201
|
Ančić D, Oršolić N, Odeh D, Tomašević M, Pepić I, Ramić S. Resveratrol and its nanocrystals: A promising approach for cancer therapy? Toxicol Appl Pharmacol 2021; 435:115851. [PMID: 34971666 DOI: 10.1016/j.taap.2021.115851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 12/22/2022]
Abstract
There has been a significant research interest in nanocrystals as a promising technology for improving the therapeutic efficacy of poorly water-soluble drugs, such as resveratrol. Little is known about the interaction of nanocrystals with biological tissue. The aim of this study was to investigate the potential use of resveratrol (RSV) and its nanocrystals (NANO-RSV) as antitumor agents in Ehrlich ascites tumour (EAT)-bearing mice and the interaction of nanocrystals with biological tissue through biochemical and histological changes of kidney, liver and EAT cells. After intraperitoneal injection of 2.5 × 106 cells into the abdominal cavity of mice, treatment of animals was started next day by injecting RSV or NANO-RSV at a dose of either 25 or 50 mg/kg every other day for 14 days. The results show that the administration of resveratrol and its nanocrystals lead to significant reductions in the proliferation of tumour cells in the abdominal cavity, and a reduction of the number of blood vessels in the peritoneum, with low systemic toxicity. In histopathological examinations, greater hepatocellular necrosis and apoptosis, hepatic fibrosis around the central vein and degeneration with minor fatty change were observed with RSV than with NANO-RSV. Inflammation with proximal tubular necrosis and renal glomerulus swelling were also observed, together with slight elevation of several biochemical parameters in both the RSV and NANO-RSV groups. In order to increase the beneficial effects and reduce risks associated with resveratrol nanocrystals, additional factors such as dose, genetic factors, health status, and the nature of the target cells should also be considered.
Collapse
Affiliation(s)
- Daniela Ančić
- Agency for Medicinal Products and Medical Devices, Ksaverska cesta 4, HR-10000 Zagreb, Croatia
| | - Nada Oršolić
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10000 Zagreb, Croatia.
| | - Dyana Odeh
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10000 Zagreb, Croatia
| | - Matea Tomašević
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10000 Zagreb, Croatia
| | - Ivan Pepić
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, HR-10000, Zagreb, Croatia
| | - Snježana Ramić
- Department of Pathology, University Cancer Hospital, Sestre Milosrdnice University Hospital Centre, Ilica 197, HR-10000 Zagreb, Croatia
| |
Collapse
|
202
|
Wikan N, Hankittichai P, Thaklaewphan P, Potikanond S, Nimlamool W. Oxyresveratrol Inhibits TNF-α-Stimulated Cell Proliferation in Human Immortalized Keratinocytes (HaCaT) by Suppressing AKT Activation. Pharmaceutics 2021; 14:63. [PMID: 35056961 PMCID: PMC8781909 DOI: 10.3390/pharmaceutics14010063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 12/17/2022] Open
Abstract
Psoriasis is a complex inflammatory disease characterized by hyperproliferative keratinocyte caused by active PI3K/AKT signaling. TNF-α concentrated in the psoriatic lesions stimulates AKT activation. We previously discovered that oxyresveratrol inhibited inflammation via suppressing AKT phosphorylation, therefore oxyresveratrol may possess a conserved property to block AKT activation and proliferation in keratinocyte in response to TNF-α. Our current study proved that oxyresveratrol exhibited potent anti-proliferative effects against TNF-α. These effects are explained by the findings that oxyresveratrol could potentially inhibit TNF-α-stimulated AKT and GSK3-β activation in a dose-dependent manner, and its inhibitory pattern was comparable to that of a specific PI3K inhibitor. Results from immunofluorescence supported that oxyresveratrol effectively inhibited AKT and GSK3-β activation in individual cells upon TNF-α stimulation. Furthermore, functional assay confirmed that oxyresveratrol repressed the expansion of the HaCaT colony over 3 days, and this was caused by the ability of oxyresveratrol to induce cell cycle arrest at S and G2/M phases and the reduction in the expression of a proliferative marker (Ki-67) and a survival marker (MCL-1). Given the importance of TNF-α and the PI3K/AKT pathway in the psoriatic phenotype, we anticipate that oxyresveratrol, which targets the TNF-α-stimulated PI3K/AKT pathway, would represent a promising psoriasis therapy in the near future.
Collapse
Affiliation(s)
- Nitwara Wikan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.W.); (P.H.); (P.T.); (S.P.)
| | - Phateep Hankittichai
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.W.); (P.H.); (P.T.); (S.P.)
| | - Phatarawat Thaklaewphan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.W.); (P.H.); (P.T.); (S.P.)
| | - Saranyapin Potikanond
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.W.); (P.H.); (P.T.); (S.P.)
- Research Center for Development of Local Lanna Rice and Rice Products, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wutigri Nimlamool
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.W.); (P.H.); (P.T.); (S.P.)
- Research Center for Development of Local Lanna Rice and Rice Products, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
203
|
Helmy LA, Abdel-Halim M, Hassan R, Sebak A, Farghali HAM, Mansour S, Tammam SN. The other side to the use of active targeting ligands; the case of folic acid in the targeting of breast cancer. Colloids Surf B Biointerfaces 2021; 211:112289. [PMID: 34954516 DOI: 10.1016/j.colsurfb.2021.112289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 12/14/2022]
Abstract
Due to its overexpression in cancer cells, the folate receptor (FR) is heavily exploited in the active targeting of nanoparticles (NPs). Its ligand, folic acid (FA) is as a consequence widely used as a NP targeting ligand. Although rather popular and successful in principle, recent data has shown that FA may result in breast cancer initiation and progression, which questions the suitability of FA as NP cancer targeting ligand. In this work, intravenous administration of free FA to healthy female mice resulted in breast tissue dysplasia, hyperplasia and in the increased expression of human epidermal growth factor receptor-2 (HER2), folate receptor (FR), cancer antigen 15-3 (CA15.3), vascular endothelial growth factor (VEGF), signal transducer and activator of transcription 3 (STAT3) and the pro-inflammatory cytokines, tumor necrosis factor alpha (TNFα), interleukin-6 (IL-6) and interleukin-1β. In addition to the reduction in IL2. To evaluate the suitability and safety of FA as NP targeting ligand in breast cancer, small (≈ 150 nm) and large (≈ 500 nm) chitosan NPs were formulated and decorated with two densities of FA. The success of active targeting by FA was confirmed in two breast cancer cell lines (MCF-7 and MDA-MB-231 cells) in comparison to HEK293 cells. FA modified NPs that demonstrated successful active targeting in-vitro were assessed in-vivo. Upon intravenous administration, large NPs modified with a high density of FA accumulated in the breast tissue and resulted in similar effects as those observed with free FA. These results therefore question the suitability of FA as a targeting ligand in breast cancer and shed light on the importance of considering the activity (other than targeting) of the ligands used in NP active targeting.
Collapse
Affiliation(s)
- Lama A Helmy
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, the German University in Cairo, Egypt
| | - Mohammed Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy & Biotechnology, the German University in Cairo, Egypt
| | - Raghda Hassan
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, the German University in Cairo, Egypt
| | - Aya Sebak
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, the German University in Cairo, Egypt
| | - Haithem A M Farghali
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary medicine, Cairo University, Egypt
| | - Samar Mansour
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, the German University in Cairo, Egypt; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy- Ain Shams University, Egypt
| | - Salma N Tammam
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, the German University in Cairo, Egypt.
| |
Collapse
|
204
|
Yang E, Chua W, Ng W, Roberts TL. Peripheral Cytokine Levels as a Prognostic Indicator in Gastric Cancer: A Review of Existing Literature. Biomedicines 2021; 9:1916. [PMID: 34944729 PMCID: PMC8698340 DOI: 10.3390/biomedicines9121916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 12/16/2022] Open
Abstract
Although strong connections exist between the carcinogenesis of gastric cancer and chronic inflammation, gastric cancer is unique in that the chronic gastritis which frequently precedes carcinogenesis is strongly associated with H. pylori infection. The interplay between H. pylori virulence factors and host immune cells is complex but culminates in the activation of inflammatory pathways and transcription factors such as NF-κB, STAT3, and AP-1, all of which upregulate cytokine production. Due to the key role of cytokines in modulating the immune response against tumour cells as well as possibly stimulating tumour growth and proliferation, different patterns of cytokine secretion may be associated with varying patient outcomes. In relation to gastric cancer, interleukin-6, 8, 10, 17A, TNF, and IFN-γ may have pro-tumour properties, although interleukin-10, TNF, and IFN-γ may have anti-tumour effects. However, due to the lack of studies investigating patient outcomes, only a link between higher interleukin-6 levels and poorer prognosis has been demonstrated. Further investigations which link peripheral cytokine levels to patient prognosis may elucidate important pathological mechanisms in gastric cancer which adversely impact patient survival and allow treatments targeting these processes to be developed.
Collapse
Affiliation(s)
- Elton Yang
- School of Medicine, Western Sydney University, Campbelltown 2560, Australia; (E.Y.); (W.C.); (W.N.)
- Ingham Institute for Applied Medical Research, Liverpool 2170, Australia
| | - Wei Chua
- School of Medicine, Western Sydney University, Campbelltown 2560, Australia; (E.Y.); (W.C.); (W.N.)
- Ingham Institute for Applied Medical Research, Liverpool 2170, Australia
- Medical Oncology, Liverpool Hospital, Liverpool 2170, Australia
- Southwest Sydney Clinical School, University of New South Wales, Liverpool 2170, Australia
| | - Weng Ng
- School of Medicine, Western Sydney University, Campbelltown 2560, Australia; (E.Y.); (W.C.); (W.N.)
- Ingham Institute for Applied Medical Research, Liverpool 2170, Australia
- Medical Oncology, Liverpool Hospital, Liverpool 2170, Australia
- Southwest Sydney Clinical School, University of New South Wales, Liverpool 2170, Australia
| | - Tara Laurine Roberts
- School of Medicine, Western Sydney University, Campbelltown 2560, Australia; (E.Y.); (W.C.); (W.N.)
- Ingham Institute for Applied Medical Research, Liverpool 2170, Australia
- Southwest Sydney Clinical School, University of New South Wales, Liverpool 2170, Australia
| |
Collapse
|
205
|
Nasr SA, Saad AAEM. Evaluation of the cytotoxic anticancer effect of polysaccharide of Nepeta septemcrenata. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2021. [DOI: 10.1186/s43088-021-00135-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Promoting cancer cells apoptosis is one of the effective methods to treat cancer. Human hepatocellular carcinoma (HepG2) and colorectal cancer (HCT-116) cell lines were used in the present study to evaluate the cytotoxic and anticancer properties of Nepeta septemcrenata Polysaccharide (NSP).
Result
Treatment of the two examined cells with NSP displayed a significant cytotoxicity towards HepG2 in a dose-dependent manner; meanwhile, its effect on HCT-116 was obtained under the influence of low doses. The quantitative real- time PCR (QRT-PCR) investigation revealed that NSP significantly up-regulated the expression levels of p53, p16, Fas, Fas-L, Bax, caspases-3, caspase-9, and TNF-α in association with down-regulation of cyclin D1, TERT, and BCL2. These findings declare the apoptotic characteristic of NSP.NSP, can also inhibit the development of cancer cells through the down-regulation of TGF-β and VEGF.
Conclusions
Our results suggested that the polysaccharides isolated from N. septemcrenata possess anticancer properties that could be explored for the development of novel anticancer agents.
Collapse
|
206
|
Neganova M, Liu J, Aleksandrova Y, Klochkov S, Fan R. Therapeutic Influence on Important Targets Associated with Chronic Inflammation and Oxidative Stress in Cancer Treatment. Cancers (Basel) 2021; 13:6062. [PMID: 34885171 PMCID: PMC8657135 DOI: 10.3390/cancers13236062] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/28/2021] [Accepted: 11/28/2021] [Indexed: 01/17/2023] Open
Abstract
Chronic inflammation and oxidative stress are the interconnected pathological processes, which lead to cancer initiation and progression. The growing level of oxidative and inflammatory damage was shown to increase cancer severity and contribute to tumor spread. The overproduction of reactive oxygen species (ROS), which is associated with the reduced capacity of the endogenous cell defense mechanisms and/or metabolic imbalance, is the main contributor to oxidative stress. An abnormal level of ROS was defined as a predisposing factor for the cell transformation that could trigger pro-oncogenic signaling pathways, induce changes in gene expression, and facilitate accumulation of mutations, DNA damage, and genomic instability. Additionally, the activation of transcription factors caused by a prolonged oxidative stress, including NF-κB, p53, HIF1α, etc., leads to the expression of several genes responsible for inflammation. The resulting hyperactivation of inflammatory mediators, including TNFα, TGF-β, interleukins, and prostaglandins can contribute to the development of neoplasia. Pro-inflammatory cytokines were shown to trigger adaptive reactions and the acquisition of resistance by tumor cells to apoptosis, while promoting proliferation, invasion, and angiogenesis. Moreover, the chronic inflammatory response leads to the excessive production of free radicals, which further aggravate the initiated reactions. This review summarizes the recent data and progress in the discovery of mechanisms that associate oxidative stress and chronic inflammation with cancer onset and metastasis. In addition, the review provides insights for the development of therapeutic approaches and the discovery of natural substances that will be able to simultaneously inhibit several key oncological and inflammation-related targets.
