201
|
Westendorf JJ, Kahler RA, Schroeder TM. Wnt signaling in osteoblasts and bone diseases. Gene 2005; 341:19-39. [PMID: 15474285 DOI: 10.1016/j.gene.2004.06.044] [Citation(s) in RCA: 581] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Revised: 06/04/2004] [Accepted: 06/21/2004] [Indexed: 12/18/2022]
Abstract
Recent revelations that the canonical Wnt signaling pathway promotes postnatal bone accrual are major advances in our understanding of skeletal biology and bring tremendous promise for new therapeutic treatments for osteoporosis and other diseases of altered bone mass. Wnts are soluble glycoproteins that engage receptor complexes composed of Lrp5/6 and Frizzled proteins. A subgroup of Wnts induces a cascade of intracellular events that stabilize beta-catenin, facilitating its transport to nuclei where it binds Lef1/Tcf transcription factors and alters gene expression to promote osteoblast expansion and function. Natural extracellular Wnt antagonists, Dickkopfs and secreted frizzled-related proteins, impair osteoblast function and block bone formation. In several genetic disorders of altered skeletal mass, mutations in LRP5 create gain-of-function or loss-of-function receptors that are resistant to normal regulatory mechanisms and cause higher or lower bone density, respectively. In this review, we summarize the available molecular, cellular, and genetic data that demonstrate how Lrp5 and other components of the Wnt signaling pathway influence osteoblast proliferation, function, and survival. We also discuss regulatory mechanisms discovered in developmental and tumor models that may provide insights into novel therapies for bone diseases.
Collapse
Affiliation(s)
- Jennifer J Westendorf
- The Cancer Center and Department of Orthopaedic Surgery, University of Minnesota, MMC 806, 420 Delaware St. SE, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
202
|
Alexanian AR, Kurpad SN. Quiescent neural cells regain multipotent stem cell characteristics influenced by adult neural stem cells in co-culture. Exp Neurol 2005; 191:193-7. [PMID: 15589526 DOI: 10.1016/j.expneurol.2004.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Revised: 10/01/2004] [Accepted: 10/13/2004] [Indexed: 12/23/2022]
Abstract
The source of cells participating in central nervous system (CNS) tissue repair and regeneration is poorly defined. One possible source is quiescent neural cells that can persist in CNS in the form of dormant progenitors or highly specialized cell types. Under appropriate conditions, these quiescent cells may be capable of re-entering the mitotic cell cycle and contributing to the stem cell pool. The aim of this study was to determine whether in vitro differentiated neural stem cells (NSC) can regain their multipotent-like stem cell characteristics in co-culture with NSC. To this end, we induced neural differentiation by plating NSC, derived from the periventricular subependymal zone (SEZ) of ROSA26 transgenic mice in Neurobasal A/B27 medium in the absence of bFGF. Under these conditions, NSC differentiated into neurons, glia, and oligodendrocytes. While the level of Nestin expression was downregulated, persistence of dormant progenitors could not be ruled out. However, further addition of bFGF or bFGF/EGF with conditioned medium derived from adult NSC did not induce any noticeable cell proliferation. In another experiment, differentiated neural cells were cultured with adult NSC, isolated from the hippocampus of Balb/c mice, in the presence bFGF. This resulted in proliferating colonies of ROSA26 derived cells that mimicked NSC in their morphology, growth kinetics, and expressed NSC marker proteins. The average nuclear area and DAPI fluorescence intensity of these cells were similar to that of NSC grown alone. We conclude that reactivation of quiescent neural cells can be initiated by NSC-associated short-range cues but not by cell fusion.
Collapse
Affiliation(s)
- Arshak R Alexanian
- Neuroscience Research Laboratory, Deparment of Neurosurgery, Medical College of Wisconsin, VAMC, 5000 W. National Avenue 151, Building 70-D, Milwaukee, WI 53295, USA.
| | | |
Collapse
|
203
|
De Langhe SP, Sala FG, Del Moral PM, Fairbanks TJ, Yamada KM, Warburton D, Burns RC, Bellusci S. Dickkopf-1 (DKK1) reveals that fibronectin is a major target of Wnt signaling in branching morphogenesis of the mouse embryonic lung. Dev Biol 2005; 277:316-31. [PMID: 15617677 DOI: 10.1016/j.ydbio.2004.09.023] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Revised: 09/16/2004] [Accepted: 09/20/2004] [Indexed: 12/15/2022]
Abstract
Members of the Dickkopf (Dkk) family of secreted proteins are potent inhibitors of Wnt/beta-catenin signaling. In this study we show that Dkk1, -2, and -3 are expressed distally in the epithelium, while Kremen1, the needed co-receptor, is expressed throughout the epithelium of the developing lung. Using TOPGAL mice [DasGupta, R., Fuchs, E., 1999. Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development 126, 4557-4568] to monitor the Wnt pathway, we show that canonical Wnt signaling is dynamic in the developing lung and is active throughout the epithelium and in the proximal smooth muscle cells (SMC) until E12.5. However, from E13.5 onwards, TOPGAL activity is absent in the SMC and is markedly reduced in the distal epithelium coinciding with the onset of Dkk-1 expression in the distal epithelium. To determine the role of Wnt signaling in early lung development, E11.5 organ cultures were treated with recombinant DKK1. Treated lungs display impaired branching, characterized by failed cleft formation and enlarged terminal buds, and show decreased alpha-smooth muscle actin (alpha-SMA) expression as well as defects in the formation of the pulmonary vasculature. These defects coincide with a pattern of decreased fibronectin (FN) deposition. DKK1-induced morphogenetic defects can be mimicked by inhibition of FN and overcome by addition of exogenous FN, suggesting an involvement of FN in Wnt-regulated morphogenetic processes.
Collapse
Affiliation(s)
- Stijn P De Langhe
- Developmental Biology Program, Department of Surgery, USC Keck School of Medicine and the Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | | | | | | | | | | | | | | |
Collapse
|
204
|
Abstract
Breast cancer is a genetically and clinically heterogeneous disease. It is unclear whether different target cells contribute to this heterogeneity and which cell types are most susceptible to oncogenesis. Stem cells are speculated to be the cellular origin of at least a subset of human breast cancers. To begin to address these issues, we have isolated and characterized cell populations enriched in normal mammary stem/progenitors and have studied the expression of putative stem/progenitor markers in tumors derived from genetically engineered mice. Specifically, transgenic activation of Wnt signaling in the mammary gland induces tumors comprised of epithelial and myoepithelial cells harboring the same genetic defect implying that the tumor arose from transformation of a bipotent progenitor cell. On the other hand, transgenic activation of Neu signaling induces tumors comprising cells of more limited lineage capacity. Thus, the heterogeneity of different breast cancers may reflect the activation of different oncogenic pathways, different cellular targets in which these genetic changes occur, or both.
