201
|
Abstract
Spreading depression (SD) and the related hypoxic SD-like depolarization (HSD) are characterized by rapid and nearly complete depolarization of a sizable population of brain cells with massive redistribution of ions between intracellular and extracellular compartments, that evolves as a regenerative, "all-or-none" type process, and propagates slowly as a wave in brain tissue. This article reviews the characteristics of SD and HSD and the main hypotheses that have been proposed to explain them. Both SD and HSD are composites of concurrent processes. Antagonists of N-methyl-D-aspartate (NMDA) channels or voltage-gated Na(+) or certain types of Ca(2+) channels can postpone or mitigate SD or HSD, but it takes a combination of drugs blocking all known major inward currents to effectively prevent HSD. Recent computer simulation confirmed that SD can be produced by positive feedback achieved by increase of extracellular K(+) concentration that activates persistent inward currents which then activate K(+) channels and release more K(+). Any slowly inactivating voltage and/or K(+)-dependent inward current could generate SD-like depolarization, but ordinarily, it is brought about by the cooperative action of the persistent Na(+) current I(Na,P) plus NMDA receptor-controlled current. SD is ignited when the sum of persistent inward currents exceeds persistent outward currents so that total membrane current turns inward. The degree of depolarization is not determined by the number of channels available, but by the feedback that governs the SD process. Short bouts of SD and HSD are well tolerated, but prolonged depolarization results in lasting loss of neuron function. Irreversible damage can, however, be avoided if Ca(2+) influx into neurons is prevented.
Collapse
Affiliation(s)
- G G Somjen
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| |
Collapse
|
202
|
Ruppin E, Reggia JA. Cortical spreading depression and the pathogenesis of brain disorders: a computational and neural network-based investigation. Neurol Res 2001; 23:447-56. [PMID: 11474800 DOI: 10.1179/016164101101198839] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
This paper reviews our recent studies of the role of cortical spreading depression (CSD) in the pathogenesis of brain disorders. Our investigation is a computational one, involving the development and utilization of a complex neuro-metabolic model of the interactions assumed to occur in the cortex during the passage of multiple CSD waves. Incorporating these neuro-metabolic changes of CSD within a neural network model of normoxic cortex produces cortical activation patterns during the passage of a CSD wave that, projected onto the visual fields, resemble the visual hallucinations observed during the migraine aura. When focal ischemia is simulated with the model, the evoked CSD waves are found to affect the expansion of the infarction into the ischemic penumbra. Our findings support the hypothesis that CSD does play an important pathogenic role in these and other neurological disorders, and suggest additional experimental studies that may further substantiate it.
Collapse
Affiliation(s)
- E Ruppin
- Departments of Computer Science and Physiology, Tel-Aviv University, Tel-Aviv, 69978, Israel.
| | | |
Collapse
|
203
|
Abstract
A spreading depression (SD) was elicited in adult rat neocortical slices by microdrop application of high potassium and the SD propagation pattern was analyzed by recording simultaneously the extracellular DC potential and the changes in the intrinsic optical signal. The electrical SD with an average peak amplitude of 13.2+/-3.4 mV showed a good spatial and temporal correlation with the optical signal. In 79% of the slices, the SD was characterized by an initial increase of light reflectance by 2.3+/-1.6%, followed by a reflectance decrease of 0.5+/-2.4% and finally a larger and long-lasting increase by 5+/-2.4%. In the remaining slices, the SD revealed an initial decrease in light reflectance by 5.8+/-1.8% followed by an increase of 1.4+/-1.2%. In all slices, the recovery in the DC recording was faster as in the optical signal. The SD preferentially propagated within layers I-IV and could be blocked in most experiments by a vertical incision through upper layers or by local glutamate receptor blockade following microdrop application of kynurenic acid in layers II-III. The SD could be also blocked by bath application of kynurenic acid, MK-801 and octanol, but not by the more specific gap junction blocker carbenoxolone. Our results indicate that the high density of dendritic processes and glutamate receptors in layers II-IV promote the horizontal spread of the SD in these cortical layers and that gap junctions are not required for the propagation of SD in neocortical slices.
Collapse
Affiliation(s)
- I Világi
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | | | | |
Collapse
|
204
|
Abstract
A method for dynamic, high-resolution cerebral blood flow (CBF) imaging is presented in this article. By illuminating the cortex with laser light and imaging the resulting speckle pattern, relative CBF images with tens of microns spatial and millisecond temporal resolution are obtained. The regional CBF changes measured with the speckle technique are validated through direct comparison with conventional laser-Doppler measurements. Using this method, dynamic images of the relative CBF changes during focal cerebral ischemia and cortical spreading depression were obtained along with electrophysiologic recordings. Upon middle cerebral artery (MCA) occlusion, the speckle technique yielded high-resolution images of the residual CBF gradient encompassing the ischemic core, penumbra, oligemic, and normally perfused tissues over a 6 x 4 mm cortical area. Successive speckle images demonstrated a further decrease in residual CBF indicating an expansion of the ischemic zone with finely delineated borders. Dynamic CBF images during cortical spreading depression revealed a 2 to 3 mm area of increased CBF (160% to 250%) that propagated with a velocity of 2 to 3 mm/min. This technique is easy to implement and can be used to monitor the spatial and temporal evolution of CBF changes with high resolution in studies of cerebral pathophysiology.
Collapse
Affiliation(s)
- A K Dunn
- NMR Center, and Stroke and Neurovascular Regulation Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | | | |
Collapse
|
205
|
Ohta K, Graf R, Rosner G, Heiss WD. Calcium ion transients in peri-infarct depolarizations may deteriorate ion homeostasis and expand infarction in focal cerebral ischemia in cats. Stroke 2001; 32:535-43. [PMID: 11157194 DOI: 10.1161/01.str.32.2.535] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Harmful effects of peri-infarct depolarizations (PIDs) may depend on recurrent Ca(2+) influx. Thus far, few studies have documented the relevance of PIDs in gyrencephalic animals, and the progressive nature of this process has not been investigated over extended periods. We therefore studied in prolonged focal ischemia in cats spatial and temporal profiles of extracellular calcium ([Ca(2+)](o)) shifts in relation to direct current (DC) potential, nitric oxide (NO) concentration and regional cerebral blood flow alterations, and final pathological outcome. METHODS In halothane-anesthetized cats receiving either vehicle (n=12) or MK-801 treatment (5 mg/kg IV; n=10), the left middle cerebral artery was permanently occluded. Laser-Doppler probes, ion-selective microelectrodes, and NO electrodes measured simultaneously regional cerebral blood flow, DC potential, electrocorticogram, [Ca(2+)](o), and NO concentrations in ectosylvian and suprasylvian gyri of the left cerebral cortex. RESULTS Persistent depolarization immediately after middle cerebral artery occlusion occurred in 10 ectosylvian and 4 suprasylvian gyri of vehicle-treated animals and in 9 ectosylvian and 3 suprasylvian gyri of MK-801-treated animals. PIDs associated with transient decreases of [Ca(2+)](o) were detected in suprasylvian gyri of only 4 vehicle-treated animals, of which 3 developed recurrent PIDs. Electrocorticogram was suppressed during PIDs, and electrocorticogram recovery worsened in a stepwise manner with consecutive depolarizations. PID duration increased slightly with ongoing ischemia and evolved to persistent depolarization at a final stage. NO transients were not detected during PID, and regional cerebral blood flow transients were not pronounced. Infarction was larger with initial persistent depolarization than with PID and was smallest in MK-801-treated animals. CONCLUSIONS PID is not a common finding in peri-infarct zones in cats, and it is suppressed by the N:-methyl-D-aspartate antagonist MK-801. However, if repeated PIDs are generated, they result in a stepwise, progressive breakdown of neuronal function and ion homeostasis, probably contributing to the growth of infarction in focal cerebral ischemia. Recurrent Ca(2+) influx is a mechanism that presumably contributes to this process.
Collapse
Affiliation(s)
- K Ohta
- Max-Planck-Institut für neurologische Forschung, Cologne, Germany
| | | | | | | |
Collapse
|
206
|
Kastrup A, Neumann-Haefelin T, Moseley ME, de Crespigny A. High speed diffusion magnetic resonance imaging of ischemia and spontaneous periinfarct spreading depression after thromboembolic stroke in the rat. J Cereb Blood Flow Metab 2000; 20:1636-47. [PMID: 11129780 DOI: 10.1097/00004647-200012000-00003] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Spontaneous episodes of transient cell membrane depolarization (spreading depression [SD]) occur in the surroundings of experimental stroke lesions and are believed to contribute to infarct growth. Diffusion-weighted imaging (DWI) is capable of detecting the water shifts from extracellular to intracellular space associated with SD waves and ischemia, and can make in vivo measurements of these two features on a pixel-by-pixel basis with good temporal resolution. Using continuous high speed DWI with a temporal resolution of 12 seconds over a period of 3 hours, the in vivo contribution of spontaneous SDs to the development of ischemic tissue injury was examined in 8 rats using a thromboembolic stroke model. During the observation period, the initial lesion volume increased in 4 animals, remained unchanged in 1 animal, and decreased in 3 animals (most likely because of spontaneous clot lysis). Irrespective of the lesion evolution patterns, animals demonstrated 6.5 +/- 2.1 spontaneous SDs outside of the ischemic core. A time-to-peak analysis of apparent diffusion coefficient (ADC) changes for each SD wave demonstrated multidirectional propagation patterns from variable initiation sites. Maps of the time constants of ADC recovery, reflecting the local energy supply and cerebral blood flow, revealed prolonged recovery times in areas close to the ischemic core. However, repetitive SD episodes in the periinfarct tissue did not eventually lead to permanent ADC reductions. These results suggest that spontaneous SD waves do not necessarily contribute to the expansion of the ischemic lesion volume in this model.
Collapse
Affiliation(s)
- A Kastrup
- Department of Radiology, Stanford University, California, USA
| | | | | | | |
Collapse
|
207
|
Abstract
Brain ischemia triggers a complex cascade of molecular events that unfolds over hours to days. Identified mechanisms of postischemic neuronal injury include altered Ca(2+) homeostasis, free radical formation, mitochondrial dysfunction, protease activation, altered gene expression, and inflammation. Although many of these events are well characterized, our understanding of how they are integrated into the causal pathways of postischemic neuronal death remains incomplete. The primary goal of this review is to provide an overview of molecular injury mechanisms currently believed to be involved in postischemic neuronal death specifically highlighting their time course and potential interactions.