Collapse
Affiliation(s)
- Margarita Neganova
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou 450000, China; (M.N.); (J.L.)
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou 450000, China; (M.N.); (J.L.)
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yulia Aleksandrova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Sergey Klochkov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Ruitai Fan
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou 450000, China; (M.N.); (J.L.)
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
207
|
Costa AC, Santos JMO, Gil da Costa RM, Medeiros R. Impact of immune cells on the hallmarks of cancer: A literature review. Crit Rev Oncol Hematol 2021; 168:103541. [PMID: 34801696 DOI: 10.1016/j.critrevonc.2021.103541] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/15/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022] Open
Abstract
Tumor-infiltrating immune cells (TIICs) are critical players in the tumor microenvironment, modulating cancer cell functions. TIICs are highly heterogenic and plastic and may either suppress cancers or provide support for tumor growth. A wide range of studies have shed light on how tumor-associated macrophages, dendritic cells, neutrophils, mast cells, natural killer cells and lymphocytes contribute for the establishment of several hallmarks of cancer and became the basis for successful immunotherapies. Many of those TIICs play pivotal roles in several hallmarks of cancer. This review contributes to elucidate the multifaceted roles of immune cells in cancer development, highlighting molecular components that constitute promising therapeutic targets. Additional studies are needed to clarify the relation between TIICs and hallmarks such as enabling replicative immortality, evading growth suppressors, sustaining proliferative signaling, resisting cell death and genome instability and mutation, to further explore their therapeutic potential and improve the outcomes of cancer patients.
Collapse
Affiliation(s)
- Alexandra C Costa
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal.
| | - Joana M O Santos
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal.
| | - Rui M Gil da Costa
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; Postgraduate Programme in Adult Health (PPGSAD), Department of Morphology, Federal University of Maranhão (UFMA), and UFMA University Hospital (HUUFMA), 65080-805, São Luís, Brazil.
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal; Virology Service, Portuguese Oncology Institute of Porto (IPO Porto), 4200-072, Porto, Portugal; CEBIMED, Faculty of Health Sciences of the Fernando Pessoa University, 4249-004, Porto, Portugal; Research Department of the Portuguese League Against Cancer-Regional Nucleus of the North (Liga Portuguesa Contra o Cancro-Núcleo Regional do Norte), 4200-177, Porto, Portugal.
| |
Collapse
|
208
|
Chakraborty R, Hu H, Darido C, Vickery K, Ranganathan S. ML218 HCl Is More Efficient Than Capsaicin in Inhibiting Bacterial Antigen-Induced Cal 27 Oral Cancer Cell Proliferation. Int J Mol Sci 2021; 22:ijms222212559. [PMID: 34830441 PMCID: PMC8625738 DOI: 10.3390/ijms222212559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/17/2022] Open
Abstract
The bacterial antigen, lipopolysaccharide (LPS) and disruptions in calcium channels are independently known to influence oral cancer progression. Previously, we found that bacterial antigens, LPS and lipoteichoic acid (LTA) act as confounders during the action of capsaicin on Cal 27 oral cancer proliferation. As calcium channel drugs may affect oral cancer cell proliferation, we investigated the effect of ML218 HCl, a T-type voltage-gated calcium channel blocker, on the proliferation of Cal 27 oral cancer cells. We hypothesized that ML218 HCl could effectively reduce LPS-induced oral cancer cell proliferation. LPS and LTA antigens were added to Cal 27 oral cancer cells either prior to and/or concurrently with ML218 HCl treatment, and the efficacy of the treatment was evaluated by measuring Cal 27 proliferation, cell death and apoptosis. ML218 HCl inhibited oral cancer cell proliferation, increased apoptosis and cell death, but their efficacy was significantly reduced in the presence of bacterial antigens. ML218 HCl proved more effective than capsaicin in reducing bacterial antigen-induced Cal 27 oral cancer cell proliferation. Our results also suggest an interplay of proliferation factors during the bacterial antigens and calcium channel drug interaction in Cal 27. Bacterial antigen reduction of drug efficacy should be considered for developing newer pharmacological agents or testing the efficacy of the existing oral cancer chemotherapeutic agents. Finally, voltage gated calcium channel drugs should be considered for future oral cancer research.
Collapse
Affiliation(s)
- Rajdeep Chakraborty
- Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (R.C.); (K.V.)
- Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Honghua Hu
- Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (R.C.); (K.V.)
- Correspondence: (H.H.); (S.R.)
| | - Charbel Darido
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia;
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Karen Vickery
- Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (R.C.); (K.V.)
| | - Shoba Ranganathan
- Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
- Correspondence: (H.H.); (S.R.)
| |
Collapse
|
209
|
Yang Y, Liu Q, Shi X, Zheng Q, Chen L, Sun Y. Advances in plant-derived natural products for antitumor immunotherapy. Arch Pharm Res 2021; 44:987-1011. [PMID: 34751930 DOI: 10.1007/s12272-021-01355-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 10/29/2021] [Indexed: 12/28/2022]
Abstract
In recent years, immunotherapy has emerged as a novel antitumor strategy in addition to traditional surgery, radiotherapy and chemotherapy. It uniquely focuses on immune cells and immunomodulators in the tumor microenvironment and helps eliminate tumors at the root by rebuilding the immune system. Despite remarkable breakthroughs, cancer immunotherapy still faces many challenges: lack of predictable and prognostic biomarkers, adverse side effects, acquired treatment resistance, high costs, etc. Therefore, more efficacious and efficient, safer and cheaper antitumor immunomodulatory drugs have become an urgent requirement. For decades, plant-derived natural products obtained from land and sea have provided the most important source for the development of antitumor drugs. Currently, more attention is being paid to the discovery of potential cancer immunotherapy modulators from plant-derived natural products, such as polysaccharides, phenols, terpenoids, quinones and alkaloids. Some of these agents have outstanding advantages of multitargeting and low side effects and low cost compared to conventional immunotherapeutic agents. We intend to summarize the progress of comprehensive research on these plant-derived natural products and their derivatives and discuss their possible mechanisms in regulating the immune system and their efficacy as monotherapies or in combination with regular chemotherapeutic agents.
Collapse
Affiliation(s)
- Yi Yang
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, China
| | - Qinying Liu
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, 350014, China
| | - Xianai Shi
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, China
| | - Qiuhong Zheng
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, 350014, China
| | - Li Chen
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, China.
| | - Yang Sun
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, 350014, China.
- Department of Gyn-Surgical Oncology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, 350014, China.
| |
Collapse
|
210
|
Moatti A, Cohen JL. The TNF-α/TNFR2 Pathway: Targeting a Brake to Release the Anti-tumor Immune Response. Front Cell Dev Biol 2021; 9:725473. [PMID: 34712661 PMCID: PMC8546260 DOI: 10.3389/fcell.2021.725473] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/24/2021] [Indexed: 12/15/2022] Open
Abstract
Newly discovered anti-cancer immunotherapies, such as immune checkpoint inhibitors and chimeric antigen receptor T cells, focus on spurring the anti-tumor effector T cell (Teff) response. Although such strategies have already demonstrated a sustained beneficial effect in certain malignancies, a substantial proportion of treated patients does not respond. CD4+FOXP3+ regulatory T cells (Tregs), a suppressive subset of T cells, can impair anti-tumor responses and reduce the efficacy of currently available immunotherapies. An alternative view that has emerged over the last decade proposes to tackle this immune brake by targeting the suppressive action of Tregs on the anti-tumoral response. It was recently demonstrated that the tumor necrosis factor alpha (TNF-α) tumor necrosis factor receptor 2 (TNFR2) is critical for the phenotypic stabilization and suppressive function of human and mouse Tregs. The broad non-specific effects of TNF-α infusion in patients initially led clinicians to abandon this signaling pathway as first-line therapy against neoplasms. Previously unrecognized, TNFR2 has emerged recently as a legitimate target for anti-cancer immune checkpoint therapy. Considering the accumulation of pre-clinical data on the role of TNFR2 and clinical reports of TNFR2+ Tregs and tumor cells in cancer patients, it is now clear that a TNFR2-centered approach could be a viable strategy, once again making the TNF-α pathway a promising anti-cancer target. Here, we review the role of the TNFR2 signaling pathway in tolerance and the equilibrium of T cell responses and its connections with oncogenesis. We analyze recent discoveries concerning the targeting of TNFR2 in cancer, as well as the advantages, limitations, and perspectives of such a strategy.
Collapse
Affiliation(s)
- Audrey Moatti
- Université Paris-Est Créteil Val de Marne, INSERM, IMRB, Créteil, France.,AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, Centre d'Investigation Clinique Biothérapie, Créteil, France
| | - José L Cohen
- Université Paris-Est Créteil Val de Marne, INSERM, IMRB, Créteil, France.,AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, Centre d'Investigation Clinique Biothérapie, Créteil, France
| |
Collapse
|
211
|
Hossain SL, Mathews M, Bhyranalyar Nagarajappa VS, Kumar BK, Veerappa Yelamaggad CV, Singh CR. Antiproliferative, apoptosis-inducing activity and molecular docking studies of sydnones compounds. J Cancer Res Ther 2021; 18:681-690. [PMID: 34708812 DOI: 10.4103/jcrt.jcrt_1614_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Objective To evaluate the antiproliferative and apoptosis inducing activity of different sydnones on cancer cell lines and their interaction with cancer proteins by molecular docking studies. Material and Methods Antiproliferative activity was carried out by MTT assay and apoptosis inducing activity was performed by DAPI and Annexin V and propidium iodide staining. Molecular docking studies were performed using AutoDock Tools 1.5.6. Pharmacokinetics properties like ADME and toxicity were analysed by pkCSM web server. Result In this study, four new sydnone compounds 3-(4-nonylbiphenyl-4'-yl) sydnone (MC-182), 3-(4-propylbiphenyl-4'-yl) sydnone (MC-454), 3-(4-hexylbiphenyl-4'-yl) sydnone (MC-433), and 3-(4-methylbiphenyl-4'-yl) sydnone (MC-431) were screened for antiproliferative and apoptotic effect against BT-474 (human breast cancer), HeLa (human cervical cancer) and Jurkat (human myeloid leukemia) Mostly, all the sydnone compounds exhibited decent antiproliferative effectiveness, but compound MC-431, MC-433, and MC-454 showed more antiproliferative activity (IC50 1.71, 10.09 and 2.87 μM against BT-474, Hela and Jurkat cell line, respectively). The changes of morphological characteristics of cancer cells determined by staining techniques indicate the apoptotic cell death. The molecular docking and interaction studies were carried out between sydnones with cancer proteins (epidermal growth factor domain receptor tyrosine kinase [EGF-TK], tumor necrosis factor-alpha [TNF-α] and Caspase3. Among all four sydnone molecules, two compounds MC-454 and MC-431 showed good binding energy with targeted proteins. Drug-like property was predicted by ADME toxicity study. Conclusion The results indicate sydnone compounds were found to exhibit anticancer activity by inducing apoptosis. The molecular docking study of sydnones with cancer proteins showed a decent interaction affinity. The results of absorption, distribution, metabolism, excretion and toxicity studies by the Insilco approach also proved that MC-454 sydnone showed better In-Vivo administration. Thus, the current research work indicates that these sydnone compounds would be prospective in developing anticancer medicines.
Collapse
Affiliation(s)
- Syed Lidia Hossain
- Department of Biotechnology, Sir M Visvesvaraya Institute of Technology, Bengaluru, India
| | - Manoj Mathews
- Department of Chemistry, St. Joseph's College (Autonomous), Devagiri, Calicut, Kerala, India
| | | | - B Kiran Kumar
- Department of Biotechnology, S.E.A. College, Bengaluru, India
| | | | - C Rajendra Singh
- Department of Biotechnology, Sir M Visvesvaraya Institute of Technology, Bengaluru, India
| |
Collapse
|
212
|
Allen DZ, Aljabban J, Silverman D, McDermott S, Wanner RA, Rohr M, Hadley D, Panahiazar M. Meta-Analysis illustrates possible role of lipopolysaccharide (LPS)-induced tissue injury in nasopharyngeal carcinoma (NPC) pathogenesis. PLoS One 2021; 16:e0258187. [PMID: 34648530 PMCID: PMC8516236 DOI: 10.1371/journal.pone.0258187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 09/21/2021] [Indexed: 12/20/2022] Open
Abstract
Background Nasopharyngeal carcinoma (NPC) is a cancer of epithelial origin with a high incidence in certain populations. While NPC has a high remission rate with concomitant chemoradiation, recurrences are frequent, and the downstream morbidity of treatment is significant. Thus, it is imperative to find alternative therapies. Methods We employed a Search Tag Analyze Resource (STARGEO) platform to conduct a meta-analysis using the National Center for Biotechnology’s (NCBI) Gene Expression Omnibus (GEO) to define NPC pathogenesis. We identified 111 tumor samples and 43 healthy nasopharyngeal epithelium samples from NPC public patient data. We analyzed associated signatures in Ingenuity Pathway Analysis (IPA), restricting genes that showed statistical significance (p<0.05) and an absolute experimental log ratio greater than 0.15 between disease and control samples. Results Our meta-analysis identified activation of lipopolysaccharide (LPS)-induced tissue injury in NPC tissue. Additionally, interleukin-1 (IL-1) and SB203580 were the top upstream regulators. Tumorigenesis-related genes such as homeobox A10 (HOXA10) and prostaglandin-endoperoxide synthase 2 (PTGS2 or COX-2) as well as those associated with extracellular matrix degradation, such as matrix metalloproteinases 1 and 3 (MMP-1, MMP-3) were also upregulated. Decreased expression of genes that encode proteins associated with maintaining healthy nasal respiratory epithelium structural integrity, including sentan-cilia apical structure protein (SNTN) and lactotransferrin (LTF) was documented. Importantly, we found that etanercept inhibits targets upregulated in NPC and LPS induction, such as MMP-1, PTGS2, and possibly MMP-3. Conclusions Our analysis illustrates that nasal epithelial barrier dysregulation and maladaptive immune responses are key components of NPC pathogenesis along with LPS-induced tissue damage.