Collapse
Affiliation(s)
- Yi Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
205
|
Teulière J, Faraldo MM, Deugnier MA, Shtutman M, Ben-Ze'ev A, Thiery JP, Glukhova MA. Targeted activation of beta-catenin signaling in basal mammary epithelial cells affects mammary development and leads to hyperplasia. Development 2004; 132:267-77. [PMID: 15590737 DOI: 10.1242/dev.01583] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Wnt/beta-catenin signaling pathway is involved in the maintenance of the progenitor cell population in the skin, intestine and other tissues, and its aberrant activation caused by stabilization of beta-catenin contributes to tumorigenesis. In the mammary gland, constitutive activation of Wnt/beta-catenin signaling in luminal secretory cells results in precocious lobuloalveolar differentiation and induces adenocarcinomas, whereas the impact of this signaling pathway on the function of the second major mammary epithelial cell lineage, the basal myoepithelial cells, has not been analyzed. We have used the keratin (K) 5 promoter to target the expression of stabilized N-terminally truncated beta-catenin to the basal cell layer of mouse mammary epithelium. The transgenic mice presented an abnormal mammary phenotype: precocious lateral bud formation, increased proliferation and premature differentiation of luminal epithelium in pregnancy, persistent proliferation in lactation and accelerated involution. Precocious development in pregnancy was accompanied by increased Myc and cyclin D1 transcript levels, and a shift in p63 variant expression towards the DeltaNp63 form. The expression of ECM-degrading proteinases and their inhibitors was altered in pregnancy and involution. Nulliparous transgenic females developed mammary hyperplasia that comprised undifferentiated basal (K5/14-positive, K8- and alpha-smooth muscle-actin-negative) cells. Multiparous mice, in addition, developed invasive basal-type carcinomas. Thus, activation of beta-catenin signaling in basal mammary epithelial cells affects the entire process of mammary gland development and induces amplification of basal-type cells that lack lineage markers, presumably, a subpopulation of mammary progenitors able to give rise to tumors.
Collapse
MESH Headings
- Adenocarcinoma/metabolism
- Animals
- Blotting, Southern
- Blotting, Western
- Cell Differentiation
- Cell Lineage
- Cell Proliferation
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/metabolism
- DNA Primers/chemistry
- Epithelial Cells/metabolism
- Epithelium/pathology
- Female
- Gene Expression Regulation, Developmental
- Hyperplasia/metabolism
- Immunohistochemistry
- In Situ Nick-End Labeling
- Mammary Glands, Animal/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Microscopy, Fluorescence
- Phosphoproteins/genetics
- Polymerase Chain Reaction
- Promoter Regions, Genetic
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Time Factors
- Trans-Activators/genetics
- Trans-Activators/metabolism
- beta Catenin
Collapse
Affiliation(s)
- Jérôme Teulière
- UMR 144 CNRS-Institut Curie, Institut Curie, Section de Recherche, 26 rue d'Ulm, 75248, Paris, Cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
206
|
Holmen SL, Giambernardi TA, Zylstra CR, Buckner-Berghuis BD, Resau JH, Hess JF, Glatt V, Bouxsein ML, Ai M, Warman ML, Williams BO. Decreased BMD and limb deformities in mice carrying mutations in both Lrp5 and Lrp6. J Bone Miner Res 2004; 19:2033-40. [PMID: 15537447 DOI: 10.1359/jbmr.040907] [Citation(s) in RCA: 264] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Revised: 06/09/2004] [Accepted: 07/23/2004] [Indexed: 11/18/2022]
Abstract
UNLABELLED Humans and mice lacking Lrp5 have low BMD. To evaluate whether Lrp5 and Lrp6 interact genetically to control bone or skeletal development, we created mice carrying mutations in both Lrp5 and the related gene Lrp6. We found that compound mutants had dose-dependent deficits in BMD and limb formation, suggesting functional redundancy between these two genes in bone and limb development. INTRODUCTION Lrp5 and Lrp6 are closely related members of the low density lipoprotein receptor family and are co-receptors for Wnt ligands. While Lrp5 mutations are associated with low BMD in humans and mice, the role of Lrp6 in bone formation has not been analyzed. MATERIALS AND METHODS To address whether Lrp5 and Lrp6 play complimentary roles in bone and skeletal development, we created mice with mutations in both genes. We inspected limbs of mice from the different genotypic classes of compound mutants to identify abnormalities. DXA and muCT were used to evaluate the effect of mutations in Lrp5 and Lrp6 on BMD and microarchitecture. RESULTS Mice heterozygous for mutations in Lrp6 and either heterozygous or homozygous for a mutation in Lrp5 (Lrp6(+/-);Lrp5(+/-) or Lrp6(+/-);Lrp5(-/-)) display limb defects with incomplete penetrance and variable expression. DXA analysis showed that BMD decreased as mice progressively were more deficient in Lrp5 and Lrp6. Lrp6(+/-);Lrp5(-/-) mice were more severely affected than Lrp6(+/+);Lrp5(-/-) mice, whereas Lrp6(+/-);Lrp5(+/-) mice had statistically higher BMD than Lrp6(+/+);Lrp5(-/-) mice and lower BMD compared with wildtype mice and mice heterozygous for either mutation alone. CONCLUSIONS Lrp6 and Lrp5 genetically interact in limb development in mice. Furthermore, heterozygosity for an inactivating mutation in Lrp6 further reduces BMD in both male and female mice lacking Lrp5.
Collapse
Affiliation(s)
- Sheri L Holmen
- Laboratory of Cell Signaling and Carcinogenesis, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Bafico A, Liu G, Goldin L, Harris V, Aaronson SA. An autocrine mechanism for constitutive Wnt pathway activation in human cancer cells. Cancer Cell 2004; 6:497-506. [PMID: 15542433 DOI: 10.1016/j.ccr.2004.09.032] [Citation(s) in RCA: 241] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Revised: 08/06/2004] [Accepted: 09/17/2004] [Indexed: 01/12/2023]
Abstract
Autocrine Wnt signaling in the mouse mammary tumor virus model was the first identified mechanism of canonical pathway activation in cancer. In search of this transformation mechanism in human cancer cells, we identified breast and ovarian tumor lines with upregulation of the uncomplexed transcriptionally active form of beta-catenin without mutations afflicting downstream components. Extracellular Wnt antagonists FRP1 and DKK1 caused a dramatic downregulation of beta-catenin levels in these tumor cells associated with alteration of biological properties and increased expression of epithelial differentiation markers. Colorectal carcinoma cells with knockout of the mutant beta-catenin allele retained upregulated beta-catenin levels, which also could be inhibited by these Wnt antagonists. Together, these findings establish the involvement of autocrine Wnt signaling in human cancer cells.
