201
|
Xiao L, Tan H, Zhang L. Artemisia annua glandular secretory trichomes: the biofactory of antimalarial agent artemisinin. Sci Bull (Beijing) 2016. [DOI: 10.1007/s11434-015-0980-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
202
|
Chakrabarty D, Chauhan PS, Chauhan AS, Indoliya Y, Lavania UC, Nautiyal CS. De novo assembly and characterization of root transcriptome in two distinct morphotypes of vetiver, Chrysopogon zizaniodes (L.) Roberty. Sci Rep 2015; 5:18630. [PMID: 26679063 PMCID: PMC4683516 DOI: 10.1038/srep18630] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/19/2015] [Indexed: 11/21/2022] Open
Abstract
Vetiver, a perennial C4 grass, has long been known for its multifarious uses in perfumery, medicine and environmental protection. Two distinct vetiver morphotypes have been identified in India, i.e., A. North Indian type characterized by thick and smooth fast growing roots that produce superior quality of laevorotatory oil; and B. South Indian type with more number of thin and hairy roots that produce inferior quality of dextrorotatory oil. The two morphotypes were targeted for transcriptome analysis to understand the contribution of genetic background on oil quality and root morphology. Sample A showed enhanced activity of flavonoid and terpenoid biosynthesis related genes, i.e. ERF, MYB, bHLH, bZIP and WRKY. Interestingly, expression analysis revealed that the genes involved in sesquiterpene biosynthesis pathway were up regulated in Sample A. Moreover, some of the genes involved in mevalonate pathway of sesquiterpene biosynthesis were unique to Sample A. Our results also demonstrated several transcripts involved in root development and hormonal regulation being up regulated in Sample A. To validate gene expression results of RNA-seq data, 20 transcripts were validated by qRT-PCR experiment. The present study provided an important start point for further discovery of genes related to root oil quality in different ecotypes of vetiver.
Collapse
Affiliation(s)
- Debasis Chakrabarty
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226 001, India
| | - Puneet Singh Chauhan
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226 001, India
| | | | - Yuvraj Indoliya
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226 001, India
| | | | | |
Collapse
|
203
|
Yan C, Xie D. Jasmonate in plant defence: sentinel or double agent? PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1233-40. [PMID: 26096226 DOI: 10.1111/pbi.12417] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/07/2015] [Accepted: 05/13/2015] [Indexed: 05/21/2023]
Abstract
Plants and their biotic enemies, such as microbial pathogens and herbivorous insects, are engaged in a desperate battle which would determine their survival-death fate. Plants have evolved efficient and sophisticated systems to defend against such attackers. In recent years, significant progress has been made towards a comprehensive understanding of inducible defence system mediated by jasmonate (JA), a vital plant hormone essential for plant defence responses and developmental processes. This review presents an overview of JA action in plant defences and discusses how microbial pathogens evade plant defence system through hijacking the JA pathway.
Collapse
Affiliation(s)
- Chun Yan
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Daoxin Xie
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
204
|
Zhang X, Yan F, Tang Y, Yuan Y, Deng W, Li Z. Auxin Response Gene SlARF3 Plays Multiple Roles in Tomato Development and is Involved in the Formation of Epidermal Cells and Trichomes. PLANT & CELL PHYSIOLOGY 2015; 56:2110-24. [PMID: 26412778 DOI: 10.1093/pcp/pcv136] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 09/17/2015] [Indexed: 05/24/2023]
Abstract
The auxin response factor (ARF) genes encode a large family of proteins involved in auxin signaling transduction. SlARF3, a member of the ARF gene family, encodes a protein containing two conserved domains, B3 and ARF, and lacking an Aux/IAA domain. Expression analysis showed that SlARF3 has a particularly high expression level in trichomes. In situ hybridization also detected the SlARF3 transcripts in epidermal pavement cells of leaves. The physiological function of SlARF3 was studied by using the RNA interference (RNAi) strategy. SlARF3-down-regulated plants exhibited decreased density of epidermal pavement cells and obviously reduced density of type I, V and VI trichomes of leaves, which indicates the important role of SlARF3 in the formation of trichomes and epidermal cells in tomato. The number of shoot xylem cells was also decreased in SlARF3-down-regulated lines. Furthermore, RNA-sequencing (RNA-Seq) analysis identified 51 differentially expressed genes (DEGs) belonging to 14 transcription factor (TF) families, such as MYB, bHLH, WD40 and C2H2 zinc finger. Twenty-seven DEGs were involved in the metabolism and signaling transduction of phytohormones, such as auxin, ethylene and gibberellin. These results indicated the important roles of the TFs and hormones in auxin-dependent transcriptional regulation of trichome formation in tomato. Taken together, our results demonstrate that SlARF3 plays an important role in the formation of epidermal cells and trichomes and reveal novel and specific functions for ARFs in tomato developmental processes.
Collapse
Affiliation(s)
- Xiaolan Zhang
- Genetic Engineering Research Center, Key Laboratory of Functional Gene and Regulation Technologies under Chongqing Municipal Education Commission, School of Life Science, Chongqing University, Chongging 400030, PR China These authors contributed equally to this work
| | - Fang Yan
- Genetic Engineering Research Center, Key Laboratory of Functional Gene and Regulation Technologies under Chongqing Municipal Education Commission, School of Life Science, Chongqing University, Chongging 400030, PR China These authors contributed equally to this work
| | - Yuwei Tang
- Genetic Engineering Research Center, Key Laboratory of Functional Gene and Regulation Technologies under Chongqing Municipal Education Commission, School of Life Science, Chongqing University, Chongging 400030, PR China
| | - Yujin Yuan
- Genetic Engineering Research Center, Key Laboratory of Functional Gene and Regulation Technologies under Chongqing Municipal Education Commission, School of Life Science, Chongqing University, Chongging 400030, PR China
| | - Wei Deng
- Genetic Engineering Research Center, Key Laboratory of Functional Gene and Regulation Technologies under Chongqing Municipal Education Commission, School of Life Science, Chongqing University, Chongging 400030, PR China
| | - Zhengguo Li
- Genetic Engineering Research Center, Key Laboratory of Functional Gene and Regulation Technologies under Chongqing Municipal Education Commission, School of Life Science, Chongqing University, Chongging 400030, PR China
| |
Collapse
|
205
|
Santoro MV, Cappellari LR, Giordano W, Banchio E. Plant growth-promoting effects of native Pseudomonas strains on Mentha piperita (peppermint): an in vitro study. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:1218-1226. [PMID: 26012535 DOI: 10.1111/plb.12351] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 05/19/2015] [Indexed: 06/04/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) affect growth of host plants through various direct and indirect mechanisms. Three native PGPR (Pseudomonas putida) strains isolated from rhizospheric soil of a Mentha piperita (peppermint) crop field near Córdoba, Argentina, were characterised and screened in vitro for plant growth-promoting characteristics, such as indole-3-acetic acid (IAA) production, phosphate solubilisation and siderophore production, effects of direct inoculation on plant growth parameters (shoot fresh weight, root dry weight, leaf number, node number) and accumulation and composition of essential oils. Each of the three native strains was capable of phosphate solubilisation and IAA production. Only strain SJ04 produced siderophores. Plants directly inoculated with the native PGPR strains showed increased shoot fresh weight, glandular trichome number, ramification number and root dry weight in comparison with controls. The inoculated plants had increased essential oil yield (without alteration of essential oil composition) and biosynthesis of major essential oil components. Native strains of P. putida and other PGPR have clear potential as bio-inoculants for improving productivity of aromatic crop plants. There have been no comparative studies on the role of inoculation with native strains on plant growth and secondary metabolite production (specially monoterpenes). Native bacterial isolates are generally preferable for inoculation of crop plants because they are already adapted to the environment and have a competitive advantage over non-native strains.
Collapse
Affiliation(s)
- M V Santoro
- Dpto. Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, Rio Cuarto, Argentina
| | - L R Cappellari
- Dpto. Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, Rio Cuarto, Argentina
| | - W Giordano
- Dpto. Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, Rio Cuarto, Argentina
| | - E Banchio
- Dpto. Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, Rio Cuarto, Argentina
| |
Collapse
|
206
|
Yuan Z, Zhang D. Roles of jasmonate signalling in plant inflorescence and flower development. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:44-51. [PMID: 26125498 DOI: 10.1016/j.pbi.2015.05.024] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 05/21/2023]
Abstract
Development of inflorescences and flowers in plants is controlled by the combined action of environmental and genetic signals. Investigations reveal that the phytohormone jasmonate (JA) plays a critical function in plant reproduction such as male fertility, sex determination and seed maturation. Here, we review recent progress on JA synthesis, signalling, the interplay between JAs and other hormones, and regulatory network of JA in controlling the development of inflorescence, flower and the male organ. The conserved and diversified roles of JAs in meristem transition and specification of flower organ identity and number, and multiple regulatory networks of JAs in stamen development are highlighted. Further, this review provides perspectives on future research endeavors to elucidate mechanisms underlying JAs homeostasis and transport during plant reproductive development.
Collapse
Affiliation(s)
- Zheng Yuan
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China; Key Laboratory of Crop Marker-Assisted Breeding of Huaian Municipality, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaian Normal University, Jiangsu 223300, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China; School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia 5064, Australia; Key Laboratory of Crop Marker-Assisted Breeding of Huaian Municipality, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaian Normal University, Jiangsu 223300, China.
| |
Collapse
|
207
|
Coppola M, Corrado G, Coppola V, Cascone P, Martinelli R, Digilio MC, Pennacchio F, Rao R. Prosystemin Overexpression in Tomato Enhances Resistance to Different Biotic Stresses by Activating Genes of Multiple Signaling Pathways. PLANT MOLECULAR BIOLOGY REPORTER 2015; 33:1270-1285. [PMID: 26339120 PMCID: PMC4551541 DOI: 10.1007/s11105-014-0834-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Systemin is a signal peptide that promotes the response to wounding and herbivore attack in tomato. This 18-amino acid peptide is released from a larger precursor, prosystemin. To study the role of systemin as a modulator of defense signaling, we generated tomato (Solanum lycopersicum) transgenic plants that overexpress the prosystemin cDNA. We carried out a transcriptomic analysis comparing two different transgenic events with the untransformed control. The Gene Ontology categories of the 503 differentially expressed genes indicated that several biological functions were affected. Systemin promotes the expression of an array of defense genes that are dependent on different signaling pathways and it downregulates genes connected with carbon fixation and carbohydrate metabolism. These alterations present a degree of overlap with the response programs that are classically associated to pathogen defense or abiotic stress protection, implying that end products of the systemin signaling pathway may be more diverse than expected. We show also that the observed transcriptional modifications have a relevant functional outcome, since transgenic lines were more resistant against very different biotic stressors such as aphids (Macrosiphum euphorbiae), phytopathogenic fungi (Botrytis cinerea and Alternaria alternata) and phytophagous larvae (Spodoptera littoralis). Our work demonstrated that in tomato the modulation of a single gene is sufficient to provide a wide resistance against stress by boosting endogenous defense pathways. Overall, the data provided evidence that the systemin peptide might serve as DAMP signal in tomato, acting as a broad indicator of tissue integrity.
