201
|
Skitzki JJ, Repasky EA, Evans SS. Hyperthermia as an immunotherapy strategy for cancer. CURRENT OPINION IN INVESTIGATIONAL DRUGS (LONDON, ENGLAND : 2000) 2009; 10:550-8. [PMID: 19513944 PMCID: PMC2828267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The use of hyperthermia as an adjunct to cancer immunotherapy is supported by an increasing number of research data. Both preclinical and clinical data results have demonstrated improved antitumor immune responses with the addition of mild hyperthermia. The molecular mechanisms responsible for the improved immune reactivity observed in the presence of hyperthermia include the generation of Hsps, the activation of antigen-presenting cells and changes in lymphocyte trafficking. Understanding these hyperthermia-induced processes can serve as the foundation for analyzing current clinical trials, as well as designing future trials in cancer immunotherapy.
Collapse
Affiliation(s)
- Joseph J Skitzki
- Department of Immunology, Elm & Carlton Streets, Buffalo, NY 14263, USA.
| | | | | |
Collapse
|
202
|
Tan CY, Ban H, Kim YH, Kim YH, Lee SK. The heat shock protein 27 (Hsp27) operates predominantly by blocking the mitochondrial-independent/extrinsic pathway of cellular apoptosis. Mol Cells 2009; 27:533-8. [PMID: 19466601 DOI: 10.1007/s10059-009-0079-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 03/11/2009] [Accepted: 03/30/2009] [Indexed: 12/22/2022] Open
Abstract
Heat shock protein 27 (Hsp27) is a molecular chaperone protein which regulates cell apoptosis by interacting directly with the caspase activation components in the apoptotic pathways. With the assistance of the Tat protein transduction domain we directly delivered the Hsp27 into the myocardial cell line, H9c2 and demonstrate that this protein can reverse hypoxia-induced apoptosis of cells. In order to characterize the contribution of Hsp27 in blocking the two major apoptotic pathways operational within cells, we exposed H9c2 cells to staurosporine and cobalt chloride, agents that induce mitochondria-dependent (intrinsic) and -independent (extrinsic) pathways of apoptosis in cells respectively. The Tat-Hsp27 fusion protein showed a greater propensity to inhibit the effect induced by the cobalt chloride treatment. These data suggest that the Hsp27 predominantly exerts its protective effect by interfering with the components of the extrinsic pathway of apoptosis.
Collapse
Affiliation(s)
- Cheau Yih Tan
- Department of Bioengineering, Hanyang University, Seoul 133-791, Korea
| | | | | | | | | |
Collapse
|
203
|
McHaourab HS, Godar JA, Stewart PL. Structure and mechanism of protein stability sensors: chaperone activity of small heat shock proteins. Biochemistry 2009; 48:3828-37. [PMID: 19323523 PMCID: PMC2785012 DOI: 10.1021/bi900212j] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Small heat shock proteins (sHSP) make up a remarkably diverse group of molecular chaperones possessing a degree of structural plasticity unparalleled in other protein superfamilies. In the absence of chemical energy input, these stability sensors can sensitively recognize and bind destabilized proteins, even in the absence of gross misfolding. Cellular conditions regulate affinity toward client proteins, allowing tightly controlled switching and tuning of sHSP chaperone capacity. Perturbations of this regulation, through chemical modification or mutation, directly lead to a variety of disease states. This review explores the structural basis of sHSP oligomeric flexibility and the corresponding functional consequences in the context of a model describing sHSP activity with a set of three coupled thermodynamic equilibria. As current research illuminates many novel physiological roles for sHSP outside of their traditional duties as molecular chaperones, such a conceptual framework provides a sound foundation for describing these emerging functions in physiological and pathological processes.
Collapse
Affiliation(s)
- Hassane S McHaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232-0615, USA.
| | | | | |
Collapse
|
204
|
Hayes D, Napoli V, Mazurkie A, Stafford WF, Graceffa P. Phosphorylation dependence of hsp27 multimeric size and molecular chaperone function. J Biol Chem 2009; 284:18801-7. [PMID: 19411251 DOI: 10.1074/jbc.m109.011353] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The molecular chaperone Hsp27 exists as a distribution of large oligomers that are disassembled by phosphorylation at Ser-15, -78, and -82. It is controversial whether the unphosphorylated Hsp27 or the widely used triple Ser-to-Asp phospho-mimic mutant is the more active molecular chaperone in vitro. This question was investigated here by correlating chaperone activity, as measured by the aggregation of reduced insulin or alpha-lactalbumin, with Hsp27 self-association as monitored by analytical ultracentrifugation. Furthermore, because the phospho-mimic is generally assumed to reproduce the phosphorylated molecule, the size and chaperone activity of phosphorylated Hsp27 were compared with that of the phospho-mimic. Hsp27 was triply phosphorylated by MAPKAP-2 kinase, and phosphorylation was tracked by urea-PAGE. An increasing degree of suppression of insulin or alpha-lactalbumin aggregation correlated with a decreasing Hsp27 self-association, which was the least for phosphorylated Hsp27 followed by the mimic followed by the unphosphorylated protein. It was also found that Hsp27 added to pre-aggregated insulin did not reverse aggregation but did inhibit these aggregates from assembling into even larger aggregates. This chaperone activity appears to be independent of Hsp27 phosphorylation. In conclusion, the most active chaperone of insulin and alpha-lactalbumin was the Hsp27 (elongated) dimer, the smallest Hsp27 subunit observed under physiological conditions. Next, the Hsp27 phospho-mimic is only a partial mimic of phosphorylated Hsp27, both in self-association and in chaperone function. Finally, the efficient inhibition of insulin aggregation by Hsp27 dimer led to the proposal of two models for this chaperone activity.
Collapse
Affiliation(s)
- David Hayes
- Boston Biomedical Research Institute, Watertown, Massachusetts 02472, USA
| | | | | | | | | |
Collapse
|
205
|
Erales J, Lignon S, Gontero B. CP12 from Chlamydomonas reinhardtii, a permanent specific "chaperone-like" protein of glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 2009; 284:12735-44. [PMID: 19287002 DOI: 10.1074/jbc.m808254200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A new role is reported for CP12, a highly unfolded and flexible protein, mainly known for its redox function with A(4) glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Both reduced and oxidized CP12 can prevent the in vitro thermal inactivation and aggregation of GAPDH from Chlamydomonas reinhardtii. This mechanism is thus not redox-dependent. The protection is specific to CP12, because other proteins, such as bovine serum albumin, thioredoxin, and a general chaperone, Hsp33, do not fully prevent denaturation of GAPDH. Furthermore, CP12 acts as a specific chaperone, since it does not protect other proteins, such as catalase, alcohol dehydrogenase, or lysozyme. The interaction between CP12 and GAPDH is necessary to prevent the aggregation and inactivation, since the mutant C66S that does not form any complex with GAPDH cannot accomplish this protection. Unlike the C66S mutant, the C23S mutant that lacks the N-terminal bridge is partially able to protect and to slow down the inactivation and aggregation. Tryptic digestion coupled to mass spectrometry confirmed that the S-loop of GAPDH is the interaction site with CP12. Thus, CP12 not only has a redox function but also behaves as a specific "chaperone-like protein" for GAPDH, although a stable and not transitory interaction is observed. This new function of CP12 may explain why it is also present in complexes involving A(2)B(2) GAPDHs that possess a regulatory C-terminal extension (GapB subunit) and therefore do not require CP12 to be redox-regulated.
Collapse
Affiliation(s)
- Jenny Erales
- Laboratoire d'Enzymologie de Complexes Supramoléculaires, UPR 9036, Bioénergétique et Ingénierie des Protéines, Marseille Cedex 20, France
| | | | | |
Collapse
|
206
|
Decreased protein synthesis of Hsp27 associated with cellular toxicity in a cell model of Machado-Joseph disease. Neurosci Lett 2009; 454:152-6. [PMID: 19429074 DOI: 10.1016/j.neulet.2009.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2008] [Revised: 02/20/2009] [Accepted: 03/02/2009] [Indexed: 11/24/2022]
Abstract
Machado-Joseph disease is an autosomal dominant spinocerebellar degeneration caused by the expansion of a polyglutamine tract within the gene product, ataxin-3. We have previously shown that increased oxidative stress and decreased expression of Hsp27 may be contributory factors to the disease progression. In this study, we utilized neuroblastoma SK-N-SH cells stably transfected with full-length expanded ataxin-3 to further investigate the mechanism(s) resulting in the decreased expression of Hsp27. Results from 35S-methionine pulse-chase labeling and protein degradation assays revealed that decreased Hsp27 in mutant MJD cells is due to defects in protein synthesis. Our results further demonstrated that Hsp27 degradation is independent of the proteasome degradation pathway. In addition, we showed that overexpression of Hsp27 desensitizes mutant MJD cells to apoptotic stress. Taken together, these findings provide the first evidence that expanded ataxin-3 interferes with Hsp27 synthesis, which may contribute to the impairment of the cells' ability to respond to stresses and trigger the progression of this late-onset disease.