Collapse
Affiliation(s)
- Anna Bafico
- Department of Oncological Sciences, Mount Sinai School of Medicine, Box 1130, One Gustave L. Levy Place, New York, New York 10029, USA
| | | | | | | | | |
Collapse
|
208
|
Pan Y, Lin MH, Tian X, Cheng HT, Gridley T, Shen J, Kopan R. gamma-secretase functions through Notch signaling to maintain skin appendages but is not required for their patterning or initial morphogenesis. Dev Cell 2004; 7:731-43. [PMID: 15525534 DOI: 10.1016/j.devcel.2004.09.014] [Citation(s) in RCA: 241] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Revised: 09/07/2004] [Accepted: 09/13/2004] [Indexed: 12/14/2022]
Abstract
The role of Notch signaling during skin development was analyzed using Msx2-Cre to create mosaic loss-of-function alleles with precise temporal and spatial resolution. We find that gamma-secretase is not involved in skin patterning or cell fate acquisition within the hair follicle. In its absence, however, inner root sheath cells fail to maintain their fates and by the end of the first growth phase, the epidermal differentiation program is activated in outer root sheath cells. This results in complete conversion of hair follicles to epidermal cysts that bears a striking resemblance to Nevus Comedonicus. Sebaceous glands also fail to form in gamma-secretase-deficient mice. Importantly, mice with compound loss of Notch genes in their skin phenocopy loss of gamma-secretase in all three lineages, demonstrating that Notch proteolysis accounts for the major signaling function of this enzyme in this organ and that both autonomous and nonautonomous Notch-dependent signals are involved.
Collapse
Affiliation(s)
- Yonghua Pan
- Department of Molecular Biology and Pharmacology, Division of Dermatology, Washington University School of Medicine, Box 8103, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
209
|
Lyons JP, Mueller UW, Ji H, Everett C, Fang X, Hsieh JC, Barth AM, McCrea PD. Wnt-4 activates the canonical beta-catenin-mediated Wnt pathway and binds Frizzled-6 CRD: functional implications of Wnt/beta-catenin activity in kidney epithelial cells. Exp Cell Res 2004; 298:369-87. [PMID: 15265686 DOI: 10.1016/j.yexcr.2004.04.036] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2003] [Revised: 04/22/2004] [Indexed: 10/26/2022]
Abstract
The Wnt signaling pathway is central to the development of all animals and to cancer progression, yet largely unknown are the pairings of secreted Wnt ligands to their respective Frizzled transmembrane receptors or, in many cases, the relative contributions of canonical (beta-catenin/LEF/TCF) versus noncanonical Wnt signals. Specifically, in the kidney where Wnt-4 is essential for the mesenchymal to epithelial transition that generates the tissue's collecting tubules, the corresponding Frizzled receptor(s) and downstream signaling mechanism(s) are unclear. In this report, we addressed these issues using Madin-Darby Canine Kidney (MDCK) cells, which are competent to form tubules in vitro. Employing established reporter constructs of canonical Wnt/beta-catenin pathway activity, we have determined that MDCK cells are highly responsive to Wnt-4, -1, and -3A, but not to Wnt-5A and control conditions, precisely reflecting functional findings from Wnt-4 null kidney mesenchyme ex vivo rescue studies. We have confirmed that Wnt-4's canonical signaling activity in MDCK cells is mediated by downstream effectors of the Wnt/beta-catenin pathway using beta-Engrailed and dnTCF-4 constructs that suppress this pathway. We have further found that MDCK cells express the Frizzled-6 receptor and that Wnt-4 forms a biochemical complex with the Frizzled-6 CRD. Since Frizzled-6 did not appear to transduce Wnt-4's canonical signal, data supported recently by Golan et al., there presumably exists another as yet unknown Frizzled receptor(s) mediating Wnt-4 activation of beta-catenin/LEF/TCF. Finally, we report that canonical Wnt/beta-catenin signals cells help maintain cell growth and survival in MDCK cells but do not contribute to standard HGF-induced (nonphysiologic) tubule formation. Our results in combination with work from Xenopus laevis (not shown) lead us to believe that Wnt-4 binds both canonical and noncanonical Frizzled receptors, thereby activating Wnt signaling pathways that may each contribute to kidney tubulogenesis.
Collapse
Affiliation(s)
- Jon P Lyons
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
210
|
Natarajan L, Jackson BM, Szyleyko E, Eisenmann DM. Identification of evolutionarily conserved promoter elements and amino acids required for function of the C. elegans beta-catenin homolog BAR-1. Dev Biol 2004; 272:536-57. [PMID: 15282167 DOI: 10.1016/j.ydbio.2004.05.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Revised: 04/14/2004] [Accepted: 05/02/2004] [Indexed: 10/26/2022]
Abstract
beta-catenins are conserved transcription factors regulated posttranslationally by Wnt signaling. bar-1 encodes a Caenorhabditis elegans beta-catenin acting in multiple Wnt-mediated processes, including cell fate specification by vulval precursor cells (VPCs) and migration of the Q(L) neuroblast progeny. We took two approaches to extend our knowledge of bar-1 function. First, we undertook a bar-1 promoter analysis using transcriptional GFP reporter fusions and found that bar-1 expression is regulated in specific cells at the transcriptional level. We identified promoter elements necessary for bar-1 expression in several cell types, including a 321-bp element sufficient for expression in ventral cord neurons (VCNs) and a 1.1-kb element sufficient for expression in the developing vulva and adult seam cells. Expression of bar-1 from the 321-bp element rescued the Uncoordinated (Unc) phenotype of bar-1 mutants, but not the vulval phenotype, suggesting that a Wnt pathway may act in ventral cord neurons to mediate proper locomotion. By comparison of the 1.1-kb element to homologous sequences from Caenorhabditis briggsae, we identified evolutionarily conserved sequences necessary for expression in vulval or seam cells. Second, we analyzed 24 mutations in bar-1 and identified several residues required for BAR-1 activity in C. elegans. By phylogenetic comparison, we found that most of these residues are conserved and may identify amino acids necessary for beta-catenin function in all species.