Collapse
Affiliation(s)
- David Z. Allen
- The Ohio State College of Medicine, Columbus, Ohio, United States of America
- * E-mail:
| | - Jihad Aljabban
- Department of Medicine, University of Wisconsin Hospital and Clinics, Madison, Wisconsin, United States of America
| | - Dustin Silverman
- Department of Otolaryngology, The Ohio State Wexner Medical Center, Columbus, Ohio, United States of America
| | - Sean McDermott
- The Ohio State College of Medicine, Columbus, Ohio, United States of America
| | - Ross A. Wanner
- The Ohio State College of Medicine, Columbus, Ohio, United States of America
| | - Michael Rohr
- University of Central Florida, Orlando, Florida, United States of America
| | - Dexter Hadley
- Department of Pathology, University of Central Florida, Orlando, Florida, United States of America
| | - Maryam Panahiazar
- Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
213
|
Alhakamy NA, Al-Rabia MW, Asfour HZ, Alshehri S, Alharbi WS, Halawani A, Alamoudi AJ, Noor AO, Bannan DF, Fahmy UA, Kotta S. 2-Methoxy-estradiol Loaded Alpha Lipoic Acid Nanoparticles Augment Cytotoxicity in MCF-7 Breast Cancer Cells. Dose Response 2021; 19:15593258211055023. [PMID: 34987331 PMCID: PMC8669132 DOI: 10.1177/15593258211055023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/02/2021] [Indexed: 12/25/2022] Open
Abstract
The therapeutic effectiveness of anticancer drugs with a selective target for the nucleus of cancer cells may be improved by experimental approaches. In this regard, the formulation of anticancer drugs is considered one of the best ways to improve their effectiveness in targeting cancerous tissues. To enhance the anticancer activity of 2-methoxy-estradiol (2 ME) for breast cancer, 2-methoxyestradiol loaded alpha lipoic acid nanoparticles have been formulated. The prepared formula was observed to be spherical with a nanometer-scale and low PDI size (.234). The entrapment efficiency of the 2ME-ALA NPs was 87.32 ± 2.21% with > 85% release of 2 ME within 24 h. There was a 1.2-fold increase in apoptosis and a 3.46-fold increase in necrosis of the MCF-7 cells when incubated with 2ME-ALA NPs when compared to control cells. This increased apoptosis was also associated with increased ROS and increased p53 expression in 2ME-ALA NPs treated cells compared to the raw-2 ME group. Evaluation of cell-cycle data showed a substantial arrest of the G2-M phase of the MCF-7 cells when incubated with 2ME-ALA NPs. At the same time, a dramatically increased number of pre-G1 cells showed the increased apoptotic potential of the 2 ME when administered via the proposed formulation. In the end, the differential upregulation of caspase-3, p53, and ROS in MCF-7 cells established the superiority of the 2ME-ALA-Ms approach in targeting breast cancer. In summary, these results demonstrate that 2ME-ALA NPs are an efficient delivery tool for controlling the growth of breast cancer cells.
Collapse
Affiliation(s)
- Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed W. Al-Rabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani Z. Asfour
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Samah Alshehri
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Waleed S. Alharbi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulrahman Halawani
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulmohsin J. Alamoudi
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmad O. Noor
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Douha F. Bannan
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sabna Kotta
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
214
|
Kang SY, Hwang D, Shin S, Park J, Kim M, Rahman MDH, Rahman MA, Ko SG, Kim B. Potential of Bioactive Food Components against Gastric Cancer: Insights into Molecular Mechanism and Therapeutic Targets. Cancers (Basel) 2021; 13:cancers13184502. [PMID: 34572730 PMCID: PMC8469857 DOI: 10.3390/cancers13184502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/18/2022] Open
Abstract
Gastric cancer, also known as stomach cancer, is a cancer that develops from the lining of the stomach. Accumulated evidence and epidemiological studies have indicated that bioactive food components from natural products play an important role in gastric cancer prevention and treatment, although its mechanism of action has not yet been elucidated. Particularly, experimental studies have shown that natural bioactive food products display a protective effect against gastric cancer via numerous molecular mechanisms, such as suppression of cell metastasis, anti-angiogenesis, inhibition of cell proliferation, induction of apoptosis, and modulation of autophagy. Chemotherapy remains the standard treatment for advanced gastric cancer along with surgery, radiation therapy, hormone therapy, as well as immunotherapy, and its adverse side effects including neutropenia, stomatitis, mucositis, diarrhea, nausea, and emesis are well documented. However, administration of naturally occurring bioactive phytochemical food components could increase the efficacy of gastric chemotherapy and other chemotherapeutic resistance. Additionally, several studies have suggested that bioactive food components with structural stability, potential bioavailability, and powerful bioactivity are important to develop novel treatment strategies for gastric cancer management, which may minimize the adverse effects. Therefore, the purpose of this review is to summarize the potential therapeutic effects of natural bioactive food products on the prevention and treatment of gastric cancer with intensive molecular mechanisms of action, bioavailability, and safety efficacy.
Collapse
Affiliation(s)
- Seog Young Kang
- College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Korea; (S.Y.K.); (D.H.); (S.S.); (J.P.); (M.A.R.)
| | - Dongwon Hwang
- College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Korea; (S.Y.K.); (D.H.); (S.S.); (J.P.); (M.A.R.)
| | - Soyoung Shin
- College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Korea; (S.Y.K.); (D.H.); (S.S.); (J.P.); (M.A.R.)
| | - Jinju Park
- College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Korea; (S.Y.K.); (D.H.); (S.S.); (J.P.); (M.A.R.)
| | - Myoungchan Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Korea;
| | - MD. Hasanur Rahman
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh;
| | - Md. Ataur Rahman
- College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Korea; (S.Y.K.); (D.H.); (S.S.); (J.P.); (M.A.R.)
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Korea;
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Korea;
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Korea; (S.Y.K.); (D.H.); (S.S.); (J.P.); (M.A.R.)
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Korea;
- Correspondence:
| |
Collapse
|
215
|
The Role of Tumor Necrosis Factor-α (TNF-α) Polymorphisms in Gastric Cancer: a Meta-Analysis. J Gastrointest Cancer 2021; 53:756-769. [PMID: 34478034 DOI: 10.1007/s12029-021-00688-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE Tumor necrosis factor alpha (TNF-α) is an inflammatory cytokine which may play a role in the development of gastric cancer (GC). This study aimed to investigate the association of five TNF-α polymorphisms including TNF-α-857, TNF-α-1031, TNF-α-863, TNF-α-308, and TNF-α-238 polymorphisms with GC risk. METHODS All eligible case-control studies were collected by searching PubMed, Scopus, and Web of Science. The association of the risk of GC with TNF-α polymorphisms was estimated using odds ratio (OR) and 95% confidence interval (CI). Heterogeneity was assessed via Cochrane's Q and I2 analyses. RESULTS A total of 46 publications involving 16, 715 cases with GC and 27, 998 controls were recruited. The study revealed a significant association for TNF-α 308 (recessive model: OR = 0.646, P = 0.035), TNF-α-1031 (homozygote model: OR = 1.584, P = 0.027), and TNF-α-857 (homozygote model: OR = 1.760, P = 0.001) polymorphisms with the GC risk. The results of subgroup analysis based ethnicity found a significant association between GC risk and TNF-α-857 polymorphism in Caucasian subgroup (P = 0.005) and TNF-α-1031 polymorphism and GC risk in Asians (P = 0.018). CONCLUSIONS This study suggested that TNF-α-857 and TNF-α-1031 polymorphisms may be associated with the increased gastric cancer risk.
Collapse
|
216
|
Marzocco S, Singla RK, Capasso A. Multifaceted Effects of Lycopene: A Boulevard to the Multitarget-Based Treatment for Cancer. Molecules 2021; 26:molecules26175333. [PMID: 34500768 PMCID: PMC8434243 DOI: 10.3390/molecules26175333] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/29/2021] [Accepted: 08/29/2021] [Indexed: 02/05/2023] Open
Abstract
Lycopene is a pigment belonging to the group of carotenoids and it is among the most carefully studied antioxidants found especially in fruit and vegetables. As a carotenoid, lycopene exerts beneficial effects on human health by protecting lipids, proteins, and DNA from damage by oxidation. Lycopene is a powerful oxygen inactivator in the singlet state. This is suggestive of the fact that lycopene harbors comparatively stronger antioxidant properties over other carotenoids normally present in plasma. Lycopene is also reported to hinder cancer cell proliferation. The uncontrolled, rapid division of cells is a characteristic of the metabolism of cancer cells. Evidently, lycopene causes a delay in the progression of the cell cycle, which explains its antitumor activity. Furthermore, lycopene can block cell transformation by reducing the loss of contact inhibition of cancer cells. This paper collects recent studies of scientific evidence that show the multiple beneficial properties of lycopene, which acts with different molecular and cellular mechanisms.
Collapse
Affiliation(s)
- Stefania Marzocco
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy;
- Correspondence: ; Tel.: +39-089-96-92-50
| | - Rajeev K. Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China;
- iGlobal Research and Publishing Foundation, New Delhi 110059, India
| | - Anna Capasso
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy;
| |
Collapse
|
217
|
Doello K, Amezcua V. Effect of adding bemiparin and cefepime to routine treatment in cancer patients with SARS-CoV-2 infection. MEDICINA CLÍNICA (ENGLISH EDITION) 2021; 157:299-300. [PMID: 34514160 PMCID: PMC8423841 DOI: 10.1016/j.medcle.2021.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
218
|
Arshad M, Abdul Hamid N, Chan MC, Ismail F, Tan GC, Pezzella F, Tan KL. NUB1 and FAT10 Proteins as Potential Novel Biomarkers in Cancer: A Translational Perspective. Cells 2021; 10:2176. [PMID: 34571823 PMCID: PMC8468723 DOI: 10.3390/cells10092176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 12/30/2022] Open
Abstract
Cancer increases the global disease burden substantially, but it remains a challenge to manage it. The search for novel biomarkers is essential for risk assessment, diagnosis, prognosis, prediction of treatment response, and cancer monitoring. This paper examined NEDD8 ultimate buster-1 (NUB1) and F-adjacent transcript 10 (FAT10) proteins as novel biomarkers in cancer. This literature review is based on the search of the electronic database, PubMed. NUB1 is an interferon-inducible protein that mediates apoptotic and anti-proliferative actions in cancer, while FAT10 is a ubiquitin-like modifier that promotes cancer. The upregulated expression of both NUB1 and FAT10 has been observed in various cancers. NUB1 protein binds to FAT10 non-covalently to promote FAT10 degradation. An overexpressed FAT10 stimulates nuclear factor-kappa β, activates the inflammatory pathways, and induces the proliferation of cancer. The FAT10 protein interacts with the mitotic arrest deficient 2 protein, causing chromosomal instability and breast tumourigenesis. FAT10 binds to the proliferating cell nuclear antigen protein and inhibits the DNA damage repair response. In addition, FAT10 involves epithelial-mesenchymal transition, invasion, apoptosis, and multiplication in hepatocellular carcinoma. Our knowledge about them is still limited. There is a need to further develop NUB1 and FAT10 as novel biomarkers.