Collapse
|
207
|
Distinct Activities of Escherichia coli Small Heat Shock Proteins IbpA and IbpB Promote Efficient Protein Disaggregation. J Mol Biol 2009; 386:178-89. [DOI: 10.1016/j.jmb.2008.12.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 11/20/2008] [Accepted: 12/04/2008] [Indexed: 11/21/2022]
|
208
|
Morris AM, Treweek TM, Aquilina JA, Carver JA, Walker MJ. Glutamic acid residues in the C-terminal extension of small heat shock protein 25 are critical for structural and functional integrity. FEBS J 2009; 275:5885-98. [PMID: 19021764 DOI: 10.1111/j.1742-4658.2008.06719.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Small heat shock proteins (sHsps) are intracellular molecular chaperones that prevent the aggregation and precipitation of partially folded and destabilized proteins. sHsps comprise an evolutionarily conserved region of 80-100 amino acids, denoted the alpha-crystallin domain, which is flanked by regions of variable sequence and length: the N-terminal domain and the C-terminal extension. Although the two domains are known to be involved in the organization of the quaternary structure of sHsps and interaction with their target proteins, the role of the C-terminal extension is enigmatic. Despite the lack of sequence similarity, the C-terminal extension of mammalian sHsps is typically a short, polar segment which is unstructured and highly flexible and protrudes from the oligomeric structure. Both the polarity and flexibility of the C-terminal extension are important for the maintenance of sHsp solubility and for complexation with its target protein. In this study, mutants of murine Hsp25 were prepared in which the glutamic acid residues in the C-terminal extension at positions 190, 199 and 204 were each replaced with alanine. The mutants were found to be structurally altered and functionally impaired. Although there were no significant differences in the environment of tryptophan residues in the N-terminal domain or in the overall secondary structure, an increase in exposed hydrophobicity was observed for the mutants compared with wild-type Hsp25. The average molecular masses of the E199A and E204A mutants were comparable with that of the wild-type protein, whereas the E190A mutant was marginally smaller. All mutants displayed markedly reduced thermostability and chaperone activity compared with the wild-type. It is concluded that each of the glutamic acid residues in the C-terminal extension is important for Hsp25 to act as an effective molecular chaperone.
Collapse
Affiliation(s)
- Amie M Morris
- School of Biological Sciences, University of Wollongong, Australia
| | | | | | | | | |
Collapse
|
209
|
Faircloth LM, Churchill PF, Caldwell GA, Caldwell KA. The microtubule-associated protein, NUD-1, exhibits chaperone activity in vitro. Cell Stress Chaperones 2009; 14:95-103. [PMID: 18626791 PMCID: PMC2673900 DOI: 10.1007/s12192-008-0061-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Accepted: 06/23/2008] [Indexed: 10/21/2022] Open
Abstract
Regulation of cell division requires the concerted function of proteins and protein complexes that properly mediate cytoskeletal dynamics. NudC is an evolutionarily conserved protein of undetermined function that associates with microtubules and interacts with several key regulators of mitosis, such as polo-kinase 1 (Plk1) and dynein. NudC is essential for proper mitotic progression, and homologs have been identified in species ranging from fungi to humans. In this paper, we report the characterization of the Caenorhabditis elegans NudC homolog, NUD-1, as a protein exhibiting molecular chaperone activity. All NudC/NUD-1 proteins share a conserved p23/HSP20 domain predicted by three-dimensional modeling [Garcia-Ranea, Mirey, Camonis, Valencia, FEBS Lett 529(2-3):162-167, 2002]. We demonstrate that nematode NUD-1 is able to prevent the aggregation of two substrate proteins, citrate synthase (CS) and luciferase, at stoichiometric concentrations. Further, NUD-1 also protects the native state of CS from thermal inactivation by significantly reducing the inactivation rate of this enzyme. To further determine if NUD-1/substrate complexes were productive or simply "dead-end" unfolding intermediates, a luciferase refolding assay was utilized. Following thermal denaturation, rabbit reticulocyte lysate and ATP were added and luciferase activity measured. In the presence of NUD-1, nearly all of the luciferase activity was regained, indicating that unfolded intermediates complexed with NUD-1 could be refolded. These studies represent the first functional evidence for a member of this mitotically essential protein family as having chaperone activity and facilitates elucidation of the role such proteins play in chaperone complexes utilized in cell division. C. elegans NUD-1 is a member of an evolutionary conserved protein family of unknown function involved in the regulation of cytoskeletal dynamics. NUD-1 and its mammalian homolog, NudC, function with the dynein motor complex to ensure proper cell division, and knockdown or overexpression of these proteins leads to disruption of mitosis. In this paper, we show that NUD-1 possesses ATP-independent chaperone activity comparable to that of small heat shock proteins and cochaperones and that changes in phosphorylation state functionally alter chaperone activity in a phosphomimetic NUD-1 mutant.
Collapse
Affiliation(s)
- Lindsay M. Faircloth
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487 USA
| | - Perry F. Churchill
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487 USA
| | - Guy A. Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487 USA
- Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Kim A. Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487 USA
- Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| |
Collapse
|
210
|
Sugino C, Hirose M, Tohda H, Yoshinari Y, Abe T, Giga-Hama Y, Iizuka R, Shimizu M, Kidokoro SI, Ishii N, Yohda M. Characterization of a sHsp ofSchizosaccharomyces pombe, SpHsp15.8, and the implication of its functional mechanism by comparison with another sHsp, SpHsp16.0. Proteins 2009; 74:6-17. [DOI: 10.1002/prot.22132] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
211
|
Carra S, Brunsting JF, Lambert H, Landry J, Kampinga HH. HspB8 participates in protein quality control by a non-chaperone-like mechanism that requires eIF2{alpha} phosphorylation. J Biol Chem 2008; 284:5523-32. [PMID: 19114712 DOI: 10.1074/jbc.m807440200] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Aggregation of mutated proteins is a hallmark of many neurodegenerative disorders, including Huntington disease. We previously reported that overexpression of the HspB8.Bag3 chaperone complex suppresses mutated huntingtin aggregation via autophagy. Classically, HspB proteins are thought to act as ATP-independent molecular chaperones that can bind unfolded proteins and facilitate their processing via the help of ATP-dependent chaperones such as the Hsp70 machine, in which Bag3 may act as a molecular link between HspB, Hsp70, and the ubiquitin ligases. However, here we show that HspB8 and Bag3 act in a non-canonical manner unrelated to the classical chaperone model. Rather, HspB8 and Bag3 induce the phosphorylation of the alpha-subunit of the translation initiator factor eIF2, which in turn causes a translational shut-down and stimulates autophagy. This function of HspB8.Bag3 does not require Hsp70 and also targets fully folded substrates. HspB8.Bag3 activity was independent of the endoplasmic reticulum (ER) stress kinase PERK, demonstrating that its action is unrelated to ER stress and suggesting that it activates stress-mediated translational arrest and autophagy through a novel pathway.
Collapse
Affiliation(s)
- Serena Carra
- Department of Radiation and Stress Cell Biology, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
212
|
Noble EG, Milne KJ, Melling CWJ. Heat shock proteins and exercise: a primer. Appl Physiol Nutr Metab 2008; 33:1050-65. [PMID: 18923583 DOI: 10.1139/h08-069] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Heat shock proteins (HSPs) are, in general, prosurvival molecules within the cellular environment, and the overexpression of even just 1 family of HSPs can lead to protection against and improvements after a variety of stressors. Not surprisingly, a fertile area of study has grown out of efforts to exploit the innate biologic behaviour of HSPs. Exercise, because of the inherent physiologic stresses associated with it, is but 1 stimulus that can result in a robust increase in various HSPs in several tissues, not the least of which happen to be the heart and skeletal muscle. The purpose of this review is to introduce the reader to the major HSP families, the control of their expression, and some of their biologic functions, specifically with respect to the influence of exercise. Moreover, as the first in a series of reviews from a common symposium, we will briefly introduce the concepts presented by the other authors, which include the effects of different exercise paradigms on skeletal muscle HSPs in the adult and aged systems, HSPs as regulators of inflammation, and the ion channel stabilizing effects of HSPs.
Collapse
Affiliation(s)
- Earl G Noble
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, ON N6A3K7, Canada.
| | | | | |
Collapse
|
213
|
Yoshiike Y, Minai R, Matsuo Y, Chen YR, Kimura T, Takashima A. Amyloid oligomer conformation in a group of natively folded proteins. PLoS One 2008; 3:e3235. [PMID: 18800165 PMCID: PMC2528939 DOI: 10.1371/journal.pone.0003235] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 08/25/2008] [Indexed: 01/08/2023] Open
Abstract
Recent in vitro and in vivo studies suggest that destabilized proteins with defective folding induce aggregation and toxicity in protein-misfolding diseases. One such unstable protein state is called amyloid oligomer, a precursor of fully aggregated forms of amyloid. Detection of various amyloid oligomers with A11, an anti-amyloid oligomer conformation-specific antibody, revealed that the amyloid oligomer represents a generic conformation and suggested that toxic beta-aggregation processes possess a common mechanism. By using A11 antibody as a probe in combination with mass spectrometric analysis, we identified GroEL in bacterial lysates as a protein that may potentially have an amyloid oligomer conformation. Surprisingly, A11 reacted not only with purified GroEL but also with several purified heat shock proteins, including human Hsp27, 40, 70, 90; yeast Hsp104; and bovine Hsc70. The native folds of A11-reactive proteins in purified samples were characterized by their anti-beta-aggregation activity in terms of both functionality and in contrast to the beta-aggregation promoting activity of misfolded pathogenic amyloid oligomers. The conformation-dependent binding of A11 with natively folded Hsp27 was supported by the concurrent loss of A11 reactivity and anti-beta-aggregation activity of heat-treated Hsp27 samples. Moreover, we observed consistent anti-beta-aggregation activity not only by chaperones containing an amyloid oligomer conformation but also by several A11-immunoreactive non-chaperone proteins. From these results, we suggest that the amyloid oligomer conformation is present in a group of natively folded proteins. The inhibitory effects of A11 antibody on both GroEL/ES-assisted luciferase refolding and Hsp70-mediated decelerated nucleation of Abeta aggregation suggested that the A11-binding sites on these chaperones might be functionally important. Finally, we employed a computational approach to uncover possible A11-binding sites on these targets. Since the beta-sheet edge was a common structural motif having the most similar physicochemical properties in the A11-reactive proteins we analyzed, we propose that the beta-sheet edge in some natively folded amyloid oligomers is designed positively to prevent beta aggregation.