Collapse
Affiliation(s)
- R W Neumar
- Department of Emergency Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19107-4283, USA.
| |
Collapse
|
208
|
Abstract
The ischemic penumbra is defined as tissue with flow within the thresholds for maintenance of function and of morphologic integrity. Penumbra tissue has the potential for recovery and therefore is the target for interventional therapy in acute ischemic stroke. The identification of the penumbra necessitates measuring flow reduced less than the functional threshold and differentiating between morphologic integrity and damage. This can be achieved by multitracer positron emission tomography (PET) and perfusion-weighted (PW) and diffusion-weighted magnetic resonance imaging (DW-MRI) in experimental models, in which the recovery of critically perfused tissue or its conversion to infarction was documented in repeat studies. Neuroimaging modalities applied in patients with acute ischemic stroke--multitracer PET, PW- and DW-MRI, single photon emission computed tomography (SPECT), perfusion, and Xe-enhanced computed tomography (CT)-- often cannot reliably identify penumbra tissue: multitracer studies for the assessment of flow and irreversible metabolic damage usually cannot be performed in the clinical setting; CT and MRI do not reliably detect irreversible damage in the first hours after stroke, and even DW-MRI may be misleading in some cases: determinations of perfusion alone yield a poor estimate of the state of the tissue as long as the time course of changes is not known in individual cases. Therefore, the range of flow values in ischemic tissue found later, either within or outside the infarct, was rather broad. New tracers--for example, receptor ligands or hypoxia markers--might improve the identification of penumbra tissue in the future. Despite these methodologic limitations, the validity of the concept of the penumbra was proven in several therapeutic studies in which thrombolytic treatment reversed critical ischemia and decreased the volume of final infarcts. Such neuroimaging findings might serve as surrogate targets in the selection of other therapeutic strategies for large clinical trials.
Collapse
Affiliation(s)
- W D Heiss
- Max-Planck-Institute for Neurological Research, and Department of Neurology, University of Cologne, Germany
| |
Collapse
|
209
|
Sunami K, Takeda Y, Hashimoto M, Hirakawa M. Hyperbaric oxygen reduces infarct volume in rats by increasing oxygen supply to the ischemic periphery. Crit Care Med 2000; 28:2831-6. [PMID: 10966258 DOI: 10.1097/00003246-200008000-00025] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Hyperbaric oxygen (HBO) increases oxygen supply to anoxic areas. To examine the therapeutic effect of HBO on ischemic stroke, we measured infarct volume as well as cerebral blood flow (CBF), oxygen supply, and lipid peroxidation in the ischemic periphery. DESIGN Prospective experimental study in rats. SETTING Experimental laboratory in a university teaching hospital. SUBJECTS Thirty-eight adult rats. INTERVENTION The rats were anesthetized (1% halothane) and intubated. Focal ischemia was induced by ligating the right middle cerebral and right common carotid arteries. Nineteen animals were exposed to 2 hrs of HBO (100% oxygen, 3 atmospheres absolute), initiated 10 mins after the onset of ischemia. The remaining animals were kept at ambient pressure and used as controls. MEASUREMENTS AND MAIN RESULTS At the initiation of ischemia, CBF measured by a laser-Doppler flow probe placed in the ischemic periphery was reduced to 47%+/-11% and 51%+/-15% of normal levels in animals exposed or not to HBO, respectively. These altered values were not affected further by administration of HBO and remained stable throughout a 2-hr observation period. Arterial oxygen pressure and content were significantly increased to 1571+/-130 torr (209.41+/-17.32 kPa; p < .0001) and 1.03+/-0.04 mmol/dL (p < 0.0001), respectively, in HBO-treated animals compared with nontreated animals (139+/-14 torr [18.53+/-1.87 kPa] and 0.86+/-0.04 mmol/dL, respectively). The calculated increase in the oxygen supply to the ischemic periphery was 20%. The infarct volume of HBO-treated animals measured 24 hrs after the onset of focal cerebral ischemia was significantly reduced by 18% (HBO-treated, 132+/-13 mm3 vs. nontreated, 161+/-29 mm3; p = .02). Lipid peroxidation was unchanged after 120 mins of HBO administration in the cerebral cortex where the laser-Doppler flow probe was placed. CONCLUSIONS HBO at 3 atmospheres absolute reduced infarct volume by increasing oxygen supply to the ischemic periphery without aggravating lipid peroxidation, suggesting that HBO can be useful in treating stroke victims.
Collapse
Affiliation(s)
- K Sunami
- Department of Anesthesiology and Resuscitology, Okayama University Medical School, Okayama City, Japan
| | | | | | | |
Collapse
|
210
|
Kuge Y, Hasegawa Y, Yokota C, Minematsu K, Hashimoto N, Miyake Y, Yamaguchi T. Effects of single and repetitive spreading depression on cerebral blood flow and glucose metabolism in cats: a PET study. J Neurol Sci 2000; 176:114-23. [PMID: 10930593 DOI: 10.1016/s0022-510x(00)00327-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To clarify the effects of spreading depression (SD) on cerebral circulation and metabolism, we elicited a single or repetitive episode of SD and evaluated CBF and CMRglc three-dimensionally in normal cats (n=4, in each group) using a high-resolution positron emission tomography (PET) scanner. SD was evoked by applying KCl to the left occipital cortex. We then monitored DC potential changes with tungsten electrodes inserted into the left temporal cortex. CBF was measured twice before and three times (immediately, 30-60 min, and 60-120 min) following KCl application using [15O]H(2)O, and CMRglc was determined using 2-[18F]fluoro-2-deoxy-D-glucose immediately following the last CBF measurement. The following results were obtained: (1) a single episode of SD produced a temporary CBF increase, followed by a long-lasting hypoperfusion in the cortex, with no significant changes to CBF observed in the subcortex; (2) no significant CMRglc changes were observed in either cortical or subcortical regions following a single episode of SD; (3) a flow-metabolism uncoupling was observed in the cortical regions concurrently with persistent hypoperfusion; (4) repetitive SD produced significant CBF changes in the cortex; and (5) the cortical CMRglc increased as a result of repeated episodes of SD, with no significant changes observed in the subcortex. Thus, we succeeded in determining three-dimensionally the effects of single and repetitive SD on CBF and CMRglc in cats using a high-resolution PET scanner. The present study provides the first direct evidence of CBF-CMRglc uncoupling occurring concurrently with persistent hypoperfusion following SD.
Collapse
Affiliation(s)
- Y Kuge
- Institute for Biofunctional Research Co., Inc., Osaka, Japan.
| | | | | | | | | | | | | |
Collapse
|
211
|
Scheller D, Korte M, Szathmary S, Tegtmeier F. Cerebral taurine release mechanisms in vivo: pharmacological investigations in rats using microdialysis for proof of principle. Neurochem Res 2000; 25:801-7. [PMID: 10943998 DOI: 10.1023/a:1007513423270] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cerebral taurine acts as neurotransmitter, as neuromodulator, or as osmoregulator. To investigate its release mechanisms in vivo, we combined the microdialysis technique with a variety of experimental paradigms. Taurine release was stimulated by either NMDA, NO or a hypotonic solution locally with or without the addition of the NMDA antagonists APV or Ketamine, or the NO synthase inhibitor L-NAME. Alternatively, the neuroprotective drug lubeluzole was applied i.v. NMDA, NO or the hypotonic solution stimulated the release of taurine. NMDA-mediated taurine release was inhibited by either APV, Ketamine or the NO synthase inhibitor L-NAME. Lubeluzole had no effect. Under the hypotonic conditions only lubeluzole was effective. These data confirm in vivo that the NMDA-induced taurine release is mediated via the NO cascade. By contrast, the release after a hypotonic stimulus is not related to the NO cascade. Instead, Na(+)- and/or Ca(2+)-mediated events might have been attenuated by lubeluzole.
Collapse
Affiliation(s)
- D Scheller
- Janssen-Cilag GmbH, Drug Discovery, Neuss, Germany.
| | | | | | | |
Collapse
|
212
|
Abstract
Spreading depression (SD) is a wave of sustained depolarization challenging the energy metabolism of the cells without causing irreversible damage. However, brain injury, especially focal ischemic stroke, triggers SD-like waves, which in the vicinity of the original damage site contribute to enlargement of the dying brain tissue. Brain injury induces expression of several genes, which are thought to play a role in neuronal death, and therefore represent potential targets for therapy. One such gene is cyclooxygenase-2 (COX-2), an inducible prostaglandin and superoxide producing enzyme. Here we review our recent studies on the regulation of COX-2 in SD.
Collapse
Affiliation(s)
- J Koistinaho
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA.
| | | |
Collapse
|
213
|
Shimizu K, Veltkamp R, Busija DW. Characteristics of induced spreading depression after transient focal ischemia in the rat. Brain Res 2000; 861:316-24. [PMID: 10760493 DOI: 10.1016/s0006-8993(00)02032-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We examined characteristics of spreading depression (SD) induced on the rat cortex 1 day after transient focal ischemia. Male Wistar rats (n=21) were subjected to transient intraluminal thread occlusion of the right middle cerebral artery for 75 min. Twenty-four hours after the reperfusion, cerebral blood flow (CBF) was determined using laser Doppler flowmeter during multiple SDs elicited on both non-stroke (left) and stroke (right) cortex by the topical application of 2 M KCl. We also examined CBF responses before and after the intravenous administration of the nonspecific NOS inhibitor Nomega-nitro-L-arginine methyl ester (L-NAME, 10 mg/kg) in normal and stroke cortex. Animals were divided into two groups; Group 1 (n=12), animals with subcortical infarction and Group 2 (n=9), animals with subcortical plus cortical infarction. There were no differences between non-stroke and stroke sides in the duration or amplitude of the DC potential shifts in either group. The transient CBF hyperemia during SD was not different between non-stroke (372+/-23% of baseline, mean+/-S.E.) and stroke sides (383+/-30%) in Group 1. However, in Group 2, CBF was significantly restricted on the stroke side (192+/-15% vs. non-stroke side, 374+/-33%). In four normal animals without ischemia, there were no differences in CBF response between both sides. L-NAME had no effect on the transient CBF hyperemia during SD in any of the groups. These data suggest that the CBF responses during SD in the peri-infarction area is restricted 1 day after the transient focal ischemia, while CBF responses are intact in normal cortex overlapping a subcortical infarct. Further, our results indicate that nitric oxide does not promote CBF responses during SD in normal cortex or in tissue surrounding infarction.
