201
|
Wu SHS, Kim S, Lee H, Lee JH, Park SY, Bakonyi R, Teriyapirom I, Hallay N, Pilat-Carotta S, Theussl HC, Kim J, Lee JH, Simons BD, Kim JK, Colozza G, Koo BK. Red2Flpe-SCON: a versatile, multicolor strategy for generating mosaic conditional knockout mice. Nat Commun 2024; 15:4963. [PMID: 38862535 PMCID: PMC11166929 DOI: 10.1038/s41467-024-49382-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
Image-based lineage tracing enables tissue turnover kinetics and lineage potentials of different adult cell populations to be investigated. Previously, we reported a genetic mouse model system, Red2Onco, which ectopically expressed mutated oncogenes together with red fluorescent proteins (RFP). This system enabled the expansion kinetics and neighboring effects of oncogenic clones to be dissected. We now report Red2Flpe-SCON: a mosaic knockout system that uses multicolor reporters to label both mutant and wild-type cells. We develop the Red2Flpe mouse line for red clone-specific Flpe expression, as well as the FRT-based SCON (Short Conditional IntrON) method to facilitate tunable conditional mosaic knockouts in mice. We use the Red2Flpe-SCON method to study Sox2 mutant clonal analysis in the esophageal epithelium of adult mice which reveal that the stem cell gene, Sox2, is less essential for adult stem cell maintenance itself, but rather for stem cell proliferation and differentiation.
Collapse
Affiliation(s)
- Szu-Hsien Sam Wu
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Somi Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Heetak Lee
- Center for Genome Engineering, Institute for Basic Science, Expo-ro 55, Yuseong-gu, Daejeon, 34126, Republic of Korea
| | - Ji-Hyun Lee
- Center for Genome Engineering, Institute for Basic Science, Expo-ro 55, Yuseong-gu, Daejeon, 34126, Republic of Korea
| | - So-Yeon Park
- Center for Genome Engineering, Institute for Basic Science, Expo-ro 55, Yuseong-gu, Daejeon, 34126, Republic of Korea
| | - Réka Bakonyi
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Isaree Teriyapirom
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Natalia Hallay
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Sandra Pilat-Carotta
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | | | - Jihoon Kim
- Center for Genome Engineering, Institute for Basic Science, Expo-ro 55, Yuseong-gu, Daejeon, 34126, Republic of Korea
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, 14662, South Korea
| | - Joo-Hyeon Lee
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Benjamin D Simons
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, CB3 0WA, UK
| | - Jong Kyoung Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Gabriele Colozza
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria.
| | - Bon-Kyoung Koo
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- Center for Genome Engineering, Institute for Basic Science, Expo-ro 55, Yuseong-gu, Daejeon, 34126, Republic of Korea.
| |
Collapse
|
202
|
Tiberi S, Meili J, Cai P, Soneson C, He D, Sarkar H, Avalos-Pacheco A, Patro R, Robinson MD. DifferentialRegulation: a Bayesian hierarchical approach to identify differentially regulated genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.17.553679. [PMID: 37645841 PMCID: PMC10462127 DOI: 10.1101/2023.08.17.553679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Motivation Although transcriptomics data is typically used to analyse mature spliced mRNA, recent attention has focused on jointly investigating spliced and unspliced (or precursor-) mRNA, which can be used to study gene regulation and changes in gene expression production. Nonetheless, most methods for spliced/unspliced inference (such as RNA velocity tools) focus on individual samples, and rarely allow comparisons between groups of samples (e.g., healthy vs. diseased). Furthermore, this kind of inference is challenging, because spliced and unspliced mRNA abundance is characterized by a high degree of quantification uncertainty, due to the prevalence of multi-mapping reads, i.e., reads compatible with multiple transcripts (or genes), and/or with both their spliced and unspliced versions. Results Here, we present DifferentialRegulation, a Bayesian hierarchical method to discover changes between experimental conditions with respect to the relative abundance of unspliced mRNA (over the total mRNA). We model the quantification uncertainty via a latent variable approach, where reads are allocated to their gene/transcript of origin, and to the respective splice version. We designed several benchmarks where our approach shows good performance, in terms of sensitivity and error control, versus state-of-the-art competitors. Importantly, our tool is flexible, and works with both bulk and single-cell RNA-sequencing data. Availability and implementation DifferentialRegulation is distributed as a Bioconductor R package.
Collapse
Affiliation(s)
- Simone Tiberi
- Department of Statistical Sciences, University of Bologna, Bologna, Italy
- Department of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Joël Meili
- Department of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Peiying Cai
- Department of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Charlotte Soneson
- Computational Biology Platform, Friedrich Miescher Institute for Biomedical Research and SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Dongze He
- Department of Cell Biology and Molecular Genetics, University of Maryland, MD, USA
- Center for Bioinformatics and Computational Biology, University of Maryland, MD, USA
| | - Hirak Sarkar
- Department of Computer Science, Princeton University, NJ, USA
| | - Alejandra Avalos-Pacheco
- Research Unit of Applied Statistics, TU Wien, Vienna, Austria
- Harvard-MIT Center for Regulatory Science, Harvard Medical School, Boston, MA, USA
| | - Rob Patro
- Department of Computer Science, University of Maryland, MD, USA
- Center for Bioinformatics and Computational Biology, University of Maryland, MD, USA
| | - Mark D Robinson
- Department of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| |
Collapse
|
203
|
Nassiri I, Kwok AJ, Bhandari A, Bull KR, Garner LC, Klenerman P, Webber C, Parkkinen L, Lee AW, Wu Y, Fairfax B, Knight JC, Buck D, Piazza P. Demultiplexing of single-cell RNA-sequencing data using interindividual variation in gene expression. BIOINFORMATICS ADVANCES 2024; 4:vbae085. [PMID: 38911824 PMCID: PMC11193101 DOI: 10.1093/bioadv/vbae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/07/2024] [Indexed: 06/25/2024]
Abstract
Motivation Pooled designs for single-cell RNA sequencing, where many cells from distinct samples are processed jointly, offer increased throughput and reduced batch variation. This study describes expression-aware demultiplexing (EAD), a computational method that employs differential co-expression patterns between individuals to demultiplex pooled samples without any extra experimental steps. Results We use synthetic sample pools and show that the top interindividual differentially co-expressed genes provide a distinct cluster of cells per individual, significantly enriching the regulation of metabolism. Our application of EAD to samples of six isogenic inbred mice demonstrated that controlling genetic and environmental effects can solve interindividual variations related to metabolic pathways. We utilized 30 samples from both sepsis and healthy individuals in six batches to assess the performance of classification approaches. The results indicate that combining genetic and EAD results can enhance the accuracy of assignments (Min. 0.94, Mean 0.98, Max. 1). The results were enhanced by an average of 1.4% when EAD and barcoding techniques were combined (Min. 1.25%, Median 1.33%, Max. 1.74%). Furthermore, we demonstrate that interindividual differential co-expression analysis within the same cell type can be used to identify cells from the same donor in different activation states. By analysing single-nuclei transcriptome profiles from the brain, we demonstrate that our method can be applied to nonimmune cells. Availability and implementation EAD workflow is available at https://isarnassiri.github.io/scDIV/ as an R package called scDIV (acronym for single-cell RNA-sequencing data demultiplexing using interindividual variations).
Collapse
Affiliation(s)
- Isar Nassiri
- Nuffield Department of Medicine, Centre for Human Genetics, Oxford-GSK Institute of Molecular and Computational Medicine (IMCM), University of Oxford, Oxford, OX3 7BN, United Kingdom
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, United Kingdom
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, United Kingdom
| | - Andrew J Kwok
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, 999077, China
| | - Aneesha Bhandari
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Katherine R Bull
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Lucy C Garner
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Paul Klenerman
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 9DU, United Kingdom
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, OX1 3SY, United Kingdom
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Caleb Webber
- Department of Physiology, Anatomy, Genetics, Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, OX1 3PT, United Kingdom
- UK Dementia Research Institute, Cardiff University, Cardiff, CF24 4HQ, United Kingdom
| | - Laura Parkkinen
- Nuffield Department of Medicine, Centre for Human Genetics, Oxford-GSK Institute of Molecular and Computational Medicine (IMCM), University of Oxford, Oxford, OX3 7BN, United Kingdom
- Nuffield Department of Clinical Neurosciences, Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Angela W Lee
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Yanxia Wu
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Benjamin Fairfax
- MRC–Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, United Kingdom
- Department of Oncology, University of Oxford & Oxford Cancer Centre, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7DQ, United Kingdom
| | - Julian C Knight
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - David Buck
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Paolo Piazza
- Nuffield Department of Medicine, Centre for Human Genetics, Oxford-GSK Institute of Molecular and Computational Medicine (IMCM), University of Oxford, Oxford, OX3 7BN, United Kingdom
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| |
Collapse
|
204
|
Hua H, Wang Y, Wang X, Wang S, Zhou Y, Liu Y, Liang Z, Ren H, Lu S, Wu S, Jiang Y, Pu Y, Zheng X, Tang C, Shen Z, Li C, Du Y, Deng H. Remodeling ceramide homeostasis promotes functional maturation of human pluripotent stem cell-derived β cells. Cell Stem Cell 2024; 31:850-865.e10. [PMID: 38697109 DOI: 10.1016/j.stem.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/21/2024] [Accepted: 04/12/2024] [Indexed: 05/04/2024]
Abstract
Human pluripotent stem cell-derived β cells (hPSC-β cells) show the potential to restore euglycemia. However, the immature functionality of hPSC-β cells has limited their efficacy in application. Here, by deciphering the continuous maturation process of hPSC-β cells post transplantation via single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq), we show that functional maturation of hPSC-β cells is an orderly multistep process during which cells sequentially undergo metabolic adaption, removal of negative regulators of cell function, and establishment of a more specialized transcriptome and epigenome. Importantly, remodeling lipid metabolism, especially downregulating the metabolic activity of ceramides, the central hub of sphingolipid metabolism, is critical for β cell maturation. Limiting intracellular accumulation of ceramides in hPSC-β cells remarkably enhanced their function, as indicated by improvements in insulin processing and glucose-stimulated insulin secretion. In summary, our findings provide insights into the maturation of human pancreatic β cells and highlight the importance of ceramide homeostasis in function acquisition.
Collapse
Affiliation(s)
- Huijuan Hua
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yaqi Wang
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, China
| | | | - Shusen Wang
- Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Yunlu Zhou
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yinan Liu
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zhen Liang
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Huixia Ren
- Center for Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Sufang Lu
- Hangzhou Reprogenix Bioscience, Hangzhou, China
| | | | - Yong Jiang
- Hangzhou Reprogenix Bioscience, Hangzhou, China
| | - Yue Pu
- Hangzhou Reprogenix Bioscience, Hangzhou, China
| | - Xiang Zheng
- Hangzhou Repugene Technology, Hangzhou, China
| | - Chao Tang
- Center for Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zhongyang Shen
- Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Cheng Li
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, China.
| | - Yuanyuan Du
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| | - Hongkui Deng
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China; Changping Laboratory, Beijing, China.
| |
Collapse
|
205
|
Guazzini M, Reisach AG, Weichwald S, Seiler C. spillR: spillover compensation in mass cytometry data. Bioinformatics 2024; 40:btae337. [PMID: 38848472 PMCID: PMC11189660 DOI: 10.1093/bioinformatics/btae337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/29/2024] [Accepted: 06/05/2024] [Indexed: 06/09/2024] Open
Abstract
MOTIVATION Channel interference in mass cytometry can cause spillover and may result in miscounting of protein markers. Chevrier et al. introduce an experimental and computational procedure to estimate and compensate for spillover implemented in their R package CATALYST. They assume spillover can be described by a spillover matrix that encodes the ratio between the signal in the unstained spillover receiving and stained spillover emitting channel. They estimate the spillover matrix from experiments with beads. We propose to skip the matrix estimation step and work directly with the full bead distributions. We develop a nonparametric finite mixture model and use the mixture components to estimate the probability of spillover. Spillover correction is often a pre-processing step followed by downstream analyses, and choosing a flexible model reduces the chance of introducing biases that can propagate downstream. RESULTS We implement our method in an R package spillR using expectation-maximization to fit the mixture model. We test our method on simulated, semi-simulated, and real data from CATALYST. We find that our method compensates low counts accurately, does not introduce negative counts, avoids overcompensating high counts, and preserves correlations between markers that may be biologically meaningful. AVAILABILITY AND IMPLEMENTATION Our new R package spillR is on bioconductor at bioconductor.org/packages/spillR. All experiments and plots can be reproduced by compiling the R markdown file spillR_paper.Rmd at github.com/ChristofSeiler/spillR_paper.
Collapse
Affiliation(s)
- Marco Guazzini
- Department of Advanced Computing Sciences, Maastricht University, Maastricht, The Netherlands
| | | | - Sebastian Weichwald
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christof Seiler
- Department of Advanced Computing Sciences, Maastricht University, Maastricht, The Netherlands
- Mathematics Centre Maastricht, Maastricht University, Maastricht, The Netherlands
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Schlieren, Switzerland
| |
Collapse
|
206
|
Benjamin KJM, Chen Q, Eagles NJ, Huuki-Myers LA, Collado-Torres L, Stolz JM, Pertea G, Shin JH, Paquola ACM, Hyde TM, Kleinman JE, Jaffe AE, Han S, Weinberger DR. Analysis of gene expression in the postmortem brain of neurotypical Black Americans reveals contributions of genetic ancestry. Nat Neurosci 2024; 27:1064-1074. [PMID: 38769152 PMCID: PMC11156587 DOI: 10.1038/s41593-024-01636-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 03/29/2024] [Indexed: 05/22/2024]
Abstract
Ancestral differences in genomic variation affect the regulation of gene expression; however, most gene expression studies have been limited to European ancestry samples or adjusted to identify ancestry-independent associations. Here, we instead examined the impact of genetic ancestry on gene expression and DNA methylation in the postmortem brain tissue of admixed Black American neurotypical individuals to identify ancestry-dependent and ancestry-independent contributions. Ancestry-associated differentially expressed genes (DEGs), transcripts and gene networks, while notably not implicating neurons, are enriched for genes related to the immune response and vascular tissue and explain up to 26% of heritability for ischemic stroke, 27% of heritability for Parkinson disease and 30% of heritability for Alzheimer's disease. Ancestry-associated DEGs also show general enrichment for the heritability of diverse immune-related traits but depletion for psychiatric-related traits. We also compared Black and non-Hispanic white Americans, confirming most ancestry-associated DEGs. Our results delineate the extent to which genetic ancestry affects differences in gene expression in the human brain and the implications for brain illness risk.