Collapse
Affiliation(s)
- Yuji Yoshiike
- Laboratory for Alzheimer's Disease, RIKEN Brain Science Institute, Wako-shi, Saitama, Japan
| | - Ryoichi Minai
- Computational Proteomics Team, RIKEN Genomics Sciences Center, Tsurumi-ku, Yokohama, Japan
| | - Yo Matsuo
- Computational Proteomics Team, RIKEN Genomics Sciences Center, Tsurumi-ku, Yokohama, Japan
| | - Yun-Ru Chen
- The Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Tetsuya Kimura
- Laboratory for Alzheimer's Disease, RIKEN Brain Science Institute, Wako-shi, Saitama, Japan
| | - Akihiko Takashima
- Laboratory for Alzheimer's Disease, RIKEN Brain Science Institute, Wako-shi, Saitama, Japan
- * E-mail:
| |
Collapse
|
214
|
Han MJ, Yun H, Lee SY. Microbial small heat shock proteins and their use in biotechnology. Biotechnol Adv 2008; 26:591-609. [PMID: 18789382 DOI: 10.1016/j.biotechadv.2008.08.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2008] [Revised: 08/01/2008] [Accepted: 08/03/2008] [Indexed: 11/29/2022]
Abstract
Small heat shock proteins (sHsps) exist in almost all organisms. Most organisms have more than one sHsp, but their number can be as high as 65, as found in the eukaryote, Vitis vinifera. The function of sHsps is well-known; they confer thermotolerance to cellular cultures and proteins in cellular extracts during prolonged incubations at elevated temperatures. This demonstrates the ability of sHsps to protect cellular proteins, and to maintain cellular viability under conditions of intensive stress, such as heat shock or chemical treatments. sHsps have several properties that distinguish them from heat shock proteins (Hsps): they function as ATP-independent chaperones, require the flexible assembly and reassembly of oligomeric complex structures for their activation, and exhibit a wide range of substrate-binding capacities. Recent studies indicate that sHsps have important biological functions in thermostability, disaggregation, and proteolysis inhibition. These functions can be harnessed for various applications, including nanobiotechnology, proteomics, bioproduction, and bioseparation. In this review, we discuss the properties and diversity of microbial sHsps, as well as their potential uses in the biotechnology industry.
Collapse
Affiliation(s)
- Mee-Jung Han
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 305-701, Republic of Korea
| | | | | |
Collapse
|
215
|
Caruso A, Chefdor F, Carpin S, Depierreux C, Delmotte FM, Kahlem G, Morabito D. Physiological characterization and identification of genes differentially expressed in response to drought induced by PEG 6000 in Populus canadensis leaves. JOURNAL OF PLANT PHYSIOLOGY 2008; 165:932-41. [PMID: 17928100 DOI: 10.1016/j.jplph.2007.04.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 04/17/2007] [Accepted: 04/18/2007] [Indexed: 05/06/2023]
Abstract
We report here about the physiological and molecular responses of Populus canadensis (clone Dorskamp) to drought. The stress was applied to young rooted cuttings by PEG 6000 application over 30 days. This stress induces a decrease in predawn leaf water potential. After 10 days of stress, there was a decrease in stomatal conductance and a slight retardation of leaf growth, but the osmotic potential remained constant. Using the differential display technique, we searched for genes differentially expressed in response to drought at this date. Thirty-six differentially expressed leaf cDNAs were detected between stressed and control conditions. Thirty-four cDNAs clones were successfully cloned and 23 were found to share high identity with Arabidopsis thaliana and Populus trichocarpa genes. The transcriptional regulation of 21 genes was examined by reverse RNA dot blot, confirming an increase in expression for 16 of them after 10 days of treatment. Among these 16 genes, most of them are involved in a different cellular metabolic pathway. These differentially expressed genes are also involved and/or regulated by other treatments such as salt, withholding water or auxin application. The maintenance of growth observed during the first 10 days of the stress period could be due to the regulation of these genes and can be a common response between herbaceous plants and trees.
Collapse
Affiliation(s)
- Aurore Caruso
- Laboratoire de Physiologie et Biochimie Végétale, EA-2663, Université du Maine, Faculté des Sciences et Techniques, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | | | | | | | | | | | | |
Collapse
|
216
|
Montero E, Rodriguez M, Gonzalez LM, Lobo CA. Babesia divergens: Identification and characterization of BdHSP-20, a small heat shock protein. Exp Parasitol 2008; 119:238-45. [DOI: 10.1016/j.exppara.2008.01.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 01/25/2008] [Accepted: 01/29/2008] [Indexed: 10/22/2022]
|
217
|
Takahashi A, Yamakawa N, Mori E, Ohnishi K, Yokota SI, Sugo N, Aratani Y, Koyama H, Ohnishi T. Development of thermotolerance requires interaction between polymerase-beta and heat shock proteins. Cancer Sci 2008; 99:973-8. [PMID: 18380790 PMCID: PMC11159698 DOI: 10.1111/j.1349-7006.2008.00759.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Although heat shock proteins (HSP) are well known to contribute to thermotolerance, they only play a supporting role in the phenomenon. Recently, it has been reported that heat sensitivity depends on heat-induced DNA double-strand breaks (DSB), and that thermotolerance also depends on the suppression of DSB formation. However the critical elements involved in thermotolerance have not yet been fully identified. Heat produces DSB and leads to cell death through denaturation and dysfunction of heat-labile repair proteins such as DNA polymerase-beta (Pol beta). Here the authors show that thermotolerance was partially suppressed in Pol beta(-/-) mouse embryonic fibroblasts (MEF) when compared to the wild-type MEF, and was also suppressed in the presence of the HSP inhibitor, KNK437, in both cell lines. Moreover, the authors found that heat-induced gamma H2AX was suppressed in the thermotolerant cells. These results suggest that Pol beta at least contributes to thermotolerance through its reactivation and stimulation by Hsp27 and Hsp70. In addition, it appears possible that fewer DSB were formed after a challenging heat exposure because preheat-induced Hsp27 and Hsp70 can rescue or restore other, as yet unidentified, heat-labile proteins besides Pol beta. The present novel findings provide strong evidence that Pol beta functions as a critical element involved in thermotolerance and exerts an important role in heat-induced DSB.
Collapse
Affiliation(s)
- Akihisa Takahashi
- Department of Biology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Sharp PS, Akbar MT, Bouri S, Senda A, Joshi K, Chen HJ, Latchman DS, Wells DJ, de Belleroche J. Protective effects of heat shock protein 27 in a model of ALS occur in the early stages of disease progression. Neurobiol Dis 2008; 30:42-55. [DOI: 10.1016/j.nbd.2007.12.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 11/29/2007] [Accepted: 12/06/2007] [Indexed: 11/24/2022] Open
|
219
|
Siddique M, Gernhard S, von Koskull-Döring P, Vierling E, Scharf KD. The plant sHSP superfamily: five new members in Arabidopsis thaliana with unexpected properties. Cell Stress Chaperones 2008; 13:183-97. [PMID: 18369739 PMCID: PMC2673886 DOI: 10.1007/s12192-008-0032-6] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2007] [Revised: 11/09/2007] [Accepted: 11/14/2007] [Indexed: 10/22/2022] Open
Abstract
The small heat shock proteins (sHsps), which are ubiquitous stress proteins proposed to act as chaperones, are encoded by an unusually complex gene family in plants. Plant sHsps are classified into different subfamilies according to amino acid sequence similarity and localization to distinct subcellular compartments. In the whole Arabidopsis thaliana genome, 19 genes were annotated to encode sHsps, of which 14 belong to previously defined plant sHsp families. In this paper, we report studies of the five additional sHsp genes in A. thaliana, which can now be shown to represent evolutionarily distinct sHsp subfamilies also found in other plant species. While two of these five sHsps show expression patterns typical of the other 14 genes, three have unusual tissue specific and developmental profiles and do not respond to heat induction. Analysis of intracellular targeting indicates that one sHsp represents a new class of mitochondrion-targeted sHsps, while the others are cytosolic/nuclear, some of which may cooperate with other sHsps in formation of heat stress granules. Three of the five new proteins were purified and tested for chaperone activity in vitro. Altogether, these studies complete our basic understanding of the sHsp chaperone family in plants.
Collapse
Affiliation(s)
- Masood Siddique
- Molecular Cell Biology, Johann Wolfgang Goethe University, Biocenter N200, 3.OG, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Department of Biochemistry II, University Hospital, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Sascha Gernhard
- Molecular Cell Biology, Johann Wolfgang Goethe University, Biocenter N200, 3.OG, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Department of Biochemistry II, University Hospital, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Pascal von Koskull-Döring
- Molecular Cell Biology, Johann Wolfgang Goethe University, Biocenter N200, 3.OG, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Elizabeth Vierling
- Department of Biochemistry and Molecular Biophysics, University of Arizona, 1007 E Lowell Street, Tucson, AZ 85721 USA
| | - Klaus-Dieter Scharf
- Molecular Cell Biology, Johann Wolfgang Goethe University, Biocenter N200, 3.OG, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| |
Collapse
|
220
|
Franzmann TM, Menhorn P, Walter S, Buchner J. Activation of the chaperone Hsp26 is controlled by the rearrangement of its thermosensor domain. Mol Cell 2008; 29:207-16. [PMID: 18243115 DOI: 10.1016/j.molcel.2007.11.025] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 09/18/2007] [Accepted: 11/05/2007] [Indexed: 10/22/2022]
Abstract
Cells respond to a sudden increase in temperature with the transcription of a special set of genes, a phenomenon known as the heat shock response. In the yeast S. cerevisiae, the molecular chaperone Hsp26 is one component of the heat shock response. Hsp26 has the remarkable ability to sense increases in temperature directly and can switch from an inactive to a chaperone-active state. The underlying principle of this temperature regulation has remained enigmatic. Hsp26 variants with altered spectroscopic properties allowed us to identify structural elements controlling this activation process. We show that temperature sensing by Hsp26 is a feature of its middle domain that changes its conformation within a narrow temperature range. This structural rearrangement allows Hsp26 to respond autonomously and directly to heat stress by reversibly unleashing its chaperone activity. Thus, the Hsp26 middle domain is a thermosensor and intrinsic regulator of chaperone activity.