Collapse
Affiliation(s)
- Maria Arshad
- Faculty of Medicine & Health Sciences, Universiti Sains Islam Malaysia (USIM), Persiaran Ilmu, Putra Nilai, Nilai 71800, Malaysia; (M.A.); (N.A.H.)
| | - Nazefah Abdul Hamid
- Faculty of Medicine & Health Sciences, Universiti Sains Islam Malaysia (USIM), Persiaran Ilmu, Putra Nilai, Nilai 71800, Malaysia; (M.A.); (N.A.H.)
| | - Mun Chiang Chan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Fuad Ismail
- Department of Radiotherapy & Oncology, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia;
| | - Geok Chin Tan
- Department of Pathology, Faculty of Medicine, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia;
| | - Francesco Pezzella
- Tumour Pathology Laboratory, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK;
| | - Ka-Liong Tan
- Faculty of Medicine & Health Sciences, Universiti Sains Islam Malaysia (USIM), Persiaran Ilmu, Putra Nilai, Nilai 71800, Malaysia; (M.A.); (N.A.H.)
| |
Collapse
|
219
|
Pulido T, Velarde MC, Alimirah F. The senescence-associated secretory phenotype: Fueling a wound that never heals. Mech Ageing Dev 2021; 199:111561. [PMID: 34411604 DOI: 10.1016/j.mad.2021.111561] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/29/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022]
Abstract
Wound healing is impaired with advanced age and certain chronic conditions, such as diabetes and obesity. Moreover, common cancer treatments, including chemotherapy and radiation, can cause unintended tissue damage and impair wound healing. Available wound care treatments are not always effective, as some wounds fail to heal or recur after treatment. Hence, a more thorough understanding of the pathophysiology of chronic, nonhealing wounds may offer new ideas for the development of effective wound care treatments. Cancers are sometimes referred to as wounds that never heal, sharing mechanisms similar to wound healing. We describe in this review how cellular senescence and the senescence-associated secretory phenotype (SASP) contribute to chronic wounds versus cancer.
Collapse
Affiliation(s)
- Tanya Pulido
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Michael C Velarde
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, 1101, Philippines.
| | | |
Collapse
|
220
|
Barathan M, Zulpa AK, Vellasamy KM, Mariappan V, Shivashekaregowda NKH, Ibrahim ZA, Vadivelu J. Cytotoxic Activity of Isoniazid Derivative in Human Breast Cancer Cells. In Vivo 2021; 35:2675-2685. [PMID: 34410956 DOI: 10.21873/invivo.12551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Isoniazid is an antibiotic used for the treatment of tuberculosis. Previously, we found that the isoniazid derivative (E)-N'-(2,3,4-trihydroxybenzylidene) isonicotinohydrazide (ITHB4) could be developed as novel antimycobacterial agent by lead optimization. We further explored the ability of this compound compared to zerumbone in inhibiting the growth of MCF-7 breast cancer cells. MATERIALS AND METHODS Cytotoxicity was measured by the MTT assay and further confirmed via apoptosis, ROS, cell cycle, DNA fragmentation and cytokine assays. RESULTS ITHB4 demonstrated a lower IC50 compared to zerumbone in inhibiting the proliferation of MCF-7 cells. ITHB4 showed no toxicity against normal breast and human immune cells. Apoptosis assay revealed that ITHB4, at a concentration equal to the IC50, induces apoptosis of MCF-7 cells and cell cycle arrest at the sub-G1 and G2/M phases. ITHB4 triggered accumulation of intracellular ROS and nuclear DNA fragmentation. Secretion of pro-inflammatory cytokines induced inflammation and potentially immunogenic cell death. CONCLUSION ITHB4 has almost similar chemotherapeutic properties as zerumbone in inhibiting MCF-7 growth, and hence provide the basis for further experiments in animal models.
Collapse
Affiliation(s)
- Muttiah Barathan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Ahmad Khusairy Zulpa
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Kumutha Malar Vellasamy
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Vanitha Mariappan
- Center of Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | - Zaridatul Aini Ibrahim
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia;
| |
Collapse
|
221
|
Awny MM, Al-Mokaddem AK, Ali BM. Mangiferin mitigates di-(2-ethylhexyl) phthalate-induced testicular injury in rats by modulating oxidative stress-mediated signals, inflammatory cascades, apoptotic pathways, and steroidogenesis. Arch Biochem Biophys 2021; 711:108982. [PMID: 34400143 DOI: 10.1016/j.abb.2021.108982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/13/2021] [Accepted: 06/29/2021] [Indexed: 12/23/2022]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is an endocrine disruptor that causes reproductive defects in male animal models. This study was conducted to explore the plausible modulatory effects of mangiferin (MF) against DEHP-induced testicular injury in rats. Thirty-two adult male albino rats were allocated into four groups. Two groups were given DEHP (2 g/kg/day, p.o) for 14 days. One of these groups was treated with MF (20 mg/kg/day, i.p) for 7 days before and 14 days after DEHP administration. A vehicle-treated control was included, and another group of rats was given MF only. Results revealed that MF treatment suppressed oxidative testicular injury by amplifying the mRNA expression of nuclear factor-erythroid 2 related factor-2 (Nrf2) and increasing hemoxygenase-1 (HO-1), glutathione, and total antioxidant capacity (TAC) levels. This treatment also enhanced superoxide dismutase activity, but it decreased malondialdehyde and nitric oxide levels. MF had an anti-inflammatory characteristic, as demonstrated by the downregulation of the mRNA of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). The content of tumor necrosis factor-alpha also decreased. MF modulated the apoptotic pathway by suppressing the mRNA of cytochrome c (Cyt c), Fas ligand content, Bax IHC expression, caspase-3 activity and cleaved caspase-3 IHC expression. It also upregulated the expression levels of heat-shock protein 70 (HSP70) and B-cell lymphoma 2. Moreover, MF upregulated the mRNA expression levels of HSP70 and c-kit and enriched the content of steroidogenic acute regulatory (StAR) protein, which were reflected in serum testosterone levels. This result indicated that MF played crucial roles in steroidogenesis and spermatogenesis. Besides, the activities of testicular marker enzymes, namely, acid and alkaline phosphatases, and lactate dehydrogenase, significantly increased. Histopathological observations provided evidence supporting the biochemical and molecular measurements. In conclusion, MF provided protective mechanisms against the DEHP-mediated deterioration of testicular functions partially through its antioxidant, anti-inflammatory, and anti-apoptotic properties. It also involved the restoration of steroidogenesis and spermatogenesis through the modulation of Nrf2/HO-1, NF-κB/Cyt c/HSP70, and c-Kit signaling cascades.
Collapse
Affiliation(s)
- Magdy M Awny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Cairo, Egypt.
| | - Asmaa K Al-Mokaddem
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Bassam Mohamed Ali
- Department of Biochemistry, Faculty of Pharmacy, October 6 University, Cairo, Egypt
| |
Collapse
|
222
|
Chemotherapy: a double-edged sword in cancer treatment. Cancer Immunol Immunother 2021; 71:507-526. [PMID: 34355266 DOI: 10.1007/s00262-021-03013-3] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022]
Abstract
Chemotherapy is a well-known and effective treatment for different cancers; unfortunately, it has not been as efficient in the eradication of all cancer cells as been expected. The mechanism of this failure was not fully clarified, yet. Meanwhile, alterations in the physiologic conditions of the tumor microenvironment (TME) were suggested as one of the underlying possibilities. Chemotherapy drugs can activate multiple signaling pathways and augment the secretion of inflammatory mediators. Inflammation may show two opposite roles in the TME. On the one hand, inflammation, as an innate immune response, tries to suppress tumor growth but on the other hand, it might be not powerful enough to eradicate the cancer cells and even it can provide appropriate conditions for cancer promotion and relapse as well. Therefore, the administration of mild anti-inflammatory drugs during chemotherapy might result in more successful clinical results. Here, we will review and discuss this hypothesis. Most chemotherapy agents are triggers of inflammation in the tumor microenvironment through inducing the production of senescence-associated secretory phenotype (SASP) molecules. Some chemotherapy agents can induce systematic inflammation by provoking TLR4 signaling or triggering IL-1B secretion through the inflammasome pathway. NF-kB and MAPK are key signaling pathways of inflammation and could be activated by several chemotherapy drugs. Furthermore, inflammation can play a key role in cancer development, metastasis and exacerbation.
Collapse
|
223
|
Wigner P, Szymańska B, Bijak M, Sawicka E, Kowal P, Marchewka Z, Saluk-Bijak J. Oxidative stress parameters as biomarkers of bladder cancer development and progression. Sci Rep 2021; 11:15134. [PMID: 34302052 PMCID: PMC8302678 DOI: 10.1038/s41598-021-94729-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/09/2021] [Indexed: 12/09/2022] Open
Abstract
The epidemiological studies confirm that the overproduction of free radical is an important factor of cancer induction as well as development, and loss of antioxidant systems efficiency is associated with an increased risk of carcinogenesis. While bladder cancer is the fourth most common type of cancer all over the world, there is little evidence of the advancing changes in oxidative/nitrative stress during the progression of bladder cancer. Our study aimed to investigate the plasma levels of typical markers of oxidative/nitrative stress depending on the clinical classification of bladder cancer differentiation and infiltration degree. We examined 40 patients with newly diagnosed bladder cancer and 20 healthy volunteers as a control group. We analysed the plasma levels of protein carbonyls, thiol groups, 3-nitrotyrosine, lipid peroxidation, as well as non-enzymatic plasma antioxidant capacity using DPPH· and ABTS·+ radicals. We confirmed that all analysed biomarkers are higher in enrolled BC patients than in healthy subjects. Furthermore, our findings demonstrate a positive correlation between the degree of bladder cancer progression and the level of oxidative stress, but no correlation in the case of NT-3. Based on obtained results, we might conclude that during carcinogenesis of the bladder increased oxidative damage of biomolecules is manifested. This indicates the participation of oxidative stress in the development of bladder cancer, and it is important the ensure the proper antioxidant protection.
Collapse
Affiliation(s)
- Paulina Wigner
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Beata Szymańska
- Department of Toxicology, Faculty of Pharmacy and Division of Laboratory, Wroclaw Medical University, Borowska 211, 50-556, Wrocław, Poland
| | - Michał Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 90-136, Lodz, Poland
| | - Ewa Sawicka
- Department of Toxicology, Faculty of Pharmacy and Division of Laboratory, Wroclaw Medical University, Borowska 211, 50-556, Wrocław, Poland
| | - Paweł Kowal
- Department and Clinic of Urology and Urological Oncology, Faculty of Postgraduate Medical Training, Wroclaw Medical University, Kamieńskiego 73a, 51-124, Wrocław, Poland
| | - Zofia Marchewka
- Department of Toxicology, Faculty of Pharmacy and Division of Laboratory, Wroclaw Medical University, Borowska 211, 50-556, Wrocław, Poland
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| |
Collapse
|
224
|
Bastami M, Mahmoodzadeh H, Saadatian Z, Daraei A, Zununi Vahed S, Mansoori Y, Nariman-Saleh-Fam Z. Perturbation of miR-146b and relevant inflammatory elements in esophageal carcinoma patients supports an immune downregulatory mechanism. Pathol Res Pract 2021; 225:153560. [PMID: 34311393 DOI: 10.1016/j.prp.2021.153560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/10/2021] [Accepted: 07/17/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Esophageal Cancer is known as one of the deadliest cancers worldwide with the squamous cell carcinoma (ESCC) being the predominant subtype. There is a growing body of evidence linking the dysregulated microRNA (miRNA) pathway of immune cells to the progression of several tumors. In a previous study, we investigated molecular alterations pertaining to miR-146a and some components of NF-kB signaling pathway and proposed a possible immune downregulatory mechanism in peripheral blood mononuclear cells (PBMCs) of ESCC patients. Here, we further scrutinized other components of this pathway by evaluating PBMC levels of miR-146b, TLR4, IL10, and TNFA. METHODS Gene expressions were quantified using RT-qPCR assays. To prevent the vulnerability of results to the expression instability of reference genes, nine additional transcripts were quantified, and stable reference genes for normalizing qPCR data were identified using the NormFinder and the geNorm algorithms. The efficiency-corrected normalized relative quantity values were used to compare gene expressions among study groups. RESULTS The PBMC expression of miR-146b and TNFA was downregulated in ESCC patients as compared to healthy subjects. While the level of TLR4 was not different among the study groups, the PBMC level of IL10 was upregulated in ESCC patients. Logistic regression analyses coupled with the ROC curve and cross-validation analysis suggested that PBMC expression may serve as potential candidate biomarker for discriminating ESCC patients from healthy subjects. CONCLUSION The present findings, in line with our previous report, propose a particular gene expression pattern in PBMCs of ESCC patients, providing evidence in support of an immune downregulatory mechanism.
Collapse
Affiliation(s)
- Milad Bastami
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Zahra Saadatian
- Department of Physiology, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Abdolreza Daraei
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | | | - Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran.
| | - Ziba Nariman-Saleh-Fam
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
225
|
The genomic architecture of metastasis in breast cancer: focus on mechanistic aspects, signalling pathways and therapeutic strategies. Med Oncol 2021; 38:95. [PMID: 34268641 DOI: 10.1007/s12032-021-01547-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/03/2021] [Indexed: 12/13/2022]
Abstract
Breast cancer is a multifactorial, heterogeneous disease and the second most frequent cancer amongst women worldwide. Metastasis is one of the most leading causes of death in these patients. Early-stage or locally advanced breast cancer is limited to the breast or nearby lymph nodes. When breast cancer spreads to farther tissues/organs from its original site, it is referred to as metastatic or stage IV breast cancer. Normal breast development is regulated by specific genes and signalling pathways controlling cell proliferation, cell death, cell differentiation and cell motility. Dysregulation of genes involved in various signalling pathways not only leads to the formation of primary tumour but also to the metastasis as well. The metastatic cascade is represented by a multi-step process including invasion of the local tumour cell followed by its entry into the vasculature, exit of malignant cells from the circulation and ultimately their colonization at the distant sites. These stages are referred to as formation of primary tumour, angiogenesis, invasion, intravasation and extravasation, respectively. The major sites of metastasis of breast cancer are the lymph nodes, bone, brain and lung. Only about 28% five-year survival rate has been reported for stage IV breast cancer. Metastasis is a serious concern for breast cancer and therefore, various therapeutic strategies such as tyrosine kinase inhibitors have been developed to target specific dysregulated genes and various signalling pathways involved in different steps of metastasis. In addition, other therapies like hyperbaric oxygen therapy, RNA interference and CRISPR/Cas9 are also being explored as novel strategies to cure the stage IV/metastatic breast cancer. Therefore, the current review has been compiled with an aim to evaluate the genetic basis of stage IV breast cancer with a focus on the molecular mechanisms. In addition, the therapeutic strategies targeting these dysregulated genes involved in various signalling pathways have also been discussed. Genome editing technologies that can target specific genes in the affected areas by making knock-in and knock-out alternations and thereby bring significant treatment outcomes in breast cancer have also been summarized.