Collapse
Affiliation(s)
- Kynon J M Benjamin
- Lieber Institute for Brain Development, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Qiang Chen
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | | | | | - Leonardo Collado-Torres
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Joshua M Stolz
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Geo Pertea
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Apuã C M Paquola
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew E Jaffe
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Neumora Therapeutics, Watertown, MA, USA
| | - Shizhong Han
- Lieber Institute for Brain Development, Baltimore, MD, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
207
|
Lu DN, Zhang WC, Lin YZ, Jiang HY, He R, Li SL, Zhang YN, Shao CY, Zheng CM, Xu JJ, Ge MH. Single-cell and bulk RNA sequencing reveal heterogeneity and diagnostic markers in papillary thyroid carcinoma lymph-node metastasis. J Endocrinol Invest 2024; 47:1513-1530. [PMID: 38146045 PMCID: PMC11143037 DOI: 10.1007/s40618-023-02262-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/26/2023] [Indexed: 12/27/2023]
Abstract
PURPOSE Papillary thyroid carcinoma (PTC) is characterized by lymph-node metastasis (LNM), which affects recurrence and prognosis. This study analyzed PTC LNM by single-cell RNA sequencing (scRNA-seq) data and bulk RNA sequencing (RNA-seq) to find diagnostic markers and therapeutic targets. METHODS ScRNA-seq data were clustered and malignant cells were identified. Differentially expressed genes (DEGs) were identified in malignant cells of scRNA-seq and bulk RNA-seq, respectively. PTC LNM diagnostic model was constructed based on intersecting DEGs using glmnet package. Next, PTC samples from 66 patients were used to validate the two most significant genes in the diagnostic model, S100A2 and type 2 deiodinase (DIO2) by quantitative reverse transcription-polymerase chain reaction (RT-qPCR) and immunohistochemical (IHC). Further, the inhibitory effect of DIO2 on PTC cells was verified by cell biology behavior, western blot, cell cycle analysis, 5-ethynyl-2'-deoxyuridine (EdU) assay, and xenograft tumors. RESULTS Heterogeneity of PTC LNM was demonstrated by Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis. A total of 19 differential genes were used to construct the diagnostic model. S100A2 and DIO2 differ significantly at the RNA (p < 0.01) and protein level in LNM patient tissues (p < 0.001). And differed in PTC tissues with different pathologic typing (p < 0.001). Further, EdU (p < 0.001) and cell biology behavior revealed that PTC cells overexpressed DIO2 had reduced proliferative capacity. Cell cycle proteins were reduced and cells are more likely to be stuck in G2/M phase (p < 0.001). CONCLUSIONS This study explored the heterogeneity of PTC LNM using scRNA-seq. By combining with bulk RNA-seq data, diagnostic markers were explored and the model was established. Clinical diagnostic efficacy of S100A2 and DIO2 was validated and the treatment potential of DIO2 was discovered.
Collapse
Affiliation(s)
- D-N Lu
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, People's Republic of China
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - W-C Zhang
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, People's Republic of China
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Y-Z Lin
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - H-Y Jiang
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, People's Republic of China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - R He
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310059, China
| | - S-L Li
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, People's Republic of China
- Clinical Research Center for Cancer of Zhejiang Province, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Y-N Zhang
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, People's Republic of China
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - C-Y Shao
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, People's Republic of China
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - C-M Zheng
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, People's Republic of China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - J-J Xu
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, People's Republic of China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - M-H Ge
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, People's Republic of China.
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, Zhejiang, People's Republic of China.
- Clinical Research Center for Cancer of Zhejiang Province, Hangzhou, 310014, Zhejiang, People's Republic of China.
| |
Collapse
|
208
|
Chen C, Lee S, Zyner KG, Fernando M, Nemeruck V, Wong E, Marshall LL, Wark JR, Aryamanesh N, Tam PPL, Graham ME, Gonzalez-Cordero A, Yang P. Trans-omic profiling uncovers molecular controls of early human cerebral organoid formation. Cell Rep 2024; 43:114219. [PMID: 38748874 DOI: 10.1016/j.celrep.2024.114219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/01/2024] [Accepted: 04/25/2024] [Indexed: 06/01/2024] Open
Abstract
Defining the molecular networks orchestrating human brain formation is crucial for understanding neurodevelopment and neurological disorders. Challenges in acquiring early brain tissue have incentivized the use of three-dimensional human pluripotent stem cell (hPSC)-derived neural organoids to recapitulate neurodevelopment. To elucidate the molecular programs that drive this highly dynamic process, here, we generate a comprehensive trans-omic map of the phosphoproteome, proteome, and transcriptome of the exit of pluripotency and neural differentiation toward human cerebral organoids (hCOs). These data reveal key phospho-signaling events and their convergence on transcriptional factors to regulate hCO formation. Comparative analysis with developing human and mouse embryos demonstrates the fidelity of our hCOs in modeling embryonic brain development. Finally, we demonstrate that biochemical modulation of AKT signaling can control hCO differentiation. Together, our data provide a comprehensive resource to study molecular controls in human embryonic brain development and provide a guide for the future development of hCO differentiation protocols.
Collapse
Affiliation(s)
- Carissa Chen
- Computational Systems Biology Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; Embryology Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Scott Lee
- Stem Cell and Organoid Facility, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia
| | - Katherine G Zyner
- Computational Systems Biology Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Milan Fernando
- Stem Cell and Organoid Facility, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia
| | - Victoria Nemeruck
- Stem Cell Medicine Group, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia
| | - Emilie Wong
- Stem Cell Medicine Group, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Lee L Marshall
- Bioinformatics Group, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia
| | - Jesse R Wark
- Synapse Proteomics, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia
| | - Nader Aryamanesh
- Bioinformatics Group, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Patrick P L Tam
- Embryology Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Mark E Graham
- Synapse Proteomics, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia.
| | - Anai Gonzalez-Cordero
- Stem Cell and Organoid Facility, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; Stem Cell Medicine Group, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia.
| | - Pengyi Yang
- Computational Systems Biology Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; Charles Perkins Centre, School of Mathematics and Statistics, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
209
|
Huuki-Myers LA, Spangler A, Eagles NJ, Montgomery KD, Kwon SH, Guo B, Grant-Peters M, Divecha HR, Tippani M, Sriworarat C, Nguyen AB, Ravichandran P, Tran MN, Seyedian A, Hyde TM, Kleinman JE, Battle A, Page SC, Ryten M, Hicks SC, Martinowich K, Collado-Torres L, Maynard KR. A data-driven single-cell and spatial transcriptomic map of the human prefrontal cortex. Science 2024; 384:eadh1938. [PMID: 38781370 PMCID: PMC11398705 DOI: 10.1126/science.adh1938] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 12/06/2023] [Indexed: 05/25/2024]
Abstract
The molecular organization of the human neocortex historically has been studied in the context of its histological layers. However, emerging spatial transcriptomic technologies have enabled unbiased identification of transcriptionally defined spatial domains that move beyond classic cytoarchitecture. We used the Visium spatial gene expression platform to generate a data-driven molecular neuroanatomical atlas across the anterior-posterior axis of the human dorsolateral prefrontal cortex. Integration with paired single-nucleus RNA-sequencing data revealed distinct cell type compositions and cell-cell interactions across spatial domains. Using PsychENCODE and publicly available data, we mapped the enrichment of cell types and genes associated with neuropsychiatric disorders to discrete spatial domains.
Collapse
Affiliation(s)
- Louise A Huuki-Myers
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Abby Spangler
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Nicholas J Eagles
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Kelsey D Montgomery
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Sang Ho Kwon
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Boyi Guo
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Melissa Grant-Peters
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Heena R Divecha
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Madhavi Tippani
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Chaichontat Sriworarat
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Annie B Nguyen
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Prashanthi Ravichandran
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21218, USA
| | - Matthew N Tran
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Arta Seyedian
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Alexis Battle
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21218, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Stephanie C Page
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Mina Ryten
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - Stephanie C Hicks
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21218, USA
- Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD 21218, USA
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Keri Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Johns Hopkins Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Leonardo Collado-Torres
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Kristen R Maynard
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
210
|
Wang W, Cen Y, Lu Z, Xu Y, Sun T, Xiao Y, Liu W, Li JJ, Wang C. scCDC: a computational method for gene-specific contamination detection and correction in single-cell and single-nucleus RNA-seq data. Genome Biol 2024; 25:136. [PMID: 38783325 PMCID: PMC11112958 DOI: 10.1186/s13059-024-03284-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
In droplet-based single-cell and single-nucleus RNA-seq assays, systematic contamination of ambient RNA molecules biases the quantification of gene expression levels. Existing methods correct the contamination for all genes globally. However, there lacks specific evaluation of correction efficacy for varying contamination levels. Here, we show that DecontX and CellBender under-correct highly contaminating genes, while SoupX and scAR over-correct lowly/non-contaminating genes. Here, we develop scCDC as the first method to detect the contamination-causing genes and only correct expression levels of these genes, some of which are cell-type markers. Compared with existing decontamination methods, scCDC excels in decontaminating highly contaminating genes while avoiding over-correction of other genes.
Collapse
Affiliation(s)
- Weijian Wang
- Centre of Biomedical Systems and Informatics, International Campus, ZJU-UoE Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang, 314400, China
| | - Yihui Cen
- Centre of Biomedical Systems and Informatics, International Campus, ZJU-UoE Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang, 314400, China
| | - Zezhen Lu
- Centre of Biomedical Systems and Informatics, International Campus, ZJU-UoE Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang, 314400, China
| | - Yueqing Xu
- Centre of Biomedical Systems and Informatics, International Campus, ZJU-UoE Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang, 314400, China
| | - Tianyi Sun
- Department of Statistics and Data Science, University of California, Los Angeles, CA, 90095, USA
| | - Ying Xiao
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310020, China
| | - Wanlu Liu
- Centre of Biomedical Systems and Informatics, International Campus, ZJU-UoE Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang, 314400, China
| | - Jingyi Jessica Li
- Department of Statistics and Data Science, University of California, Los Angeles, CA, 90095, USA.
| | - Chaochen Wang
- Centre of Biomedical Systems and Informatics, International Campus, ZJU-UoE Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang, 314400, China.
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310020, China.
- Biomedical and Health Translational Research Centre, Zhejiang University, Haining, Zhejiang, 314400, China.
| |
Collapse
|
211
|
Pilcher WC, Yao L, Gonzalez-Kozlova E, Pita-Juarez Y, Karagkouni D, Acharya CR, Michaud ME, Hamilton M, Nanda S, Song Y, Sato K, Wang JT, Satpathy S, Ma Y, Schulman J, D'Souza D, Jayasinghe RG, Cheloni G, Bakhtiari M, Pabustan N, Nie K, Foltz JA, Saldarriaga I, Alaaeldin R, Lepisto E, Chen R, Fiala MA, Thomas BE, Cook A, Dos Santos JV, Chiang IL, Figueiredo I, Fortier J, Slade M, Oh ST, Rettig MP, Anderson E, Li Y, Dasari S, Strausbauch MA, Simon VA, Immune Atlas Consortium, Rahman AH, Chen Z, Lagana A, DiPersio JF, Rosenblatt J, Kim-Schulze S, Dhodapkar MV, Lonial S, Kumar S, Bhasin SS, Kourelis T, Vij R, Avigan D, Cho HJ, Mulligan G, Ding L, Gnjatic S, Vlachos IS, Bhasin M. A single-cell atlas characterizes dysregulation of the bone marrow immune microenvironment associated with outcomes in multiple myeloma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.593193. [PMID: 38798338 PMCID: PMC11118283 DOI: 10.1101/2024.05.15.593193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Multiple Myeloma (MM) remains incurable despite advances in treatment options. Although tumor subtypes and specific DNA abnormalities are linked to worse prognosis, the impact of immune dysfunction on disease emergence and/or treatment sensitivity remains unclear. We established a harmonized consortium to generate an Immune Atlas of MM aimed at informing disease etiology, risk stratification, and potential therapeutic strategies. We generated a transcriptome profile of 1,149,344 single cells from the bone marrow of 263 newly diagnosed patients enrolled in the CoMMpass study and characterized immune and hematopoietic cell populations. Associating cell abundances and gene expression with disease progression revealed the presence of a proinflammatory immune senescence-associated secretory phenotype in rapidly progressing patients. Furthermore, signaling analyses suggested active intercellular communication involving APRIL-BCMA, potentially promoting tumor growth and survival. Finally, we demonstrate that integrating immune cell levels with genetic information can significantly improve patient stratification.
Collapse
Affiliation(s)
- William C. Pilcher
- Coultier Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Lijun Yao
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Edgar Gonzalez-Kozlova
- Human Immune Monitoring Center, Tisch Cancer Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yered Pita-Juarez
- Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dimitra Karagkouni
- Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Marina E Michaud
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA, USA
| | | | - Shivani Nanda
- Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yizhe Song
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Kazuhito Sato
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Julia T. Wang
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Sarthak Satpathy
- Department of Biomedical Informatics, Emory School of Medicine, Atlanta, GA, USA
| | - Yuling Ma
- Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Darwin D'Souza
- Human Immune Monitoring Center, Tisch Cancer Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Reyka G. Jayasinghe
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Giulia Cheloni
- Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Mojtaba Bakhtiari
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA, USA
| | | | - Kai Nie
- Human Immune Monitoring Center, Tisch Cancer Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jennifer A. Foltz
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Rania Alaaeldin
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA, USA
| | | | - Rachel Chen
- Human Immune Monitoring Center, Tisch Cancer Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mark A. Fiala
- Bone Marrow Transplantation & Leukemia Section, Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Beena E Thomas
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA, USA
| | | | - Junia Vieira Dos Santos
- Tisch Cancer Institute, Department of Immunology and Immunotherapy, Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - I-ling Chiang
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Igor Figueiredo
- Human Immune Monitoring Center, Tisch Cancer Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julie Fortier
- Bone Marrow Transplantation & Leukemia Section, Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael Slade
- Bone Marrow Transplantation & Leukemia Section, Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Stephen T. Oh
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Immunomonitoring Laboratory, Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael P. Rettig
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Ying Li
- Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | - Adeeb H Rahman
- Human Immune Monitoring Center, Tisch Cancer Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhihong Chen
- Human Immune Monitoring Center, Tisch Cancer Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alessandro Lagana
- Tisch Cancer Institute, Department of Immunology and Immunotherapy, Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John F. DiPersio
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Jacalyn Rosenblatt
- Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Cancer Center & Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Seunghee Kim-Schulze
- Human Immune Monitoring Center, Tisch Cancer Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Madhav V Dhodapkar
- Department of Hematology Oncology, Emory School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory School of Medicine, Atlanta, GA, USA
| | - Sagar Lonial
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta
| | | | - Swati S Bhasin
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA, USA
| | | | - Ravi Vij
- Bone Marrow Transplantation & Leukemia Section, Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - David Avigan
- Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Cancer Center & Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | | | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Sacha Gnjatic
- Human Immune Monitoring Center, Tisch Cancer Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ioannis S Vlachos
- Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Spatial Technologies Unit, Harvard Medical School Initiative for RNA Medicine, Boston, MA, USA
- Cancer Center & Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA
| | - Manoj Bhasin
- Coultier Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA, USA
- Department of Biomedical Informatics, Emory School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| |
Collapse
|
212
|
Saxena R, Bushey RT, Campa MJ, Gottlin EB, Guo J, Patz EF, He YW. Promotion of an Antitumor Immune Program by a Tumor-specific, Complement-activating Antibody. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1589-1601. [PMID: 38558134 DOI: 10.4049/jimmunol.2300728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Tumor-targeting Abs can be used to initiate an antitumor immune program, which appears essential to achieve a long-term durable clinical response to cancer. We previously identified an anti-complement factor H (CFH) autoantibody associated with patients with early-stage non-small cell lung cancer. We cloned from their peripheral B cells an mAb, GT103, that specifically recognizes CFH on tumor cells. Although the underlying mechanisms are not well defined, GT103 targets a conformationally distinct CFH epitope that is created when CFH is associated with tumor cells, kills tumor cells in vitro, and has potent antitumor activity in vivo. In the effort to better understand how an Ab targeting a tumor epitope can promote an effective antitumor immune response, we used the syngeneic CMT167 lung tumor C57BL/6 mouse model, and we found that murinized GT103 (mGT103) activates complement and enhances antitumor immunity through multiple pathways. It creates a favorable tumor microenvironment by decreasing immunosuppressive regulatory T cells and myeloid-derived suppressor cells, enhances Ag-specific effector T cells, and has an additive antitumor effect with anti-PD-L1 mAb. Furthermore, the immune landscape of tumors from early-stage patients expressing the anti-CFH autoantibody is associated with an immunologically active tumor microenvironment. More broadly, our results using an mAb cloned from autoantibody-expressing B cells provides novel, to our knowledge, mechanistic insights into how a tumor-specific, complement-activating Ab can generate an immune program to kill tumor cells and inhibit tumor growth.