Collapse
Affiliation(s)
- Titus M Franzmann
- Department Chemie, Center for Integrative Protein Science Munich, Technische Universität München, Garching, Germany
| | | | | | | |
Collapse
|
221
|
Mamedov TG, Shono M. Molecular chaperone activity of tomato (Lycopersicon esculentum) endoplasmic reticulum-located small heat shock protein. JOURNAL OF PLANT RESEARCH 2008; 121:235-43. [PMID: 18288562 DOI: 10.1007/s10265-008-0148-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Accepted: 01/08/2008] [Indexed: 05/16/2023]
Abstract
The gene encoding the small heat shock protein (sHSP), LeHSP21.5, has been previously cloned from tomato (GenBank accession no. AB026983). The deduced amino acid sequence of this tomato sHSP was most similar to that of other endoplasmic reticulum (ER)-localized sHSPs (ER-sHSP) and can be predicted to target the ER. We examined whether the gene product of LeHSP21.5 (probable ER-sHSP) can act as molecular chaperone. For functional analysis, LeHSP21.5 protein was expressed in Escherichia coli as His(6)-tagged protein in the C-terminal and purified. We confirmed that ER-sHSP could provide thermal protection of soluble proteins in vitro. We compared the thermal stability of E. coli strain BL21 (DE3) transformed with pET-ER-sHSP with the control E. coli strain BL21(DE3) transformed with only the pET vector under heat shock and IPTG-induced conditions. Most of the protein extracts from E. coli cells expressing ER-sHSP were protected from heat-induced denaturation, whereas extracts from cells not expressing ER-sHSP were very heat-sensitive under these conditions. A similar protective effect was observed when purified ER-sHSP was added to an E. coli cell extract. ER-sHSP prevented the thermal aggregation and inactivation of citrate synthase. These collective findings indicate that ER-sHSP can function as a molecular chaperone in vitro.
Collapse
Affiliation(s)
- Tarlan G Mamedov
- Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences (JIRCAS), 1091-1 Maezato Kawarabaru, Ishigaki, Okinawa, 907-0002, Japan.
| | | |
Collapse
|
222
|
Preheating induced homogeneity of the small heat shock protein from Methanococcus jannaschii. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:489-95. [DOI: 10.1016/j.bbapap.2007.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 12/14/2007] [Accepted: 12/18/2007] [Indexed: 11/19/2022]
|
223
|
Structural dynamics of archaeal small heat shock proteins. J Mol Biol 2008; 378:362-74. [PMID: 18353362 DOI: 10.1016/j.jmb.2008.01.095] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 01/24/2008] [Accepted: 01/31/2008] [Indexed: 11/20/2022]
Abstract
Small heat shock proteins (sHsps) are a widespread and diverse class of molecular chaperones. In vivo, sHsps contribute to thermotolerance. Recent evidence suggests that their function in the cellular chaperone network is to maintain protein homeostasis by complexing a variety of non-native proteins. One of the most characteristic features of sHsps is their organization into large, sphere-like structures commonly consisting of 12 or 24 subunits. Here, we investigated the functional and structural properties of Hsp20.2, an sHsp from Archaeoglobus fulgidus, in comparison to its relative, Hsp16.5 from Methanocaldococcus jannaschii. Hsp20.2 is active in suppressing the aggregation of different model substrates at physiological and heat-stress temperatures. Electron microscopy showed that Hsp20.2 forms two distinct types of octahedral oligomers of slightly different sizes, indicating certain structural flexibility of the oligomeric assembly. By three-dimensional analysis of electron microscopic images of negatively stained specimens, we were able to reconstitute 3D models of the assemblies at a resolution of 19 A. Under conditions of heat stress, the distribution of the structurally different Hsp20.2 assemblies changed, and this change was correlated with an increased chaperone activity. In analogy to Hsp20.2, Hsp16.5 oligomers displayed structural dynamics and exhibited increased chaperone activity under conditions of heat stress. Thus, temperature-induced conformational regulation of the activity of sHsps may be a general phenomenon in thermophilic archaea.
Collapse
|
224
|
The dramatically increased chaperone activity of small heat-shock protein IbpB is retained for an extended period of time after the stress condition is removed. Biochem J 2008; 410:63-70. [DOI: 10.1042/bj20071120] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
sHSP (small heat-shock protein) IbpB (inclusion-body-binding protein B) from Escherichia coli is known as an ATP-independent holding chaperone which prevents the insolubilization of aggregation-prone proteins by forming stable complexes with them. It was found that the chaperone function of IbpB is greatly modulated by the ambient temperature, i.e. when the temperature increases from normal to heat-shock, the chaperone activity of IbpB is dramatically elevated to a level that allows it to effectively bind the aggregation-prone client proteins. Although it is generally believed that the release and refolding of the client protein from the sHSPs depends on the aid of the ATP-dependent chaperones such as Hsp (heat-shock protein) 70 and Hsp100 when the ambient temperature recovers from heat-shock to normal, the behaviour of the sHSPs during this recovery stage has not yet been investigated. In the present study, we examined the behaviour and properties of IbpB upon temperature decrease from heat-shock to normal. We found that IbpB, which becomes functional only under heat-shock conditions, retains the chaperone activity for an extended period of time after the heat-shock stress condition is removed. A detail comparison demonstrates that such preconditioned IbpB is distinguished from the non-preconditioned IbpB by a remarkable conformational transformation, including a significant increase in the flexibility of the N- and C-terminal regions, as well as enhanced dynamic subunit dissociation/reassociation. Intriguingly, the preconditioned IbpB displayed a dramatic decrease in its surface hydrophobicity, suggesting that the exposure of hydrophobic sites might not be the sole determinant for IbpB to exhibit chaperone activity. We propose that the maintenance of the chaperone activity for such ‘holdases’ as sHSPs would be important for cells to recover from heat-shock stress.
Collapse
|
225
|
MORI EIICHIRO, TAKAHASHI AKIHISA, OHNISHI TAKEO. The Biology of Heat-induced DNA Double-Strand Breaks. ACTA ACUST UNITED AC 2008. [DOI: 10.3191/thermalmed.24.39] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
226
|
Gomes RA, Vicente Miranda H, Sousa Silva M, Graça G, Coelho AV, do Nascimento Ferreira AE, Cordeiro C, Freire AP. Protein glycation and methylglyoxal metabolism in yeast: finding peptide needles in protein haystacks. FEMS Yeast Res 2007; 8:174-81. [PMID: 18070066 DOI: 10.1111/j.1567-1364.2007.00337.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Metabolism, the set of all chemical transformations inside a living cell, comprises nonenzymatic processes that generate toxic products such as reactive oxygen species and 2-oxoaldehydes. Methylglyoxal, a highly reactive 2-oxoaldehyde by-product of glycolysis, is able to react irreversibly and nonenzymatically with proteins, forming methylglyoxal advanced glycation end-products, which alter protein structure, stability and function. Therefore, protein glycation may influence cell metabolism and its physiology in a way beyond what can be predicted based on the implicit codification used in systems biology. Genome-wide approaches and transcriptomics, two mainstays of systems biology, are powerless to tackle the problems caused by nonenzymatic reactions that are part of cell metabolism and biochemistry. The effects of methylglyoxal-derived protein glycation and the cell's response to this unspecific posttranslational modification were investigated in Saccharomyces cerevisiae as a model organism. Specific protein glycation phenotypes were identified using yeast null-mutants for methylglyoxal catabolism and the existence of specific protein glycation targets by peptide mass fingerprint was discovered. Enolase, the major target, endures a glycation-dependent activity loss caused by dissociation of the active dimer upon glycation at a specific arginine residue, identified using the hidden information of peptide mass fingerprint. Once glycation occurs, a cellular response involving heat shock proteins from the refolding chaperone pathway is elicited and Hsp26p is activated by glycation.
Collapse
Affiliation(s)
- Ricardo Anjos Gomes
- Departamento de Química e Bioquimica, Centro de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Edifício, Lisboa, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
227
|
Carra S, Seguin SJ, Lambert H, Landry J. HspB8 chaperone activity toward poly(Q)-containing proteins depends on its association with Bag3, a stimulator of macroautophagy. J Biol Chem 2007; 283:1437-1444. [PMID: 18006506 DOI: 10.1074/jbc.m706304200] [Citation(s) in RCA: 277] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mutations in HspB8, a member of the B group of heat shock proteins (Hsp), have been associated with human neuromuscular disorders. However, the exact function of HspB8 is not yet clear. We previously demonstrated that overexpression of HspB8 in cultured cells prevents the accumulation of aggregation-prone proteins such as the polyglutamine protein Htt43Q. Here we report that HspB8 forms a stable complex with Bag3 in cells and that the formation of this complex is essential for the activity of HspB8. Bag3 overexpression resulted in the accelerated degradation of Htt43Q, whereas Bag3 knockdown prevented HspB8-induced Htt43Q degradation. Additionally, depleting Bag3 caused a reduction in the endogenous levels of LC3-II, a key molecule involved in macroautophagy, whereas overexpressing Bag3 or HspB8 stimulated the formation LC3-II. These results suggested that the HspB8-Bag3 complex might stimulate the degradation of Htt43Q by macroautophagy. This was confirmed by the observation that treatments with macroautophagy inhibitors significantly decreased HspB8- and Bag3-induced degradation of Htt43Q. We conclude that the HspB8 activity is intrinsically dependent on Bag3, a protein that may facilitate the disposal of doomed proteins by stimulating macroautophagy.