Collapse
|
226
|
Alhakamy NA, Ahmed OA, Fahmy UA, Asfour HZ, Alghaith AF, Mahdi WA, Alshehri S, Md S. Development, Optimization and Evaluation of 2-Methoxy-Estradiol Loaded Nanocarrier for Prostate Cancer. Front Pharmacol 2021; 12:682337. [PMID: 34335251 PMCID: PMC8322574 DOI: 10.3389/fphar.2021.682337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/28/2021] [Indexed: 01/23/2023] Open
Abstract
The therapeutic efficacy of antineoplastic agents possessing a selective target to the nucleus of the cancer cells could be enhanced through novel formulation approaches. Thus, toward the improvement of the anticancer potential of 2-methoxy estradiol (2 ME) on prostate cancer, the drug was entrapped into the hydrophobic micelles core formulated with Phospholipon 90G and d-α-tocopheryl polyethylene glycol succinate (TPGS). Optimization of the formulation was done by Box-Behnken statistical design using Statgraphics software to standardize percentages of TPGS and phospholipid to obtain the smallest particle size. The optimized formulation was found to be spherical with nanometer size of 152 ± 5.2 nm, and low PDI (0.234). The entrapment efficiency of the micelles was 88.67 ± 3.21% with >93% release of 2 ME within 24 h. There was a 16-fold increase in apoptosis and an 8-fold increase in necrosis of the PC-3 cells when incubated with 2 ME micellar delivery compared to control cells (2.8 ± 0.2%). This increased apoptosis was further correlated with increased BAX expression (11.6 ± 0.7) and decreased BCL-2 expression (0.29 ± 0.05) in 2 ME micelles treated cells when compared to the control group. Further, loss of mitochondrial membrane potential (∼50-fold) by the drug-loaded micelles and free drug compared to control cells was found to be due to the generation of ROS. Findings on cell cycle analysis revealed the significant arrest of the G2-M phase of the PC-3 cells when incubated with the optimized formulation. Simultaneously, a significantly increased number of cells in pre-G1 revealed the maximum apoptotic potential of the drug when delivered via micellar formulation. Finally, upregulation of caspase-9, p53, and NO, with downregulation of TNF-α, NF-κβ, and inflammatory mediators of the PC-3 cells established the superiority of the micellar approach against prostate cancer. In summary, the acquired results highlighted the potentiality of the 2 ME-micellar delivery tool for controlling the growth of prostate cancer cells for improved efficacy.
Collapse
Affiliation(s)
- Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia.,Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Usama A Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani Z Asfour
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adel F Alghaith
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Wael A Mahdi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
227
|
Dilworth L, Facey A, Omoruyi F. Diabetes Mellitus and Its Metabolic Complications: The Role of Adipose Tissues. Int J Mol Sci 2021; 22:ijms22147644. [PMID: 34299261 PMCID: PMC8305176 DOI: 10.3390/ijms22147644] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022] Open
Abstract
Many approaches have been used in the effective management of type 2 diabetes mellitus. A recent paradigm shift has focused on the role of adipose tissues in the development and treatment of the disease. Brown adipose tissues (BAT) and white adipose tissues (WAT) are the two main types of adipose tissues with beige subsets more recently identified. They play key roles in communication and insulin sensitivity. However, WAT has been shown to contribute significantly to endocrine function. WAT produces hormones and cytokines, collectively called adipocytokines, such as leptin and adiponectin. These adipocytokines have been proven to vary in conditions, such as metabolic dysfunction, type 2 diabetes, or inflammation. The regulation of fat storage, energy metabolism, satiety, and insulin release are all features of adipose tissues. As such, they are indicators that may provide insights on the development of metabolic dysfunction or type 2 diabetes and can be considered routes for therapeutic considerations. The essential roles of adipocytokines vis-a-vis satiety, appetite, regulation of fat storage and energy, glucose tolerance, and insulin release, solidifies adipose tissue role in the development and pathogenesis of diabetes mellitus and the complications associated with the disease.
Collapse
Affiliation(s)
- Lowell Dilworth
- Department of Pathology, Mona Campus, University of the West Indies, Kingston 7, Jamaica;
| | - Aldeam Facey
- Mona Academy of Sport, Mona Campus, University of the West Indies, Kingston 7, Jamaica;
| | - Felix Omoruyi
- Department of Life Sciences, Texas A&M University, Corpus Christi, TX 78412, USA
- Correspondence:
| |
Collapse
|
228
|
Thaklaewphan P, Ruttanapattanakul J, Monkaew S, Buatoom M, Sookkhee S, Nimlamool W, Potikanond S. Kaempferia parviflora extract inhibits TNF-α-induced release of MCP-1 in ovarian cancer cells through the suppression of NF-κB signaling. Biomed Pharmacother 2021; 141:111911. [PMID: 34328090 DOI: 10.1016/j.biopha.2021.111911] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 11/25/2022] Open
Abstract
Ovarian clear cell carcinoma (OCCC) is an uncommon subtype of epithelial cell ovarian cancers (EOCs) that has poor response to conventional platinum-based therapy. Therefore, finding new potential therapeutic agents is required. Since inflammatory cytokine, tumor necrosis factor alpha (TNF-α), is strongly expressed in EOCs and associated with the level of tumor grade, disruption of this inflammation pathway may provide another potential target for OCCC treatment. We previously reported that Kaempferia parviflora (KP) extract decreased cell proliferation and induced apoptosis. However, the effects of KP on OCCC, especially the aspects related to inflammatory cytokines, have not been elucidated. Our current study demonstrated the effects of KP extract on cytokine production in TNF-α-induced OCCC TOV-21G cell line. This study showed that KP extract inhibited interleukin 6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) production at both transcription and translation levels via the suppression of nuclear factor-kappa B (NF-κB) signal transduction. In contrast, KP extract increased the expression of inhibitor kappa B (IκB) protein which may delay NF-κB translocation into the nucleus upon TNF-α activation. Moreover, the suppression of cytokines released from KP treated-TOV-21G reduced the migration of monocyte cell (THP-1). KP extract also exhibited the inhibition of IL-6 and MCP-1 production from THP-1 activated by lipopolysaccharides (LPS). Cells treated with KP extract exhibited a decrease in extracellular signal-regulated kinases (ERK1/2) and protein kinase B (AKT) phosphorylation and induced myeloid leukemia cell differentiation protein Mcl-1 (MCL-1) expression. Suppression of inflammatory cytokine and chemokine production and inhibition of tumor-associated macrophage (TAM) migration support the possibility of using KP for OCCC treatment.
Collapse
Affiliation(s)
- Phatarawat Thaklaewphan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Graduate School, Chiang Mai University, Chiang Mai, Thailand.
| | | | - Sathit Monkaew
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Montanee Buatoom
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Siriwoot Sookkhee
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Wutigri Nimlamool
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Thailand.
| | - Saranyapin Potikanond
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Thailand.
| |
Collapse
|
229
|
Penedo FJ, Fox RS, Walsh EA, Yanez B, Miller GE, Oswald LB, Estabrook R, Chatterton RT, Mohr DC, Begale MJ, Flury SC, Perry K, Kundu SD, Moreno PI. Effects of web-based cognitive behavioral stress management and health promotion interventions on neuroendocrine and inflammatory markers in men with advanced prostate cancer: A randomized controlled trial. Brain Behav Immun 2021; 95:168-177. [PMID: 33737170 PMCID: PMC8888023 DOI: 10.1016/j.bbi.2021.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 01/08/2023] Open
Abstract
Cognitive behavioral stress management (CBSM) improves quality of life and mitigates stress biology in patients with early-stage cancer, including men with localized prostate cancer. However, treatments for advanced prostate cancer like androgen deprivation therapy (ADT) can lead to significant symptom burden that may be further exacerbated by stress-induced inflammation and cortisol dysregulation. The aim of this study was to examine the effects of CBSM (versus an active health promotion control) on circulating inflammatory markers and cortisol in men with advanced prostate cancer. METHODS Men with stage III or IV prostate cancer (N = 192) who had undergone ADT within the last year were randomized to CBSM or health promotion. Both interventions were 10 weeks, group-based, and delivered online. Venous blood was drawn at baseline, 6 months, and 12 months to measure circulating levels of CRP, IL-6, IL-8, IL-10, and TNF-α. Saliva samples were collected at awakening, 30 min after awakening, evening, and night for two consecutive days at baseline, 6-months, and 12-months to measure diurnal cortisol slopes. RESULTS Mixed modeling analyses demonstrated that changes in inflammatory markers and cortisol did not differ by intervention. Men in both CBSM and health promotion showed decreases in IL-10, IL-8, and TNF-α from baseline to 6 months (β = -3.85--5.04, p's = 0.004-<0.001). However, these markers generally demonstrated a rebound increase from 6 to 12 months (β = 1.91-4.06, p's = 0.06-<0.001). Men in health promotion also demonstrated a flatter diurnal cortisol slope versus men in CBSM at 6 months (β = -2.27, p = .023), but not at 12 months. There were no intervention effects on CRP, IL-6, or overall cortisol output. CONCLUSIONS Contrary to hypotheses, CBSM did not lead to changes in the circulating inflammatory markers and cortisol relative to health promotion. CBSM may be associated with healthy diurnal cortisol rhythm because of its focus on cognitive behavioral approaches to stress management. More research is needed to understand the impact of CBSM and health promotion on biomarkers among men with advanced prostate cancer.
Collapse
Affiliation(s)
- Frank J Penedo
- Department of Psychology, University of Miami, United States; Department of Medicine, University of Miami Miller School of Medicine, United States.
| | - Rina S Fox
- Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, United States
| | - Emily A Walsh
- Department of Psychology, University of Miami, United States
| | - Betina Yanez
- Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, United States
| | - Gregory E Miller
- Institute for Policy Research and Department of Psychology, Northwestern University, United States
| | - Laura B Oswald
- Health Outcomes and Behavior Program, H. Lee Moffitt Cancer Center & Research Institute, United States
| | - Ryne Estabrook
- Department of Psychology, University of Illinois at Chicago, United States
| | - Robert T Chatterton
- Department of Obstetrics & Gynecology, Northwestern University Feinberg School of Medicine, United States
| | - David C Mohr
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, United States
| | | | - Sarah C Flury
- Department of Urology, Northwestern University Feinberg School of Medicine, United States
| | - Kent Perry
- Department of Urology, Northwestern University Feinberg School of Medicine, United States
| | - Shilajit D Kundu
- Department of Urology, Northwestern University Feinberg School of Medicine, United States
| | - Patricia I Moreno
- Department of Public Health Sciences, University of Miami Miller School of Medicine, United States
| |
Collapse
|
230
|
Puah BP, Jalil J, Attiq A, Kamisah Y. New Insights into Molecular Mechanism behind Anti-Cancer Activities of Lycopene. Molecules 2021; 26:molecules26133888. [PMID: 34202203 PMCID: PMC8270321 DOI: 10.3390/molecules26133888] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/05/2021] [Accepted: 06/17/2021] [Indexed: 12/15/2022] Open
Abstract
Lycopene is a well-known compound found commonly in tomatoes which brings wide range of health benefits against cardiovascular diseases and cancers. From an anti-cancer perspective, lycopene is often associated with reduced risk of prostate cancer and people often look for it as a dietary supplement which may help to prevent cancer. Previous scientific evidence exhibited that the anti-cancer activity of lycopene relies on its ability to suppress oncogene expressions and induce proapoptotic pathways. To further explore the real potential of lycopene in cancer prevention, this review discusses the new insights and perspectives on the anti-cancer activities of lycopene which could help to drive new direction for research. The relationship between inflammation and cancer is being highlighted, whereby lycopene suppresses cancer via resolution of inflammation are also discussed herein. The immune system was found to be a part of the anti-cancer system of lycopene as it modulates immune cells to suppress tumor growth and progression. Lycopene, which is under the family of carotenoids, was found to play special role in suppressing lung cancer.