Collapse
Affiliation(s)
- K Shimizu
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1083, USA.
| | | | | |
Collapse
|
214
|
Abstract
Brain ischemia is a process of delayed neuronal cell death, not an instantaneous event. The concept of neuroprotection is based on this principle. Diminished cerebral blood flow initiates a series of events (the "ischemic cascade") that lead to cell destruction. This ischemic cascade is akin to a spreading epidemic starting from a hypothesized core of ischemia and radiating outward. If intervention occurs early, the process may be halted. Interventions have been directed toward salvaging the ischemic penumbra. Hypothermia decreases the size of the ischemic insult in both anecdotal clinical and laboratory reports. In addition, a wide variety of agents have been shown to reduce infarct volume in animal models. Pharmacologic interventions that involve thrombolysis, calcium channel blockade, and cell membrane receptor antagonism have been studied and have been found to be beneficial in animal cortical stroke models. Human trials of neuroprotective therapies have been disappointing. Other than thrombolytics, no agents have shown an unequivocal benefit. The future of neuroprotection will require a logical extension of what has been learned in the laboratory and previous human trials. A sensible approach to the use of multiple-agent cocktails used in combination with thrombolytics is likely to offer the highest chance for benefit.
Collapse
|
215
|
Otsuka H, Ueda K, Heimann A, Kempski O. Effects of cortical spreading depression on cortical blood flow, impedance, DC potential, and infarct size in a rat venous infarct model. Exp Neurol 2000; 162:201-14. [PMID: 10716901 DOI: 10.1006/exnr.1999.7326] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A cortical venous infarction model has been evaluated as to the degree of regional flow reduction and by studying effects of cortical spreading depression (CSD). Two adjacent cortical veins were occluded photochemically with rose bengal and fiberoptic illumination. Seven rats served to demonstrate effects on regional cortical blood flow using laser Doppler scanning. In 36 rats local CBF, DC potential, and brain tissue impedance were measured continuously for 75 min after vein occlusion. No, 3, or 10 CSD waves were induced by potassium chloride injection during the initial 75 min. Rats were compared for spontaneous CSDs; baseline local CBF, CBF, and impedance response to CSD; and infarct volume. Seventy-five minutes after vein occlusion regional cortical flow in a 3.5x7-mm window was reduced to 34.3+/-13.2%. At 45% of the 840 measured locations in 7 rats flow was <40% baseline and at 27.3% <30%, indicating a widespread penumbra territory. During the initial 75 min 2.1+/-1.1 spontaneous CSDs were observed. There was a positive correlation between the number of spontaneous CSDs seen acutely and infarction volume after 5 days. Moreover, brain injury was significantly increased in the group with 10 KCl-induced CSDs. A reduced 1CBF response and an overshooting tissue impedance change during CSD were predictors of ischemic damage. This study demonstrates a CSD-related growth of the venous infarct. Second, the data indicate that flow after two-vein occlusion resembles that seen under penumbra conditions, allowing for studies of damage mechanisms responsible for infarct growth.
Collapse
Affiliation(s)
- H Otsuka
- Institute for Neurosurgical Pathophysiology, Johannes Gutenberg University, Mainz, 55101, Germany
| | | | | | | |
Collapse
|
216
|
Hata R, Maeda K, Hermann D, Mies G, Hossmann KA. Dynamics of regional brain metabolism and gene expression after middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab 2000; 20:306-15. [PMID: 10698068 DOI: 10.1097/00004647-200002000-00012] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The evolution of brain infarcts during permanent occlusion of the middle cerebral artery (MCA) was studied in mice using multiparametric imaging techniques. Regional protein synthesis and the regional tissue content of ATP were measured on adjacent cryostat sections at increasing intervals after vascular occlusion ranging from 1 hour to 3 days. The observed changes were correlated with the expression of the mRNA of hsp70, c-fos, c-jun, and junB, as well as the distribution of DNA double-strand breaks visualized by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labelling (TUNEL). One hour after MCA occlusion, the tissue volume with suppressed protein synthesis was distinctly larger than that in which ATP was depleted. With ongoing ischemia time, the ATP-depleted area gradually expanded and, within 1 day, merged with the region of suppressed protein synthesis. Expression of hsp70 mRNA occurred mainly in the penumbra (defined as the region of suppressed protein synthesis but preserved ATP), peaking at 3 hours after vascular occlusion. Expression of the immediate-early genes c-jun, c-fos, and junB increased both in the penumbra and the periinfarct normal tissue already at 1 hour after vascular occlusion, with slightly different regional and temporal patterns for each of these genes. DNA fragmentations were clearly confined to neurons; they appeared after 1 day in the infarct core (defined as the region of suppressed ATP) and never were detected in the penumbra. The late appearance of TUNEL after infarcts had reached their final size and the absence in the penumbra points against a major pathogenetic role of apoptosis. Permanent MCA occlusion in mice thus produces a gradually expanding infarct, the final size of which is heralded by the early inhibition of protein synthesis.
Collapse
Affiliation(s)
- R Hata
- Department of Experimental Neurology, Max-Planck-Institute for Neurological Research, Cologne, Germany
| | | | | | | | | |
Collapse
|
217
|
Mackensen GB, Nellgård B, Sarraf-Yazdi S, Dexter F, Steffen RP, Grocott HP, Warner DS. Post-ischemic RSR13 amplifies the effect of dizocilpine on outcome from transient focal cerebral ischemia in the rat. Brain Res 2000; 853:15-21. [PMID: 10627303 DOI: 10.1016/s0006-8993(99)02212-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In a recent study of focal cerebral ischemia in rats, pre-ischemic administration of the synthetic allosteric hemoglobin modifier RSR13 (2-[4-[[3,5-dimethylanilino) carbonyl] methyl] phenoxy]-2-methylproprionic acid) reduced cerebral infarct size when combined with the NMDA receptor antagonist dizocilpine (MK-801) but not when given alone. We hypothesized that post-ischemic RSR13 administration would enhance neuroprotection afforded by NMDA receptor antagonism in a rat model of transient middle cerebral artery occlusion (MCAO). Fasted normothermic Wistar rats underwent 75 min of temporary MCAO. At onset of reperfusion, rats randomly received: (1) 0.9% NaCl (vehicle) i.v. alone (n=16); (2) 0.9% NaCl+dizocilpine (0.25 mg/kg) i.v. (n=16); or (3) RSR13 (150 mg/kg)+dizocilpine (0.25 mg/kg) i.v. (n=17). Seven days later, neurologic deficit and cerebral infarct size were determined. Dizocilpine alone compared to vehicle reduced mean+/-S.D. subcortical (52+/-24 mm(3) vs. 122+/-64 mm(3), P=0.003) and cortical (35+/-35 mm(3) vs. 125+/-72 mm(3), P=0.00074) infarct volumes. When compared to dizocilpine alone, the combination of RSR13+dizocilpine further reduced subcortical (37+/-14 mm(3) vs. 52+/-24 mm(3), P=0. 034) and cortical (8+/-19 mm(3) vs. 35+/-35 mm(3), P=0.018) infarct size. RSR13+dizocilpine improved neurologic scores vs. either dizocilpine alone (P=0.0014) or vehicle (P=10(-7)). The combination of NMDA receptor antagonism and a RSR13 mediated rightward shift of the oxy-hemoglobin dissociation curve improved outcome from MCAO. Because this occurred after reperfusion, our results suggest that the post-ischemic brain continues to suffer from hypoperfusion defects, which are amenable to therapy by enhanced O(2) delivery. The results also support the concept that neuroprotective strategies, which combine drugs with different mechanisms of action, may yield cumulative benefits.
Collapse
Affiliation(s)
- G B Mackensen
- Department of Anesthesiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
218
|
Strong AJ, Smith SE, Whittington DJ, Meldrum BS, Parsons AA, Krupinski J, Hunter AJ, Patel S, Robertson C. Factors influencing the frequency of fluorescence transients as markers of peri-infarct depolarizations in focal cerebral ischemia. Stroke 2000; 31:214-22. [PMID: 10625740 DOI: 10.1161/01.str.31.1.214] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Peri-infarct depolarizations (PIDs) that occur in ischemic boundary zones of the cerebral cortex of experimental animals have been shown to promote rather than simply to indicate the evolution of the lesion and are especially prominent in the rat. To study the influence of one factor, species, on PID incidence, we compared the frequency of PIDs in a primate species, the squirrel monkey, with that in the cat after middle cerebral artery occlusion. Plasma glucose was reviewed as a possible cause of interexperiment variability in the cat experiments. METHODS In open-skull experiments under chloralose anesthesia, changes in cortical fluorescence believed to indicate NADH/NAD(+) redox state, as markers of PIDs, were recorded by serial imaging of the cortical surface in vivo for 4 hours after middle cerebral artery occlusion. RESULTS Fluorescence transients occurred in squirrel monkeys at a frequency (mean+/-SD) of 0.7+/-0.8 hours(-1) (n=5), which was not significantly less than in that observed in cats (1.3+/-1.6 hours(-1), n=8). Data from the cat experiments indicated a relationship between number of transients (dependent) and plasma glucose, with a striking increase in PID frequency in association with values of mean postocclusion plasma glucose <4.1 mmol/L (Mann-Whitney U=15.0, P=0.034); this observation agrees well with other published findings. CONCLUSIONS Transient changes in fluorescence strongly suggestive of peri-infarct depolarizations, either transient or terminal, occur and propagate in the ischemic cerebral cortex of a nonhuman primate. The results also suggest that the relationship of frequency of peri-infarct depolarizations with plasma glucose requires further examination, to confirm the finding and to determine a safe lower limit for a target range for control of plasma glucose if insulin is used in the management of patients with cerebral ischemia.