Collapse
Affiliation(s)
- Serena Carra
- Centre de Recherche en Cancérologie and Département de Médecine, Université Laval, Québec G1R 2J6, Canada
| | - Samuel J Seguin
- Centre de Recherche en Cancérologie and Département de Médecine, Université Laval, Québec G1R 2J6, Canada
| | - Herman Lambert
- Centre de Recherche en Cancérologie and Département de Médecine, Université Laval, Québec G1R 2J6, Canada
| | - Jacques Landry
- Centre de Recherche en Cancérologie and Département de Médecine, Université Laval, Québec G1R 2J6, Canada.
| |
Collapse
|
228
|
Waters KM, Tan R, Genetos DC, Verma S, Yellowley CE, Karin NJ. DNA microarray analysis reveals a role for lysophosphatidic acid in the regulation of anti-inflammatory genes in MC3T3-E1 cells. Bone 2007; 41:833-41. [PMID: 17719864 DOI: 10.1016/j.bone.2007.06.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 06/25/2007] [Accepted: 06/29/2007] [Indexed: 11/25/2022]
Abstract
Lysophosphatidic acid (LPA) is a bioactive lipid with functional properties that overlap those of growth factors and cytokines. LPA production in vivo is linked to platelet degranulation and the biological activities of this lipid are associated with wound healing. Osteoblasts and their progenitor cells are exposed to high levels of this lipid factor in regions adjacent to bone fractures and we postulate a role for LPA in skeletal healing. The regeneration of bone injuries requires a complex array of changes in gene expression, but the effects of LPA on mRNA levels in bone cells have not been investigated. We performed a genome-wide expression analysis in LPA-treated MC3T3-E1 pre-osteoblastic cells using Affymetrix GeneChip arrays. Cells exposed to LPA for 6 h exhibited 513 regulated genes, whereas changes in the levels of 54 transcripts were detected after a 24-h LPA treatment. Gene ontology analysis linked LPA-regulated gene products to biological processes that are known to govern bone healing, including cell proliferation, response to stress, organ development, chemotaxis/motility, and response to stimuli. Among the gene products most highly up-regulated by LPA were transcripts encoding the anti-inflammatory proteins sST2, ST2L, and heat-shock protein 25 (HSP25). RT-PCR analysis confirmed that these mRNAs were increased significantly in MC3T3-E1 cells and primary osteoblasts exposed to LPA. The response of cells to LPA is mediated by G-protein-coupled receptors, and the stimulation of anti-inflammatory gene expression in MC3T3-E1 cells was blocked by Ki16425, an inhibitor of LPA(1) and LPA(3) receptor forms. Pertussis toxin impaired only the LPA-induced expression of sST2. LPA-stimulated levels of sST2, ST2L and HSP25 mRNAs persisted if the cytosolic Ca(2+) elevations elicited by this lipid were blocked with BAPTA. In contrast to the stimulatory effect of LPA, exposure of MC3T3-E1 cells to fluid shear reduced the transcript levels of all three anti-inflammatory genes. The induction of sST2, ST2L and HSP25 expression by LPA suggests a role for this lipid factor in the regulation of osteoblastic cell function during periods of inflammation.
Collapse
Affiliation(s)
- Katrina M Waters
- Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | | | | | | | | |
Collapse
|
229
|
Pivovarova AV, Chebotareva NA, Chernik IS, Gusev NB, Levitsky DI. Small heat shock protein Hsp27 prevents heat-induced aggregation of F-actin by forming soluble complexes with denatured actin. FEBS J 2007; 274:5937-48. [PMID: 17944945 DOI: 10.1111/j.1742-4658.2007.06117.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previously, we have shown that the small heat shock protein with apparent molecular mass 27 kDa (Hsp27) does not affect the thermal unfolding of F-actin, but effectively prevents aggregation of thermally denatured F-actin [Pivovarova AV, Mikhailova VV, Chernik IS, Chebotareva NA, Levitsky DI & Gusev NB (2005) Biochem Biophys Res Commun331, 1548-1553], and supposed that Hsp27 prevents heat-induced aggregation of F-actin by forming soluble complexes with denatured actin. In the present work, we applied dynamic light scattering, analytical ultracentrifugation and size exclusion chromatography to examine the properties of complexes formed by denatured actin with a recombinant human Hsp27 mutant (Hsp27-3D) mimicking the naturally occurring phosphorylation of this protein at Ser15, Ser78, and Ser82. Our results show that formation of these complexes occurs upon heating and accompanies the F-actin thermal denaturation. All the methods show that the size of actin-Hsp27-3D complexes decreases with increasing Hsp27-3D concentration in the incubation mixture and that saturation occurs at approximately equimolar concentrations of Hsp27-3D and actin. Under these conditions, the complexes exhibit a hydrodynamic radius of approximately 16 nm, a sedimentation coefficient of 17-20 S, and a molecular mass of about 2 MDa. It is supposed that Hsp27-3D binds to denatured actin monomers or short oligomers dissociated from actin filaments upon heating and protects them from aggregation by forming relatively small and highly soluble complexes. This mechanism might explain how small heat shock proteins prevent aggregation of denatured actin and by this means protect the cytoskeleton and the whole cell from damage caused by accumulation of large insoluble aggregates under heat shock conditions.
Collapse
|
230
|
Treweek TM, Ecroyd H, Williams DM, Meehan S, Carver JA, Walker MJ. Site-directed mutations in the C-terminal extension of human alphaB-crystallin affect chaperone function and block amyloid fibril formation. PLoS One 2007; 2:e1046. [PMID: 17940610 PMCID: PMC2002509 DOI: 10.1371/journal.pone.0001046] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 09/21/2007] [Indexed: 12/22/2022] Open
Abstract
Background Alzheimer's, Parkinson's and Creutzfeldt-Jakob disease are associated with inappropriate protein deposition and ordered amyloid fibril assembly. Molecular chaperones, including αB-crystallin, play a role in the prevention of protein deposition. Methodology/Principal Findings A series of site-directed mutants of the human molecular chaperone, αB-crystallin, were constructed which focused on the flexible C-terminal extension of the protein. We investigated the structural role of this region as well as its role in the chaperone function of αB-crystallin under different types of protein aggregation, i.e. disordered amorphous aggregation and ordered amyloid fibril assembly. It was found that mutation of lysine and glutamic acid residues in the C-terminal extension of αB-crystallin resulted in proteins that had improved chaperone activity against amyloid fibril forming target proteins compared to the wild-type protein. Conclusions/Significance Together, our results highlight the important role of the C-terminal region of αB-crystallin in regulating its secondary, tertiary and quaternary structure and conferring thermostability to the protein. The capacity to genetically modify αB-crystallin for improved ability to block amyloid fibril formation provides a platform for the future use of such engineered molecules in treatment of diseases caused by amyloid fibril formation.
Collapse
Affiliation(s)
- Teresa M. Treweek
- Department of Chemistry, University of Wollongong, Wollongong, New South Wales, Australia
- Graduate School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
| | - Heath Ecroyd
- School of Chemistry and Physics, The University of Adelaide, Adelaide, South Australia, Australia
| | - Danielle M. Williams
- School of Chemistry and Physics, The University of Adelaide, Adelaide, South Australia, Australia
| | - Sarah Meehan
- The University Chemical Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - John A. Carver
- School of Chemistry and Physics, The University of Adelaide, Adelaide, South Australia, Australia
| | - Mark J. Walker
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
231
|
Hadaschik BA, Melchior SW, Sowery RD, So AI, Gleave ME. [Stress proteins in prostate cancer. Challenge and promise]. Urologe A 2007; 46:516-20. [PMID: 17372715 DOI: 10.1007/s00120-007-1323-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Therapeutic resistance is the underlying basis for most cancer deaths. Exposure to anticancer therapies induces expression of many stress proteins, including heat shock proteins and clusterin. These molecular chaperones interact with various client proteins to assist in their folding and enhance cellular recovery from stress conditions. Cellular stress and cell death are linked, as the induction of chaperones appear to function at key regulatory points in the control of apoptosis. On this basis and on the role of stress proteins in the regulation of steroid receptors, kinases, caspases, and other protein remodeling events, it is not surprising that molecular chaperones have been implicated in resistance to anticancer treatments. Recently, several chaperones have been reported to be involved in development and progression of hormone-refractory prostate cancer. In this review, we address some of the events initiated by treatment-induced stress and discuss the potential role of chaperone inhibitors in prostate cancer treatment.
Collapse
Affiliation(s)
- B A Hadaschik
- The Prostate Centre at Vancouver General Hospital, 2660 Oak Street, V6H 3Z6 Vancouver.
| | | | | | | | | |
Collapse
|
232
|
Mulligan-Tuttle A, Heikkila JJ. Expression of the small heat shock protein gene, hsp30, in Rana catesbeiana fibroblasts. Comp Biochem Physiol A Mol Integr Physiol 2007; 148:308-16. [PMID: 17540592 DOI: 10.1016/j.cbpa.2007.04.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 04/25/2007] [Accepted: 04/25/2007] [Indexed: 11/29/2022]
Abstract
In the present study, we examined the expression of the Rana catesbeiana small heat shock protein gene, hsp30, in an FT fibroblast cell line. Northern and western blot analyses revealed that hsp30 mRNA or HSP30 protein was not present constitutively but was strongly induced at a heat shock temperature of 35 degrees C. However, treatment of FT cells with sodium arsenite at concentrations that induced hsp gene expression in other amphibian systems caused cell death. Non-lethal concentrations of sodium arsenite (10 microM) induced only minimal accumulation of hsp30 mRNA or protein after 12 h. Immunocytochemical analyses employing laser scanning confocal microscopy detected the presence of heat-inducible HSP30, in a granular or punctate pattern. HSP30 was enriched in the nucleus with more diffuse localization in the cytoplasm. The nuclear localization of HSP30 was more prominent with continuous heat shock. These heat treatments did not alter FT cell shape or disrupt actin cytoskeletal organization. Also, HSP30 did not co-localize with the actin cytoskeleton.