Collapse
Affiliation(s)
- Mariangela Coppola
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, 80055 Portici, NA Italy
| | - Giandomenico Corrado
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, 80055 Portici, NA Italy
| | - Valentina Coppola
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, 80055 Portici, NA Italy
| | | | | | - Maria Cristina Digilio
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, 80055 Portici, NA Italy
| | - Francesco Pennacchio
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, 80055 Portici, NA Italy
| | - Rosa Rao
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, 80055 Portici, NA Italy
| |
Collapse
|
208
|
Liao Y, Wei J, Xu Y, Zhang Z. Cloning, expression and characterization of COI1 gene (AsCOI1) from Aquilaria sinensis (Lour.) Gilg. Acta Pharm Sin B 2015; 5:473-81. [PMID: 26579478 PMCID: PMC4629437 DOI: 10.1016/j.apsb.2015.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 05/23/2015] [Accepted: 05/26/2015] [Indexed: 11/25/2022] Open
Abstract
Aquilaria sinensis, a kind of typically wounding-induced medicinal plant with a great economical value, is widely used in the production of traditional Chinese medicine, perfume and incense. Coronatine-insensitive protein 1 (COI1) acts as a receptor in jasmonate (JA) signaling pathway, and regulates the expression of JA-responsive genes in plant defense. However, little is known about the COI1 gene in A. sinensis. Here, based on the transcriptome data, a full-length cDNA sequence of COI1 (termed as AsCOI1) was firstly cloned by RT–PCR and rapid-amplification of cDNA ends (RACE) strategies. AsCOI1 is 2330 bp in length (GenBank accession No. KM189194), and contains a complete open frame (ORF) of 1839 bp. The deduced protein was composed of 612 amino acids, with a predicted molecular weight of 68.93 kDa and an isoelectric point of 6.56, and was predicted to possess F-box and LRRs domains. Combining bioinformatics prediction with subcellular localization experiment analysis, AsCOI1 was appeared to locate in nucleus. AsCOI1 gene was highly expressed in roots and stems, the major organs of agarwood formation. Methyl jasmonate (MeJA), mechanical wounding and heat stress could significantly induce the expression level of AsCOI1 gene. AsCOI1 is an early wound-responsive gene, and it likely plays some role in agarwood formation.
Collapse
|
209
|
Shyu C, Brutnell TP. Growth-defence balance in grass biomass production: the role of jasmonates. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4165-76. [PMID: 25711704 DOI: 10.1093/jxb/erv011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Growth-defence balance is the selective partitioning of resources between biomass accumulation and defence responses. Although it is generally postulated that reallocation of limited carbon pools drives the antagonism between growth and defence, little is known about the mechanisms underlying this regulation. Jasmonates (JAs) are a group of oxylipins that are required for a broad range of responses from defence against insects to reproductive growth. Application of JAs to seedlings also leads to inhibited growth and repression of photosynthesis, suggesting a role for JAs in regulating growth-defence balance. The majority of JA research uses dicot models such as Arabidopsis and tomato, while understanding of JA biology in monocot grasses, which comprise most bioenergy feedstocks, food for human consumption, and animal feed, is limited. Interestingly, JA mutants of grasses exhibit unique phenotypes compared with well-studied dicot models. Gene expression analyses in bioenergy grasses also suggest roles for JA in rhizome development, which has not been demonstrated in Arabidopsis. In this review we summarize current knowledge of JA biology in panicoid grasses-the group that consists of the world's emerging bioenergy grasses such as switchgrass, sugarcane, Miscanthus, and sorghum. We discuss outstanding questions regarding the role of JAs in panicoid grasses, and highlight the importance of utilizing emerging grass models for molecular studies to provide a basis for engineering bioenergy grasses that can maximize biomass accumulation while efficiently defending against stress.
Collapse
Affiliation(s)
- Christine Shyu
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | | |
Collapse
|
210
|
Böttcher C, Burbidge CA, di Rienzo V, Boss PK, Davies C. Jasmonic acid-isoleucine formation in grapevine (Vitis vinifera L.) by two enzymes with distinct transcription profiles. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:618-27. [PMID: 25494944 DOI: 10.1111/jipb.12321] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/08/2014] [Indexed: 05/14/2023]
Abstract
The plant hormone jasmonic acid (JA) is essential for stress responses and the formation of reproductive organs, but its role in fruit development and ripening is unclear. Conjugation of JA to isoleucine is a crucial step in the JA signaling pathway since only JA-Ile is recognized by the jasmonate receptor. The conjugation reaction is catalyzed by JA-amido synthetases, belonging to the family of Gretchen Hagen3 (GH3) proteins. Here, in vitro studies of two grapevine (Vitis vinifera L. cv Shiraz) GH3 enzymes, VvGH3-7 and VvGH3-9, demonstrated JA-conjugating activities with an overlapping range of amino acid substrates, including isoleucine. Expression studies of the corresponding genes in grape berries combined with JA and JA-Ile measurements suggested a primary role for JA signaling in fruit set and cell division and did not support an involvement of JA in the ripening process. In response to methyl JA (MeJA) treatment, and in wounded and unwounded (distal) leaves, VvGH3-9 transcripts accumulated, indicating a participation in the JA response. In contrast, VvGH3-7 was unresponsive to MeJA and local wounding, demonstrating a differential transcriptional regulation of VvGH3-7 and VvGH3-9. The transient induction of VvGH3-7 in unwounded, distal leaves was suggestive of the involvement of an unknown mobile wound signal.
Collapse
Affiliation(s)
- Christine Böttcher
- CSIRO Agriculture Flagship, Glen Osmond, South Australia, 5064, Australia
| | - Crista A Burbidge
- CSIRO Agriculture Flagship, Glen Osmond, South Australia, 5064, Australia
| | | | - Paul K Boss
- CSIRO Agriculture Flagship, Glen Osmond, South Australia, 5064, Australia
| | - Christopher Davies
- CSIRO Agriculture Flagship, Glen Osmond, South Australia, 5064, Australia
| |
Collapse
|
211
|
Machado RAR, Arce CCM, Ferrieri AP, Baldwin IT, Erb M. Jasmonate-dependent depletion of soluble sugars compromises plant resistance to Manduca sexta. THE NEW PHYTOLOGIST 2015; 207:91-105. [PMID: 25704234 DOI: 10.1111/nph.13337] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/18/2015] [Indexed: 05/07/2023]
Abstract
Jasmonates regulate plant secondary metabolism and herbivore resistance. How they influence primary metabolites and how this may affect herbivore growth and performance are not well understood. We profiled sugars and starch of jasmonate biosynthesis-deficient and jasmonate-insensitive Nicotiana attenuata plants and manipulated leaf carbohydrates through genetic engineering and in vitro complementation to assess how jasmonate-dependent sugar accumulation affects the growth of Manduca sexta caterpillars. We found that jasmonates reduce the constitutive and herbivore-induced concentration of glucose and fructose in the leaves across different developmental stages. Diurnal, jasmonate-dependent inhibition of invertase activity was identified as a likely mechanism for this phenomenon. Contrary to our expectation, both in planta and in vitro approaches showed that the lower sugar concentrations led to increased M. sexta growth. As a consequence, jasmonate-dependent depletion of sugars rendered N. attenuata plants more susceptible to M. sexta attack. In conclusion, jasmonates are important regulators of leaf carbohydrate accumulation and this determines herbivore growth. Jasmonate-dependent resistance is reduced rather than enhanced through the suppression of glucose and fructose concentrations, which may contribute to the evolution of divergent resistance strategies of plants in nature.
Collapse
Affiliation(s)
- Ricardo A R Machado
- Root-Herbivore Interactions Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Carla C M Arce
- Root-Herbivore Interactions Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
- Department of Entomology, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, 36570-000, Viçosa, Brazil
| | - Abigail P Ferrieri
- Root-Herbivore Interactions Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Matthias Erb
- Root-Herbivore Interactions Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013, Bern, Switzerland
| |
Collapse
|
212
|
Zhou Z, Wu Y, Yang Y, Du M, Zhang X, Guo Y, Li C, Zhou JM. An Arabidopsis Plasma Membrane Proton ATPase Modulates JA Signaling and Is Exploited by the Pseudomonas syringae Effector Protein AvrB for Stomatal Invasion. THE PLANT CELL 2015; 27:2032-41. [PMID: 26198069 PMCID: PMC4531362 DOI: 10.1105/tpc.15.00466] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/07/2015] [Accepted: 07/07/2015] [Indexed: 05/20/2023]
Abstract
Stomata are natural openings through which many pathogenic bacteria enter plants. Successful bacterial pathogens have evolved various virulence factors to promote stomatal opening. Here, we show that the Pseudomonas syringae type III effector protein AvrB induces stomatal opening and enhances bacterial virulence in a manner dependent on RPM1-INTERACTING4 (RIN4), which promotes stomatal opening by positively regulating the Arabidopsis plasma membrane H(+)-ATPase (AHA1), which is presumed to directly regulate guard cell turgor pressure. In support of a role of AHA1 in AvrB-induced stomatal opening, AvrB enhances ATPase activity in plants. Unexpectedly, AHA1 promotes the interaction between the jasmonate (JA) receptor CORONATINE INSENSITIVE1 (COI1) and JASMONATE ZIM-DOMAIN (JAZ) proteins and enhances JA signaling. JA signaling is required for optimum stomatal infection in AHA1-active plants. Similarly, AvrB also induces the COI1-JAZ9 interaction and the degradation of multiple JAZ proteins. AvrB-induced stomatal opening and virulence require the canonical JA signaling pathway, which involves the COI1 and NAC transcription factors. The findings thus point to a previously unknown pathway exploited by P. syringae that acts upstream of COI1 to regulate JA signaling and stomatal opening.
Collapse
Affiliation(s)
- Zhaoyang Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, CAS, Beijing 100101, China
| | - Yujiao Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Minmin Du
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, CAS, Beijing 100101, China
| | - Xiaojuan Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, CAS, Beijing 100101, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, CAS, Beijing 100101, China
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, CAS, Beijing 100101, China
| |
Collapse
|
213
|
Tian WM, Yang SG, Shi MJ, Zhang SX, Wu JL. Mechanical wounding-induced laticifer differentiation in rubber tree: An indicative role of dehydration, hydrogen peroxide, and jasmonates. JOURNAL OF PLANT PHYSIOLOGY 2015; 182:95-103. [PMID: 26070085 DOI: 10.1016/j.jplph.2015.04.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 04/20/2015] [Accepted: 04/23/2015] [Indexed: 05/08/2023]
|
214
|
Kersch-Becker MF, Thaler JS. Plant resistance reduces the strength of consumptive and non-consumptive effects of predators on aphids. J Anim Ecol 2015; 84:1222-32. [DOI: 10.1111/1365-2656.12371] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 03/12/2015] [Indexed: 11/27/2022]
Affiliation(s)
- Mônica F. Kersch-Becker
- Department of Ecology and Evolutionary Biology; Cornell University; Ithaca NY 14853 USA
- Department of Entomology; Cornell University; Ithaca NY 14853 USA
| | - Jennifer S. Thaler
- Department of Ecology and Evolutionary Biology; Cornell University; Ithaca NY 14853 USA
- Department of Entomology; Cornell University; Ithaca NY 14853 USA
| |
Collapse
|
215
|
Dobritzsch S, Weyhe M, Schubert R, Dindas J, Hause G, Kopka J, Hause B. Dissection of jasmonate functions in tomato stamen development by transcriptome and metabolome analyses. BMC Biol 2015; 13:28. [PMID: 25895675 PMCID: PMC4443647 DOI: 10.1186/s12915-015-0135-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 03/25/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Jasmonates are well known plant signaling components required for stress responses and development. A prominent feature of jasmonate biosynthesis or signaling mutants is the loss of fertility. In contrast to the male sterile phenotype of Arabidopsis mutants, the tomato mutant jai1-1 exhibits female sterility with additional severe effects on stamen and pollen development. Its senescence phenotype suggests a function of jasmonates in regulation of processes known to be mediated by ethylene. To test the hypothesis that ethylene involved in tomato stamen development is regulated by jasmonates, a temporal profiling of hormone content, transcriptome and metabolome of tomato stamens was performed using wild type and jai1-1. RESULTS Wild type stamens showed a transient increase of jasmonates that is absent in jai1-1. Comparative transcriptome analyses revealed a diminished expression of genes involved in pollen nutrition at early developmental stages of jai1-1 stamens, but an enhanced expression of ethylene-related genes at late developmental stages. This finding coincides with an early increase of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) in jai1-1 and a premature pollen release from stamens, a phenotype similarly visible in an ethylene overproducing mutant. Application of jasmonates to flowers of transgenic plants affected in jasmonate biosynthesis diminished expression of ethylene-related genes, whereas the double mutant jai1-1 NeverRipe (ethylene insensitive) showed a complementation of jai1-1 phenotype in terms of dehiscence and pollen release. CONCLUSIONS Our data suggest an essential role of jasmonates in the temporal inhibition of ethylene production to prevent premature desiccation of stamens and to ensure proper timing in flower development.
