201
|
Woo HY, Na K, Yoo J, Chang JH, Park YN, Shim HS, Kim SH. Glioblastomas harboring gene fusions detected by next-generation sequencing. Brain Tumor Pathol 2020; 37:136-144. [PMID: 32761533 DOI: 10.1007/s10014-020-00377-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022]
Abstract
Oncogenic gene fusions have been reported in diffuse gliomas and may serve as potential therapeutic targets. Here, using next-generation sequencing analysis (Illumina TruSight Tumor 170 panel), we analyzed a total of 356 diffuse gliomas collected from 2017 to 2019 to evaluate clinical, pathological, and genetic features of gene fusion. We found 53 cases of glioblastomas harboring the following oncogenic gene fusions: MET (n = 18), EGFR (n = 14), FGFR (n = 12), NTRK (n = 5), RET (n = 2), AKT3 (n = 1), and PDGFRA fusions (n = 1). Gene fusions were consistently observed in both IDH-wildtype and IDH-mutant glioblastomas (8.8% and 9.4%, p = 1.000). PTPRZ1-MET fusion was the only fusion that genetically resembled secondary glioblastomas (i.e., high frequency of IDH mutation, ATRX loss, TP53 mutation, and absence of EGFR amplification), whereas other gene fusion types were similar to primary glioblastomas (i.e., high frequency of IDH-wildtype, TERT mutation, EGFR amplification, and PTEN mutation). In IDH-wildtype glioblastoma patients, multivariable analysis revealed that the PTPRZ1-MET fusion was associated with poor progression-free survival (HR [95% CI]: 5.42 (1.72-17.05), p = 0.004). Additionally, we described two novel cases of CCDC6-RET fusion in glioma. Collectively, our findings indicate that targetable gene fusions are associated with aggressive biological behavior and can aid the clinical treatment strategy for glioma patients.
Collapse
Affiliation(s)
- Ha Young Woo
- Department of Pathology, Yonsei University College of Medicine, 50-1, Yonsei-Ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Kiyong Na
- Department of Pathology, Kyung Hee University Hospital, 26 Kyungheedae-Ro, Dongdaemun-gu, Seoul, 02447, South Korea
| | - Jihwan Yoo
- Department of Neurosurgery, Yonsei University College of Medicine, 50-1, Yonsei-Ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Yonsei University College of Medicine, 50-1, Yonsei-Ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Young Nyun Park
- Department of Pathology, Yonsei University College of Medicine, 50-1, Yonsei-Ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Hyo Sup Shim
- Department of Pathology, Yonsei University College of Medicine, 50-1, Yonsei-Ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, 50-1, Yonsei-Ro, Seodaemun-gu, Seoul, 03722, South Korea.
| |
Collapse
|
202
|
Lorenz J, Rothhammer-Hampl T, Zoubaa S, Bumes E, Pukrop T, Kölbl O, Corbacioglu S, Schmidt NO, Proescholdt M, Hau P, Riemenschneider MJ. A comprehensive DNA panel next generation sequencing approach supporting diagnostics and therapy prediction in neurooncology. Acta Neuropathol Commun 2020; 8:124. [PMID: 32758285 PMCID: PMC7405456 DOI: 10.1186/s40478-020-01000-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/17/2020] [Indexed: 11/30/2022] Open
Abstract
Recent updates in the classification of central nervous system (CNS) tumors have increased the need for molecular testing. Assessment of multiple alterations in parallel, complex combinations of gene sequence and chromosomal changes, as well as therapy prediction by identification of actionable mutations are the major challenges. We here report on a customized next generation sequencing (NGS)-based DNA panel assay that combines diagnostic and predictive testing and -as a comprehensive approach- allows for simultaneous single nucleotide variant (SNP) / small insertion/deletion (InDel), copy number variation (CNV) and loss of heterozygosity (LOH) detection. We analyzed formalin-fixed and paraffin-embedded (FFPE) DNA from a total of 104 patients with CNS tumors. After amplicon capture-based library preparation, sequencing was performed on the relatively cost-efficient Illiumina MiniSeq platform and evaluated with freely available bioinformatical tools. 57 genes for exonic SNP/InDel calling (19 of those in intronic regions for CNV analysis), 3 chromosomal arms and 4 entire chromosomes for CNV and LOH analysis were covered. Results were extensively validated. Our approach yielded high accuracy, sensitivity and specificity. It led to refined diagnoses in a relevant number of analyzed cases, reliably enabled complex subclassifications (e.g. for medulloblastomas) and identified actionable targets for clinical use. Thus, our single-platform approach is an efficient and powerful tool to comprehensively support molecular testing in neurooncology. Future functionality is guaranteed as novel upcoming biomarkers can be easily incorporated in a modular panel design.
Collapse
Affiliation(s)
- Julia Lorenz
- Department of Neuropathology, Regensburg University Hospital, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
- Wilhelm Sander Neuro-Oncology Unit, Regensburg University Hospital, Regensburg, Germany
| | - Tanja Rothhammer-Hampl
- Department of Neuropathology, Regensburg University Hospital, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
- Wilhelm Sander Neuro-Oncology Unit, Regensburg University Hospital, Regensburg, Germany
| | - Saida Zoubaa
- Department of Neuropathology, Regensburg University Hospital, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
- Wilhelm Sander Neuro-Oncology Unit, Regensburg University Hospital, Regensburg, Germany
| | - Elisabeth Bumes
- Wilhelm Sander Neuro-Oncology Unit, Regensburg University Hospital, Regensburg, Germany
- Department of Neurology, Regensburg University Hospital, Regensburg, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, Regensburg University Hospital, Regensburg, Germany
| | - Oliver Kölbl
- Wilhelm Sander Neuro-Oncology Unit, Regensburg University Hospital, Regensburg, Germany
- Department of Radiotherapy, Regensburg University Hospital, Regensburg, Germany
| | - Selim Corbacioglu
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Regensburg University Hospital, Regensburg, Germany
| | - Nils O Schmidt
- Wilhelm Sander Neuro-Oncology Unit, Regensburg University Hospital, Regensburg, Germany
- Department of Neurosurgery, University Hospital Regensburg, Regensburg, Germany
| | - Martin Proescholdt
- Wilhelm Sander Neuro-Oncology Unit, Regensburg University Hospital, Regensburg, Germany
- Department of Neurosurgery, University Hospital Regensburg, Regensburg, Germany
| | - Peter Hau
- Wilhelm Sander Neuro-Oncology Unit, Regensburg University Hospital, Regensburg, Germany
- Department of Neurology, Regensburg University Hospital, Regensburg, Germany
| | - Markus J Riemenschneider
- Department of Neuropathology, Regensburg University Hospital, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
- Wilhelm Sander Neuro-Oncology Unit, Regensburg University Hospital, Regensburg, Germany.
| |
Collapse
|
203
|
Chae YK, Hong F, Vaklavas C, Cheng HH, Hammerman P, Mitchell EP, Zwiebel JA, Ivy SP, Gray RJ, Li S, McShane LM, Rubinstein LV, Patton D, Williams PM, Hamilton SR, Mansfield A, Conley BA, Arteaga CL, Harris LN, O’Dwyer PJ, Chen AP, Flaherty KT. Phase II Study of AZD4547 in Patients With Tumors Harboring Aberrations in the FGFR Pathway: Results From the NCI-MATCH Trial (EAY131) Subprotocol W. J Clin Oncol 2020; 38:2407-2417. [PMID: 32463741 PMCID: PMC7367548 DOI: 10.1200/jco.19.02630] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2020] [Indexed: 01/08/2023] Open
Abstract
PURPOSE NCI-MATCH is a nationwide, histology-agnostic, signal-finding, molecular profile-driven trial for patients with refractory cancers, lymphomas, or myelomas. Patients with tumors harboring actionable aberration(s) in fibroblast growth factor receptor (FGFR) 1-3 were treated with AZD4547, an oral FGFR1-3 inhibitor. METHODS Patients' tumors were screened by next-generation sequencing for predefined FGFR amplification, activating mutations, or fusions. Patients were treated with AZD4547, 80 mg orally twice daily until progression of disease or drug intolerance. A response rate of 16% was considered promising. RESULTS Between July 2016 and June 2017, 70 patients were assigned and 48 received protocol therapy and are eligible for analysis. Patients' tumors harbored FGFR1 or FGFR2 amplification (n = 20), FGFR2 or FGFR3 single-nucleotide variants (n = 19), or FGFR1 or FGFR3 fusions (n = 9). The most common primary tumors were breast (33.3%), urothelial (12.5%), and cervical cancer (10.4%).Grade 3 adverse events were consistent with those described in previous clinical trials. Confirmed partial responses were seen in 8% (90% CI, 3% to 18%) and were observed only in patients whose tumors harbored FGFR1-3 point mutations or fusions. Stable disease was observed in 37.5% (90% CI, 25.8% to 50.4%). The median progression-free survival (PFS) was 3.4 months, and the 6-month PFS rate was 15% (90% CI, 8% to 31%). For patients with tumors harboring FGFR fusions, the response rate was 22% (90% CI, 4.1% to 55%), and 6-month PFS rate was 56% (90% CI, 31% to 100%). CONCLUSION Preliminary signals of activity appeared to be limited to cancers harboring FGFR activating mutations and fusions, although AZD4547 did not meet the primary end point. Different FGFR somatic alterations may confer different levels of signaling potency and/or oncogene dependence.
Collapse
Affiliation(s)
| | - Fangxin Hong
- Dana Farber Cancer Institute–ECOG-ACRIN Biostatistics Center, Boston, MA
| | - Christos Vaklavas
- University of Alabama at Birmingham, Birmingham, AL
- Huntsman Cancer Institute of the University of Utah, Salt Lake City, UT
| | | | | | | | - James A. Zwiebel
- Investigational Drug Branch, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - S. Percy Ivy
- Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - Robert J. Gray
- Dana Farber Cancer Institute–ECOG-ACRIN Biostatistics Center, Boston, MA
| | - Shuli Li
- Dana Farber Cancer Institute–ECOG-ACRIN Biostatistics Center, Boston, MA
| | - Lisa M. McShane
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - Larry V. Rubinstein
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - David Patton
- Center for Biomedical Informatics & Information Technology, National Cancer Institute, Bethesda, MD
| | | | | | | | - Barbara A. Conley
- Cancer Diagnosis Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | | | - Lyndsay N. Harris
- Cancer Diagnosis Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | | | - Alice P. Chen
- Investigational Drug Branch, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | | |
Collapse
|
204
|
DeCordova S, Shastri A, Tsolaki AG, Yasmin H, Klein L, Singh SK, Kishore U. Molecular Heterogeneity and Immunosuppressive Microenvironment in Glioblastoma. Front Immunol 2020; 11:1402. [PMID: 32765498 PMCID: PMC7379131 DOI: 10.3389/fimmu.2020.01402] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults, with a poor prognosis, despite surgical resection combined with radio- and chemotherapy. The major clinical obstacles contributing to poor GBM prognosis are late diagnosis, diffuse infiltration, pseudo-palisading necrosis, microvascular proliferation, and resistance to conventional therapy. These challenges are further compounded by extensive inter- and intra-tumor heterogeneity and the dynamic plasticity of GBM cells. The complex heterogeneous nature of GBM cells is facilitated by the local inflammatory tumor microenvironment, which mostly induces tumor aggressiveness and drug resistance. An immunosuppressive tumor microenvironment of GBM provides multiple pathways for tumor immune evasion. Infiltrating immune cells, mostly tumor-associated macrophages, comprise much of the non-neoplastic population in GBM. Further understanding of the immune microenvironment of GBM is essential to make advances in the development of immunotherapeutics. Recently, whole-genome sequencing, epigenomics and transcriptional profiling have significantly helped improve the prognostic and therapeutic outcomes of GBM patients. Here, we discuss recent genomic advances, the role of innate and adaptive immune mechanisms, and the presence of an established immunosuppressive GBM microenvironment that suppresses and/or prevents the anti-tumor host response.
Collapse
Affiliation(s)
- Syreeta DeCordova
- Biosciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - Abhishek Shastri
- Central and North West London NHS Foundation Trust, London, United Kingdom
| | - Anthony G Tsolaki
- Biosciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - Hadida Yasmin
- Immunology and Cell Biology Laboratory, Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, India
| | - Lukas Klein
- Department of Gastroenterology and Gastroenterology Oncology, University Medical Centre, Göttingen, Germany
| | - Shiv K Singh
- Department of Gastroenterology and Gastroenterology Oncology, University Medical Centre, Göttingen, Germany
| | - Uday Kishore
- Biosciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| |
Collapse
|
205
|
Clarke M, Mackay A, Ismer B, Pickles JC, Tatevossian RG, Newman S, Bale TA, Stoler I, Izquierdo E, Temelso S, Carvalho DM, Molinari V, Burford A, Howell L, Virasami A, Fairchild AR, Avery A, Chalker J, Kristiansen M, Haupfear K, Dalton JD, Orisme W, Wen J, Hubank M, Kurian KM, Rowe C, Maybury M, Crosier S, Knipstein J, Schüller U, Kordes U, Kram DE, Snuderl M, Bridges L, Martin AJ, Doey LJ, Al-Sarraj S, Chandler C, Zebian B, Cairns C, Natrajan R, Boult JKR, Robinson SP, Sill M, Dunkel IJ, Gilheeney SW, Rosenblum MK, Hughes D, Proszek PZ, Macdonald TJ, Preusser M, Haberler C, Slavc I, Packer R, Ng HK, Caspi S, Popović M, Faganel Kotnik B, Wood MD, Baird L, Davare MA, Solomon DA, Olsen TK, Brandal P, Farrell M, Cryan JB, Capra M, Karremann M, Schittenhelm J, Schuhmann MU, Ebinger M, Dinjens WNM, Kerl K, Hettmer S, Pietsch T, Andreiuolo F, Driever PH, Korshunov A, Hiddingh L, Worst BC, Sturm D, Zuckermann M, Witt O, Bloom T, Mitchell C, Miele E, Colafati GS, Diomedi-Camassei F, Bailey S, Moore AS, Hassall TEG, Lowis SP, Tsoli M, Cowley MJ, Ziegler DS, Karajannis MA, Aquilina K, Hargrave DR, Carceller F, Marshall LV, et alClarke M, Mackay A, Ismer B, Pickles JC, Tatevossian RG, Newman S, Bale TA, Stoler I, Izquierdo E, Temelso S, Carvalho DM, Molinari V, Burford A, Howell L, Virasami A, Fairchild AR, Avery A, Chalker J, Kristiansen M, Haupfear K, Dalton JD, Orisme W, Wen J, Hubank M, Kurian KM, Rowe C, Maybury M, Crosier S, Knipstein J, Schüller U, Kordes U, Kram DE, Snuderl M, Bridges L, Martin AJ, Doey LJ, Al-Sarraj S, Chandler C, Zebian B, Cairns C, Natrajan R, Boult JKR, Robinson SP, Sill M, Dunkel IJ, Gilheeney SW, Rosenblum MK, Hughes D, Proszek PZ, Macdonald TJ, Preusser M, Haberler C, Slavc I, Packer R, Ng HK, Caspi S, Popović M, Faganel Kotnik B, Wood MD, Baird L, Davare MA, Solomon DA, Olsen TK, Brandal P, Farrell M, Cryan JB, Capra M, Karremann M, Schittenhelm J, Schuhmann MU, Ebinger M, Dinjens WNM, Kerl K, Hettmer S, Pietsch T, Andreiuolo F, Driever PH, Korshunov A, Hiddingh L, Worst BC, Sturm D, Zuckermann M, Witt O, Bloom T, Mitchell C, Miele E, Colafati GS, Diomedi-Camassei F, Bailey S, Moore AS, Hassall TEG, Lowis SP, Tsoli M, Cowley MJ, Ziegler DS, Karajannis MA, Aquilina K, Hargrave DR, Carceller F, Marshall LV, von Deimling A, Kramm CM, Pfister SM, Sahm F, Baker SJ, Mastronuzzi A, Carai A, Vinci M, Capper D, Popov S, Ellison DW, Jacques TS, Jones DTW, Jones C. Infant High-Grade Gliomas Comprise Multiple Subgroups Characterized by Novel Targetable Gene Fusions and Favorable Outcomes. Cancer Discov 2020; 10:942-963. [PMID: 32238360 PMCID: PMC8313225 DOI: 10.1158/2159-8290.cd-19-1030] [Show More Authors] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 03/03/2020] [Accepted: 03/20/2020] [Indexed: 11/16/2022]
Abstract
Infant high-grade gliomas appear clinically distinct from their counterparts in older children, indicating that histopathologic grading may not accurately reflect the biology of these tumors. We have collected 241 cases under 4 years of age, and carried out histologic review, methylation profiling, and custom panel, genome, or exome sequencing. After excluding tumors representing other established entities or subgroups, we identified 130 cases to be part of an "intrinsic" spectrum of disease specific to the infant population. These included those with targetable MAPK alterations, and a large proportion of remaining cases harboring gene fusions targeting ALK (n = 31), NTRK1/2/3 (n = 21), ROS1 (n = 9), and MET (n = 4) as their driving alterations, with evidence of efficacy of targeted agents in the clinic. These data strongly support the concept that infant gliomas require a change in diagnostic practice and management. SIGNIFICANCE: Infant high-grade gliomas in the cerebral hemispheres comprise novel subgroups, with a prevalence of ALK, NTRK1/2/3, ROS1, or MET gene fusions. Kinase fusion-positive tumors have better outcome and respond to targeted therapy clinically. Other subgroups have poor outcome, with fusion-negative cases possibly representing an epigenetically driven pluripotent stem cell phenotype.See related commentary by Szulzewsky and Cimino, p. 904.This article is highlighted in the In This Issue feature, p. 890.