Collapse
|
233
|
Sahdev S, Khattar SK, Saini KS. Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. Mol Cell Biochem 2007. [PMID: 17874175 DOI: 10.1007/s11010‐007‐9603‐6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Among the various expression systems employed for the over-production of proteins, bacteria still remains the favorite choice of a Protein Biochemist. However, even today, due to the lack of post-translational modification machinery in bacteria, recombinant eukaryotic protein production poses an immense challenge, which invariably leads to the production of biologically in-active protein in this host. A number of techniques are cited in the literature, which describe the conversion of inactive protein, expressed as an insoluble fraction, into a soluble and active form. Overall, we have divided these methods into three major groups: Group-I, where the factors influencing the formation of insoluble fraction are modified through a stringent control of the cellular milieu, thereby leading to the expression of recombinant protein as soluble moiety; Group-II, where protein is refolded from the inclusion bodies and thereby target protein modification is avoided; Group-III, where the target protein is engineered to achieve soluble expression through fusion protein technology. Even within the same family of proteins (e.g., tyrosine kinases), optimization of standard operating protocol (SOP) may still be required for each protein's over-production at a pilot-scale in Escherichia coli. However, once standardized, this procedure can be made amenable to the industrial production for that particular protein with minimum alterations.
Collapse
Affiliation(s)
- Sudhir Sahdev
- Department of Biotechnology & Bioinformatics, New Drug Discovery Research, Ranbaxy Research Laboratories-R&D-3, 20-Sector 18 Udyog Vihar, Gurgaon, India.
| | | | | |
Collapse
|
234
|
Sahdev S, Khattar SK, Saini KS. Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. Mol Cell Biochem 2007; 307:249-64. [PMID: 17874175 DOI: 10.1007/s11010-007-9603-6] [Citation(s) in RCA: 265] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 08/27/2007] [Indexed: 12/13/2022]
Abstract
Among the various expression systems employed for the over-production of proteins, bacteria still remains the favorite choice of a Protein Biochemist. However, even today, due to the lack of post-translational modification machinery in bacteria, recombinant eukaryotic protein production poses an immense challenge, which invariably leads to the production of biologically in-active protein in this host. A number of techniques are cited in the literature, which describe the conversion of inactive protein, expressed as an insoluble fraction, into a soluble and active form. Overall, we have divided these methods into three major groups: Group-I, where the factors influencing the formation of insoluble fraction are modified through a stringent control of the cellular milieu, thereby leading to the expression of recombinant protein as soluble moiety; Group-II, where protein is refolded from the inclusion bodies and thereby target protein modification is avoided; Group-III, where the target protein is engineered to achieve soluble expression through fusion protein technology. Even within the same family of proteins (e.g., tyrosine kinases), optimization of standard operating protocol (SOP) may still be required for each protein's over-production at a pilot-scale in Escherichia coli. However, once standardized, this procedure can be made amenable to the industrial production for that particular protein with minimum alterations.
Collapse
Affiliation(s)
- Sudhir Sahdev
- Department of Biotechnology & Bioinformatics, New Drug Discovery Research, Ranbaxy Research Laboratories-R&D-3, 20-Sector 18 Udyog Vihar, Gurgaon, India.
| | | | | |
Collapse
|
235
|
Arrigo AP. The cellular "networking" of mammalian Hsp27 and its functions in the control of protein folding, redox state and apoptosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 594:14-26. [PMID: 17205671 DOI: 10.1007/978-0-387-39975-1_2] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cells possess effective mechanisms to cope with chronic or acute disturbance of homeostasis. Key roles in maintaining or restoring homeostasis are played by the various heat shock or stress proteins (Hsps). Among the Hsps, the group of proteins characterized by low molecular masses (between 20 to 30 kDa) and homology to alpha-crystallin are called small stress proteins (denoted sHsps). The present chapter summarizes the actual knowledge of the protective mechanisms generated by the expression of mammalian Hsp27 (also denoted HspB1 in human) against the cytotoxicity induced by heat shock and oxidative stress. It also describes the anti-apoptotic properties of Hsp27 and their putative consequences in different pathological conditions.
Collapse
Affiliation(s)
- André-Patrick Arrigo
- Laboratoire Stress Oxydant, Chaperons et Apoptose, CNRS UMR 5534, Centre de Génétique Moléculaire et Cellulaire, Université Claude Bernard, 16 rue Dubois, 69622 Villeurbanne Cedex, France.
| |
Collapse
|
236
|
Waters ER, Rioflorido I. Evolutionary analysis of the small heat shock proteins in five complete algal genomes. J Mol Evol 2007; 65:162-74. [PMID: 17684698 DOI: 10.1007/s00239-006-0223-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Accepted: 04/04/2007] [Indexed: 11/29/2022]
Abstract
Small heat shock proteins (sHSPs) are chaperones that are crucial in the heat shock response but also have important nonstress roles within the cell. sHSPs are found in all three domains of life (Bacteria, Archaea, and Eukarya). These proteins are particularly diverse within land plants and the evolutionary origin of the land plant sHSP families is still an open question. Here we describe the identification of 17 small sHSPs from the complete genome sequences of five diverse algae: Chlamydomonas reinhardtii, Cyanidioschyzon merolae, Ostreococcus lucimarinus, Ostreococcus tauri, and Thalassiosira pseudonana. Our analysis indicates that the number and diversity of algal sHSPs are not correlated with adaptation to extreme conditions. While all of the algal sHSPs identified are members of this large and important superfamily, none of these sHSPs are members of the diverse land plant sHSP families. The evolutionary relationships among the algal sHSPs and homologues from bacteria and other eukaryotes are consistent with the hypothesis that the land plant chloroplast and mitochondrion sHSPs did not originate from the endosymbionts of the chloroplast and mitochondria. In addition the evolutionary history of the sHSPs is very different from that of the HSP70s. Finally, our analysis of the algal sHSPs sequences in light of the known sHSP crystal structures and functional data suggests that the sHSPs possess considerable structural and functional diversity.
Collapse
Affiliation(s)
- Elizabeth R Waters
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-4614, USA.
| | | |
Collapse
|
237
|
Paulsen G, Vissing K, Kalhovde JM, Ugelstad I, Bayer ML, Kadi F, Schjerling P, Hallén J, Raastad T. Maximal eccentric exercise induces a rapid accumulation of small heat shock proteins on myofibrils and a delayed HSP70 response in humans. Am J Physiol Regul Integr Comp Physiol 2007; 293:R844-53. [PMID: 17522120 DOI: 10.1152/ajpregu.00677.2006] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study the stress protein response to unaccustomed maximal eccentric exercise in humans was investigated. Eleven healthy males performed 300 maximal eccentric actions with the quadriceps muscle. Biopsies from vastus lateralis were collected at 30 min and 4, 8, 24, 96, and 168 h after exercise. Cellular regulation and localization of heat shock protein (HSP) 27, alpha B-crystallin, and HSP70 were analyzed by immunohistochemistry, ELISA technique, and Western blotting. Additionally, mRNA levels of HSP27, alpha B-crystallin, and HSP70 were quantified by Northern blotting. After exercise (30 min), 81 +/- 8% of the myofibers showed strong HSP27 staining (P < 0.01) that gradually decreased during the following week. alpha B-Crystallin mimicked the changes observed in HSP27. After exercise (30 min), the ELISA analysis showed a 49 +/- 13% reduction of the HSP27 level in the cytosolic fraction (P < 0.01), whereas Western blotting revealed a 15-fold increase of the HSP27 level in the myofibrillar fraction (P < 0.01). The cytosolic HSP70 level increased to 203 +/- 37% of the control level 24 h after exercise (P < 0.05). After 4 days, myofibrillar-bound HSP70 had increased approximately 10-fold (P < 0.01) and was accompanied by strong staining on cross sections. mRNA levels of HSP27, alpha B-crystallin, and HSP70 were all elevated the first day after exercise (P < 0.01); HSP70 mRNA showed the largest increase (20-fold at 8 h). HSP27 and alpha B-crystallin seemed to respond immediately to maximal eccentric exercise by binding to cytoskeletal/myofibrillar proteins, probably to function as stabilizers of disrupted myofibrillar structures. Later, mRNA and total HSP protein levels, especially HSP70, increased, indicating that HSPs play a role in skeletal muscle recovery and remodeling/adaptation processes to high-force exercise.
Collapse
Affiliation(s)
- Gøran Paulsen
- Norwegian School of Sport Sciences, P.O. Box 4014 U.S., N-0806 Oslo, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Ventura M, Canchaya C, Zhang Z, Fitzgerald GF, van Sinderen D. Molecular characterization of hsp20, encoding a small heat shock protein of bifidobacterium breve UCC2003. Appl Environ Microbiol 2007; 73:4695-703. [PMID: 17513584 PMCID: PMC1932816 DOI: 10.1128/aem.02496-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Small heat shock proteins (sHSPs) are members of a diverse family of stress proteins that are important in cells to protect proteins under stressful conditions. Genome analysis of Bifidobacterium breve UCC2003 revealed a single sHSP-encoding gene, which was classified as a hsp20 gene by comparative analyses. Genomic surveillance of available genome sequences indicated that hsp20 homologs are not widely distributed in bacteria. In members of the genus Bifidobacterium, this gene appears to be present in only 7 of the 30 currently described species. Moreover, phylogenetic analysis using all available bacterial and eukaryotic sHSP sequences revealed a close relationship between bifidobacterial HSP20 and the class B sHSPs found in members of the division Firmicutes. The results of this comparative analysis and variation in codon usage content suggest that hsp20 was acquired by certain bifidobacteria through horizontal gene transfer. Analysis by slot blot, Northern blot, and primer extension experiments showed that transcription of hsp20 is strongly induced in response to severe heat shock regimens and by osmotic shock.
