201
|
McCollum C, Geißelsöder S, Engelsdorf T, Voitsik AM, Voll LM. Deficiencies in the Mitochondrial Electron Transport Chain Affect Redox Poise and Resistance Toward Colletotrichum higginsianum. FRONTIERS IN PLANT SCIENCE 2019; 10:1262. [PMID: 31681368 PMCID: PMC6812661 DOI: 10.3389/fpls.2019.01262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
To investigate if and how the integrity of the mitochondrial electron transport chain (mETC) influences susceptibility of Arabidopsis toward Colletotrichum higginsianum, we have selected previously characterized mutants with defects at different stages of the mETC, namely, the complex I mutant ndufs4, the complex II mutant sdh2-1, the complex III mutant ucr8-1, and a mutant of the uncoupling protein ucp1-2. Relative to wild type, the selected complex I, II, and III mutants showed decreased total respiration, increased alternative respiration, as well as increased redox charge of the NADP(H) pool and decreased redox charge of the NAD(H) pool in the dark. In the light, mETC mutants accumulated free amino acids, albeit to varying degrees. Glycine and serine, which are involved in carbon recycling from photorespiration, and N-rich amino acids were predominantly increased in mETC mutants compared to the wild type. Taking together the physiological phenotypes of all examined mutants, our results suggest a connection between the limitation in the re-oxidation of reducing equivalents in the mitochondrial matrix and the induction of nitrate assimilation into free amino acids in the cytosol, which seems to be engaged as an additional sink for reducing power. The sdh2-1 mutant was less susceptible to C. higginsianum and did not show hampered salicylic acid (SA) accumulation as previously reported for SDH1 knock-down plants. The ROS burst remained unaffected in sdh2-1, emonstrating that subunit SDH2 is not involved in the control of ROS production and SA signaling by complex II. Moreover, the ndufs4 mutant showed only 20% of C. higginsianum colonization compared to wild type, with the ROS burst and the production of callose papillae being significantly increased compared to wild type. This indicates that a restriction of respiratory metabolism can positively affect pre-penetration resistance of Arabidopsis. Taking metabolite profiling data from all investigated mETC mutants, a strong positive correlation of resistance toward C. higginsianum with NADPH pool size, pyruvate contents, and other metabolites associated with redox poise and energy charge was evident, which fosters the hypothesis that limitations in the mETC can support resistance at post-penetration stages by improving the availability of metabolic power.
Collapse
Affiliation(s)
- Christopher McCollum
- Division of Biochemistry, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sonja Geißelsöder
- Division of Biochemistry, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Timo Engelsdorf
- Molecular Plant Physiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Anna Maria Voitsik
- Division of Biochemistry, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lars M. Voll
- Division of Biochemistry, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Molecular Plant Physiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
202
|
Lai JL, Luo XG. High-efficiency antioxidant system, chelating system and stress-responsive genes enhance tolerance to cesium ionotoxicity in Indian mustard (Brassica juncea L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:491-498. [PMID: 31229839 DOI: 10.1016/j.ecoenv.2019.06.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 05/15/2019] [Accepted: 06/15/2019] [Indexed: 05/10/2023]
Abstract
Indian mustard (Brassica juncea L.) was more tolerance to Cs than some sensitive plants, such as Arabidopsis thaliana and Vicia faba, and may have a special detoxification mechanism. In this study, the effects on reactive oxygen species (ROS) content, the antioxidant enzyme system and chelation system in Indian mustard were studied by observing different plant physiological responses. In addition, we focused on the analysis of gene regulatory networks related to ROS formation, ROS scavenging system, and other stress-response genes to Cs exposure using a transcriptome-sequencing database. The results showed that ROS and malonaldehyde content in seedlings increased significantly in Cs-treatment groups. The enzyme activities of superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase were increased, and the synthesis of antioxidants glutathione, phytochelatin and metallothionein also increased under Cs treatment. Further analysis showed that ROS formation pathways were primarily the photosynthetic electron transport chain process and photorespiration process in the peroxisome. Antioxidant enzyme systems and the respiratory burst oxidase homolog protein-mediated signal transduction pathway played a key role in ROS scavenging. In summary, one of the mechanisms of tolerance and detoxification of Indian mustard to Cs was that it enhanced the scavenging ability of antioxidant enzymes to ROS, chelated free Cs ions in cells and regulated the expression of related disease-resistant genes.
Collapse
Affiliation(s)
- Jin-Long Lai
- College of Environment and Resources, Southwest University of Science and Technology, Mianyang, 621010, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Xue-Gang Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China; Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
203
|
Alber NA, Vanlerberghe GC. Signaling interactions between mitochondria and chloroplasts in Nicotiana tabacum leaf. PHYSIOLOGIA PLANTARUM 2019; 167:188-204. [PMID: 30467859 DOI: 10.1111/ppl.12879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
Research has begun to elucidate the signal transduction pathway(s) that control cellular responses to changes in mitochondrial status. Important tools in such studies are chemical inhibitors used to initiate mitochondrial dysfunction. This study compares the effect of different inhibitors and treatment conditions on the transcript amount of nuclear genes specifically responsive to mitochondrial dysfunction in leaf of Nicotiana tabacum L. cv. Petit Havana. The Complex III inhibitors antimycin A (AA) and myxothiazol (MYXO), and the Complex V inhibitor oligomycin (OLIGO), each increased the transcript amount of the mitochondrial dysfunction genes. Transcript responses to OLIGO were greater during treatment in the dark than in the light, and the dark treatment resulted in cell death. In the dark, transcript responses to AA and MYXO were similar to one another, despite MYXO leading to cell death. In the light, transcript responses to AA and MYXO diverged, despite cell viability remaining high with either inhibitor. This divergent response may be due to differential signaling from the chloroplast because only AA also inhibited cyclic electron transport, resulting in a strong acceptor-side limitation in photosystem I. In the light, chemical inhibition of chloroplast electron transport reduced transcript responses to AA, while having no effect on the response to MYXO, and increasing the response to OLIGO. Hence, when studying mitochondrial dysfunction signaling, different inhibitor and treatment combinations differentially affect linked processes (e.g. chloroplast function and cell fate) that then contribute to measured responses. Therefore, inhibitor and treatment conditions should be chosen to align with specific study goals.
Collapse
Affiliation(s)
- Nicole A Alber
- Department of Biological Sciences, Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada
| | - Greg C Vanlerberghe
- Department of Biological Sciences, Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada
| |
Collapse
|
204
|
Awwad F, Bertrand G, Grandbois M, Beaudoin N. Reactive Oxygen Species Alleviate Cell Death Induced by Thaxtomin A in Arabidopsis thaliana Cell Cultures. PLANTS (BASEL, SWITZERLAND) 2019; 8:E332. [PMID: 31489878 PMCID: PMC6784117 DOI: 10.3390/plants8090332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/26/2019] [Accepted: 09/03/2019] [Indexed: 01/20/2023]
Abstract
Thaxtomin A (TA) is a cellulose biosynthesis inhibitor synthesized by the soil actinobacterium Streptomyces scabies, which is the main causal agent of potato common scab. TA is essential for the induction of scab lesions on potato tubers. When added to Arabidopsis thaliana cell cultures, TA induces an atypical programmed cell death (PCD). Although production of reactive oxygen species (ROS) often correlates with the induction of PCD, we observed a decrease in ROS levels following TA treatment. We show that this decrease in ROS accumulation in TA-treated cells is not due to the activation of antioxidant enzymes. Moreover, Arabidopsis cell cultures treated with hydrogen peroxide (H2O2) prior to TA treatment had significantly fewer dead cells than cultures treated with TA alone. This suggests that H2O2 induces biochemical or molecular changes in cell cultures that alleviate the activation of PCD by TA. Investigation of the cell wall mechanics using atomic force microscopy showed that H2O2 treatment can prevent the decrease in cell wall rigidity observed after TA exposure. While we cannot exclude the possibility that H2O2 may promote cell survival by altering the cellular redox environment or signaling pathways, our results suggest that H2O2 may inhibit cell death, at least partially, by reinforcing the cell wall to prevent or compensate for damages induced by TA.
Collapse
Affiliation(s)
- Fatima Awwad
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.
- Groupe de Recherche en Biologie Végétale, Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada.
| | - Guillaume Bertrand
- Institut de Pharmacologie de Sherbrooke, Département de Pharmacologie et Physiologie, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Michel Grandbois
- Institut de Pharmacologie de Sherbrooke, Département de Pharmacologie et Physiologie, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Nathalie Beaudoin
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.
| |
Collapse
|
205
|
Kapoor D, Singh S, Kumar V, Romero R, Prasad R, Singh J. Antioxidant enzymes regulation in plants in reference to reactive oxygen species (ROS) and reactive nitrogen species (RNS). ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.plgene.2019.100182] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
206
|
Wu G, Li S, Li X, Liu Y, Zhao S, Liu B, Zhou H, Lin H. A Functional Alternative Oxidase Modulates Plant Salt Tolerance in Physcomitrella patens. PLANT & CELL PHYSIOLOGY 2019; 60:1829-1841. [PMID: 31119292 DOI: 10.1093/pcp/pcz099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 05/14/2019] [Indexed: 05/13/2023]
Abstract
Alternative oxidase (AOX) has been reported to be involved in mitochondrial function and redox homeostasis, thus playing an essential role in plant growth as well as stress responses. However, its biological functions in nonseed plants have not been well characterized. Here, we report that AOX participates in plant salt tolerance regulation in moss Physcomitrella patens (P. patens). AOX is highly conserved and localizes to mitochondria in P. patens. We observed that PpAOX rescued the impaired cyanide (CN)-resistant alternative (Alt) respiratory pathway in Arabidopsis thaliana (Arabidopsis) aox1a mutant. PpAOX transcription and Alt respiration were induced upon salt stress in P. patens. Using homologous recombination, we generated PpAOX-overexpressing lines (PpAOX OX). PpAOX OX plants exhibited higher Alt respiration and lower total reactive oxygen species accumulation under salt stress condition. Strikingly, we observed that PpAOX OX plants displayed decreased salt tolerance. Overexpression of PpAOX disturbed redox homeostasis in chloroplasts. Meanwhile, chloroplast structure was adversely affected in PpAOX OX plants in contrast to wild-type (WT) P. patens. We found that photosynthetic activity in PpAOX OX plants was also lower compared with that in WT. Together, our work revealed that AOX participates in plant salt tolerance in P. patens and there is a functional link between mitochondria and chloroplast under challenging conditions.