Collapse
Affiliation(s)
- Matthew Clarke
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| | - Alan Mackay
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| | - Britta Ismer
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Jessica C Pickles
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Ruth G Tatevossian
- Department of Neuropathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Scott Newman
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Tejus A Bale
- Department of Neuropathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Iris Stoler
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neuropathology, Berlin, Germany
| | - Elisa Izquierdo
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| | - Sara Temelso
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| | - Diana M Carvalho
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| | - Valeria Molinari
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| | - Anna Burford
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| | - Louise Howell
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| | - Alex Virasami
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Amy R Fairchild
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Aimee Avery
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Jane Chalker
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Mark Kristiansen
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Kelly Haupfear
- Department of Neuropathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - James D Dalton
- Department of Neuropathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Wilda Orisme
- Department of Neuropathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ji Wen
- Department of Neuropathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Michael Hubank
- Molecular Diagnostics, Royal Marsden Hospital NHS Trust, Sutton, United Kingdom
| | - Kathreena M Kurian
- Brain Tumour Research Centre, University of Bristol, Bristol, United Kingdom
| | - Catherine Rowe
- Brain Tumour Research Centre, University of Bristol, Bristol, United Kingdom
| | - Mellissa Maybury
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Australia
- Oncology Service, Queensland Children's Hospital, Brisbane, Australia
- Child Health Research Centre, The University of Queensland, South Brisbane, Australia
| | - Stephen Crosier
- Newcastle Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Jeffrey Knipstein
- Division of Pediatric Hematology/Oncology/BMT, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ulrich Schüller
- Department of Neuropathology, University Hospital Hamburg-Eppendorf, and Research Institute Children's Cancer Center, Hamburg, Germany
- Pediatric Hematology and Oncology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Uwe Kordes
- Pediatric Hematology and Oncology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - David E Kram
- Section of Pediatric Hematology-Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Matija Snuderl
- Department of Neuropathology, NYU Langone Health, New York, New York
| | - Leslie Bridges
- Department of Neuropathology, St George's Hospital NHS Trust, London, United Kingdom
| | - Andrew J Martin
- Department of Neurosurgery, St George's Hospital NHS Trust, London, United Kingdom
| | - Lawrence J Doey
- Department of Clinical Neuropathology, Kings College Hospital NHS Trust, London, United Kingdom
| | - Safa Al-Sarraj
- Department of Clinical Neuropathology, Kings College Hospital NHS Trust, London, United Kingdom
| | - Christopher Chandler
- Department of Neurosurgery, Kings College Hospital NHS Trust, London, United Kingdom
| | - Bassel Zebian
- Department of Neurosurgery, Kings College Hospital NHS Trust, London, United Kingdom
| | - Claire Cairns
- Department of Neurosurgery, Kings College Hospital NHS Trust, London, United Kingdom
| | - Rachael Natrajan
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Jessica K R Boult
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Simon P Robinson
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Martin Sill
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ira J Dunkel
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Stephen W Gilheeney
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Marc K Rosenblum
- Department of Neuropathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Debbie Hughes
- Molecular Diagnostics, Royal Marsden Hospital NHS Trust, Sutton, United Kingdom
| | - Paula Z Proszek
- Molecular Diagnostics, Royal Marsden Hospital NHS Trust, Sutton, United Kingdom
| | - Tobey J Macdonald
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Matthias Preusser
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Christine Haberler
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Irene Slavc
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Roger Packer
- Center for Neuroscience and Behavioural Medicine, Children's National Medical Center, Washington, DC
| | - Ho-Keung Ng
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, China
| | - Shani Caspi
- Cancer Research Center, Sheba Medical Center, Tel Aviv, Israel
| | - Mara Popović
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Barbara Faganel Kotnik
- Department of Hematology and Oncology, University Children's Hospital, Ljubljana, Slovenia
| | - Matthew D Wood
- Department of Pathology, Oregon Health & Science University, Portland, Oregon
| | - Lissa Baird
- Department of Neurosurgery, Oregon Health & Science University, Portland, Oregon
| | - Monika Ashok Davare
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon
| | - David A Solomon
- Department of Pathology, University of California, San Francisco, California
- Clinical Cancer Genomics Laboratory, University of California, San Francisco, California
| | - Thale Kristin Olsen
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Petter Brandal
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Michael Farrell
- Department of Histopathology, Beaumont Hospital, Dublin, Ireland
| | - Jane B Cryan
- Department of Histopathology, Beaumont Hospital, Dublin, Ireland
| | - Michael Capra
- Paediatric Oncology, Our Lady's Children's Hospital, Dublin, Ireland
| | - Michael Karremann
- Department of Pediatrics, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jens Schittenhelm
- Institute of Pathology and Neuropathology, University Hospital Tübingen, Germany
| | | | - Martin Ebinger
- Department of Pediatric Hematology and Oncology, University Hospital Tübingen, Germany
| | - Winand N M Dinjens
- Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Kornelius Kerl
- Department of Pediatric Hematology and Oncology, University Hospital Muenster, Germany
| | - Simone Hettmer
- Department of Pediatric Hematology and Oncology, University Hospital Freiburg, Germany
| | - Torsten Pietsch
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn Medical Center, Bonn, Germany
| | - Felipe Andreiuolo
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn Medical Center, Bonn, Germany
| | - Pablo Hernáiz Driever
- Department of Paediatric Haematology/Oncology Charité Universitätsmedizin, Berlin, Germany
| | - Andrey Korshunov
- Department of Neuropathology, University Hospital Heidelberg, Germany
| | - Lotte Hiddingh
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Barbara C Worst
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| | - Dominik Sturm
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| | - Marc Zuckermann
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Olaf Witt
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| | - Tabitha Bloom
- BRAIN UK, University of Southampton, Southampton, United Kingdom
| | - Clare Mitchell
- BRAIN UK, University of Southampton, Southampton, United Kingdom
| | - Evelina Miele
- Department of Onco-haematology, Cell and Gene Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Giovanna Stefania Colafati
- Oncological Neuroradiology Unit, Department of Diagnostic Imaging, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | | | - Simon Bailey
- Newcastle Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Andrew S Moore
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Australia
- Oncology Service, Queensland Children's Hospital, Brisbane, Australia
- Child Health Research Centre, The University of Queensland, South Brisbane, Australia
| | - Timothy E G Hassall
- Oncology Service, Queensland Children's Hospital, Brisbane, Australia
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Stephen P Lowis
- Brain Tumour Research Centre, University of Bristol, Bristol, United Kingdom
| | - Maria Tsoli
- Children's Cancer Institute, University of New South Wales, Sydney, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, Australia
| | - Mark J Cowley
- Children's Cancer Institute, University of New South Wales, Sydney, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, Australia
| | - David S Ziegler
- Children's Cancer Institute, University of New South Wales, Sydney, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, Australia
| | - Matthias A Karajannis
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Kristian Aquilina
- Department of Neurosurgery, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Darren R Hargrave
- Department of Paediatric Oncology, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Fernando Carceller
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
- Children & Young People's Unit, Royal Marsden Hospital NHS Trust, Sutton, United Kingdom
| | - Lynley V Marshall
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
- Children & Young People's Unit, Royal Marsden Hospital NHS Trust, Sutton, United Kingdom
| | - Andreas von Deimling
- Department of Neuropathology, University Hospital Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christof M Kramm
- Division of Pediatric Hematology and Oncology, University Medical Centre Göttingen, Germany
| | - Stefan M Pfister
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Sahm
- Department of Paediatric Haematology/Oncology Charité Universitätsmedizin, Berlin, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Suzanne J Baker
- Department of Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Angela Mastronuzzi
- Neuro-oncology Unit, Department of Onco-haematology, Cell and Gene Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Andrea Carai
- Oncological Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Maria Vinci
- Department of Onco-haematology, Cell and Gene Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - David Capper
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neuropathology, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sergey Popov
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
- Department of Pathology, University of Wales Hospital NHS Trust, Cardiff, United Kingdom
| | - David W Ellison
- Department of Neuropathology, St. Jude Children's Research Hospital, Memphis, Tennessee.
| | - Thomas S Jacques
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom.
| | - David T W Jones
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Chris Jones
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom.
| |
Collapse
|
206
|
Liao D, Zhong L, Yin J, Zeng C, Wang X, Huang X, Chen J, Zhang H, Zhang R, Guan XY, Shuai X, Sui J, Gao S, Deng W, Zeng YX, Shen JN, Chen J, Kang T. Chromosomal translocation-derived aberrant Rab22a drives metastasis of osteosarcoma. Nat Cell Biol 2020; 22:868-881. [PMID: 32483387 DOI: 10.1038/s41556-020-0522-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/16/2020] [Indexed: 01/04/2023]
Abstract
Osteosarcoma is a type of aggressive malignant bone tumour that frequently metastasizes to lungs, resulting in poor prognosis. However, the molecular mechanisms of lung metastasis of osteosarcoma remain poorly understood. Here we identify exon-intron fusion genes in osteosarcoma cell lines and tissues. These fusion genes are derived from chromosomal translocations that juxtapose the coding region for amino acids 1-38 of Rab22a (Rab22a1-38) with multiple inverted introns and untranslated regions of chromosome 20. The resulting translation products, designated Rab22a-NeoFs, acquire the ability to drive lung metastasis of osteosarcoma. The Rab22a1-38 moiety governs the function of Rab22a-NeoFs by binding to SmgGDS-607, a GTP-GDP exchange factor of RhoA. This association facilitates the release of GTP-bound RhoA from SmgGDS-607, which induces increased activity of RhoA and promotes metastasis. Disrupting the interaction between Rab22a-NeoF1 and SmgGDS-607 with a synthetic peptide prevents lung metastasis in an orthotopic model of osteosarcoma. Our findings may provide a promising strategy for a subset of osteosarcoma patients with lung metastases.
Collapse
Affiliation(s)
- Dan Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Junqiang Yin
- Department of Musculoskeletal Oncology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Cuiling Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xin Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | | | - Jinna Chen
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Hong Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ruhua Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xin-Yuan Guan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Xintao Shuai
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Jianhua Sui
- National Institute of Biological Sciences, Beijing, China
| | - Song Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wuguo Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yi-Xin Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jing-Nan Shen
- Department of Musculoskeletal Oncology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Jian Chen
- Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, China.
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
207
|
Tan AC, Ashley DM, López GY, Malinzak M, Friedman HS, Khasraw M. Management of glioblastoma: State of the art and future directions. CA Cancer J Clin 2020; 70:299-312. [PMID: 32478924 DOI: 10.3322/caac.21613] [Citation(s) in RCA: 1170] [Impact Index Per Article: 234.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/05/2020] [Accepted: 04/17/2020] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma is the most common malignant primary brain tumor. Overall, the prognosis for patients with this disease is poor, with a median survival of <2 years. There is a slight predominance in males, and incidence increases with age. The standard approach to therapy in the newly diagnosed setting includes surgery followed by concurrent radiotherapy with temozolomide and further adjuvant temozolomide. Tumor-treating fields, delivering low-intensity alternating electric fields, can also be given concurrently with adjuvant temozolomide. At recurrence, there is no standard of care; however, surgery, radiotherapy, and systemic therapy with chemotherapy or bevacizumab are all potential options, depending on the patient's circumstances. Supportive and palliative care remain important considerations throughout the disease course in the multimodality approach to management. The recently revised classification of glioblastoma based on molecular profiling, notably isocitrate dehydrogenase (IDH) mutation status, is a result of enhanced understanding of the underlying pathogenesis of disease. There is a clear need for better therapeutic options, and there have been substantial efforts exploring immunotherapy and precision oncology approaches. In contrast to other solid tumors, however, biological factors, such as the blood-brain barrier and the unique tumor and immune microenvironment, represent significant challenges in the development of novel therapies. Innovative clinical trial designs with biomarker-enrichment strategies are needed to ultimately improve the outcome of patients with glioblastoma.
Collapse
Affiliation(s)
- Aaron C Tan
- Division of Medical Oncology, National Cancer Center Singapore, Singapore
| | - David M Ashley
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina, USA
| | - Giselle Y López
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina, USA
- Department of Pathology, Duke University, Durham, North Carolina, USA
| | - Michael Malinzak
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina, USA
- Department of Radiology, Duke University, Durham, North Carolina, USA
| | - Henry S Friedman
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina, USA
| | - Mustafa Khasraw
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina, USA
| |
Collapse
|
208
|
Giotta Lucifero A, Luzzi S, Brambilla I, Schena L, Mosconi M, Foiadelli T, Savasta S. Potential roads for reaching the summit: an overview on target therapies for high-grade gliomas. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:61-78. [PMID: 32608376 PMCID: PMC7975828 DOI: 10.23750/abm.v91i7-s.9956] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022]
Abstract
UNLABELLED The tailored targeting of specific oncogenes represents a new frontier in the treatment of high-grade glioma in the pursuit of innovative and personalized approaches. The present study consists in a wide-ranging overview of the target therapies and related translational challenges in neuro-oncology. METHODS A review of the literature on PubMed/MEDLINE on recent advances concerning the target therapies for treatment of central nervous system malignancies was carried out. In the Medical Subject Headings, the terms "Target Therapy", "Target drug" and "Tailored Therapy" were combined with the terms "High-grade gliomas", "Malignant brain tumor" and "Glioblastoma". Articles published in the last five years were further sorted, based on the best match and relevance. The ClinicalTrials.gov website was used as a source of the main trials, where the search terms were "Central Nervous System Tumor", "Malignant Brain Tumor", "Brain Cancer", "Brain Neoplasms" and "High-grade gliomas". RESULTS A total of 137 relevant articles and 79 trials were selected. Target therapies entailed inhibitors of tyrosine kinases, PI3K/AKT/mTOR pathway, farnesyl transferase enzymes, p53 and pRB proteins, isocitrate dehydrogenases, histone deacetylases, integrins and proteasome complexes. The clinical trials mostly involved combined approaches. They were phase I, II, I/II and III in 33%, 42%, 16%, and 9% of the cases, respectively. CONCLUSION Tyrosine kinase and angiogenesis inhibitors, in combination with standard of care, have shown most evidence of the effectiveness in glioblastoma. Resistance remains an issue. A deeper understanding of the molecular pathways involved in gliomagenesis is the key aspect on which the translational research is focusing, in order to optimize the target therapies of newly diagnosed and recurrent brain gliomas.