Collapse
Affiliation(s)
- Ruchi Saxena
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC
| | - Ryan T Bushey
- Department of Radiology, Duke University School of Medicine, Durham, NC
| | - Michael J Campa
- Department of Radiology, Duke University School of Medicine, Durham, NC
| | | | - Jian Guo
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC
| | - Edward F Patz
- Department of Radiology, Duke University School of Medicine, Durham, NC
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC
| | - You-Wen He
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC
| |
Collapse
|
213
|
Mulè MP, Martins AJ, Cheung F, Farmer R, Sellers BA, Quiel JA, Jain A, Kotliarov Y, Bansal N, Chen J, Schwartzberg PL, Tsang JS. Integrating population and single-cell variations in vaccine responses identifies a naturally adjuvanted human immune setpoint. Immunity 2024; 57:1160-1176.e7. [PMID: 38697118 DOI: 10.1016/j.immuni.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 01/21/2024] [Accepted: 04/12/2024] [Indexed: 05/04/2024]
Abstract
Multimodal single-cell profiling methods can capture immune cell variations unfolding over time at the molecular, cellular, and population levels. Transforming these data into biological insights remains challenging. Here, we introduce a framework to integrate variations at the human population and single-cell levels in vaccination responses. Comparing responses following AS03-adjuvanted versus unadjuvanted influenza vaccines with CITE-seq revealed AS03-specific early (day 1) response phenotypes, including a B cell signature of elevated germinal center competition. A correlated network of cell-type-specific transcriptional states defined the baseline immune status associated with high antibody responders to the unadjuvanted vaccine. Certain innate subsets in the network appeared "naturally adjuvanted," with transcriptional states resembling those induced uniquely by AS03-adjuvanted vaccination. Consistently, CD14+ monocytes from high responders at baseline had elevated phospho-signaling responses to lipopolysaccharide stimulation. Our findings link baseline immune setpoints to early vaccine responses, with positive implications for adjuvant development and immune response engineering.
Collapse
Affiliation(s)
- Matthew P Mulè
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA; NIH-Oxford-Cambridge Scholars Program, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Andrew J Martins
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Foo Cheung
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Rohit Farmer
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Brian A Sellers
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Juan A Quiel
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Arjun Jain
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Yuri Kotliarov
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Neha Bansal
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Jinguo Chen
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Pamela L Schwartzberg
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; Cell Signaling and Immunity Section, NIAID, NIH, Bethesda, MD, USA
| | - John S Tsang
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA; NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA.
| |
Collapse
|
214
|
O'Callaghan A, Eling N, Marioni JC, Vallejos CA. BASiCS workflow: a step-by-step analysis of expression variability using single cell RNA sequencing data. F1000Res 2024; 11:59. [PMID: 38779464 PMCID: PMC11109695 DOI: 10.12688/f1000research.74416.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 05/25/2024] Open
Abstract
Cell-to-cell gene expression variability is an inherent feature of complex biological systems, such as immunity and development. Single-cell RNA sequencing is a powerful tool to quantify this heterogeneity, but it is prone to strong technical noise. In this article, we describe a step-by-step computational workflow that uses the BASiCS Bioconductor package to robustly quantify expression variability within and between known groups of cells (such as experimental conditions or cell types). BASiCS uses an integrated framework for data normalisation, technical noise quantification and downstream analyses, propagating statistical uncertainty across these steps. Within a single seemingly homogeneous cell population, BASiCS can identify highly variable genes that exhibit strong heterogeneity as well as lowly variable genes with stable expression. BASiCS also uses a probabilistic decision rule to identify changes in expression variability between cell populations, whilst avoiding confounding effects related to differences in technical noise or in overall abundance. Using a publicly available dataset, we guide users through a complete pipeline that includes preliminary steps for quality control, as well as data exploration using the scater and scran Bioconductor packages. The workflow is accompanied by a Docker image that ensures the reproducibility of our results.
Collapse
Affiliation(s)
- Alan O'Callaghan
- MRC Human Genetics Unit, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Nils Eling
- Institute for Molecular Health Sciences, ETH Zürich, Zürich, 8093, Switzerland
- Department of Quantitative Biomedicine, University of Zurich, Zürich, CH-8057, Switzerland
| | - John C. Marioni
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, CB10 1SD, UK
| | - Catalina A. Vallejos
- MRC Human Genetics Unit, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
- The Alan Turing Institute, The Alan Turing Institute, London, NW1 2DB, UK
| |
Collapse
|
215
|
Ramnauth AD, Tippani M, Divecha HR, Papariello AR, Miller RA, Nelson ED, Pattie EA, Kleinman JE, Maynard KR, Collado-Torres L, Hyde TM, Martinowich K, Hicks SC, Page SC. Spatiotemporal analysis of gene expression in the human dentate gyrus reveals age-associated changes in cellular maturation and neuroinflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.20.567883. [PMID: 38045413 PMCID: PMC10690172 DOI: 10.1101/2023.11.20.567883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The dentate gyrus of the hippocampus is important for many cognitive functions, including learning, memory, and mood. Here, we investigated age-associated changes in transcriptome-wide spatial gene expression in the human dentate gyrus across the lifespan. Genes associated with neurogenesis and the extracellular matrix were enriched in infants, while gene markers of inhibitory neurons and cell proliferation showed increases and decreases in post-infancy, respectively. While we did not find evidence for neural proliferation post-infancy, we did identify molecular signatures supporting protracted maturation of granule cells. We also identified a wide-spread hippocampal aging signature and an age-associated increase in genes related to neuroinflammation. Our findings suggest major changes to the putative neurogenic niche after infancy and identify molecular foci of brain aging in glial and neuropil enriched tissue.
Collapse
|
216
|
Nguyen TH, Vicidomini R, Choudhury SD, Han TH, Maric D, Brody T, Serpe M. scRNA-seq data from the larval Drosophila ventral cord provides a resource for studying motor systems function and development. Dev Cell 2024; 59:1210-1230.e9. [PMID: 38569548 PMCID: PMC11078614 DOI: 10.1016/j.devcel.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/05/2023] [Accepted: 03/06/2024] [Indexed: 04/05/2024]
Abstract
The Drosophila larval ventral nerve cord (VNC) shares many similarities with the spinal cord of vertebrates and has emerged as a major model for understanding the development and function of motor systems. Here, we use high-quality scRNA-seq, validated by anatomical identification, to create a comprehensive census of larval VNC cell types. We show that the neural lineages that comprise the adult VNC are already defined, but quiescent, at the larval stage. Using fluorescence-activated cell sorting (FACS)-enriched populations, we separate all motor neuron bundles and link individual neuron clusters to morphologically characterized known subtypes. We discovered a glutamate receptor subunit required for basal neurotransmission and homeostasis at the larval neuromuscular junction. We describe larval glia and endorse the general view that glia perform consistent activities throughout development. This census represents an extensive resource and a powerful platform for future discoveries of cellular and molecular mechanisms in repair, regeneration, plasticity, homeostasis, and behavioral coordination.
Collapse
Affiliation(s)
| | | | | | | | - Dragan Maric
- Flow and Imaging Cytometry Core, NINDS, NIH, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
217
|
Popp JM, Rhodes K, Jangi R, Li M, Barr K, Tayeb K, Battle A, Gilad Y. Cell-type and dynamic state govern genetic regulation of gene expression in heterogeneous differentiating cultures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592174. [PMID: 38746382 PMCID: PMC11092595 DOI: 10.1101/2024.05.02.592174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Identifying the molecular effects of human genetic variation across cellular contexts is crucial for understanding the mechanisms underlying disease-associated loci, yet many cell-types and developmental stages remain underexplored. Here we harnessed the potential of heterogeneous differentiating cultures ( HDCs ), an in vitro system in which pluripotent cells asynchronously differentiate into a broad spectrum of cell-types. We generated HDCs for 53 human donors and collected single-cell RNA-sequencing data from over 900,000 cells. We identified expression quantitative trait loci in 29 cell-types and characterized regulatory dynamics across diverse differentiation trajectories. This revealed novel regulatory variants for genes involved in key developmental and disease-related processes while replicating known effects from primary tissues, and dynamic regulatory effects associated with a range of complex traits.
Collapse
|
218
|
Vornholt E, Liharska LE, Cheng E, Hashemi A, Park YJ, Ziafat K, Wilkins L, Silk H, Linares LM, Thompson RC, Sullivan B, Moya E, Nadkarni GN, Sebra R, Schadt EE, Kopell BH, Charney AW, Beckmann ND. Characterizing cell type specific transcriptional differences between the living and postmortem human brain. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.01.24306590. [PMID: 38746297 PMCID: PMC11092720 DOI: 10.1101/2024.05.01.24306590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Single-nucleus RNA sequencing (snRNA-seq) is often used to define gene expression patterns characteristic of brain cell types as well as to identify cell type specific gene expression signatures of neurological and mental illnesses in postmortem human brains. As methods to obtain brain tissue from living individuals emerge, it is essential to characterize gene expression differences associated with tissue originating from either living or postmortem subjects using snRNA-seq, and to assess whether and how such differences may impact snRNA-seq studies of brain tissue. To address this, human prefrontal cortex single nuclei gene expression was generated and compared between 31 samples from living individuals and 21 postmortem samples. The same cell types were consistently identified in living and postmortem nuclei, though for each cell type, a large proportion of genes were differentially expressed between samples from postmortem and living individuals. Notably, estimation of cell type proportions by cell type deconvolution of pseudo-bulk data was found to be more accurate in samples from living individuals. To allow for future integration of living and postmortem brain gene expression, a model was developed that quantifies from gene expression data the probability a human brain tissue sample was obtained postmortem. These probabilities are established as a means to statistically account for the gene expression differences between samples from living and postmortem individuals. Together, the results presented here provide a deep characterization of both differences between snRNA-seq derived from samples from living and postmortem individuals, as well as qualify and account for their effect on common analyses performed on this type of data.
Collapse
|
219
|
Renaut S, Saavedra Armero V, Boudreau DK, Gaudreault N, Desmeules P, Thériault S, Mathieu P, Joubert P, Bossé Y. Single-cell and single-nucleus RNA-sequencing from paired normal-adenocarcinoma lung samples provide both common and discordant biological insights. PLoS Genet 2024; 20:e1011301. [PMID: 38814983 PMCID: PMC11166281 DOI: 10.1371/journal.pgen.1011301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/11/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024] Open
Abstract
Whether single-cell RNA-sequencing (scRNA-seq) captures the same biological information as single-nucleus RNA-sequencing (snRNA-seq) remains uncertain and likely to be context-dependent. Herein, a head-to-head comparison was performed in matched normal-adenocarcinoma human lung samples to assess biological insights derived from scRNA-seq versus snRNA-seq and better understand the cellular transition that occurs from normal to tumoral tissue. Here, the transcriptome of 160,621 cells/nuclei was obtained. In non-tumor lung, cell type proportions varied widely between scRNA-seq and snRNA-seq with a predominance of immune cells in the former (81.5%) and epithelial cells (69.9%) in the later. Similar results were observed in adenocarcinomas, in addition to an overall increase in cell type heterogeneity and a greater prevalence of copy number variants in cells of epithelial origin, which suggests malignant assignment. The cell type transition that occurs from normal lung tissue to adenocarcinoma was not always concordant whether cells or nuclei were examined. As expected, large differential expression of the whole-cell and nuclear transcriptome was observed, but cell-type specific changes of paired normal and tumor lung samples revealed a set of common genes in the cells and nuclei involved in cancer-related pathways. In addition, we showed that the ligand-receptor interactome landscape of lung adenocarcinoma was largely different whether cells or nuclei were evaluated. Immune cell depletion in fresh specimens partly mitigated the difference in cell type composition observed between cells and nuclei. However, the extra manipulations affected cell viability and amplified the transcriptional signatures associated with stress responses. In conclusion, research applications focussing on mapping the immune landscape of lung adenocarcinoma benefit from scRNA-seq in fresh samples, whereas snRNA-seq of frozen samples provide a low-cost alternative to profile more epithelial and cancer cells, and yield cell type proportions that more closely match tissue content.
Collapse
Affiliation(s)
- Sébastien Renaut
- Institut universitaire de cardiologie et de pneumologie de Québec–Université Laval, Quebec City, Canada
| | - Victoria Saavedra Armero
- Institut universitaire de cardiologie et de pneumologie de Québec–Université Laval, Quebec City, Canada
| | - Dominique K. Boudreau
- Institut universitaire de cardiologie et de pneumologie de Québec–Université Laval, Quebec City, Canada
| | - Nathalie Gaudreault
- Institut universitaire de cardiologie et de pneumologie de Québec–Université Laval, Quebec City, Canada
| | - Patrice Desmeules
- Institut universitaire de cardiologie et de pneumologie de Québec–Université Laval, Quebec City, Canada
| | - Sébastien Thériault
- Institut universitaire de cardiologie et de pneumologie de Québec–Université Laval, Quebec City, Canada
| | - Patrick Mathieu
- Institut universitaire de cardiologie et de pneumologie de Québec–Université Laval, Quebec City, Canada
| | - Philippe Joubert
- Institut universitaire de cardiologie et de pneumologie de Québec–Université Laval, Quebec City, Canada
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec–Université Laval, Quebec City, Canada
- Department of Molecular Medicine, Université Laval, Quebec City, Canada
| |
Collapse
|
220
|
Sharma G, Sharma A, Kim I, Cha DG, Kim S, Park ES, Noh JG, Lee J, Ku JH, Choi YH, Kong J, Lee H, Ko H, Lee J, Notaro A, Hong SH, Rhee JH, Kim SG, De Castro C, Molinaro A, Shin K, Kim S, Kim JK, Rudra D, Im SH. A dietary commensal microbe enhances antitumor immunity by activating tumor macrophages to sequester iron. Nat Immunol 2024; 25:790-801. [PMID: 38664585 DOI: 10.1038/s41590-024-01816-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/13/2024] [Indexed: 05/04/2024]
Abstract
Innate immune cells generate a multifaceted antitumor immune response, including the conservation of essential nutrients such as iron. These cells can be modulated by commensal bacteria; however, identifying and understanding how this occurs is a challenge. Here we show that the food commensal Lactiplantibacillus plantarum IMB19 augments antitumor immunity in syngeneic and xenograft mouse tumor models. Its capsular heteropolysaccharide is the major effector molecule, functioning as a ligand for TLR2. In a two-pronged manner, it skews tumor-associated macrophages to a classically active phenotype, leading to generation of a sustained CD8+ T cell response, and triggers macrophage 'nutritional immunity' to deploy the high-affinity iron transporter lipocalin-2 for capturing and sequestering iron in the tumor microenvironment. This process induces a cycle of tumor cell death, epitope expansion and subsequent tumor clearance. Together these data indicate that food commensals might be identified and developed into 'oncobiotics' for a multi-layered approach to cancer therapy.