Collapse
Affiliation(s)
- Marco Ventura
- Department of Genetics, Anthropology and Evolution, University of Parma, Parma, Italy
| | | | | | | | | |
Collapse
|
239
|
Ahrman E, Gustavsson N, Hultschig C, Boelens WC, Emanuelsson CS. Small heat shock proteins prevent aggregation of citrate synthase and bind to the N-terminal region which is absent in thermostable forms of citrate synthase. Extremophiles 2007; 11:659-66. [PMID: 17486291 DOI: 10.1007/s00792-007-0080-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Accepted: 03/27/2007] [Indexed: 11/28/2022]
Abstract
Citrate synthase (CS) is often used in chaperone assays since this thermosensitive enzyme aggregates at moderately increased temperatures. Small heat shock proteins (sHsps) are molecular chaperones specialized in preventing the aggregation of other proteins, termed substrate proteins, under conditions of transient heat stress. To investigate the mechanism whereby sHsps bind to and stabilize a substrate protein, we here used peptide array screening covering the sequence of porcine CS (P00889). Strong binding of sHsps was detected to a peptide corresponding to the most N-terminal alpha-helix in CS (amino acids Leu(13) to Gln(27)). The N-terminal alpha-helices in the CS dimer intertwine with the C-terminus in the other subunit and together form a stem-like structure which is protruding from the CS dimer. This stem-like structure is absent in thermostable forms of CS from thermophilic archaebacteria like Pyrococcus furiosus and Sulfolobus solfatacarium. These data therefore suggest that thermostabilization of thermosensitive CS by sHsps is achieved by stabilization of the C- and N-terminae in the protruding thermosensitive softspot, which is absent in thermostable forms of the CS dimer.
Collapse
Affiliation(s)
- Emma Ahrman
- Department of Biochemistry, Lund University, Lund, Sweden
| | | | | | | | | |
Collapse
|
240
|
Wang HP, Hanlon JG, Rainbow AJ, Espiritu M, Singh G. Up-regulation of Hsp27 Plays a Role in the Resistance of Human Colon Carcinoma HT29 Cells to Photooxidative Stress¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2002)0760098urohpa2.0.co2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
241
|
Arrigo AP, Simon S, Gibert B, Kretz-Remy C, Nivon M, Czekalla A, Guillet D, Moulin M, Diaz-Latoud C, Vicart P. Hsp27 (HspB1) and alphaB-crystallin (HspB5) as therapeutic targets. FEBS Lett 2007; 581:3665-74. [PMID: 17467701 DOI: 10.1016/j.febslet.2007.04.033] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 04/11/2007] [Accepted: 04/15/2007] [Indexed: 12/11/2022]
Abstract
Hsp27 and alphaB-crystallin are molecular chaperones that are constitutively expressed in several mammalian cells, particularly in pathological conditions. These proteins share functions as diverse as protection against toxicity mediated by aberrantly folded proteins or oxidative-inflammation conditions. In addition, these proteins share anti-apoptotic properties and are tumorigenic when expressed in cancer cells. This review summarizes the current knowledge about Hsp27 and alphaB-crystallin and the implications, either positive or deleterious, of these proteins in pathologies such as neurodegenerative diseases, myopathies, asthma, cataracts and cancers. Approaches towards therapeutic strategies aimed at modulating the expression and/or the activities of Hsp27 and alphaB-crystallin are presented.
Collapse
Affiliation(s)
- André-Patrick Arrigo
- Laboratoire Stress, Chaperons et Mort Cellulaire, CNRS, UMR5534, Centre de Génétique Moléculaire et Cellulaire, Université Lyon 1, Bat. Gregor Mendel, 16 Rue Dubois, F-69622, Villeurbanne Cedex, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Zourlidou A, Gidalevitz T, Kristiansen M, Landles C, Woodman B, Wells DJ, Latchman DS, de Belleroche J, Tabrizi SJ, Morimoto RI, Bates GP. Hsp27 overexpression in the R6/2 mouse model of Huntington's disease: chronic neurodegeneration does not induce Hsp27 activation. Hum Mol Genet 2007; 16:1078-90. [PMID: 17360721 DOI: 10.1093/hmg/ddm057] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Huntington's disease (HD) is caused by an expanded polyglutamine tract in the huntingtin protein. Mitochondrial dysfunction and free radical damage occur in both R6/2 mice and HD patient brains and might play a role in disease pathogenesis. In cell culture systems, heat-shock protein 27 (Hsp27), a small molecular chaperone, suppresses mutant huntingtin-induced reactive oxygen species formation and cell death. To investigate this in vivo, we conducted an extensive phenotypic characterization of mice arising from a cross between R6/2 mice and Hsp27 transgenic mice but did not observe an improvement of the R6/2 phenotype. Hsp27 overexpression had no effect in reducing oxidative stress in the R6/2 brain, assessed by measuring striatal aconitase activity and protein carbonylation levels. Native protein gel analysis revealed that transgenic Hsp27 forms active, large oligomeric species in heat-shocked brain lysates, demonstrating that it is efficiently activated upon stress. In contrast, Hsp27 in double transgenic brains exists predominantly as a low molecular weight, inactive species. This suggests that Hsp27, which is otherwise activatable upon heat shock, remains inactive in the R6/2 model of chronic neurodegeneration. Hsp27 transgenics had been previously shown to be protected from acute stresses such as kainate administration, ischemia/reperfusion heart injury and neonatal nerve injury. Our study is the first to suggest a differential modulation of Hsp27 activation in vivo and, importantly, it illustrates the diverse effect of Hsp27 on acute versus chronic models of disease.
Collapse
Affiliation(s)
- Alexandra Zourlidou
- Department of Medical and Molecular Genetics, King's College London, School of Medicine, London SE1 9RT, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Bellyei S, Szigeti A, Pozsgai E, Boronkai A, Gomori E, Hocsak E, Farkas R, Sumegi B, Gallyas F. Preventing apoptotic cell death by a novel small heat shock protein. Eur J Cell Biol 2007; 86:161-71. [PMID: 17275951 DOI: 10.1016/j.ejcb.2006.12.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 12/03/2006] [Accepted: 12/05/2006] [Indexed: 10/23/2022] Open
Abstract
NCBI database analysis indicated that the human C1orf41 protein (small heat shock-like protein-Hsp16.2) has sequence similarity with small heat shock proteins (sHsps). Since sHsps have chaperone function, and so prevent aggregation of denatured proteins, we determined whether Hsp16.2 could prevent the heat-induced aggregation of denatured proteins. Under our experimental conditions, recombinant Hsp16.2 prevented aggregation of aldolase and glyceraldehyde-3-phosphate dehydrogenase, and protected Escherichia coli cells from heat stress indicating its chaperone function. Hsp16.2 also formed oligomeric complexes in aqueous solution. Hsp16.2 was found to be expressed at different levels in cell lines and tissues, and was mainly localized to the nucleus and the cytosol, but to a smaller extent, it could be also found in mitochondria. Hsp16.2 could be modified covalently by poly(ADP ribosylation) and acetylation. Hsp16.2 over-expression prevented etoposide-induced cell death as well as the release of mitochondrial cytochrome c and caspase activation. These data suggest that Hsp16.2 can prevent the destabilization of mitochondrial membrane systems and could represent a suitable target for modulating cell death pathways.
Collapse
Affiliation(s)
- Szabolcs Bellyei
- Department of Biochemistry and Medical Chemistry, University of Pécs, 12 Szigeti Street, H-7624 Pécs, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Ecroyd H, Meehan S, Horwitz J, Aquilina J, Benesch J, Robinson C, Macphee C, Carver J. Mimicking phosphorylation of alphaB-crystallin affects its chaperone activity. Biochem J 2007; 401:129-41. [PMID: 16928191 PMCID: PMC1698675 DOI: 10.1042/bj20060981] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AlphaB-crystallin is a member of the sHsp (small heat-shock protein) family that prevents misfolded target proteins from aggregating and precipitating. Phosphorylation at three serine residues (Ser19, Ser45 and Ser59) is a major post-translational modification that occurs to alphaB-crystallin. In the present study, we produced recombinant proteins designed to mimic phosphorylation of alphaB-crystallin by incorporating a negative charge at these sites. We employed these mimics to undertake a mechanistic and structural investigation of the effect of phosphorylation on the chaperone activity of alphaB-crystallin to protect against two types of protein misfolding, i.e. amorphous aggregation and amyloid fibril assembly. We show that mimicking phosphorylation of alphaB-crystallin results in more efficient chaperone activity against both heat-induced and reduction-induced amorphous aggregation of target proteins. Mimick-ing phosphorylation increased the chaperone activity of alphaB-crystallin against one amyloid-forming target protein (kappa-casein), but decreased it against another (ccbeta-Trp peptide). We observed that both target protein identity and solution (buffer) conditions are critical factors in determining the relative chaperone ability of wild-type and phosphorylated alphaB-crystallins. The present study provides evidence for the regulation of the chaperone activity of alphaB-crystallin by phosphorylation and indicates that this may play an important role in alleviating the pathogenic effects associated with protein conformational diseases.