Collapse
Affiliation(s)
- Alice Giotta Lucifero
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.
| | - Sabino Luzzi
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy; Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Ilaria Brambilla
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy.
| | - Lucia Schena
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy.
| | - Mario Mosconi
- Orthopaedic and Traumatology Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.
| | - Thomas Foiadelli
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy.
| | - Salvatore Savasta
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy.
| |
Collapse
|
209
|
Altunel E, Roghani RS, Chen KY, Kim SY, McCall S, Ware KE, Shen X, Somarelli JA, Hsu DS. Development of a precision medicine pipeline to identify personalized treatments for colorectal cancer. BMC Cancer 2020; 20:592. [PMID: 32580713 PMCID: PMC7313200 DOI: 10.1186/s12885-020-07090-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/18/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Metastatic colorectal cancer (CRC) continues to be a major health problem, and current treatments are primarily for disease control and palliation of symptoms. In this study, we developed a precision medicine strategy to discover novel therapeutics for patients with CRC. METHODS Six matched low-passage cell lines and patient-derived xenografts (PDX) were established from CRC patients undergoing resection of their cancer. High-throughput drug screens using a 119 FDA-approved oncology drug library were performed on these cell lines, which were then validated in vivo in matched PDXs. RNA-Seq analysis was then performed to identify predictors of response. RESULTS Our study revealed marked differences in response to standard-of-care agents across patients and pinpointed druggable pathways to treat CRC. Among these pathways co-targeting of fibroblast growth factor receptor (FGFR), SRC, platelet derived growth factor receptor (PDGFR), or vascular endothelial growth factor receptor (VEGFR) signaling was found to be an effective strategy. Molecular analyses revealed potential predictors of response to these druggable pathways. CONCLUSIONS Our data suggests that the use of matched low-passage cell lines and PDXs is a promising strategy to identify new therapies and pathways to treat metastatic CRC.
Collapse
Affiliation(s)
- Erdem Altunel
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, 3008 Snyderman Building, 905 S. LaSalle St., Durham, NC, 27710, USA
- Center for Genomics and Computational Biology, Duke University, Durham, North Carolina, USA
| | - Roham S Roghani
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, 3008 Snyderman Building, 905 S. LaSalle St., Durham, NC, 27710, USA
- Center for Genomics and Computational Biology, Duke University, Durham, North Carolina, USA
| | - Kai-Yuan Chen
- Center for Genomics and Computational Biology, Duke University, Durham, North Carolina, USA
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - So Young Kim
- Duke Functional Genomics Core, Duke University, Durham, North Carolina, USA
| | - Shannon McCall
- Department of Pathology, Duke University, Durham, North Carolina, USA
| | - Kathryn E Ware
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, 3008 Snyderman Building, 905 S. LaSalle St., Durham, NC, 27710, USA
| | - Xiling Shen
- Center for Genomics and Computational Biology, Duke University, Durham, North Carolina, USA
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Jason A Somarelli
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, 3008 Snyderman Building, 905 S. LaSalle St., Durham, NC, 27710, USA
| | - David S Hsu
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, 3008 Snyderman Building, 905 S. LaSalle St., Durham, NC, 27710, USA.
- Center for Genomics and Computational Biology, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
210
|
Richardson TE, Tang K, Vasudevaraja V, Serrano J, William CM, Mirchia K, Pierson CR, Leonard JR, AbdelBaki MS, Schieffer KM, Cottrell CE, Tovar-Spinoza Z, Comito MA, Boué DR, Jour G, Snuderl M. GOPC-ROS1 Fusion Due to Microdeletion at 6q22 Is an Oncogenic Driver in a Subset of Pediatric Gliomas and Glioneuronal Tumors. J Neuropathol Exp Neurol 2020; 78:1089-1099. [PMID: 31626289 DOI: 10.1093/jnen/nlz093] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
ROS1 is a transmembrane receptor tyrosine kinase proto-oncogene that has been shown to have rearrangements with several genes in glioblastoma and other neoplasms, including intrachromosomal fusion with GOPC due to microdeletions at 6q22.1. ROS1 fusion events are important findings in these tumors, as they are potentially targetable alterations with newer tyrosine kinase inhibitors; however, whether these tumors represent a distinct entity remains unknown. In this report, we identify 3 cases of unusual pediatric glioma with GOPC-ROS1 fusion. We reviewed the clinical history, radiologic and histologic features, performed methylation analysis, whole genome copy number profiling, and next generation sequencing analysis for the detection of oncogenic mutation and fusion events to fully characterize the genetic and epigenetic alterations present in these tumors. Two of 3 tumors showed pilocytic features with focal expression of synaptophysin staining and variable high-grade histologic features; the third tumor aligned best with glioblastoma and showed no evidence of neuronal differentiation. Copy number profiling revealed chromosome 6q22 microdeletions corresponding to the GOPC-ROS1 fusion in all 3 cases and methylation profiling showed that the tumors did not cluster together as a single entity or within known methylation classes by t-Distributed Stochastic Neighbor Embedding.
Collapse
Affiliation(s)
- Timothy E Richardson
- Department of Pathology, State University of New York, Upstate Medical University, Syracuse, New York
| | | | | | - Jonathan Serrano
- Department of Pathology & Laboratory Medicine, Nationwide Children's Hospital and The Ohio State University
| | | | - Kanish Mirchia
- Department of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children's Hospital and The Ohio State University
| | | | | | - Mohamed S AbdelBaki
- Department of Pediatrics (MAC), State University of New York, Upstate Medical University, Syracuse, New York
| | - Kathleen M Schieffer
- Waters Center for Children's Cancer and Blood Disorders, State University of New York, Upstate Cancer Center, Syracuse, New York
| | - Catherine E Cottrell
- Department of Pathology, State University of New York, Upstate Medical University, Syracuse, New York
| | | | - Melanie A Comito
- Department of Pathology, New York University Langone Health, New York, New York
| | - Daniel R Boué
- Department of Pathology & Laboratory Medicine, Nationwide Children's Hospital and The Ohio State University
| | - George Jour
- Department of Neurological Surgery, Nationwide Children's Hospital
| | - Matija Snuderl
- Department of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children's Hospital and The Ohio State University
| |
Collapse
|
211
|
Pisapia DJ, Ohara K, Bareja R, Wilkes DC, Hissong E, Croyle JA, Kim JH, Saab J, MacDonald TY, Beg S, O’Reilly C, Kudman S, Rubin MA, Elemento O, Sboner A, Greenfield J, Mosquera JM. Fusions involving BCOR and CREBBP are rare events in infiltrating glioma. Acta Neuropathol Commun 2020; 8:80. [PMID: 32493417 PMCID: PMC7271411 DOI: 10.1186/s40478-020-00951-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/19/2020] [Indexed: 12/31/2022] Open
Abstract
BCOR has been recognized as a recurrently altered gene in a subset of pediatric tumors of the central nervous system (CNS). Here, we describe a novel BCOR-CREBBP fusion event in a case of pediatric infiltrating astrocytoma and further probe the frequency of related fusion events in CNS tumors. We analyzed biopsy samples taken from a 15-year-old male with an aggressive, unresectable and multifocal infiltrating astrocytoma. We performed RNA sequencing (RNA-seq) and targeted DNA sequencing. In the index case, the fused BCOR-CREBBP transcript comprises exons 1-4 of BCOR and exon 31 of CREBBP. The fused gene thus retains the Bcl6 interaction domain of BCOR while eliminating the domain that has been shown to interact with the polycomb group protein PCGF1. The fusion event was validated by FISH and reverse transcriptase PCR. An additional set of 177 pediatric and adult primary CNS tumors were assessed via FISH for BCOR break apart events, all of which were negative. An additional 509 adult lower grade infiltrating gliomas from the publicly available TCGA dataset were screened for BCOR or CREBBP fusions. In this set, one case was found to harbor a CREBBP-GOLGA6L2 fusion and one case a CREBBP-SRRM2 fusion. In a third patient, both BCOR-L3MBTL2 and EP300-BCOR fusions were seen. Of particular interest to this study, EP300 is a paralog of CREBBP and the breakpoint seen involves a similar region of the gene to that of the index case; however, the resultant transcript is predicted to be completely distinct. While this gene fusion may play an oncogenic role through the loss of tumor suppressor functions of BCOR and CREBBP, further screening over larger cohorts and functional validation is needed to determine the degree to which this or similar fusions are recurrent and to elucidate their oncogenic potential.
Collapse
|
212
|
Abstract
Chimeric RNAs are hybrid transcripts containing exons from two separate genes. Chimeric RNAs are traditionally considered to be transcribed from fusion genes caused by chromosomal rearrangement. These canonical chimeric RNAs are well characterized to be expressed in a cancer-unique pattern and/or act as oncogene products. However, benefited by the development of advanced deep sequencing technologies, novel types of non-canonical chimeric RNAs have been discovered to be generated from intergenic splicing without genomic aberrations. They can be formed through trans-splicing or cis-splicing between adjacent genes (cis-SAGe) mechanisms. Non-canonical chimeric RNAs are widely detected in normal physiology, although several have been shown to have a cancer-specific expression pattern. Further studies have indicated that some of them play fundamental roles in controlling cell growth and motility, and may have functions independent of the parental genes. These discoveries are unveiling a new layer of the functional transcriptome and are also raising the possibility of utilizing non-canonical chimeric RNAs as cancer diagnostic markers and therapeutic targets. In this chapter, we will overview different categories of chimeric RNAs and their expression in various types of cancerous and normal samples. Acknowledging that chimeric RNAs are not unique to cancer, we will discuss both bioinformatic and biological methods to identify credible cancer-specific chimeric RNAs. Furthermore, we will describe downstream methods to explore their molecular processing mechanisms and potential functions. A better understanding of the biogenesis mechanisms and functional products of cancer-specific chimeric RNAs will pave ways for the development of novel cancer biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Xinrui Shi
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Sandeep Singh
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Emily Lin
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Hui Li
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, United States; Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, United States.
| |
Collapse
|
213
|
Wang L, Yekula A, Muralidharan K, Small JL, Rosh ZS, Kang KM, Carter BS, Balaj L. Novel Gene Fusions in Glioblastoma Tumor Tissue and Matched Patient Plasma. Cancers (Basel) 2020; 12:cancers12051219. [PMID: 32414213 PMCID: PMC7281415 DOI: 10.3390/cancers12051219] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/27/2020] [Accepted: 05/07/2020] [Indexed: 11/30/2022] Open
Abstract
Sequencing studies have provided novel insights into the heterogeneous molecular landscape of glioblastoma (GBM), unveiling a subset of patients with gene fusions. Tissue biopsy is highly invasive, limited by sampling frequency and incompletely representative of intra-tumor heterogeneity. Extracellular vesicle-based liquid biopsy provides a minimally invasive alternative to diagnose and monitor tumor-specific molecular aberrations in patient biofluids. Here, we used targeted RNA sequencing to screen GBM tissue and the matched plasma of patients (n = 9) for RNA fusion transcripts. We identified two novel fusion transcripts in GBM tissue and five novel fusions in the matched plasma of GBM patients. The fusion transcripts FGFR3-TACC3 and VTI1A-TCF7L2 were detected in both tissue and matched plasma. A longitudinal follow-up of a GBM patient with a FGFR3-TACC3 positive glioma revealed the potential of monitoring RNA fusions in plasma. In summary, we report a sensitive RNA-seq-based liquid biopsy strategy to detect RNA level fusion status in the plasma of GBM patients.
Collapse
Affiliation(s)
- Lan Wang
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; (L.W.); (A.Y.); (K.M.); (J.L.S.); (Z.S.R.); (K.M.K.)
| | - Anudeep Yekula
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; (L.W.); (A.Y.); (K.M.); (J.L.S.); (Z.S.R.); (K.M.K.)
| | - Koushik Muralidharan
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; (L.W.); (A.Y.); (K.M.); (J.L.S.); (Z.S.R.); (K.M.K.)
| | - Julia L. Small
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; (L.W.); (A.Y.); (K.M.); (J.L.S.); (Z.S.R.); (K.M.K.)
| | - Zachary S. Rosh
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; (L.W.); (A.Y.); (K.M.); (J.L.S.); (Z.S.R.); (K.M.K.)
| | - Keiko M. Kang
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; (L.W.); (A.Y.); (K.M.); (J.L.S.); (Z.S.R.); (K.M.K.)
- School of Medicine, University of California San Diego, San Diego, CA 92092, USA
| | - Bob S. Carter
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; (L.W.); (A.Y.); (K.M.); (J.L.S.); (Z.S.R.); (K.M.K.)
- Correspondence: (B.S.C.); (L.B.)
| | - Leonora Balaj
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; (L.W.); (A.Y.); (K.M.); (J.L.S.); (Z.S.R.); (K.M.K.)
- Correspondence: (B.S.C.); (L.B.)
| |
Collapse
|
214
|
de Blank P, Fouladi M, Huse JT. Molecular markers and targeted therapy in pediatric low-grade glioma. J Neurooncol 2020; 150:5-15. [PMID: 32399739 DOI: 10.1007/s11060-020-03529-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Recently discovered molecular alterations in pediatric low-grade glioma have helped to refine the classification of these tumors and offered novel targets for therapy. Genetic aberrations may combine with histopathology to offer new insights into glioma classification, gliomagenesis and prognosis. Therapies targeting common genetic aberrations in the MAPK pathway offer a novel mechanism of tumor control that is currently under study. METHODS We have reviewed common molecular alterations found in pediatric low-grade glioma as well as recent clinical trials of MEK and BRAF inhibitors. RESULTS In this topic review, we examine the current understanding of molecular alterations in pediatric low-grade glioma, as well as their role in diagnosis, prognosis and therapy. We summarize current data on the efficacy of targeted therapies in pediatric low-grade gliomas, as well as the many unanswered questions that these new discoveries and therapies raise. CONCLUSIONS The identification of driver alterations in pediatric low-grade glioma and the development of targeted therapies have opened new therapeutic avenues for patients with low-grade gliomas.
Collapse
Affiliation(s)
- Peter de Blank
- Department of Pediatrics, University of Cincinnati College of Medicine and the Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
| | - Maryam Fouladi
- Department of Pediatrics, University of Cincinnati College of Medicine and the Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Jason T Huse
- Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
215
|
Xie N, Tian C, Wu H, Yang X, Liu L, Li J, Xiao H, Gao J, Lu J, Hu X, Cao M, Shui Z, Tang Y, Wang X, Yang J, Hu ZY, Ouyang Q. FGFR aberrations increase the risk of brain metastases and predict poor prognosis in metastatic breast cancer patients. Ther Adv Med Oncol 2020; 12:1758835920915305. [PMID: 32499836 PMCID: PMC7243401 DOI: 10.1177/1758835920915305] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/05/2020] [Indexed: 02/06/2023] Open
Abstract
Background: The survival status of patients with breast cancer and brain metastasis (BCBM) receiving current treatments is poor. Method: We designed a real-world study to investigate using patients’ clinical and genetic aberrations to forecast the prognoses of BCBM patients. We recruited 146 BCBM patients and analyzed their clinical features to evaluate the overall survival (OS). For genetic testing, 30 BCBM and 165 non-brain-metastatic (BM) metastatic breast cancer (MBC) patients from Hunan Cancer Hospital, and 86 BCBM and 1416 non-BM MBC patients from the Geneplus database who received circulating tumor DNA testing, were compared and analyzed. Results: Ki67 >14% and >3 metastatic brain tumors were significant risk factors associated with poor OS, while chemotherapy and brain radiotherapy were beneficial factors for better OS. Compared with non-BM MBC patients, BCBM patients had more fibroblast growth factor receptor (FGFR) aberrations. The combination of FGFR, TP53 and FLT1 aberrations plus immunohistochemistry HER2-positive were associated with an increased risk of brain metastasis (AUC = 77.13%). FGFR aberration alone was not only a predictive factor (AUC = 67.90%), but also a significant risk factor for poor progression-free survival (Logrank p = 0.029). FGFR1 aberration was more frequent than other FGFR family genes in BCBM patients, and FGFR1 aberration was significantly higher in BCBM patients than non-BM MBC patients. Most FGFR1-amplified MBC patients progressed within 3 months of the late-line (>2 lines) treatment. Conclusion: A group of genetic events, including FGFR, TP53 and FLT1 genetic aberrations, and HER2-positivity, forecasted the occurrence of BM in breast cancers. FGFR genetic aberration alone predicted poor prognosis.