Collapse
Affiliation(s)
- Garima Sharma
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- ImmunoBiome, Bio Open Innovation Center, Pohang, Republic of Korea
| | - Amit Sharma
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Innovation Research Center for Bio-future Technology (B-IRC), Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Inhae Kim
- ImmunoBiome, Bio Open Innovation Center, Pohang, Republic of Korea
| | - Dong Gon Cha
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Somi Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Eun Seo Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Jae Gyun Noh
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Juhee Lee
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Ja Hyeon Ku
- Department of Urology, College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yoon Ha Choi
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - JungHo Kong
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Haena Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Haeun Ko
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Juhun Lee
- ImmunoBiome, Bio Open Innovation Center, Pohang, Republic of Korea
| | - Anna Notaro
- Department of Chemical Sciences, University of Napoli Federico II Complesso Universitario Monte Santangelo, Via Cintia 4, I-80126, Naples, Italy
| | - Seol Hee Hong
- Clinical Vaccine R&D Center and Combinatorial Tumor Immunotherapy MRC, Chonnam National University, Hwasun-gun, Republic of Korea
| | - Joon Haeng Rhee
- Clinical Vaccine R&D Center and Combinatorial Tumor Immunotherapy MRC, Chonnam National University, Hwasun-gun, Republic of Korea
| | - Sang Geon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University, Seoul, Republic of Korea
| | - Cristina De Castro
- Department of Chemical Sciences, University of Napoli Federico II Complesso Universitario Monte Santangelo, Via Cintia 4, I-80126, Naples, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Napoli Federico II Complesso Universitario Monte Santangelo, Via Cintia 4, I-80126, Naples, Italy
| | - Kunyoo Shin
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sanguk Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Jong Kyoung Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Dipayan Rudra
- ImmunoBiome, Bio Open Innovation Center, Pohang, Republic of Korea.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Sin-Hyeog Im
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
- ImmunoBiome, Bio Open Innovation Center, Pohang, Republic of Korea.
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
221
|
Wei C, Jiang W, Wang R, Zhong H, He H, Gao X, Zhong S, Yu F, Guo Q, Zhang L, Schiffelers LDJ, Zhou B, Trepel M, Schmidt FI, Luo M, Shao F. Brain endothelial GSDMD activation mediates inflammatory BBB breakdown. Nature 2024; 629:893-900. [PMID: 38632402 DOI: 10.1038/s41586-024-07314-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/14/2024] [Indexed: 04/19/2024]
Abstract
The blood-brain barrier (BBB) protects the central nervous system from infections or harmful substances1; its impairment can lead to or exacerbate various diseases of the central nervous system2-4. However, the mechanisms of BBB disruption during infection and inflammatory conditions5,6 remain poorly defined. Here we find that activation of the pore-forming protein GSDMD by the cytosolic lipopolysaccharide (LPS) sensor caspase-11 (refs. 7-9), but not by TLR4-induced cytokines, mediates BBB breakdown in response to circulating LPS or during LPS-induced sepsis. Mice deficient in the LBP-CD14 LPS transfer and internalization pathway10-12 resist BBB disruption. Single-cell RNA-sequencing analysis reveals that brain endothelial cells (bECs), which express high levels of GSDMD, have a prominent response to circulating LPS. LPS acting on bECs primes Casp11 and Cd14 expression and induces GSDMD-mediated plasma membrane permeabilization and pyroptosis in vitro and in mice. Electron microscopy shows that this features ultrastructural changes in the disrupted BBB, including pyroptotic endothelia, abnormal appearance of tight junctions and vasculature detachment from the basement membrane. Comprehensive mouse genetic analyses, combined with a bEC-targeting adeno-associated virus system, establish that GSDMD activation in bECs underlies BBB disruption by LPS. Delivery of active GSDMD into bECs bypasses LPS stimulation and opens the BBB. In CASP4-humanized mice, Gram-negative Klebsiella pneumoniae infection disrupts the BBB; this is blocked by expression of a GSDMD-neutralizing nanobody in bECs. Our findings outline a mechanism for inflammatory BBB breakdown, and suggest potential therapies for diseases of the central nervous system associated with BBB impairment.
Collapse
Affiliation(s)
- Chao Wei
- Chinese Institute for Brain Research, Beijing, P. R. China
| | - Wei Jiang
- National Institute of Biological Sciences, Beijing, P. R. China
- Research Unit of Pyroptosis and Immunity, Chinese Academy of Medical Sciences and National Institute of Biological Sciences, Beijing, P. R. China
| | - Ruiyu Wang
- National Institute of Biological Sciences, Beijing, P. R. China
| | - Haoyu Zhong
- National Institute of Biological Sciences, Beijing, P. R. China
| | - Huabin He
- National Institute of Biological Sciences, Beijing, P. R. China
- Research Unit of Pyroptosis and Immunity, Chinese Academy of Medical Sciences and National Institute of Biological Sciences, Beijing, P. R. China
| | - Xinwei Gao
- Chinese Institute for Brain Research, Beijing, P. R. China
| | - Shilin Zhong
- National Institute of Biological Sciences, Beijing, P. R. China
| | - Fengting Yu
- Chinese Institute for Brain Research, Beijing, P. R. China
| | - Qingchun Guo
- Chinese Institute for Brain Research, Beijing, P. R. China
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing, P. R. China
| | - Lisa D J Schiffelers
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Bin Zhou
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Martin Trepel
- Department of Hematology and Medical Oncology, University Medical Center Augsburg, Augsburg, Germany
| | - Florian I Schmidt
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Minmin Luo
- Chinese Institute for Brain Research, Beijing, P. R. China.
- National Institute of Biological Sciences, Beijing, P. R. China.
- Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing, P. R. China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, P. R. China.
- New Cornerstone Science Laboratory, Shenzhen, P. R. China.
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, P. R. China.
- Research Unit of Pyroptosis and Immunity, Chinese Academy of Medical Sciences and National Institute of Biological Sciences, Beijing, P. R. China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, P. R. China.
- New Cornerstone Science Laboratory, Shenzhen, P. R. China.
- Changping Laboratory, Beijing, P. R. China.
| |
Collapse
|
222
|
Kerwin RE, Hart JE, Fiesel PD, Lou YR, Fan P, Jones AD, Last RL. Tomato root specialized metabolites evolved through gene duplication and regulatory divergence within a biosynthetic gene cluster. SCIENCE ADVANCES 2024; 10:eadn3991. [PMID: 38657073 PMCID: PMC11094762 DOI: 10.1126/sciadv.adn3991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/20/2024] [Indexed: 04/26/2024]
Abstract
Tremendous plant metabolic diversity arises from phylogenetically restricted specialized metabolic pathways. Specialized metabolites are synthesized in dedicated cells or tissues, with pathway genes sometimes colocalizing in biosynthetic gene clusters (BGCs). However, the mechanisms by which spatial expression patterns arise and the role of BGCs in pathway evolution remain underappreciated. In this study, we investigated the mechanisms driving acylsugar evolution in the Solanaceae. Previously thought to be restricted to glandular trichomes, acylsugars were recently found in cultivated tomato roots. We demonstrated that acylsugars in cultivated tomato roots and trichomes have different sugar cores, identified root-enriched paralogs of trichome acylsugar pathway genes, and characterized a key paralog required for root acylsugar biosynthesis, SlASAT1-LIKE (SlASAT1-L), which is nested within a previously reported trichome acylsugar BGC. Last, we provided evidence that ASAT1-L arose through duplication of its paralog, ASAT1, and was trichome-expressed before acquiring root-specific expression in the Solanum genus. Our results illuminate the genomic context and molecular mechanisms underpinning metabolic diversity in plants.
Collapse
Affiliation(s)
- Rachel E. Kerwin
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Jaynee E. Hart
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Paul D. Fiesel
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Yann-Ru Lou
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, University of California, Davis, Davis, CA 95616, USA
| | - Pengxiang Fan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - A. Daniel Jones
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Robert L. Last
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
223
|
Lindeman I, Høydahl LS, Christophersen A, Risnes LF, Jahnsen J, Lundin KEA, Sollid LM, Iversen R. Generation of circulating autoreactive pre-plasma cells fueled by naive B cells in celiac disease. Cell Rep 2024; 43:114045. [PMID: 38578826 DOI: 10.1016/j.celrep.2024.114045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/22/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024] Open
Abstract
Autoantibodies against the enzyme transglutaminase 2 (TG2) are characteristic of celiac disease (CeD), and TG2-specific immunoglobulin (Ig) A plasma cells are abundant in gut biopsies of patients. Here, we describe the corresponding population of autoreactive B cells in blood. Circulating TG2-specific IgA cells are present in untreated patients on a gluten-containing diet but not in controls. They are clonally related to TG2-specific small intestinal plasma cells, and they express gut-homing molecules, indicating that they are plasma cell precursors. Unlike other IgA-switched cells, the TG2-specific cells are negative for CD27, placing them in the double-negative (IgD-CD27-) category. They have a plasmablast or activated memory B cell phenotype, and they harbor fewer variable region mutations than other IgA cells. Based on their similarity to naive B cells, we propose that autoreactive IgA cells in CeD are generated mainly through chronic recruitment of naive B cells via an extrafollicular response involving gluten-specific CD4+ T cells.
Collapse
Affiliation(s)
- Ida Lindeman
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Lene S Høydahl
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Asbjørn Christophersen
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Louise F Risnes
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Jørgen Jahnsen
- Department of Gastroenterology, Akershus University Hospital, Lørenskog, Norway
| | - Knut E A Lundin
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Gastroenterology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Ludvig M Sollid
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Rasmus Iversen
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway.
| |
Collapse
|
224
|
Wang L, Liu Y, Tai J, Dou X, Yang H, Li Q, Liu J, Yan Z, Liu X. Transcriptome and single-cell analysis reveal disulfidptosis-related modification patterns of tumor microenvironment and prognosis in osteosarcoma. Sci Rep 2024; 14:9186. [PMID: 38649690 PMCID: PMC11035678 DOI: 10.1038/s41598-024-59243-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/08/2024] [Indexed: 04/25/2024] Open
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor with high pathological heterogeneity. Our study aimed to investigate disulfidptosis-related modification patterns in OS and their relationship with survival outcomes in patients with OS. We analyzed the single-cell-level expression profiles of disulfidptosis-related genes (DSRGs) in both OS microenvironment and OS subclusters, and HMGB1 was found to be crucial for intercellular regulation of OS disulfidptosis. Next, we explored the molecular clusters of OS based on DSRGs and related immune cell infiltration using transcriptome data. Subsequently, the hub genes of disulfidptosis in OS were screened by applying multiple machine models. In vitro and patient experiments validated our results. Three main disulfidptosis-related molecular clusters were defined in OS, and immune infiltration analysis suggested high immune heterogeneity between distinct clusters. The in vitro experiment confirmed decreased cell viability of OS after ACTB silencing and higher expression of ACTB in patients with lower immune scores. Our study systematically revealed the underlying relationship between disulfidptosis and OS at the single-cell level, identified disulfidptosis-related subtypes, and revealed the potential role of ACTB expression in OS disulfidptosis.
Collapse
Affiliation(s)
- Linbang Wang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, People's Republic of China
| | - Yu Liu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, People's Republic of China
| | - Jiaojiao Tai
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, No. 555, Youyi Road, Beilin District, Xi'an, 710054, Shaanxi, People's Republic of China
| | - Xinyu Dou
- Department of Orthopaedics, Peking University Third Hospital, Beijing, People's Republic of China
| | - Hongjuan Yang
- School of Foreign Studies, Xi'an Medical University, Xi'an, 710054, Shaanxi, People's Republic of China
| | - Qiaochu Li
- Department of Orthopedic Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jingkun Liu
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, No. 555, Youyi Road, Beilin District, Xi'an, 710054, Shaanxi, People's Republic of China.
| | - Ziqiang Yan
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, No. 555, Youyi Road, Beilin District, Xi'an, 710054, Shaanxi, People's Republic of China.
| | - Xiaoguang Liu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, People's Republic of China.
| |
Collapse
|
225
|
Larouche JD, Laumont CM, Trofimov A, Vincent K, Hesnard L, Brochu S, Côté C, Humeau JF, Bonneil É, Lanoix J, Durette C, Gendron P, Laverdure JP, Richie ER, Lemieux S, Thibault P, Perreault C. Transposable elements regulate thymus development and function. eLife 2024; 12:RP91037. [PMID: 38635416 PMCID: PMC11026094 DOI: 10.7554/elife.91037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
Transposable elements (TEs) are repetitive sequences representing ~45% of the human and mouse genomes and are highly expressed by medullary thymic epithelial cells (mTECs). In this study, we investigated the role of TEs on T-cell development in the thymus. We performed multiomic analyses of TEs in human and mouse thymic cells to elucidate their role in T-cell development. We report that TE expression in the human thymus is high and shows extensive age- and cell lineage-related variations. TE expression correlates with multiple transcription factors in all cell types of the human thymus. Two cell types express particularly broad TE repertoires: mTECs and plasmacytoid dendritic cells (pDCs). In mTECs, transcriptomic data suggest that TEs interact with transcription factors essential for mTEC development and function (e.g., PAX1 and REL), and immunopeptidomic data showed that TEs generate MHC-I-associated peptides implicated in thymocyte education. Notably, AIRE, FEZF2, and CHD4 regulate small yet non-redundant sets of TEs in murine mTECs. Human thymic pDCs homogenously express large numbers of TEs that likely form dsRNA, which can activate innate immune receptors, potentially explaining why thymic pDCs constitutively secrete IFN ɑ/β. This study highlights the diversity of interactions between TEs and the adaptive immune system. TEs are genetic parasites, and the two thymic cell types most affected by TEs (mTEcs and pDCs) are essential to establishing central T-cell tolerance. Therefore, we propose that orchestrating TE expression in thymic cells is critical to prevent autoimmunity in vertebrates.
Collapse
Affiliation(s)
- Jean-David Larouche
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
- Department of Medicine, Université de MontréalMontréalCanada
| | - Céline M Laumont
- Deeley Research Centre, BC CancerVictoriaCanada
- Department of Medical Genetics, University of British ColumbiaVancouverCanada
| | - Assya Trofimov
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
- Department of Computer Science and Operations Research, Université de MontréalMontréalCanada
- Fred Hutchinson Cancer CenterSeattleUnited States
- Department of Physics, University of WashingtonSeattleUnited States
| | - Krystel Vincent
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
| | - Leslie Hesnard
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
| | - Sylvie Brochu
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
| | - Caroline Côté
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
| | - Juliette F Humeau
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
| | - Éric Bonneil
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
| | - Joel Lanoix
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
| | - Chantal Durette
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
| | - Patrick Gendron
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
| | | | - Ellen R Richie
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer CenterHoustonUnited States
| | - Sébastien Lemieux
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
- Department of Biochemistry and Molecular Medicine, Université de MontréalMontrealCanada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
- Department of Chemistry, Université de MontréalMontréalCanada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
- Department of Medicine, Université de MontréalMontréalCanada
| |
Collapse
|
226
|
Lando D, Ma X, Cao Y, Jartseva A, Stevens TJ, Boucher W, Reynolds N, Montibus B, Hall D, Lackner A, Ragheb R, Leeb M, Hendrich BD, Laue ED. Enhancer-promoter interactions are reconfigured through the formation of long-range multiway hubs as mouse ES cells exit pluripotency. Mol Cell 2024; 84:1406-1421.e8. [PMID: 38490199 PMCID: PMC7616059 DOI: 10.1016/j.molcel.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 12/19/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024]
Abstract
Enhancers bind transcription factors, chromatin regulators, and non-coding transcripts to modulate the expression of target genes. Here, we report 3D genome structures of single mouse ES cells as they are induced to exit pluripotency and transition through a formative stage prior to undergoing neuroectodermal differentiation. We find that there is a remarkable reorganization of 3D genome structure where inter-chromosomal intermingling increases dramatically in the formative state. This intermingling is associated with the formation of a large number of multiway hubs that bring together enhancers and promoters with similar chromatin states from typically 5-8 distant chromosomal sites that are often separated by many Mb from each other. In the formative state, genes important for pluripotency exit establish contacts with emerging enhancers within these multiway hubs, suggesting that the structural changes we have observed may play an important role in modulating transcription and establishing new cell identities.