Collapse
Affiliation(s)
- Guochun Wu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Sha Li
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaochuan Li
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yunhong Liu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Shuangshuang Zhao
- Key Laboratory of Plant Stress, Life Science College, Shandong Normal University, Jinan, China
| | - Baohui Liu
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Huapeng Zhou
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Honghui Lin
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
207
|
Zaffagnini M, Fermani S, Marchand CH, Costa A, Sparla F, Rouhier N, Geigenberger P, Lemaire SD, Trost P. Redox Homeostasis in Photosynthetic Organisms: Novel and Established Thiol-Based Molecular Mechanisms. Antioxid Redox Signal 2019; 31:155-210. [PMID: 30499304 DOI: 10.1089/ars.2018.7617] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Significance: Redox homeostasis consists of an intricate network of reactions in which reactive molecular species, redox modifications, and redox proteins act in concert to allow both physiological responses and adaptation to stress conditions. Recent Advances: This review highlights established and novel thiol-based regulatory pathways underlying the functional facets and significance of redox biology in photosynthetic organisms. In the last decades, the field of redox regulation has largely expanded and this work is aimed at giving the right credit to the importance of thiol-based regulatory and signaling mechanisms in plants. Critical Issues: This cannot be all-encompassing, but is intended to provide a comprehensive overview on the structural/molecular mechanisms governing the most relevant thiol switching modifications with emphasis on the large genetic and functional diversity of redox controllers (i.e., redoxins). We also summarize the different proteomic-based approaches aimed at investigating the dynamics of redox modifications and the recent evidence that extends the possibility to monitor the cellular redox state in vivo. The physiological relevance of redox transitions is discussed based on reverse genetic studies confirming the importance of redox homeostasis in plant growth, development, and stress responses. Future Directions: In conclusion, we can firmly assume that redox biology has acquired an established significance that virtually infiltrates all aspects of plant physiology.
Collapse
Affiliation(s)
- Mirko Zaffagnini
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| | - Simona Fermani
- 2 Department of Chemistry Giacomo Ciamician, University of Bologna, Bologna, Italy
| | - Christophe H Marchand
- 3 Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Sorbonne Université, Paris, France
| | - Alex Costa
- 4 Department of Biosciences, University of Milan, Milan, Italy
| | - Francesca Sparla
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| | | | - Peter Geigenberger
- 6 Department Biologie I, Ludwig-Maximilians-Universität München, LMU Biozentrum, Martinsried, Germany
| | - Stéphane D Lemaire
- 3 Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Sorbonne Université, Paris, France
| | - Paolo Trost
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| |
Collapse
|
208
|
Colombatti F, Mencia R, Garcia L, Mansilla N, Alemano S, Andrade AM, Gonzalez DH, Welchen E. The mitochondrial oxidation resistance protein AtOXR2 increases plant biomass and tolerance to oxidative stress. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3177-3195. [PMID: 30945737 DOI: 10.1093/jxb/erz147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
This study demonstrates the existence of the oxidation resistance (OXR) protein family in plants. There are six OXR members in Arabidopsis that contain the highly conserved TLDc domain that is characteristic of this eukaryotic protein family. AtOXR2 is a mitochondrial protein able to alleviate the stress sensitivity of a yeast oxr1 mutant. It was induced by oxidative stress and its overexpression in Arabidopsis (oeOXR2) increased leaf ascorbate, photosynthesis, biomass, and seed production, as well as conferring tolerance to methyl viologen, antimycin A, and high light intensities. The oeOXR2 plants also showed higher ABA content, changes in ABA sensitivity, and modified expression of ABA- and stress-regulated genes. While the oxr2 mutants had a similar shoot phenotype to the wild-type, they exhibited increased sensitivity to stress. We propose that by influencing the levels of reactive oxygen species (ROS), AtOXR2 improves the efficiency of photosynthesis and elicits basal tolerance to environmental challenges that increase oxidative stress, allowing improved plant growth and biomass production.
Collapse
Affiliation(s)
- Francisco Colombatti
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Regina Mencia
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Lucila Garcia
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| | - Natanael Mansilla
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Sergio Alemano
- Laboratorio de Fisiología Vegetal, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Andrea M Andrade
- Laboratorio de Fisiología Vegetal, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
209
|
Regulation of mitochondrial NAD pool via NAD + transporter 2 is essential for matrix NADH homeostasis and ROS production in Arabidopsis. SCIENCE CHINA-LIFE SCIENCES 2019; 62:991-1002. [PMID: 31168681 DOI: 10.1007/s11427-019-9563-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/10/2019] [Indexed: 01/19/2023]
Abstract
Reactive oxygen species (ROS) play a crucial role in numerous biological processes in plants, including development, responses to environmental stimuli, and programmed cell death (PCD). Deficiency in MOSAIC DEATH 1 (MOD1), a plastid-localized enoyl-ACP reductase essential for de novo fatty acid biosynthesis in Arabidopsis thaliana, leads to the increased malate export from chloroplasts to mitochondria, and the subsequent accumulation of mitochondria-generated ROS and PCD. In this study, we report the identification and characterization of a mod1 suppressor, som592. SOM592 encodes mitochondrion-localized NAD+ transporter 2 (NDT2). We show that the mitochondrial NAD pool is elevated in the mod1 mutant. The som592 mutation fully suppressed mitochondrial NADH hyper-accumulation, ROS production, and PCD in the mod1 mutant, indicating a causal relationship between mitochondrial NAD accumulation and ROS/PCD phenotypes. We also show that in wild-type plants, the mitochondrial NAD+ uptake is involved in the regulation of ROS production in response to continuous photoperiod. Elevation of the alternative respiration pathway can suppress ROS accumulation and PCD in mod1, but leads to growth restriction. These findings uncover a regulatory mechanism for mitochondrial ROS production via NADH homeostasis in Arabidopsis thaliana that is likely important for growth regulation in response to altered photoperiod.
Collapse
|
210
|
Rabêlo VM, Magalhães PC, Bressanin LA, Carvalho DT, Reis COD, Karam D, Doriguetto AC, Santos MHD, Santos Filho PRDS, Souza TCD. The foliar application of a mixture of semisynthetic chitosan derivatives induces tolerance to water deficit in maize, improving the antioxidant system and increasing photosynthesis and grain yield. Sci Rep 2019; 9:8164. [PMID: 31160657 PMCID: PMC6547683 DOI: 10.1038/s41598-019-44649-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 05/20/2019] [Indexed: 12/12/2022] Open
Abstract
Research has shown that chitosan induces plant stress tolerance and protection, but few studies have explored chemical modifications of chitosan and their effects on plants under water stress. Chitosan and its derivatives were applied (isolated or in mixture) to maize hybrids sensitive to water deficit under greenhouse conditions through foliar spraying at the pre-flowering stage. After the application, water deficit was induced for 15 days. Analyses of leaves and biochemical gas exchange in the ear leaf were performed on the first and fifteenth days of the stress period. Production attributes were also analysed at the end of the experiment. In general, the application of the two chitosan derivatives or their mixture potentiated the activities of the antioxidant enzymes superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase and guaiacol peroxidase at the beginning of the stress period, in addition to reducing lipid peroxidation (malonaldehyde content) and increasing gas exchange and proline contents at the end of the stress period. The derivatives also increased the content of phenolic compounds and the activity of enzymes involved in their production (phenylalanine ammonia lyase and tyrosine ammonia lyase). Dehydroascorbate reductase and compounds such as total soluble sugars, total amino acids, starch, grain yield and harvest index increased for both the derivatives and chitosan. However, the mixture of derivatives was the treatment that led to the higher increase in grain yield and harvest index compared to the other treatments. The application of semisynthetic molecules derived from chitosan yielded greater leaf gas exchange and a higher incidence of the biochemical conditions that relieve plant stress.
Collapse
Affiliation(s)
- Valquíria Mikaela Rabêlo
- Federal University of Alfenas - UNIFAL-MG, Institute of Natural Sciences- ICN,700, Gabriel Monteiro Street, P. O. Box 37130-001, Alfenas, MG, Brazil
| | - Paulo César Magalhães
- Maize and Sorghum National Research Center, P. O. Box 151, 35701-970, Sete Lagoas, MG, Brazil
| | - Letícia Aparecida Bressanin
- Federal University of Alfenas - UNIFAL-MG, Institute of Natural Sciences- ICN,700, Gabriel Monteiro Street, P. O. Box 37130-001, Alfenas, MG, Brazil
| | - Diogo Teixeira Carvalho
- Federal University of Alfenas - UNIFAL-MG, Faculty of Pharmaceutical Sciences, 700, Gabriel Monteiro da Silva Street, P.O. Box 37130-001, Alfenas, MG, Brazil
| | - Caroline Oliveira Dos Reis
- Federal University of Alfenas - UNIFAL-MG, Institute of Natural Sciences- ICN,700, Gabriel Monteiro Street, P. O. Box 37130-001, Alfenas, MG, Brazil
| | - Decio Karam
- Maize and Sorghum National Research Center, P. O. Box 151, 35701-970, Sete Lagoas, MG, Brazil
| | - Antônio Carlos Doriguetto
- Federal University of Alfenas - UNIFAL-MG, Chemistry Institute, Gabriel Monteiro da Silva Street, 700, P.O. Box 37130-001, Alfenas, MG, Brazil
| | - Marcelo Henrique Dos Santos
- Federal University of Viçosa - UFV, Chemistry Departament, Peter Henry Rolfs Street, s/n, P.O. Box 36570-000, Viçosa, MG, Brazil
| | | | - Thiago Corrêa de Souza
- Federal University of Alfenas - UNIFAL-MG, Institute of Natural Sciences- ICN, 700, Gabriel Monteiro Street, P. O. Box 37130-001, Alfenas, MG, Brazil.
| |
Collapse
|
211
|
Salicylic Acid Alleviated Salt Damage of Populus euphratica: A Physiological and Transcriptomic Analysis. FORESTS 2019. [DOI: 10.3390/f10050423] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Populus euphratica Oliv. is a model tree for studying abiotic stress, especially salt stress response. Salt stress is one of the most extensive abiotic stresses, which has an adverse effect on plant growth and development. Salicylic acid (SA) is an important signaling molecule that plays an important role in modulating the plant responses to abiotic stresses. To answer whether the endogenous SA can be induced by salt stress, and whether SA effectively alleviates the negative effects of salt on poplar growth is the main purpose of the study. To elucidate the effects of SA and salt stress on the growth of P. euphratica, we examined the morphological and physiological changes of P. euphratica under 300 mM NaCl after treatment with different concentrations of SA. A pretreatment of P. euphratica with 0.4 mM SA for 3 days effectively improved the growth status of plants under subsequent salt stress. These results indicate that appropriate concentrations of exogenous SA can effectively counteract the negative effect of salt stress on growth and development. Subsequently, transcripts involved in salt stress response via SA signaling were captured by RNA sequencing. The results indicated that numerous specific genes encoding mitogen-activated protein kinase, calcium-dependent protein kinase, and antioxidant enzymes were upregulated. Potassium transporters and Na+/H+ antiporters, which maintain K+/Na+ balance, were also upregulated after SA pretreatment. The transcriptome changes show that the ion transport and antioxidant enzymes were the early enhanced systems in response of P. euphratica to salt via SA, expanding our knowledge about SA function in salt stress defense in P. euphratica. This provides a solid foundation for future study of functional genes controlling effective components in metabolic pathways of trees.