Collapse
Affiliation(s)
- Ning Xie
- Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, China
| | - Can Tian
- Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, China
| | - Hui Wu
- Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, China
| | - Xiaohong Yang
- Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, China
| | - Liping Liu
- Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, China
| | - Jing Li
- Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, China
| | - Huawu Xiao
- Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, China
| | - Jianxiang Gao
- Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, China
| | - Jun Lu
- Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, China
| | - Xuming Hu
- Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, China
| | - Min Cao
- Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, China
| | - Zhengrong Shui
- Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, China
| | - Yu Tang
- Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, China
| | - Xiao Wang
- ICF, 3 Corporate Square NE., Atlanta, GA, USA
| | - Jianbo Yang
- Department of Otolaryngology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Zhe-Yu Hu
- Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya Medical School, Central South University, No. 283, Tongzipo Road, Changsha, 410013, P.R. China
| | - Quchang Ouyang
- Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya Medical School, Central South University, No. 283, Tongzipo Road, Changsha, 410013, P.R. China
| |
Collapse
|
216
|
Lee S, Hu Y, Loo SK, Tan Y, Bhargava R, Lewis MT, Wang XS. Landscape analysis of adjacent gene rearrangements reveals BCL2L14-ETV6 gene fusions in more aggressive triple-negative breast cancer. Proc Natl Acad Sci U S A 2020; 117:9912-9921. [PMID: 32321829 PMCID: PMC7211963 DOI: 10.1073/pnas.1921333117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Triple-negative breast cancer (TNBC) accounts for 10 to 20% of breast cancer, with chemotherapy as its mainstay of treatment due to lack of well-defined targets, and recent genomic sequencing studies have revealed a paucity of TNBC-specific mutations. Recurrent gene fusions comprise a class of viable genetic targets in solid tumors; however, their role in breast cancer remains underappreciated due to the complexity of genomic rearrangements in this cancer. Our interrogation of the whole-genome sequencing data for 215 breast tumors catalogued 99 recurrent gene fusions, 57% of which are cryptic adjacent gene rearrangements (AGRs). The most frequent AGRs, BCL2L14-ETV6, TTC6-MIPOL1, ESR1-CCDC170, and AKAP8-BRD4, were preferentially found in the more aggressive forms of breast cancers that lack well-defined genetic targets. Among these, BCL2L14-ETV6 was exclusively detected in TNBC, and interrogation of four independent patient cohorts detected BCL2L14-ETV6 in 4.4 to 12.2% of TNBC tumors. Interestingly, these fusion-positive tumors exhibit more aggressive histopathological features, such as gross necrosis and high tumor grade. Amid TNBC subtypes, BCL2L14-ETV6 is most frequently detected in the mesenchymal entity, accounting for ∼19% of these tumors. Ectopic expression of BCL2L14-ETV6 fusions induce distinct expression changes from wild-type ETV6 and enhance cell motility and invasiveness of TNBC and benign breast epithelial cells. Furthermore, BCL2L14-ETV6 fusions prime partial epithelial-mesenchymal transition and endow resistance to paclitaxel treatment. Together, these data reveal AGRs as a class of underexplored genetic aberrations that could be pathological in breast cancer, and identify BCL2L14-ETV6 as a recurrent gene fusion in more aggressive form of TNBC tumors.
Collapse
Affiliation(s)
- Sanghoon Lee
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232
- Women's Cancer Research Center, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15232
| | - Yiheng Hu
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232
- Women's Cancer Research Center, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15232
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15232
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Suet Kee Loo
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232
- Women's Cancer Research Center, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15232
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15232
| | - Ying Tan
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Rohit Bhargava
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15232
| | - Michael T Lewis
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
- Department of Radiology, Baylor College of Medicine, Houston, TX 77030
| | - Xiao-Song Wang
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232;
- Women's Cancer Research Center, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15232
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15232
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
217
|
Lima NC, Atkinson E, Bunney TD, Katan M, Huang PH. Targeting the Src Pathway Enhances the Efficacy of Selective FGFR Inhibitors in Urothelial Cancers with FGFR3 Alterations. Int J Mol Sci 2020; 21:E3214. [PMID: 32370101 PMCID: PMC7246793 DOI: 10.3390/ijms21093214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 01/08/2023] Open
Abstract
Selective FGFR inhibitors such as infigratinib (BGJ398) and erdafitinib (JNJ-42756493) have been evaluated in clinical trials for cancers with FGFR3 molecular alterations, particularly in urothelial carcinoma patients. However, a substantial proportion of these patients (up to 50%) display intrinsic resistance to these drugs and receive minimal clinical benefit. There is thus an unmet need for alternative therapeutic strategies to overcome primary resistance to selective FGFR inhibitors. In this study, we demonstrate that cells expressing cancer-associated activating FGFR3 mutants and the FGFR3-TACC3 fusion showed primary resistance to infigratinib in long-term colony formation assays in both NIH-3T3 and urothelial carcinoma models. We find that expression of these FGFR3 molecular alterations resulted in elevated constitutive Src activation compared to wildtype FGFR3 and that cells co-opted this pathway as a means to achieve intrinsic resistance to infigratinib. Targeting the Src pathway with low doses of the kinase inhibitor dasatinib synergistically sensitized multiple urothelial carcinoma lines harbouring endogenous FGFR3 alterations to infigratinib. Our data provide preclinical rationale that supports the use of dasatinib in combination with selective FGFR inhibitors as a means to overcome intrinsic drug resistance in the salvage therapy setting in urothelial cancer patients with FGFR3 molecular alterations.
Collapse
Affiliation(s)
- Nadia Carvalho Lima
- Division of Molecular Pathology, The Institute of Cancer Research, London SM2 5NG, UK; (N.C.L.); (E.A.)
| | - Eliza Atkinson
- Division of Molecular Pathology, The Institute of Cancer Research, London SM2 5NG, UK; (N.C.L.); (E.A.)
| | - Tom D. Bunney
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK; (T.D.B.); (M.K.)
| | - Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK; (T.D.B.); (M.K.)
| | - Paul H. Huang
- Division of Molecular Pathology, The Institute of Cancer Research, London SM2 5NG, UK; (N.C.L.); (E.A.)
| |
Collapse
|
218
|
Cho HJ, Zhao J, Jung SW, Ladewig E, Kong DS, Suh YL, Lee Y, Kim D, Ahn SH, Bordyuh M, Kang HJ, Sa JK, Seo YJ, Kim ST, Lim DH, Dho YS, Lee JI, Seol HJ, Choi JW, Park WY, Park CK, Rabadan R, Nam DH. Distinct genomic profile and specific targeted drug responses in adult cerebellar glioblastoma. Neuro Oncol 2020; 21:47-58. [PMID: 30085274 DOI: 10.1093/neuonc/noy123] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Despite extensive efforts on the genomic characterization of gliomas, very few studies have reported the genetic alterations of cerebellar glioblastoma (C-GBM), a rare and lethal disease. Here, we provide a systematic study of C-GBM to better understand its specific genomic features. Methods We collected a cohort of C-GBM patients and compared patient demographics and tumor pathologies with supratentorial glioblastoma (S-GBM). To uncover the molecular characteristics, we performed DNA and mRNA sequencing and DNA methylation arrays on 19, 6, and 4 C-GBM cases, respectively. Moreover, chemical drug screening was conducted to identify potential therapeutic options for C-GBMs. Results Despite differing anatomical origins of C-GBM and S-GBM, neither histological, cytological, nor patient demographics appeared significantly different between the 2 types. However, we observed striking differences in mutational patterns, including frequent alterations of ATRX, PDGFRA, NF1, and RAS and absence of EGFR alterations in C-GBM. These results show a distinct evolutionary path in C-GBM, suggesting specific therapeutic targeted options. Targeted-drug screening revealed that C-GBMs were more responsive to mitogen-activated protein kinase kinase (MEK) inhibitor and resistant to epidermal growth factor receptor inhibitors than S-GBMs. Also, differential expression analysis indicated that C-GBMs may have originated from oligodendrocyte progenitor cells, suggesting that different types of cells can undergo malignant transformation according to their location in brain. Master regulator analysis with differentially expressed genes between C-GBM and proneural S-GBM revealed NR4A1 as a potential therapeutic target. Conclusions Our results imply that unique gliomagenesis mechanisms occur in adult cerebellum and new treatment strategies are needed to provide greater therapeutic benefits for C-GBM patients. Key Points 1. Distinct genomic profiles of 19 adult cerebellar GBMs were characterized. 2. MEK inhibitor was highly sensitive to cerebellar GBM compared with supratentorial GBM. 3. Master regulator analysis revealed NR4A1 as a potential therapeutic target in cerebellar GBM.
Collapse
Affiliation(s)
- Hee Jin Cho
- Institute for Refractory Cancer Research, Seoul, Korea.,Research Institute for Future Medicine, Seoul, Korea
| | - Junfei Zhao
- Department of Systems Biology, Columbia University, New York, New York, USA.,Department of Biomedical Informatics, Columbia University, New York, New York, USA
| | - Sang Won Jung
- Institute for Refractory Cancer Research, Seoul, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
| | - Erik Ladewig
- Department of Systems Biology, Columbia University, New York, New York, USA.,Department of Biomedical Informatics, Columbia University, New York, New York, USA
| | - Doo-Sik Kong
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yeon-Lim Suh
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yeri Lee
- Institute for Refractory Cancer Research, Seoul, Korea.,Research Institute for Future Medicine, Seoul, Korea
| | - Donggeon Kim
- Institute for Refractory Cancer Research, Seoul, Korea.,Research Institute for Future Medicine, Seoul, Korea
| | - Sun Hee Ahn
- Institute for Refractory Cancer Research, Seoul, Korea
| | - Mykola Bordyuh
- Department of Systems Biology, Columbia University, New York, New York, USA.,Department of Biomedical Informatics, Columbia University, New York, New York, USA
| | - Hyun Ju Kang
- Institute for Refractory Cancer Research, Seoul, Korea.,Research Institute for Future Medicine, Seoul, Korea
| | - Jason K Sa
- Institute for Refractory Cancer Research, Seoul, Korea.,Research Institute for Future Medicine, Seoul, Korea
| | - Yun Jee Seo
- Institute for Refractory Cancer Research, Seoul, Korea
| | - Sung Tae Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Do Hoon Lim
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yun-Sik Dho
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jung-Il Lee
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ho Jun Seol
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jung Won Choi
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
| | - Chul-Kee Park
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Raul Rabadan
- Department of Systems Biology, Columbia University, New York, New York, USA.,Department of Biomedical Informatics, Columbia University, New York, New York, USA
| | - Do-Hyun Nam
- Institute for Refractory Cancer Research, Seoul, Korea.,Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
| |
Collapse
|
219
|
Lehmann BD, Abramson VG, Sanders ME, Mayer EL, Haddad TC, Nanda R, Van Poznak C, Storniolo AM, Nangia J, Gonzalez-Ericsson PI, Sanchez V, Johnson KN, Abramson RG, Chen SC, Shyr Y, Arteaga CL, Wolff AC, Pietenpol JA. TBCRC 032 IB/II Multicenter Study: Molecular Insights to AR Antagonist and PI3K Inhibitor Efficacy in Patients with AR + Metastatic Triple-Negative Breast Cancer. Clin Cancer Res 2020; 26:2111-2123. [PMID: 31822498 PMCID: PMC7196503 DOI: 10.1158/1078-0432.ccr-19-2170] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/23/2019] [Accepted: 12/04/2019] [Indexed: 02/01/2023]
Abstract
PURPOSE Preclinical data demonstrating androgen receptor (AR)-positive (AR+) triple-negative breast cancer (TNBC) cells are sensitive to AR antagonists, and PI3K inhibition catalyzed an investigator-initiated, multi-institutional phase Ib/II study TBCRC032. The trial investigated the safety and efficacy of the AR-antagonist enzalutamide alone or in combination with the PI3K inhibitor taselisib in patients with metastatic AR+ (≥10%) breast cancer. PATIENTS AND METHODS Phase Ib patients [estrogen receptor positive (ER+) or TNBC] with AR+ breast cancer received 160 mg enzalutamide in combination with taselisib to determine dose-limiting toxicities and the maximum tolerated dose (MTD). Phase II TNBC patients were randomized to receive either enzalutamide alone or in combination with 4 mg taselisib until disease progression. Primary endpoint was clinical benefit rate (CBR) at 16 weeks. RESULTS The combination was tolerated, and the MTD was not reached. The adverse events were hyperglycemia and skin rash. Overall, CBR for evaluable patients receiving the combination was 35.7%, and median progression-free survival (PFS) was 3.4 months. Luminal AR (LAR) TNBC subtype patients trended toward better response compared with non-LAR (75.0% vs. 12.5%, P = 0.06), and increased PFS (4.6 vs. 2.0 months, P = 0.082). Genomic analyses revealed subtype-specific treatment response, and novel FGFR2 fusions and AR splice variants. CONCLUSIONS The combination of enzalutamide and taselisib increased CBR in TNBC patients with AR+ tumors. Correlative analyses suggest AR protein expression alone is insufficient for identifying patients with AR-dependent tumors and knowledge of tumor LAR subtype and AR splice variants may identify patients more or less likely to benefit from AR antagonists.