Collapse
Affiliation(s)
- David Lando
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Xiaoyan Ma
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Yang Cao
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | | | - Tim J Stevens
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Wayne Boucher
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Nicola Reynolds
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, UK
| | - Bertille Montibus
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, UK
| | - Dominic Hall
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK; Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, UK
| | - Andreas Lackner
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Ramy Ragheb
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, UK
| | - Martin Leeb
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Brian D Hendrich
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK; Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, UK.
| | - Ernest D Laue
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK; Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, UK.
| |
Collapse
|
227
|
Wei Y, Lei J, Peng Y, Chang H, Luo T, Tang Y, Wang L, Wen H, Volpe G, Liu L, Han L. Expression characteristics and potential function of non-coding RNA in mouse cortical cells. Front Mol Neurosci 2024; 17:1365978. [PMID: 38660385 PMCID: PMC11040102 DOI: 10.3389/fnmol.2024.1365978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Non-coding RNAs (ncRNAs) play essential regulatory functions in various physiological and pathological processes in the brain. To systematically characterize the ncRNA profile in cortical cells, we downloaded single-cell SMART-Seq v4 data of mouse cerebral cortex. Our results revealed that the ncRNAs alone are sufficient to define the identity of most cortical cell types. We identified 1,600 ncRNAs that exhibited cell type specificity, even yielding to distinguish microglia from perivascular macrophages with ncRNA. Moreover, we characterized cortical layer and region specific ncRNAs, in line with the results by spatial transcriptome (ST) data. By constructing a co-expression network of ncRNAs and protein-coding genes, we predicted the function of ncRNAs. By integrating with genome-wide association studies data, we established associations between cell type-specific ncRNAs and traits related to neurological disorders. Collectively, our study identified differentially expressed ncRNAs at multiple levels and provided the valuable resource to explore the functions and dysfunctions of ncRNAs in cortical cells.
Collapse
Affiliation(s)
- Yanrong Wei
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI Research, Hangzhou, China
| | - Junjie Lei
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI Research, Hangzhou, China
| | | | | | | | - Yuanchun Tang
- BGI Research, Hangzhou, China
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | | | - Huiying Wen
- BGI Research, Hangzhou, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Giacomo Volpe
- Hematology and Cell Therapy Unit, IRCCS–Istituto Tumori ‘Giovanni Paolo II’, Bari, Italy
| | - Longqi Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI Research, Hangzhou, China
| | - Lei Han
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| |
Collapse
|
228
|
Maden SK, Huuki-Myers LA, Kwon SH, Collado-Torres L, Maynard KR, Hicks SC. lute: estimating the cell composition of heterogeneous tissue with varying cell sizes using gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588105. [PMID: 38617294 PMCID: PMC11014536 DOI: 10.1101/2024.04.04.588105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Relative cell type fraction estimates in bulk RNA-sequencing data are important to control for cell composition differences across heterogenous tissue samples. Current computational tools estimate relative RNA abundances rather than cell type proportions in tissues with varying cell sizes, leading to biased estimates. We present lute, a computational tool to accurately deconvolute cell types with varying sizes. Our software wraps existing deconvolution algorithms in a standardized framework. Using simulated and real datasets, we demonstrate how lute adjusts for differences in cell sizes to improve the accuracy of cell composition. Software is available from https://bioconductor.org/packages/lute.
Collapse
Affiliation(s)
- Sean K. Maden
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Louise A. Huuki-Myers
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Sang Ho Kwon
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Leonardo Collado-Torres
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Kristen R. Maynard
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Stephanie C. Hicks
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
229
|
Wachter A, Woodbury ME, Lombardo S, Abdourahman A, Wuest C, McGlame E, Pastika T, Tamm J, Romanul N, Yanamandra K, Bennett R, Lin G, Kwon T, Liao F, Klein C, Grinberg Y, Jaisa-Aad M, Li H, Frosch MP, Kummer MP, Das S, Dellovade T, Karran EH, Langlois X, Ried JS, Serrano-Pozo A, Talanian RV, Biber K, Hyman BT. Landscape of brain myeloid cell transcriptome along the spatiotemporal progression of Alzheimer's disease reveals distinct sequential responses to Aβ and tau. Acta Neuropathol 2024; 147:65. [PMID: 38557897 PMCID: PMC10984903 DOI: 10.1007/s00401-024-02704-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/01/2024] [Accepted: 02/10/2024] [Indexed: 04/04/2024]
Abstract
Human microglia are critically involved in Alzheimer's disease (AD) progression, as shown by genetic and molecular studies. However, their role in tau pathology progression in human brain has not been well described. Here, we characterized 32 human donors along progression of AD pathology, both in time-from early to late pathology-and in space-from entorhinal cortex (EC), inferior temporal gyrus (ITG), prefrontal cortex (PFC) to visual cortex (V2 and V1)-with biochemistry, immunohistochemistry, and single nuclei-RNA-sequencing, profiling a total of 337,512 brain myeloid cells, including microglia. While the majority of microglia are similar across brain regions, we identified a specific subset unique to EC which may contribute to the early tau pathology present in this region. We calculated conversion of microglia subtypes to diseased states and compared conversion patterns to those from AD animal models. Targeting genes implicated in this conversion, or their upstream/downstream pathways, could halt gene programs initiated by early tau progression. We used expression patterns of early tau progression to identify genes whose expression is reversed along spreading of spatial tau pathology (EC > ITG > PFC > V2 > V1) and identified their potential involvement in microglia subtype conversion to a diseased state. This study provides a data resource that builds on our knowledge of myeloid cell contribution to AD by defining the heterogeneity of microglia and brain macrophages during both temporal and regional pathology aspects of AD progression at an unprecedented resolution.
Collapse
Affiliation(s)
| | | | | | | | - Carolin Wuest
- AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany
| | | | | | | | | | | | - Rachel Bennett
- Massachusetts General Hospital, Boston, USA
- Harvard Medical School, Boston, USA
| | - Gen Lin
- AbbVie Pte Ltd, Singapore, Singapore
| | | | | | - Corinna Klein
- AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany
| | | | - Methasit Jaisa-Aad
- Massachusetts General Hospital, Boston, USA
- Harvard Medical School, Boston, USA
| | - Huan Li
- Massachusetts General Hospital, Boston, USA
- Harvard Medical School, Boston, USA
| | - Matthew P Frosch
- Massachusetts General Hospital, Boston, USA
- Harvard Medical School, Boston, USA
- Massachusetts Alzheimer's Disease Research Center, Charlestown, USA
| | | | - Sudeshna Das
- Massachusetts General Hospital, Boston, USA
- Harvard Medical School, Boston, USA
- Massachusetts Alzheimer's Disease Research Center, Charlestown, USA
| | | | | | | | - Janina S Ried
- AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany
| | - Alberto Serrano-Pozo
- Massachusetts General Hospital, Boston, USA
- Harvard Medical School, Boston, USA
- Massachusetts Alzheimer's Disease Research Center, Charlestown, USA
| | | | - Knut Biber
- AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany
| | - Bradley T Hyman
- Massachusetts General Hospital, Boston, USA
- Harvard Medical School, Boston, USA
- Massachusetts Alzheimer's Disease Research Center, Charlestown, USA
| |
Collapse
|
230
|
Mitra S, Malik R, Wong W, Rahman A, Hartemink AJ, Pritykin Y, Dey KK, Leslie CS. Single-cell multi-ome regression models identify functional and disease-associated enhancers and enable chromatin potential analysis. Nat Genet 2024; 56:627-636. [PMID: 38514783 PMCID: PMC11018525 DOI: 10.1038/s41588-024-01689-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 02/14/2024] [Indexed: 03/23/2024]
Abstract
We present a gene-level regulatory model, single-cell ATAC + RNA linking (SCARlink), which predicts single-cell gene expression and links enhancers to target genes using multi-ome (scRNA-seq and scATAC-seq co-assay) sequencing data. The approach uses regularized Poisson regression on tile-level accessibility data to jointly model all regulatory effects at a gene locus, avoiding the limitations of pairwise gene-peak correlations and dependence on peak calling. SCARlink outperformed existing gene scoring methods for imputing gene expression from chromatin accessibility across high-coverage multi-ome datasets while giving comparable to improved performance on low-coverage datasets. Shapley value analysis on trained models identified cell-type-specific gene enhancers that are validated by promoter capture Hi-C and are 11× to 15× and 5× to 12× enriched in fine-mapped eQTLs and fine-mapped genome-wide association study (GWAS) variants, respectively. We further show that SCARlink-predicted and observed gene expression vectors provide a robust way to compute a chromatin potential vector field to enable developmental trajectory analysis.
Collapse
Affiliation(s)
- Sneha Mitra
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | | | - Wilfred Wong
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, New York City, NY, USA
| | - Afsana Rahman
- Hunter College, City University of New York, New York City, NY, USA
| | - Alexander J Hartemink
- Department of Computer Science, Duke University, Durham, NC, USA
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Yuri Pritykin
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Department of Computer Science, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Kushal K Dey
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York City, NY, USA.
| | - Christina S Leslie
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York City, NY, USA.
| |
Collapse
|
231
|
Nielsen SSR, Pedersen JAZ, Sharma N, Wasehuus PK, Hansen MS, Møller AMJ, Borggaard XG, Rauch A, Frost M, Sondergaard TE, Søe K. Human osteoclasts in vitro are dose dependently both inhibited and stimulated by cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC). Bone 2024; 181:117035. [PMID: 38342278 DOI: 10.1016/j.bone.2024.117035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/12/2024] [Accepted: 01/31/2024] [Indexed: 02/13/2024]
Abstract
Legalized use of cannabis for medical or recreational use is becoming more and more common. With respect to potential side-effects on bone health only few clinical trials have been conducted - and with opposing results. Therefore, it seems that there is a need for more knowledge on the potential effects of cannabinoids on human bone cells. We studied the effect of cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC) (dose range from 0.3 to 30 μM) on human osteoclasts in mono- as well as in co-cultures with human osteoblast lineage cells. We have used CD14+ monocytes from anonymous blood donors to differentiate into osteoclasts, and human osteoblast lineage cells from outgrowths of human trabecular bone. Our results show that THC and CBD have dose-dependent effects on both human osteoclast fusion and bone resorption. In the lower dose ranges of THC and CBD, osteoclast fusion was unaffected while bone resorption was increased. At higher doses, both osteoclast fusion and bone resorption were inhibited. In co-cultures, both osteoclastic bone resorption and alkaline phosphatase activity of the osteoblast lineage cells were inhibited. Finally, we observed that the cannabinoid receptor CNR2 is more highly expressed than CNR1 in CD14+ monocytes and pre-osteoclasts, but also that differentiation to osteoclasts was coupled to a reduced expression of CNR2, in particular. Interestingly, under co-culture conditions, we only detected the expression of CNR2 but not CNR1 for both osteoclast as well as osteoblast lineage nuclei. In line with the existing literature on the effect of cannabinoids on bone cells, our current study shows both stimulatory and inhibitory effects. This highlights that potential unfavorable effects of cannabinoids on bone cells and bone health is a complex matter. The contradictory and lacking documentation for such potential unfavorable effects on bone health as well as other potential effects, should be taken into consideration when considering the use of cannabinoids for both medical and recreational use.
Collapse
Affiliation(s)
- Simone S R Nielsen
- Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark; Department of Pathology, Odense University Hospital, J.B. Winsløws Vej 15, 5000 Odense C, Denmark.
| | - Juliana A Z Pedersen
- Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark; Department of Pathology, Odense University Hospital, J.B. Winsløws Vej 15, 5000 Odense C, Denmark.
| | - Neha Sharma
- Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark; Department of Pathology, Odense University Hospital, J.B. Winsløws Vej 15, 5000 Odense C, Denmark; Department of Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Pernille K Wasehuus
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Morten S Hansen
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, J.B. Winsløws Vej 4, 5000 Odense C, Denmark; Department of Clinical Research, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Anaïs M J Møller
- Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark; Department of Clinical Biochemistry and Immunology, Lillebaelt Hospital, University Hospital of Southern Denmark, Kabbeltoft 25, 7100 Vejle, Denmark.
| | - Xenia G Borggaard
- Department of Pathology, Odense University Hospital, J.B. Winsløws Vej 15, 5000 Odense C, Denmark; Molecular Bone Histology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Alexander Rauch
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, J.B. Winsløws Vej 4, 5000 Odense C, Denmark; Department of Clinical Research, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark; Steno Diabetes Centre Odense, Odense University Hospital, Kløvervænget 10, 5000 Odense C, Denmark.
| | - Morten Frost
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, J.B. Winsløws Vej 4, 5000 Odense C, Denmark; Department of Clinical Research, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark; Steno Diabetes Centre Odense, Odense University Hospital, Kløvervænget 10, 5000 Odense C, Denmark.
| | - Teis E Sondergaard
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark.
| | - Kent Søe
- Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark; Department of Pathology, Odense University Hospital, J.B. Winsløws Vej 15, 5000 Odense C, Denmark; Department of Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| |
Collapse
|
232
|
Ye X, Shih DJH, Ku Z, Hong J, Barrett DF, Rupp RE, Zhang N, Fu TM, Zheng WJ, An Z. Transcriptional signature of durable effector T cells elicited by a replication defective HCMV vaccine. NPJ Vaccines 2024; 9:70. [PMID: 38561339 PMCID: PMC10984989 DOI: 10.1038/s41541-024-00860-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Human cytomegalovirus (HCMV) is a leading infectious cause of birth defects and the most common opportunistic infection that causes life-threatening diseases post-transplantation; however, an effective vaccine remains elusive. V160 is a live-attenuated replication defective HCMV vaccine that showed a 42.4% efficacy against primary HCMV infection among seronegative women in a phase 2b clinical trial. Here, we integrated the multicolor flow cytometry, longitudinal T cell receptor (TCR) sequencing, and single-cell RNA/TCR sequencing approaches to characterize the magnitude, phenotype, and functional quality of human T cell responses to V160. We demonstrated that V160 de novo induces IE-1 and pp65 specific durable polyfunctional effector CD8 T cells that are comparable to those induced by natural HCMV infection. We identified a variety of V160-responsive T cell clones which exhibit distinctive "transient" and "durable" expansion kinetics, and revealed a transcriptional signature that marks durable CD8 T cells post-vaccination. Our study enhances the understanding of human T-cell immune responses to V160 vaccination.
Collapse
Affiliation(s)
- Xiaohua Ye
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Infectious Disease Research, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - David J H Shih
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Zhiqiang Ku
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Junping Hong
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Diane F Barrett
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Richard E Rupp
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Tong-Ming Fu
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - W Jim Zheng
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
233
|
Choi C, Jeong YL, Park KM, Kim M, Kim S, Jo H, Lee S, Kim H, Choi G, Choi YH, Seong JK, Namgoong S, Chung Y, Jung YS, Granneman JG, Hyun YM, Kim JK, Lee YH. TM4SF19-mediated control of lysosomal activity in macrophages contributes to obesity-induced inflammation and metabolic dysfunction. Nat Commun 2024; 15:2779. [PMID: 38555350 PMCID: PMC10981689 DOI: 10.1038/s41467-024-47108-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
Adipose tissue (AT) adapts to overnutrition in a complex process, wherein specialized immune cells remove and replace dysfunctional and stressed adipocytes with new fat cells. Among immune cells recruited to AT, lipid-associated macrophages (LAMs) have emerged as key players in obesity and in diseases involving lipid stress and inflammation. Here, we show that LAMs selectively express transmembrane 4 L six family member 19 (TM4SF19), a lysosomal protein that represses acidification through its interaction with Vacuolar-ATPase. Inactivation of TM4SF19 elevates lysosomal acidification and accelerates the clearance of dying/dead adipocytes in vitro and in vivo. TM4SF19 deletion reduces the LAM accumulation and increases the proportion of restorative macrophages in AT of male mice fed a high-fat diet. Importantly, male mice lacking TM4SF19 adapt to high-fat feeding through adipocyte hyperplasia, rather than hypertrophy. This adaptation significantly improves local and systemic insulin sensitivity, and energy expenditure, offering a potential avenue to combat obesity-related metabolic dysfunction.