Collapse
Affiliation(s)
- A J Strong
- Department of Clinical Neurosciences, Institute of Psychiatry, Guy's, King's College, King's College London, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Steinbach JP, Weissenberger J, Aguzzi A. Distinct phases of cryogenic tissue damage in the cerebral cortex of wild-type and c-fos deficient mice. Neuropathol Appl Neurobiol 1999; 25:468-80. [PMID: 10632897 DOI: 10.1046/j.1365-2990.1999.00206.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To characterize the development of tissue damage following cryogenic injury to the mouse cortex, the time course of histopathological changes, transcriptional responses and DNA strand breaks following application of a liquid nitrogen-cooled probe to the surface of the parietal bone were assessed. Distinct phases of tissue damage were observed: after 30 min, there was demarcation of a core lesion followed by mainly necrotic cell death starting 2 h after injury. At 12 hours, progressive apoptotic death of scattered cells in the periphery of the core lesion was detected, resembling the penumbra observed in ischaemic stroke. In situ hybridization for c-fos revealed an absence of expression in the core region, suggesting early cessation of transcription. There was strong induction of c-fos in the penumbra 30 min after the lesion, which had spread over the ipsilateral hemisphere at 2 h, possibly caused by peri-infarction depolarization. At later time points, sustained expression of c-fos was observed in some cells in the penumbra. Since a role for c-fos has been postulated in the initiation or execution of apoptotic pathways, the susceptibility of c-fos deficient mice was explored (n=4) in this model. Cryoinjury-induced tissue injury was markedly attenuated in c-fos deficient mice. A model of the phases and mechanisms of cryogenic injury is proposed, which discriminates an early phase characterized by physical changes caused by hypothermia and their immediate consequences (i.e. transcriptional block), an intermediate phase where secondary changes lead to necrosis in the core region, and a final phase of delayed apoptotic cell death in the penumbra.
Collapse
Affiliation(s)
- J P Steinbach
- Institute of Neuropathology, Department of Pathology, University Hospital, Zurich, Switzerland
| | | | | |
Collapse
|
220
|
Kinouchi H, Huang H, Arai S, Mizoi K, Yoshimoto T. Induction of cyclooxygenase-2 messenger RNA after transient and permanent middle cerebral artery occlusion in rats: comparison with c-fos messenger RNA by using in situ hybridization. J Neurosurg 1999; 91:1005-12. [PMID: 10584847 DOI: 10.3171/jns.1999.91.6.1005] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Recently, two different cyclooxygenase (COX) genes, COX-1 and -2, were identified. In this study, topographic and chronological profiles of COX-2 messenger (m)RNA and c-fos mRNA expression were investigated using in situ hybridization after focal cerebral ischemia. METHODS Rats undergoing permanent ischemia were decapitated at 30 and 90 minutes and at 2, 4, 8, and 24 hours after middle cerebral artery (MCA) occlusion, and rats undergoing transient ischemia were decapitated at 4, 8, and 24 hours after MCA occlusion that lasted for either 30 or 90 minutes. After brief transient MCA occlusion, c-fos mRNA was induced in the whole MCA territory, adjacent cortex (cingulate cortex), and distant brain regions such as the hippocampus and substantia nigra. In contrast, COX-2 mRNA was not induced in the ischemic core (lateral striatum) but only in the penumbral area (MCA cortex). Long transient and permanent MCA occlusion did not induce c-fos and COX-2 mRNAs in the ischemic core but strongly induced both mRNAs in the penumbral area (medial striatum and periphery of MCA cortex) and adjacent cortex (cingulate cortex). In brain regions distant from the ischemic territory, although c-fos mRNA was induced in the thalamus, substantia nigra, and hippocampus after extended transient and permanent occlusion, COX-2 mRNA was only induced in the bilateral hippocampi. The induction of COX-2 mRNA persisted in all locations even at 24 hours after MCA occlusion. CONCLUSIONS The distribution of COX-2 mRNA induction was apparently different from that of c-fos mRNA after MCA occlusion. These results pertaining to COX-2 mRNA agree well with the previous observations of changes in prostaglandin metabolism induced by focal cerebral ischemia. However, whether this induction of the COX-2 gene contributes to the histopathological outcome of cerebral ischemia remains to be elucidated.
Collapse
Affiliation(s)
- H Kinouchi
- Department of Neurosurgery, Tohoku University School of Medicine, Sendai, Japan.
| | | | | | | | | |
Collapse
|
221
|
Yrjänheikki J, Tikka T, Keinänen R, Goldsteins G, Chan PH, Koistinaho J. A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci U S A 1999; 96:13496-500. [PMID: 10557349 PMCID: PMC23976 DOI: 10.1073/pnas.96.23.13496] [Citation(s) in RCA: 819] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The only treatment of patients with acute ischemic stroke is thrombolytic therapy, which benefits only a fraction of stroke patients. Both human and experimental studies indicate that ischemic stroke involves secondary inflammation that significantly contributes to the outcome after ischemic insult. Minocycline is a semisynthetic second-generation tetracycline that exerts antiinflammatory effects that are completely separate from its antimicrobial action. Because tetracycline treatment is clinically well tolerated, we investigated whether minocycline protects against focal brain ischemia with a wide therapeutic window. Using a rat model of transient middle cerebral artery occlusion, we show that daily treatment with minocycline reduces cortical infarction volume by 76 +/- 22% when the treatment is started 12 h before ischemia and by 63 +/- 35% when started even 4 h after the onset of ischemia. The treatment inhibits morphological activation of microglia in the area adjacent to the infarction, inhibits induction of IL-1beta-converting enzyme, and reduces cyclooxygenase-2 expression and prostaglandin E(2) production. Minocycline had no effect on astrogliosis or spreading depression, a wave of ionic transients thought to contribute to enlargement of cortical infarction. Treatment with minocycline may act directly on brain cells, because cultured primary neurons were also salvaged from glutamate toxicity. Minocycline may represent a prototype of an antiinflammatory compound that provides protection against ischemic stroke and has a clinically relevant therapeutic window.
Collapse
Affiliation(s)
- J Yrjänheikki
- Department of Neurosurgery, Stanford University School of Medicine, 701B Welch Road 148, Palo Alto, CA 94304, USA
| | | | | | | | | | | |
Collapse
|
222
|
Ruppin E, Revett K, Ofer E, Goodall S, Reggia JA. Penumbral tissue damage following acute stroke: a computational investigation. PROGRESS IN BRAIN RESEARCH 1999; 121:243-60. [PMID: 10551030 DOI: 10.1016/s0079-6123(08)63077-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Affiliation(s)
- E Ruppin
- Department of Computer Science, Tel-Aviv University, Israel.
| | | | | | | | | |
Collapse
|
223
|
Sick TJ, Xu G, Pérez-Pinzón MA. Mild hypothermia improves recovery of cortical extracellular potassium ion activity and excitability after middle cerebral artery occlusion in the rat. Stroke 1999; 30:2416-21; discussion 2422. [PMID: 10548679 DOI: 10.1161/01.str.30.11.2416] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Mild brain hypothermia significantly alleviates damage after focal ischemia, although the mechanism of this protection remains poorly defined. In the present study, we tested the hypothesis that mild hypothermia would protect cortex from early deterioration of ion homeostasis and loss of excitability associated with reperfusion after focal ischemia. METHODS Cortical extracellular potassium ion activity ([K+]o) and the response of [K+]o to direct cortical stimulation was measured both in the ischemic core and in the ischemic penumbra of normothermic and mildly hypothermic (31.5 degrees C to 32 degrees C) rats after distal middle cerebral artery occlusion (MCAO) and reperfusion. RESULTS The response of [K+]o during MCAO was similar in normothermic and hypothermic animals. However, within 1 hour of reperfusion, [K+]o in the ischemic core region of normothermic animals showed incomplete recovery and was refractory to direct cortical stimulation. [K+]o in hypothermic animals returned to preischemic levels on reperfusion and continued to respond to direct cortical stimulation. Mild hypothermia prevented extensive infarction 24 hours after transient MCAO. CONCLUSIONS The data suggest that transient focal ischemia is accompanied by early disturbances of potassium ion homeostasis during reperfusion, which are accompanied by loss of excitability and which may contribute ultimately to cortical infarction.
Collapse
Affiliation(s)
- T J Sick
- Department of Neurology, University of Miami School of Medicine, Miami, FL 33177, USA.
| | | | | |
Collapse
|
224
|
Golanov EV, Christensen JD, Reis DJ. Role of potassium channels in the central neurogenic neuroprotection elicited by cerebellar stimulation in rat. Brain Res 1999; 842:496-500. [PMID: 10526150 DOI: 10.1016/s0006-8993(99)01871-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electrical stimulation of the cerebellar fastigial nucleus (FN) in spontaneously hypertensive (SHR), Wistar-Kyoto (WKY) and Fisher rats reduced, by approximately 50%, the infarctions produced by occlusion of the middle cerebral artery. Blockade of ATP-dependent potassium (K-ATP) channels with glibenclamide (i.c.v.) abolished salvage only in the SHR rat. While blockade of K-ATP channels failed to abolish salvage in WKY and Fisher rats, participation of potassium channels in neurogenic neuroprotection cannot be excluded.
Collapse
Affiliation(s)
- E V Golanov
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 411 East 69th Street, KB410, New York, NY 10021, USA.
| | | | | |
Collapse
|
225
|
Nallet H, MacKenzie ET, Roussel S. The nature of penumbral depolarizations following focal cerebral ischemia in the rat. Brain Res 1999; 842:148-58. [PMID: 10526105 DOI: 10.1016/s0006-8993(99)01859-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
It has been previously suggested that the transient ischemic depolarizations (IDs), thought involved in the gradual expansion of ischemic injury in the first hours following middle cerebral artery occlusion (MCAo), are akin to spreading depression (SD). However, previous studies indicate that the characteristics of these events are heterogeneous (unlike those of SDs). We therefore sought to determine whether different types of IDs exist or not. Using four cortical microelectrodes, we compared the spatial and the temporal characteristics of IDs that occur following intraluminal MCAo in halothane-anesthetized rats to those of electrically induced SDs. An average 4.6+/-3.2 series of events, sequentially affecting the four electrodes, were recorded in 5 h following the induction of ischemia. The distribution of ID duration disclosed two types: short IDs (<7 min, 53% of all events) and long IDs (>7 min; 9% of all events). Most long IDs occurred within the first 30 min and as the initial electrophysiological event. Later on and often restricted to a single or reduced number of recording sites, intermittent IDs were of reduced amplitude or even replaced entirely by suppressed electrocorticographic activity (38% of all events). While the amplitude, duration and spreading characteristics were similar between short IDs and SDs provoked in the cortex of non-ischemic rats, those of long IDs were markedly different. Our results indicate that two types of IDs exist and confirm that most IDs (short ones) are similar in nature to SDs. Long IDs may represent a penumbral anoxic depolarization (AD), reversed by an improvement of perfusion, in the early stages of ischemia. Furthermore, we show that intermittent blockade of depolarization waves occurs and that its incidence increases with time. This blockade may reflect adaptive mechanisms which take place to prevent further depolarizations, the nature of which remains to be determined. The present description of electrophysiological abnormalities might have implications for anti-depolarization therapy in focal cerebral ischemia and to interpret the results of non-invasive techniques which enable the imaging of depolarized areas following stroke.