Collapse
Affiliation(s)
- Susanne Dobritzsch
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D06120, Halle, Germany.
| | - Martin Weyhe
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D06120, Halle, Germany.
| | - Ramona Schubert
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D06120, Halle, Germany.
| | - Julian Dindas
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D06120, Halle, Germany.
- Present address: Department of Botany I, University of Würzburg, Julius-von-Sachs-Platz 2, D97082, Würzburg, Germany.
| | - Gerd Hause
- Martin Luther University Halle Wittenberg, Biocenter, Electron Microscopy, Weinbergweg 22, D06120, Halle, Germany.
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D14476, Potsdam, (OT) Golm, Germany.
| | - Bettina Hause
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D06120, Halle, Germany.
| |
Collapse
|
216
|
Martel C, Zhurov V, Navarro M, Martinez M, Cazaux M, Auger P, Migeon A, Santamaria ME, Wybouw N, Diaz I, Van Leeuwen T, Navajas M, Grbic M, Grbic V. Tomato Whole Genome Transcriptional Response to Tetranychus urticae Identifies Divergence of Spider Mite-Induced Responses Between Tomato and Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:343-61. [PMID: 25679539 DOI: 10.1094/mpmi-09-14-0291-fi] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The two-spotted spider mite Tetranychus urticae is one of the most significant mite pests in agriculture, feeding on more than 1,100 plant hosts, including model plants Arabidopsis thaliana and tomato, Solanum lycopersicum. Here, we describe timecourse tomato transcriptional responses to spider mite feeding and compare them with Arabidopsis in order to determine conserved and divergent defense responses to this pest. To refine the involvement of jasmonic acid (JA) in mite-induced responses and to improve tomato Gene Ontology annotations, we analyzed transcriptional changes in the tomato JA-signaling mutant defenseless1 (def-1) upon JA treatment and spider mite herbivory. Overlay of differentially expressed genes (DEG) identified in def-1 onto those from the timecourse experiment established that JA controls expression of the majority of genes differentially regulated by herbivory. Comparison of defense responses between tomato and Arabidopsis highlighted 96 orthologous genes (of 2,133 DEG) that were recruited for defense against spider mites in both species. These genes, involved in biosynthesis of JA, phenylpropanoids, flavonoids, and terpenoids, represent the conserved core of induced defenses. The remaining tomato DEG support the establishment of tomato-specific defenses, indicating profound divergence of spider mite-induced responses between tomato and Arabidopsis.
Collapse
|
217
|
Almeida J, Asís R, Molineri VN, Sestari I, Lira BS, Carrari F, Peres LEP, Rossi M. Fruits from ripening impaired, chlorophyll degraded and jasmonate insensitive tomato mutants have altered tocopherol content and composition. PHYTOCHEMISTRY 2015; 111:72-83. [PMID: 25432273 DOI: 10.1016/j.phytochem.2014.11.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 05/07/2023]
Abstract
Since isoprenoids are precursors in chlorophyll, carotenoid and tocopherol pathways, the study of their metabolism is of fundamental importance in understanding the regulatory cross-talk that contributes to the nutritional quality of tomato fruits. By means of an integrated analysis of metabolite and gene expression profiles, isoprenoid metabolism was dissected in ripening-impaired (ripening inhibitor and non-ripening), senescence-related (lutescent1 and green flesh) and jasmonate insensitive (jasmonic acid insensitive 1-1) tomato mutants, all in the Micro-Tom genetic background. It was found that the more upstream the location of the mutated gene, the more extensive the effect on the transcriptional profiles of the isoprenoid-related genes. Although there was a distinct effect in the analyzed mutations on chlorophyll, carotenoid and tocopherol metabolism, a metabolic adjustment was apparent such the antioxidant capacity mostly remained constant. Transcriptional profiles from fruits of ripening and senescence-related tomato mutants suggested that maintenance of the de novo phytyl diphosphate synthesis might, in later ripening stages, compensate for the lack of chlorophyll-derived phytol used in tocopherol production. Interestingly, an impairment in jasmonate perception led to higher total tocopherol levels in ripe fruits, accompanied by an increase in antioxidant capacity, highlighting the contribution of tocopherols to this nutritionally important trait.
Collapse
Affiliation(s)
- Juliana Almeida
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Ramón Asís
- CIBICI, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Virginia Noel Molineri
- CIBICI, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Ivan Sestari
- Universidade Federal de Santa Catarina, Campus Curitibanos, Curitibanos, SC, Brazil.
| | - Bruno Silvestre Lira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Fernando Carrari
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria and Consejo Nacional de Investigaciones Científicas y Técnicas, Hurlingham, Buenos Aires, Argentina.
| | - Lázaro Eustáquio Pereira Peres
- Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, Brazil.
| | - Magdalena Rossi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
218
|
Sherif S, El-Sharkawy I, Mathur J, Ravindran P, Kumar P, Paliyath G, Jayasankar S. A stable JAZ protein from peach mediates the transition from outcrossing to self-pollination. BMC Biol 2015; 13:11. [PMID: 25857534 PMCID: PMC4364584 DOI: 10.1186/s12915-015-0124-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/27/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Variations in floral display represent one of the core features associated with the transition from allogamy to autogamy in angiosperms. The promotion of autogamy under stress conditions suggests the potential involvement of a signaling pathway with a dual role in both flower development and stress response. The jasmonic acid (JA) pathway is a plausible candidate to play such a role because of its involvement in many plant responses to environmental and developmental cues. In the present study, we used peach (Prunus persica L.) varieties with showy and non-showy flowers to investigate the role of JA (and JA signaling suppressors) in floral display. RESULTS Our results show that PpJAZ1, a component of the JA signaling pathway in peach, regulates petal expansion during anthesis and promotes self-pollination. PpJAZ1 transcript levels were higher in petals of the non-showy flowers than those of showy flowers at anthesis. Moreover, the ectopic expression of PpJAZ1 in tobacco (Nicotiana tabacum L.) converted the showy, chasmogamous tobacco flowers into non-showy, cleistogamous flowers. Stability of PpJAZ1 was confirmed in vivo using PpJAZ1-GFP chimeric protein. PpJAZ1 inhibited JA-dependent processes in roots and leaves of transgenic plants, including induction of JA-response genes to mechanical wounding. However, the inhibitory effect of PpJAZ1 on JA-dependent fertility functions was weaker, indicating that PpJAZ1 regulates the spatial localization of JA signaling in different plant organs. Indeed, JA-related genes showed differential expression patterns in leaves and flowers of transgenic plants. CONCLUSIONS Our results reveal that under stress conditions – for example, herbivore attacks – stable JAZ proteins such as PpJAZ1 may alter JA signaling in different plant organs, resulting in autogamy as a reproductive assurance mechanism. This represents an additional mechanism by which plant hormone signaling can modulate a vital developmental process in response to stress.
Collapse
Affiliation(s)
- Sherif Sherif
- />Vineland Research Station, Department of Plant Agriculture, University of Guelph, 4890 Victoria Av. N, P.O. Box 7000, Vineland Station, ON L0R 2E0 Canada
- />Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1 Canada
- />Department of Horticulture, Faculty of Agriculture, Damanhour University, Al-Gomhuria St, PO Box 22516, Damanhour, Al-Behira Egypt
| | - Islam El-Sharkawy
- />Vineland Research Station, Department of Plant Agriculture, University of Guelph, 4890 Victoria Av. N, P.O. Box 7000, Vineland Station, ON L0R 2E0 Canada
- />Department of Horticulture, Faculty of Agriculture, Damanhour University, Al-Gomhuria St, PO Box 22516, Damanhour, Al-Behira Egypt
| | - Jaideep Mathur
- />Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1 Canada
| | - Pratibha Ravindran
- />Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore, 117543 Singapore
| | - Prakash Kumar
- />Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore, 117543 Singapore
| | - Gopinadhan Paliyath
- />Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1 Canada
| | - Subramanian Jayasankar
- />Vineland Research Station, Department of Plant Agriculture, University of Guelph, 4890 Victoria Av. N, P.O. Box 7000, Vineland Station, ON L0R 2E0 Canada
| |
Collapse
|
219
|
del Rosario Cappellari L, Santoro MV, Reinoso H, Travaglia C, Giordano W, Banchio E. Anatomical, Morphological, and Phytochemical Effects of Inoculation with Plant Growth- Promoting Rhizobacteria on Peppermint (Mentha piperita). J Chem Ecol 2015; 41:149-58. [DOI: 10.1007/s10886-015-0549-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 12/04/2014] [Accepted: 01/07/2015] [Indexed: 01/02/2023]
|
220
|
Wheeler AG, Krimmel BA. Mirid (Hemiptera: Heteroptera) specialists of sticky plants: adaptations, interactions, and ecological implications. ANNUAL REVIEW OF ENTOMOLOGY 2015; 60:393-414. [PMID: 25564742 DOI: 10.1146/annurev-ento-010814-020932] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Sticky plants-those having glandular trichomes (hairs) that produce adhesive, viscous exudates-can impede the movement of, and entrap, generalist insects. Disparate arthropod groups have adapted to these widespread and taxonomically diverse plants, yet their interactions with glandular hosts rarely are incorporated into broad ecological theory. Ecologists and entomologists might be unaware of even well-documented examples of insects that are sticky-plant specialists. The hemipteran family Miridae (more specifically, the omnivorous Dicyphini: Dicyphina) is the best-known group of arthropods that specializes on sticky plants. In the first synthesis of relationships with glandular plants for any insect family, we review mirid interactions with sticky hosts, including their adaptations (behavioral, morphological, and physiological) and mutualisms with carnivorous plants, and the ecological and agricultural implications of mirid-sticky plant systems. We propose that mirid research applies generally to tritrophic interactions on trichome-defended plants, enhances an understanding of insect-plant interactions, and provides information useful in managing crop pests.
Collapse
Affiliation(s)
- Alfred G Wheeler
- School of Agricultural, Forest, and Environmental Sciences, Clemson University, Clemson, South Carolina 29634;
| | | |
Collapse
|
221
|
Lange BM. The evolution of plant secretory structures and emergence of terpenoid chemical diversity. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:139-59. [PMID: 25621517 DOI: 10.1146/annurev-arplant-043014-114639] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Secretory structures in terrestrial plants appear to have first emerged as intracellular oil bodies in liverworts. In vascular plants, internal secretory structures, such as resin ducts and laticifers, are usually found in conjunction with vascular bundles, whereas subepidermal secretory cavities and epidermal glandular trichomes generally have more complex tissue distribution patterns. The primary function of plant secretory structures is related to defense responses, both constitutive and induced, against herbivores and pathogens. The ability to sequester secondary (or specialized) metabolites and defense proteins in secretory structures was a critical adaptation that shaped plant-herbivore and plant-pathogen interactions. Although this review places particular emphasis on describing the evolution of pathways leading to terpenoids, it also assesses the emergence of other metabolite classes to outline the metabolic capabilities of different plant lineages.