Collapse
Affiliation(s)
- Cheoljun Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yujin L Jeong
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Koung-Min Park
- Department of Anatomy and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Minji Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sangseob Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Honghyun Jo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sumin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Heeseong Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Garam Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yoon Ha Choi
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center (KMPC), and Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Sik Namgoong
- Department of Plastic Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yeonseok Chung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young-Suk Jung
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea.
| | - James G Granneman
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.
| | - Young-Min Hyun
- Department of Anatomy and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Jong Kyoung Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| | - Yun-Hee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
234
|
Smith JJ, Taylor SR, Blum JA, Feng W, Collings R, Gitler AD, Miller DM, Kratsios P. A molecular atlas of adult C. elegans motor neurons reveals ancient diversity delineated by conserved transcription factor codes. Cell Rep 2024; 43:113857. [PMID: 38421866 PMCID: PMC11091551 DOI: 10.1016/j.celrep.2024.113857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/17/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
Motor neurons (MNs) constitute an ancient cell type targeted by multiple adult-onset diseases. It is therefore important to define the molecular makeup of adult MNs in animal models and extract organizing principles. Here, we generate a comprehensive molecular atlas of adult Caenorhabditis elegans MNs and a searchable database. Single-cell RNA sequencing of 13,200 cells reveals that ventral nerve cord MNs cluster into 29 molecularly distinct subclasses. Extending C. elegans Neuronal Gene Expression Map and Network (CeNGEN) findings, all MN subclasses are delineated by distinct expression codes of either neuropeptide or transcription factor gene families. Strikingly, combinatorial codes of homeodomain transcription factor genes succinctly delineate adult MN diversity in both C. elegans and mice. Further, molecularly defined MN subclasses in C. elegans display distinct patterns of connectivity. Hence, our study couples the connectivity map of the C. elegans motor circuit with a molecular atlas of its constituent MNs and uncovers organizing principles and conserved molecular codes of adult MN diversity.
Collapse
Affiliation(s)
- Jayson J Smith
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA; University of Chicago Neuroscience Institute, Chicago, IL 60637, USA
| | - Seth R Taylor
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA; Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Jacob A Blum
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Weidong Feng
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA; University of Chicago Neuroscience Institute, Chicago, IL 60637, USA
| | - Rebecca Collings
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - David M Miller
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA; Program in Neuroscience, Vanderbilt University, Nashville, TN 37240, USA.
| | - Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA; University of Chicago Neuroscience Institute, Chicago, IL 60637, USA.
| |
Collapse
|
235
|
Baker GJ, Novikov E, Zhao Z, Vallius T, Davis JA, Lin JR, Muhlich JL, Mittendorf EA, Santagata S, Guerriero JL, Sorger PK. Quality Control for Single Cell Analysis of High-plex Tissue Profiles using CyLinter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.01.565120. [PMID: 37961235 PMCID: PMC10634977 DOI: 10.1101/2023.11.01.565120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Tumors are complex assemblies of cellular and acellular structures patterned on spatial scales from microns to centimeters. Study of these assemblies has advanced dramatically with the introduction of high-plex spatial profiling. Image-based profiling methods reveal the intensities and spatial distributions of 20-100 proteins at subcellular resolution in 103-107 cells per specimen. Despite extensive work on methods for extracting single-cell data from these images, all tissue images contain artefacts such as folds, debris, antibody aggregates, optical aberrations and image processing errors that arise from imperfections in specimen preparation, data acquisition, image assembly, and feature extraction. We show that these artefacts dramatically impact single-cell data analysis, obscuring meaningful biological interpretation. We describe an interactive quality control software tool, CyLinter, that identifies and removes data associated with imaging artefacts. CyLinter greatly improves single-cell analysis, especially for archival specimens sectioned many years prior to data collection, such as those from clinical trials.
Collapse
Affiliation(s)
- Gregory J. Baker
- Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA
- Laboratory of Systems Pharmacology, Program in Therapeutic Science, Harvard Medical School, Boston, MA
- Department of Systems Biology, Harvard Medical School, Boston, MA
| | - Edward Novikov
- Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA
- Laboratory of Systems Pharmacology, Program in Therapeutic Science, Harvard Medical School, Boston, MA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
| | - Ziyuan Zhao
- Systems, Synthetic, and Quantitative Biology Program, Harvard University, Cambridge, MA
| | - Tuulia Vallius
- Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA
- Laboratory of Systems Pharmacology, Program in Therapeutic Science, Harvard Medical School, Boston, MA
| | - Janae A. Davis
- Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA
| | - Jia-Ren Lin
- Laboratory of Systems Pharmacology, Program in Therapeutic Science, Harvard Medical School, Boston, MA
| | - Jeremy L. Muhlich
- Laboratory of Systems Pharmacology, Program in Therapeutic Science, Harvard Medical School, Boston, MA
| | - Elizabeth A. Mittendorf
- Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA
- Breast Oncology Program, Dana-Farber/Brigham and Women’s Cancer Center, Boston, MA
- Division of Breast Surgery, Department of Surgery, Brigham and Women’s Hospital, Boston, MA
| | - Sandro Santagata
- Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA
- Laboratory of Systems Pharmacology, Program in Therapeutic Science, Harvard Medical School, Boston, MA
- Department of Systems Biology, Harvard Medical School, Boston, MA
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Jennifer L. Guerriero
- Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA
- Laboratory of Systems Pharmacology, Program in Therapeutic Science, Harvard Medical School, Boston, MA
- Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA
- Breast Oncology Program, Dana-Farber/Brigham and Women’s Cancer Center, Boston, MA
- Division of Breast Surgery, Department of Surgery, Brigham and Women’s Hospital, Boston, MA
| | - Peter K. Sorger
- Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA
- Laboratory of Systems Pharmacology, Program in Therapeutic Science, Harvard Medical School, Boston, MA
- Department of Systems Biology, Harvard Medical School, Boston, MA
| |
Collapse
|
236
|
Tien JCY, Chang Y, Zhang Y, Chou J, Cheng Y, Wang X, Yang J, Mannan R, Shah P, Wang XM, Todd AJ, Eyunni S, Cheng C, Rebernick RJ, Xiao L, Bao Y, Neiswender J, Brough R, Pettitt SJ, Cao X, Miner SJ, Zhou L, Wu YM, Labanca E, Wang Y, Parolia A, Cieslik M, Robinson DR, Wang Z, Feng FY, Lord CJ, Ding K, Chinnaiyan AM. CDK12 Loss Promotes Prostate Cancer Development While Exposing Vulnerabilities to Paralog-Based Synthetic Lethality. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585990. [PMID: 38562774 PMCID: PMC10983964 DOI: 10.1101/2024.03.20.585990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Biallelic loss of cyclin-dependent kinase 12 (CDK12) defines a unique molecular subtype of metastatic castration-resistant prostate cancer (mCRPC). It remains unclear, however, whether CDK12 loss per se is sufficient to drive prostate cancer development-either alone, or in the context of other genetic alterations-and whether CDK12-mutant tumors exhibit sensitivity to specific pharmacotherapies. Here, we demonstrate that tissue-specific Cdk12 ablation is sufficient to induce preneoplastic lesions and robust T cell infiltration in the mouse prostate. Allograft-based CRISPR screening demonstrated that Cdk12 loss is positively associated with Trp53 inactivation but negatively associated with Pten inactivation-akin to what is observed in human mCRPC. Consistent with this, ablation of Cdk12 in prostate organoids with concurrent Trp53 loss promotes their proliferation and ability to form tumors in mice, while Cdk12 knockout in the Pten-null prostate cancer mouse model abrogates tumor growth. Bigenic Cdk12 and Trp53 loss allografts represent a new syngeneic model for the study of androgen receptor (AR)-positive, luminal prostate cancer. Notably, Cdk12/Trp53 loss prostate tumors are sensitive to immune checkpoint blockade. Cdk12-null organoids (either with or without Trp53 co-ablation) and patient-derived xenografts from tumors with CDK12 inactivation are highly sensitive to inhibition or degradation of its paralog kinase, CDK13. Together, these data identify CDK12 as a bona fide tumor suppressor gene with impact on tumor progression and lends support to paralog-based synthetic lethality as a promising strategy for treating CDK12-mutant mCRPC.
Collapse
Affiliation(s)
- Jean Ching-Yi Tien
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yu Chang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- These authors contributed equally to this work
| | - Yuping Zhang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- These authors contributed equally to this work
| | - Jonathan Chou
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
- These authors contributed equally to this work
| | - Yunhui Cheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- These authors contributed equally to this work
| | - Xiaoju Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Jianzhang Yang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People’s Republic of China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, College of Pharmacy, Jinan University, Guangzhou 511400, People’s Republic of China
| | - Rahul Mannan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Palak Shah
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Xiao-Ming Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Abigail J. Todd
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Sanjana Eyunni
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Caleb Cheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Ryan J. Rebernick
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Lanbo Xiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yi Bao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - James Neiswender
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Rachel Brough
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Stephen J. Pettitt
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Stephanie J. Miner
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Licheng Zhou
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People’s Republic of China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, College of Pharmacy, Jinan University, Guangzhou 511400, People’s Republic of China
| | - Yi-Mi Wu
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Estefania Labanca
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancer, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver General Hospital and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, V6H 3Z6, Canada
| | - Abhijit Parolia
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Marcin Cieslik
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Dan R. Robinson
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Zhen Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People’s Republic of China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, College of Pharmacy, Jinan University, Guangzhou 511400, People’s Republic of China
| | - Felix Y. Feng
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
- Departments of Radiation Oncology and Urology, University of California, San Francisco, CA, USA
| | - Christopher J. Lord
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Ke Ding
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People’s Republic of China
| | - Arul M. Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Lead contact
| |
Collapse
|
237
|
Fiesel PD, Kerwin RE, Daniel Jones A, Last RL. Trading acyls and swapping sugars: metabolic innovations in Solanum trichomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.05.542877. [PMID: 37333341 PMCID: PMC10274652 DOI: 10.1101/2023.06.05.542877] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Solanaceae (nightshade family) species synthesize a remarkable array of clade- and tissue-specific specialized metabolites. Protective acylsugars, one such class of structurally diverse metabolites, are produced by AcylSugar AcylTransferases from sugars and acyl-coenzyme A esters. Published research revealed trichome acylsugars composed of glucose and sucrose cores in species across the family. In addition, acylsugars were analyzed across a small fraction of the >1200 species in the phenotypically megadiverse Solanum genus, with a handful containing inositol and glycosylated inositol cores. The current study sampled several dozen species across subclades of the Solanum to get a more detailed view of acylsugar chemodiversity. In depth characterization of acylsugars from the Clade II species Solanum melongena (brinjal eggplant) led to the identification of eight unusual structures with inositol or inositol glycoside cores, and hydroxyacyl chains. Liquid chromatography-mass spectrometry analysis of 31 additional species in the Solanum genus revealed striking acylsugar diversity with some traits restricted to specific clades and species. Acylinositols and inositol-based acyldisaccharides were detected throughout much of the genus. In contrast, acylglucoses and acylsucroses were more restricted in distribution. Analysis of tissue-specific transcriptomes and interspecific acylsugar acetylation differences led to the identification of the S. melongena AcylSugar AcylTransferase 3-Like 1 (SmASAT3-L1; SMEL4.1_12g015780) enzyme. This enzyme is distinct from previously characterized acylsugar acetyltransferases, which are in the ASAT4 clade, and appears to be a functionally divergent ASAT3. This study provides a foundation for investigating the evolution and function of diverse Solanum acylsugar structures and harnessing this diversity in breeding and synthetic biology.
Collapse
Affiliation(s)
- Paul D. Fiesel
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48823 USA
| | - Rachel E. Kerwin
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48823 USA
| | - A. Daniel Jones
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48823 USA
| | - Robert L. Last
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48823 USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823 USA
| |
Collapse
|
238
|
Pothuri VS, Hogg GD, Conant L, Borcherding N, James CA, Mudd J, Williams G, Seo YD, Hawkins WG, Pillarisetty VG, DeNardo DG, Fields RC. Intratumoral T-cell receptor repertoire composition predicts overall survival in patients with pancreatic ductal adenocarcinoma. Oncoimmunology 2024; 13:2320411. [PMID: 38504847 PMCID: PMC10950267 DOI: 10.1080/2162402x.2024.2320411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/14/2024] [Indexed: 03/21/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy that is refractory to immune checkpoint inhibitor therapy. However, intratumoral T-cell infiltration correlates with improved overall survival (OS). Herein, we characterized the diversity and antigen specificity of the PDAC T-cell receptor (TCR) repertoire to identify novel immune-relevant biomarkers. Demographic, clinical, and TCR-beta sequencing data were collated from 353 patients across three cohorts that underwent surgical resection for PDAC. TCR diversity was calculated using Shannon Wiener index, Inverse Simpson index, and "True entropy." Patients were clustered by shared repertoire specificity. TCRs predictive of OS were identified and their associated transcriptional states were characterized by single-cell RNAseq. In multivariate Cox regression models controlling for relevant covariates, high intratumoral TCR diversity predicted OS across multiple cohorts. Conversely, in peripheral blood, high abundance of T-cells, but not high diversity, predicted OS. Clustering patients based on TCR specificity revealed a subset of TCRs that predicts OS. Interestingly, these TCR sequences were more likely to encode CD8+ effector memory and CD4+ T-regulatory (Tregs) T-cells, all with the capacity to recognize beta islet-derived autoantigens. As opposed to T-cell abundance, intratumoral TCR diversity was predictive of OS in multiple PDAC cohorts, and a subset of TCRs enriched in high-diversity patients independently correlated with OS. These findings emphasize the importance of evaluating peripheral and intratumoral TCR repertoires as distinct and relevant biomarkers in PDAC.
Collapse
Affiliation(s)
- Vikram S. Pothuri
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Graham D. Hogg
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Leah Conant
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Nicholas Borcherding
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - C. Alston James
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Jacqueline Mudd
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Greg Williams
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Yongwoo David Seo
- Department of Surgery, University of Washington School of Medicine, Seattle, WA, USA
- Department of Surgical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - William G. Hawkins
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MOUSA
| | - Venu G. Pillarisetty
- Department of Surgery, University of Washington School of Medicine, Seattle, WA, USA
- Fred Hutchinson Cancer Center, Seattle, WAUSA
| | - David G. DeNardo
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MOUSA
| | - Ryan C. Fields
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MOUSA
| |
Collapse
|
239
|
Ciudad MT, Quevedo R, Lamorte S, Jin R, Nzirorera N, Koritzinsky M, McGaha TL. Dabrafenib Alters MDSC Differentiation and Function by Activation of GCN2. CANCER RESEARCH COMMUNICATIONS 2024; 4:765-784. [PMID: 38421883 PMCID: PMC10936428 DOI: 10.1158/2767-9764.crc-23-0376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/12/2023] [Accepted: 02/27/2024] [Indexed: 03/02/2024]
Abstract
The effect of targeted therapeutics on anticancer immune responses is poorly understood. The BRAF inhibitor dabrafenib has been reported to activate the integrated stress response (ISR) kinase GCN2, and the therapeutic effect has been partially attributed to GCN2 activation. Because ISR signaling is a key component of myeloid-derived suppressor cell (MDSC) development and function, we measured the effect of dabrafenib on MDSC differentiation and suppressive activity. Our data showed that dabrafenib attenuated MDSC ability to suppress T-cell activity, which was associated with a GCN2-dependent block of the transition from monocytic progenitor to polymorphonuclear (PMN)-MDSCs and proliferative arrest resulting in PMN-MDSC loss. Transcriptional profiling revealed that dabrafenib-driven GCN2 activation altered metabolic features in MDSCs enhancing oxidative respiration, and attenuated transcriptional programs required for PMN development. Moreover, we observed a broad downregulation of transcriptional networks associated with PMN developmental pathways, and increased activity of transcriptional regulons driven by Atf5, Mafg, and Zbtb7a. This transcriptional program alteration underlies the basis for PMN-MDSC developmental arrest, skewing immature MDSC development toward monocytic lineage cells. In vivo, we observed a pronounced reduction in PMN-MDSCs in dabrafenib-treated tumor-bearing mice suggesting that dabrafenib impacts MDSC populations systemically and locally, in the tumor immune infiltrate. Thus, our data reveal transcriptional networks that govern MDSC developmental programs, and the impact of GCN2 stress signaling on the innate immune landscape in tumors, providing novel insight into potentially beneficial off-target effects of dabrafenib. SIGNIFICANCE An important, but poorly understood, aspect of targeted therapeutics for cancer is the effect on antitumor immune responses. This article shows that off-target effects of dabrafenib activating the kinase GCN2 impact MDSC development and function reducing PMN-MDSCs in vitro and in vivo. This has important implications for our understanding of how this BRAF inhibitor impacts tumor growth and provides novel therapeutic target and combination possibilities.