Collapse
Affiliation(s)
- Brian D. Lehmann
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Vandana G. Abramson
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Melinda E. Sanders
- Department of Pathology, Microbiology and Immunology, Nashville, Tennessee, Vanderbilt University, USA
- Breast Cancer Research Program, Vanderbilt University Medical Center, Nashville TN, USA
| | | | | | - Rita Nanda
- Department of Medicine, University of Chicago, Chicago, IL
| | | | | | | | - Paula I. Gonzalez-Ericsson
- Department of Pathology, Microbiology and Immunology, Nashville, Tennessee, Vanderbilt University, USA
- Breast Cancer Research Program, Vanderbilt University Medical Center, Nashville TN, USA
| | - Violeta Sanchez
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Kimberly N. Johnson
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Richard G. Abramson
- Department of Radiology and Radiological Sciences, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA
| | - Sheau-Chiann Chen
- Center for Quantitative Sciences, Division of Cancer Biostatistics, Department of Biostatistics, Vanderbilt University, Nashville, Tennessee, USA
| | - Yu Shyr
- Center for Quantitative Sciences, Division of Cancer Biostatistics, Department of Biostatistics, Vanderbilt University, Nashville, Tennessee, USA
| | - Carlos L. Arteaga
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Antonio C. Wolff
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| | - Jennifer A. Pietenpol
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | | |
Collapse
|
220
|
Liu PCC, Koblish H, Wu L, Bowman K, Diamond S, DiMatteo D, Zhang Y, Hansbury M, Rupar M, Wen X, Collier P, Feldman P, Klabe R, Burke KA, Soloviev M, Gardiner C, He X, Volgina A, Covington M, Ruggeri B, Wynn R, Burn TC, Scherle P, Yeleswaram S, Yao W, Huber R, Hollis G. INCB054828 (pemigatinib), a potent and selective inhibitor of fibroblast growth factor receptors 1, 2, and 3, displays activity against genetically defined tumor models. PLoS One 2020; 15:e0231877. [PMID: 32315352 PMCID: PMC7313537 DOI: 10.1371/journal.pone.0231877] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 04/02/2020] [Indexed: 01/11/2023] Open
Abstract
Alterations in fibroblast growth factor receptor (FGFR) genes have been
identified as potential driver oncogenes. Pharmacological targeting of FGFRs may
therefore provide therapeutic benefit to selected cancer patients, and
proof-of-concept has been established in early clinical trials of FGFR
inhibitors. Here, we present the molecular structure and preclinical
characterization of INCB054828 (pemigatinib), a novel, selective inhibitor of
FGFR 1, 2, and 3, currently in phase 2 clinical trials. INCB054828
pharmacokinetics and pharmacodynamics were investigated using cell lines and
tumor models, and the antitumor effect of oral INCB054828 was investigated using
xenograft tumor models with genetic alterations in FGFR1, 2, or 3. Enzymatic
assays with recombinant human FGFR kinases showed potent inhibition of FGFR1, 2,
and 3 by INCB054828 (half maximal inhibitory concentration [IC50]
0.4, 0.5, and 1.0 nM, respectively) with weaker activity against FGFR4
(IC50 30 nM). INCB054828 selectively inhibited growth of tumor
cell lines with activation of FGFR signaling compared with cell lines lacking
FGFR aberrations. The preclinical pharmacokinetic profile suggests target
inhibition is achievable by INCB054828 in vivo with low oral doses. INCB054828
suppressed the growth of xenografted tumor models with FGFR1, 2, or 3
alterations as monotherapy, and the combination of INCB054828 with cisplatin
provided significant benefit over either single agent, with an acceptable
tolerability. The preclinical data presented for INCB054828, together with
preliminary clinical observations, support continued investigation in patients
with FGFR alterations, such as fusions and activating mutations.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Cell Line, Tumor
- Female
- Half-Life
- Humans
- Mice
- Mice, Inbred C57BL
- Mice, Nude
- Mice, SCID
- Morpholines/chemistry
- Morpholines/pharmacokinetics
- Morpholines/therapeutic use
- Neoplasms/drug therapy
- Neoplasms/pathology
- Protein Kinase Inhibitors/chemistry
- Protein Kinase Inhibitors/pharmacokinetics
- Protein Kinase Inhibitors/therapeutic use
- Pyrimidines/chemistry
- Pyrimidines/pharmacokinetics
- Pyrimidines/therapeutic use
- Pyrroles/chemistry
- Pyrroles/pharmacokinetics
- Pyrroles/therapeutic use
- Rats
- Rats, Nude
- Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 3/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Phillip C. C. Liu
- Discovery Biology, Incyte Research Institute, Wilmington, Delaware,
United States of America
| | - Holly Koblish
- Discovery Biology, Incyte Research Institute, Wilmington, Delaware,
United States of America
- * E-mail:
| | - Liangxing Wu
- Discovery Chemistry, Incyte Research Institute, Wilmington, Delaware,
United States of America
| | - Kevin Bowman
- Discovery Biology, Incyte Research Institute, Wilmington, Delaware,
United States of America
| | - Sharon Diamond
- Discovery Biology, Incyte Research Institute, Wilmington, Delaware,
United States of America
| | - Darlise DiMatteo
- Discovery Biology, Incyte Research Institute, Wilmington, Delaware,
United States of America
| | - Yue Zhang
- Discovery Biology, Incyte Research Institute, Wilmington, Delaware,
United States of America
| | - Michael Hansbury
- Discovery Biology, Incyte Research Institute, Wilmington, Delaware,
United States of America
| | - Mark Rupar
- Discovery Biology, Incyte Research Institute, Wilmington, Delaware,
United States of America
| | - Xiaoming Wen
- Discovery Biology, Incyte Research Institute, Wilmington, Delaware,
United States of America
| | - Paul Collier
- Discovery Biology, Incyte Research Institute, Wilmington, Delaware,
United States of America
| | - Patricia Feldman
- Discovery Biology, Incyte Research Institute, Wilmington, Delaware,
United States of America
| | - Ronald Klabe
- Discovery Biology, Incyte Research Institute, Wilmington, Delaware,
United States of America
| | - Krista A. Burke
- Discovery Biology, Incyte Research Institute, Wilmington, Delaware,
United States of America
| | - Maxim Soloviev
- Discovery Biology, Incyte Research Institute, Wilmington, Delaware,
United States of America
| | - Christine Gardiner
- Discovery Biology, Incyte Research Institute, Wilmington, Delaware,
United States of America
| | - Xin He
- Discovery Biology, Incyte Research Institute, Wilmington, Delaware,
United States of America
| | - Alla Volgina
- Discovery Biology, Incyte Research Institute, Wilmington, Delaware,
United States of America
| | - Maryanne Covington
- Discovery Biology, Incyte Research Institute, Wilmington, Delaware,
United States of America
| | - Bruce Ruggeri
- Discovery Biology, Incyte Research Institute, Wilmington, Delaware,
United States of America
| | - Richard Wynn
- Discovery Biology, Incyte Research Institute, Wilmington, Delaware,
United States of America
| | - Timothy C. Burn
- Discovery Biology, Incyte Research Institute, Wilmington, Delaware,
United States of America
| | - Peggy Scherle
- Discovery Biology, Incyte Research Institute, Wilmington, Delaware,
United States of America
| | - Swamy Yeleswaram
- Discovery Biology, Incyte Research Institute, Wilmington, Delaware,
United States of America
| | - Wenqing Yao
- Discovery Chemistry, Incyte Research Institute, Wilmington, Delaware,
United States of America
| | - Reid Huber
- Discovery Biology, Incyte Research Institute, Wilmington, Delaware,
United States of America
| | - Gregory Hollis
- Discovery Biology, Incyte Research Institute, Wilmington, Delaware,
United States of America
| |
Collapse
|
221
|
Pan T, Li YG, Li KY, Chen C, Xu K, Yuan DY, Zou B, Meng Z. Identification of a novel fusion gene, TRIM52-RACK1, in oral squamous cell carcinoma. Mol Cell Probes 2020; 52:101568. [PMID: 32251686 DOI: 10.1016/j.mcp.2020.101568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 11/25/2022]
Abstract
Gene fusion is caused by the linkage of previously separate genes or sequences. Recently, an increasing number of novel fusion genes have been identified and associated with tumor progression, and several of them have been suggested as promising targets for tumor therapy. However, there are hardly any studies reporting the association of fusion genes with the progression of oral squamous cell carcinoma (OSCC). In this study, we identified a total of 11 fused genes in OSCC cells. We further analyzed the structure of one fused gene, TRIM52-RACK1, and detected its function in tumor progression in vitro. We found that TRIM52-RACK1 was caused by a deletion of 181,257,187-181,247,386 at 5q35.3 and it promoted OSCC cell proliferation, migration, and invasion. Therefore, TRIM52-RACK1 can be a promising target for tumor therapy in OSCC.
Collapse
Affiliation(s)
- Tao Pan
- Key Lab of Precision Biomedicine & Department of Stomatology, Liaocheng People's Hospital, College of Stomatology, Shandong First Medical University, China
| | - Yong-Guo Li
- Key Lab of Precision Biomedicine & Department of Stomatology, Liaocheng People's Hospital, College of Stomatology, Shandong First Medical University, China; Medical College, Liaocheng University, China
| | - Ke-Yi Li
- Key Lab of Precision Biomedicine & Department of Stomatology, Liaocheng People's Hospital, College of Stomatology, Shandong First Medical University, China; Medical College, Liaocheng University, China
| | - Cheng Chen
- Key Lab of Precision Biomedicine & Department of Stomatology, Liaocheng People's Hospital, College of Stomatology, Shandong First Medical University, China; Medical College, Liaocheng University, China
| | - Kai Xu
- Key Lab of Precision Biomedicine & Department of Stomatology, Liaocheng People's Hospital, College of Stomatology, Shandong First Medical University, China; Medical College, Liaocheng University, China
| | - Dao-Ying Yuan
- Key Lab of Precision Biomedicine & Department of Stomatology, Liaocheng People's Hospital, College of Stomatology, Shandong First Medical University, China; Medical College, Liaocheng University, China
| | - Bo Zou
- Key Lab of Precision Biomedicine & Department of Stomatology, Liaocheng People's Hospital, College of Stomatology, Shandong First Medical University, China.
| | - Zhen Meng
- Key Lab of Precision Biomedicine & Department of Stomatology, Liaocheng People's Hospital, College of Stomatology, Shandong First Medical University, China; Medical College, Liaocheng University, China.
| |
Collapse
|
222
|
Georgiou V, Gkretsi V. The role of fibroblast growth factors and their receptors in gliomas: the mutations involved. Rev Neurosci 2020; 30:543-554. [PMID: 30379640 DOI: 10.1515/revneuro-2018-0051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/10/2018] [Indexed: 11/15/2022]
Abstract
The central nervous system (CNS) comprises of neurons, which are responsible for impulse transmission, and glial cells, which surround neurons providing protection and nutrition. Glial cells are categorized into astrocytes, oligodendrocytes, microglial cells, and ependymal cells. Tumors forming from glial cells are called gliomas, and they are classified accordingly into astrocytomas, oligodendrogliomas, and ependymomas. Gliomas are characterized by high mortality rates and degree of malignancy, heterogeneity, and resistance to treatment. Among the molecular players implicated in glioma pathogenesis are members of the fibroblast growth factor (FGF) superfamily as well as their receptors (FGFRs). In the present study, we provide a review of the literature on the role of FGFs and FGFRs in glioma pathogenesis. We also demonstrate that FGFs, and particularly FGF1 and FGF2, bear a variety of mutations in gliomas, while FGFRs are also crucially involved. In fact, several studies show that in gliomas, FGFRs bear mutations, mainly in the tyrosine kinase domains. Specifically, it appears that FGFR1-TACC1 and FGFR3-TACC3 fusions are common in these receptors. A better understanding of the mutations and the molecular players involved in glioma formation will benefit the scientific community, leading to the development of more effective and innovative therapeutic approaches.
Collapse
Affiliation(s)
- Vasiliki Georgiou
- Biomedical Sciences Program, Department of Life Sciences, School of Sciences, European University of Cyprus, 6, Diogenis Str, Engomi 2404, Nicosia, Cyprus
| | - Vasiliki Gkretsi
- Biomedical Sciences Program, Department of Life Sciences, School of Sciences, European University of Cyprus, 6, Diogenis Str, Engomi 2404, Nicosia, Cyprus
| |
Collapse
|
223
|
Banella C, Ginevrino M, Catalano G, Fabiani E, Falconi G, Divona M, Curzi P, Panetta P, Voso MT, Noguera NI. Absence of FGFR3-TACC3 rearrangement in hematological malignancies with numerical chromosomal alteration. Hematol Oncol Stem Cell Ther 2020; 14:163-168. [PMID: 32199932 DOI: 10.1016/j.hemonc.2020.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/29/2020] [Accepted: 02/07/2020] [Indexed: 10/24/2022] Open
Abstract
FGFR-TACC, found in different tumor types, is characterized by the fusion of a member of fibroblast grown factor receptor (FGFR) tyrosine kinase (TK) family to a member of the transforming acidic coiled-coil (TACC) proteins. Because chromosome numerical alterations, hallmarks of FGFR-TACC fusions are present in many hematological disorders and there are no data on the prevalence, we studied a series of patients with acute myeloid leukemia and myelodysplastic syndrome who presented numerical alterations using cytogenetic traditional analysis. None of the analyzed samples showed FGFR3-TACC3 gene fusion, so screening for this mutation at diagnosis is not recommended.
Collapse
Affiliation(s)
- C Banella
- Neuro-oncohematology Unit, IRCCS Santa Lucia Foundation, Rome, Italy; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - M Ginevrino
- Neurogenetics Unit, IRCCS Santa Lucia Foundation, Rome, Italy; Deparment of Molecular Medicine, University of Pavia, Pavia, Italy
| | - G Catalano
- Neuro-oncohematology Unit, IRCCS Santa Lucia Foundation, Rome, Italy; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - E Fabiani
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - G Falconi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - M Divona
- Policlinico Tor Vergata, Rome, Italy
| | - P Curzi
- Policlinico Tor Vergata, Rome, Italy
| | - P Panetta
- Policlinico Tor Vergata, Rome, Italy
| | - M T Voso
- Neuro-oncohematology Unit, IRCCS Santa Lucia Foundation, Rome, Italy; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - N I Noguera
- Neuro-oncohematology Unit, IRCCS Santa Lucia Foundation, Rome, Italy; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
224
|
Jimenez-Pascual A, Mitchell K, Siebzehnrubl FA, Lathia JD. FGF2: a novel druggable target for glioblastoma? Expert Opin Ther Targets 2020; 24:311-318. [PMID: 32174197 DOI: 10.1080/14728222.2020.1736558] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Fibroblast growth factors (FGFs) are key mitogens in tissue homeostasis and cancer. FGF2 regulates self-renewal of multiple stem-cell types, is widely used in stem cell culture paradigms and has been adopted for cultivating the growth of cancer stem cells ex vivo. Research has shed light on the functions of FGF2 in brain tumors, particularly malignant glioma, and this has demonstrated that FGF2 increases self-renewal of glioblastoma stem cells.Areas covered: This review examines the potential targeting of FGF2 signaling as a possible treatment avenue for glioblastoma. The expression of FGF ligands and the FGFR family of receptor tyrosine kinases in the normal brain and in glioblastoma is described. Moreover, the paper sheds light on FGF/FGFR signaling, including the function of heparin/heparan sulfate proteoglycans in facilitating FGF signaling. We speculate on potential avenues for the therapeutic targeting of the FGF2-FGF receptor signaling axis in glioblastoma and the associated challenges envisioned with these approaches.Expert opinion: Precision targeting of FGF/FGFR signaling could improve prospective glioblastoma therapeutics and moderate adverse effects. Shrewd development of experimental models and FGF2 inhibitors could provide a 'pharmacological toolbox' for targeting diverse ligand/receptor combinations.
Collapse
Affiliation(s)
- Ana Jimenez-Pascual
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Cardiff, UK
| | - Kelly Mitchell
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Florian A Siebzehnrubl
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Cardiff, UK
| | - Justin D Lathia
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Case Comprehensive Cancer Center, Cleveland, OH, USA
| |
Collapse
|
225
|
Ryall S, Tabori U, Hawkins C. Pediatric low-grade glioma in the era of molecular diagnostics. Acta Neuropathol Commun 2020; 8:30. [PMID: 32164789 PMCID: PMC7066826 DOI: 10.1186/s40478-020-00902-z] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/21/2020] [Indexed: 12/17/2022] Open
Abstract
Low grade gliomas are the most frequent brain tumors in children and encompass a spectrum of histologic entities which are currently assigned World Health Organisation grades I and II. They differ substantially from their adult counterparts in both their underlying genetic alterations and in the infrequency with which they transform to higher grade tumors. Nonetheless, children with low grade glioma are a therapeutic challenge due to the heterogeneity in their clinical behavior – in particular, those with incomplete surgical resection often suffer repeat progressions with resultant morbidity and, in some cases, mortality. The identification of up-regulation of the RAS–mitogen-activated protein kinase (RAS/MAPK) pathway as a near universal feature of these tumors has led to the development of targeted therapeutics aimed at improving responses while mitigating patient morbidity. Here, we review how molecular information can help to further define the entities which fall under the umbrella of pediatric-type low-grade glioma. In doing so we discuss the specific molecular drivers of pediatric low grade glioma and how to effectively test for them, review the newest therapeutic agents and their utility in treating this disease, and propose a risk-based stratification system that considers both clinical and molecular parameters to aid clinicians in making treatment decisions.
Collapse
|
226
|
Vellichirammal NN, Albahrani A, Banwait JK, Mishra NK, Li Y, Roychoudhury S, Kling MJ, Mirza S, Bhakat KK, Band V, Joshi SS, Guda C. Pan-Cancer Analysis Reveals the Diverse Landscape of Novel Sense and Antisense Fusion Transcripts. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:1379-1398. [PMID: 32160708 PMCID: PMC7044684 DOI: 10.1016/j.omtn.2020.01.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/03/2020] [Accepted: 01/14/2020] [Indexed: 01/26/2023]
Abstract
Gene fusions that contribute to oncogenicity can be explored for identifying cancer biomarkers and potential drug targets. To investigate the nature and distribution of fusion transcripts in cancer, we examined the transcriptome data of about 9,000 primary tumors from 33 different cancers in TCGA (The Cancer Genome Atlas) along with cell line data from CCLE (Cancer Cell Line Encyclopedia) using ChimeRScope, a novel fusion detection algorithm. We identified several fusions with sense (canonical, 39%) or antisense (non-canonical, 61%) transcripts recurrent across cancers. The majority of the recurrent non-canonical fusions found in our study are novel, unexplored, and exhibited highly variable profiles across cancers, with breast cancer and glioblastoma having the highest and lowest rates, respectively. Overall, 4,344 recurrent fusions were identified from TCGA in this study, of which 70% were novel. Additional analysis of 802 tumor-derived cell line transcriptome data across 20 cancers revealed significant variability in recurrent fusion profiles between primary tumors and corresponding cell lines. A subset of canonical and non-canonical fusions was validated by examining the structural variation evidence in whole-genome sequencing (WGS) data or by Sanger sequencing of fusion junctions. Several recurrent fusion genes identified in our study show promise for drug repurposing in basket trials and present opportunities for mechanistic studies.