Collapse
Affiliation(s)
- H Nallet
- University of Caen, CNRS-UMR 6551, CYCERON, Boulevard Henri Becquerel, BP 5229, 14074, Caen, France.
| | | | | |
Collapse
|
226
|
Dijkhuizen RM, Beekwilder JP, van der Worp HB, Berkelbach van der Sprenkel JW, Tulleken KA, Nicolay K. Correlation between tissue depolarizations and damage in focal ischemic rat brain. Brain Res 1999; 840:194-205. [PMID: 10517971 DOI: 10.1016/s0006-8993(99)01769-2] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ischemia-induced depolarizations may play a key role in the development of cerebral ischemic injury. Our goal was to assess the relationship between tissue depolarizations and tissue damage in focal ischemia. We performed multi-electrode cortical direct current (DC) potential recording and, subsequently, diffusion-weighted and T(2)-weighted magnetic resonance imaging (MRI) in rats after i) cortical application of KCl, and ii) permanent and transient middle cerebral artery (MCA)-occlusion in rats. Cortical KCl application induced 10.0+/-2.2 transient negative DC potential shifts per h on the ipsilateral hemisphere (i.e. cortical spreading depressions) (n=4). During 6 h of permanent MCA-occlusion (n=9) 1-10 DC potential shifts were observed, dependent on the brain location. Anoxic depolarization developed in the ischemic core. Outside ischemic areas DC potential shifts resembled cortical spreading depressions. Depolarizations in cortical ischemic borderzones were also transient, but generally long-lasting. Reperfusion induced 1 (n=5) or 3 h (n=6) after MCA-occlusion resulted in repolarization in 2.9+/-1.5 min. Ischemic lesion volumes after 7 h, calculated from diffusion-weighted and T(2)-weighted MR images, correlated significantly with total depolarization time in cortical perifocal zones (R=0.741, p<0.05), but not with the number of depolarizations. The extent of ischemic damage, as measured from alterations in the water diffusion coefficient and T(2), was also significantly related to the total time of depolarization (R=0.762 and 0.738, respectively, p<0.01). We conclude that early ischemic tissue injury is related to the total duration of tissue depolarization and not to the frequency of depolarizations.
Collapse
Affiliation(s)
- R M Dijkhuizen
- Department of Neurosurgery, University Hospital Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
227
|
Koponen S, Keinänen R, Roivainen R, Hirvonen T, Närhi M, Chan PH, Koistinaho J. Spreading depression induces expression of calcium-independent protein kinase C subspecies in ischaemia-sensitive cortical layers: regulation by N-methyl-D-aspartate receptors and glucocorticoids. Neuroscience 1999; 93:985-93. [PMID: 10473263 DOI: 10.1016/s0306-4522(99)00166-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spreading depression is a wave of sustained depolarization challenging the energy metabolism of the cells without causing irreversible damage. In the ischaemic brain, sreading depression-like depolarization contributes to the evolution of ischaemia to infarction. The depolarization is propagated by activation of N-methyl-D-aspartate receptors, but changes in signal transduction downstream of the receptors are not known. Because protein phosphorylation is a general mechanism whereby most cellular processes are regulated, and inhibition of N-methyl-D-aspartate receptors or protein kinase C is neuroprotective, the expression of protein kinase C subspecies in spreading depression was examined. Cortical treatment with KCl induced an upregulation of protein kinase Cdelta and zeta messenger RNA at 4 and 8 h, whereas protein kinase Calpha, beta, gamma and epsilon did not show significant changes. The gene induction was the strongest in layers 2 and 3, and was followed by an increased number of protein kinase Cdelta-immunoreactive neurons. Protein kinase Cdelta and zeta inductions were inhibited by pretreatment with an N-methyl-D-aspartate receptor antagonist, dizocilpine maleate, which also blocked spreading depression propagation, and with dexamethasone, which acted without blocking the propagation. Quinacrine, a phospholipase A2 inhibitor, reduced only protein kinase C5 induction. In addition, N(G)(-nitro-L-arginine methyl ester, a nitric oxide synthase inhibitor, did not influence protein kinase Cdelta or zeta induction, whereas 6-nitro-7-sulphamoylbenzo[f]quinoxaline-2,3-dione, an alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate/kainate receptor antagonist, and the cyclo-oxygenase inhibitors indomethacin and diclophenac tended to increase gene expression. The data show that cortical spreading depression induces Ca2(+)-independent protein kinase C subspecies delta and zeta, but not Ca(2+)-dependent subspecies, through activation of N-methyl-D-aspartate receptors and phospholipase A2. Even though the signal pathway is similar to the induction described previously in ischaemia for genes implicated in delayed neuronal death, the gene inductions observed here are not necessarily pathogenetic, but may represent a general reaction to metabolic stress.
Collapse
Affiliation(s)
- S Koponen
- A.I. Virtanen Institute, University of Kuopio, Finland
| | | | | | | | | | | | | |
Collapse
|
228
|
Abstract
Brain injury following transient or permanent focal cerebral ischaemia (stroke) develops from a complex series of pathophysiological events that evolve in time and space. In this article, the relevance of excitotoxicity, peri-infarct depolarizations, inflammation and apoptosis to delayed mechanisms of damage within the peri-infarct zone or ischaemic penumbra are discussed. While focusing on potentially new avenues of treatment, the issue of why many clinical stroke trials have so far proved disappointing is addressed. This article provides a framework that can be used to generate testable hypotheses and treatment strategies that are linked to the appearance of specific pathophysiological events within the ischaemic brain.
Collapse
Affiliation(s)
- U Dirnagl
- Dept of Neurology, Charité Hospital, 10098 Berlin, Germany
| | | | | |
Collapse
|
229
|
Buresh Y, Koroleva VI, Korolev OS, Maresh V. Changes in the constant potential in brain structures in rats during focal ischemia and systemic hypoxia. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 1999; 29:569-79. [PMID: 10596794 DOI: 10.1007/bf02461150] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The functional consequences of spreading depression (SD) during the evolution of ischemic damage was studied in two models: focal cortical ischemia induced by photothrombosis of the middle cerebral artery (MCA) and systemic hypoxia induced by 0.8% carbon monoxide (CO). These studies showed that cortical waves of SD, arising spontaneously during MCA thrombosis and after arterial occlusion delayed thrombus formation and promoted the establishment of a collateral blood supply in the perifocal zone of ischemic lesions. The underlying mechanism consisted of episodes of intense vasodilation at the decay phase of every wave of SD. Respiration of 0.8% CO increased the blood carboxyhemoglobin level to 50-60%. In lightly anesthetized rats (pentobarbital 20 mg/kg), cortical and subcortical spontaneous waves of SD were transformed into stable hypoxic depolarization, leading to death of 60% of the animals or severe lesions of the central nervous system, in 20% of animals. Increases in the level of anesthesia (50 mg/kg anesthetic) prevented the spontaneous appearance of SD during long-lasting exposure to CO. In these conditions, experimentally induced waves of SD demonstrated that the hippocampus has a high sensitivity to moderate levels of hypoxia. The duration of hypoxic depolarization of the hippocampus, provoking a single SD wave, reached 30-60 min. Selective neuron damage in field CA1 was seen 30 days after hypoxia. Additionally, the left hippocampus of rats frequently showed profound morphological lesions in the form of "granules." Cerebrolysine (2.5 ml/kg daily for 10 days) completely prevented the formation of these lesions.
Collapse
Affiliation(s)
- Y Buresh
- Institute of Physiology, Czech Academy of Sciences, Prague
| | | | | | | |
Collapse
|
230
|
Krüger H, Heinemann U, Luhmann HJ. Effects of ionotropic glutamate receptor blockade and 5-HT1A receptor activation on spreading depression in rat neocortical slices. Neuroreport 1999; 10:2651-6. [PMID: 10574386 DOI: 10.1097/00001756-199908200-00039] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The effect of the AMPA antagonist NBQX (10 microM), NMDA antagonist ketamine (100 microM) and 5-HT1A agonist 8-OH-DPAT (1, 10 and 100 microM) on the properties of a KCl-induced spreading depression (SD) was studied in parietal cortical slices of adult rats. Whereas NBQX did not significantly affect the SD, ketamine significantly (p < 0.01) reduced the amplitude of the first SD peak (12.8 +/- 4.6 mV) and blocked the second SD peak when compared with the controls (19.8 +/- 5.2 mV and 25 +/- 5 mV, respectively). Ketamine also decreased the SD duration at half maximal amplitude from 34.9 +/- 12.4 s to 22.2 +/- 12 s (p < 0.05). 8-OH-DPAT attenuated the duration of the SD from 42 +/- 15.6 s to 21.2 +/- 10.6 s (p < 0.05, 100 microM). These data indicate that not only NMDA receptor blockade, but also activation of the 5-HT1A receptor attenuates the SD and may be beneficial in the reduction of ischemic injury following focal cerebral ischemia.
Collapse
Affiliation(s)
- H Krüger
- Institute of Physiology, Department of Neurophysiology, Charité, Berlin, Germany
| | | | | |
Collapse
|
231
|
Gu WG, Jiang W, Brännström T, Wester P. Long-term cortical CBF recording by laser-Doppler flowmetry in awake freely moving rats subjected to reversible photothrombotic stroke. J Neurosci Methods 1999; 90:23-32. [PMID: 10517270 DOI: 10.1016/s0165-0270(99)00041-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study aimed at developing a laser-Doppler flowmetry (LDF) device suitable for long-term cortical cerebral blood flow (cCBF) measurement in awake, freely moving rats. The device included a flow probe adapter for permanent fixation to the skull bone and a connector that held the flow probe in the adapter in exactly the same position during repeated cCBF recordings. With this LDF recording system, cCBF values were stable and unaltered in awake, freely moving rats up to 4 days after operation compared with initial recordings during anesthesia. Repeated cCBF measurements in rats after transient removal and reattachment of the flow probe revealed a coefficient of variation of 7.0-17.4%. The LDF recording system was applied to rats subjected to a photothrombotic ring stroke lesion. cCBF in the region-at-risk declined to 59-34-26-33% of baseline values (P < 0.01) at 1-2-24 48 h after irradiation with gradually restored cCBF values of 56-87% at 72-96 h post-irradiation (P < 0.01 vs. 24 h). Transcardial carbon black perfusion examination of the brains confirmed the sustained hypoperfusion in the region at risk up to 48 h post-ischemia followed by a consistently occurring late spontaneous reperfusion. In conclusion, a novel laser-Doppler cortical CBF recording system has been set up that allows stable long-term cortical CBF follow-up in awake, freely moving rats.