Collapse
Affiliation(s)
- M. Teresa Ciudad
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Rene Quevedo
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Sara Lamorte
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Robbie Jin
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Nadine Nzirorera
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Marianne Koritzinsky
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Tracy L. McGaha
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| |
Collapse
|
240
|
Waichman TV, Vercesi ML, Berardino AA, Beckel MS, Giacomini D, Rasetto NB, Herrero M, Di Bella DJ, Arlotta P, Schinder AF, Chernomoretz A. scX: A user-friendly tool for scRNA-seq exploration. ARXIV 2024:arXiv:2311.00012v2. [PMID: 37961742 PMCID: PMC10635291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Single-cell RNA sequencing (scRNA-seq) has transformed our ability to explore biological systems. Nevertheless, proficient expertise is essential for handling and interpreting the data. In this paper, we present scX, an R package built on the Shiny framework that streamlines the analysis, exploration, and visualization of single-cell experiments. With an interactive graphic interface, implemented as a web application, scX provides easy access to key scRNAseq analyses, including marker identification, gene expression profiling, and differential gene expression analysis. Additionally, scX seamlessly integrates with commonly used single-cell Seurat and Single-CellExperiment R objects, resulting in efficient processing and visualization of varied datasets. Overall, scX serves as a valuable and user-friendly tool for effortless exploration and sharing of single-cell data, simplifying some of the complexities inherent in scRNAseq analysis.
Collapse
Affiliation(s)
- Tomás Vega Waichman
- Integrative Systems Biology Lab, Leloir Institute, Buenos Aires, C1405 BWE, Argentina
| | - M Luz Vercesi
- Integrative Systems Biology Lab, Leloir Institute, Buenos Aires, C1405 BWE, Argentina
| | - Ariel A Berardino
- Integrative Systems Biology Lab, Leloir Institute, Buenos Aires, C1405 BWE, Argentina
- Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, C1425 FQB, Argentina
| | - Maximiliano S Beckel
- Integrative Systems Biology Lab, Leloir Institute, Buenos Aires, C1405 BWE, Argentina
- Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, C1425 FQB, Argentina
| | - Damiana Giacomini
- Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, C1425 FQB, Argentina
- Laboratory of Neuronal Plasticity, Leloir Institute, Buenos Aires, C1405 BWE, Argentina
| | - Natalí B Rasetto
- Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, C1425 FQB, Argentina
- Laboratory of Neuronal Plasticity, Leloir Institute, Buenos Aires, C1405 BWE, Argentina
| | - Magalí Herrero
- Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, C1425 FQB, Argentina
- Laboratory of Neuronal Plasticity, Leloir Institute, Buenos Aires, C1405 BWE, Argentina
| | - Daniela J Di Bella
- Dept. of Stem Cells and Regenerative Biology, Harvard University & Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Paola Arlotta
- Dept. of Stem Cells and Regenerative Biology, Harvard University & Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alejandro F Schinder
- Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, C1425 FQB, Argentina
- Laboratory of Neuronal Plasticity, Leloir Institute, Buenos Aires, C1405 BWE, Argentina
| | - Ariel Chernomoretz
- Integrative Systems Biology Lab, Leloir Institute, Buenos Aires, C1405 BWE, Argentina
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Física de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
241
|
Hanhart D, Gossi F, Rapsomaniki MA, Kruithof-de Julio M, Chouvardas P. ScLinear predicts protein abundance at single-cell resolution. Commun Biol 2024; 7:267. [PMID: 38438709 PMCID: PMC10912329 DOI: 10.1038/s42003-024-05958-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/22/2024] [Indexed: 03/06/2024] Open
Abstract
Single-cell multi-omics have transformed biomedical research and present exciting machine learning opportunities. We present scLinear, a linear regression-based approach that predicts single-cell protein abundance based on RNA expression. ScLinear is vastly more efficient than state-of-the-art methodologies, without compromising its accuracy. ScLinear is interpretable and accurately generalizes in unseen single-cell and spatial transcriptomics data. Importantly, we offer a critical view in using complex algorithms ignoring simpler, faster, and more efficient approaches.
Collapse
Affiliation(s)
- Daniel Hanhart
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Federico Gossi
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | | | - Marianna Kruithof-de Julio
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
- Department of Urology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
| | - Panagiotis Chouvardas
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland.
- Department of Urology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland.
| |
Collapse
|
242
|
De Jesus DF, Zhang Z, Brown NK, Li X, Xiao L, Hu J, Gaffrey MJ, Fogarty G, Kahraman S, Wei J, Basile G, Rana TM, Mathews C, Powers AC, Parent AV, Atkinson MA, Dhe-Paganon S, Eizirik DL, Qian WJ, He C, Kulkarni RN. Redox regulation of m 6A methyltransferase METTL3 in β-cells controls the innate immune response in type 1 diabetes. Nat Cell Biol 2024; 26:421-437. [PMID: 38409327 PMCID: PMC11042681 DOI: 10.1038/s41556-024-01368-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024]
Abstract
Type 1 diabetes (T1D) is characterized by the destruction of pancreatic β-cells. Several observations have renewed the interest in β-cell RNA sensors and editors. Here, we report that N 6-methyladenosine (m6A) is an adaptive β-cell safeguard mechanism that controls the amplitude and duration of the antiviral innate immune response at T1D onset. m6A writer methyltransferase 3 (METTL3) levels increase drastically in β-cells at T1D onset but rapidly decline with disease progression. m6A sequencing revealed the m6A hyper methylation of several key innate immune mediators, including OAS1, OAS2, OAS3 and ADAR1 in human islets and EndoC-βH1 cells at T1D onset. METTL3 silencing enhanced 2'-5'-oligoadenylate synthetase levels by increasing its mRNA stability. Consistently, in vivo gene therapy to prolong Mettl3 overexpression specifically in β-cells delayed diabetes progression in the non-obese diabetic mouse model of T1 D. Mechanistically, the accumulation of reactive oxygen species blocked upregulation of METTL3 in response to cytokines, while physiological levels of nitric oxide enhanced METTL3 levels and activity. Furthermore, we report that the cysteines in position C276 and C326 in the zinc finger domains of the METTL3 protein are sensitive to S-nitrosylation and are important to the METTL3-mediated regulation of oligoadenylate synthase mRNA stability in human β-cells. Collectively, we report that m6A regulates the innate immune response at the β-cell level during the onset of T1D in humans.
Collapse
Affiliation(s)
- Dario F De Jesus
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, Beth Israel Deaconess Medical Center; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Zijie Zhang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Natalie K Brown
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, Beth Israel Deaconess Medical Center; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Xiaolu Li
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ling Xiao
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, Beth Israel Deaconess Medical Center; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Jiang Hu
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, Beth Israel Deaconess Medical Center; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Matthew J Gaffrey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Garrett Fogarty
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, Beth Israel Deaconess Medical Center; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Sevim Kahraman
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, Beth Israel Deaconess Medical Center; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Jiangbo Wei
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
- Department of Chemistry and Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Giorgio Basile
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, Beth Israel Deaconess Medical Center; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Tariq M Rana
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Clayton Mathews
- Department of Pathology, The University of Florida College of Medicine, Gainesville, FL, USA
| | - Alvin C Powers
- Department of Medicine, and Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Audrey V Parent
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Mark A Atkinson
- Department of Pathology, The University of Florida College of Medicine, Gainesville, FL, USA
| | - Sirano Dhe-Paganon
- Department of Biological Chemistry, and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA.
| | - Rohit N Kulkarni
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, Beth Israel Deaconess Medical Center; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
243
|
Brown DV, Anttila CJA, Ling L, Grave P, Baldwin TM, Munnings R, Farchione AJ, Bryant VL, Dunstone A, Biben C, Taoudi S, Weber TS, Naik SH, Hadla A, Barker HE, Vandenberg CJ, Dall G, Scott CL, Moore Z, Whittle JR, Freytag S, Best SA, Papenfuss AT, Olechnowicz SWZ, MacRaild SE, Wilcox S, Hickey PF, Amann-Zalcenstein D, Bowden R. A risk-reward examination of sample multiplexing reagents for single cell RNA-Seq. Genomics 2024; 116:110793. [PMID: 38220132 DOI: 10.1016/j.ygeno.2024.110793] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/29/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Single-cell RNA sequencing (scRNA-Seq) has emerged as a powerful tool for understanding cellular heterogeneity and function. However the choice of sample multiplexing reagents can impact data quality and experimental outcomes. In this study, we compared various multiplexing reagents, including MULTI-Seq, Hashtag antibody, and CellPlex, across diverse sample types such as human peripheral blood mononuclear cells (PBMCs), mouse embryonic brain and patient-derived xenografts (PDXs). We found that all multiplexing reagents worked well in cell types robust to ex vivo manipulation but suffered from signal-to-noise issues in more delicate sample types. We compared multiple demultiplexing algorithms which differed in performance depending on data quality. We find that minor improvements to laboratory workflows such as titration and rapid processing are critical to optimal performance. We also compared the performance of fixed scRNA-Seq kits and highlight the advantages of the Parse Biosciences kit for fragile samples. Highly multiplexed scRNA-Seq experiments require more sequencing resources, therefore we evaluated CRISPR-based destruction of non-informative genes to enhance sequencing value. Our comprehensive analysis provides insights into the selection of appropriate sample multiplexing reagents and protocols for scRNA-Seq experiments, facilitating more accurate and cost-effective studies.
Collapse
Affiliation(s)
- Daniel V Brown
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade VIC, Melbourne 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, Melbourne 3010, VIC, Australia.
| | - Casey J A Anttila
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade VIC, Melbourne 3052, VIC, Australia
| | - Ling Ling
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade VIC, Melbourne 3052, VIC, Australia
| | - Patrick Grave
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade VIC, Melbourne 3052, VIC, Australia
| | - Tracey M Baldwin
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade VIC, Melbourne 3052, VIC, Australia
| | - Ryan Munnings
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade VIC, Melbourne 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, Melbourne 3010, VIC, Australia
| | - Anthony J Farchione
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade VIC, Melbourne 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, Melbourne 3010, VIC, Australia
| | - Vanessa L Bryant
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade VIC, Melbourne 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, Melbourne 3010, VIC, Australia; The Royal Melbourne Hospital, 300 Grattan St, Parkville, Melbourne 3010, VIC, Australia
| | - Amelia Dunstone
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade VIC, Melbourne 3052, VIC, Australia
| | - Christine Biben
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade VIC, Melbourne 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, Melbourne 3010, VIC, Australia
| | - Samir Taoudi
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade VIC, Melbourne 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, Melbourne 3010, VIC, Australia
| | - Tom S Weber
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade VIC, Melbourne 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, Melbourne 3010, VIC, Australia
| | - Shalin H Naik
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade VIC, Melbourne 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, Melbourne 3010, VIC, Australia
| | - Anthony Hadla
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade VIC, Melbourne 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, Melbourne 3010, VIC, Australia
| | - Holly E Barker
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade VIC, Melbourne 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, Melbourne 3010, VIC, Australia
| | - Cassandra J Vandenberg
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade VIC, Melbourne 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, Melbourne 3010, VIC, Australia
| | - Genevieve Dall
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade VIC, Melbourne 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, Melbourne 3010, VIC, Australia
| | - Clare L Scott
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade VIC, Melbourne 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, Melbourne 3010, VIC, Australia
| | - Zachery Moore
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade VIC, Melbourne 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, Melbourne 3010, VIC, Australia
| | - James R Whittle
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade VIC, Melbourne 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, Melbourne 3010, VIC, Australia; Peter MacCallum Cancer Centre, 305 Grattan St, Parkville, Melbourne 3010, VIC, Australia
| | - Saskia Freytag
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade VIC, Melbourne 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, Melbourne 3010, VIC, Australia
| | - Sarah A Best
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade VIC, Melbourne 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, Melbourne 3010, VIC, Australia
| | - Anthony T Papenfuss
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade VIC, Melbourne 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, Melbourne 3010, VIC, Australia; Peter MacCallum Cancer Centre, 305 Grattan St, Parkville, Melbourne 3010, VIC, Australia
| | - Sam W Z Olechnowicz
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade VIC, Melbourne 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, Melbourne 3010, VIC, Australia
| | - Sarah E MacRaild
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade VIC, Melbourne 3052, VIC, Australia
| | - Stephen Wilcox
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade VIC, Melbourne 3052, VIC, Australia
| | - Peter F Hickey
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade VIC, Melbourne 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, Melbourne 3010, VIC, Australia
| | - Daniela Amann-Zalcenstein
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade VIC, Melbourne 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, Melbourne 3010, VIC, Australia
| | - Rory Bowden
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade VIC, Melbourne 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, Melbourne 3010, VIC, Australia.
| |
Collapse
|
244
|
Wilk AJ, Shalek AK, Holmes S, Blish CA. Comparative analysis of cell-cell communication at single-cell resolution. Nat Biotechnol 2024; 42:470-483. [PMID: 37169965 PMCID: PMC10638471 DOI: 10.1038/s41587-023-01782-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/05/2023] [Indexed: 05/13/2023]
Abstract
Inference of cell-cell communication from single-cell RNA sequencing data is a powerful technique to uncover intercellular communication pathways, yet existing methods perform this analysis at the level of the cell type or cluster, discarding single-cell-level information. Here we present Scriabin, a flexible and scalable framework for comparative analysis of cell-cell communication at single-cell resolution that is performed without cell aggregation or downsampling. We use multiple published atlas-scale datasets, genetic perturbation screens and direct experimental validation to show that Scriabin accurately recovers expected cell-cell communication edges and identifies communication networks that can be obscured by agglomerative methods. Additionally, we use spatial transcriptomic data to show that Scriabin can uncover spatial features of interaction from dissociated data alone. Finally, we demonstrate applications to longitudinal datasets to follow communication pathways operating between timepoints. Our approach represents a broadly applicable strategy to reveal the full structure of niche-phenotype relationships in health and disease.