Collapse
Affiliation(s)
| | - Abrar Albahrani
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jasjit K Banwait
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA; Bioinformatics and Systems Biology Core. University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nitish K Mishra
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - You Li
- HitGen, South Keyuan Road 88, Chengdu, China
| | - Shrabasti Roychoudhury
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mathew J Kling
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sameer Mirza
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kishor K Bhakat
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vimla Band
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shantaram S Joshi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA; Bioinformatics and Systems Biology Core. University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
227
|
Douglas JK, Callahan RE, Hothem ZA, Cousineau CS, Kawak S, Thibodeau BJ, Bergeron S, Li W, Peeples CE, Wasvary HJ. Genomic variation as a marker of response to neoadjuvant therapy in locally advanced rectal cancer. Mol Cell Oncol 2020; 7:1716618. [PMID: 32391418 PMCID: PMC7199754 DOI: 10.1080/23723556.2020.1716618] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023]
Abstract
There is variation in the responsiveness of locally advanced rectal cancer to neoadjuvant chemoradiation, from complete response to total resistance. This study compared genetic variation in rectal cancer patients who had a complete response to chemoradiation versus poor response, using tumor tissue samples sequenced with genomics analysis software. Rectal cancer patients treated with chemoradiation and proctectomy June 2006-March 2017 were grouped based on response to chemoradiation: those with no residual tumor after surgery (CR, complete responders, AJCC-CPR tumor grade 0, n = 8), and those with poor response (PR, AJCC-CPR tumor grade two or three on surgical resection, n = 8). We identified 195 variants in 83 genes in tissue specimens implicated in colorectal cancer biopathways. PR patients showed mutations in four genes not mutated in complete responders: KDM6A, ABL1, DAXX-ZBTB22, and KRAS. Ten genes were mutated only in the CR group, including ARID1A, PMS2, JAK1, CREBBP, MTOR, RB1, PRKAR1A, FBXW7, ATM C11orf65, and KMT2D, with specific discriminating variants noted in DMNT3A, KDM6A, MTOR, APC, and TP53. Although conclusions may be limited by small sample size in this pilot study, we identified multiple genetic variations in tumor DNA from rectal cancer patients who are poor responders to neoadjuvant chemoradiation, compared to complete responders.
Collapse
Affiliation(s)
| | - Rose E. Callahan
- Department of Surgical Research, Beaumont Research Institute, Royal Oak, MI, USA
| | | | | | - Samer Kawak
- Department of Surgery, Beaumont Health, Royal Oak, MI, USA
| | | | | | - Wei Li
- Department of Pathology, Beaumont Health, Royal Oak, MI, USA
| | | | | |
Collapse
|
228
|
Neill SG, Hauenstein J, Li MM, Liu YJ, Luo M, Saxe DF, Ligon AH. Copy number assessment in the genomic analysis of CNS neoplasia: An evidence-based review from the cancer genomics consortium (CGC) working group on primary CNS tumors. Cancer Genet 2020; 243:19-47. [PMID: 32203924 DOI: 10.1016/j.cancergen.2020.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/12/2020] [Accepted: 02/19/2020] [Indexed: 12/20/2022]
Abstract
The period from the 1990s to the 2010s has witnessed a burgeoning sea change in the practice of surgical neuropathology due to the incorporation of genomic data into the assessment of a range of central nervous system (CNS) neoplasms. This change has since matured into the adoption of genomic information into the definition of several World Health Organization (WHO)-established diagnostic entities. The data needed to accomplish the modern diagnosis of CNS neoplasia includes DNA copy number aberrations that may be assessed through a variety of mechanisms. Through a review of the relevant literature and professional practice guidelines, here we provide a condensed and scored overview of the most critical DNA copy number aberrations to assess for a selection of primary CNS neoplasms.
Collapse
Affiliation(s)
- Stewart G Neill
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Jennifer Hauenstein
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Marilyn M Li
- Department of Pathology, Division of Genomic Diagnostics, Children's Hospital of Philadelphia and Perelman School of Medicine, Philadelphia, PA, United States
| | - Yajuan J Liu
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Minjie Luo
- Department of Pathology, Division of Genomic Diagnostics, Children's Hospital of Philadelphia and Perelman School of Medicine, Philadelphia, PA, United States
| | - Debra F Saxe
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Azra H Ligon
- Department of Pathology, Center for Advanced Molecular Diagnostics, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
229
|
Bale TA. FGFR- gene family alterations in low-grade neuroepithelial tumors. Acta Neuropathol Commun 2020; 8:21. [PMID: 32085805 PMCID: PMC7035775 DOI: 10.1186/s40478-020-00898-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
The discovery of fibroblast growth factor receptor (FGFR) gene family alterations as drivers of primary brain tumors has generated significant excitement, both as potential therapeutic targets as well as defining hallmarks of histologic entities. However, FGFR alterations among neuroepithelial lesions are not restricted to high or low grade, nor to adult vs. pediatric-type tumors. While it may be tempting to consider FGFR-altered tumors as a unified group, this underlying heterogeneity poses diagnostic and interpretive challenges. Therefore, understanding the underlying biology of tumors harboring specific FGFR alterations is critical. In this review, recent evidence for recurrent FGFR alterations in histologically and biologically low-grade neuroepithelial tumors (LGNTs) is examined (namely FGFR1 tyrosine kinase domain duplication in low grade glioma, FGFR1-TACC1 fusions in extraventricular neurocytoma [EVN], and FGFR2-CTNNA3 fusions in polymorphous low-grade neuroepithelial tumor of the young [PLNTY]). Additionally, FGFR alterations with less well-defined prognostic implications are considered (FGFR3-TACC3 fusions, FGFR1 hotspot mutations). Finally, a framework for practical interpretation of FGFR alterations in low grade glial/glioneuronal tumors is proposed.
Collapse
Affiliation(s)
- Tejus A Bale
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Street, New York, NY, 10065, USA.
| |
Collapse
|
230
|
Abstract
The discovery of fibroblast growth factor receptor (FGFR) gene family alterations as drivers of primary brain tumors has generated significant excitement, both as potential therapeutic targets as well as defining hallmarks of histologic entities. However, FGFR alterations among neuroepithelial lesions are not restricted to high or low grade, nor to adult vs. pediatric-type tumors. While it may be tempting to consider FGFR-altered tumors as a unified group, this underlying heterogeneity poses diagnostic and interpretive challenges. Therefore, understanding the underlying biology of tumors harboring specific FGFR alterations is critical. In this review, recent evidence for recurrent FGFR alterations in histologically and biologically low-grade neuroepithelial tumors (LGNTs) is examined (namely FGFR1 tyrosine kinase domain duplication in low grade glioma, FGFR1-TACC1 fusions in extraventricular neurocytoma [EVN], and FGFR2-CTNNA3 fusions in polymorphous low-grade neuroepithelial tumor of the young [PLNTY]). Additionally, FGFR alterations with less well-defined prognostic implications are considered (FGFR3-TACC3 fusions, FGFR1 hotspot mutations). Finally, a framework for practical interpretation of FGFR alterations in low grade glial/glioneuronal tumors is proposed.
Collapse
Affiliation(s)
- Tejus A Bale
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Street, New York, NY, 10065, USA.
| |
Collapse
|
231
|
Facchinetti F, Hollebecque A, Bahleda R, Loriot Y, Olaussen KA, Massard C, Friboulet L. Facts and New Hopes on Selective FGFR Inhibitors in Solid Tumors. Clin Cancer Res 2020; 26:764-774. [PMID: 31585937 PMCID: PMC7024606 DOI: 10.1158/1078-0432.ccr-19-2035] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/06/2019] [Accepted: 10/01/2019] [Indexed: 12/22/2022]
Abstract
Precision oncology relies on the identification of molecular alterations, responsible for tumor initiation and growth, which are suitable targets of specific inhibitors. The development of FGFR inhibitors represents an edifying example of the rapid evolution in the field of targeted oncology, with 10 different FGFR tyrosine kinase inhibitors actually under clinical investigation. In parallel, the discovery of FGFR activating molecular alterations (mainly FGFR3 mutations and FGFR2 fusions) across many tumor types, especially urothelial carcinomas and intrahepatic cholangiocarcinomas, widens the selection of patients that might benefit from selective FGFR inhibitors. The ongoing concomitant clinical evaluation of selective FGFR inhibitors in molecularly selected solid tumors brings new hopes for patients with metastatic cancer, for tumors so far excluded from molecularly guided treatments. Matching molecularly selected tumors with selective FGFR inhibitors has indeed led to promising results in phase I and II trials, justifying their registration to be expected in a near future, such as the recent accelerated approval of erdafitinib granted by the FDA for urothelial cancer. Widening our knowledge of the activity, efficacy, and toxicities relative to the selective FGFR tyrosine kinase inhibitors under clinical investigation, according to the exact FGFR molecular alteration, will be crucial to determine the optimal therapeutic strategy for patients suffering from FGFR-driven tumors. Similarly, identifying with appropriate molecular diagnostic, every single tumor harboring targetable FGFR alterations will be of utmost importance to attain the best outcomes for patients with FGFR-driven cancer.
Collapse
Affiliation(s)
- Francesco Facchinetti
- INSERM U981, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
| | - Antoine Hollebecque
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France
| | - Rastislav Bahleda
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France
| | - Yohann Loriot
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Ken A Olaussen
- INSERM U981, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
| | - Christophe Massard
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France
| | - Luc Friboulet
- INSERM U981, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France.
| |
Collapse
|
232
|
Hindi I, Shen G, Tan Q, Cotzia P, Snuderl M, Feng X, Jour G. Feasibility and clinical utility of a pan-solid tumor targeted RNA fusion panel: A single center experience. Exp Mol Pathol 2020; 114:104403. [PMID: 32061944 DOI: 10.1016/j.yexmp.2020.104403] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/03/2020] [Accepted: 02/12/2020] [Indexed: 10/25/2022]
Abstract
Gene fusions are caused by chromosomal rearrangements and encode fusion proteins that can act as oncogenic drivers in cancers. Traditional methods for detecting oncogenic fusion transcripts include fluorescence in situ hybridization (FISH), reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC). However, these methods are limited in scalability and pose significant technical and interpretational challenges. Next-generation sequencing (NGS) is a high-throughput method for detecting genetic abnormalities and providing prognostic and therapeutic information for cancer patients. We present our experience with the validation of a custom-designed Archer Anchored Multiplex PCR (AMP™) technology-based NGS technology, "NYU FUSION-SEQer" using RNA sequencing. We examine both analytical performance and clinical utility of the panel using 75 retrospective validation samples and 84 prospective clinical samples of solid tumors. Our panel showed robust sequencing performance with strong enrichment for target regions. The lower limit of detection was 12.5% tumor fraction at 125 ng of RNA input. The panel demonstrated excellent analytic accuracy, with 100% sensitivity, 100% specificity and 100% reproducibility on validation samples. Finally, in the prospective cohort, the panel detected fusions in 61% cases (n = 51), out of which 41% (n = 21) enabling diagnosis and 59% (n = 30) enabling treatment and prognosis. We demonstrate that the fusion panel can accurately, efficiently and cost-effectively detect the majority of known fusion genes, novel clinically relevant fusions and provides an excellent tool for discovery of new fusion genes in solid tumors.
Collapse
Affiliation(s)
- Issa Hindi
- Department of Pathology, New York University Langone Health, New York, NY, United States of America
| | - Guomiao Shen
- Department of Pathology, New York University Langone Health, New York, NY, United States of America
| | - Qian Tan
- Department of Pathology, New York University Langone Health, New York, NY, United States of America
| | - Paolo Cotzia
- Department of Pathology, New York University Langone Health, New York, NY, United States of America
| | - Matija Snuderl
- Department of Pathology, New York University Langone Health, New York, NY, United States of America
| | - Xiaojun Feng
- Department of Pathology, New York University Langone Health, New York, NY, United States of America
| | - George Jour
- Department of Pathology, New York University Langone Health, New York, NY, United States of America; Department of Dermatology, New York University Langone Health, New York, NY, United States of America.
| |
Collapse
|
233
|
Posterior fossa pilocytic astrocytomas with oligodendroglial features show frequent FGFR1 activation via fusion or mutation. Acta Neuropathol 2020; 139:403-406. [PMID: 31729570 DOI: 10.1007/s00401-019-02097-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/09/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022]
|
234
|
Extracellular Vesicles Involvement in the Modulation of the Glioblastoma Environment. JOURNAL OF ONCOLOGY 2020; 2020:3961735. [PMID: 32411235 PMCID: PMC7204270 DOI: 10.1155/2020/3961735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/11/2019] [Indexed: 12/24/2022]
Abstract
Glioblastoma (GBM) is the most deadly primary brain tumour and is a paradigmatic example of heterogeneous cancer. Although expanding data propose the phenotypic plasticity exhibited by glioblastoma cells, as a critical feature involved in the tumour development and posttherapy recurrence, the central machinery responsible for their aggressiveness remains elusive. Despite decades of research, the complex biology of the glioblastoma is still unknown. Progress in genetic and epigenetic discoveries has improved diagnostic classification, prognostic information, and therapeutic planning. In the complex model of intercellular signalling, several studies have shown that extracellular vesicles have a key role in the intercellular communication among GBM cells and the tumour microenvironment modulation. The purpose of this review is to summarize the role of the EV-mediated intercellular crosstalk in the glioblastoma physiopathology.
Collapse
|
235
|
Chew NJ, Nguyen EV, Su SP, Novy K, Chan HC, Nguyen LK, Luu J, Simpson KJ, Lee RS, Daly RJ. FGFR3 signaling and function in triple negative breast cancer. Cell Commun Signal 2020; 18:13. [PMID: 31987043 PMCID: PMC6986078 DOI: 10.1186/s12964-019-0486-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022] Open
Abstract
Background Triple negative breast cancer (TNBC) accounts for 16% of breast cancers and represents an aggressive subtype that lacks targeted therapeutic options. In this study, mass spectrometry (MS)-based tyrosine phosphorylation profiling identified aberrant FGFR3 activation in a subset of TNBC cell lines. This kinase was therefore evaluated as a potential therapeutic target. Methods MS-based tyrosine phosphorylation profiling was undertaken across a panel of 24 TNBC cell lines. Immunoprecipitation and Western blot were used to further characterize FGFR3 phosphorylation. Indirect immunofluorescence and confocal microscopy were used to determine FGFR3 localization. The selective FGFR1–3 inhibitor, PD173074 and siRNA knockdowns were used to characterize the functional role of FGFR3 in vitro. The TCGA and Metabric breast cancer datasets were interrogated to identify FGFR3 alterations and how they relate to breast cancer subtype and overall patient survival. Results High FGFR3 expression and phosphorylation were detected in SUM185PE cells, which harbor a FGFR3-TACC3 gene fusion. Low FGFR3 phosphorylation was detected in CAL51, MFM-223 and MDA-MB-231 cells. In SUM185PE cells, the FGFR3-TACC3 fusion protein contributed the majority of phosphorylated FGFR3, and largely localized to the cytoplasm and plasma membrane, with staining at the mitotic spindle in a small subset of cells. Knockdown of the FGFR3-TACC3 fusion and wildtype FGFR3 in SUM185PE cells decreased FRS2, AKT and ERK phosphorylation, and induced cell death. Knockdown of wildtype FGFR3 resulted in only a trend for decreased proliferation. PD173074 significantly decreased FRS2, AKT and ERK activation, and reduced SUM185PE cell proliferation. Cyclin A and pRb were also decreased in the presence of PD173074, while cleaved PARP was increased, indicating cell cycle arrest in G1 phase and apoptosis. Knockdown of FGFR3 in CAL51, MFM-223 and MDA-MB-231 cells had no significant effect on cell proliferation. Interrogation of public datasets revealed that increased FGFR3 expression in breast cancer was significantly associated with reduced overall survival, and that potentially oncogenic FGFR3 alterations (eg mutation and amplification) occur in the TNBC/basal, luminal A and luminal B subtypes, but are rare. Conclusions These results indicate that targeting FGFR3 may represent a therapeutic option for TNBC, but only for patients with oncogenic FGFR3 alterations, such as the FGFR3-TACC3 fusion. Video abstract.