Collapse
|
212
|
Huang S, Braun HP, Gawryluk RMR, Millar AH. Mitochondrial complex II of plants: subunit composition, assembly, and function in respiration and signaling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:405-417. [PMID: 30604579 DOI: 10.1111/tpj.14227] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 05/20/2023]
Abstract
Complex II [succinate dehydrogenase (succinate-ubiquinone oxidoreductase); EC 1.3.5.1; SDH] is the only enzyme shared by both the electron transport chain and the tricarboxylic acid (TCA) cycle in mitochondria. Complex II in plants is considered unusual because of its accessory subunits (SDH5-SDH8), in addition to the catalytic subunits of SDH found in all eukaryotes (SDH1-SDH4). Here, we review compositional and phylogenetic analysis and biochemical dissection studies to both clarify the presence and propose a role for these subunits. We also consider the wider functional and phylogenetic evidence for SDH assembly factors and the reports from plants on the control of SDH1 flavination and SDH1-SDH2 interaction. Plant complex II has been shown to influence stomatal opening, the plant defense response and reactive oxygen species-dependent stress responses. Signaling molecules such as salicyclic acid (SA) and nitric oxide (NO) are also reported to interact with the ubiquinone (UQ) binding site of SDH, influencing signaling transduction in plants. Future directions for SDH research in plants and the specific roles of its different subunits and assembly factors are suggested, including the potential for reverse electron transport to explain the succinate-dependent production of reactive oxygen species in plants and new avenues to explore the evolution of plant mitochondrial complex II and its utility.
Collapse
Affiliation(s)
- Shaobai Huang
- School of Molecular Sciences & ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 6009, Crawley, WA, Australia
| | - Hans-Peter Braun
- Institute of Plant Genetics, Leibniz Universität Hannover, 30419, Hannover, Germany
| | | | - A Harvey Millar
- School of Molecular Sciences & ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 6009, Crawley, WA, Australia
| |
Collapse
|
213
|
On the Origin and Fate of Reactive Oxygen Species in Plant Cell Compartments. Antioxidants (Basel) 2019; 8:antiox8040105. [PMID: 30999668 PMCID: PMC6523537 DOI: 10.3390/antiox8040105] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/31/2019] [Accepted: 04/13/2019] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) have been recognized as important signaling compounds of major importance in a number of developmental and physiological processes in plants. The existence of cellular compartments enables efficient redox compartmentalization and ensures proper functioning of ROS-dependent signaling pathways. Similar to other organisms, the production of individual ROS in plant cells is highly localized and regulated by compartment-specific enzyme pathways on transcriptional and post-translational level. ROS metabolism and signaling in specific compartments are greatly affected by their chemical interactions with other reactive radical species, ROS scavengers and antioxidant enzymes. A dysregulation of the redox status, as a consequence of induced ROS generation or decreased capacity of their removal, occurs in plants exposed to diverse stress conditions. During stress condition, strong induction of ROS-generating systems or attenuated ROS scavenging can lead to oxidative or nitrosative stress conditions, associated with potential damaging modifications of cell biomolecules. Here, we present an overview of compartment-specific pathways of ROS production and degradation and mechanisms of ROS homeostasis control within plant cell compartments.
Collapse
|
214
|
Lyu L, Bi Y, Li S, Xue H, Zhang Z, Prusky DB. Early Defense Responses Involved in Mitochondrial Energy Metabolism and Reactive Oxygen Species Accumulation in Harvested Muskmelons Infected by Trichothecium roseum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4337-4345. [PMID: 30865450 DOI: 10.1021/acs.jafc.8b06333] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Mitochondria play an essential part in fighting against pathogen infection in the defense responses of fruits. In this study, we investigated the reactive oxygen species (ROS) production, energy metabolism, and changes of mitochondrial proteins in harvested muskmelon fruits ( Cucumis melo cv. Yujinxiang) inoculated with Trichothecium roseum. The results indicated that the fungal infection obviously induced the H2O2 accumulation in mitochondria. Enzyme activities were inhibited in the first 6 h postinoculation (hpi), including succinic dehydrogenase, cytochrome c oxidase, H+-ATPase, and Ca2+-ATPase. However, the activities of Ca2+-ATPase and H+-ATPase and the contents of intracellular adenosine triphosphate (ATP) were improved to a higher level at 12 hpi. A total of 42 differentially expressed proteins were identified through tandem mass tags-based proteomic analyses, which are mainly involved in energy metabolism, stress responses and redox homeostasis, glycolysis and tricarboxylic acid cycle, and transporter and mitochondria dysfunction. Taken together, our results suggest that mitochondria play crucial roles in the early defense responses of muskmelons against T. roseum infection through regulation of ROS production and energy metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | - Dov B Prusky
- Department of Postharvest Science of Fresh Produce , Agricultural Research Organization, The Volcani Center , Beit Dagan 50250 , Israel
| |
Collapse
|
215
|
Feng Y, Li X, Guo S, Chen X, Chen T, He Y, Shabala S, Yu M. Extracellular silica nanocoat formed by layer-by-layer (LBL) self-assembly confers aluminum resistance in root border cells of pea (Pisum sativum). J Nanobiotechnology 2019; 17:53. [PMID: 30992069 PMCID: PMC6466759 DOI: 10.1186/s12951-019-0486-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 04/04/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Soil acidity (and associated Al toxicity) is a major factor limiting crop production worldwide and threatening global food security. Electrostatic layer-by-layer (LBL) self-assembly provides a convenient and versatile method to form an extracellular silica nanocoat, which possess the ability to protect cell from the damage of physical stress or toxic substances. In this work, we have tested a hypothesis that extracellular silica nanocoat formed by LBL self-assembly will protect root border cells (RBCs) and enhance their resistance to Al toxicity. RESULTS Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were used to compare the properties of RBCs surface coated with nanoshells with those that were exposed to Al without coating. The accumulation of Al, reactive oxygen species (ROS) levels, and the activity of mitochondria were detected by a laser-scanning confocal microscopy. We found that a crystal-like layer of silica nanoparticles on the surface of RBCs functions as an extracellular Al-proof coat by immobilizing Al in the apoplast and preventing its accumulation in the cytosol. The silica nanoshells on the RBCs had a positive impact on maintaining the integrity of the plasma and mitochondrial membranes, preventing ROS burst and ensuring higher mitochondria activity and cell viability under Al toxicity. CONCLUSIONS The study provides evidence that silica nanoshells confers RBCs Al resistance by restraining of Al in the silica-coat, suggesting that this method can be used an efficient tool to prevent multibillion-dollar losses caused by Al toxicity to agricultural crop production.
Collapse
Affiliation(s)
- Yingming Feng
- Department of Horticulture, Foshan University, Foshan, 528000, Guangdong, China
| | - Xuewen Li
- Department of Horticulture, Foshan University, Foshan, 528000, Guangdong, China
| | - Shaoxue Guo
- Department of Horticulture, Foshan University, Foshan, 528000, Guangdong, China
| | - Xingyun Chen
- Department of Horticulture, Foshan University, Foshan, 528000, Guangdong, China
| | - Tingxuan Chen
- Department of Horticulture, Foshan University, Foshan, 528000, Guangdong, China
| | - Yongming He
- Department of Horticulture, Foshan University, Foshan, 528000, Guangdong, China
| | - Sergey Shabala
- Department of Horticulture, Foshan University, Foshan, 528000, Guangdong, China
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | - Min Yu
- Department of Horticulture, Foshan University, Foshan, 528000, Guangdong, China.
| |
Collapse
|
216
|
O'Leary BM, Asao S, Millar AH, Atkin OK. Core principles which explain variation in respiration across biological scales. THE NEW PHYTOLOGIST 2019; 222:670-686. [PMID: 30394553 DOI: 10.1111/nph.15576] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/18/2018] [Indexed: 05/02/2023]
Abstract
Contents Summary 670 I. Introduction 671 II. Principle 1 - Plant respiration performs three distinct functions 673 III. Principle 2 - Metabolic pathway flexibility underlies plant respiratory performance 676 IV. Principle 3 - Supply and demand interact over time to set plant respiration rate 677 V. Principle 4 - Plant respiratory acclimation involves adjustments in enzyme capacities 679 VI. Principle 5 - Respiration is a complex trait that helps to define, and is impacted by, plant lifestyle strategies 680 VII. Future directions 680 Acknowledgements 682 References 682 SUMMARY: Respiration is a core biological process that has important implications for the biochemistry, physiology, and ecology of plants. The study of plant respiration is thus conducted from several different perspectives by a range of scientific disciplines with dissimilar objectives, such as metabolic engineering, crop breeding, and climate-change modelling. One aspect in common among the different objectives is a need to understand and quantify the variation in respiration across scales of biological organization. The central tenet of this review is that different perspectives on respiration can complement each other when connected. To better accommodate interdisciplinary thinking, we identify distinct mechanisms which encompass the variation in respiratory rates and functions across biological scales. The relevance of these mechanisms towards variation in plant respiration are explained in the context of five core principles: (1) respiration performs three distinct functions; (2) metabolic pathway flexibility underlies respiratory performance; (3) supply and demand interact over time to set respiration rates; (4) acclimation involves adjustments in enzyme capacities; and (5) respiration is a complex trait that helps to define, and is impacted by, plant lifestyle strategies. We argue that each perspective on respiration rests on these principles to varying degrees and that broader appreciation of how respiratory variation occurs can unite research across scales.
Collapse
Affiliation(s)
- Brendan M O'Leary
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Shinichi Asao
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT, 0200, Australia
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Owen K Atkin
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT, 0200, Australia
| |
Collapse
|
217
|
Lyu L, Bi Y, Li S, Xue H, Li Y, Prusky DB. Sodium silicate prime defense responses in harvested muskmelon by regulating mitochondrial energy metabolism and reactive oxygen species production. Food Chem 2019; 289:369-376. [PMID: 30955625 DOI: 10.1016/j.foodchem.2019.03.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 12/16/2022]
Abstract
The effects of postharvest treatment with sodium silicate (Si) (100 mM) on mitochondrial ROS production and energy metabolism of the muskmelon fruits (cv. Yujinxiang) on development of defense responses to Trichothecium roseum were studied. Si treatment decreased decay severity of inoculated muskmelons, enhanced the activities of energy metabolism of key enzymes and kept the intracellular ATP at a higher level; meanwhile, Si also induced the mtROS accumulation such as H2O2 and superoxide anion. TMT-based quantitative proteomics analysis revealed that a total of 24 proteins with significant differences in abundance involved in energy metabolism, defense and stress responses, glycolytic and TCA cycle, and oxidation-reduction process. It is suggested by our study that melon fruit mitochondria, when induced by Si treatments, play a key role in priming of host resistance against T. roseum infection through the regulation of energy metabolism and ROS production in the pathogen infected muskmelon fruits.
Collapse
Affiliation(s)
- Liang Lyu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Shenge Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Huali Xue
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Yongcai Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Dov B Prusky
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China; Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Beit Dagan, Israel
| |
Collapse
|
218
|
Jones MA. Retrograde signalling as an informant of circadian timing. THE NEW PHYTOLOGIST 2019; 221:1749-1753. [PMID: 30299544 DOI: 10.1111/nph.15525] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
Contents Summary 1749 I. The circadian system is responsive to environmental change 1749 II. Photoassimilates regulate circadian timing 1750 III. Retrograde signals contribute to circadian timing 1750 IV. Conclusions 1752 Acknowledgements 1752 References 1752 SUMMARY: The circadian system comprises interlocking transcriptional-translational feedback loops that regulate gene expression and consequently modulate plant development and physiology. In order to maximize utility, the circadian system is entrained by changes in temperature and light, allowing endogenous rhythms to be synchronized with both daily and seasonal environmental change. Although a great deal of environmental information is decoded by a suite of photoreceptors, it is also becoming apparent that changes in cellular metabolism also contribute to circadian timing, through either the stimulation of metabolic pathways or the accumulation of metabolic intermediates as a consequence of environmental stress. As the source of many of these metabolic byproducts, mitochondria and chloroplasts have begun to be viewed as environmental sensors, and rapid advancement of this field is revealing the complex web of signalling pathways initiated by organelle perturbation. This review highlights recent advances in our understanding of how this metabolic regulation influences circadian timing.