Collapse
Affiliation(s)
- L Natarajan
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | | | | | | |
Collapse
|
211
|
Guha U, Mecklenburg L, Cowin P, Kan L, O'Guin WM, D'Vizio D, Pestell RG, Paus R, Kessler JA. Bone morphogenetic protein signaling regulates postnatal hair follicle differentiation and cycling. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:729-40. [PMID: 15331398 PMCID: PMC1618597 DOI: 10.1016/s0002-9440(10)63336-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hair follicle morphogenesis and cycling were examined in transgenic mice that overexpress the bone morphogenetic protein (BMP) inhibitor Noggin under the control of the neuron-specific enolase promoter. The Noggin transgene was misexpressed in the proximal portion of the hair follicle, primarily the matrix cells, apart from the usual expression in neurons. Transgene expression appeared only after induction of both the primary (tylotrich) and secondary (nontylotrich) pelage hair follicles had already occurred, thus allowing examination of the role of BMP signaling in follicles that had been induced normally in the presence of BMPs. The overexpression of Noggin in these animals resulted in a dramatic loss of hair postnatally. There was an apparently normal, but shortened period of postnatal hair follicle morphogenesis, followed by premature initiation of hair follicle cycling via entry into the first catagen transformation. This resulted in a complete loss of hair shafts from the nontylotrich hair follicles in these mice while the tylotrich hair follicles were normal. The onset of anagen of the first postnatal hair follicle cycle was also accelerated in the transgenic mice. Our results show that BMP signaling is specifically required for proper proliferation and differentiation during late morphogenesis of nontylotrich hair follicles and that inhibition of this signaling pathway may be one of the triggers for the onset of catagen when the follicles are in anagen and the onset of anagen when the follicles are in telogen. Ectopic sebocyte differentiation was another hallmark of the phenotype of these transgenic mice suggesting that BMP signaling may be an important determinant of lineage selection by common progenitor cells in the skin. BMPs likely promote a hair follicle-type differentiation pathway of keratinocytes while suppressing the sebaceous differentiation pathway of skin epithelium.
Collapse
Affiliation(s)
- Udayan Guha
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Zarach JM, Beaudoin GMJ, Coulombe PA, Thompson CC. The co-repressor hairless has a role in epithelial cell differentiation in the skin. Development 2004; 131:4189-200. [PMID: 15280217 DOI: 10.1242/dev.01303] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although mutations in the mammalian hairless (Hr) gene result in congenital hair loss disorders in both mice and humans, the precise role of Hr in skin biology remains unknown. We have shown that the protein encoded by Hr (HR) functions as a nuclear receptor co-repressor. To address the role of HR in vivo, we generated a loss-of-function (Hr-/-) mouse model. The Hr-/- phenotype includes both hair loss and severe wrinkling of the skin. Wrinkling is correlated with increased cell proliferation in the epidermis and the presence of dermal cysts. In addition,a normally undifferentiated region, the infundibulum, is transformed into a morphologically distinct structure (utricle) that maintains epidermal function. Analysis of gene expression revealed upregulation of keratinocyte terminal differentiation markers and a novel caspase in Hr-/- skin, substantiating HR action as a co-repressor in vivo. Differences in gene expression occur prior to morphological changes in vivo, as well as in cultured keratinocytes, indicating that aberrant transcriptional regulation contributes to the Hr-/-phenotype. The properties of the cell types present in Hr-/- skin suggest that the normal balance of cell proliferation and differentiation is disrupted, supporting a model in which HR regulates the timing of epithelial cell differentiation in both the epidermis and hair follicle.
Collapse
Affiliation(s)
- Joanna M Zarach
- Kennedy Krieger Research Institute, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
213
|
Abstract
The intestinal epithelium is a relatively simple developmental system and a prime example of tissue renewal from a source of multipotent stem cells. Throughout adulthood, intestinal epithelial proliferation, cell-fate specification and differentiation are coupled to migration in discrete units known as crypts of Lieberkühn. Physically guided by Eph receptors and their ligands, the ephrins, stem cell progeny transit through the proliferation/differentiation switch, and Notch diversifies their subsequent fates. Wnt signalling appears to control most of these events.
Collapse
Affiliation(s)
- Elena Sancho
- Centre for Biomedical Genetics, Hubrecht Laboratorium, Koninklijke Nederlandse Akademie van Wetenschappen, Utrecht, The Netherlands
| | | | | |
Collapse
|
214
|
Everts HB, King LE, Sundberg JP, Ong DE. Hair Cycle-Specific Immunolocalization of Retinoic Acid Synthesizing Enzymes Aldh1a2 and Aldh1a3 Indicate Complex Regulation. J Invest Dermatol 2004; 123:258-63. [PMID: 15245423 DOI: 10.1111/j.0022-202x.2004.23223.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Retinoic acid has long been known to alter skin and hair growth but an exact mechanism is unclear. This study was performed to examine the sites of endogenous retinoic acid synthesis in the cycling hair follicle to better understand the role retinoic acid plays in this process. Retinal dehydrogenases (Aldh1a1, 2, and 3, formerly Raldh 1, 2, and 3) are the enzymes responsible for the last step in retinoic acid synthesis. Immunohistochemistry was performed on adult C57BL/6J mouse skin sections with antibodies against Aldh1a2 and Aldh1a3. Aldh1a2 expression was seen primarily in the outer root sheath and basal/spinous layer during all stages of the hair cycle, and in the bulge during anagen and early catagen, whereas Aldh1a3 expression was primarily in the dermal papilla, pre-cortex, and hair shaft during mid-late anagen. The expression patterns of these two similar retinoic acid synthesizing enzymes at specific follicular sites suggest that they mediate and are regulated by different epithelial proliferation and differentiation signaling pathways.
Collapse
Affiliation(s)
- Helen B Everts
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | | |
Collapse
|
215
|
Hirabayashi Y, Itoh Y, Tabata H, Nakajima K, Akiyama T, Masuyama N, Gotoh Y. The Wnt/β-catenin pathway directs neuronal differentiation of cortical neural precursor cells. Development 2004; 131:2791-801. [PMID: 15142975 DOI: 10.1242/dev.01165] [Citation(s) in RCA: 473] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neural precursor cells (NPCs) have the ability to self-renew and to give rise to neuronal and glial lineages. The fate decision of NPCs between proliferation and differentiation determines the number of differentiated cells and the size of each region of the brain. However, the signals that regulate the timing of neuronal differentiation remain unclear. Here, we show that Wnt signaling inhibits the self-renewal capacity of mouse cortical NPCs,and instructively promotes their neuronal differentiation. Overexpression of Wnt7a or of a stabilized form of β-catenin in mouse cortical NPC cultures induced neuronal differentiation even in the presence of Fgf2, a self-renewal-promoting factor in this system. Moreover, blockade of Wnt signaling led to inhibition of neuronal differentiation of cortical NPCs in vitro and in the developing mouse neocortex. Furthermore, theβ-catenin/TCF complex appears to directly regulate the promoter of neurogenin 1, a gene implicated in cortical neuronal differentiation. Importantly, stabilized β-catenin did not induce neuronal differentiation of cortical NPCs at earlier developmental stages, consistent with previous reports indicating self-renewal-promoting functions of Wnts in early NPCs. These findings may reveal broader and stage-specific physiological roles of Wnt signaling during neural development.