Collapse
Affiliation(s)
- Bernd Markus Lange
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, Washington 99164-6340;
| |
Collapse
|
222
|
Scalschi L, Sanmartín M, Camañes G, Troncho P, Sánchez-Serrano JJ, García-Agustín P, Vicedo B. Silencing of OPR3 in tomato reveals the role of OPDA in callose deposition during the activation of defense responses against Botrytis cinerea. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:304-15. [PMID: 25407262 DOI: 10.1111/tpj.12728] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 11/06/2014] [Accepted: 11/13/2014] [Indexed: 05/21/2023]
Abstract
Cis-(+)-12-oxo-phytodienoic acid (OPDA) is likely to play signaling roles in plant defense that do not depend on its further conversion to the phytohormone jasmonic acid. To elucidate the role of OPDA in Solanum lycopersicum (tomato) plant defense, we have silenced the 12-oxophytodienoate reductase 3 (OPR3) gene. Two independent transgenic tomato lines (SiOPR3-1 and SiOPR3-2) showed significantly reduced OPR3 expression upon infection with the necrotrophic pathogen Botrytis cinerea. Moreover, SiOPR3 plants are more susceptible to this pathogen, and this susceptibility is accompanied by a significant decrease in OPDA levels and by the production of JA-Ile being almost abolished. OPR3 silencing also leads to a major reduction in the expression of other genes of the jasmonic acid (JA) synthesis and signaling pathways after infection. These results confirm that in tomato plants, as in Arabidopsis, OPR3 determines OPDA availability for JA biosynthesis. In addition, we show that an intact JA biosynthetic pathway is required for proper callose deposition, as its pathogen-induced accumulation is reduced in SiOPR3 plants. Interestingly, OPDA, but not JA, treatment restored basal resistance to B. cinerea and induced callose deposition in SiOPR3-1 and SiOPR3-2 transgenic plants. These results provide clear evidence that OPDA by itself plays a major role in the basal defense of tomato plants against this necrotrophic pathogen.
Collapse
Affiliation(s)
- Loredana Scalschi
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departament de Ciències Agràries i del Medi Natural, ESTCE, Universitat Jaume I, Castellón, 12071, Spain
| | | | | | | | | | | | | |
Collapse
|
223
|
Alba JM, Schimmel BCJ, Glas JJ, Ataide LMS, Pappas ML, Villarroel CA, Schuurink RC, Sabelis MW, Kant MR. Spider mites suppress tomato defenses downstream of jasmonate and salicylate independently of hormonal crosstalk. THE NEW PHYTOLOGIST 2015; 205:828-40. [PMID: 25297722 PMCID: PMC4301184 DOI: 10.1111/nph.13075] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 08/18/2014] [Indexed: 05/08/2023]
Abstract
Plants respond to herbivory by mounting a defense. Some plant-eating spider mites (Tetranychus spp.) have adapted to plant defenses to maintain a high reproductive performance. From natural populations we selected three spider mite strains from two species, Tetranychus urticae and Tetranychus evansi, that can suppress plant defenses, using a fourth defense-inducing strain as a benchmark, to assess to which extent these strains suppress defenses differently. We characterized timing and magnitude of phytohormone accumulation and defense-gene expression, and determined if mites that cannot suppress defenses benefit from sharing a leaf with suppressors. The nonsuppressor strain induced a mixture of jasmonate- (JA) and salicylate (SA)-dependent defenses. Induced defense genes separated into three groups: 'early' (expression peak at 1 d postinfestation (dpi)); 'intermediate' (4 dpi); and 'late', whose expression increased until the leaf died. The T. evansi strains suppressed genes from all three groups, but the T. urticae strain only suppressed the late ones. Suppression occurred downstream of JA and SA accumulation, independently of the JA-SA antagonism, and was powerful enough to boost the reproductive performance of nonsuppressors up to 45%. Our results show that suppressing defenses not only brings benefits but, within herbivore communities, can also generate a considerable ecological cost when promoting the population growth of a competitor.
Collapse
Affiliation(s)
- Juan M Alba
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
224
|
de León IP, Hamberg M, Castresana C. Oxylipins in moss development and defense. FRONTIERS IN PLANT SCIENCE 2015; 6:483. [PMID: 26191067 PMCID: PMC4490225 DOI: 10.3389/fpls.2015.00483] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/15/2015] [Indexed: 05/08/2023]
Abstract
Oxylipins are oxygenated fatty acids that participate in plant development and defense against pathogen infection, insects, and wounding. Initial oxygenation of substrate fatty acids is mainly catalyzed by lipoxygenases (LOXs) and α-dioxygenases but can also take place non-enzymatically by autoxidation or singlet oxygen-dependent reactions. The resulting hydroperoxides are further metabolized by secondary enzymes to produce a large variety of compounds, including the hormone jasmonic acid (JA) and short-chain green leaf volatiles. In flowering plants, which lack arachidonic acid, oxylipins are produced mainly from oxidation of polyunsaturated C18 fatty acids, notably linolenic and linoleic acids. Algae and mosses in addition possess polyunsaturated C20 fatty acids including arachidonic and eicosapentaenoic acids, which can also be oxidized by LOXs and transformed into bioactive compounds. Mosses are phylogenetically placed between unicellular green algae and flowering plants, allowing evolutionary studies of the different oxylipin pathways. During the last years the moss Physcomitrella patens has become an attractive model plant for understanding oxylipin biosynthesis and diversity. In addition to the advantageous evolutionary position, functional studies of the different oxylipin-forming enzymes can be performed in this moss by targeted gene disruption or single point mutations by means of homologous recombination. Biochemical characterization of several oxylipin-producing enzymes and oxylipin profiling in P. patens reveal the presence of a wider range of oxylipins compared to flowering plants, including C18 as well as C20-derived oxylipins. Surprisingly, one of the most active oxylipins in plants, JA, is not synthesized in this moss. In this review, we present an overview of oxylipins produced in mosses and discuss the current knowledge related to the involvement of oxylipin-producing enzymes and their products in moss development and defense.
Collapse
Affiliation(s)
- Inés Ponce de León
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- *Correspondence: Inés Ponce de León, Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, Montevideo 11600, Uruguay,
| | - Mats Hamberg
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Carmen Castresana
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
225
|
Liu L, Shao Z, Zhang M, Wang Q. Regulation of carotenoid metabolism in tomato. MOLECULAR PLANT 2015; 8:28-39. [PMID: 25578270 DOI: 10.1016/j.molp.2014.11.006] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 10/14/2014] [Indexed: 05/20/2023]
Abstract
Carotenoids serve diverse functions in vastly different organisms that both produce and consume them. Enhanced carotenoid accumulation is of great importance in the visual and functional properties of fruits and vegetables. Significant progress has been achieved in recent years in our understanding of carotenoid biosynthesis in tomato (Solanum lycopersicum) using biochemical and genetics approaches. The carotenoid metabolic network is temporally and spatially controlled, and plants have evolved strategic tactics to regulate carotenoid metabolism in response to various developmental and environmental factors. In this review, we summarize the current status of studies on transcription factors and phytohormones that regulate carotenoid biosynthesis, catabolism, and storage capacity in plastids, as well as the responses of carotenoid metabolism to environmental cues in tomato fruits. Transcription factors function either in cooperation with or independently of phytohormone signaling to regulate carotenoid metabolism, providing novel approaches for metabolic engineering of carotenoid composition and content in tomato.
Collapse
Affiliation(s)
- Lihong Liu
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Zhiyong Shao
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Min Zhang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
226
|
Oney MA, Bingham RA. Effects of simulated and natural herbivory on tomato (Solanum lycopersicum var. esculentum) leaf trichomes. ACTA ACUST UNITED AC 2014. [DOI: 10.1893/0005-3155-85.4.192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
227
|
Zhang J, Li J, Garcia-Ruiz H, Bates PD, Mirkov TE, Wang X. A stearoyl-acyl carrier protein desaturase, NbSACPD-C, is critical for ovule development in Nicotiana benthamiana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:489-502. [PMID: 25155407 DOI: 10.1111/tpj.12649] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 08/13/2014] [Accepted: 08/18/2014] [Indexed: 05/09/2023]
Abstract
Stearoyl-acyl carrier protein desaturase (SACPD) activity is essential for production of the major unsaturated fatty acids (UFAs) in plant lipids. We report here the characterization of three SACPD genes from Nicotiana benthamiana, NbSACPD-A, -B, and -C. All three genes share high similarity to AtSSI2/FAB2 (Suppressor of Salicylic acid-Insensitivity2/Fatty Acid Biosynthesis2), the primary SACPD isoform in Arabidopsis. Knocking down the expression of individual or combinations of NbSACPDs by an artificial microRNA approach resulted in significantly reduced accumulation of 18C UFAs and elevated levels of 18:0-FA (Fatty acids) in leaves, indicating that all three genes participated in fatty acid desaturation. The triple knockdown (KD) plants displayed severe growth phenotypes, including spontaneous cell death and dwarfing. While no vegetative morphologic abnormality was observed in NbSACPD-A, -B, or -C KD plants, strikingly, NbSACPD-C KD plants produced small fruits with aborted ovules. Reciprocal crosses with wild-type and NbSACPD-C KD plants revealed that knocking down NbSACPD-C expression caused female, but not male, sterility. Furthermore, arrested ovule development and significantly altered lipid composition in ovaries were observed in NbSACPD-C KD plants, consistent with the predominant NbSACPD-C expression in ovules. The ovule development defect was fully complemented by coexpressing an amiRNA-resistant NbSACPD-C variant in the NbSACPD-C KD background, further supporting a specific requirement for NbSACPD-C in female fertility. Our results thus indicated that NbSACPD-C plays a critical role maintaining membrane lipid composition in ovule development for female fertility in N. benthamiana, complementing and extending prior understanding on the well-demonstrated roles of SACPDs in biotic and abiotic stresses.
Collapse
Affiliation(s)
- Jiantao Zhang
- Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | | | | | | | | | | |
Collapse
|
228
|
Koo AJ, Thireault C, Zemelis S, Poudel AN, Zhang T, Kitaoka N, Brandizzi F, Matsuura H, Howe GA. Endoplasmic reticulum-associated inactivation of the hormone jasmonoyl-L-isoleucine by multiple members of the cytochrome P450 94 family in Arabidopsis. J Biol Chem 2014; 289:29728-38. [PMID: 25210037 PMCID: PMC4207986 DOI: 10.1074/jbc.m114.603084] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/09/2014] [Indexed: 01/13/2023] Open
Abstract
The plant hormone jasmonate (JA) controls diverse aspects of plant immunity, growth, and development. The amplitude and duration of JA responses are controlled in large part by the intracellular level of jasmonoyl-L-isoleucine (JA-Ile). In contrast to detailed knowledge of the JA-Ile biosynthetic pathway, little is known about enzymes involved in JA-Ile metabolism and turnover. Cytochromes P450 (CYP) 94B3 and 94C1 were recently shown to sequentially oxidize JA-Ile to hydroxy (12OH-JA-Ile) and dicarboxy (12COOH-JA-Ile) derivatives. Here, we report that a third member (CYP94B1) of the CYP94 family also participates in oxidative turnover of JA-Ile in Arabidopsis. In vitro studies showed that recombinant CYP94B1 converts JA-Ile to 12OH-JA-Ile and lesser amounts of 12COOH-JA-Ile. Consistent with this finding, metabolic and physiological characterization of CYP94B1 loss-of-function and overexpressing plants demonstrated that CYP94B1 and CYP94B3 coordinately govern the majority (>95%) of 12-hydroxylation of JA-Ile in wounded leaves. Analysis of CYP94-promoter-GUS reporter lines indicated that CYP94B1 and CYP94B3 serve unique and overlapping spatio-temporal roles in JA-Ile homeostasis. Subcellular localization studies showed that CYP94s involved in conversion of JA-Ile to 12COOH-JA-Ile reside on endoplasmic reticulum (ER). In vitro studies further showed that 12COOH-JA-Ile, unlike JA-Ile, fails to promote assembly of COI1-JAZ co-receptor complexes. The double loss-of-function mutant of CYP94B3 and ILL6, a JA-Ile amidohydrolase, displayed a JA profile consistent with the collaborative action of the oxidative and the hydrolytic pathways in JA-Ile turnover. Collectively, our results provide an integrated view of how multiple ER-localized CYP94 and JA amidohydrolase enzymes attenuate JA signaling during stress responses.