Collapse
Affiliation(s)
- Boon-Peng Puah
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Juriyati Jalil
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
- Correspondence: ; Tel.: +603-9289-7533
| | - Ali Attiq
- Faculty of Pharmacy, MAHSA University, Bandar Saujana Putra, Jenjarom 42610, Malaysia;
| | - Yusof Kamisah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
231
|
Adil S, Paracha RZ, Tariq S, Nisar M, Ijaz S, Siddiqa A, Hussain Z, Amir A. A Computational Systems Analyses to Identify Biomarkers and Mechanistic Link in Psoriasis and Cutaneous Squamous Cell Carcinoma. Front Immunol 2021; 12:662528. [PMID: 34267747 PMCID: PMC8276676 DOI: 10.3389/fimmu.2021.662528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/19/2021] [Indexed: 11/13/2022] Open
Abstract
Psoriasis is the most common and chronic skin disease that affects individuals from every age group. The rate of psoriasis is increasing over the time in both developed and developing countries. Studies have revealed the possibility of association of psoriasis with skin cancers, particularly non-melanoma skin cancers (NMSC), which, include basal cell carcinoma and cutaneous squamous cell carcinoma (cSCC). There is a need to analyze the disease at molecular level to propose potential biomarkers and therapeutic targets in comparison to cSCC. Therefore, the second analyzed disease of this study is cSCC. It is the second most common prevalent skin cancer all over the world with the potential to metastasize and recur. There is an urge to validate the proposed biomarkers and discover new potential biomarkers as well. In order to achieve the goals and objectives of the study, microarray and RNA-sequencing data analyses were performed followed by network analysis. Afterwards, quantitative systems biology was implemented to analyze the results at a holistic level. The aim was to predict the molecular patterns that can lead psoriasis to cancer. The current study proposed potential biomarkers and therapeutic targets for psoriasis and cSCC. IL-17 signaling pathway is also identified as significant pathway in both diseases. Moreover, the current study proposed that autoimmune pathology, neutrophil recruitment, and immunity to extracellular pathogens are sensitive towards MAPKs (MAPK13 and MAPK14) and genes for AP-1 (FOSL1 and FOS). Therefore, these genes should be further studied in gene knock down based studies as they may play significant role in leading psoriasis towards cancer.
Collapse
Affiliation(s)
- Sidra Adil
- Research Center for Modeling and Simulation, National University of Sciences and Technology, Islamabad, Pakistan
| | - Rehan Zafar Paracha
- Research Center for Modeling and Simulation, National University of Sciences and Technology, Islamabad, Pakistan
| | - Salma Tariq
- Research Center for Modeling and Simulation, National University of Sciences and Technology, Islamabad, Pakistan
| | - Maryum Nisar
- Research Center for Modeling and Simulation, National University of Sciences and Technology, Islamabad, Pakistan
| | - Sadaf Ijaz
- Research Center for Modeling and Simulation, National University of Sciences and Technology, Islamabad, Pakistan
| | - Amnah Siddiqa
- Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Zamir Hussain
- Research Center for Modeling and Simulation, National University of Sciences and Technology, Islamabad, Pakistan
| | - Afreenish Amir
- National Institute of Health (Pakistan), Islamabad, Pakistan
| |
Collapse
|
232
|
Aminin D, Wang YM. Macrophages as a "weapon" in anticancer cellular immunotherapy. Kaohsiung J Med Sci 2021; 37:749-758. [PMID: 34110692 DOI: 10.1002/kjm2.12405] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/25/2022] Open
Abstract
Anticancer immunotherapy is a treatment that activates the immune system to fight the tumor. Immunotherapy has several advantages over other cancer treatments in that anticancer immunotherapy displays high specificity, low side effects, and can combine with various conventional therapies. In recent years, oncologists have shown increasing interest in using macrophages for adoptive cell therapy and predict a bright future of macrophage-directed therapy for eliminating cancer. The focus of increased research interest is the classically activated M1 macrophages exhibiting pronounced tumoricidal activity, and the alternatively activated M2 tumor-associated macrophages, which otherwise help malignant cells evading attack by the immune system. M1 macrophages may represent an effective weapon in anticancer cellular immunotherapy, and the use of autoimmune macrophages properly prepared for antitumor administration is one of the promising ways for personalized therapy of cancer patients. The present report mainly discusses some modern aspects of the problem in application of activated M1 macrophage in anticancer therapy and reviews relevant publications up to 2021.
Collapse
Affiliation(s)
- Dmitry Aminin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Vladivostok, Russia.,Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yun-Ming Wang
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Department of Biomedical Science and Environmental Biology, Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
233
|
Svitina H, Hamman JH, Gouws C. Molecular mechanisms and associated cell signalling pathways underlying the anticancer properties of phytochemical compounds from Aloe species (Review). Exp Ther Med 2021; 22:852. [PMID: 34178125 PMCID: PMC8220653 DOI: 10.3892/etm.2021.10284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/07/2021] [Indexed: 12/14/2022] Open
Abstract
Naturally occurring components from various species of Aloe have been used as traditional folk medicine since the ancient times. Over the last few decades, the therapeutic effects of extracts and phytochemical compounds obtained from Aloe vera have been proven in preclinical and clinical studies. Recently, compounds from other Aloe species apart from Aloe vera have been investigated for the treatment of different diseases, with a particular focus on cancer. In the present review, the effects of phytochemical compounds obtained from different Aloe species are discussed, with a specific focus on the effects on cell signalling in cancer and normal cells, and their selectivity and efficacy. This information will be useful for the application of Aloe-derived compounds as therapeutic agents, either alone or in combination with other standard drugs for cancer treatment.
Collapse
Affiliation(s)
- Hanna Svitina
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom, North West 2520, South Africa.,Department of Functional Genomics, Institute of Molecular Biology and Genetics of NASU, Kyiv 03143, Ukraine
| | - Josias H Hamman
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom, North West 2520, South Africa
| | - Chrisna Gouws
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom, North West 2520, South Africa
| |
Collapse
|
234
|
Kaur B, Mishra S, Kaur R, Kalotra S, Singh P. Rationally designed TNF-α inhibitors: Identification of promising cytotoxic agents. Bioorg Med Chem Lett 2021; 41:127982. [PMID: 33766762 DOI: 10.1016/j.bmcl.2021.127982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 11/17/2022]
Abstract
Design and synthesis of new indole derivatives as tumor growth inhibiting agents via inhibiting the TNF-α is described. The preliminary results showed the inhibition of LPS induced production of NO, TNF-α and IL-6 by these compounds out of which compounds 2d and 2g exhibited appreciable cytotoxicity against the 60 cell lines panel of human cancer. The rationale behind the design of the molecules and the results of their biological studies are presented. 2009 Elsevier Ltd. All rights reserved.
Collapse
Affiliation(s)
- Baljit Kaur
- Department of Chemistry, Centre for Advanced Studies, Guru Nanak Dev University, Amritsar 143005, India
| | - Sahil Mishra
- Department of Chemistry, Centre for Advanced Studies, Guru Nanak Dev University, Amritsar 143005, India
| | - Ramandeep Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, India
| | - Shikha Kalotra
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, India
| | - Palwinder Singh
- Department of Chemistry, Centre for Advanced Studies, Guru Nanak Dev University, Amritsar 143005, India.
| |
Collapse
|
235
|
Snigdha K, Singh A, Kango-Singh M. Yorkie-Cactus (IκBα)-JNK axis promotes tumor growth and progression in Drosophila. Oncogene 2021; 40:4124-4136. [PMID: 34017079 DOI: 10.1038/s41388-021-01831-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
Presence of inflammatory factors in the tumor microenvironment is well-documented yet their specific role in tumorigenesis is elusive. The core inflammatory pathways like the Toll-Like Receptor (TLR) and the Tumor Necrosis Factor (TNF) pathway are conserved in Drosophila. We induced GFP-marked epithelial tumors by expressing activated oncogenic forms of RasV12 or Yorkie (Yki3SA, mammalian YAP) in scribble deficient cells (scribRNAi, mammalian SCRIB) to study the role of inflammatory factors in tumorigenesis. Similar to RasV12scribRNAi, we found that Yki3SAscribRNAi form invasive neoplastic lethal tumors that induce a systemic inflammatory response. We identified Cactus (Cact, mammalian IκBα), the negative regulator of TLR, as a key player in tumor growth. Cact accumulates in the cytoplasm in Drosophila tumor models, similar to squamous cell carcinoma in mice models and human patients where cytoplasmic IκBα favors oncogenic transformation. Further, cact is transcriptionally upregulated in tumors, and downregulation of Cact affects tumor growth. We investigated if TLR or TNF pathway affect tumor growth through activation of Jun N-terminal Kinase (JNK) pathway and its target Matrix Metalloprotease1 (MMP1). Genetically manipulating levels of TLR components or TNF receptors showed that Cact acts upstream of JNK signaling and regulates JNK via a non-canonical mechanism during tumorigenesis. Further, Hippo coactivator Yki transcriptionally regulates cact expression, and downregulation of Yki or Cact is sufficient to cause downregulation of JNK-mediated signaling that promotes tumorigenesis. Here, we report a link between Hippo, IκBα and JNK signaling that may induce inflammation and innate immune response in tumorigenesis.
Collapse
Affiliation(s)
- Kirti Snigdha
- Department of Biology, University of Dayton, Dayton, OH, USA
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH, USA
- Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA
- Premedical Programs, University of Dayton, Dayton, OH, USA
- Integrative Science and Engineering Center (ISE), University of Dayton, Dayton, OH, USA
| | - Madhuri Kango-Singh
- Department of Biology, University of Dayton, Dayton, OH, USA.
- Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA.
- Premedical Programs, University of Dayton, Dayton, OH, USA.
- Integrative Science and Engineering Center (ISE), University of Dayton, Dayton, OH, USA.
| |
Collapse
|
236
|
Hendricks-Wenger A, Hutchison R, Vlaisavljevich E, Allen IC. Immunological Effects of Histotripsy for Cancer Therapy. Front Oncol 2021; 11:681629. [PMID: 34136405 PMCID: PMC8200675 DOI: 10.3389/fonc.2021.681629] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is the second leading cause of death worldwide despite major advancements in diagnosis and therapy over the past century. One of the most debilitating aspects of cancer is the burden brought on by metastatic disease. Therefore, an ideal treatment protocol would address not only debulking larger primary tumors but also circulating tumor cells and distant metastases. To address this need, the use of immune modulating therapies has become a pillar in the oncology armamentarium. A therapeutic option that has recently emerged is the use of focal ablation therapies that can destroy a tumor through various physical or mechanical mechanisms and release a cellular lysate with the potential to stimulate an immune response. Histotripsy is a non-invasive, non-ionizing, non-thermal, ultrasound guided ablation technology that has shown promise over the past decade as a debulking therapy. As histotripsy therapies have developed, the full picture of the accompanying immune response has revealed a wide range of immunogenic mechanisms that include DAMP and anti-tumor mediator release, changes in local cellular immune populations, development of a systemic immune response, and therapeutic synergism with the inclusion of checkpoint inhibitor therapies. These studies also suggest that there is an immune effect from histotripsy therapies across multiple murine tumor types that may be reproducible. Overall, the effects of histotripsy on tumors show a positive effect on immunomodulation.
Collapse
Affiliation(s)
- Alissa Hendricks-Wenger
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, United States
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, United States
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Ruby Hutchison
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Eli Vlaisavljevich
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, United States
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
- Institute for Critical Technology and Applied Sciences Center for Engineered Health, Virginia Tech, Blacksburg, VA, United States
| | - Irving Coy Allen
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, United States
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, United States
- Institute for Critical Technology and Applied Sciences Center for Engineered Health, Virginia Tech, Blacksburg, VA, United States
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| |
Collapse
|
237
|
Hijacked Immune Cells in the Tumor Microenvironment: Molecular Mechanisms of Immunosuppression and Cues to Improve T Cell-Based Immunotherapy of Solid Tumors. Int J Mol Sci 2021; 22:ijms22115736. [PMID: 34072260 PMCID: PMC8199456 DOI: 10.3390/ijms22115736] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/13/2022] Open
Abstract
The understanding of the tumor microenvironment (TME) has been expanding in recent years in the context of interactions among different cell types, through direct cell–cell communication as well as through soluble factors. It has become evident that the development of a successful antitumor response depends on several TME factors. In this context, the number, type, and subsets of immune cells, as well as the functionality, memory, and exhaustion state of leukocytes are key factors of the TME. Both the presence and functionality of immune cells, in particular T cells, are regulated by cellular and soluble factors of the TME. In this regard, one fundamental reason for failure of antitumor responses is hijacked immune cells, which contribute to the immunosuppressive TME in multiple ways. Specifically, reactive oxygen species (ROS), metabolites, and anti-inflammatory cytokines have central roles in generating an immunosuppressive TME. In this review, we focused on recent developments in the immune cell constituents of the TME, and the micromilieu control of antitumor responses. Furthermore, we highlighted the current challenges of T cell-based immunotherapies and potential future strategies to consider for strengthening their effectiveness.