Collapse
Affiliation(s)
- Yusuke Hirabayashi
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | | | | | |
Collapse
|
216
|
Panhuysen M, Vogt Weisenhorn DM, Blanquet V, Brodski C, Heinzmann U, Beisker W, Wurst W. Effects of Wnt1 signaling on proliferation in the developing mid-/hindbrain region. Mol Cell Neurosci 2004; 26:101-11. [PMID: 15121182 DOI: 10.1016/j.mcn.2004.01.011] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Revised: 01/14/2004] [Accepted: 01/20/2004] [Indexed: 11/27/2022] Open
Abstract
The secreted glycoprotein WNT1 is expressed in the caudal midbrain and is essential for proper development of the entire mid-/hindbrain region. To get better insights into Wnt1 function in the mid-/hindbrain region, we ectopically expressed Wnt1 under the control of the endogenous En1 promoter, thereby extending Wnt1 expression rostrally into the anterior midbrain and caudally into rhombomere 1. In these transgenic mice, the position of the mid-/hindbrain organizer is not altered and pattern formation is not changed. During midgestation, ectopic Wnt1 induced strong overproliferation of precursor cells only in the caudal midbrain in a gene dosage-dependent manner. Enhanced proliferation is at least in part mediated by shortening of the cell cycle length. In adults, Wnt1 exhibited a cell size promoting effect specifically on neurons. We suggest that Wnt1 acts as a regulator of proliferation of specific precursor populations in the developing mid-/hindbrain region and is only secondarily involved in maintenance of the mid-/hindbrain organizer.
Collapse
Affiliation(s)
- Markus Panhuysen
- Institute of Developmental Genetics, GSF-Research Center for Environment and Health, 85764 Neuherberg, Germany
| | | | | | | | | | | | | |
Collapse
|
217
|
Itoh M, Hiraoka Y, Kataoka K, Huh NH, Tabata Y, Okochi H. Novel Collagen Sponge Reinforced with Polyglycolic Acid Fiber Produces Robust, Normal Hair in Murine Hair Reconstitution Model. ACTA ACUST UNITED AC 2004; 10:818-24. [PMID: 15265299 DOI: 10.1089/1076327041348400] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The hair reconstitution assay is a useful system for studying cell-cell and epithelial-mesenchymal interaction. The current method consists of transplantation of both epidermal and dermal cells, using a silicone chamber placed on an athymic nude mouse. However, because of leakage and tilting of the grafted cells, the rate and area of hair growth vary depending on the chamber. We modified this method by using a collagen sponge as a scaffold and compared two types of collagen sponges, each having different tensile strengths. A conventional collagen sponge disturbed normal hair follicle formation; in contrast, a collagen sponge containing polyglycolic acid (PGA) fiber supported proper restructuring of skin and hair follicles. These data suggested the usefulness of PGA fiber-containing collagen sponges for hair reconstitution in research and clinical applications.
Collapse
Affiliation(s)
- M Itoh
- Department of Tissue Regeneration, Research Institute, International Medical Center of Japan, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
218
|
Lammi L, Arte S, Somer M, Järvinen H, Lahermo P, Thesleff I, Pirinen S, Nieminen P. Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. Am J Hum Genet 2004; 74:1043-50. [PMID: 15042511 PMCID: PMC1181967 DOI: 10.1086/386293] [Citation(s) in RCA: 473] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Accepted: 02/13/2004] [Indexed: 12/11/2022] Open
Abstract
Wnt signaling regulates embryonic pattern formation and morphogenesis of most organs. Aberrations of regulation of Wnt signaling may lead to cancer. Here, we have used positional cloning to identify the causative mutation in a Finnish family in which severe permanent tooth agenesis (oligodontia) and colorectal neoplasia segregate with dominant inheritance. Eleven members of the family lacked at least eight permanent teeth, two of whom developed only three permanent teeth. Colorectal cancer or precancerous lesions of variable types were found in eight of the patients with oligodontia. We show that oligodontia and predisposition to cancer are caused by a nonsense mutation, Arg656Stop, in the Wnt-signaling regulator AXIN2. In addition, we identified a de novo frameshift mutation 1994-1995insG in AXIN2 in an unrelated young patient with severe tooth agenesis. Both mutations are expected to activate Wnt signaling. The results provide the first evidence of the importance of Wnt signaling for the development of dentition in humans and suggest that an intricate control of Wnt-signal activity is necessary for normal tooth development, since both inhibition and stimulation of Wnt signaling may lead to tooth agenesis. Our findings introduce a new gene for hereditary colorectal cancer and suggest that tooth agenesis may be an indicator of cancer susceptibility.
Collapse
Affiliation(s)
- Laura Lammi
- Institutes of Dentistry and Biotechnology and Finnish Genome Center, University of Helsinki; Departments of Oral and Maxillofacial Diseases and Surgery, Helsinki University Central Hospital; and Family Federation of Finland, Helsinki
| | - Sirpa Arte
- Institutes of Dentistry and Biotechnology and Finnish Genome Center, University of Helsinki; Departments of Oral and Maxillofacial Diseases and Surgery, Helsinki University Central Hospital; and Family Federation of Finland, Helsinki
| | - Mirja Somer
- Institutes of Dentistry and Biotechnology and Finnish Genome Center, University of Helsinki; Departments of Oral and Maxillofacial Diseases and Surgery, Helsinki University Central Hospital; and Family Federation of Finland, Helsinki
| | - Heikki Järvinen
- Institutes of Dentistry and Biotechnology and Finnish Genome Center, University of Helsinki; Departments of Oral and Maxillofacial Diseases and Surgery, Helsinki University Central Hospital; and Family Federation of Finland, Helsinki
| | - Päivi Lahermo
- Institutes of Dentistry and Biotechnology and Finnish Genome Center, University of Helsinki; Departments of Oral and Maxillofacial Diseases and Surgery, Helsinki University Central Hospital; and Family Federation of Finland, Helsinki
| | - Irma Thesleff
- Institutes of Dentistry and Biotechnology and Finnish Genome Center, University of Helsinki; Departments of Oral and Maxillofacial Diseases and Surgery, Helsinki University Central Hospital; and Family Federation of Finland, Helsinki
| | - Sinikka Pirinen
- Institutes of Dentistry and Biotechnology and Finnish Genome Center, University of Helsinki; Departments of Oral and Maxillofacial Diseases and Surgery, Helsinki University Central Hospital; and Family Federation of Finland, Helsinki
| | - Pekka Nieminen
- Institutes of Dentistry and Biotechnology and Finnish Genome Center, University of Helsinki; Departments of Oral and Maxillofacial Diseases and Surgery, Helsinki University Central Hospital; and Family Federation of Finland, Helsinki
| |
Collapse
|
219
|
Abstract
The potential of stem cells in regenerative medicine relies upon removing them from their natural habitat, propagating them in culture, and placing them into a foreign tissue environment. To do so, it is essential to understand how stem cells interact with their microenvironment, the so-called stem cell niche, to establish and maintain their properties. In this review, we examine adult stem cell niches and their impact on stem cell biology.