Collapse
Affiliation(s)
- Aaron J Wilk
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA.
| | - Alex K Shalek
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Susan Holmes
- Department of Statistics, Stanford University, Stanford, CA, USA
| | - Catherine A Blish
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
245
|
Yi F, Cohen T, Zimmerman N, Dündar F, Zumbo P, Eltilib R, Brophy EJ, Arkin H, Feucht J, Gormally MV, Hackett CS, Kropp KN, Etxeberria I, Chandran SS, Park JH, Hsu KC, Sadelain M, Betel D, Klebanoff CA. CAR-engineered lymphocyte persistence is governed by a FAS ligand/FAS auto-regulatory circuit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582108. [PMID: 38464085 PMCID: PMC10925151 DOI: 10.1101/2024.02.26.582108] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Chimeric antigen receptor (CAR)-engineered T and NK cells can cause durable remission of B-cell malignancies; however, limited persistence restrains the full potential of these therapies in many patients. The FAS ligand (FAS-L)/FAS pathway governs naturally-occurring lymphocyte homeostasis, yet knowledge of which cells express FAS-L in patients and whether these sources compromise CAR persistence remains incomplete. Here, we constructed a single-cell atlas of diverse cancer types to identify cellular subsets expressing FASLG, the gene encoding FAS-L. We discovered that FASLG is limited primarily to endogenous T cells, NK cells, and CAR-T cells while tumor and stromal cells express minimal FASLG. To establish whether CAR-T/NK cell survival is regulated through FAS-L, we performed competitive fitness assays using lymphocytes modified with or without a FAS dominant negative receptor (ΔFAS). Following adoptive transfer, ΔFAS-expressing CAR-T and CAR-NK cells became enriched across multiple tissues, a phenomenon that mechanistically was reverted through FASLG knockout. By contrast, FASLG was dispensable for CAR-mediated tumor killing. In multiple models, ΔFAS co-expression by CAR-T and CAR-NK enhanced antitumor efficacy compared with CAR cells alone. Together, these findings reveal that CAR-engineered lymphocyte persistence is governed by a FAS-L/FAS auto-regulatory circuit.
Collapse
Affiliation(s)
- Fei Yi
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - Tal Cohen
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
- Department of Pediatric Hematology/Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Natalie Zimmerman
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - Friederike Dündar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY, USA
| | - Paul Zumbo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY, USA
| | - Razan Eltilib
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - Erica J. Brophy
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - Hannah Arkin
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - Judith Feucht
- Center for Cell Engineering, MSKCC, New York, NY, USA
- Cluster of Excellence iFIT, University Children’s Hospital Tübingen, Tübingen, Germany
| | - Michael V. Gormally
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
- Cell Therapy Service, Department of Medicine, MSKCC, New York, NY, USA
| | | | - Korbinian N. Kropp
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - Inaki Etxeberria
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - Smita S. Chandran
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - Jae H. Park
- Center for Cell Engineering, MSKCC, New York, NY, USA
- Cell Therapy Service, Department of Medicine, MSKCC, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Katharine C. Hsu
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
- Center for Cell Engineering, MSKCC, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Michel Sadelain
- Center for Cell Engineering, MSKCC, New York, NY, USA
- Department of Immunology, Sloan Kettering Institute, MSKCC, New York, NY, USA
| | - Doron Betel
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Christopher A. Klebanoff
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
- Center for Cell Engineering, MSKCC, New York, NY, USA
- Cell Therapy Service, Department of Medicine, MSKCC, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, New York, NY, USA
| |
Collapse
|
246
|
Smyth LCD, Xu D, Okar SV, Dykstra T, Rustenhoven J, Papadopoulos Z, Bhasiin K, Kim MW, Drieu A, Mamuladze T, Blackburn S, Gu X, Gaitán MI, Nair G, Storck SE, Du S, White MA, Bayguinov P, Smirnov I, Dikranian K, Reich DS, Kipnis J. Identification of direct connections between the dura and the brain. Nature 2024; 627:165-173. [PMID: 38326613 PMCID: PMC11254388 DOI: 10.1038/s41586-023-06993-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 12/18/2023] [Indexed: 02/09/2024]
Abstract
The arachnoid barrier delineates the border between the central nervous system and dura mater. Although the arachnoid barrier creates a partition, communication between the central nervous system and the dura mater is crucial for waste clearance and immune surveillance1,2. How the arachnoid barrier balances separation and communication is poorly understood. Here, using transcriptomic data, we developed transgenic mice to examine specific anatomical structures that function as routes across the arachnoid barrier. Bridging veins create discontinuities where they cross the arachnoid barrier, forming structures that we termed arachnoid cuff exit (ACE) points. The openings that ACE points create allow the exchange of fluids and molecules between the subarachnoid space and the dura, enabling the drainage of cerebrospinal fluid and limited entry of molecules from the dura to the subarachnoid space. In healthy human volunteers, magnetic resonance imaging tracers transit along bridging veins in a similar manner to access the subarachnoid space. Notably, in neuroinflammatory conditions such as experimental autoimmune encephalomyelitis, ACE points also enable cellular trafficking, representing a route for immune cells to directly enter the subarachnoid space from the dura mater. Collectively, our results indicate that ACE points are a critical part of the anatomy of neuroimmune communication in both mice and humans that link the central nervous system with the dura and its immunological diversity and waste clearance systems.
Collapse
Affiliation(s)
- Leon C D Smyth
- Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO, USA.
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA.
| | - Di Xu
- Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Serhat V Okar
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Taitea Dykstra
- Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Justin Rustenhoven
- Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Zachary Papadopoulos
- Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
- Neuroscience Graduate Program, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Kesshni Bhasiin
- Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Min Woo Kim
- Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
- Immunology Graduate Program, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Antoine Drieu
- Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Tornike Mamuladze
- Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
- Immunology Graduate Program, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Susan Blackburn
- Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Xingxing Gu
- Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - María I Gaitán
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Govind Nair
- Quantitative MRI Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Steffen E Storck
- Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Siling Du
- Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
- Immunology Graduate Program, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Michael A White
- Department of Genetics, Washington University School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Peter Bayguinov
- Washington University Center for Cellular Imaging, Washington University School of Medicine, Washington University in St Louis, St Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Igor Smirnov
- Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Krikor Dikranian
- Department of Neuroscience, Washington University School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jonathan Kipnis
- Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO, USA.
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA.
- Neuroscience Graduate Program, School of Medicine, Washington University in St Louis, St Louis, MO, USA.
- Immunology Graduate Program, School of Medicine, Washington University in St Louis, St Louis, MO, USA.
| |
Collapse
|
247
|
Perez-Shibayama C, Gil-Cruz C, Cadosch N, Lütge M, Cheng HW, De Martin A, Frischmann K, Joachimbauer A, Onder L, Papadopoulou I, Papadopoulou C, Ring S, Krebs P, Vu VP, Nägele MP, Rossi VA, Parianos D, Zsilavecz VW, Cooper LT, Flammer A, Ruschitzka F, Rainer PP, Schmidt D, Ludewig B. Bone morphogenic protein-4 availability in the cardiac microenvironment controls inflammation and fibrosis in autoimmune myocarditis. NATURE CARDIOVASCULAR RESEARCH 2024; 3:301-316. [PMID: 39196111 PMCID: PMC11358008 DOI: 10.1038/s44161-024-00432-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 01/19/2024] [Indexed: 08/29/2024]
Abstract
Myocarditis is an inflammatory heart disease that leads to loss of cardiomyocytes and frequently precipitates fibrotic remodeling of the myocardium, culminating in heart failure. However, the molecular mechanisms underlying immune cell control and maintenance of tissue integrity in the inflamed cardiac microenvironment remain elusive. In this study, we found that bone morphogenic protein-4 (BMP4) gradients maintain cardiac tissue homeostasis by single-cell transcriptomics analyses of inflamed murine and human myocardial tissues. Cardiac BMP pathway dysregulation was reflected by reduced BMP4 serum concentration in patients with myocarditis. Restoration of BMP signaling by antibody-mediated neutralization of the BMP inhibitors gremlin-1 and gremlin-2 ameliorated T cell-induced myocardial inflammation in mice. Moreover, progression to inflammatory cardiomyopathy was blocked through the reduction of fibrotic remodeling and preservation of cardiomyocyte integrity. These results unveil the BMP4-gremlin axis as a druggable pathway for the treatment of myocardial inflammation, limiting the severe sequelae of cardiac fibrosis and heart failure.
Collapse
Affiliation(s)
| | - Cristina Gil-Cruz
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Nadine Cadosch
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Mechthild Lütge
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Hung-Wei Cheng
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Angelina De Martin
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Kira Frischmann
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Anna Joachimbauer
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Lucas Onder
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Iliana Papadopoulou
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Chrysa Papadopoulou
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Sandra Ring
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Philippe Krebs
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Vivian P Vu
- Institute of Pathology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Matthias P Nägele
- University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Valentina A Rossi
- University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Danaë Parianos
- University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | | | - Leslie T Cooper
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Andreas Flammer
- University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Frank Ruschitzka
- University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Peter P Rainer
- Division of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- St. Johann in Tirol General Hospital, St. Johann in Tirol, Austria
| | - Dörthe Schmidt
- University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland.
- University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland.
| |
Collapse
|
248
|
Gillespie ER, Grice LF, Courtney IG, Lao HW, Jung W, Ramkomuth S, Xie J, Brown DA, Walsham J, Radford KJ, Nguyen QH, Ruitenberg MJ. Single-cell RNA sequencing reveals peripheral blood leukocyte responses to spinal cord injury in mice with humanised immune systems. J Neuroinflammation 2024; 21:63. [PMID: 38429643 PMCID: PMC10908016 DOI: 10.1186/s12974-024-03048-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/14/2024] [Indexed: 03/03/2024] Open
Abstract
Next-generation humanised mouse models and single-cell RNA sequencing (scRNAseq) approaches enable in-depth studies into human immune cell biology. Here we used NSG-SGM3 mice engrafted with human umbilical cord haematopoietic stem cells to investigate how human immune cells respond to and/or are changed by traumatic spinal cord injury (SCI). We hypothesised that the use of such mice could help advance our understanding of spinal cord injury-induced immune depression syndrome (SCI-IDS), and also how human leukocytes change as they migrate from the circulation into the lesion site. Our scRNAseq experiments, supplemented by flow cytometry, demonstrate the existence of up to 11 human immune cell (sub-) types and/or states across the blood and injured spinal cord (7 days post-SCI) of humanised NSG-SGM3 mice. Further comparisons of human immune cell transcriptomes between naïve, sham-operated and SCI mice identified a total of 579 differentially expressed genes, 190 of which were 'SCI-specific' (that is, genes regulated only in response to SCI but not sham surgery). Gene ontology analysis showed a prominent downregulation of immune cell function under SCI conditions, including for T cell receptor signalling and antigen presentation, confirming the presence of SCI-IDS and the transcriptional signature of human leukocytes in association with this phenomenon. We also highlight the activating influence of the local spinal cord lesion microenvironment by comparing the transcriptomes of circulating versus infiltrated human immune cells; those isolated from the lesion site were enriched for genes relating to both immune cell activity and function (e.g., oxidative phosphorylation, T cell proliferation and antigen presentation). We lastly applied an integrated bioinformatics approach to determine where immune responses in humanised NSG-SGM3 mice appear congruent to the native responses of human SCI patients, and where they diverge. Collectively, our study provides a valuable resource and methodological framework for the use of these mice in translational research.
Collapse
Affiliation(s)
- Ellen R Gillespie
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Laura F Grice
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Isabel G Courtney
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Hong Wa Lao
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Woncheol Jung
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Sonny Ramkomuth
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Jacky Xie
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - David A Brown
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, Australia
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia
- Institute for Clinical Pathology, New South Wales Health Pathology, Sydney, Australia
| | - James Walsham
- Intensive Care Unit, Princess Alexandra Hospital, Brisbane, Australia
- Medical School, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Kristen J Radford
- Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Quan H Nguyen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Marc J Ruitenberg
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
249
|
Zhang J, Zhang L, Gongol B, Hayes J, Borowsky A, Bailey-Serres J, Girke T. spatialHeatmap: visualizing spatial bulk and single-cell assays in anatomical images. NAR Genom Bioinform 2024; 6:lqae006. [PMID: 38312938 PMCID: PMC10836942 DOI: 10.1093/nargab/lqae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/14/2023] [Accepted: 01/18/2024] [Indexed: 02/06/2024] Open
Abstract
Visualizing spatial assay data in anatomical images is vital for understanding biological processes in cell, tissue, and organ organizations. Technologies requiring this functionality include traditional one-at-a-time assays, and bulk and single-cell omics experiments, including RNA-seq and proteomics. The spatialHeatmap software provides a series of powerful new methods for these needs, and allows users to work with adequately formatted anatomical images from public collections or custom images. It colors the spatial features (e.g. tissues) annotated in the images according to the measured or predicted abundance levels of biomolecules (e.g. mRNAs) using a color key. This core functionality of the package is called a spatial heatmap plot. Single-cell data can be co-visualized in composite plots that combine spatial heatmaps with embedding plots of high-dimensional data. The resulting spatial context information is essential for gaining insights into the tissue-level organization of single-cell data, or vice versa. Additional core functionalities include the automated identification of biomolecules with spatially selective abundance patterns and clusters of biomolecules sharing similar abundance profiles. To appeal to both non-expert and computational users, spatialHeatmap provides a graphical and a command-line interface, respectively. It is distributed as a free, open-source Bioconductor package (https://bioconductor.org/packages/spatialHeatmap) that users can install on personal computers, shared servers, or cloud systems.
Collapse
Affiliation(s)
- Jianhai Zhang
- Institute for Integrative Genome Biology, Department of Botany and Plant Sciences, 1207F Genomics Building, University of California, Riverside, CA 92521, USA
| | - Le Zhang
- Institute for Integrative Genome Biology, Department of Botany and Plant Sciences, 1207F Genomics Building, University of California, Riverside, CA 92521, USA
| | - Brendan Gongol
- Institute for Integrative Genome Biology, Department of Botany and Plant Sciences, 1207F Genomics Building, University of California, Riverside, CA 92521, USA
| | - Jordan Hayes
- Institute for Integrative Genome Biology, Department of Botany and Plant Sciences, 1207F Genomics Building, University of California, Riverside, CA 92521, USA
| | - Alexander T Borowsky
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Julia Bailey-Serres
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Thomas Girke
- Institute for Integrative Genome Biology, Department of Botany and Plant Sciences, 1207F Genomics Building, University of California, Riverside, CA 92521, USA
| |
Collapse
|
250
|
Chousal JN, Morey R, Srinivasan S, Lee K, Zhang W, Yeo AL, To C, Cho K, Garzo VG, Parast MM, Laurent LC, Cook-Andersen H. Molecular profiling of human blastocysts reveals primitive endoderm defects among embryos of decreased implantation potential. Cell Rep 2024; 43:113701. [PMID: 38277271 DOI: 10.1016/j.celrep.2024.113701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 12/12/2023] [Accepted: 01/05/2024] [Indexed: 01/28/2024] Open
Abstract
Human embryo implantation is remarkably inefficient, and implantation failure remains among the greatest obstacles in treating infertility. Gene expression data from human embryos have accumulated rapidly in recent years; however, identification of the subset of genes that determine successful implantation remains a challenge. We leverage clinical morphologic grading-known for decades to correlate with implantation potential-and transcriptome analyses of matched embryonic and abembryonic samples to identify factors and pathways enriched and depleted in human blastocysts of good and poor morphology. Unexpectedly, we discovered that the greatest difference was in the state of extraembryonic primitive endoderm (PrE) development, with relative deficiencies in poor morphology blastocysts. Our results suggest that implantation success is most strongly influenced by the embryonic compartment and that deficient PrE development is common among embryos with decreased implantation potential. Our study provides a valuable resource for those investigating the markers and mechanisms of human embryo implantation.
Collapse
Affiliation(s)
- Jennifer N Chousal
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Robert Morey
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Srimeenakshi Srinivasan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Katherine Lee
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wei Zhang
- Reproductive Partners Fertility Center - San Diego, La Jolla, CA 92037, USA
| | - Ana Lisa Yeo
- Reproductive Partners Fertility Center - San Diego, La Jolla, CA 92037, USA
| | - Cuong To
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kyucheol Cho
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - V Gabriel Garzo
- Reproductive Partners Fertility Center - San Diego, La Jolla, CA 92037, USA
| | - Mana M Parast
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Louise C Laurent
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Heidi Cook-Andersen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|