Collapse
|
238
|
Caruntu A, Moraru L, Lupu M, Ciubotaru DA, Dumitrescu M, Eftimie L, Hertzog R, Zurac S, Caruntu C, Voinea OC. Assessment of Histological Features in Squamous Cell Carcinoma Involving Head and Neck Skin and Mucosa. J Clin Med 2021; 10:2343. [PMID: 34071843 PMCID: PMC8199467 DOI: 10.3390/jcm10112343] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/16/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND squamous cell carcinoma (SCC) is the second most common type of malignancy worldwide. Skin and mucosa of the head and neck areas are the most frequently affected. An aggressive behavior in SCC is not easily detected, and despite all efforts, mortality in these types of cancer did not show major improvements during recent decades. In this study, we aim to determine the role of histological features available through standard pathology assessment in SCC and their relation with tumor behavior and patients' survival. METHOD in a group of one hundred patients diagnosed with SCC involving the head and neck areas, we assessed the presence of four histological features (tumor/stroma ratio, immune infiltration at the front of invasion, tumor-budding activity, and tumor necrosis), their correlations with tumor type (mucosal or cutaneous), tumor clinicopathological characteristics, and their prognostic potential. RESULTS the comparison between histological features in cutaneous versus mucosal SCC reveals no significant differences for any of the four parameters assessed. We found significant correlations between tumor/stroma ratio and lymphatic metastasis (p = 0.0275), perineural invasion (p = 0.0006), and clinical staging (p = 0.0116). Immune infiltration at the front of invasion revealed similar correlations with lymph node involvement (p = 0.002), perineural invasion (p = 0.0138), and clinical staging (p = 0.0043). Tumor budding and tumor necrosis correlated with the size of the tumor (p = 0.0077 and p = 0.0004) and the clinical staging (p = 0.0039 and p = 0.0143). In addition, tumor budding was significantly correlated with perineural invasion (p = 0.0454). In mucosal SCC, patients with improved outcome revealed high values for the tumor/stroma ratio (p = 0.0159) and immune infiltration at the front of invasion (p = 0.0274). However, the multivariate analysis did not confirm their independent prognostic roles. CONCLUSIONS extended histological assessments that include features such as tumor/stroma ratio, immune infiltration at the front of invasion, tumor budding, and tumor necrosis can be an easy, accessible method to collect additional information on tumor aggressiveness in skin and mucosa SCC affecting the head and neck areas.
Collapse
Affiliation(s)
- Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania; (A.C.); (L.M.)
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| | - Liliana Moraru
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania; (A.C.); (L.M.)
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| | - Mihai Lupu
- Dermatology Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Diana Alina Ciubotaru
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Marius Dumitrescu
- Department of Pathology, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania; (M.D.); (L.E.)
| | - Lucian Eftimie
- Department of Pathology, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania; (M.D.); (L.E.)
| | - Radu Hertzog
- “Cantacuzino” National Medico-Military Institute for Research and Development, 050096 Bucharest, Romania; (R.H.); (O.C.V.)
| | - Sabina Zurac
- Department of Pathology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Oana Cristina Voinea
- “Cantacuzino” National Medico-Military Institute for Research and Development, 050096 Bucharest, Romania; (R.H.); (O.C.V.)
- Department of Pathology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
239
|
Lichterman JN, Reddy SM. Mast Cells: A New Frontier for Cancer Immunotherapy. Cells 2021; 10:cells10061270. [PMID: 34063789 PMCID: PMC8223777 DOI: 10.3390/cells10061270] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 12/24/2022] Open
Abstract
Mast cells are unique tissue-resident immune cells of the myeloid lineage that have long been implicated in the pathogenesis of allergic and autoimmune disorders. More recently, mast cells have been recognized as key orchestrators of anti-tumor immunity, modulators of the cancer stroma, and have also been implicated in cancer cell intrinsic properties. As such, mast cells are an underrecognized but very promising target for cancer immunotherapy. In this review, we discuss the role of mast cells in shaping cancer and its microenvironment, the interaction between mast cells and cancer therapies, and strategies to target mast cells to improve cancer outcomes. Specifically, we address (1) decreasing cell numbers through c-KIT inhibition, (2) modulating mast cell activation and phenotype (through mast cell stabilizers, FcεR1 signaling pathway activators/inhibitors, antibodies targeting inhibitory receptors and ligands, toll like receptor agonists), and (3) altering secreted mast cell mediators and their downstream effects. Finally, we discuss the importance of translational research using patient samples to advance the field of mast cell targeting to optimally improve patient outcomes. As we aim to expand the successes of existing cancer immunotherapies, focused clinical and translational studies targeting mast cells in different cancer contexts are now warranted.
Collapse
Affiliation(s)
- Jake N. Lichterman
- Division of Hematology/Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Sangeetha M. Reddy
- Division of Hematology/Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence: ; Tel.: +1-214-648-4180
| |
Collapse
|
240
|
From Benign Inflammatory Dermatosis to Cutaneous Lymphoma. DNA Copy Number Imbalances in Mycosis Fungoides versus Large Plaque Parapsoriasis. ACTA ACUST UNITED AC 2021; 57:medicina57050502. [PMID: 34063545 PMCID: PMC8156635 DOI: 10.3390/medicina57050502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/22/2022]
Abstract
Background and Objectives: Mycosis fungoides (MF) and large plaque parapsoriasis (LPP) evolution provide intriguing data and are the cause of numerous debates. The diagnosis of MF and LPP is associated with confusion and imprecise definition. Copy number alterations (CNAs) may play an essential role in the genesis of cancer out of genes expression dysregulation. Objectives: Due to the heterogeneity of MF and LPP and the scarcity of the cases, there are an exceedingly small number of studies that have identified molecular changes in these pathologies. We aim to identify and compare DNA copy number alterations and gene expression changes between MF and LPP to highlight the similarities and the differences between these pathologies. Materials and Methods: The patients were prospectively selected from University Clinic of Dermatology and Venereology Timișoara, Romania. From fresh frozen skin biopsies, we extracted DNA using single nucleotide polymorphism (SNP) data. The use of SNP array for copy number profiling is a promising approach for genome-wide analysis. Results: After reviewing each group, we observed that the histograms generated for chromosome 1–22 were remarkably similar and had a lot of CNAs in common, but also significant differences were seen. Conclusions: This study took a step forward in finding out the differences and similarities between MF and LPP, for a more specific and implicitly correct approach of the case. The similarity between these two pathologies in terms of CNAs is striking, emphasizing once again the difficulty of approaching and differentiating them.
Collapse
|
241
|
Mabe NW, Garcia NMG, Wolery SE, Newcomb R, Meingasner RC, Vilona BA, Lupo R, Lin CC, Chi JT, Alvarez JV. G9a Promotes Breast Cancer Recurrence through Repression of a Pro-inflammatory Program. Cell Rep 2021; 33:108341. [PMID: 33147463 PMCID: PMC7656293 DOI: 10.1016/j.celrep.2020.108341] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/30/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Dysregulated gene expression is a common feature of cancer and may underlie some aspects of tumor progression, including tumor relapse. Here, we show that recurrent mammary tumors exhibit global changes in gene expression and histone modifications and acquire dependence on the G9a histone methyltransferase. Genetic ablation of G9a delays tumor recurrence, and pharmacologic inhibition of G9a slows the growth of recurrent tumors. Mechanistically, G9a activity is required to silence pro-inflammatory cytokines, including tumor necrosis factor (TNF), through H3K9 methylation at gene promoters. G9a inhibition induces re-expression of these cytokines, leading to p53 activation and necroptosis. Recurrent tumors upregulate receptor interacting protein kinase-3 (RIPK3) expression and are dependent upon RIPK3 activity. High RIPK3 expression renders recurrent tumors sensitive to necroptosis following G9a inhibition. These findings demonstrate that G9a-mediated silencing of pro-necroptotic proteins is a critical step in tumor recurrence and suggest that G9a is a targetable dependency in recurrent breast cancer.
Collapse
Affiliation(s)
- Nathaniel W Mabe
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Nina Marie G Garcia
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Shayna E Wolery
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Rachel Newcomb
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Ryan C Meingasner
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Brittany A Vilona
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Ryan Lupo
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Chao-Chieh Lin
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA; Center for Genomic and Computational Biology, Duke University, Durham, NC 27710, USA
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA; Center for Genomic and Computational Biology, Duke University, Durham, NC 27710, USA
| | - James V Alvarez
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
242
|
Doello K, Amezcua V. Effect of adding bemiparin and cefepime to routine treatment in cancer patients with SARS-CoV-2 infection. Med Clin (Barc) 2021; 157:299-300. [PMID: 34083071 PMCID: PMC8103150 DOI: 10.1016/j.medcli.2021.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 11/02/2022]
Affiliation(s)
- Kevin Doello
- Servicio de Oncología Médica, Hospital Virgen de las Nieves, Granada, España.
| | - Víctor Amezcua
- Servicio de Oncología Médica, Hospital Virgen de las Nieves, Granada, España
| |
Collapse
|
243
|
Mrudulakumari Vasudevan U, Lee OK, Lee EY. Alginate derived functional oligosaccharides: Recent developments, barriers, and future outlooks. Carbohydr Polym 2021; 267:118158. [PMID: 34119132 DOI: 10.1016/j.carbpol.2021.118158] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023]
Abstract
Alginate is a biopolymer used extensively in the food, pharmaceutical, and chemical industries. Alginate oligosaccharides (AOS) derived from alginate exhibit superior biological activities and therapeutic potential. Alginate lyases with characteristic substrate specificity can facilitate the production of a broad array of AOS with precise structure and functionality. By adopting innovative analytical tools in conjunction with focused clinical studies, the structure-bioactivity relationship of a number of AOS has been brought to light. This review covers fundamental aspects and recent developments in AOS research. Enzymatic and microbial processes involved in AOS production from brown algae and sequential steps involved in AOS structure elucidation are outlined. Biological mechanisms underlying the health benefits of AOS and their potential industrial and therapeutic applications are elaborated. Withal, various challenges in AOS research are traced out, and future directions, specifically on recombinant systems for AOS preparation, are delineated to further widen the horizon of these exceptional oligosaccharides.
Collapse
Affiliation(s)
- Ushasree Mrudulakumari Vasudevan
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Ok Kyung Lee
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
244
|
Chen M, Wu HL, Wong TS, Chen B, Gong RH, Wong HLX, Xiao H, Bian Z, Kwan HY. Combination of Wogonin and Artesunate Exhibits Synergistic anti-Hepatocellular Carcinoma Effect by Increasing DNA-Damage-Inducible Alpha, Tumor Necrosis Factor α and Tumor Necrosis Factor Receptor-Associated Factor 3-mediated Apoptosis. Front Pharmacol 2021; 12:657080. [PMID: 34025421 PMCID: PMC8131852 DOI: 10.3389/fphar.2021.657080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/29/2021] [Indexed: 02/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is difficult to treat, and is the second leading cause of cancer-related death worldwide. This study aimed to examine whether combination of wogonin and artesunate exhibits synergistic anti-HCC effect. Our data show that the combination treatment exhibits synergistic effect in reducing HCC cell viability by increasing apoptosis as indicated by the elevated cleavage of caspase 8, 3 and PARP. Interestingly, PCR array and the subsequent studies indicate that the combination treatment significantly increases the expression of DNA-damage-inducible, alpha (GADD45A), tumor necrosis factor (TNFα) and TNF receptor-associated factor 3 (TRAF3). Knockdown of GADD45A, TNFα or TRAF3 abolishes the combination treatment-enhanced apoptosis and the synergistic effect in reducing HCC cell viability. In the HCC-bearing xenograft mouse models, although the combination treatment increases the activity of NFκB in the tumor tissues, it exhibits a more potent anti-HCC effect than the mono-treatment, which may due to the enhanced apoptosis as indicated by the increased expression of GADD45A, TNFα, TRAF3 and apoptotic markers. Our study clearly demonstrates that the combination of artesunate and wogonin exhibits synergistic anti-HCC effect, and support the further development of this combination as alternative therapeutics for HCC management.
Collapse
Affiliation(s)
- Minting Chen
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Hsin Ling Wu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Tsz Sin Wong
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Baisen Chen
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Rui-Hong Gong
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Hoi Leong Xavier Wong
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Haitao Xiao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Zhaoxiang Bian
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Hiu Yee Kwan
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
245
|
Robert C, Tsiampali J, Fraser-Miller SJ, Neumann S, Maciaczyk D, Young SL, Maciaczyk J, Gordon KC. Molecular monitoring of glioblastoma's immunogenicity using a combination of Raman spectroscopy and chemometrics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119534. [PMID: 33588367 DOI: 10.1016/j.saa.2021.119534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Raman spectroscopy (RS) has been used as a powerful diagnostic and non-invasive tool in cancer diagnosis as well as in discrimination of cancer and immune cells. In this study RS in combination with chemometrics was applied to cellular Raman spectral data to distinguish the phenotype of T-cells and monocytes after incubation with media conditioned by glioblastoma stem-cells (GSCs) showing different molecular background. For this purpose, genetic modulations of epithelial-to-mesenchymal transition (EMT) process and expression of immunomodulator CD73 were introduced. Principal component analysis of the Raman spectral data showed that T-cells and monocytes incubated with tumour-conditioned media (TCMs) of GSCs with inhibited EMT activator ZEB1 or CD73 formed distinct clusters compared to controls highlighting their differences. Further discriminatory analysis performed using linear discriminant analysis (LDA) and support vector machine classification (SVM), yielded sensitivities and specificities of over 70 and 67% respectively upon validation against an independent test set. Supporting those results, flow cytometric analysis was performed to test the influence of TCMs on cytokine profile of T-cells and monocytes. We found that ZEB1 and CD73 influence T-cell and monocyte phenotype and promote monocyte differentiation into a population of mixed pro- and anti-tumorigenic macrophages (MΦs) and dendritic cells (DCs) respectively. In conclusion, Raman spectroscopy in combination with chemometrics enabled tracking T-cells and monocytes.