Collapse
Affiliation(s)
- Nicole J Chew
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Elizabeth V Nguyen
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Shih-Ping Su
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Karel Novy
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Howard C Chan
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Lan K Nguyen
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Jennii Luu
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3010, Australia.,Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Kaylene J Simpson
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3010, Australia.,Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Rachel S Lee
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Roger J Daly
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia. .,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
236
|
Lee SJ, Hong JY, Kim K, Kim KM, Kang SY, Lee T, Kim ST, Park SH, Park YS, Lim HY, Kang WK, Lee J, Park JO. Detection of Fusion Genes Using a Targeted RNA Sequencing Panel in Gastrointestinal and Rare Cancers. JOURNAL OF ONCOLOGY 2020; 2020:4659062. [PMID: 32411236 PMCID: PMC7204148 DOI: 10.1155/2020/4659062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/09/2019] [Accepted: 12/19/2019] [Indexed: 12/22/2022]
Abstract
Successful identification and targeting of oncogenic gene fusion is a major breakthrough in cancer treatment. Here, we investigate the therapeutic implications and feasibility of using a targeted RNA sequencing panel to identify fusion genes in gastrointestinal and rare cancers. From February through December 2017, patients with gastrointestinal, hepatobiliary, gynecologic, sarcoma, or rare cancers were recruited for a clinical sequencing project at Samsung Medical Center (NCT #02593578). The median age of the patients was 58 years (range, 31-81 years), and the male-to-female ratio was 1.3 : 1. A total of 118 patients passed the quality control process for a next-generation sequencing- (NGS-) based targeted sequencing assay. The NGS-based targeted sequencing assay was performed to detect gene fusions in 36-53 cancer-implicated genes. The following cancer types were included in this study: 28 colorectal cancers, 27 biliary tract cancers, 25 gastric cancers, 18 soft tissue sarcomas, 9 pancreatic cancers, 6 ovarian cancers, and 9 other rare cancers. Strong fusion was detected in 25 samples (21.2%). We found that 5.9% (7/118) of patients had known targetable fusion genes involving NTRK1 (n=3), FGFR (n=3), and RET (n=1), and 10.2% (12/118) of patients had potentially targetable fusion genes involving RAF1 (n=4), BRAF (n=2), ALK (n=2), ROS1 (n=1), EGFR (n=1), and CLDN18 (n=2). Thus, we successfully identified a substantial proportion of patients harboring fusion genes by RNA panel sequencing of gastrointestinal/rare cancers. Targetable and potentially targetable involved fusion genes were NTRK1, RET, FGFR3, FGFR2, BRAF, RAF1, ALK, ROS1, and CLDN18. Detection of fusion genes by RNA panel sequencing may be beneficial in refractory patients with gastrointestinal/rare cancers.
Collapse
Affiliation(s)
- Su Jin Lee
- Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Division of Hematology-Oncology, Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Jung Yong Hong
- Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyung Kim
- Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyoung-Mee Kim
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - So Young Kang
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Taeyang Lee
- Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seung Tae Kim
- Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Se Hoon Park
- Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Young Suk Park
- Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ho Yeong Lim
- Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Won Ki Kang
- Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Joon Oh Park
- Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
237
|
Liu J, Wen Y, Gao L, Gao L, He F, Zhou J, Wang J, Dai R, Chen X, Kang D, Hu L. Design, synthesis and biological evaluation of novel 1 H-1,2,4-triazole, benzothiazole and indazole-based derivatives as potent FGFR1 inhibitors viafragment-based virtual screening. J Enzyme Inhib Med Chem 2020; 35:72-84. [PMID: 31682465 PMCID: PMC6844396 DOI: 10.1080/14756366.2019.1673745] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Fibroblast growth-factor receptor (FGFR) is a potential target for cancer therapy. We designed three novel series of FGFR1 inhibitors bearing indazole, benzothiazole, and 1H-1,2,4-triazole scaffold via fragment-based virtual screening. All the newly synthesised compounds were evaluated in vitro for their inhibitory activities against FGFR1. Compound 9d bearing an indazole scaffold was first identified as a hit compound, with excellent kinase inhibitory activity (IC50 = 15.0 nM) and modest anti-proliferative activity (IC50 = 785.8 nM). Through two rounds of optimisation, the indazole derivative 9 u stood out as the most potent FGFR1 inhibitors with the best enzyme inhibitory activity (IC50 = 3.3 nM) and cellular activity (IC50 = 468.2 nM). Moreover, 9 u also exhibited good kinase selectivity. In addition, molecular docking study was performed to investigate the binding mode between target compounds and FGFR1.
Collapse
Affiliation(s)
- Jian Liu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Yu Wen
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Lina Gao
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Liang Gao
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Fengjun He
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Jingxian Zhou
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Junwei Wang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Rupeng Dai
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Xiaojing Chen
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Di Kang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Lihong Hu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
| |
Collapse
|
238
|
Parker Kerrigan BC, Ledbetter D, Kronowitz M, Phillips L, Gumin J, Hossain A, Yang J, Mendt M, Singh S, Cogdell D, Ene C, Shpall E, Lang FF. RNAi technology targeting the FGFR3-TACC3 fusion breakpoint: an opportunity for precision medicine. Neurooncol Adv 2020; 2:vdaa132. [PMID: 33241214 PMCID: PMC7680176 DOI: 10.1093/noajnl/vdaa132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Fusion genes form as a result of abnormal chromosomal rearrangements linking previously separate genes into one transcript. The FGFR3-TACC3 fusion gene (F3-T3) has been shown to drive gliomagenesis in glioblastoma (GBM), a cancer that is notoriously resistant to therapy. However, successful targeting of F3-T3 via small molecular inhibitors has not revealed robust therapeutic responses, and specific targeting of F3-T3 has not been achieved heretofore. Here, we demonstrate that depleting F3-T3 using custom siRNA to the fusion breakpoint junction results in successful inhibition of F3-T3+ GBMs, and that exosomes can successfully deliver these siRNAs. METHODS We engineered 10 unique siRNAs (iF3T3) that specifically spanned the most common F3-T3 breakpoint with varying degrees of overlap, and assayed depletion by qPCR and immunoblotting. Cell viability assays were performed. Mesenchymal stem cell-derived exosomes (UC-MSC) were electroporated with iF3T3, added to cells, and F3-T3 depletion measured by qPCR. RESULTS We verified that depleting F3-T3 using shRNA to FGFR3 resulted in decreased cell viability and improved survival in glioma-bearing mice. We then demonstrated that 7/10 iF3T3 depleted F3-T3, and importantly, did not affect levels of wild-type (WT) FGFR3 or TACC3. iF3T3 decreased cell viability in both F3T3+ GBM and bladder cancer cell lines. UC-MSC exosomes successfully delivered iF3T3 in vitro, resulting in F3-T3 depletion. CONCLUSION Targeting F3-T3 using siRNAs specific to the fusion breakpoint is capable of eradicating F3T3+ cancers without toxicity related to inhibition of WT FGFR3 or TACC3, and UC-MSC exosomes may be a plausible vehicle to deliver iF3T3.
Collapse
Affiliation(s)
- Brittany C Parker Kerrigan
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Daniel Ledbetter
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Matthew Kronowitz
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lynette Phillips
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Joy Gumin
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anwar Hossain
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jing Yang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mayela Mendt
- Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sanjay Singh
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David Cogdell
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Chibawanye Ene
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Elizabeth Shpall
- Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Frederick F Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
239
|
Clinically Actionable Insights into Initial and Matched Recurrent Glioblastomas to Inform Novel Treatment Approaches. JOURNAL OF ONCOLOGY 2019; 2019:4878547. [PMID: 32082376 PMCID: PMC7012245 DOI: 10.1155/2019/4878547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/07/2019] [Accepted: 10/25/2019] [Indexed: 12/31/2022]
Abstract
Glioblastoma is the most common primary adult brain tumour, and despite optimal treatment, the median survival is 12–15 months. Patients with matched recurrent glioblastomas were investigated to try to find actionable mutations. Tumours were profiled using a validated DNA-based gene panel. Copy number variations (CNVs) and single nucleotide variants (SNVs) were examined, and potentially pathogenic variants and clinically actionable mutations were identified. The results revealed that glioblastomas were IDH-wildtype (IDHWT; n = 38) and IDH-mutant (IDHMUT; n = 3). SNVs in TSC2, MSH6, TP53, CREBBP, and IDH1 were variants of unknown significance (VUS) that were predicted to be pathogenic in both subtypes. IDHWT tumours had SNVs that impacted RTK/Ras/PI(3)K, p53, WNT, SHH, NOTCH, Rb, and G-protein pathways. Many tumours had BRCA1/2 (18%) variants, including confirmed somatic mutations in haemangioblastoma. IDHWT recurrent tumours had fewer pathways impacted (RTK/Ras/PI(3)K, p53, WNT, and G-protein) and CNV gains (BRCA2, GNAS, and EGFR) and losses (TERT and SMARCA4). IDHMUT tumours had SNVs that impacted RTK/Ras/PI(3)K, p53, and WNT pathways. VUS in KLK1 was possibly pathogenic in IDHMUT. Recurrent tumours also had fewer pathways (p53, WNT, and G-protein) impacted by genetic alterations. Public datasets (TCGA and GDC) confirmed the clinical significance of findings in both subtypes. Overall in this cohort, potentially actionable variation was most often identified in EGFR, PTEN, BRCA1/2, and ATM. This study underlines the need for detailed molecular profiling to identify individual GBM patients who may be eligible for novel treatment approaches. This information is also crucial for patient recruitment to clinical trials.
Collapse
|
240
|
Jones DT, Bandopadhayay P, Jabado N. The Power of Human Cancer Genetics as Revealed by Low-Grade Gliomas. Annu Rev Genet 2019; 53:483-503. [DOI: 10.1146/annurev-genet-120417-031642] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The human brain contains a vast number of cells and shows extraordinary cellular diversity to facilitate the many cognitive and automatic commands governing our bodily functions. This complexity arises partly from large-scale structural variations in the genome, evolutionary processes to increase brain size, function, and cognition. Not surprisingly given recent technical advances, low-grade gliomas (LGGs), which arise from the glia (the most abundant cell type in the brain), have undergone a recent revolution in their classification and therapy, especially in the pediatric setting. Next-generation sequencing has uncovered previously unappreciated diverse LGG entities, unraveling genetic subgroups and multiple molecular alterations and altered pathways, including many amenable to therapeutic targeting. In this article we review these novel entities, in which oncogenic processes show striking age-related neuroanatomical specificity (highlighting their close interplay with development); the opportunities they provide for targeted therapies, some of which are already practiced at the bedside; and the challenges of implementing molecular pathology in the clinic.
Collapse
Affiliation(s)
- David T.W. Jones
- Pediatric Glioma Research Group, Hopp Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Pratiti Bandopadhayay
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts 02215, USA
- The Broad Institute of MIT and Harvard, Boston, Massachusetts 02142, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Nada Jabado
- Departments of Pediatric and Human Genetics, McGill University and the Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| |
Collapse
|
241
|
Ma WJ, Gu YK, Peng JH, Wang XC, Yue X, Pan ZZ, Chen G, Xu HN, Zhou ZG, Zhang RX. Pretreatment TACC3 expression in locally advanced rectal cancer decreases the response to neoadjuvant chemoradiotherapy. Aging (Albany NY) 2019; 10:2755-2771. [PMID: 30341253 PMCID: PMC6224241 DOI: 10.18632/aging.101585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/26/2018] [Indexed: 12/18/2022]
Abstract
Chemoradiotherapy combined with surgical resection is the standard treatment for locally advanced rectal cancer, but not all the patients respond to neoadjuvant treatment. Transforming acidic coiled-coil protein-3 (TACC3) is frequently aberrantly expressed in rectal cancer tissue. In this study, we investigated whether TACC3 could serve as a biomarker predictive of the efficacy of chemoradiotherapy. In all, 152 rectal cancer patients with tumor tissue collected at biopsy and set aside before treatment were enrolled in this study. All patients received chemoradiotherapy and surgical resection. Immunohistochemically detected tumoral TACC3 expression significantly decreased sensitivity to chemoradiotherapy [risk ratio (RR) = 2.236, 95% confidence interval (CI): 1.447-3.456; P = 0.001] and thus the pathological complete response rate (P = 0.001). TACC3 knockdown using specific siRNA enhanced radiotherapy-induced decreases in proliferation and colony formation by HCT116 and SW480 cells and increased the incidence of radiotherapy-induced apoptosis. Cox multivariate analysis showed that TACC3 was a significant prognostic factor for overall survival (P = 0.017) and disease-free survival (P = 0.020). These findings suggest TACC3 expression may be predictive of chemoradiotherapy sensitivity and prognosis in locally advanced rectal cancer.
Collapse
Affiliation(s)
- Wen-Juan Ma
- State Key Laboratory of Oncology in Southern China, Guangzhou, Guangdong, P.R. China.,Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, P.R. China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Yang-Kui Gu
- State Key Laboratory of Oncology in Southern China, Guangzhou, Guangdong, P.R. China.,Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, P.R. China.,Microinvasive Interventional Department, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Jian-Hong Peng
- State Key Laboratory of Oncology in Southern China, Guangzhou, Guangdong, P.R. China.,Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China.,Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, P.R. China
| | - Xue-Cen Wang
- State Key Laboratory of Oncology in Southern China, Guangzhou, Guangdong, P.R. China.,Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, P.R. China
| | - Xin Yue
- State Key Laboratory of Oncology in Southern China, Guangzhou, Guangdong, P.R. China.,Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, P.R. China
| | - Zhi-Zhong Pan
- State Key Laboratory of Oncology in Southern China, Guangzhou, Guangdong, P.R. China.,Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China.,Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, P.R. China
| | - Gong Chen
- State Key Laboratory of Oncology in Southern China, Guangzhou, Guangdong, P.R. China.,Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China.,Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, P.R. China
| | - Hai-Neng Xu
- Ovarian Cancer Research Center, Division of Gynecology Oncology, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhong-Guo Zhou
- State Key Laboratory of Oncology in Southern China, Guangzhou, Guangdong, P.R. China.,Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, P.R. China.,Department of Hepatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Rong-Xin Zhang
- State Key Laboratory of Oncology in Southern China, Guangzhou, Guangdong, P.R. China.,Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China.,Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
242
|
ADAMDEC1 and FGF2/FGFR1 signaling constitute a positive feedback loop to maintain GBM cancer stem cells. Mol Cell Oncol 2019; 7:1684787. [PMID: 31993498 DOI: 10.1080/23723556.2019.1684787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 10/25/2022]
Abstract
Identification of targetable mechanisms that maintain glioblastoma cancer stem cells (CSCs) remain a priority. Our study reveals a new mechanism by which a disintegrin and metalloproteinase domain-like protein decysin 1 promotes CSC maintenance through the activation of a fibroblast growth factor autocrine signaling loop, which can be blocked pharmacologically.
Collapse
|
243
|
Jimenez-Pascual A, Hale JS, Kordowski A, Pugh J, Silver DJ, Bayik D, Roversi G, Alban TJ, Rao S, Chen R, McIntyre TM, Colombo G, Taraboletti G, Holmberg KO, Forsberg-Nilsson K, Lathia JD, Siebzehnrubl FA. ADAMDEC1 Maintains a Growth Factor Signaling Loop in Cancer Stem Cells. Cancer Discov 2019; 9:1574-1589. [PMID: 31434712 PMCID: PMC7400732 DOI: 10.1158/2159-8290.cd-18-1308] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 07/02/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023]
Abstract
Glioblastomas (GBM) are lethal brain tumors where poor outcome is attributed to cellular heterogeneity, therapeutic resistance, and a highly infiltrative nature. These characteristics are preferentially linked to GBM cancer stem cells (GSC), but how GSCs maintain their stemness is incompletely understood and the subject of intense investigation. Here, we identify a novel signaling loop that induces and maintains GSCs consisting of an atypical metalloproteinase, ADAMDEC1, secreted by GSCs. ADAMDEC1 rapidly solubilizes FGF2 to stimulate FGFR1 expressed on GSCs. FGFR1 signaling induces upregulation of ZEB1 via ERK1/2 that regulates ADAMDEC1 expression through miR-203, creating a positive feedback loop. Genetic or pharmacologic targeting of components of this axis attenuates self-renewal and tumor growth. These findings reveal a new signaling axis for GSC maintenance and highlight ADAMDEC1 and FGFR1 as potential therapeutic targets in GBM. SIGNIFICANCE: Cancer stem cells (CSC) drive tumor growth in many cancers including GBM. We identified a novel sheddase, ADAMDEC1, which initiates an FGF autocrine loop to promote stemness in CSCs. This loop can be targeted to reduce GBM growth.This article is highlighted in the In This Issue feature, p. 1469.