Collapse
Affiliation(s)
- Abraham J Koo
- From the Department of Energy-Plant Research Laboratory and the Division of Biochemistry, Interdisciplinary Plant Group, and
| | | | - Starla Zemelis
- From the Department of Energy-Plant Research Laboratory and
| | - Arati N Poudel
- the Division of Biochemistry, Interdisciplinary Plant Group, and Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211
| | - Tong Zhang
- the Division of Biochemistry, Interdisciplinary Plant Group, and
| | - Naoki Kitaoka
- Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan, and
| | | | - Hideyuki Matsuura
- Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan, and
| | - Gregg A Howe
- From the Department of Energy-Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
229
|
Petek M, Rotter A, Kogovšek P, Baebler S, Mithöfer A, Gruden K. Potato virus Y infection hinders potato defence response and renders plants more vulnerable to Colorado potato beetle attack. Mol Ecol 2014; 23:5378-91. [PMID: 25251011 PMCID: PMC4237146 DOI: 10.1111/mec.12932] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 09/16/2014] [Accepted: 09/17/2014] [Indexed: 01/07/2023]
Abstract
In the field, plants are challenged by more than one biotic stressor at the same time. In this study, the molecular interactions between potato (Solanum tuberosum L.), Colorado potato beetle (Leptinotarsa decemlineata Say; CPB) and Potato virus Y(NTN) (PVY(NTN) ) were investigated through analyses of gene expression in the potato leaves and the gut of the CPB larvae, and of the release of potato volatile compounds. CPB larval growth was enhanced when reared on secondary PVY(NTN) -infected plants, which was linked to decreased accumulation of transcripts associated with the antinutritional properties of potato. In PVY(NTN) -infected plants, ethylene signalling pathway induction and induction of auxin response transcription factors were attenuated, while no differences were observed in jasmonic acid (JA) signalling pathway. Similarly to rearing on virus-infected plants, CPB larvae gained more weight when reared on plants silenced in JA receptor gene (coi1). Although herbivore-induced defence mechanism is regulated predominantly by JA, response in coi1-silenced plants only partially corresponded to the one observed in PVY(NTN) -infected plants, confirming the role of other plant hormones in modulating this response. The release of β-barbatene and benzyl alcohol was different in healthy and PVY(NTN) -infected plants before CPB larvae infestation, implicating the importance of PVY(NTN) infection in plant communication with its environment. This was reflected in gene expression profiles of neighbouring plants showing different degree of defence response. This study thus contributes to our understanding of plant responses in agro-ecosystems.
Collapse
Affiliation(s)
- Marko Petek
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
230
|
Stitz M, Hartl M, Baldwin IT, Gaquerel E. Jasmonoyl-L-isoleucine coordinates metabolic networks required for anthesis and floral attractant emission in wild tobacco (Nicotiana attenuata). THE PLANT CELL 2014; 26:3964-83. [PMID: 25326292 PMCID: PMC4247565 DOI: 10.1105/tpc.114.128165] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 09/17/2014] [Accepted: 10/01/2014] [Indexed: 05/20/2023]
Abstract
Jasmonic acid and its derivatives (jasmonates [JAs]) play central roles in floral development and maturation. The binding of jasmonoyl-L-isoleucine (JA-Ile) to the F-box of CORONATINE INSENSITIVE1 (COI1) is required for many JA-dependent physiological responses, but its role in anthesis and pollinator attraction traits remains largely unexplored. Here, we used the wild tobacco Nicotiana attenuata, which develops sympetalous flowers with complex pollination biology, to examine the coordinating function of JA homeostasis in the distinct metabolic processes that underlie flower maturation, opening, and advertisement to pollinators. From combined transcriptomic, targeted metabolic, and allometric analyses of transgenic N. attenuata plants for which signaling deficiencies were complemented with methyl jasmonate, JA-Ile, and its functional homolog, coronatine (COR), we demonstrate that (1) JA-Ile/COR-based signaling regulates corolla limb opening and a JA-negative feedback loop; (2) production of floral volatiles (night emissions of benzylacetone) and nectar requires JA-Ile/COR perception through COI1; and (3) limb expansion involves JA-Ile-induced changes in limb fresh mass and carbohydrate metabolism. These findings demonstrate a master regulatory function of the JA-Ile/COI1 duet for the main function of a sympetalous corolla, that of advertising for and rewarding pollinator services. Flower opening, by contrast, requires JA-Ile signaling-dependent changes in primary metabolism, which are not compromised in the COI1-silenced RNA interference line used in this study.
Collapse
Affiliation(s)
- Michael Stitz
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, 07745 Jena, Germany
| | - Markus Hartl
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, 07745 Jena, Germany
| | - Ian T Baldwin
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, 07745 Jena, Germany
| | - Emmanuel Gaquerel
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, 07745 Jena, Germany Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
231
|
Bosch M, Berger S, Schaller A, Stintzi A. Jasmonate-dependent induction of polyphenol oxidase activity in tomato foliage is important for defense against Spodoptera exigua but not against Manduca sexta. BMC PLANT BIOLOGY 2014; 14:257. [PMID: 25261073 PMCID: PMC4189532 DOI: 10.1186/s12870-014-0257-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/22/2014] [Indexed: 05/05/2023]
Abstract
BACKGROUND Jasmonates are involved in plant defense, participating in the timely induction of defense responses against insect herbivores from different feeding guilds and with different degrees of host specialization. It is less clear to what extent the induction of plant defense is controlled by different members of the jasmonate family and how specificity of the response is achieved. Using transgenic plants blocked in jasmonic acid (JA) biosynthesis, we previously showed that JA is required for the formation of glandular trichomes and trichome-borne metabolites as constitutive defense traits in tomato, affecting oviposition and feeding behavior of the specialist Manduca sexta. In contrast, JA was not required for the local induction of defense gene expression after wounding. In JA-deficient plants, the JA precursor oxophytodienoic acid (OPDA) substituted as a regulator of defense gene expression maintaining considerable resistance against M. sexta larvae. In this study, we investigate the contribution of JA and OPDA to defense against the generalist herbivore Spodoptera exigua. RESULTS S. exigua preferred JA-deficient over wild-type tomato plants as a host for both oviposition and feeding. Feeding preference for JA-deficient plants was caused by constitutively reduced levels of repellent terpenes. Growth and development of the larvae, on the other hand, were controlled by additional JA-dependent defense traits, including the JA-mediated induction of foliar polyphenol oxidase (PPO) activity. PPO induction was more pronounced after S. exigua herbivory as compared to mechanical wounding or M. sexta feeding. The difference was attributed to an elicitor exclusively present in S. exigua oral secretions. CONCLUSIONS The behavior of M. sexta and S. exigua during oviposition and feeding is controlled by constitutive JA/JA-Ile-dependent defense traits involving mono- and sesquiterpenes in both species, and cis-3-hexenal as an additional chemical cue for M. sexta. The requirement of jasmonates for resistance of tomato plants against caterpillar feeding differs for the two species. While the OPDA-mediated induction of local defense is sufficient to restrict growth and development of M. sexta larvae in absence of JA/JA-Ile, defense against S. exigua relied on additional JA/JA-Ile dependent factors, including the induction of foliar polyphenol oxidase activity in response to S. exigua oral secretions.
Collapse
Affiliation(s)
- Marko Bosch
- Institute of Plant Physiology and Biotechnology, University of Hohenheim (260), 70593 Stuttgart, Germany
| | - Sonja Berger
- Institute of Plant Physiology and Biotechnology, University of Hohenheim (260), 70593 Stuttgart, Germany
| | - Andreas Schaller
- Institute of Plant Physiology and Biotechnology, University of Hohenheim (260), 70593 Stuttgart, Germany
| | - Annick Stintzi
- Institute of Plant Physiology and Biotechnology, University of Hohenheim (260), 70593 Stuttgart, Germany
| |
Collapse
|
232
|
Chen C, Liu M, Jiang L, Liu X, Zhao J, Yan S, Yang S, Ren H, Liu R, Zhang X. Transcriptome profiling reveals roles of meristem regulators and polarity genes during fruit trichome development in cucumber (Cucumis sativus L.). JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4943-58. [PMID: 24962999 PMCID: PMC4144775 DOI: 10.1093/jxb/eru258] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Trichomes are epidermal hair-like structures that function in plant defence against biotic and abiotic stresses. Extensive studies have been performed on foliar trichomes development in Arabidopsis and tomato, but the molecular mechanism of fruit trichome formation remains elusive. Cucumber fruit is covered with trichomes (spines) that directly affect the appearance and quality of cucumber products. Here, we characterized the fruit spine development in wild-type (WT) cucumber and a spontaneous mutant, tiny branched hair (tbh). Our data showed that the cucumber trichome was multicellular and non-glandular, with malformed organelles and no endoreduplication. Fruit spine development was generally homogenous and marked by a rapid base expansion stage. Trichomes in the tbh mutant were tiny and branched, with increased density and aberrant cell shape. Transcriptome profiling indicated that meristem-related genes were highly enriched in the upregulated genes in the tbh versus the WT, as well as in WT spines after versus before base expansion, and that polarity regulators were greatly induced during spine base expansion. Quantitative reverse transcription PCR and in situ hybridization confirmed the differential expression of CUP-SHAPED COTYLEDON3 (CUC3) and SHOOT MERISTEMLESS (STM) during spine development. Therefore, cucumber trichomes are morphologically different from those of Arabidopsis and tomato, and their development may be regulated by a distinct pathway involving meristem genes and polarity regulators.
Collapse
Affiliation(s)
- Chunhua Chen
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, PR China
| | - Meiling Liu
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, PR China
| | - Li Jiang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, PR China
| | - Xiaofeng Liu
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, PR China
| | - Jianyu Zhao
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, PR China
| | - Shuangshuang Yan
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, PR China
| | - Sen Yang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, PR China
| | - Huazhong Ren
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, PR China
| | - Renyi Liu
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Xiaolan Zhang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
233
|
Bosch M, Wright LP, Gershenzon J, Wasternack C, Hause B, Schaller A, Stintzi A. Jasmonic acid and its precursor 12-oxophytodienoic acid control different aspects of constitutive and induced herbivore defenses in tomato. PLANT PHYSIOLOGY 2014; 166:396-410. [PMID: 25073705 PMCID: PMC4149723 DOI: 10.1104/pp.114.237388] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 07/25/2014] [Indexed: 05/20/2023]
Abstract
The jasmonate family of growth regulators includes the isoleucine (Ile) conjugate of jasmonic acid (JA-Ile) and its biosynthetic precursor 12-oxophytodienoic acid (OPDA) as signaling molecules. To assess the relative contribution of JA/JA-Ile and OPDA to insect resistance in tomato (Solanum lycopersicum), we silenced the expression of OPDA reductase3 (OPR3) by RNA interference (RNAi). Consistent with a block in the biosynthetic pathway downstream of OPDA, OPR3-RNAi plants contained wild-type levels of OPDA but failed to accumulate JA or JA-Ile after wounding. JA/JA-Ile deficiency in OPR3-RNAi plants resulted in reduced trichome formation and impaired monoterpene and sesquiterpene production. The loss of these JA/JA-Ile -dependent defense traits rendered them more attractive to the specialist herbivore Manduca sexta with respect to feeding and oviposition. Oviposition preference resulted from reduced levels of repellant monoterpenes and sesquiterpenes. Feeding preference, on the other hand, was caused by increased production of cis-3-hexenal acting as a feeding stimulant for M. sexta larvae in OPR3-RNAi plants. Despite impaired constitutive defenses and increased palatability of OPR3-RNAi leaves, larval development was indistinguishable on OPR3-RNAi and wild-type plants, and was much delayed compared with development on the jasmonic acid-insensitive1 (jai1) mutant. Apparently, signaling through JAI1, the tomato ortholog of the ubiquitin ligase CORONATINE INSENSITIVE1 in Arabidopsis (Arabidopsis thaliana), is required for defense, whereas the conversion of OPDA to JA/JA-Ile is not. Comparing the signaling activities of OPDA and JA/JA-Ile, we found that OPDA can substitute for JA/JA-Ile in the local induction of defense gene expression, but the production of JA/JA-Ile is required for a systemic response.