Collapse
Affiliation(s)
- Heath Ecroyd
- *School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005, Australia
| | - Sarah Meehan
- *School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005, Australia
| | - Joseph Horwitz
- †Jules Stein Institute, University of California, Los Angeles, School of Medicine, Los Angeles, CA 90095-7008, U.S.A
| | - J. Andrew Aquilina
- ‡School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | | | - Carol V. Robinson
- §Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Cait E. Macphee
- ∥The Biological and Soft Systems Group, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K
| | - John A. Carver
- *School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005, Australia
- To whom correspondence should be addressed (email )
| |
Collapse
|
245
|
Lanneau D, de Thonel A, Maurel S, Didelot C, Garrido C. Apoptosis versus cell differentiation: role of heat shock proteins HSP90, HSP70 and HSP27. Prion 2007; 1:53-60. [PMID: 19164900 DOI: 10.4161/pri.1.1.4059] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Heat shock proteins HSP27, HSP70 and HSP90 are molecular chaperones whose expression is increased after many different types of stress. They have a protective function helping the cell to cope with lethal conditions. The cytoprotective function of HSPs is largely explained by their anti-apoptotic function. HSPs have been shown to interact with different key apoptotic proteins. As a result, HSPs can block essentially all apoptotic pathways, most of them involving the activation of cystein proteases called caspases. Apoptosis and differentiation are physiological processes that share many common features, for instance, chromatin condensation and the activation of caspases are frequently observed. It is, therefore, not surprising that many recent reports imply HSPs in the differentiation process. This review will comment on the role of HSP90, HSP70 and HSP27 in apoptosis and cell differentiation. HSPs may determine de fate of the cells by orchestrating the decision of apoptosis versus differentiation.
Collapse
|
246
|
Martins-de-Souza D, Martins D, Astua-Monge G, Coletta-Filho HD, Winck FV, Baldasso PA, de Oliveira BM, Marangoni S, Machado MA, Novello JC, Smolka MB. Absence of Classical Heat Shock Response in the Citrus Pathogen Xylella fastidiosa. Curr Microbiol 2007; 54:119-23. [PMID: 17211542 DOI: 10.1007/s00284-006-0215-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Accepted: 07/24/2006] [Indexed: 10/23/2022]
Abstract
The fastidious bacterium Xylella fastidiosa is associated with important crop diseases worldwide. We have recently shown that X. fastidiosa is a peculiar organism having unusually low values of gene codon bias throughout its genome and, unexpectedly, in the group of the most abundant proteins. Here, we hypothesized that the lack of codon usage optimization in X. fastidiosa would incapacitate this organism to undergo quick and massive changes in protein expression as occurs in a classical stress response. Proteomic analysis of the response to heat stress in X. fastidiosa revealed that no changes in protein expression can be detected. Moreover, stress-inducible proteins identified in the closely related citrus pathogen Xanthomonas axonopodis pv citri were found to be constitutively expressed in X. fastidiosa. These proteins have extremely high codon bias values in the X. citri and other well-studied organisms, but low values in X. fastidiosa. Because biased codon usage is well known to correlate to the rate of protein synthesis, we speculate that the peculiar codon bias distribution in X. fastidiosa is related to the absence of a classical stress response, and, probably, alternative strategies for survival of X. fastidiosa under stressfull conditions.
Collapse
|
247
|
Zhao B, Yeo CC, Tan CL, Poh CL. Proteome analysis of heat shock protein expression inPseudomonas alcaligenes NCIMB 9867 in response to gentisate exposure and elevated growth temperature. Biotechnol Bioeng 2007; 97:506-14. [PMID: 17149773 DOI: 10.1002/bit.21253] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pseudomonas alcaligenes NCIMB 9867 (strain P25X) degrades xylenols and cresols via the gentisate pathway. P25X expresses two isofunctional gentisate 1,2-dioxygenases (GDO I and GDO II). The expression of both GDOs was not detected when P25X cells were grown at 42 degrees C, even in the presence of gentisate. A total of 19 heat shock proteins (Hsps) belonging to the Hsp100, Hsp90, Hsp70, Hsp60, Hsp45, and small heat shock protein (sHsp) families were identified among the protein spots that were either newly detected or were expressed at levels of at least twofold higher when P25X cells were cultured at 32 or 42 degrees C in the presence and absence of gentisate. Among these, 16 Hsps were commonly expressed at 42 degrees C. Two additional Hsps (H5 and H13) from the Hsp90 and Hsp60 families, respectively, were expressed only when P25X cells were grown at 42 degrees C and in the presence of gentisate. A protein of the sHsp (H16) family was expressed only in the presence of gentisate at 32 degrees C but not at 42 degrees C. The GroEL chaperonins of the Hsp60 family comprised the largest group of Hsps identified and exhibited high level of expression at 42 degrees C following gentisate exposure.
Collapse
Affiliation(s)
- Bing Zhao
- Programme in Environmental Microbiology, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Block MD4, 5 Science Drive 2, Singapore
| | | | | | | |
Collapse
|
248
|
Kundu M, Sen PC, Das KP. Structure, stability, and chaperone function of αA-crystallin: Role of N-terminal region. Biopolymers 2007; 86:177-92. [PMID: 17345631 DOI: 10.1002/bip.20716] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Small heat shock protein alphaA-crystallin, the major protein of the eye lens, is a molecular chaperone. It consists of a highly conserved central domain flanked by the N-terminal and C-terminal regions. In this article we studied the role of the N-terminal domain in the structure and chaperone function of alphaA-crystallin. Using site directed truncation we raised several deletion mutants of alphaA-crystallin and their protein products were expressed in Escherichia coli. Size exclusion chromatography of these purified proteins showed that deletion from the N-terminal beyond the first 20 residues drastically reduced the oligomeric association of alphaA-crystallin and its complete removal resulted in a tetramer. Chaperone activity of alphaA-crystallin, determined by thermal and nonthermal aggregation and refolding assay, decreased with increasing length of deletion and little activity was observed for the tetramer. However it was revealed that N-terminal regions were not responsible for specific recognition of natural substrates and that low affinity substrate binding sites existed in other part of the molecule. The number of exposed hydrophobic sites and the affinity of binding hydrophobic probe bis-ANS as well as protein substrates decreased with N-terminal deletion. The stability of the mutant proteins decreased with increase in the length of deletion. The role of thermodynamic stability, oligomeric size, and surface hydrophobicity in chaperone function is discussed. Detailed analysis showed that the most important role of N-terminal region is to control the oligomerization, which is crucial for the stability and in vivo survival of this protein molecule.
Collapse
Affiliation(s)
- Madhuchhanda Kundu
- Protein Chemistry Laboratory, Department of Chemistry, Bose Institute, 93/1 A.P.C. Road, Kolkata 700 009, India
| | | | | |
Collapse
|
249
|
Abstract
Crystallins are the predominant structural proteins in the lens that are evolutionarily related to stress proteins. They were first discovered outside the vertebrate eye lens by Bhat and colleagues in 1989 who found alphaB-crystallin expression in the retina, heart, skeletal muscles, skin, brain and other tissues. With the advent of microarray and proteome analysis, there is a clearer demonstration that crystallins are prominent proteins both in the normal retina and in retinal pathologies, emphasizing the importance of understanding crystallin functions outside of the lens. There are two main crystallin gene families: alpha-crystallins, and betagamma-crystallins. alpha-crystallins are molecular chaperones that prevent aberrant protein interactions. The chaperone properties of alpha-crystallin are thought to allow the lens to tolerate aging-induced deterioration of the lens proteins without showing signs of cataracts until older age. alpha-crystallins not only possess chaperone-like activity in vitro, but can also remodel and protect the cytoskeleton, inhibit apoptosis, and enhance the resistance of cells to stress. Recent advances in the field of structure-function relationships of alpha-crystallins have provided the first clues to their underlying roles in tissues outside the lens. Proteins of the betagamma-crystallin family have been suggested to affect lens development, and are also expressed in tissues outside the lens. The goal of this paper is to highlight recent work with lens epithelial cells from alphaA- and alphaB-crystallin knockout mice. The use of lens epithelial cells suggests that crystallins have important cellular functions in the lens epithelium and not just the lens fiber cells as previously thought. These studies may be directly relevant to understanding the general cellular functions of crystallins.
Collapse
Affiliation(s)
- Usha P Andley
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
250
|
Ahner A, Nakatsukasa K, Zhang H, Frizzell RA, Brodsky JL. Small heat-shock proteins select deltaF508-CFTR for endoplasmic reticulum-associated degradation. Mol Biol Cell 2006; 18:806-14. [PMID: 17182856 PMCID: PMC1805084 DOI: 10.1091/mbc.e06-05-0458] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Secreted proteins that fail to achieve their native conformations, such as cystic fibrosis transmembrane conductance regulator (CFTR) and particularly the DeltaF508-CFTR variant can be selected for endoplasmic reticulum (ER)-associated degradation (ERAD) by molecular chaperones. Because the message corresponding to HSP26, which encodes a small heat-shock protein (sHsp) in yeast was up-regulated in response to CFTR expression, we examined the impact of sHsps on ERAD. First, we observed that CFTR was completely stabilized in cells lacking two partially redundant sHsps, Hsp26p and Hsp42p. Interestingly, the ERAD of a soluble and a related integral membrane protein were unaffected in yeast deleted for the genes encoding these sHsps, and CFTR polyubiquitination was also unaltered, suggesting that Hsp26p/Hsp42p are not essential for polyubiquitination. Next, we discovered that DeltaF508-CFTR degradation was enhanced when a mammalian sHsp, alphaA-crystallin, was overexpressed in human embryonic kidney 293 cells, but wild-type CFTR biogenesis was unchanged. Because alphaA-crystallin interacted preferentially with DeltaF508-CFTR and because purified alphaA-crystallin suppressed the aggregation of the first nucleotide-binding domain of CFTR, we suggest that sHsps maintain the solubility of DeltaF508-CFTR during the ERAD of this polypeptide.
Collapse
Affiliation(s)
- Annette Ahner
- *Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260; and
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Kunio Nakatsukasa
- *Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260; and
| | - Hui Zhang
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Raymond A. Frizzell
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Jeffrey L. Brodsky
- *Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260; and
| |
Collapse
|