Collapse
Affiliation(s)
- Elaine Fuchs
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10021, USA.
| | | | | |
Collapse
|
220
|
Chen L, Orfeo T, Gilmartin G, Bateman E. Mechanism of cyst specific protein 21 mRNA induction during Acanthamoeba differentiation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1691:23-31. [PMID: 15053921 DOI: 10.1016/j.bbamcr.2003.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2003] [Revised: 10/30/2003] [Accepted: 11/14/2003] [Indexed: 11/20/2022]
Abstract
The Acanthamoeba cyst specific protein 21 (CSP21) gene is tightly repressed in growing cells and highly induced early during differentiation into a dormant cyst. This increase is mediated by the rate of transcription of the CSP21 gene as determined by nuclear run-on assays. The promoter region of the CSP21 gene was analyzed by transcript start site mapping and in vitro transcription of wild-type or mutant templates, using extracts from growing cells. A sequence located 3' to a modified TATA box completely inhibits transcription and removal of this region permits robust transcription utilizing a start site approximately 35 base pairs downstream of the TATA box. Sequences 5' to the TATA box had no effect on transcription, suggesting that anti-repression is the only mechanism required for CSP21 induction. Fractionation of nuclear extracts yielded a fraction capable of transcription from the CSP21 promoter, and a fraction containing a promoter-specific repressing activity. Anti-repression may thus be a major mechanism regulating differentiation or maintenance of the proliferative cycle in Acanthamoeba.
Collapse
Affiliation(s)
- Li Chen
- Department of Microbiology and Molecular Genetics, Markey Center for Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
221
|
Liu BY, McDermott SP, Khwaja SS, Alexander CM. The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proc Natl Acad Sci U S A 2004; 101:4158-63. [PMID: 15020770 PMCID: PMC384711 DOI: 10.1073/pnas.0400699101] [Citation(s) in RCA: 244] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2003] [Indexed: 12/16/2022] Open
Abstract
Ectopic activation of the Wnt signaling pathway is highly oncogenic for many human tissues. Here, we show that ectopic Wnt signaling increases the effective stem cell activity in mouse mammary glands in vivo. Furthermore, Wnt effectors induce the accumulation of mouse mammary epithelial progenitors (assayed by Hoechst dye exclusion, a surrogate stem cell marker, side population cells) both in vivo and in vitro. The longevity of stem cells makes them good candidate tumor precursors, and we propose that Wnt-induced progenitor amplification is likely to be key to tumor initiation. In support of this notion, mammary glands from a tumor-resistant strain of mice (carrying a null mutation in syndecan-1) contain fewer side population cells. When this strain is crossed to mice that overexpress effectors of the beta-catenin/T cell factor Wnt pathway, the amplification of progenitors is reduced, together with all subsequent events of tumor development. We propose that the growth dynamic of the stem cell fraction is a major determinant of tumor susceptibility.
Collapse
Affiliation(s)
- Bob Y Liu
- McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, 1400 University Avenue, Madison, WI 53706-1599, USA
| | | | | | | |
Collapse
|
222
|
The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proc Natl Acad Sci U S A 2004. [PMID: 15020770 DOI: 10.1073/pnas.04006991010400699101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ectopic activation of the Wnt signaling pathway is highly oncogenic for many human tissues. Here, we show that ectopic Wnt signaling increases the effective stem cell activity in mouse mammary glands in vivo. Furthermore, Wnt effectors induce the accumulation of mouse mammary epithelial progenitors (assayed by Hoechst dye exclusion, a surrogate stem cell marker, side population cells) both in vivo and in vitro. The longevity of stem cells makes them good candidate tumor precursors, and we propose that Wnt-induced progenitor amplification is likely to be key to tumor initiation. In support of this notion, mammary glands from a tumor-resistant strain of mice (carrying a null mutation in syndecan-1) contain fewer side population cells. When this strain is crossed to mice that overexpress effectors of the beta-catenin/T cell factor Wnt pathway, the amplification of progenitors is reduced, together with all subsequent events of tumor development. We propose that the growth dynamic of the stem cell fraction is a major determinant of tumor susceptibility.
Collapse
|
223
|
Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE, Rendl M, Fuchs E. Defining the epithelial stem cell niche in skin. Science 2004; 303:359-63. [PMID: 14671312 PMCID: PMC2405920 DOI: 10.1126/science.1092436] [Citation(s) in RCA: 1544] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Many adult regenerative cells divide infrequently but have high proliferative capacity. We developed a strategy to fluorescently label slow-cycling cells in a cell type-specific fashion. We used this method to purify the label-retaining cells (LRCs) that mark the skin stem cell (SC) niche. We found that these cells rarely divide within their niche but change properties abruptly when stimulated to exit. We determined their transcriptional profile, which, when compared to progeny and other SCs, defines the niche. Many of the >100 messenger RNAs preferentially expressed in the niche encode surface receptors and secreted proteins, enabling LRCs to signal and respond to their environment.
Collapse
Affiliation(s)
- Tudorita Tumbar
- Howard Hughes Medical Institute, Laboratory of Mammalian Cell Biology and Development, Rockefeller University, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
224
|
Kobielak K, Pasolli HA, Alonso L, Polak L, Fuchs E. Defining BMP functions in the hair follicle by conditional ablation of BMP receptor IA. ACTA ACUST UNITED AC 2004; 163:609-23. [PMID: 14610062 PMCID: PMC2173651 DOI: 10.1083/jcb.200309042] [Citation(s) in RCA: 200] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using conditional gene targeting in mice, we show that BMP receptor IA is essential for the differentiation of progenitor cells of the inner root sheath and hair shaft. Without BMPRIA activation, GATA-3 is down-regulated and its regulated control of IRS differentiation is compromised. In contrast, Lef1 is up-regulated, but its regulated control of hair differentiation is still blocked, and BMPRIA-null follicles fail to activate Lef1/β-catenin–regulated genes, including keratin genes. Wnt-mediated transcriptional activation can be restored by transfecting BMPRIA-null keratinocytes with a constitutively activated β-catenin. This places the block downstream from Lef1 expression but upstream from β-catenin stabilization. Because mice lacking the BMP inhibitor Noggin fail to express Lef1, our findings support a model, whereby a sequential inhibition and then activation of BMPRIA is necessary to define a band of hair progenitor cells, which possess enough Lef1 and stabilized β-catenin to activate the hair specific keratin genes and generate the hair shaft.