Collapse
Affiliation(s)
- Matthew A Jones
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| |
Collapse
|
219
|
Avin-Wittenberg T. Autophagy and its role in plant abiotic stress management. PLANT, CELL & ENVIRONMENT 2019; 42:1045-1053. [PMID: 29998609 DOI: 10.1111/pce.13404] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/15/2018] [Accepted: 06/18/2018] [Indexed: 05/02/2023]
Abstract
Being unable to move, plants are regularly exposed to changing environmental conditions, among which various types of abiotic stress, such as heat, drought, salt, and so forth. These might have deleterious effects on plant performance and yield. Plants thus need to adapt using appropriate stress responses. One of the outcomes of abiotic stress is the need to degrade and recycle damaged proteins and organelles. Autophagy is a conserved eukaryotic mechanism functioning in the degradation of proteins, protein aggregates, and whole organelles. It was previously shown to have a role in plant abiotic stress. This review will describe the current knowledge regarding the involvement of autophagy in plant abiotic stress response, mechanisms functioning in autophagy induction during stress, and possible direction for future research.
Collapse
Affiliation(s)
- Tamar Avin-Wittenberg
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
220
|
Shapiguzov A, Vainonen JP, Hunter K, Tossavainen H, Tiwari A, Järvi S, Hellman M, Aarabi F, Alseekh S, Wybouw B, Van Der Kelen K, Nikkanen L, Krasensky-Wrzaczek J, Sipari N, Keinänen M, Tyystjärvi E, Rintamäki E, De Rybel B, Salojärvi J, Van Breusegem F, Fernie AR, Brosché M, Permi P, Aro EM, Wrzaczek M, Kangasjärvi J. Arabidopsis RCD1 coordinates chloroplast and mitochondrial functions through interaction with ANAC transcription factors. eLife 2019; 8:43284. [PMID: 30767893 PMCID: PMC6414205 DOI: 10.7554/elife.43284] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/14/2019] [Indexed: 01/17/2023] Open
Abstract
Reactive oxygen species (ROS)-dependent signaling pathways from chloroplasts and mitochondria merge at the nuclear protein RADICAL-INDUCED CELL DEATH1 (RCD1). RCD1 interacts in vivo and suppresses the activity of the transcription factors ANAC013 and ANAC017, which mediate a ROS-related retrograde signal originating from mitochondrial complex III. Inactivation of RCD1 leads to increased expression of mitochondrial dysfunction stimulon (MDS) genes regulated by ANAC013 and ANAC017. Accumulating MDS gene products, including alternative oxidases (AOXs), affect redox status of the chloroplasts, leading to changes in chloroplast ROS processing and increased protection of photosynthetic apparatus. ROS alter the abundance, thiol redox state and oligomerization of the RCD1 protein in vivo, providing feedback control on its function. RCD1-dependent regulation is linked to chloroplast signaling by 3'-phosphoadenosine 5'-phosphate (PAP). Thus, RCD1 integrates organellar signaling from chloroplasts and mitochondria to establish transcriptional control over the metabolic processes in both organelles. Most plant cells contain two types of compartments, the mitochondria and the chloroplasts, which work together to supply the chemical energy required by life processes. Genes located in another part of the cell, the nucleus, encode for the majority of the proteins found in these compartments. At any given time, the mitochondria and the chloroplasts send specific, ‘retrograde’ signals to the nucleus to turn on or off the genes they need. For example, mitochondria produce molecules known as reactive oxygen species (ROS) if they are having problems generating energy. These molecules activate several regulatory proteins that move into the nucleus and switch on MDS genes, a set of genes which helps to repair the mitochondria. Chloroplasts also produce ROS that can act as retrograde signals. It is still unclear how the nucleus integrates signals from both chloroplasts and mitochondria to ‘decide’ which genes to switch on, but a protein called RCD1 may play a role in this process. Indeed, previous studies have found that Arabidopsis plants that lack RCD1 have defects in both their mitochondria and chloroplasts. In these mutant plants, the MDS genes are constantly active and the chloroplasts have problems making ROS. To investigate this further, Shapiguzov, Vainonen et al. use biochemical and genetic approaches to study RCD1 in Arabidopsis. The experiments confirm that this protein allows a dialog to take place between the retrograde signals of both mitochondria and chloroplasts. On one hand, RCD1 binds to and inhibits the regulatory proteins that usually activate the MDS genes under the control of mitochondria. This explains why, in the absence of RCD1, the MDS genes are always active, which is ultimately disturbing how these compartments work. On the other hand, RCD1 is also found to be sensitive to the ROS that chloroplasts produce. This means that chloroplasts may be able to affect when mitochondria generate energy by regulating the protein. Finally, further experiments show that MDS genes can affect both mitochondria and chloroplasts: by influencing how these genes are regulated, RCD1 therefore acts on the two types of compartments. Overall, the work by Shapiguzov, Vainonen et al. describes a new way Arabidopsis coordinates its mitochondria and chloroplasts. Further studies will improve our understanding of how plants regulate these compartments in different environments to produce the energy they need. In practice, this may also help plant breeders create new varieties of crops that produce energy more efficiently and which better resist to stress.
Collapse
Affiliation(s)
- Alexey Shapiguzov
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Viikki Plant Science Center, University of Helsinki, Helsinki, Finland.,Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Julia P Vainonen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
| | - Kerri Hunter
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
| | - Helena Tossavainen
- Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Arjun Tiwari
- Department of Biochemistry / Molecular Plant Biology, University of Turku, Turku, Finland
| | - Sari Järvi
- Department of Biochemistry / Molecular Plant Biology, University of Turku, Turku, Finland
| | - Maarit Hellman
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Fayezeh Aarabi
- Max-Planck Institute for Molecular Plant Physiology, Potsdam, Germany
| | - Saleh Alseekh
- Max-Planck Institute for Molecular Plant Physiology, Potsdam, Germany.,Center of Plant System Biology and Biotechnology, Plovdiv, Bulgaria
| | - Brecht Wybouw
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Katrien Van Der Kelen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Lauri Nikkanen
- Department of Biochemistry / Molecular Plant Biology, University of Turku, Turku, Finland
| | - Julia Krasensky-Wrzaczek
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
| | - Nina Sipari
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Viikki Metabolomics Unit, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Markku Keinänen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Esa Tyystjärvi
- Department of Biochemistry / Molecular Plant Biology, University of Turku, Turku, Finland
| | - Eevi Rintamäki
- Department of Biochemistry / Molecular Plant Biology, University of Turku, Turku, Finland
| | - Bert De Rybel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Jarkko Salojärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Alisdair R Fernie
- Max-Planck Institute for Molecular Plant Physiology, Potsdam, Germany.,Center of Plant System Biology and Biotechnology, Plovdiv, Bulgaria
| | - Mikael Brosché
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Viikki Plant Science Center, University of Helsinki, Helsinki, Finland.,Institute of Technology, University of Tartu, Tartu, Estonia
| | - Perttu Permi
- Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland.,Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Eva-Mari Aro
- Department of Biochemistry / Molecular Plant Biology, University of Turku, Turku, Finland
| | - Michael Wrzaczek
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
| | - Jaakko Kangasjärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
| |
Collapse
|
221
|
Chen P, Liu H, Xiang H, Zhou J, Zeng Z, Chen R, Zhao S, Xiao J, Shu Z, Chen S, Lu H. Palmitic acid-induced autophagy increases reactive oxygen species via the Ca 2+/PKCα/NOX4 pathway and impairs endothelial function in human umbilical vein endothelial cells. Exp Ther Med 2019; 17:2425-2432. [PMID: 30906429 PMCID: PMC6425131 DOI: 10.3892/etm.2019.7269] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022] Open
Abstract
It is well known that the lipotoxic mechanism of palmitic acid (PA), a main constituent of triglyceride, is dependent on reactive oxygen species (ROS). Recently, it has also been reported that PA is an autophagy inducer. However, the causal association and underlying mechanism of induced autophagy and ROS in PA toxicity remain unclear. The present study demonstrates for the first time that PA-induced autophagy enhances ROS generation via activating the calcium ion/protein kinase Cα/nicotinamide adenine dinucleotide phosphate oxidase 4 (Ca2+/PKCα/NOX4) pathway in human umbilical vein endothelial cells (HUVECs). It was revealed that PA treatment resulted in a significant increase in ROS generation and autophagic activity, leading to endothelial dysfunction as indicated by downregulated nitric oxide synthesis, decreased capillary-like structure formation and damaged cell repair capability. Furthermore, PA effectively activated the Ca2+/PKCα/NOX4 pathway, which is indicative of upregulated cytosolic Ca2+ levels, activated PKCα and increased NOX4 protein expression. 3-Methyladenine was then used to inhibit autophagy, which significantly reduced PA-induced ROS generation and blocked the Ca2+/PKCα/NOX4 pathway. The endothelial dysfunction caused by PA was ameliorated by downregulating ROS generation using a NOX4 inhibitor. In conclusion, PA-induced autophagy contributes to endothelial dysfunction by increasing oxidative stress via the Ca2+/PKCα/NOX4 pathway in HUVECs.
Collapse
Affiliation(s)
- Pan Chen
- Center for Experimental Medical Research, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China.,Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Hengdao Liu
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Hong Xiang
- Center for Experimental Medical Research, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Jianda Zhou
- Department of Burns, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Zhengpeng Zeng
- Respiratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Ruifang Chen
- Center for Experimental Medical Research, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Shaoli Zhao
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Jie Xiao
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Zhihao Shu
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Shuhua Chen
- Center for Experimental Medical Research, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China.,Department of Biochemistry, School of Life Sciences of Central South University, Changsha, Hunan 410013, P.R. China
| | - Hongwei Lu
- Center for Experimental Medical Research, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China.,Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
222
|
Smirnoff N, Arnaud D. Hydrogen peroxide metabolism and functions in plants. THE NEW PHYTOLOGIST 2019; 221:1197-1214. [PMID: 30222198 DOI: 10.1111/nph.15488] [Citation(s) in RCA: 461] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/28/2018] [Indexed: 05/18/2023]
Abstract
Contents Summary 1197 I. Introduction 1198 II. Measurement and imaging of H2 O2 1198 III. H2 O2 and O2·- toxicity 1199 IV. Production of H2 O2 : enzymes and subcellular locations 1200 V. H2 O2 transport 1205 VI. Control of H2 O2 concentration: how and where? 1205 VII. Metabolic functions of H2 O2 1207 VIII. H2 O2 signalling 1207 IX. Where next? 1209 Acknowledgements 1209 References 1209 SUMMARY: Hydrogen peroxide (H2 O2 ) is produced, via superoxide and superoxide dismutase, by electron transport in chloroplasts and mitochondria, plasma membrane NADPH oxidases, peroxisomal oxidases, type III peroxidases and other apoplastic oxidases. Intracellular transport is facilitated by aquaporins and H2 O2 is removed by catalase, peroxiredoxin, glutathione peroxidase-like enzymes and ascorbate peroxidase, all of which have cell compartment-specific isoforms. Apoplastic H2 O2 influences cell expansion, development and defence by its involvement in type III peroxidase-mediated polymer cross-linking, lignification and, possibly, cell expansion via H2 O2 -derived hydroxyl radicals. Excess H2 O2 triggers chloroplast and peroxisome autophagy and programmed cell death. The role of H2 O2 in signalling, for example during acclimation to stress and pathogen defence, has received much attention, but the signal transduction mechanisms are poorly defined. H2 O2 oxidizes specific cysteine residues of target proteins to the sulfenic acid form and, similar to other organisms, this modification could initiate thiol-based redox relays and modify target enzymes, receptor kinases and transcription factors. Quantification of the sources and sinks of H2 O2 is being improved by the spatial and temporal resolution of genetically encoded H2 O2 sensors, such as HyPer and roGFP2-Orp1. These H2 O2 sensors, combined with the detection of specific proteins modified by H2 O2 , will allow a deeper understanding of its signalling roles.