Collapse
Affiliation(s)
- W G Gu
- Department of Medicine, Umeå Stroke Center, University of Umeå, Sweden
| | | | | | | |
Collapse
|
232
|
Kannurpatti SS, Joshi NB. Energy metabolism and NAD-NADH redox state in brain slices in response to glutamate exposure and ischemia. Metab Brain Dis 1999; 14:33-43. [PMID: 10348312 DOI: 10.1023/a:1020657413606] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A comparative study of the effects of excitotoxic levels of glutamate with ischemia on the cerebral energy metabolism and [NAD]/[NADH] ratio was carried out in adult rat brain slices. Glutamate moderately decreased the high energy phosphates and intracellular pH whereas ischemia showed a pronounced decrease in the high energy phosphates and intracellular pH. The [NAD]/[NADH] ratio increased continuously during glutamate exposure whereas an initial reduction and subsequent oxidation occurred during ischemia. Uptake of glutamate prevailed throughout the glutamate exposure to brain slices signifying favorable glial energy levels while efflux occurred during ischemia indicating complete neuronal and glial depolarization. A net synthesis of glutamate was also observed during ischemia. A small but significant increase in lactate may be a result of increased glycolysis during glutamate exposure, on the other hand a large increase in lactate during ischemia suggests a total failure of oxidative metabolism. Our results show that glutamate exposure to brain slices causes a mild energetic stress and an increase in [NAD]/[NADH] ratio whereas predominant inhibition of phosphate metabolites and dual effect on NAD/NADH redox state was observed during ischemia. It is suggested that the NAD/NADH redox state together with phosphate metabolites and intracellular pH of the periinfarct region could provide vital evidence about the possible involvement of glutamate.
Collapse
Affiliation(s)
- S S Kannurpatti
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore, India
| | | |
Collapse
|
233
|
Golanov EV, Reis DJ. Neuroprotective electrical stimulation of cerebellar fastigial nucleus attenuates expression of periinfarction depolarizing waves (PIDs) and inhibits cortical spreading depression. Brain Res 1999; 818:304-15. [PMID: 10082816 DOI: 10.1016/s0006-8993(98)01169-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In rat, electrical stimulation of the cerebellar fastigial nucleus (FN) for 1 h reduces the volume of focal ischemic infarctions produced by occluding the middle cerebral artery (MCAO), even 10 days later. The mechanism by which this 'central neurogenic neuroprotection' salvages ischemic brain is not known but does not result from changes in cerebral perfusion. MCAO also triggers periodic periinfarction depolarizing waves (PIDs) in the ischemic penumbra, the territory of salvage. These may contribute to neuronal death and promote infarct expansion. Conceivably, FN stimulation, which can otherwise modify cortical excitability, may alter the development of PIDs. We investigated in anesthetized rats whether FN stimulation modifies PIDs expression and, if so, the threshold for evoking cortical spreading depression (CSD), a process sharing characteristics with PIDs and an index of cortical excitability. Stimulation of FN immediately or 72 h before MCAO decreased infarction volumes by approximately 45% (p<0.01), increased PID latency >10-fold, and decreased the number of PIDs by >50% (p<0.001). In normal rats, stimulation of FN increased the threshold current for eliciting CSD by 175% and slowed its propagation velocity by 35% (p<0.01 for each) immediately, but not 72 h, after FN stimulation. We conclude: FN stimulation elicits long-lasting suppression of PIDs in parallel with neuroprotection. However, PIDs suppression over time is unlikely to result from a major increase in cortical tolerance to depolarization and probably is not the principal mechanism of salvage.
Collapse
Affiliation(s)
- E V Golanov
- Department of Neurology and Neuroscience, Cornell University Medical College, 411 East 69th Street, New York, NY 10021, USA.
| | | |
Collapse
|
234
|
Ruppin E, Ofer E, Reggia JA, Revett K, Goodall S. Pathogenic mechanisms in ischemic damage: a computational study. Comput Biol Med 1999; 29:39-59. [PMID: 10207654 DOI: 10.1016/s0010-4825(98)00044-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The pathogenesis of penumbral tissue infarction during acute ischemic stroke is controversial. This peri-infarct tissue may subsequently die, or survive and recuperate, and its preservation has been a prime goal of recent therapeutic trials in acute stroke. Two major hypotheses currently under consideration are that penumbral tissue is recruited into an infarct by cortical spreading depression (CSD) waves, or by a non-wave self-propagating process such as glutamate excitotoxicity (GE). Careful experimental attempts to discriminate between these two hypotheses have so far been quite ambiguous. Using a computational metabolic model of acute focal stroke we show here that the spatial patterns of tissue damage arising from artificially induced foci of infarction having specific geometric shapes are inherently different. This is due to the distinct propagation characteristics underlying self-regenerating waves and non-wave diffusional processes. The experimental testing of these predicted spatial patterns of damage may help determine the relative contributions of the two pathological mechanisms hypothesized for ischemic tissue damage.
Collapse
Affiliation(s)
- E Ruppin
- Department of Physiology, Tel-Aviv University, Israel.
| | | | | | | | | |
Collapse
|
235
|
Koistinaho J, Pasonen S, Yrjänheikki J, Chan PH. Spreading depression-induced gene expression is regulated by plasma glucose. Stroke 1999; 30:114-9. [PMID: 9880398 DOI: 10.1161/01.str.30.1.114] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND PURPOSE Plasma glucose and spreading depression (SD) are both determinants of brain ischemia. The purpose of this study was to examine whether plasma glucose affects SD-induced gene expression in the cortex. METHODS SD was induced by topical application of KCl. Hyperglycemia and hypoglycemia were induced by intraperitoneal injection of glucose and insulin, respectively. The expression of c-fos, cyclooxygenase-2 (COX-2), protein kinase C-delta (PKCdelta), and heme oxygenase-1 (HO-1) was determined by in situ hybridization. RESULTS SD alone induced expression of c-fos (by 340%), COX-2 (210%), HO-1 (470%), and PKCdelta (410%). Hypoglycemia (2.4+/-0.9 mmol/L) alone did not induce gene expression, and hyperglycemia (22.1+/-3.7 mmol/L) alone induced only c-fos by 42%. When hypoglycemia was induced 30 minutes before SD, c-fos induction was enhanced by 145%, but the induction of HO-1 and PKCdelta was reduced to 43% and 64%, respectively. When hyperglycemia was induced 30 minutes before SD, c-fos induction was enhanced by 388% and COX-2 expression by 53%, whereas the induction of PKCdelta and HO-1 was reduced to 54% and 51%, respectively. The frequency, amplitude, and duration of direct current potentials were unaltered in hyperglycemic SD animals, whereas in hypoglycemic animals the duration was increased by 47%. CONCLUSIONS While SD induces expression of several genes, the availability of glucose regulates the extent of the gene induction. The effect of glucose is different on early-response genes (c-fos and COX-2) compared with late-response genes. Plasma glucose may contribute to neuronal damage partially by regulating gene expression.
Collapse
Affiliation(s)
- J Koistinaho
- A.I. Virtanen Institute, University of Kuopio, Finland.
| | | | | | | |
Collapse
|
236
|
Hermann DM, Mies G, Hossmann KA. Expression of c-fos, junB, c-jun, MKP-1 and hsp72 following traumatic neocortical lesions in rats--relation to spreading depression. Neuroscience 1999; 88:599-608. [PMID: 10197778 DOI: 10.1016/s0306-4522(98)00249-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effects of a traumatic neocortical lesion on c-fos, junB, c-jun, MKP-1 and hsp72 expression were examined by in situ hybridization and immunocytochemistry 1-6 h following transcranial cold injury. The direct current potential was recorded in the injury-remote cortex to evaluate the role of transient direct current shifts, i.e. spreading depressions, in gene expression. In 14 out of 21 injured rats, spreading depression-like depolarizations of the direct current potential were noticed, which were accompanied by a transient decrease in electroencephalographic activity and increase in laser Doppler flow. In seven injured animals, no spontaneous spreading depressions were seen. In animals without spreading depressions, only a short-lasting response of c-fos, junB, c-jun and MKP-1 messenger RNAs as well as c-Fos protein was bilaterally found in the piriform cortex, and--with ipsilateral dominance--the dentate gyrus and hippocampal CA3/4 fields at 1 h after lesioning. In injured animals with spreading depressions however, a strong elevation was seen in layers II-IV and VI of the injury-remote ipsilateral cerebral cortex, which persisted over as long as 6 h. Messenger RNA levels for c-fos, junB and MKP-1 were closely related to the time interval between the last depolarization and the end of experiment. Levels were highest shortly after transient direct current shifts, and decreased thereafter mono-exponentially with half-lives of 48, 75 and 58 min for c-fos, junB and MKP-1 messenger RNAs, respectively. In 6 h animals with spreading depressions, hsp72 messenger RNA was slightly elevated in layer II of the injury-remote cortex, but heat shock protein 72 was not increased. The present results demonstrate that spreading depression is the most prominent factor influencing the trauma-related gene response in the lesion-remote cortical tissue.