Collapse
Affiliation(s)
- Krzysztof Kobielak
- Howard Hughes Medical Institute and Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10021-6399, USA
| | | | | | | | | |
Collapse
|
225
|
Shibamoto S, Winer J, Williams M, Polakis P. A blockade in Wnt signaling is activated following the differentiation of F9 teratocarcinoma cells. Exp Cell Res 2004; 292:11-20. [PMID: 14720502 DOI: 10.1016/j.yexcr.2003.08.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aberrant activation of the Wnt signaling pathway is a common event in human tumor progression. Wnt signaling has also been implicated in maintaining a variety of adult and embryonic stem cells by imposing a restraint to differentiation. To understand the effect of Wnt signaling on the differentiation of epithelial cells, we used mouse teratocarcinoma F9 cells as a model. The F9 cells can be differentiated into visceral endoderm (VE) resembling absorptive columnar epithelial cells. We performed comparative gene expression analysis on retinoic acid-differentiated and undifferentiated F9 cells and confirmed that markers of VE and intestinal epithelium were induced upon differentiation. The induction of these markers by retinoic acid was reduced in the presence of Wnt, although Wnt alone did not change their expression. This suggests that Wnt signaling inhibited the differentiation of F9 cells by altering gene expression. This inhibition was also reflected in the morphology of the F9 cells as their apical-basal polarity was disrupted by inclusion of Wnt during differentiation. These results support a model in which Wnt modulates the expression of genes required for normal terminal differentiation of the stem cells. However, it follows that progenitor cells must escape from Wnt signaling to attain the differentiated state. Accordingly, we found that differentiated F9 cells no longer responded to Wnt and that a blockade in Wnt signaling occurred upstream of Axin. Consistent with this, Wnt negative regulators, such as Dickkopf-1 and Disabled-2, were induced upon the differentiation of F9 cells. We propose that a similar system to produce Wnt inhibitors regulates homeostasis of certain stem cell compartments in vivo.
Collapse
Affiliation(s)
- Sayumi Shibamoto
- Departments of Molecular Oncology and Molecular Biology, Genentech, Inc, South San Francisco, CA 94080-4918, USA
| | | | | | | |
Collapse
|
226
|
Ruiz S, Segrelles C, Santos M, Lara MF, Paramio JM. Functional link between retinoblastoma family of proteins and the Wnt signaling pathway in mouse epidermis. Dev Dyn 2004; 230:410-8. [PMID: 15188427 DOI: 10.1002/dvdy.20065] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The retinoblastoma family of proteins (pRb, p107, and p130) modulates cell cycle progression and differentiation of several tissues. We have demonstrated recently that p107 and p130 regulate keratinocyte terminal differentiation and hair follicle morphogenesis and development in vivo. This last aspect appears to be mediated by defective signaling from the mesenchyme and is associated with altered bone morphogenetic protein-4 (BMP4) -dependent signaling. However, many alterations were also found in the epithelial compartment. Given the importance of betacatenin in hair biology and in BMP signaling, we studied its expression in p107/p130-deficient skin. Although normal expression of betacatenin was found in p107/p130-deficient hair follicles, we found increased nuclear accumulation of betacatenin in the basal keratinocytes of the p107/p130-deficient mice skin. Biochemical analysis revealed that such an increase in betacatenin was due to the disruption of Axin/GSK3beta/betacatenin complexes promoted by the increased expression of Frat, the mouse homologue of GSK3betabinding protein (GBP), in epidermis, precluding the degradation of betacatenin. Collectively, these data represent the first evidence that retinoblastoma family and Wnt signaling pathways might be interconnected by functional links in skin.
Collapse
Affiliation(s)
- Sergio Ruiz
- Program on Cell and Molecular Biology and Gene Therapy, CIEMAT, Madrid, Spain
| | | | | | | | | |
Collapse
|
227
|
Abstract
The "engineering" of a tissue implies that it can be constructed by assembling the necessary components. However, tissues are formed through an evolving, interactive process, not through a collection of parts. This chapter focuses on the biology of the progenitor cell, the native precursor to new tissue, and its role in neogenesis, or the de novo generation of functional tissue. We present a working hypothesis for the generation of parenchymal cell populations and use this hypothesis as a basis for analysis of three parenchymal populations, epidermal cells, hepatocytes of the liver, and pancreatic islets, with a view toward what impact this information will have on the development of cell therapies. By comparing developmental processes, response to injury and disease, and behavior in vitro, we conclude that the adult progenitor cell retains the potential for substantial growth and organ neogenesis and that its biological properties make it the cell of first choice for the engineering of tissues.
Collapse
|
228
|
|
229
|
Li Y, Welm B, Podsypanina K, Huang S, Chamorro M, Zhang X, Rowlands T, Egeblad M, Cowin P, Werb Z, Tan LK, Rosen JM, Varmus HE. Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc Natl Acad Sci U S A 2003; 100:15853-8. [PMID: 14668450 PMCID: PMC307657 DOI: 10.1073/pnas.2136825100] [Citation(s) in RCA: 426] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Breast cancer is a genetically and clinically heterogeneous disease, and the contributions of different target cells and different oncogenic mutations to this heterogeneity are not well understood. Here we report that mammary tumors induced by components of the Wnt signaling pathway contain heterogeneous cell types and express early developmental markers, in contrast to tumors induced by other signaling elements. Expression of the Wnt-1 protooncogene in mammary glands of transgenic mice expands a population of epithelial cells expressing progenitor cell markers, keratin 6 and Sca-1; subsequent tumors express these markers and contain luminal epithelial and myoepithelial tumor cells that share a secondary mutation, loss of Pten, implying that they arose from a common progenitor. Mammary tumors arising in transgenic mice expressing beta-catenin and c-Myc, downstream components of the canonical Wnt signaling pathway, also contain a significant proportion of myoepithelial cells and cells expressing keratin 6. Progenitor cell markers and myoepithelial cells, however, are lacking in mammary tumors from transgenic mice expressing Neu, H-Ras, or polyoma middle T antigen. These results suggest that mammary stem cells and/or progenitors to mammary luminal epithelial and myoepithelial cells may be the targets for oncogenesis by Wnt-1 signaling elements. Thus, the developmental heterogeneity of different breast cancers is in part a consequence of differential effects of oncogenes on distinct cell types in the breast.