Collapse
Affiliation(s)
- Nicholas Smirnoff
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Dominique Arnaud
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| |
Collapse
|
223
|
Nietzel T, Elsässer M, Ruberti C, Steinbeck J, Ugalde JM, Fuchs P, Wagner S, Ostermann L, Moseler A, Lemke P, Fricker MD, Müller-Schüssele SJ, Moerschbacher BM, Costa A, Meyer AJ, Schwarzländer M. The fluorescent protein sensor roGFP2-Orp1 monitors in vivo H 2 O 2 and thiol redox integration and elucidates intracellular H 2 O 2 dynamics during elicitor-induced oxidative burst in Arabidopsis. THE NEW PHYTOLOGIST 2019; 221:1649-1664. [PMID: 30347449 DOI: 10.1111/nph.15550] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 10/13/2018] [Indexed: 05/04/2023]
Abstract
Hydrogen peroxide (H2 O2 ) is ubiquitous in cells and at the centre of developmental programmes and environmental responses. Its chemistry in cells makes H2 O2 notoriously hard to detect dynamically, specifically and at high resolution. Genetically encoded sensors overcome persistent shortcomings, but pH sensitivity, silencing of expression and a limited concept of sensor behaviour in vivo have hampered any meaningful H2 O2 sensing in living plants. We established H2 O2 monitoring in the cytosol and the mitochondria of Arabidopsis with the fusion protein roGFP2-Orp1 using confocal microscopy and multiwell fluorimetry. We confirmed sensor oxidation by H2 O2 , show insensitivity to physiological pH changes, and demonstrated that glutathione dominates sensor reduction in vivo. We showed the responsiveness of the sensor to exogenous H2 O2 , pharmacologically-induced H2 O2 release, and genetic interference with the antioxidant machinery in living Arabidopsis tissues. Monitoring intracellular H2 O2 dynamics in response to elicitor exposure reveals the late and prolonged impact of the oxidative burst in the cytosol that is modified in redox mutants. We provided a well defined toolkit for H2 O2 monitoring in planta and showed that intracellular H2 O2 measurements only carry meaning in the context of the endogenous thiol redox systems. This opens new possibilities to dissect plant H2 O2 dynamics and redox regulation, including intracellular NADPH oxidase-mediated ROS signalling.
Collapse
Affiliation(s)
- Thomas Nietzel
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, D-48143, Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Marlene Elsässer
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, D-48143, Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
- Institute for Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Cristina Ruberti
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, D-48143, Münster, Germany
| | - Janina Steinbeck
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, D-48143, Münster, Germany
| | - José Manuel Ugalde
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Philippe Fuchs
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, D-48143, Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Stephan Wagner
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, D-48143, Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Lara Ostermann
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
- BioSC, c/o Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Anna Moseler
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Philipp Lemke
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, D-48143, Münster, Germany
| | - Mark D Fricker
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Stefanie J Müller-Schüssele
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Bruno M Moerschbacher
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, D-48143, Münster, Germany
| | - Alex Costa
- Dipartimento di Bioscienze, Università degli Studi di Milano, I-20133, Milano, Italy
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
- BioSC, c/o Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Markus Schwarzländer
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, D-48143, Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| |
Collapse
|
224
|
Abstract
Cellular homeostasis requires precise communication between various types of organelles. In particular, the communication between nucleus and semiautonomous organelles, mitochondria and chloroplasts, has received widespread attention. Communication from nucleus to other organelles is known as anterograde signaling, whereas communication from mitochondria or chloroplasts to the nucleus is known as retrograde signaling. Here we discuss methods used to study retrograde signaling in Arabidopsis thaliana. These methods may also be modified to study retrograde signaling in other plant species.
Collapse
|
225
|
Huang H, Ullah F, Zhou DX, Yi M, Zhao Y. Mechanisms of ROS Regulation of Plant Development and Stress Responses. FRONTIERS IN PLANT SCIENCE 2019; 10:800. [PMID: 31293607 PMCID: PMC6603150 DOI: 10.3389/fpls.2019.00800] [Citation(s) in RCA: 600] [Impact Index Per Article: 100.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 06/03/2019] [Indexed: 05/19/2023]
Abstract
Plants are subjected to various environmental stresses throughout their life cycle. Reactive oxygen species (ROS) play important roles in maintaining normal plant growth, and improving their tolerance to stress. This review describes the production and removal of ROS in plants, summarizes recent progress in understanding the role of ROS during plant vegetative apical meristem development, organogenesis, and abiotic stress responses, and some novel findings in recent years are discussed. More importantly, interplay between ROS and epigenetic modifications in regulating gene expression is specifically discussed. To summarize, plants integrate ROS with genetic, epigenetic, hormones and external signals to promote development and environmental adaptation.
Collapse
Affiliation(s)
- Honglin Huang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Farhan Ullah
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Ming Yi
- College of Science, Huazhong Agricultural University, Wuhan, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Yu Zhao,
| |
Collapse
|
226
|
Foyer CH, Pellny TK, Locato V, Hull J, De Gara L. Analysis of Redox Relationships in the Plant Cell Cycle: Determination of Ascorbate, Glutathione, and Poly(ADPribose)polymerase (PARP) in Plant Cell Cultures. Methods Mol Biol 2019; 1990:165-181. [PMID: 31148071 DOI: 10.1007/978-1-4939-9463-2_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Reactive oxygen species (ROS) and low molecular weight antioxidants, such as glutathione and ascorbate, are powerful signalling molecules that participate in the control of plant growth and development, and modulate progression through the mitotic cell cycle. Enhanced ROS accumulation or low levels of ascorbate or glutathione cause the cell cycle to arrest and halt progression especially through the G1 checkpoint. Plant cell suspension cultures have proved to be particularly useful tools for the study of cell cycle regulation. Here we provide effective and accurate methods for the measurement of changes in the cellular ascorbate and glutathione pools and the activities of related enzymes such poly(ADP-ribose)polymerase (PARP) during mitosis and cell expansion, particularly in cell suspension cultures. These methods can be used in studies seeking to improve current understanding of the roles of redox controls on cell division and cell expansion.
Collapse
Affiliation(s)
| | - Till K Pellny
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Vittoria Locato
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Jonathon Hull
- Faculty of Biological Sciences, University of Leeds, Leeds, UK.,Faculty Health and Applied Sciences, University of the West of England, Bristol, UK
| | - Laura De Gara
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
227
|
Schmidt RR, van Dongen JT. The ACBP1-RAP2.12 signalling hub: A new perspective on integrative signalling during hypoxia in plants. PLANT SIGNALING & BEHAVIOR 2019; 14:e1651184. [PMID: 31397636 PMCID: PMC6768276 DOI: 10.1080/15592324.2019.1651184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
During their lifetime, plants are frequently exposed to a variety of stresses which negatively impact on growth and vitality. In order to respond specifically to a given stress situation, integration of multiple signal inputs is of utmost importance. Recently, we demonstrated that recognition and adaptation to low-oxygen stress requires integration of signals from energy metabolism, lipid metabolism and oxygen availability. Low oxygen which results in an energy crisis causes a shift in lipid intermediate ratios. Binding of C18:1-CoA by ACYL-COA BINDING PROTEIN 1 (ACBP1) at the plasma membrane concomitantly leads to release and nuclear accumulation of the ERFVII transcription factor RELATED TO APETALA 2.12 (RAP2.12) which is central to the activation of anaerobic metabolism during stress. Moreover, RAP2.12 protein stability is oxygen-dependently regulated and its oxidation results in degradation by the N-end rule pathway. Here, we illuminate the concept of multiple-signal integration under hypoxia and discuss signal inputs merging at the ACBP1-ERFVII signaling hub.
Collapse
Affiliation(s)
- Romy R. Schmidt
- Institute of Biology, RWTH Aachen University, Aachen, Germany
- CONTACT Romy R. Schmidt Institute of Biology, RWTH Aachen University, I, Worringerweg 1, Aachen, Germany
| | | |
Collapse
|
228
|
Zhang H, Dong J, Zhao X, Zhang Y, Ren J, Xing L, Jiang C, Wang X, Wang J, Zhao S, Yu H. Research Progress in Membrane Lipid Metabolism and Molecular Mechanism in Peanut Cold Tolerance. FRONTIERS IN PLANT SCIENCE 2019; 10:838. [PMID: 31316538 PMCID: PMC6610330 DOI: 10.3389/fpls.2019.00838] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/12/2019] [Indexed: 05/18/2023]
Abstract
Early sowing has been extensively used in high-latitude areas to avoid drought stress during sowing; however, cold damage has become the key limiting factor of early sowing. To relieve cold stress, plants develop a series of physiological and biochemical changes and sophisticated molecular regulatory mechanisms. The biomembrane is the barrier that protects cells from injury as well as the primary place for sensing cold signals. Chilling tolerance is closely related to the composition, structure, and metabolic process of membrane lipids. This review focuses on membrane lipid metabolism and its molecular mechanism, as well as lipid signal transduction in peanut (Arachis hypogaea L.) under cold stress to build a foundation for explicating lipid metabolism regulation patterns and physiological and molecular response mechanisms during cold stress and to promote the genetic improvement of peanut cold tolerance.
Collapse
Affiliation(s)
- He Zhang
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Jiale Dong
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Xinhua Zhao
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Yumei Zhang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Jingyao Ren
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Liting Xing
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Chunji Jiang
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Xiaoguang Wang
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Jing Wang
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Shuli Zhao
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Haiqiu Yu
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, China
- *Correspondence: Haiqiu Yu,
| |
Collapse
|
229
|
Angelos E, Brandizzi F. NADPH oxidase activity is required for ER stress survival in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:1106-1120. [PMID: 30218537 PMCID: PMC6289879 DOI: 10.1111/tpj.14091] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 09/06/2018] [Accepted: 09/11/2018] [Indexed: 05/13/2023]
Abstract
In all eukaryotes, the unfolded protein response (UPR) relieves endoplasmic reticulum (ER) stress, which is a potentially lethal condition caused by the accumulation of misfolded proteins in the ER. In mammalian and yeast cells, reactive oxygen species (ROS) generated during ER stress attenuate the UPR, negatively impacting cell survival. In plants, the relationship between the UPR and ROS is less clear. Although ROS develop during ER stress, the sources of ROS linked to ER stress responses and the physiological impact of ROS generation on the survival from proteotoxic stress are yet unknown. Here we show that in Arabidopsis thaliana the respiratory burst oxidase homologs, RBOHD and RBOHF, contribute to the production of ROS during ER stress. We also demonstrate that during ER stress RBOHD and RBOHF are necessary to properly mount the adaptive UPR and overcome temporary and chronic ER stress situations. These results ascribe a cytoprotective role to RBOH-generated ROS in the defense from proteotoxic stress in an essential organelle, and support a plant-specific feature of the UPR management among eukaryotes.