Collapse
Affiliation(s)
- Marko Bosch
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany (M.B., A.Sc., A.St.);Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.); andLeibniz Institute of Plant Biochemistry, 06120 Halle, Germany (C.W., B.H.)
| | - Louwrance P Wright
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany (M.B., A.Sc., A.St.);Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.); andLeibniz Institute of Plant Biochemistry, 06120 Halle, Germany (C.W., B.H.)
| | - Jonathan Gershenzon
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany (M.B., A.Sc., A.St.);Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.); andLeibniz Institute of Plant Biochemistry, 06120 Halle, Germany (C.W., B.H.)
| | - Claus Wasternack
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany (M.B., A.Sc., A.St.);Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.); andLeibniz Institute of Plant Biochemistry, 06120 Halle, Germany (C.W., B.H.)
| | - Bettina Hause
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany (M.B., A.Sc., A.St.);Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.); andLeibniz Institute of Plant Biochemistry, 06120 Halle, Germany (C.W., B.H.)
| | - Andreas Schaller
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany (M.B., A.Sc., A.St.);Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.); andLeibniz Institute of Plant Biochemistry, 06120 Halle, Germany (C.W., B.H.)
| | - Annick Stintzi
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany (M.B., A.Sc., A.St.);Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.); andLeibniz Institute of Plant Biochemistry, 06120 Halle, Germany (C.W., B.H.)
| |
Collapse
|
234
|
Tohge T, Alseekh S, Fernie AR. On the regulation and function of secondary metabolism during fruit development and ripening. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4599-611. [PMID: 24446507 DOI: 10.1093/jxb/ert443] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The maturation and development of tomato fruit has received much attention due both to the complexity and intricacy of the changes which occur during this process and to the importance of these fruits as a component of the human diet. Whilst great advances have been made in understanding molecular genetic aspects of fruit development, our knowledge concerning the metabolic shifts underpinning this process remains largely confined to primary metabolism. Conversely, the majority of the metabolites considered to have health benefits are secondary or specialized metabolites. Prior to assessing the role (if any) of these metabolites in tomato fruit development, considerable effort will be required in order to better describe the complement of secondary metabolites in the tomato and to elucidate the metabolic pathways involved in their synthesis and degradation. Advances in tomato secondary metabolism will be reviewed here focusing on the use of metabolomics strategies and, where applicable, the enabling of these strategies by their coupling to information resident in the tomato genome sequence.
Collapse
Affiliation(s)
- Takayuki Tohge
- Max-Planck-Institute of Molecular Plant Physiology, Am Muehlenberg 1. Potsdam 14476, Germany
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Muehlenberg 1. Potsdam 14476, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Muehlenberg 1. Potsdam 14476, Germany
| |
Collapse
|
235
|
Cole SJ, Yoon AJ, Faull KF, Diener AC. Host perception of jasmonates promotes infection by Fusarium oxysporum formae speciales that produce isoleucine- and leucine-conjugated jasmonates. MOLECULAR PLANT PATHOLOGY 2014; 15:589-600. [PMID: 24387225 PMCID: PMC4211617 DOI: 10.1111/mpp.12117] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Three pathogenic forms, or formae speciales (f. spp.), of Fusarium oxysporum infect the roots of Arabidopsis thaliana below ground, instigating symptoms of wilt disease in leaves above ground. In previous reports, Arabidopsis mutants that are deficient in the biosynthesis of abscisic acid or salicylic acid or insensitive to ethylene or jasmonates exhibited either more or less wilt disease, than the wild-type, implicating the involvement of hormones in the normal host response to F. oxysporum. Our analysis of hormone-related mutants finds no evidence that endogenous hormones contribute to infection in roots. Mutants that are deficient in abscisic acid and insensitive to ethylene show no less infection than the wild-type, although they exhibit less disease. Whether a mutant that is insensitive to jasmonates affects infection depends on which forma specialis (f. sp.) is infecting the roots. Insensitivity to jasmonates suppresses infection by F. oxysporum f. sp. conglutinans and F. oxysporum f. sp. matthioli, which produce isoleucine- and leucine-conjugated jasmonate (JA-Ile/Leu), respectively, in culture filtrates, whereas insensitivity to jasmonates has no effect on infection by F. oxysporum f. sp. raphani, which produces no detectable JA-Ile/Leu. Furthermore, insensitivity to jasmonates has no effect on wilt disease of tomato, and the tomato pathogen F. oxysporum f. sp. lycopersici produces no detectable jasmonates. Thus, some, but not all, F. oxysporum pathogens appear to utilize jasmonates as effectors, promoting infection in roots and/or the development of symptoms in shoots. Only when the infection of roots is promoted by jasmonates is wilt disease enhanced in a mutant deficient in salicylic acid biosynthesis.
Collapse
Affiliation(s)
- Stephanie J Cole
- Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | | | | | | |
Collapse
|
236
|
Cazaux M, Navarro M, Bruinsma KA, Zhurov V, Negrave T, Van Leeuwen T, Grbic V, Grbic M. Application of two-spotted spider mite Tetranychus urticae for plant-pest interaction studies. J Vis Exp 2014. [PMID: 25046103 DOI: 10.3791/51738] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The two-spotted spider mite, Tetranychus urticae, is a ubiquitous polyphagous arthropod herbivore that feeds on a remarkably broad array of species, with more than 150 of economic value. It is a major pest of greenhouse crops, especially in Solanaceae and Cucurbitaceae (e.g., tomatoes, eggplants, peppers, cucumbers, zucchini) and greenhouse ornamentals (e.g., roses, chrysanthemum, carnations), annual field crops (such as maize, cotton, soybean, and sugar beet), and in perennial cultures (alfalfa, strawberries, grapes, citruses, and plums)1,2. In addition to the extreme polyphagy that makes it an important agricultural pest, T. urticae has a tendency to develop resistance to a wide array of insecticides and acaricides that are used for its control3-7. T. urticae is an excellent experimental organism, as it has a rapid life cycle (7 days at 27 °C) and can be easily maintained at high density in the laboratory. Methods to assay gene expression (including in situ hybridization and antibody staining) and to inactivate expression of spider mite endogenous genes using RNA interference have been developed8-10. Recently, the whole genome sequence of T. urticae has been reported, creating an opportunity to develop this pest herbivore as a model organism with equivalent genomic resources that already exist in some of its host plants (Arabidopsis thaliana and the tomato Solanum lycopersicum)11. Together, these model organisms could provide insights into molecular bases of plant-pest interactions. Here, an efficient method for quick and easy collection of a large number of adult female mites, their application on an experimental plant host, and the assessment of the plant damage due to spider mite feeding are described. The presented protocol enables fast and efficient collection of hundreds of individuals at any developmental stage (eggs, larvae, nymphs, adult males, and females) that can be used for subsequent experimental application.
Collapse
Affiliation(s)
- Marc Cazaux
- Department of Biology, The University of Western Ontario; Instituto de Ciencias de la Vid y el Vino
| | - Marie Navarro
- Department of Biology, The University of Western Ontario; Instituto de Ciencias de la Vid y el Vino
| | | | | | - Tara Negrave
- Department of Biology, The University of Western Ontario
| | - Thomas Van Leeuwen
- Department of Crop Protection, Ghent University; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam
| | - Vojislava Grbic
- Department of Biology, The University of Western Ontario; Instituto de Ciencias de la Vid y el Vino
| | - Miodrag Grbic
- Department of Biology, The University of Western Ontario; Instituto de Ciencias de la Vid y el Vino;
| |
Collapse
|
237
|
Hauser MT. Molecular basis of natural variation and environmental control of trichome patterning. FRONTIERS IN PLANT SCIENCE 2014; 5:320. [PMID: 25071803 PMCID: PMC4080826 DOI: 10.3389/fpls.2014.00320] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 06/17/2014] [Indexed: 05/17/2023]
Abstract
Trichomes are differentiated epidermal cells on above ground organs of nearly all land plants. They play important protective roles as structural defenses upon biotic attacks such as herbivory, oviposition and fungal infections, and against abiotic stressors such as drought, heat, freezing, excess of light, and UV radiation. The pattern and density of trichomes is highly variable within natural population suggesting tradeoffs between traits positively affecting fitness such as resistance and the costs of trichome production. The spatial distribution of trichomes is regulated through a combination of endogenous developmental programs and external signals. This review summarizes the current understanding on the molecular basis of the natural variation and the role of phytohormones and environmental stimuli on trichome patterning.
Collapse
Affiliation(s)
- Marie-Theres Hauser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
| |
Collapse
|
238
|
Miyazaki J, Stiller WN, Truong TT, Xu Q, Hocart CH, Wilson LJ, Wilson IW. Jasmonic acid is associated with resistance to twospotted spider mites in diploid cotton (Gossypium arboreum). FUNCTIONAL PLANT BIOLOGY : FPB 2014; 41:748-757. [PMID: 32481029 DOI: 10.1071/fp13333] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/23/2014] [Indexed: 05/27/2023]
Abstract
The twospotted spider mite (Tetranychus urticae Koch) is capable of dramatically reducing the yield of cotton crops and is often difficult and expensive to control. This study investigated and compared two important plant hormones, jasmonic acid (JA) and salicylic acid (SA), as constitutive and/or induced defence response components in a mite susceptible commercial cotton cultivar, Sicot 71 (Gossypium hirsutum L.) and a resistant diploid cotton BM13H (Gossypium arboreum L.). Foliar application of JA and methyl jasmonate (MeJA) reduced the mite population and leaf damage but application of other potential elicitors, SA and methyl salicylate (MeSA) did not. The concentrations of JA and SA in leaf tissues of induced and non-induced Sicot 71 and BM13H were quantified by liquid chromatography coupled to electrospray ionisation tandem mass spectrometry (LC-ESI-MS/MS). The JA content was constitutively higher in BM13H than Sicot 71 and also highly induced by mite infestation in BM13H but not in Sicot 71. However, SA was not significantly induced in either BM13H or Sicot 71. The expression levels of JA related genes, LOX, AOS and OPR were measured by quantitative PCR and elevated expression levels of JA related genes were detected in mite-infested BM13H. Therefore, JA and MeJA were implicated as key biochemical components in both the constitutive and induced defence responses of BM13H to spider mites.
