DOI: 10.1097/01.sla.0000245549.57076.db] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The current study examined the effect of substance P (SP) upon intestinal epithelial cells and the mechanistic details of this interaction. SUMMARY BACKGROUND DATA Intestinal epithelial cells must be capable of migration to reseal mucosal wounds for several vital intestinal functions. This process is incompletely understood; however, recent evidence implicates the neurotransmitter SP in this process. METHODS Normal rat intestinal epithelial cells (IEC-6 cells) were studied to identify the presence of the SP receptor (NK-1 subtype) and then exposed to physiologic doses of SP and antagonists to assess for increased migration. RESULTS Examination IEC-6 cells revealed the presence of the SP receptor. Wounding of these cells followed by subsequent exposure to SP (10 mol/L) resulted in increased migration. Similarly, SP-induced increases in intracellular calcium concentration and actomyosin stress fiber formation. These effects were all blocked through specific NK-1 receptor antagonists. CONCLUSIONS These results indicate that SP stimulates intestinal epithelial migration and increases in calcium concentration. These data support a beneficial role for SP in the maintenance of intestinal mucosal homeostasis.
Collapse
Affiliation(s)
- Douglas J Turner
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.
| | | | | | | | | | | | | | | |
Collapse
|
250
|
Xiao L, Rao J, Zou T, Liu L, Marasa B, Chen J, Turner D, Passaniti A, Wang JY. Induced JunD in intestinal epithelial cells represses CDK4 transcription through its proximal promoter region following polyamine depletion. Biochem J 2007; 403:573-81. [PMID: 17253961 PMCID: PMC1876376 DOI: 10.1042/bj20061436] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 01/17/2007] [Accepted: 01/25/2007] [Indexed: 02/06/2023]
Abstract
Maintenance of intestinal epithelial integrity requires cellular polyamines that regulate expression of various genes involved in cell proliferation, growth arrest and apoptosis. In prior studies, depletion of cellular polyamines has been shown to stabilize JunD, a member of the AP-1 (activator protein-1) family of transcription factors, leading to inhibition of intestinal epithelial cell proliferation, but the exact downstream targets of induced JunD remain elusive. CDK4 (cyclin-dependent kinase 4) is essential for the G1- to S-phase transition during the cell cycle and its expression is primarily controlled at the transcriptional level. In the present study, we show that induced JunD in IECs (intestinal epithelial cells) is a transcriptional repressor of the CDK4 gene following polyamine depletion. Increased JunD in polyamine-deficient cells was associated with a significant inhibition of CDK4 transcription, as indicated by repression of CDK4-promoter activity and decreased levels of CDK4 mRNA and protein, all of which were prevented by using specific antisense JunD oligomers. Ectopic expression of the wild-type junD also repressed CDK4-promoter activity and decreased levels of CDK4 mRNA and protein without any effect on CDK2 expression. Gel shift and chromatin immunoprecipitation assays revealed that JunD bound to the proximal region of the CDK4-promoter in vitro as well as in vivo, while experiments using different CDK4-promoter mutants showed that transcriptional repression of CDK4 by JunD was mediated through an AP-1 binding site within this proximal sequence of the CDK4-promoter. These results indicate that induced JunD in IECs represses CDK4 transcription through its proximal promoter region following polyamine depletion.
Collapse
Key Words
- activator protein-1 (ap-1)
- α-difluoromethylornithine
- growth arrest
- intestinal epithelium
- ornithine decarboxylase
- transcriptional regulation
- ap-1, activator protein-1
- cdk, cyclin-dependent kinase
- chip, chromatin immunoprecipitation
- dfmo, α-difluoromethylornithine
- emsa, electrophoretic mobility-shift assay
- fbs, fetal bovine serum
- gapdh, glyceraldehyde-3-phosphate dehydrogenase
- iec, intestinal epithelial cell
- luc, luciferase
- pbs-t, pbs containing tween 20
- q-pcr, quantitative pcr
- rb, retinoblastoma tumour suppressor protein
- rt, reverse transcriptase
Collapse
Affiliation(s)
- Lan Xiao
- *Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- ‡Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, U.S.A
| | - Jaladanki N. Rao
- *Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- ‡Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, U.S.A
| | - Tongtong Zou
- *Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- ‡Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, U.S.A
| | - Lan Liu
- *Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- ‡Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, U.S.A
| | - Bernard S. Marasa
- *Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- †Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- ‡Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, U.S.A
| | - Jie Chen
- *Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- ‡Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, U.S.A
| | - Douglas J. Turner
- *Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- ‡Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, U.S.A
| | - Antonino Passaniti
- †Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- ‡Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, U.S.A
| | - Jian-Ying Wang
- *Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- †Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- ‡Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, U.S.A
| |
Collapse
|