Collapse
Affiliation(s)
- Evan Angelos
- MSU-DOE Plant Research Lab and Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab and Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
230
|
Tóth SZ, Lőrincz T, Szarka A. Concentration Does Matter: The Beneficial and Potentially Harmful Effects of Ascorbate in Humans and Plants. Antioxid Redox Signal 2018; 29:1516-1533. [PMID: 28974112 DOI: 10.1089/ars.2017.7125] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE Ascorbate (Asc) is an essential compound both in animals and plants, mostly due to its reducing properties, thereby playing a role in scavenging reactive oxygen species (ROS) and acting as a cofactor in various enzymatic reactions. Recent Advances: Growing number of evidence shows that excessive Asc accumulation may have negative effects on cellular functions both in humans and plants; inter alia it may negatively affect signaling mechanisms, cellular redox status, and contribute to the production of ROS via the Fenton reaction. CRITICAL ISSUES Both plants and humans tightly control cellular Asc levels, possibly via biosynthesis, transport, and degradation, to maintain them in an optimum concentration range, which, among other factors, is essential to minimize the potentially harmful effects of Asc. On the contrary, the Fenton reaction induced by a high-dose Asc treatment in humans enables a potential cancer-selective cell death pathway. FUTURE DIRECTIONS The elucidation of Asc induced cancer selective cell death mechanisms may give us a tool to apply Asc in cancer therapy. On the contrary, the regulatory mechanisms controlling cellular Asc levels are also to be considered, for example, when aiming at generating crops with elevated Asc levels.
Collapse
Affiliation(s)
- Szilvia Z Tóth
- 1 Institute of Plant Biology , Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Tamás Lőrincz
- 2 Laboratory of Biochemistry and Molecular Biology, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics , Budapest, Hungary
| | - András Szarka
- 2 Laboratory of Biochemistry and Molecular Biology, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics , Budapest, Hungary
| |
Collapse
|
231
|
Zhang Y, Lv Y, Jahan N, Chen G, Ren D, Guo L. Sensing of Abiotic Stress and Ionic Stress Responses in Plants. Int J Mol Sci 2018; 19:E3298. [PMID: 30352959 PMCID: PMC6275032 DOI: 10.3390/ijms19113298] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/21/2018] [Accepted: 10/23/2018] [Indexed: 01/30/2023] Open
Abstract
Plants need to cope with complex environments throughout their life cycle. Abiotic stresses, including drought, cold, salt and heat, can cause a reduction in plant growth and loss of crop yield. Plants sensing stress signals and adapting to adverse environments are fundamental biological problems. We review the stress sensors in stress sensing and the responses, and then discuss ionic stress signaling and the responses. During ionic stress, the calcineurin B-like proteins (CBL) and CBL-interacting protein kinases (CBL-CIPK) complex is identified as a primary element of the calcium sensor for perceiving environmental signals. The CBL-CIPK system shows specificity and variety in its response to different stresses. Obtaining a deeper understanding of stress signaling and the responses will mitigate or solve crop yield crises in extreme environments with fast-growing populations.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Yang Lv
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Noushin Jahan
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Guang Chen
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Deyong Ren
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Longbiao Guo
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| |
Collapse
|
232
|
Černý M, Habánová H, Berka M, Luklová M, Brzobohatý B. Hydrogen Peroxide: Its Role in Plant Biology and Crosstalk with Signalling Networks. Int J Mol Sci 2018; 19:E2812. [PMID: 30231521 PMCID: PMC6163176 DOI: 10.3390/ijms19092812] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/13/2018] [Accepted: 09/15/2018] [Indexed: 12/30/2022] Open
Abstract
Hydrogen peroxide (H₂O₂) is steadily gaining more attention in the field of molecular biology research. It is a major REDOX (reduction⁻oxidation reaction) metabolite and at high concentrations induces oxidative damage to biomolecules, which can culminate in cell death. However, at concentrations in the low nanomolar range, H₂O₂ acts as a signalling molecule and in many aspects, resembles phytohormones. Though its signalling network in plants is much less well characterized than are those of its counterparts in yeast or mammals, accumulating evidence indicates that the role of H₂O₂-mediated signalling in plant cells is possibly even more indispensable. In this review, we summarize hydrogen peroxide metabolism in plants, the sources and sinks of this compound and its transport via peroxiporins. We outline H₂O₂ perception, its direct and indirect effects and known targets in the transcriptional machinery. We focus on the role of H₂O₂ in plant growth and development and discuss the crosstalk between it and phytohormones. In addition to a literature review, we performed a meta-analysis of available transcriptomics data which provided further evidence for crosstalk between H₂O₂ and light, nutrient signalling, temperature stress, drought stress and hormonal pathways.
Collapse
Affiliation(s)
- Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences Mendel University in Brno, 613 00 Brno, Czech Republic.
- Phytophthora Research Centre, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
| | - Hana Habánová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences Mendel University in Brno, 613 00 Brno, Czech Republic.
- CEITEC-Central European Institute of Technology, Faculty of AgriSciences Mendel University in Brno, 613 00 Brno, Czech Republic.
- Brno Ph.D. Talent, South Moravian Centre for International Mobility, 602 00 Brno, Czech Republic.
| | - Miroslav Berka
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences Mendel University in Brno, 613 00 Brno, Czech Republic.
| | - Markéta Luklová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences Mendel University in Brno, 613 00 Brno, Czech Republic.
- CEITEC-Central European Institute of Technology, Faculty of AgriSciences Mendel University in Brno, 613 00 Brno, Czech Republic.
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences Mendel University in Brno, 613 00 Brno, Czech Republic.
- CEITEC-Central European Institute of Technology, Faculty of AgriSciences Mendel University in Brno, 613 00 Brno, Czech Republic.
- Institute of Biophysics AS CR, 613 00 Brno, Czech Republic.
| |
Collapse
|
233
|
Noctor G, Reichheld JP, Foyer CH. ROS-related redox regulation and signaling in plants. Semin Cell Dev Biol 2018; 80:3-12. [DOI: 10.1016/j.semcdb.2017.07.013] [Citation(s) in RCA: 329] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/10/2017] [Accepted: 07/13/2017] [Indexed: 12/14/2022]
|
234
|
Zhou H, Wang C, Tan T, Cai J, He J, Lin H. Patellin1 Negatively Modulates Salt Tolerance by Regulating PM Na+/H+ Antiport Activity and Cellular Redox Homeostasis in Arabidopsis. PLANT & CELL PHYSIOLOGY 2018; 59:1630-1642. [PMID: 29684208 DOI: 10.1093/pcp/pcy081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
Soil salinity significantly represses plant development and growth. Mechanisms involved sodium (Na+) extrusion and compartmentation, intracellular membrane trafficking as well as redox homeostasis regulation play important roles in plant salt tolerance. In this study, we report that Patellin1 (PATL1), a membrane trafficking-related protein, modulates salt tolerance in Arabidopsis. The T-DNA insertion mutant of PATL1 (patl1) with an elevated PATL1 transcription level displays a salt-sensitive phenotype. PATL1 partially associates with the plasma membrane (PM) and endosomal system, and might participate in regulating membrane trafficking. Interestingly, PATL1 interacts with SOS1, a PM Na+/H+ antiporter in the Salt-Overly-Sensitive (SOS) pathway, and the PM Na+/H+ antiport activity is lower in patl1 than in Col-0. Furthermore, the reactive oxygen species (ROS) content is higher in patl1 and the redox signaling of antioxidants is partially disrupted in patl1 under salt stress conditions. Artificial elimination of ROS could partially rescue the salt-sensitive phenotype of patl1. Taken together, our results indicate that PATL1 participates in plant salt tolerance by regulating Na+ transport at least in part via SOS1, and by modulating cellular redox homeostasis during salt stress.
Collapse
Affiliation(s)
- Huapeng Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Chongwu Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tinghong Tan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jingqing Cai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiaxian He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Honghui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
235
|
He F, Wang H, Li H, Su Y, Li S, Yang Y, Feng C, Yin W, Xia X. PeCHYR1, a ubiquitin E3 ligase from Populus euphratica, enhances drought tolerance via ABA-induced stomatal closure by ROS production in Populus. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1514-1528. [PMID: 29406575 PMCID: PMC6041450 DOI: 10.1111/pbi.12893] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/28/2017] [Accepted: 01/28/2018] [Indexed: 05/11/2023]
Abstract
Drought, a primary abiotic stress, seriously affects plant growth and productivity. Stomata play a vital role in regulating gas exchange and drought adaptation. However, limited knowledge exists of the molecular mechanisms underlying stomatal movement in trees. Here, PeCHYR1, a ubiquitin E3 ligase, was isolated from Populus euphratica, a model of stress adaptation in forest trees. PeCHYR1 was preferentially expressed in young leaves and was significantly induced by ABA (abscisic acid) and dehydration treatments. To study the potential biological functions of PeCHYR1, transgenic poplar 84K (Populus alba × Populus glandulosa) plants overexpressing PeCHYR1 were generated. PeCHYR1 overexpression significantly enhanced H2 O2 production and reduced stomatal aperture. Transgenic lines exhibited increased sensitivity to exogenous ABA and greater drought tolerance than that of WT (wild-type) controls. Moreover, up-regulation of PeCHYR1 promoted stomatal closure and decreased transpiration, resulting in strongly elevated WUE (water use efficiency). When exposed to drought stress, transgenic poplar maintained higher photosynthetic activity and biomass accumulation. Taken together, these results suggest that PeCHYR1 plays a crucial role in enhancing drought tolerance via ABA-induced stomatal closure caused by hydrogen peroxide (H2 O2 ) production in transgenic poplar plants.