Collapse
Affiliation(s)
- Junji Miyazaki
- CSIRO Plant Industry, Locked Bag 59, Narrabri, NSW 2390, Australia
| | | | - Thy T Truong
- Research School of Biology, Mass Spectrometry Facility, The Australian National University, ACT 0200, Australia
| | - Qian Xu
- CSIRO Plant Industry, Black Mountain Laboratories, Clunies Ross Street, Black Mountain, ACT 2601, Australia
| | - Charles H Hocart
- Research School of Biology, Mass Spectrometry Facility, The Australian National University, ACT 0200, Australia
| | - Lewis J Wilson
- CSIRO Plant Industry, Locked Bag 59, Narrabri, NSW 2390, Australia
| | - Iain W Wilson
- CSIRO Plant Industry, Black Mountain Laboratories, Clunies Ross Street, Black Mountain, ACT 2601, Australia
| |
Collapse
|
239
|
Du M, Zhai Q, Deng L, Li S, Li H, Yan L, Huang Z, Wang B, Jiang H, Huang T, Li CB, Wei J, Kang L, Li J, Li C. Closely related NAC transcription factors of tomato differentially regulate stomatal closure and reopening during pathogen attack. THE PLANT CELL 2014; 26:3167-84. [PMID: 25005917 PMCID: PMC4145139 DOI: 10.1105/tpc.114.128272] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 06/18/2014] [Accepted: 06/26/2014] [Indexed: 05/18/2023]
Abstract
To restrict pathogen entry, plants close stomata as an integral part of innate immunity. To counteract this defense, Pseudomonas syringae pv tomato produces coronatine (COR), which mimics jasmonic acid (JA), to reopen stomata for bacterial entry. It is believed that abscisic acid (ABA) plays a central role in regulating bacteria-triggered stomatal closure and that stomatal reopening requires the JA/COR pathway, but the downstream signaling events remain unclear. We studied the stomatal immunity of tomato (Solanum lycopersicum) and report here the distinct roles of two homologous NAC (for NAM, ATAF1,2, and CUC2) transcription factors, JA2 (for jasmonic acid2) and JA2L (for JA2-like), in regulating pathogen-triggered stomatal movement. ABA activates JA2 expression, and genetic manipulation of JA2 revealed its positive role in ABA-mediated stomatal closure. We show that JA2 exerts this effect by regulating the expression of an ABA biosynthetic gene. By contrast, JA and COR activate JA2L expression, and genetic manipulation of JA2L revealed its positive role in JA/COR-mediated stomatal reopening. We show that JA2L executes this effect by regulating the expression of genes involved in the metabolism of salicylic acid. Thus, these closely related NAC proteins differentially regulate pathogen-induced stomatal closure and reopening through distinct mechanisms.
Collapse
Affiliation(s)
- Minmin Du
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China College of Horticulture, Northeast Agricultural University, Harbin 150030, China
| | - Qingzhe Zhai
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Deng
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuyu Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongshuang Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liuhua Yan
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhuo Huang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bao Wang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongling Jiang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tingting Huang
- Institute of Vegetable, Qingdao Academy of Agricultural Sciences, Qingdao 266100, China
| | - Chang-Bao Li
- Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jianing Wei
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | - Jingfu Li
- College of Horticulture, Northeast Agricultural University, Harbin 150030, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
240
|
Herde M, Howe GA. Host plant-specific remodeling of midgut physiology in the generalist insect herbivore Trichoplusia ni. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 50:58-67. [PMID: 24727019 DOI: 10.1016/j.ibmb.2014.03.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 03/19/2014] [Accepted: 03/31/2014] [Indexed: 05/09/2023]
Abstract
Species diversity in terrestrial ecosystems is influenced by plant defense compounds that alter the behavior, physiology, and host preference of insect herbivores. Although it is established that insects evolved the ability to detoxify specific allelochemicals, the mechanisms by which polyphagous insects cope with toxic compounds in diverse host plants are not well understood. Here, we used defended and non-defended plant genotypes to study how variation in chemical defense affects midgut responses of the lepidopteran herbivore Trichoplusia ni, which is a pest of a wide variety of native and cultivated plants. The genome-wide midgut transcriptional response of T. ni larvae to glucosinolate-based defenses in the crucifer Arabidopsis thaliana was characterized by strong induction of genes encoding Phase I and II detoxification enzymes. In contrast, the response of T. ni to proteinase inhibitors and other jasmonate-regulated defenses in tomato (Solanum lycopersicum) was dominated by changes in the expression of digestive enzymes and, strikingly, concomitant repression of transcripts encoding detoxification enzymes. Unbiased proteomic analyses of T. ni feces demonstrated that tomato defenses remodel the complement of T.ni digestive enzymes, which was associated with increased amounts of serine proteases and decreased lipase protein abundance upon encountering tomato defense chemistry. These collective results indicate that T. ni adjusts its gut physiology to the presence of host plant-specific chemical defenses, and further suggest that plants may exploit this digestive flexibility as a defensive strategy to suppress the production of enzymes that detoxify allelochemicals.
Collapse
Affiliation(s)
- Marco Herde
- Department of Energy-Plant Research Laboratory, East Lansing, MI 48824, USA.
| | - Gregg A Howe
- Department of Energy-Plant Research Laboratory, East Lansing, MI 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
241
|
Campos ML, Kang JH, Howe GA. Jasmonate-triggered plant immunity. J Chem Ecol 2014; 40:657-75. [PMID: 24973116 DOI: 10.1007/s10886-014-0468-3] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/06/2014] [Accepted: 06/17/2014] [Indexed: 11/29/2022]
Abstract
The plant hormone jasmonate (JA) exerts direct control over the production of chemical defense compounds that confer resistance to a remarkable spectrum of plant-associated organisms, ranging from microbial pathogens to vertebrate herbivores. The underlying mechanism of JA-triggered immunity (JATI) can be conceptualized as a multi-stage signal transduction cascade involving: i) pattern recognition receptors (PRRs) that couple the perception of danger signals to rapid synthesis of bioactive JA; ii) an evolutionarily conserved JA signaling module that links fluctuating JA levels to changes in the abundance of transcriptional repressor proteins; and iii) activation (de-repression) of transcription factors that orchestrate the expression of myriad chemical and morphological defense traits. Multiple negative feedback loops act in concert to restrain the duration and amplitude of defense responses, presumably to mitigate potential fitness costs of JATI. The convergence of diverse plant- and non-plant-derived signals on the core JA module indicates that JATI is a general response to perceived danger. However, the modular structure of JATI may accommodate attacker-specific defense responses through evolutionary innovation of PRRs (inputs) and defense traits (outputs). The efficacy of JATI as a defense strategy is highlighted by its capacity to shape natural populations of plant attackers, as well as the propensity of plant-associated organisms to subvert or otherwise manipulate JA signaling. As both a cellular hub for integrating informational cues from the environment and a common target of pathogen effectors, the core JA module provides a focal point for understanding immune system networks and the evolution of chemical diversity in the plant kingdom.
Collapse
Affiliation(s)
- Marcelo L Campos
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | | | | |
Collapse
|
242
|
Wu YJ, Wu YJ, Luo X, Shen XL, Zhao DG. Identification of differentially expressed genes that potentially confer pest resistance in transgenic ChIFN-γ tobacco. Gene 2014; 543:181-9. [PMID: 24747016 DOI: 10.1016/j.gene.2014.04.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 04/04/2014] [Accepted: 04/15/2014] [Indexed: 11/30/2022]
Abstract
Chicken interferon-γ (ChIFN-γ) is both an inhibitor of viral replication and a regulator of numerous immunological functions. However, since little is known about the mechanisms underlying the insect-resistance of transgenic ChIFN-γ, a transgenic ChIFN-γ tobacco line was employed in the present study to explore this mechanism. A cDNA microarray (with 43,760 unigenes) was used to analyze the gene expression profiles of transgenic and wild-type (WT) tobacco leaves at two different growth stages. Compared with the WT, 1529 and 405 expressed sequence tags were significantly up- or downregulated on days 119 and 147, respectively. The differentially expressed genes (DEGs) are involved in metabolic regulation, cell division and differentiation, material synthesis and transport, signal transduction, and protein synthesis and degradation. Candidate genes that may increase cell density, thicken cell walls, promote secondary metabolite synthesis, and mediate plant hormone-induced resistance responses were used to identify the ChIFN-γ-mediated insect-resistance mechanisms. The insect-resistance of transgenic ChIFN-γ tobacco possibly involves unknown signaling pathways, which may directly or indirectly affect DEG expression-mediating genes. The degree of pest resistance increased as the plants grew. Three genes likely to be related to jasmonic acid- or salicylic acid-dependent plant defense responses, including CAF 1, Cop 8/CSN, and HD, are implicated in the insect-resistance of the transgenic plants. The mechanism of transgenic ChIFN-γ tobacco resistance also involves RPS20 and other genes that induce microRNA-based gene regulation. The ChIFN-γ-mediated DGEs contribute to insect-resistance in transgenic ChIFN-γ tobacco, which provides new insight into the role of ChIFN-γ.
Collapse
Affiliation(s)
- Yong-Jun Wu
- Guizhou Key Laboratory of Agro-Bioengineering, College of Life Sciences, South Campus of Guizhou University, Guiyang 550025, PR China.
| | - Yu-Jun Wu
- Guizhou Key Laboratory of Agro-Bioengineering, College of Life Sciences, South Campus of Guizhou University, Guiyang 550025, PR China
| | - Xi Luo
- Guizhou Key Laboratory of Agro-Bioengineering, College of Life Sciences, South Campus of Guizhou University, Guiyang 550025, PR China
| | - Xi-Long Shen
- Guizhou Key Laboratory of Agro-Bioengineering, College of Life Sciences, South Campus of Guizhou University, Guiyang 550025, PR China
| | - De-Gang Zhao
- Guizhou Key Laboratory of Agro-Bioengineering, College of Life Sciences, South Campus of Guizhou University, Guiyang 550025, PR China
| |
Collapse
|
243
|
Liu N, Wu S, Van Houten J, Wang Y, Ding B, Fei Z, Clarke TH, Reed JW, van der Knaap E. Down-regulation of AUXIN RESPONSE FACTORS 6 and 8 by microRNA 167 leads to floral development defects and female sterility in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2507-20. [PMID: 24723401 PMCID: PMC4036516 DOI: 10.1093/jxb/eru141] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Auxin regulates the expression of diverse genes that affect plant growth and development. This regulation requires AUXIN RESPONSE FACTORS (ARFs) that bind to the promoter regions of these genes. ARF6 and ARF8 in Arabidopsis thaliana are required to promote inflorescence stem elongation and late stages of petal, stamen, and gynoecium development. All seed plants studied thus far have ARF6 and ARF8 orthologues as well as the microRNA miR167, which targets ARF6 and ARF8. Whether these genes have broadly conserved roles in flower development is not known. To address this question, the effects of down-regulation of ARF6 and ARF8 were investigated through transgenic expression of Arabidopsis MIR167a in tomato, which diverged from Arabidopsis before the radiation of dicotyledonous plants approximately 90-112 million years ago. The transgenic tomato plants overexpressing MIR167a exhibited reductions in leaf size and internode length as well as shortened petals, stamens, and styles. More significantly, the transgenic plants were female-sterile as a result of failure of wild-type pollen to germinate on the stigma surface and/or to grow through the style. RNA-Seq analysis identified many genes with significantly altered expression patterns, including those encoding products with functions in 'transcription regulation', 'cell wall' and 'lipid metabolism' categories. Putative orthologues of a subset of these genes were also differentially expressed in Arabidopsis arf6 arf8 mutant flowers. These results thus suggest that ARF6 and ARF8 have conserved roles in controlling growth and development of vegetative and flower organs in dicots.