Collapse
Affiliation(s)
- D M Hermann
- Max-Planck-Institute for Neurological Research, Department of Experimental Neurology, Cologne, Germany
| | | | | |
Collapse
|
237
|
Abstract
1. The original concept of the ischemic penumbra surrounding a focus of dense cerebral ischemia is based on electrophysiological observations. In the cortex of baboons following middle cerebral artery occlusion, complete failure of the cortical evoked potential was observed at a cerebral blood flow (CBF) threshold level of approx. 0.15 ml/g/min--a level at which extracellular potassium ion activity was only mildly elevated. With a greater CBF decrement to the range of 0.06-0.10 ml/g/min, massive increases in extracellular potassium occurred and were associated with complete tissue infarction. Thus, the ischemic penumbra has been conceptualized as a region in which CBF reduction has exceeded the threshold for failure of electrical function but not that for membrane failure. 2. Recent studies demonstrate that the penumbra as defined classically by the flow thresholds does not survive prolonged periods of ischemia. The correlation of CBF autoradiograms with diffusion-weighted MR images and the regional distribution of cerebral metabolites reveals that the ischemic core region enlarges when adjacent, formerly penumbral, areas undergo irreversible deterioration during the initial hours of vascular occlusion. At the same time, the residual penumbra becomes restricted to the periphery of the ischemic territory, and its fate may depend critically upon early therapeutic intervention. 3. In the border zone of brain infarcts, marked uncoupling of local CBF and glucose utilization is consistently observed. The correlation with electrophysiological measurements shows that metabolism-flow uncoupling is associated with sustained deflections of the direct current (DC) potential resembling transient depolarizations. Such penumbral cell depolarizations, which are associated with an increased metabolic workload, induce episodes of tissue hypoxia due to the constrained collateral flow, stimulate anaerobic glycolysis leading to lactacidosis, suppress protein synthesis, and, finally, compromise energy metabolism. The frequency of their occurrence correlates with the final volume of ischemic injury. Therefore, penumbral depolarizations are regarded as a key event in the pathogenesis of ischemic brain injury. Periinfarct DC deflections can be suppressed by NMDA and non-NMDA antagonists, resulting in a significant reduction of infarct size. 4. The histopathological sequelae within the penumbra consist of various degrees of scattered neuronal injury, also termed "incomplete infarction." The reduction of neuronal density at the infarct border is a flow- and time-dependent event which is accompanied by an early response of glial cells. As early as 3 hr after vascular occlusion a generalized microglial activation can be detected throughout the ipsilateral cortex. Astrocytic activation is observed in the intact parts of the ischemic hemisphere from 6 hr postocclusion onward. Thus, the penumbra is a spatially dynamic brain region of limited viability which is characterized by complex pathophysiological changes involving neuronal function as well as well as glial activation in response to local ischemic injury.
Collapse
Affiliation(s)
- T Back
- Department of Neurology, Ludwig Maximilians University, Munich, Germany.
| |
Collapse
|
238
|
Siniscalchi A, Zona C, Guatteo E, Mercuri NB, Bernardi G. An electrophysiological analysis of the protective effects of felbamate, lamotrigine, and lidocaine on the functional recovery from in vitro ischemia in rat neocortical slices. Synapse 1998; 30:371-9. [PMID: 9826229 DOI: 10.1002/(sici)1098-2396(199812)30:4<371::aid-syn4>3.0.co;2-v] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We used field potential recording techniques to examine whether felbamate (FBM), lamotrigine (LTG), and lidocaine (LID) protect against the irreversible functional damage induced by transient ischemia. Five minutes of ischemia caused a depression of the field potential in rat cortical slices, which did not recover even after more than 1 h of washout. The N-methyl-D-aspartate (NMDA) antagonist ketamine (50 microM) protected against depression of the field caused by ischemia. On the other hand, the non-NMDA antagonist 6-cyano-7-nitroquinoxaline-2.3-dione (CNQX) (10 microM) had protective effects only if co-applied with ketamine. We found that either FBM (30-300 microM), which did not modify the amplitude of the field EPSP, or LTG (10-300 microM), which reversibly depressed the excitatory synaptic transmission, had a marked protective effect when superfused before and during the ischemic insult. After FBM (100 microM) and LTG (100 microM), the field EPSP recovered by 84 +/- 1% and 73 +/- 2.7% of control, respectively. Furthermore, LID (30-300 microM) was less effective than FBM and LTG in inducing a functional recovery from the damage caused by ischemia (58 +/- 1.8%). The rank order of potency, based on the maximal protection caused by the three drugs, was FBM > LTG > LID. Our results suggest that a noticeable neuroprotection can be obtained during glucose and O2 deprivation by preventive therapeutic regimens which use the two recently marketed anticonvulsant drugs, FBM and LTG.
Collapse
Affiliation(s)
- A Siniscalchi
- IRCCS Santa Lucia, Clinica Neurologica Università di Roma Tor Vergata, Rome, Italy
| | | | | | | | | |
Collapse
|
239
|
Iijima T, Shimase C, Iwao Y, Sankawa H. Relationships between glutamate release, blood flow and spreading depression: real-time monitoring using an electroenzymatic dialysis electrode. Neurosci Res 1998; 32:201-7. [PMID: 9875562 DOI: 10.1016/s0168-0102(98)00090-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Spreading depression (SD) in a flow-restricted area of the brain may be prolonged and may become potentially harmful by releasing glutamate. We induced SD in an oligemia model and examined the subsequent glutamate release. In 18 anesthetized male Fischer rats, a laser Doppler flowmeter, an electroenzymatic electrode for continuous measurement of glutamate, and a calomel electrode for measuring DC potential were placed through a cranial window positioned 3 mm away from a second window where KCl-soaked cotton was placed to initiate SD. The left carotid artery or both the common carotid arteries were ligated to suppress reactive hyperemia of SD. SD produced an increase in glutamate from 24.8 +/- 13.8 to 33.5 +/- 25.3 microM (peak value) (P < 0.0001). After ligation of both carotid arteries, the duration of SD increased from 1.5 +/- 0.6 min (before ligation) to 6.4 +/- 5.1 min (P < 0.05). Glutamate reached a peak level of 63.9 +/- 72.3 microM, then quickly returned to the control value. However, there was no positive correlation between the duration of SD and glutamate concentration. It is concluded that prolonged SD is not accompanied by a progressive increase in glutamate. Therefore, glutamate release induced by SD may not exert harmful effects on neurons.
Collapse
Affiliation(s)
- T Iijima
- Department of Anesthesiology, Kyorin University School of Medicine, Mitaka City, Tokyo, Japan.
| | | | | | | |
Collapse
|
240
|
Abstract
Spreading depression (SD) was analyzed in hippocampal and neocortical brain slices by imaging intrinsic optical signals in combination with either simultaneous electrophysiological recordings or imaging of intracellular calcium dynamics. The goal was to determine the roles of intracellular calcium (Ca2+int) waves in the generation and propagation of SD. Imaging of intrinsic optical signals in the hippocampus showed that ouabain consistently induced SD, which characteristically started in the CA1 region, propagated at 15-35 micrometer/sec, and traversed across the hippocampal fissure to the dentate gyrus. In the dendritic regions of both CA1 and the dentate gyrus, SD caused a transient increase in light transmittance, characterized by both a rapid onset and a rapid recovery. In contrast, in the cell body regions the transmittance increase was prolonged. Simultaneous imaging of intracellular calcium and intrinsic optical signals revealed that a slow Ca2+int increase preceded any change in transmittance. Additionally, a wave of increased Ca2+int typically propagated many seconds ahead of the change in transmittance. These calcium increases were also observed in individual astrocytes injected with calcium orange, indicating that Ca2+int waves were normally associated with SD. However, when hippocampal slices were incubated in calcium-free/EGTA external solutions, SD was still observed, although Ca2+int waves were completely abolished. Under these conditions SD had a comparable peak increase in transmittance but a slower onset and a faster recovery. These results demonstrate that although there are calcium dynamics associated with SD, these increases are not necessary for the initiation or propagation of spreading depression.
Collapse
|
241
|
Sick TJ, Feng ZC, Rosenthal M. Spatial stability of extracellular potassium ion and blood flow distribution in rat cerebral cortex after permanent middle cerebral artery occlusion. J Cereb Blood Flow Metab 1998; 18:1114-20. [PMID: 9778188 DOI: 10.1097/00004647-199810000-00008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Extracellular potassium ion activity ([K+]o) increases precipitously during brain ischemia when blood flow falls below threshold values less than approximately 15 mL/100 g/min. This flow threshold for increase of [K+]o occurs also in focal ischemia producing gradient from ischemic core to adjacent normally perfused brain. In this study we investigated the spatial and temporal stability of extracellular potassium ion and blood flow gradients after permanent middle cerebral artery occlusion (MCAO) in rats. [K+]o and regional CBF were measured, respectively, with K+-sensitive and polarographic hydrogen-sensitive microelectrodes at different cortical locations in the middle cerebral artery distribution region. Spatial assessment of [K+]o and regional CBF was conducted at 30, 90, and 180 minutes after MCAO. [K+]o in the more lateral cortex (core) increased from near 3 mmol/L before MCAO to greater than 50 mmol/L and was associated with flow values less than 25% of pre-ischemic levels. Measurements medial to the core (penumbra) indicated progressively decreasing levels of [K+]o and improvement of CBF. There was a tendency for [K+]o in penumbral zones to decrease toward normal levels with time, but there was little dissipation of [K+]o in core regions. In contrast, the spatial CBF profile remained remarkably constant for the entire recording period. Thus, unlike infarction which has been reported to expand with time after focal ischemia, the spatial [K+]o disturbance tends to contract primarily due to decreasing [K+]o with time in the penumbra. Thus, steady state levels of [K+]o after focal ischemia may not be a valuable predictor of cell viability.
Collapse
Affiliation(s)
- T J Sick
- Department of Neurology, University of Miami School of Medicine, Florida 33177, USA
| | | | | |
Collapse
|
242
|
Abstract
When a cerebral infarction occurs, surrounding the core of dying tissue there usually is an ischemic penumbra of nonfunctional but still viable tissue. One current but controversial hypothesis is that this penumbra tissue often eventually dies because of the metabolic stress imposed by multiple cortical spreading depression (CSD) waves, that is, by ischemic depolarizations. We describe here a computational model of CSD developed to study the implications of this hypothesis. After simulated infarction, the model displays the linear relation between final infarct size and the number of CSD waves traversing the penumbra that has been reported experimentally, although damage with each individual wave progresses nonlinearly with time. It successfully reproduces the experimental dependency of final infarct size on midpenumbra cerebral blood flow and potassium reuptake rates, and predicts a critical penumbra blood flow rate beyond which damage does not occur. The model reproduces the dependency of CSD wave propagation on N-methyl-D-aspartate activation. It also makes testable predictions about the number, velocity, and duration of ischemic CSD waves and predicts a positive correlation between the duration of elevated potassium in the infarct core and the number of CSD waves. These findings support the hypothesis that CSD waves play an important causal role in the death of ischemic penumbra tissue.