Collapse
Affiliation(s)
- Fang He
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Hou‐Ling Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Hui‐Guang Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yanyan Su
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Shuang Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yanli Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Cong‐Hua Feng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Weilun Yin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Xinli Xia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| |
Collapse
|
236
|
Wang Y, Zhang F, Miao P, Li H, Tu Y. An Electrochemiluminescent Platform for Living Cell Oxygen Metabolism Monitoring. JOURNAL OF ANALYSIS AND TESTING 2018. [DOI: 10.1007/s41664-018-0058-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
237
|
Podgórska A, Ostaszewska-Bugajska M, Tarnowska A, Burian M, Borysiuk K, Gardeström P, Szal B. Nitrogen Source Dependent Changes in Central Sugar Metabolism Maintain Cell Wall Assembly in Mitochondrial Complex I-Defective frostbite1 and Secondarily Affect Programmed Cell Death. Int J Mol Sci 2018; 19:ijms19082206. [PMID: 30060552 PMCID: PMC6121878 DOI: 10.3390/ijms19082206] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022] Open
Abstract
For optimal plant growth, carbon and nitrogen availability needs to be tightly coordinated. Mitochondrial perturbations related to a defect in complex I in the Arabidopsis thalianafrostbite1 (fro1) mutant, carrying a point mutation in the 8-kD Fe-S subunit of NDUFS4 protein, alter aspects of fundamental carbon metabolism, which is manifested as stunted growth. During nitrate nutrition, fro1 plants showed a dominant sugar flux toward nitrogen assimilation and energy production, whereas cellulose integration in the cell wall was restricted. However, when cultured on NH4+ as the sole nitrogen source, which typically induces developmental disorders in plants (i.e., the ammonium toxicity syndrome), fro1 showed improved growth as compared to NO3− nourishing. Higher energy availability in fro1 plants was correlated with restored cell wall assembly during NH4+ growth. To determine the relationship between mitochondrial complex I disassembly and cell wall-related processes, aspects of cell wall integrity and sugar and reactive oxygen species signaling were analyzed in fro1 plants. The responses of fro1 plants to NH4+ treatment were consistent with the inhibition of a form of programmed cell death. Resistance of fro1 plants to NH4+ toxicity coincided with an absence of necrotic lesion in plant leaves.
Collapse
Affiliation(s)
- Anna Podgórska
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland.
| | - Monika Ostaszewska-Bugajska
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland.
| | - Agata Tarnowska
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland.
| | - Maria Burian
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland.
| | - Klaudia Borysiuk
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland.
| | - Per Gardeström
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90187 Umeå, Sweden, .
| | - Bożena Szal
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland.
| |
Collapse
|
238
|
Zandalinas SI, Mittler R. ROS-induced ROS release in plant and animal cells. Free Radic Biol Med 2018; 122:21-27. [PMID: 29203327 DOI: 10.1016/j.freeradbiomed.2017.11.028] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/27/2017] [Accepted: 11/30/2017] [Indexed: 01/08/2023]
Abstract
Reactive oxygen species (ROS) play a key signaling role in plant and animal cells. Among the many cellular mechanisms used to generate and transduce ROS signals, ROS-induced ROS release (RIRR) is emerging as an important pathway involved in different human pathologies and plant responses to environmental stress. RIRR is a process in which one cellular compartment or organelle generates or releases ROS, triggering the enhanced production or release of ROS by another compartment or organelle. It was initially described in animal cells and proposed to mediate mitochondria-to-mitochondria communication, but later expanded to include communication between mitochondria and plasma membrane-localized NADPH oxidases. In plants a process of RIRR was demonstrated to mediate long distance rapid systemic signaling in response to biotic and abiotic stress. This process is thought to involve the enhanced production of ROS by one cell that triggers the enhanced production of ROS by a neighboring cell in a process that propagates the enhanced "ROS production state" all the way from one part of the plant to another. In contrast to the intracellular nature of the RIRR process of animal cells, the plant RIRR process is therefore primarily studied at the cell-to-cell communication level. Studies on intracellular (organelle-to-organelle, or organelle-to-NADPH oxidase) RIRR pathways are very scarce in plants, whereas studies on cell-to-cell RIRR are very scarce in animals. Here we will attempt to highlight what is known in both systems and what each system can learn from the other.
Collapse
Affiliation(s)
- Sara I Zandalinas
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203-5017, USA
| | - Ron Mittler
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203-5017, USA.
| |
Collapse
|
239
|
Czarnocka W, Karpiński S. Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses. Free Radic Biol Med 2018; 122:4-20. [PMID: 29331649 DOI: 10.1016/j.freeradbiomed.2018.01.011] [Citation(s) in RCA: 313] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/17/2017] [Accepted: 01/09/2018] [Indexed: 01/11/2023]
Abstract
In the natural environment, plants are exposed to a variety of biotic and abiotic stress conditions that trigger rapid changes in the production and scavenging of reactive oxygen species (ROS). The production and scavenging of ROS is compartmentalized, which means that, depending on stimuli type, they can be generated and eliminated in different cellular compartments such as the apoplast, plasma membrane, chloroplasts, mitochondria, peroxisomes, and endoplasmic reticulum. Although the accumulation of ROS is generally harmful to cells, ROS play an important role in signaling pathways that regulate acclimatory and defense responses in plants, such as systemic acquired acclimation (SAA) and systemic acquired resistance (SAR). However, high accumulations of ROS can also trigger redox homeostasis disturbance which can lead to cell death, and in consequence, to a limitation in biomass and yield production. Different ROS have various half-lifetimes and degrees of reactivity toward molecular components such as lipids, proteins, and nucleic acids. Thus, they play different roles in intra- and extra-cellular signaling. Despite their possible damaging effect, ROS should mainly be considered as signaling molecules that regulate local and systemic acclimatory and defense responses. Over the past two decades it has been proven that ROS together with non-photochemical quenching (NPQ), hormones, Ca2+ waves, and electrical signals are the main players in SAA and SAR, two physiological processes essential for plant survival and productivity in unfavorable conditions.
Collapse
Affiliation(s)
- Weronika Czarnocka
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, 02-776 Warsaw, Poland; Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, 02-776 Warsaw, Poland
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, 02-776 Warsaw, Poland; The Plant Breeding and Acclimatization Institute (IHAR) - National Research Institute, Radzików, 05-870 Błonie, Poland.
| |
Collapse
|
240
|
Mullineaux PM, Exposito-Rodriguez M, Laissue PP, Smirnoff N. ROS-dependent signalling pathways in plants and algae exposed to high light: Comparisons with other eukaryotes. Free Radic Biol Med 2018; 122:52-64. [PMID: 29410363 DOI: 10.1016/j.freeradbiomed.2018.01.033] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/27/2018] [Accepted: 01/31/2018] [Indexed: 01/09/2023]
Abstract
Like all aerobic organisms, plants and algae co-opt reactive oxygen species (ROS) as signalling molecules to drive cellular responses to changes in their environment. In this respect, there is considerable commonality between all eukaryotes imposed by the constraints of ROS chemistry, similar metabolism in many subcellular compartments, the requirement for a high degree of signal specificity and the deployment of thiol peroxidases as transducers of oxidising equivalents to regulatory proteins. Nevertheless, plants and algae carry out specialised signalling arising from oxygenic photosynthesis in chloroplasts and photoautotropism, which often induce an imbalance between absorption of light energy and the capacity to use it productively. A key means of responding to this imbalance is through communication of chloroplasts with the nucleus to adjust cellular metabolism. Two ROS, singlet oxygen (1O2) and hydrogen peroxide (H2O2), initiate distinct signalling pathways when photosynthesis is perturbed. 1O2, because of its potent reactivity means that it initiates but does not transduce signalling. In contrast, the lower reactivity of H2O2 means that it can also be a mobile messenger in a spatially-defined signalling pathway. How plants translate a H2O2 message to bring about changes in gene expression is unknown and therefore, we draw on information from other eukaryotes to propose a working hypothesis. The role of these ROS generated in other subcellular compartments of plant cells in response to HL is critically considered alongside other eukaryotes. Finally, the responses of animal cells to oxidative stress upon high irradiance exposure is considered for new comparisons between plant and animal cells.
Collapse
Affiliation(s)
- Philip M Mullineaux
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK.
| | | | | | - Nicholas Smirnoff
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
241
|
Yeung E, van Veen H, Vashisht D, Sobral Paiva AL, Hummel M, Rankenberg T, Steffens B, Steffen-Heins A, Sauter M, de Vries M, Schuurink RC, Bazin J, Bailey-Serres J, Voesenek LACJ, Sasidharan R. A stress recovery signaling network for enhanced flooding tolerance in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2018; 115:E6085-E6094. [PMID: 29891679 PMCID: PMC6042063 DOI: 10.1073/pnas.1803841115] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abiotic stresses in plants are often transient, and the recovery phase following stress removal is critical. Flooding, a major abiotic stress that negatively impacts plant biodiversity and agriculture, is a sequential stress where tolerance is strongly dependent on viability underwater and during the postflooding period. Here we show that in Arabidopsis thaliana accessions (Bay-0 and Lp2-6), different rates of submergence recovery correlate with submergence tolerance and fecundity. A genome-wide assessment of ribosome-associated transcripts in Bay-0 and Lp2-6 revealed a signaling network regulating recovery processes. Differential recovery between the accessions was related to the activity of three genes: RESPIRATORY BURST OXIDASE HOMOLOG D, SENESCENCE-ASSOCIATED GENE113, and ORESARA1, which function in a regulatory network involving a reactive oxygen species (ROS) burst upon desubmergence and the hormones abscisic acid and ethylene. This regulatory module controls ROS homeostasis, stomatal aperture, and chlorophyll degradation during submergence recovery. This work uncovers a signaling network that regulates recovery processes following flooding to hasten the return to prestress homeostasis.
Collapse
Affiliation(s)
- Elaine Yeung
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Hans van Veen
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Divya Vashisht
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Ana Luiza Sobral Paiva
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91509-900 Brazil
| | - Maureen Hummel
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, CA 92521
| | - Tom Rankenberg
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Bianka Steffens
- Plant Physiology, Philipps University, 35032 Marburg, Germany
| | - Anja Steffen-Heins
- Institute of Human Nutrition and Food Science, Kiel University, 24118 Kiel, Germany
| | - Margret Sauter
- Plant Developmental Biology and Plant Physiology, Kiel University, 24118 Kiel, Germany
| | - Michel de Vries
- Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Robert C Schuurink
- Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Jérémie Bazin
- IPS2, Institute of Plant Science-Paris Saclay (CNRS, Institut National de la Recherche Agronomique), University of Paris-Saclay, 91405 Orsay, France
| | - Julia Bailey-Serres
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands;
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, CA 92521
| | - Laurentius A C J Voesenek
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Rashmi Sasidharan
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands;
| |
Collapse
|
242
|
Crawford T, Lehotai N, Strand Å. The role of retrograde signals during plant stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2783-2795. [PMID: 29281071 DOI: 10.1093/jxb/erx481] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/11/2017] [Indexed: 05/23/2023]
Abstract
Chloroplast and mitochondria not only provide the energy to the plant cell but due to the sensitivity of organellar processes to perturbations caused by abiotic stress, they are also key cellular sensors of environmental fluctuations. Abiotic stresses result in reduced photosynthetic efficiency and thereby reduced energy supply for cellular processes. Thus, in order to acclimate to stress, plants must re-program gene expression and cellular metabolism to divert energy from growth and developmental processes to stress responses. To restore cellular energy homeostasis following exposure to stress, the activities of the organelles must be tightly co-ordinated with the transcriptional re-programming in the nucleus. Thus, communication between the organelles and the nucleus, so-called retrograde signalling, is essential to direct the energy use correctly during stress exposure. Stress-triggered retrograde signals are mediated by reactive oxygen species and metabolites including β-cyclocitral, MEcPP (2-C-methyl-d-erythritol 2,4-cyclodiphosphate), PAP (3'-phosphoadenosine 5'-phosphate), and intermediates of the tetrapyrrole biosynthesis pathway. However, for the plant cell to respond optimally to environmental stress, these stress-triggered retrograde signalling pathways must be integrated with the cytosolic stress signalling network. We hypothesize that the Mediator transcriptional co-activator complex may play a key role as a regulatory hub in the nucleus, integrating the complex stress signalling networks originating in different cellular compartments.