Collapse
Affiliation(s)
- Ning Liu
- The Ohio State University, Ohio Agricultural Research and Development Center, Department of Horticulture and Crop Science, Wooster, OH 44691, USA
| | - Shan Wu
- The Ohio State University, Ohio Agricultural Research and Development Center, Department of Horticulture and Crop Science, Wooster, OH 44691, USA
| | - Jason Van Houten
- The Ohio State University, Ohio Agricultural Research and Development Center, Department of Horticulture and Crop Science, Wooster, OH 44691, USA
| | - Ying Wang
- The Ohio State University, Department of Molecular Genetics, Columbus, OH 43210, USA
| | - Biao Ding
- The Ohio State University, Department of Molecular Genetics, Columbus, OH 43210, USA
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | - Thomas H Clarke
- University of North Carolina, Department of Biology, Chapel Hill, NC 27599-3280, USA
| | - Jason W Reed
- University of North Carolina, Department of Biology, Chapel Hill, NC 27599-3280, USA
| | - Esther van der Knaap
- The Ohio State University, Ohio Agricultural Research and Development Center, Department of Horticulture and Crop Science, Wooster, OH 44691, USA
| |
Collapse
|
244
|
Spyropoulou EA, Haring MA, Schuurink RC. RNA sequencing on Solanum lycopersicum trichomes identifies transcription factors that activate terpene synthase promoters. BMC Genomics 2014; 15:402. [PMID: 24884371 PMCID: PMC4041997 DOI: 10.1186/1471-2164-15-402] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/09/2014] [Indexed: 12/02/2022] Open
Abstract
Background Glandular trichomes are production and storage organs of specialized metabolites such as terpenes, which play a role in the plant’s defense system. The present study aimed to shed light on the regulation of terpene biosynthesis in Solanum lycopersicum trichomes by identification of transcription factors (TFs) that control the expression of terpene synthases. Results A trichome transcriptome database was created with a total of 27,195 contigs that contained 743 annotated TFs. Furthermore a quantitative expression database was obtained of jasmonic acid-treated trichomes. Sixteen candidate TFs were selected for further analysis. One TF of the MYC bHLH class and one of the WRKY class were able to transiently transactivate S. lycopersicum terpene synthase promoters in Nicotiana benthamiana leaves. Strikingly, SlMYC1 was shown to act synergistically with a previously identified zinc finger-like TF, Expression of Terpenoids 1 (SlEOT1) in transactivating the SlTPS5 promoter. Conclusions High-throughput sequencing of tomato stem trichomes led to the discovery of two transcription factors that activated several terpene synthase promoters. Our results identified new elements of the transcriptional regulation of tomato terpene biosynthesis in trichomes, a largely unexplored field. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-402) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Robert C Schuurink
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands.
| |
Collapse
|
245
|
Wang W, Liu G, Niu H, Timko MP, Zhang H. The F-box protein COI1 functions upstream of MYB305 to regulate primary carbohydrate metabolism in tobacco (Nicotiana tabacum L. cv. TN90). JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2147-60. [PMID: 24604735 PMCID: PMC3991746 DOI: 10.1093/jxb/eru084] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Jasmonate (JA) plays an important role in regulating plant male fertility and secondary metabolism, but its role in regulating primary metabolism remains unclear. The F-box protein CORONATINE INSENSITIVE 1 (COI1) is a critical component of the JA receptor, and mediates JA-signalling by targeting JASMONATE ZIM-domain (JAZ) proteins for proteasomal degradation in response to JA perception. Here, we found that RNA interference-mediated knockdown of NtCOI1 in tobacco (Nicotiana tabacum L. cv. TN90) recapitulated many previously observed phenotypes in coi1 mutants, including male sterility, JA insensitivity, and loss of floral anthocyanin production. It also affected starch metabolism in the pollen, anther wall, and floral nectary, leading to pollen abortion and loss of floral nectar. Transcript levels of genes encoding starch metabolism enzymes were significantly altered in the pollen, anther wall, and floral nectary of NtCOI1-silenced tobacco. Changes in leaf primary metabolism were also observed in the NtCOI1-silenced tobacco. The expression of NtMYB305, an orthologue of MYB305 previously identified as a flavonoid metabolic regulator in Antirrhinum majus flowers and as a floral-nectar regulator mediating starch synthesis in ornamental tobacco, was extremely downregulated in NtCOI1-silenced tobacco. These findings suggest that NtCOI1 functions upstream of NtMYB305 and plays a fundamental role in coordinating plant primary carbohydrate metabolism and correlative physiological processes.
Collapse
Affiliation(s)
- Wenjing Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, PR China
| | - Guanshan Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, PR China
| | - Haixia Niu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, PR China
| | - Michael P. Timko
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Hongbo Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, PR China
| |
Collapse
|
246
|
Wasternack C. Perception, signaling and cross-talk of jasmonates and the seminal contributions of the Daoxin Xie's lab and the Chuanyou Li's lab. PLANT CELL REPORTS 2014; 33:707-718. [PMID: 24691578 DOI: 10.1007/s00299-014-1608-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 03/22/2014] [Indexed: 06/03/2023]
Abstract
Jasmonates (JAs) are lipid-derived signals in plant responses to biotic and abiotic stresses and in development. The most active JA compound is (+)-7-iso-JA-Ile, a JA conjugate with isoleucine. Biosynthesis, metabolism and key components of perception and signal transduction have been identified and numerous JA-induced gene expression data collected. For JA-Ile perception, the SCF(COI1)-JAZ co-receptor complex has been identified and crystalized. Activators such as MYC2 and repressors such as JAZs including their targets were found. Involvement of JA-Ile in response to herbivores and pathogens and in root growth inhibition is among the most studied aspects of JA-Ile signaling. There are an increasing number of examples, where JA-Ile shows cross-talk with other plant hormones. Seminal contributions in JA/JA-Ile research were given by Daoxin Xie's lab and Chuanyou Li's lab, both in Beijing. Here, characterization was done regarding components of the JA-Ile receptor, such as COI1 (JAI1) and SCF, regarding activators (MYCs, MYBs) and repressors (JAV1, bHLH IIId's) of JA-regulated gene expression, as well as regarding components of auxin biosynthesis and action, such as the transcription factor PLETHORA active in the root stem cell niche. This overview reflects the work of both labs in the light of our present knowledge on biosynthesis, perception and signal transduction of JA/JA-Ile and its cross-talk to other hormones.
Collapse
Affiliation(s)
- Claus Wasternack
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany,
| |
Collapse
|
247
|
Intake and transformation to a glycoside of (Z)-3-hexenol from infested neighbors reveals a mode of plant odor reception and defense. Proc Natl Acad Sci U S A 2014; 111:7144-9. [PMID: 24778218 DOI: 10.1073/pnas.1320660111] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Plants receive volatile compounds emitted by neighboring plants that are infested by herbivores, and consequently the receiver plants begin to defend against forthcoming herbivory. However, to date, how plants receive volatiles and, consequently, how they fortify their defenses, is largely unknown. In this study, we found that undamaged tomato plants exposed to volatiles emitted by conspecifics infested with common cutworms (exposed plants) became more defensive against the larvae than those exposed to volatiles from uninfested conspecifics (control plants) in a constant airflow system under laboratory conditions. Comprehensive metabolite analyses showed that only the amount of (Z)-3-hexenylvicianoside (HexVic) was higher in exposed than control plants. This compound negatively affected the performance of common cutworms when added to an artificial diet. The aglycon of HexVic, (Z)-3-hexenol, was obtained from neighboring infested plants via the air. The amount of jasmonates (JAs) was not higher in exposed plants, and HexVic biosynthesis was independent of JA signaling. The use of (Z)-3-hexenol from neighboring damaged conspecifics for HexVic biosynthesis in exposed plants was also observed in an experimental field, indicating that (Z)-3-hexenol intake occurred even under fluctuating environmental conditions. Specific use of airborne (Z)-3-hexenol to form HexVic in undamaged tomato plants reveals a previously unidentified mechanism of plant defense.
Collapse
|
248
|
Santhanam R, Groten K, Meldau DG, Baldwin IT. Analysis of plant-bacteria interactions in their native habitat: bacterial communities associated with wild tobacco are independent of endogenous jasmonic acid levels and developmental stages. PLoS One 2014; 9:e94710. [PMID: 24728407 PMCID: PMC3984252 DOI: 10.1371/journal.pone.0094710] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/18/2014] [Indexed: 11/18/2022] Open
Abstract
Jasmonic acid (JA) mediates defense responses against herbivores and necrotrophic pathogens but does it influence the recruitment of bacterial communities in the field? We conducted field and laboratory experiments with transformed Nicotiana attenuata plants deficient in jasmonate biosynthesis (irAOC) and empty vector controls (EV) to answer this question. Using both culture-dependent and independent techniques, we characterized root and leaf-associated bacterial communities over five developmental stages, from rosette through flowering of plants grown in their natural habitat. Based on the pyrosequencing results, alpha and beta diversity did not differ among EV and irAOC plants or over ontogeny, but some genera were more abundant in one of the genotypes. Furthermore, bacterial communities were significantly different among leaves and roots. Taxa isolated only from one or both plant genotypes and hence classified as 'specialists' and 'generalists' were used in laboratory tests to further evaluate the patterns observed from the field. The putative specialist taxa did not preferentially colonize the jasmonate-deficient genotype, or alter the plant's elicited phytohormone signaling. We conclude that in N. attenuata, JA signaling does not have a major effect on structuring the bacterial communities and infer that colonization of plant tissues is mainly shaped by the local soil community in which the plant grows.
Collapse
Affiliation(s)
- Rakesh Santhanam
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Karin Groten
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Dorothea G. Meldau
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
249
|
Plant defenses and predation risk differentially shape patterns of consumption, growth, and digestive efficiency in a guild of leaf-chewing insects. PLoS One 2014; 9:e93714. [PMID: 24718036 PMCID: PMC3981721 DOI: 10.1371/journal.pone.0093714] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 03/05/2014] [Indexed: 12/02/2022] Open
Abstract
Herbivores are squeezed between the two omnipresent threats of variable food quality and natural enemy attack, but these two factors are not independent of one another. The mechanisms by which organisms navigate the dual challenges of foraging while avoiding predation are poorly understood. We tested the effects of plant defense and predation risk on herbivory in an assemblage of leaf-chewing insects on Solanum lycopersicum (tomato) that included two Solanaceae specialists (Manduca sexta and Leptinotarsa decemlineata) and one generalist (Trichoplusia ni). Defenses were altered using genetic manipulations of the jasmonate phytohormonal cascade, whereas predation risk was assessed by exposing herbivores to cues from the predaceous stink bug, Podisus maculiventris. Predation risk reduced herbivore food intake by an average of 29% relative to predator-free controls. Interestingly, this predator-mediated impact on foraging behavior largely attenuated when quantified in terms of individual growth rate. Only one of the three species experienced lower body weight under predation risk and the magnitude of this effect was small (17% reduction) compared with effects on foraging behavior. Manduca sexta larvae, compensated for their predator-induced reduction in food intake by more effectively converting leaf tissue to body mass. They also had higher whole-body lipid content when exposed to predators, suggesting that individuals convert energy to storage forms to draw upon when risk subsides. In accordance with expectations based on insect diet breadth, plant defenses tended to have a stronger impact on consumption and growth in the generalist than the two specialists. These data both confirm the ecological significance of predators in the foraging behavior of herbivorous prey and demonstrate how sophisticated compensatory mechanisms allow foragers to partially offset the detrimental effects of reduced food intake. The fact that these mechanisms operated across a wide range of plant resistance phenotypes suggests that compensation is not always constrained by reduced food quality.
Collapse
|
250
|
Jasmonic acid regulates spikelet development in rice. Nat Commun 2014; 5:3476. [DOI: 10.1038/ncomms4476] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 02/20/2014] [Indexed: 12/25/2022] Open
|