Collapse
Affiliation(s)
- K Revett
- Department of Neurology, Institute for Advanced Computer Studies, University of Maryland, Baltimore, USA
| | | | | | | |
Collapse
|
243
|
Johnson TD. Polyamines and cerebral ischemia. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 1998; 50:193-258. [PMID: 9670780 DOI: 10.1007/978-3-0348-8833-2_5] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
It has been well established that alterations in polyamine metabolism are associated with animal models of global ischemia. Recently, this has been extended to include models of focal ischemia and traumatic brain injury. There is much evidence to support the idea that polyamines may play a multifaceted detrimental role following ischemia reperfusion. Due to the deficit of knowledge about their physiology in the CNS, the link between ischemia-induced alterations in polyamine metabolism and neuronal injury remains to be substantiated. With the recent revelation that polyamines are major intracellular modulators of inward rectifier potassium channels and certain types of NMDA and AMPA receptors, the long wait for the physiologic relevance of these ubiquitous compounds may be in sight. Therefore, it is now conceivable that the alterations in polyamines could have major effects on ion homeostasis in the CNS, especially potassium, and thus account for the observed injury after cerebral ischemia.
Collapse
Affiliation(s)
- T D Johnson
- Department of Anesthesiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
244
|
van der Hel WS, van den Bergh WM, Nicolay K, Tulleken KA, Dijkhuizen RM. Suppression of cortical spreading depressions after magnesium treatment in the rat. Neuroreport 1998; 9:2179-82. [PMID: 9694196 DOI: 10.1097/00001756-199807130-00006] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The aim of this study was to investigate whether the neuroprotective properties of magnesium in cerebral ischaemia involve suppression of repetitive tissue depolarizations. Cortical spreading depressions (CSDs), evoked by cortical KCl application, and cardiac arrest-induced anoxic depolarization (AD) were measured by extracellular DC recording on intact rat brain. At 90 min after onset of CSDs saline, MK-801 (3 mg/kg) or MgSO4 (90 mg/kg) was given i.v. Latency time to AD was measured after 4 h. The frequency of CSDs was significantly reduced in animals treated with MgSO4 or MK-801. AD was significantly delayed by MgSO4 but not by MK-801. Our results suggest that suppression of depolarization by magnesium may play a role in its neuroprotective properties in cerebral ischaemia.
Collapse
Affiliation(s)
- W S van der Hel
- Department of Neurosurgery, University Hospital Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
245
|
Mies G. Neuroprotective effect of sumatriptan, a 5-HT1D receptor agonist, in focal cerebral ischemia of rat brain. J Stroke Cerebrovasc Dis 1998; 7:242-9. [PMID: 17895091 DOI: 10.1016/s1052-3057(98)80033-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/1997] [Accepted: 02/04/1998] [Indexed: 11/18/2022] Open
Abstract
The effect of the 5-HT(1D) receptor agonist sumatriptan on the volume of ischemic injury was studied in rats subjected to permanent middle cerebral artery (MCA) occlusion. Sumatriptan (2 mg/kg) was administered intravenously 5 minutes after MCA occlusion and the ischemic injury volume was determined 3 hours after MCA occlusion using regional adenosine-5'-triphosphate imaging. In addition, electroencephalographic activity, direct current (DC) potential and cortical blood flow (CBF) was monitored throughout the experiment. In untreated animals, MCA occlusion resulted in a decline in penumbral CBF to 43.3%+/-7.6% of control, 21 spreading depression (SD)-like DC shifts with an average integrated depolarization negativity of 320.2+/-297.4 (mVxmin) and an ATP depletion volume of 61.8+/-22.9 mm(3) (mean+/-SD). Three hours after MCA occlusion in sumatriptan-treated animals, penumbral CBF recovered to 63.5%+/-12.6% of control (P<.05), only 13 SD-like shifts were detected (P<.05) with a significantly reduced integrated depolarization negativity of 104.7+/-98.4 (mVxmin) (P<.05), and the volume of ATP depletion decreased to 16.6+/-12.3 mm(3) (P<.01). However, no significant neuroprotective effect was observed for the caudate nucleus (untreated, 19.7+/-16.5 mm(3); treated, 7.9+/-8.5 mm(3)). The reduction in the volume of ischemic injury in sumatriptantreated animals is explained by both the improvement of blood flow and the inhibition of SD-like shifts leading to an amelioration of the misrelationship between the depolarization-related energy demand and flow-dependent substrate delivery.
Collapse
Affiliation(s)
- G Mies
- Max-Planck-Institute for Neurological Research, Department of Experimental Neurology, Gleueler Strasse 50, Lindenthal, Germany
| |
Collapse
|
246
|
Norris DG, Hoehn-Berlage M, Dreher W, Kohno K, Busch E, Schmitz B. Characterization of middle cerebral artery occlusion infarct development in the rat using fast nuclear magnetic resonance proton spectroscopic imaging and diffusion-weighted imaging. J Cereb Blood Flow Metab 1998; 18:749-57. [PMID: 9663505 DOI: 10.1097/00004647-199807000-00006] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A nuclear magnetic resonance study of the middle cerebral artery occlusion in the rat is presented. Experiments were performed on seven animals before and after occlusion, which occurred in situ. The emphasis in this study was on evaluating rapid proton spectroscopic imaging. Data were acquired with experimental durations of between 4 and 15 minutes for a 32 by 32 spatial matrix, with 64 spectroscopic data points per spatial element. The spectroscopic data were interleaved with diffusion-weighted nuclear magnetic resonance water images of the same slice. The study was terminated at about 6 hours after occlusion. The brains were then frozen in liquid nitrogen for biochemical imaging. The results showed that the signal from N-acetyl aspartate decreased and that of lactate increased within the infarcted region. The temporal course of these intensity changes varied between animals. Nineteen cortical spreading depressions (CSD) were observed by electrophysiologic monitoring during the experiments. Of these, 11 could be unambiguously detected in the lactate images, and a further 3 were on the threshold of detectability. As only a single slice could be examined, it is possible that the centers of depression for the remaining 6 CSD were outside the slice. To the authors' knowledge, this is the first report of the measurement of CSD using proton spectroscopic imaging. Thus, it is shown that this method is valuable not only in following the continuous evolution of proton metabolites with a good spatial and temporal resolution, but also in observing transient phenomena which are believed to play an important role in the expansion of the infarcted territory.
Collapse
Affiliation(s)
- D G Norris
- Fachbereich Chemie, Universität Bremen, Germany
| | | | | | | | | | | |
Collapse
|
247
|
Hermann DM, Mies G, Hossmann KA. Effects of a traumatic neocortical lesion on cerebral metabolism and gene expression of rats. Neuroreport 1998; 9:1917-21. [PMID: 9665626 DOI: 10.1097/00001756-199806010-00046] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The effects of a traumatic neocortical lesion, induced by transcranial cold injury, on brain metabolism and gene expression were examined. The surrounding of the lesions was characterized by increased glucose and lactate levels without major disturbances of protein synthesis or energy state. A transient pH decrease by 0.4 units was noticed 1 h post-injury, which shifted towards alkaline values by 3 h. The metabolic disturbances did not differ between injured animals with spontaneous spreading depressions (SD, n = 14) and those without SD (n = 7). In SD animals, c-fos mRNA was strongly elevated in the injury-remote cortex, but hsp72 mRNA was not enhanced. Thus, in contrast to focal ischemia, the metabolic dysfunction around traumatic cortical lesions is not aggravated by SD.
Collapse
Affiliation(s)
- D M Hermann
- Max-Planck-Institute for Neurological Research, Department of Experimental Neurology, Cologne, Germany
| | | | | |
Collapse
|
248
|
Abstract
In the investigation of ischemic stroke, conventional structural magnetic resonance (MR) techniques (e.g., T1-weighted imaging, T2-weighted imaging, and proton density-weighted imaging) are valuable for the assessment of infarct extent and location beyond the first 12 to 24 hours after onset, and can be combined with MR angiography to noninvasively assess the intracranial and extracranial vasculature. However, during the critical first 6 to 12 hours, the probable period of greatest therapeutic opportunity, these methods do not adequately assess the extent and severity of ischemia. Recent developments in functional MR imaging are showing great promise for the detection of developing focal cerebral ischemic lesions within the first hours. These include (1) diffusion-weighted imaging, which provides physiologic information about the self-diffusion of water, thereby detecting one of the first elements in the pathophysiologic cascade leading to ischemic injury; and (2) perfusion imaging. The detection of acute intraparenchymal hemorrhagic stroke by susceptibility weighted MR has also been reported. In combination with MR angiography, these methods may allow the detection of the site, extent, mechanism, and tissue viability of acute stroke lesions in one imaging study. Imaging of cerebral metabolites with MR spectroscopy along with diffusion-weighted imaging and perfusion imaging may also provide new insights into ischemic stroke pathophysiology. In light of these advances in structural and functional MR, their potential uses in the study of the cerebral ischemic pathophysiology and in clinical practice are described, along with their advantages and limitations.
Collapse
Affiliation(s)
- A E Baird
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | |
Collapse
|
249
|
Hermann DM, Mies G, Hossmann KA. Effects of a traumatic neocortical lesion on cerebral metabolism and gene expression of rats. Neuroreport 1998; 9:1249-53. [PMID: 9601703 DOI: 10.1097/00001756-199804200-00053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The effects of a traumatic neocortical lesions, induced by transcranial cold injury, on brain metabolism and gene expression were examined. The surrounding of the lesions was characterized by increased glucose and lactate levels without major disturbances of protein synthesis or energy state. A transient pH decrease by 0.4 units was noticed 1 h post-injury, which shifted towards alkaline values by 3 h. The metabolic disturbances did not differ between injured animals with spontaneous spreading depressions (SD, n = 14) and those without SD (n = 7). In SD animals, c-fos mRNA was strongly elevated in the injury-remote cortex, but hsp72 mRNA was not enhanced. Thus, in contrast to focal ischemia, the metabolic dysfunction around traumatic cortical lesions is not aggravated by SD.
Collapse
Affiliation(s)
- D M Hermann
- Max-Planck-Institute for Neurological Research, Department of Experimental Neurology, Cologne, Germany
| | | | | |
Collapse
|
250
|
Abstract
Gap junctions are highly conductive channels that allow the direct transfer of intracellular messengers such as Ca2+ and inositol triphosphate (IP3) between interconnected cells. In brain, astrocytes are coupled extensively by gap junctions. We found here that gap junctions among astrocytes in acutely prepared brain slices as well as in culture remained open during ischemic conditions. Uncoupling first occurred after the terminal loss of plasma membrane integrity. Gap junctions therefore may link ischemic astrocytes in an evolving infarct with the surroundings. The free exchange of intracellular messengers between dying and potentially viable astrocytes might contribute to secondary expansion of ischemic lesions.
Collapse
|