Collapse
Affiliation(s)
- Chima Robert
- Dodd-Walls Centre for Photonics and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin, New Zealand
| | - Julia Tsiampali
- Neurosurgery Department, University Hospital Duesseldorf, 40225 Duesseldorf, Germany
| | - Sara J Fraser-Miller
- Dodd-Walls Centre for Photonics and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin, New Zealand
| | - Silke Neumann
- Department of Pathology, University of Otago, Dunedin, New Zealand
| | - Donata Maciaczyk
- Department of Pathology, University of Otago, Dunedin, New Zealand
| | - Sarah L Young
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Jaroslaw Maciaczyk
- Department of Neurosurgery, University Hospital Bonn, 53179 Bonn, Germany; Department of Surgical Sciences, University of Otago, Dunedin, New Zealand.
| | - Keith C Gordon
- Dodd-Walls Centre for Photonics and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
246
|
Nisar S, Yousuf P, Masoodi T, Wani NA, Hashem S, Singh M, Sageena G, Mishra D, Kumar R, Haris M, Bhat AA, Macha MA. Chemokine-Cytokine Networks in the Head and Neck Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms22094584. [PMID: 33925575 PMCID: PMC8123862 DOI: 10.3390/ijms22094584] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are aggressive diseases with a dismal patient prognosis. Despite significant advances in treatment modalities, the five-year survival rate in patients with HNSCC has improved marginally and therefore warrants a comprehensive understanding of the HNSCC biology. Alterations in the cellular and non-cellular components of the HNSCC tumor micro-environment (TME) play a critical role in regulating many hallmarks of cancer development including evasion of apoptosis, activation of invasion, metastasis, angiogenesis, response to therapy, immune escape mechanisms, deregulation of energetics, and therefore the development of an overall aggressive HNSCC phenotype. Cytokines and chemokines are small secretory proteins produced by neoplastic or stromal cells, controlling complex and dynamic cell-cell interactions in the TME to regulate many cancer hallmarks. This review summarizes the current understanding of the complex cytokine/chemokine networks in the HNSCC TME, their role in activating diverse signaling pathways and promoting tumor progression, metastasis, and therapeutic resistance development.
Collapse
Affiliation(s)
- Sabah Nisar
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha 26999, Qatar; (S.N.); (S.H.); (M.H.)
| | - Parvaiz Yousuf
- Department of Zoology, School of Life Sciences, Central University of Kashmir, Ganderbal 191201, India;
| | - Tariq Masoodi
- Department of Genomic Medicine, Genetikode 400102, India;
| | - Nissar A. Wani
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal 191201, India;
| | - Sheema Hashem
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha 26999, Qatar; (S.N.); (S.H.); (M.H.)
| | - Mayank Singh
- Departmental of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India;
| | | | - Deepika Mishra
- Centre for Dental Education and Research, Department of Oral Pathology and Microbiology, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Rakesh Kumar
- Centre for Advanced Research, School of Biotechnology and Indian Council of Medical Research, Shri Mata Vaishno Devi University, Katra 182320, India;
| | - Mohammad Haris
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha 26999, Qatar; (S.N.); (S.H.); (M.H.)
- Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar
| | - Ajaz A. Bhat
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha 26999, Qatar; (S.N.); (S.H.); (M.H.)
- Correspondence: (A.A.B.); or (M.A.M.); Tel.: +974-40037703 (A.A.B.); +91-8082326900 (M.A.M.)
| | - Muzafar A. Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora 192122, India
- Correspondence: (A.A.B.); or (M.A.M.); Tel.: +974-40037703 (A.A.B.); +91-8082326900 (M.A.M.)
| |
Collapse
|
247
|
Luong Huynh D, Nguyen NH, Nguyen CT. Pharmacological properties of ginsenosides in inflammation-derived cancers. Mol Cell Biochem 2021; 476:3329-3340. [PMID: 33900512 DOI: 10.1007/s11010-021-04162-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023]
Abstract
Ginseng is commonly used as an herbal medicine for improvement of life quality. It is also used as a supplemental medication with anti-cancer drugs to enhance chemotherapy efficacy and shows some beneficial effects. Ginsenosides, also known as saponins, are the major active pharmacological compounds found in ginseng and have been extensively using in treatment of not only cancers but also the other inflammatory diseases such as atherosclerosis, diabetes, acute lung injury, cardiovascular, and infectious diseases. The anti-cancer activities of ginsengs and ginsenosides in different types of cancers have been well studied experimentally and clinically. The major anti-cancer mechanisms of ginseng compounds include inhibition of angiogenesis and metastasis as well as induction of cell cycle arrest and apoptosis. Herein, we review and summarize the current knowledge on the pharmacological effects of ginsengs and ginseng-derived compounds in the treatment of cancers. Moreover, the molecular and cellular mechanism(s) by which ginsengs and ginsenosides modulate the immune response in cancer diseases as well as ginsengs-drugs interaction are also discussed.
Collapse
Affiliation(s)
- Do Luong Huynh
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam
| | - Nguyen Hoai Nguyen
- Faculty of Biotechnology, Ho Chi Minh City Open University, 97 Vo Van Tan Street, District 3, Ho Chi Minh City, Vietnam
| | - Cuong Thach Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
248
|
Wigner P, Grębowski R, Bijak M, Saluk-Bijak J, Szemraj J. The Interplay between Oxidative Stress, Inflammation and Angiogenesis in Bladder Cancer Development. Int J Mol Sci 2021; 22:ijms22094483. [PMID: 33923108 PMCID: PMC8123426 DOI: 10.3390/ijms22094483] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
In 2018, 550,000 people were diagnosed with bladder cancer (BC), of which nearly 200,000 people died. Moreover, men are 4 times more likely than women to be diagnosed with BC. The risk factors include exposure to environmental and occupational chemicals, especially tobacco smoke, benzidine and genetic factors. Despite numerous studies, the molecular basis of BC development remains unclear. A growing body of evidence suggests that inflammation, oxidant-antioxidant imbalance and angiogenesis disorders may play a significant role in the development and progression of bladder cancer. The patients with bladder cancer were characterised by an increased level of reactive oxygen species (ROS), the products of lipid peroxidation, proinflammatory cytokines and proangiogenic factors as compared to controls. Furthermore, it was shown that polymorphisms localised in genes associated with these pathways may modulate the risk of BC. Interestingly, ROS overproduction may induce the production of proinflammatory cytokines, which finally activated angiogenesis. Moreover, the available literature shows that both inflammation and oxidative stress may lead to activation of angiogenesis and tumour progression in BC patients.
Collapse
Affiliation(s)
- Paulina Wigner
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
- Correspondence: ; Tel.: +48-42-635-44-85; Fax: +48-42-635-44-84
| | - Radosław Grębowski
- Department of Urology, Provincial Integrated Hospital in Plock, 09-400 Plock, Poland;
- Department of Medical Biochemistry, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Michał Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-216 Lodz, Poland;
| |
Collapse
|
249
|
Yang Y, Islam MS, Hu Y, Chen X. TNFR2: Role in Cancer Immunology and Immunotherapy. Immunotargets Ther 2021; 10:103-122. [PMID: 33907692 PMCID: PMC8071081 DOI: 10.2147/itt.s255224] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs), including anti-CTLA-4 (cytotoxic T lymphocyte antigen-4) and anti-PD-1/PD-L1 (programmed death-1/programmed death-ligand 1), represent a turning point in the cancer immunotherapy. However, only a minor fraction of patients could derive benefit from such therapy. Therefore, new strategies targeting additional immune regulatory mechanisms are urgently needed. CD4+Foxp3+ regulatory T cells (Tregs) represent a major cellular mechanism in cancer immune evasion. There is compelling evidence that tumor necrosis factor (TNF) receptor type II (TNFR2) plays a decisive role in the activation and expansion of Tregs and other types of immunosuppressive cells such as myeloid-derived suppressor cells (MDSCs). Furthermore, TNFR2 is also expressed by some tumor cells. Emerging experimental evidence indicates that TNFR2 may be a therapeutic target to enhance naturally occurring or immunotherapeutic-triggered anti-tumor immune responses. In this article, we discuss recent advances in the understanding of the mechanistic basis underlying the Treg-boosting effect of TNFR2. The role of TNFR2-expressing highly suppressive Tregs in tumor immune evasion and their possible contribution to the non-responsiveness to checkpoint treatment are analyzed. Moreover, the role of TNFR2 expression on tumor cells and the impact of TNFR2 signaling on other types of cells that shape the immunological landscape in the tumor microenvironment, such as MDSCs, MSCs, ECs, EPCs, CD8+ CTLs, and NK cells, are also discussed. The reports revealing the effect of TNFR2-targeting pharmacological agents in the experimental cancer immunotherapy are summarized. We also discuss the potential opportunities and challenges for TNFR2-targeting immunotherapy.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, 999078, People's Republic of China
| | - Md Sahidul Islam
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, 999078, People's Republic of China
| | - Yuanjia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, 999078, People's Republic of China
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, 999078, People's Republic of China
| |
Collapse
|
250
|
Derakhshani A, Rostami Z, Safarpour H, Shadbad MA, Nourbakhsh NS, Argentiero A, Taefehshokr S, Tabrizi NJ, Kooshkaki O, Astamal RV, Singh PK, Taefehshokr N, Alizadeh N, Silvestris N, Baradaran B. From Oncogenic Signaling Pathways to Single-Cell Sequencing of Immune Cells: Changing the Landscape of Cancer Immunotherapy. Molecules 2021; 26:2278. [PMID: 33920054 PMCID: PMC8071039 DOI: 10.3390/molecules26082278] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 12/19/2022] Open
Abstract
Over the past decade, there have been remarkable advances in understanding the signaling pathways involved in cancer development. It is well-established that cancer is caused by the dysregulation of cellular pathways involved in proliferation, cell cycle, apoptosis, cell metabolism, migration, cell polarity, and differentiation. Besides, growing evidence indicates that extracellular matrix signaling, cell surface proteoglycans, and angiogenesis can contribute to cancer development. Given the genetic instability and vast intra-tumoral heterogeneity revealed by the single-cell sequencing of tumoral cells, the current approaches cannot eliminate the mutating cancer cells. Besides, the polyclonal expansion of tumor-infiltrated lymphocytes in response to tumoral neoantigens cannot elicit anti-tumoral immune responses due to the immunosuppressive tumor microenvironment. Nevertheless, the data from the single-cell sequencing of immune cells can provide valuable insights regarding the expression of inhibitory immune checkpoints/related signaling factors in immune cells, which can be used to select immune checkpoint inhibitors and adjust their dosage. Indeed, the integration of the data obtained from the single-cell sequencing of immune cells with immune checkpoint inhibitors can increase the response rate of immune checkpoint inhibitors, decrease the immune-related adverse events, and facilitate tumoral cell elimination. This study aims to review key pathways involved in tumor development and shed light on single-cell sequencing. It also intends to address the shortcomings of immune checkpoint inhibitors, i.e., their varied response rates among cancer patients and increased risk of autoimmunity development, via applying the data from the single-cell sequencing of immune cells.
Collapse
Affiliation(s)
- Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran; (A.D.); (M.A.S.); (S.T.); (N.J.T.); (R.V.A.); (N.A.)
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
| | - Zeinab Rostami
- Student Research Committee, Birjand University of Medical Sciences, Birjand 97178-53577, Iran; (Z.R.); (O.K.)
| | - Hossein Safarpour
- Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand 97178-53577, Iran;
| | - Mahdi Abdoli Shadbad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran; (A.D.); (M.A.S.); (S.T.); (N.J.T.); (R.V.A.); (N.A.)
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 51666-14766, Iran
| | | | | | - Sina Taefehshokr
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran; (A.D.); (M.A.S.); (S.T.); (N.J.T.); (R.V.A.); (N.A.)
| | - Neda Jalili Tabrizi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran; (A.D.); (M.A.S.); (S.T.); (N.J.T.); (R.V.A.); (N.A.)
| | - Omid Kooshkaki
- Student Research Committee, Birjand University of Medical Sciences, Birjand 97178-53577, Iran; (Z.R.); (O.K.)
| | - Reza Vaezi Astamal
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran; (A.D.); (M.A.S.); (S.T.); (N.J.T.); (R.V.A.); (N.A.)
| | - Pankaj Kumar Singh
- Principal Research Technologist, Department of Radiation Oncology, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL 32224, USA;
| | - Nima Taefehshokr
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON N6A 5C1, Canada;
| | - Nazila Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran; (A.D.); (M.A.S.); (S.T.); (N.J.T.); (R.V.A.); (N.A.)
| | - Nicola Silvestris
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran; (A.D.); (M.A.S.); (S.T.); (N.J.T.); (R.V.A.); (N.A.)
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 51666-14766, Iran
| |
Collapse
|