Collapse
Affiliation(s)
- Tim Crawford
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Nóra Lehotai
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Åsa Strand
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| |
Collapse
|
243
|
Lu Z, Chang L, Du Q, Huang Y, Zhang X, Wu X, Zhang J, Li R, Zhang Z, Zhang W, Zhao X, Tong D. Arctigenin Induces an Activation Response in Porcine Alveolar Macrophage Through TLR6-NOX2-MAPKs Signaling Pathway. Front Pharmacol 2018; 9:475. [PMID: 29867481 PMCID: PMC5962800 DOI: 10.3389/fphar.2018.00475] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/23/2018] [Indexed: 01/08/2023] Open
Abstract
Arctigenin (ARG), one of the most active ingredients abstracted from seeds of Arctium lappa L., has been proved to exert promising biological activities such as immunomodulatory, anti-viral, and anti-cancer etc. However, the mechanism behind its immunomodulatory function still remains elusive to be further investigated. In this study, we found that ARG had no significant effects on the cell proliferation in both porcine alveolar macrophage cell line (3D4/21) and primary porcine derived alveolar macrophage. It remarkably increased the expression and secretion of the two cytokines including tumor necrosis factor-alpha (TNF-α) and transforming growth factor beta1 (TGF-β1) in a dose-dependent manner with the concomitant enhancement of phagocytosis, which are the indicators of macrophage activation. ARG also elevated the intracellular reactive oxygen species (ROS) production by activating NOX2-based NADPH oxidase. Furthermore, inhibition of ROS generation by diphenyliodonium and apocynin significantly suppressed ARG-induced cytokine secretion and phagocytosis increase, indicating the requirement of ROS for the porcine alveolar macrophage activation. In addition, TLR6-My88 excitation, p38 MAPK and ERK1/2 phosphorylation were all involved in the process. As blocking TLR6 receptor dramatically attenuated the NOX2 oxidase activation, cytokine secretion and phagocytosis increase. Inhibiting ROS generation almost abolished p38 and ERK1/2 phosphorylation, and the cytokine secretion could also be remarkably reduced by p38 and ERK1/2 inhibitors (SB203580 and UO126). Our finding gave a new insight of understanding that ARG could improve the immune-function of porcine alveolar macrophages through TLR6-NOX2 oxidase-MAPKs signaling pathway.
Collapse
Affiliation(s)
- Zheng Lu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Lingling Chang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qian Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiujuan Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xingchen Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jie Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Ruizhen Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zelin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Wenlong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiaomin Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
244
|
Suppression of External NADPH Dehydrogenase-NDB1 in Arabidopsis thaliana Confers Improved Tolerance to Ammonium Toxicity via Efficient Glutathione/Redox Metabolism. Int J Mol Sci 2018; 19:ijms19051412. [PMID: 29747392 PMCID: PMC5983774 DOI: 10.3390/ijms19051412] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 01/01/2023] Open
Abstract
Environmental stresses, including ammonium (NH4+) nourishment, can damage key mitochondrial components through the production of surplus reactive oxygen species (ROS) in the mitochondrial electron transport chain. However, alternative electron pathways are significant for efficient reductant dissipation in mitochondria during ammonium nutrition. The aim of this study was to define the role of external NADPH-dehydrogenase (NDB1) during oxidative metabolism of NH4+-fed plants. Most plant species grown with NH4+ as the sole nitrogen source experience a condition known as “ammonium toxicity syndrome”. Surprisingly, transgenic Arabidopsis thaliana plants suppressing NDB1 were more resistant to NH4+ treatment. The NDB1 knock-down line was characterized by milder oxidative stress symptoms in plant tissues when supplied with NH4+. Mitochondrial ROS accumulation, in particular, was attenuated in the NDB1 knock-down plants during NH4+ treatment. Enhanced antioxidant defense, primarily concerning the glutathione pool, may prevent ROS accumulation in NH4+-grown NDB1-suppressing plants. We found that induction of glutathione peroxidase-like enzymes and peroxiredoxins in the NDB1-surpressing line contributed to lower ammonium-toxicity stress. The major conclusion of this study was that NDB1 suppression in plants confers tolerance to changes in redox homeostasis that occur in response to prolonged ammonium nutrition, causing cross tolerance among plants.
Collapse
|
245
|
Broda M, Millar AH, Van Aken O. Mitophagy: A Mechanism for Plant Growth and Survival. TRENDS IN PLANT SCIENCE 2018; 23:434-450. [PMID: 29576328 DOI: 10.1016/j.tplants.2018.02.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/13/2018] [Accepted: 02/23/2018] [Indexed: 05/17/2023]
Abstract
Mitophagy is a conserved cellular process that is important for autophagic removal of damaged mitochondria to maintain a healthy mitochondrial population. Mitophagy also appears to occur in plants and has roles in development, stress response, senescence, and programmed cell death. However, many of the genes that control mitophagy in yeast and animal cells are absent from plants, and no plant proteins marking defunct mitochondria for autophagic degradation are yet known. New insights implicate general autophagy-related proteins in mitophagy, affecting the senescence of plant tissues. Mitophagy control and its importance for energy metabolism, survival, signaling, and cell death in plants are discussed. Furthermore, we suggest mitochondrial membrane proteins containing ATG8-interacting motifs, which might serve as mitophagy receptor proteins in plant mitochondria.
Collapse
Affiliation(s)
- Martyna Broda
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia, Australia
| | - A Harvey Millar
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia, Australia
| | - Olivier Van Aken
- Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden.
| |
Collapse
|
246
|
Abstract
As fixed organisms, plants are especially affected by changes in their environment and have consequently evolved extensive mechanisms for acclimation and adaptation. Initially considered by-products from aerobic metabolism, reactive oxygen species (ROS) have emerged as major regulatory molecules in plants and their roles in early signaling events initiated by cellular metabolic perturbation and environmental stimuli are now established. Here, we review recent advances in ROS signaling. Compartment-specific and cross-compartmental signaling pathways initiated by the presence of ROS are discussed. Special attention is dedicated to established and hypothetical ROS-sensing events. The roles of ROS in long-distance signaling, immune responses, and plant development are evaluated. Finally, we outline the most challenging contemporary questions in the field of plant ROS biology and the need to further elucidate mechanisms allowing sensing, signaling specificity, and coordination of multiple signals.
Collapse
Affiliation(s)
- Cezary Waszczak
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland;
| | | | - Jaakko Kangasjärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
247
|
Kanojia A, Dijkwel PP. Abiotic Stress Responses are Governed by Reactive Oxygen Species and Age. ANNUAL PLANT REVIEWS ONLINE 2018:295-326. [PMID: 0 DOI: 10.1002/9781119312994.apr0611] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|
248
|
Zhang H, Zhang TT, Liu H, Shi DY, Wang M, Bie XM, Li XG, Zhang XS. Thioredoxin-Mediated ROS Homeostasis Explains Natural Variation in Plant Regeneration. PLANT PHYSIOLOGY 2018; 176:2231-2250. [PMID: 28724620 PMCID: PMC5841725 DOI: 10.1104/pp.17.00633] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 07/17/2017] [Indexed: 05/18/2023]
Abstract
Plant regeneration is fundamental to basic research and agricultural applications. The regeneration capacity of plants varies largely in different genotypes, but the reason for this variation remains elusive. Here, we identified a novel thioredoxin DCC1 in determining the capacity of shoot regeneration among Arabidopsis (Arabidopsis thaliana) natural variation. Loss of function of DCC1 resulted in inhibited shoot regeneration. DCC1 was expressed mainly in the inner tissues of the callus and encoded a functional thioredoxin that was localized in the mitochondria. DCC1 protein interacted directly with CARBONIC ANHYDRASE2 (CA2), which is an essential subunit of the respiratory chain NADH dehydrogenase complex (Complex I). DCC1 regulated Complex I activity via redox modification of CA2 protein. Mutation of DCC1 or CA2 led to reduced Complex I activity and triggered mitochondrial reactive oxygen species (ROS) production. The increased ROS level regulated shoot regeneration by repressing expression of the genes involved in multiple pathways. Furthermore, linkage disequilibrium analysis indicated that DCC1 was a major determinant of the natural variation in shoot regeneration among Arabidopsis ecotypes. Thus, our study uncovers a novel regulatory mechanism by which thioredoxin-dependent redox modification regulates de novo shoot initiation via the modulation of ROS homeostasis and provides new insights into improving the capacity of plant regeneration.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Ting Ting Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Hui Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - De Ying Shi
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Meng Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Xiao Min Bie
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Xing Guo Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
249
|
Wagner S, Van Aken O, Elsässer M, Schwarzländer M. Mitochondrial Energy Signaling and Its Role in the Low-Oxygen Stress Response of Plants. PLANT PHYSIOLOGY 2018; 176:1156-1170. [PMID: 29298823 PMCID: PMC5813528 DOI: 10.1104/pp.17.01387] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/29/2017] [Indexed: 05/07/2023]
Abstract
Cellular responses to low-oxygen stress and to respiratory inhibitors share common mitochondrial energy signaling pathways.
Collapse
Affiliation(s)
- Stephan Wagner
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-Universität Münster, 48143 Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, 53113 Bonn, Germany
| | | | - Marlene Elsässer
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-Universität Münster, 48143 Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, 53113 Bonn, Germany
- Institute for Cellular and Molecular Botany (IZMB), Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-Universität Münster, 48143 Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, 53113 Bonn, Germany
| |
Collapse
|
250
|
Demidchik V, Tyutereva EV, Voitsekhovskaja OV. The role of ion disequilibrium in induction of root cell death and autophagy by environmental stresses. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:28-46. [PMID: 32291019 DOI: 10.1071/fp16380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/09/2016] [Indexed: 05/26/2023]
Abstract
Environmental stresses such as salinity, drought, oxidants, heavy metals, hypoxia, extreme temperatures and others can induce autophagy and necrosis-type programmed cell death (PCD) in plant roots. These reactions are accompanied by the generation of reactive oxygen species (ROS) and ion disequilibrium, which is induced by electrolyte/K+ leakage through ROS-activated ion channels, such as the outwardly-rectifying K+ channel GORK and non-selective cation channels. Here, we discuss mechanisms of the stress-induced ion disequilibrium and relate it with ROS generation and onset of morphological, biochemical and genetic symptoms of autophagy and PCD in roots. Based on our own data and that in the literature, we propose a hypothesis on the induction of autophagy and PCD in roots by loss of cytosolic K+. To support this, we present data showing that in conditions of salt stress-induced autophagy, gork1-1 plants lacking root K+ efflux channel have fewer autophagosomes compared with the wild type. Overall, literature analyses and presented data strongly suggest that stress-induced root autophagy and PCD are controlled by the level of cytosolic potassium and ROS.
Collapse
Affiliation(s)
- Vadim Demidchik
- Laboratory of Plant Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova 2, 197376St Petersburg, Russia
| | - Elena V Tyutereva
- Laboratory of Plant Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova 2, 197376St Petersburg, Russia
| | - Olga V Voitsekhovskaja
- Laboratory of Plant Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova 2, 197376St Petersburg, Russia
| |
Collapse
|