Collapse
Affiliation(s)
- Yi Li
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Affiliation(s)
- Thomas Kolter
- Kekulé-Institut für Organische Chemie, und Biochemie der Universität, Gerhard-Domagk Strasse 1, 53121 Bonn, Germany.
| |
Collapse
|
231
|
Abstract
Adult epidermal stem cells renew the epithelial compartment of the skin throughout life and are the most accessible of all adult stem cells. Most importantly, epidermal stem cells can be efficiently cultivated and transplanted, a significant advantage for cell and gene therapy. Recent work has pointed to the hair follicle as the main repository of multipotent stem cells in skin. Hair follicles, which are often affected in the mouse by spontaneous or man-made mutations, have become superb model systems to study the cellular and molecular factors that regulate the proliferation, migration and fate of adult stem cells.
Collapse
Affiliation(s)
- Laure Gambardella
- Laboratory of Stem Cell Dynamics: School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | | |
Collapse
|
232
|
Affiliation(s)
- Matthew Smalley
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | | |
Collapse
|
233
|
Ivanova NB. Response to Comments on " 'Stemness': Transcriptional Profiling of Embryonic and Adult Stem Cells" and "A Stem Cell Molecular Signature". Science 2003. [DOI: 10.1126/science.1088249] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
234
|
Abstract
To master tissue and organ morphogenesis necessitates a thorough understanding of the cellular and molecular events involved in development, renewal, repair and regeneration. Skin reconstruction is the paradigm of tissue engineering. The transplantation of autologous adult epidermal stem cells is a life-saving procedure as it regenerates the indispensable barrier function of the skin, but the reconstruction of fully functional skin has been hampered by the complexity of the process. The recent identification of multipotent epithelial stem cells in adult hair follicles and of multipotent stem cells in dermis raises new hopes.
Collapse
Affiliation(s)
- Michel Brouard
- Laboratory of Stem Cell Dynamics, School of Life Sciences, Swiss Federal Institute of Technology Lausanne and Department of Experimental Surgery, Lausanne University Hospital, 1015 Lausanne, Switzerland
| | | |
Collapse
|
235
|
Abstract
Tissue stem cells form the cellular base for organ homeostasis and repair. Stem cells have the unusual ability to renew themselves over the lifetime of the organ while producing daughter cells that differentiate into one or multiple lineages. Difficult to identify and characterize in any tissue, these cells are nonetheless hotly pursued because they hold the potential promise of therapeutic reprogramming to grow human tissue in vitro, for the treatment of human disease. The mammalian skin epithelium exhibits remarkable turnover, punctuated by periods of even more rapid production after injury due to burn or wounding. The stem cells responsible for supplying this tissue with cellular substrate are not yet easily distinguishable from neighboring cells. However, in recent years a significant body of work has begun to characterize the skin epithelial stem cells, both in tissue culture and in mouse and human skin. Some epithelial cells cultured from skin exhibit prodigious proliferative potential; in fact, for >20 years now, cultured human skin has been used as a source of new skin to engraft onto damaged areas of burn patients, representing one of the first therapeutic uses of stem cells. Cell fate choices, including both self-renewal and differentiation, are crucial biological features of stem cells that are still poorly understood. Skin epithelial stem cells represent a ripe target for research into the fundamental mechanisms underlying these important processes.
Collapse
Affiliation(s)
- Laura Alonso
- Howard Hughes Medical Institute, Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
236
|
Tokura Y, Wakita H, Seo N, Furukawa F, Nishimura K, Takigawa M. Modulation of T-lymphocyte proliferation by exogenous natural ceramides and sphingosylphosphorylcholine. J Investig Dermatol Symp Proc 1999; 4:184-9. [PMID: 10536997 DOI: 10.1038/sj.jidsp.5640206] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sphingolipids such as ceramide and sphingosine are abundantly present in the stratum corneum of epidermis. In atopic stratum corneum, sphingosylphosphorylcholine (SPC) is present in association with a reduction in the amount of ceramides. We have previously shown that the cellular kinetics of T cells are affected by exogenous addition of sphingosine and synthetic ceramides, raising the possibility that sphingolipids diffusing from the stratum corneum modulate skin-infiltrating T cells. By using two natural ceramides and murine T cells, this study further clarified the conditions under which exogenous ceramides enhance the proliferation of T cells. KLH-specific T cell clones 28-4 and 24-2 proliferated in response to natural ceramides when cultured for 44-48 h in the presence of concanavalin A at 1 microg per ml. Elongation of culture periods adversely inhibited the T cell proliferation, suggesting the existence of an optimal exposure time. Augmentation of DNA synthesis by natural ceramides was more pronounced in tumor necrosis factor alpha (TNFalpha)-sensitive 28-4 cells than in less sensitive 24-2 cells, and TNFalpha-induced proliferation of 28-4 cells was suppressed by the concomitant addition of natural ceramides. Similar to ceramides, SPC augmented the proliferation of resting spleen cells. Our study suggests that ceramide modulation of T cell proliferation depends on the TNFalpha sensitivity and activation level of T cells and that SPC also has a mitogenic potential for T cells.
Collapse
Affiliation(s)
- Y Tokura
- Department of Dermatology, Hamamatsu University School of Medicine, Japan.
| | | | | | | | | | | |
Collapse
|
237
|
Rizvi AZ, Wong MH. Nuclear localization of beta-catenin by interaction with transcription factor LEF-1. Stem Cells 1997; 23:150-65. [PMID: 15671140 DOI: 10.1634/stemcells.2004-0096] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Vertebrate beta-catenin and Drosophila Armadillo share structural similarities suggesting that beta-catenin, like Armadillo, has a developmental signaling function. Both proteins are present as components of cell adherens junctions, but accumulate in the cytoplasm upon Wingless/Wnt signaling. beta-Catenin has axis-inducing properties like Wnt when injected into Xenopus blastomeres, providing evidence for participation of beta-catenin in the Wnt-pathway, but until now no downstream targets for beta-catenin have been identified. Here we demonstrate that beta-catenin binds to the HMG-type transcription factor lymphoid enhancer factor-1 (LEF-1), resulting in a nuclear translocation of beta-catenin both in cultured mouse cells and after ectopic expression of LEF-1 in two-cell mouse embryos. LEF-1/beta-catenin complexes bind to the promoter region of the E-cadherin gene in vitro, suggesting that this interaction could regulate E-cadherin transcription. As shown for beta-catenin, ectopic expression of LEF-1 in Xenopus embryos caused duplication of the body axis, indicating a regulatory role for a LEF-1-like molecule in dorsal mesoderm formation.
Collapse
Affiliation(s)
- Adnan Z Rizvi
- Department of Surgery, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, Oregon 97239, USA
| | | |
Collapse
|