Collapse
Affiliation(s)
- Ana Jimenez-Pascual
- Cardiff University School of Biosciences, European Cancer Stem Cell Research Institute, Cardiff, United Kingdom
| | - James S Hale
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.
- Case Comprehensive Cancer Center, Cleveland, Ohio
| | - Anja Kordowski
- Cardiff University School of Biosciences, European Cancer Stem Cell Research Institute, Cardiff, United Kingdom
| | - Jamie Pugh
- Cardiff University School of Biosciences, European Cancer Stem Cell Research Institute, Cardiff, United Kingdom
| | - Daniel J Silver
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Case Comprehensive Cancer Center, Cleveland, Ohio
| | - Defne Bayik
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Case Comprehensive Cancer Center, Cleveland, Ohio
| | - Gustavo Roversi
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Tyler J Alban
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Case Comprehensive Cancer Center, Cleveland, Ohio
- Department of Molecular Medicine, Cleveland Clinic, Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - Shilpa Rao
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Case Comprehensive Cancer Center, Cleveland, Ohio
| | - Rui Chen
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Thomas M McIntyre
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Case Comprehensive Cancer Center, Cleveland, Ohio
- Department of Molecular Medicine, Cleveland Clinic, Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - Giorgio Colombo
- Department of Chemistry, University of Pavia and Institute of Molecular Recognition Chemistry (ICRM-CNR), Milano, Italy
| | | | - Karl O Holmberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Karin Forsberg-Nilsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Justin D Lathia
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.
- Case Comprehensive Cancer Center, Cleveland, Ohio
- Department of Molecular Medicine, Cleveland Clinic, Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - Florian A Siebzehnrubl
- Cardiff University School of Biosciences, European Cancer Stem Cell Research Institute, Cardiff, United Kingdom.
| |
Collapse
|
244
|
Lucas CHG, Solomon DA, Perry A. A review of recently described genetic alterations in central nervous system tumors. Hum Pathol 2019; 96:56-66. [PMID: 31678207 DOI: 10.1016/j.humpath.2019.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 12/16/2022]
Abstract
Advances in molecular profiling of central nervous system tumors have enabled the development of classification schemes with improved diagnostic and prognostic accuracy. As such, the 2016 World Health Organization Classification of Tumors of the Central Nervous System (WHO 2016) introduced a paradigm shift in the diagnosis of brain tumors. For instance, integrated assessment incorporating both histologic features and genetic alterations was introduced into the diagnostic framework of gliomas. IDH1/2 mutation status now represents the most important initial stratifier of diffuse gliomas in adults, although rarer subtypes within the IDH-wildtype category continue to be elucidated. Medulloblastomas and other embryonal neoplasms were also genetically defined and segregated based on molecular subtypes, and 1 molecular subtype of ependymoma was added. In this review, we summarize the rapidly evolving spectrum of recurrent genetic alterations described in central nervous system tumor entities since the publication of the WHO 2016.
Collapse
Affiliation(s)
| | - David A Solomon
- Department of Pathology, University of California, San Francisco, CA, 94143 USA; Clinical Cancer Genomics Laboratory, University of California, San Francisco, CA, 94143 USA
| | - Arie Perry
- Department of Pathology, University of California, San Francisco, CA, 94143 USA; Department of Neurological Surgery, University of California, San Francisco, CA, 94143 USA.
| |
Collapse
|
245
|
Granberg KJ, Raita A, Lehtinen B, Tiihonen AM, Kesseli J, Annala M, Rodriguez-Martinez A, Nordfors K, Zhang W, Visakorpi T, Nykter M, Haapasalo H. Moderate-to-strong expression of FGFR3 and TP53 alterations in a subpopulation of choroid plexus tumors. Histol Histopathol 2019; 35:673-680. [PMID: 31660579 DOI: 10.14670/hh-18-180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Deregulation of fibroblast growth factor receptor (FGFR) signaling is tightly associated with numerous human malignancies, including cancer. Indeed, FGFR inhibitors are being tested as anti-tumor drugs in clinical trials. Among gliomas, FGFR3 fusions occur in IDH wild-type diffuse gliomas leading to high FGFR3 protein expression and both, FGFR3 and FGFR1, show elevated expression in aggressive ependymomas. The aim of this study was to uncover the expression of FGFR1 and FGFR3 proteins in choroid plexus tumors and to further characterize FGFR-related as well as other genetic alterations in FGFR3 expressing tumors. Expression levels of FGFR1 and FGFR3 were detected in 15 choroid plexus tumor tissues using immunohistochemistry of tissue microarrays and 6 samples were subjected to whole mount FGFR3 staining. Targeted sequencing was used for deeper molecular analysis of two FGFR3 positive cases. Moderate expression of FGFR1 or FGFR3 was evidenced in one third of the studied choroid plexus tumors. Targeted sequencing of a choroid plexus carcinoma and an atypical choroid plexus papilloma, both with moderate-to-strong FGFR3 expression, revealed lack of protein-altering mutations or fusions in FGFR1 or FGFR3, but TP53 was altered in both tumors. FGFR3 and FGFR1 proteins are expressed in a subpopulation of choroid plexus tumors. Further studies using larger cohorts of patients will allow identification of the clinicopathological implications of FGFR1 and FGFR3 expression in choroid plexus tumors.
Collapse
Affiliation(s)
- Kirsi J Granberg
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland. .,Tays Cancer Center, Tampere University Hospital, Tampere, Finland.,Science Center, Tampere University Hospital, Tampere, Finland
| | - Annina Raita
- Fimlab Laboratories Ltd., Tampere University Hospital, Tampere, Finland.,Department of Pathology, Tampere University, Tampere, Finland
| | - Birgitta Lehtinen
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland.,BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Aliisa M Tiihonen
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland.,BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Juha Kesseli
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland.,BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Matti Annala
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland.,BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Alejandra Rodriguez-Martinez
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland.,BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Kristiina Nordfors
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland.,Tampere Center for Child Health Research, Tampere University, Tampere, Finland
| | - Wei Zhang
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston-Salem, NC USA
| | - Tapio Visakorpi
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland.,Fimlab Laboratories Ltd., Tampere University Hospital, Tampere, Finland.,BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Matti Nykter
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland.,Science Center, Tampere University Hospital, Tampere, Finland.,BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Hannu Haapasalo
- Fimlab Laboratories Ltd., Tampere University Hospital, Tampere, Finland.,Department of Pathology, Tampere University, Tampere, Finland
| |
Collapse
|
246
|
Matteoni S, Abbruzzese C, Villani V, Malorni W, Pace A, Matarrese P, Paggi MG. The influence of patient sex on clinical approaches to malignant glioma. Cancer Lett 2019; 468:41-47. [PMID: 31605777 DOI: 10.1016/j.canlet.2019.10.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/01/2019] [Accepted: 10/04/2019] [Indexed: 02/07/2023]
Abstract
Gliomas are tumors that originate from the glial tissue, thus involving the central nervous system with varying degrees of malignancy. The most aggressive and frequent form is glioblastoma multiforme, a disease characterized by resistance to therapies, frequent recurrences, and extremely poor median survival time. Data on overall glioma case studies demonstrate clear sex disparities regarding incidence, prognosis, drug toxicity, clinical outcome, and, recently, prediction of therapeutic response. In this study, we analyze data in the literature regarding malignant glioma, mainly glioblastoma multiforme, focusing on epidemiological and clinical evaluations. Less discussed issues, such as the role of viral infections, energy metabolism, and predictive aspects concerning the possible use of dedicated therapeutic approaches for male or female patients, will be reported together with different estimated pathogenetic mechanisms underlying astrocyte transformation and glioma chemosensitivity. In this era, where personalized/precision medicine is the most important driver for targeted cancer therapies, the lines of evidence discussed herein strongly suggest that clinical approaches to malignant glioma should consider the patient's sex. Furthermore, retrospectively revising previous clinical studies considering patient sex as a crucial variable is recommended.
Collapse
Affiliation(s)
- Silvia Matteoni
- IRCCS - Regina Elena National Cancer Institute, 00144, Rome, Italy
| | | | - Veronica Villani
- IRCCS - Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Walter Malorni
- Istituto Superiore di Sanità, 00161, Rome, Italy; University of Tor Vergata, 00133, Rome, Italy
| | - Andrea Pace
- IRCCS - Regina Elena National Cancer Institute, 00144, Rome, Italy
| | | | - Marco G Paggi
- IRCCS - Regina Elena National Cancer Institute, 00144, Rome, Italy.
| |
Collapse
|
247
|
Wang D, Yang L, Yu W, Zhang Y. Investigational fibroblast growth factor receptor 2 antagonists in early phase clinical trials to treat solid tumors. Expert Opin Investig Drugs 2019; 28:903-916. [PMID: 31560229 DOI: 10.1080/13543784.2019.1672655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023]
Abstract
Introduction: Fibroblast growth factor receptor 2 (FGFR2) is a highly conserved transmembrane tyrosine kinase receptor. FGFR2 dysregulation occurs in numerous human solid tumors and overexpression is closely associated with tumor progression. FGFR2 has recently been reported as a therapeutic target for cancer. Several targeted therapies are being investigated to disrupt FGFR2 activity; these include multi-target tyrosine kinase inhibitors (TKIs), pan-FGFR targeted TKIs and FGFR2 monoclonal antibodies. Areas: This review examines FGFR2 regulation and function in cancer and its potential as a target for cancer treatment. Expert opinion: Highly specific FGFR2 blockers have not yet been developed and moreover, resistance to FGFR2-targeted therapies is a challenge. More sophisticated patient selection strategies would help improve FGFR2-targeted therapies and combination therapy is considered the most promising approach for cancer patients with FGFR2 alterations.
Collapse
Affiliation(s)
- Dan Wang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , P.R. China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , P.R. China
- Henan Key Laboratory for Tumor Immunology and Biotherapy , Zhengzhou , Henan , P.R. China
| | - Li Yang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , P.R. China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , P.R. China
- Henan Key Laboratory for Tumor Immunology and Biotherapy , Zhengzhou , Henan , P.R. China
| | - Weina Yu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , P.R. China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , P.R. China
- Henan Key Laboratory for Tumor Immunology and Biotherapy , Zhengzhou , Henan , P.R. China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , P.R. China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , P.R. China
- Henan Key Laboratory for Tumor Immunology and Biotherapy , Zhengzhou , Henan , P.R. China
- School of Life Sciences, Zhengzhou University , Zhengzhou , Henan , P.R. China
| |
Collapse
|
248
|
Le Rhun E, Preusser M, Roth P, Reardon DA, van den Bent M, Wen P, Reifenberger G, Weller M. Molecular targeted therapy of glioblastoma. Cancer Treat Rev 2019; 80:101896. [PMID: 31541850 DOI: 10.1016/j.ctrv.2019.101896] [Citation(s) in RCA: 421] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 09/09/2019] [Indexed: 01/30/2023]
Abstract
Glioblastomas are intrinsic brain tumors thought to originate from neuroglial stem or progenitor cells. More than 90% of glioblastomas are isocitrate dehydrogenase (IDH)-wildtype tumors. Incidence increases with age, males are more often affected. Beyond rare instances of genetic predisposition and irradiation exposure, there are no known glioblastoma risk factors. Surgery as safely feasible followed by involved-field radiotherapy plus concomitant and maintenance temozolomide chemotherapy define the standard of care since 2005. Except for prolonged progression-free, but not overall survival afforded by the vascular endothelial growth factor antibody, bevacizumab, no pharmacological intervention has been demonstrated to alter the course of disease. Specifically, targeting cellular pathways frequently altered in glioblastoma, such as the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR), the p53 and the retinoblastoma (RB) pathways, or epidermal growth factor receptor (EGFR) gene amplification or mutation, have failed to improve outcome, likely because of redundant compensatory mechanisms, insufficient target coverage related in part to the blood brain barrier, or poor tolerability and safety. Yet, uncommon glioblastoma subsets may exhibit specific vulnerabilities amenable to targeted interventions, including, but not limited to: high tumor mutational burden, BRAF mutation, neurotrophic tryrosine receptor kinase (NTRK) or fibroblast growth factor receptor (FGFR) gene fusions, and MET gene amplification or fusions. There is increasing interest in targeting not only the tumor cells, but also the microenvironment, including blood vessels, the monocyte/macrophage/microglia compartment, or T cells. Improved clinical trial designs using pharmacodynamic endpoints in enriched patient populations will be required to develop better treatments for glioblastoma.
Collapse
Affiliation(s)
- Emilie Le Rhun
- Department of Neurology & Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland; Neuro-oncology, Department of Neurosurgery, University Hospital, Lille, France
| | - Matthias Preusser
- Department of Medicine I, Division of Oncology, and Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Patrick Roth
- Department of Neurology & Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - David A Reardon
- Dana-Farber Cancer Institute, and Harvard Medical School, Boston, MA, USA
| | - Martin van den Bent
- Brain Tumor Center, Erasmus MC Cancer Institute, 3015 GD Rotterdam, Netherlands
| | - Patrick Wen
- Dana-Farber Cancer Institute, and Harvard Medical School, Boston, MA, USA
| | - Guido Reifenberger
- Institute of Neuropathology, Heinrich Heine University, Medical Faculty, Düsseldorf, and German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Germany
| | - Michael Weller
- Department of Neurology & Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland.
| |
Collapse
|
249
|
Lowe S, Bhat KP, Olar A. Current clinical management of patients with glioblastoma. Cancer Rep (Hoboken) 2019; 2:e1216. [PMID: 32721125 DOI: 10.1002/cnr2.1216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/11/2019] [Accepted: 04/29/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Glioblastoma (GB) is the most aggressive primary brain tumor, historically resistant to treatment, and with overall fatal outcome. RECENT FINDINGS Recently, several molecular subgroups and rare genetic alterations have been described in GB. In this review article, we will describe the current clinical management of patients with GB in the United States, discuss selected next-generation molecular-targeted therapies in GB, and present ongoing clinical trials for patients with GB. This review is intended for clinical and preclinical researchers who conduct work on GB and would like to understand more about the current standard of treatment of GB patients, historical perspectives, current challenges, and ongoing and upcoming clinical trials. CONCLUSIONS GB is an extremely complex disease, and despite recent progress and advanced therapeutic strategies, the overall patient's prognosis remains dismal. Innovative strategies and integrative ways of approach to disease are urgently needed.
Collapse
Affiliation(s)
- Stephen Lowe
- Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina
| | - Krishna P Bhat
- Deparment of Translational Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Adriana Olar
- Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina.,Departments of Pathology and Laboratory Medicine, Medical University of South Carolina & Hollings Cancer Center, Charleston, South Carolina
| |
Collapse
|
250
|
Wu H, Li X, Li H. Gene fusions and chimeric RNAs, and their implications in cancer. Genes Dis 2019; 6:385-390. [PMID: 31832518 PMCID: PMC6889028 DOI: 10.1016/j.gendis.2019.08.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/03/2019] [Accepted: 08/21/2019] [Indexed: 01/26/2023] Open
Abstract
Gene fusions are appreciated as ideal cancer biomarkers and therapeutic targets. Chimeric RNAs are traditionally thought to be products of gene fusions, and thus, also cancer-specific. Recent research has demonstrated that chimeric RNAs can be generated by intergenic splicing in the absence of gene fusion, and such chimeric RNAs are also found in normal physiology. These new findings challenge the traditional theory of chimeric RNAs exclusivity to cancer, and complicates use of chimeric RNAs in cancer detection. Here, we provide an overview of gene fusions and chimeric RNAs, and emphasize their differences. We note that gene fusions are able to generate chimeric RNAs in accordance with the central dogma of biology, and that chimeric RNAs may also be able to influence the generation of the gene fusions per the “horse before the cart” hypothesis. We further expand upon the “horse before the cart” hypothesis, summarizing current evidence in support of the theory and exploring its potential impact on the field.
Collapse
Affiliation(s)
- Hao Wu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Xiaorong Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Hui Li
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
- Corresponding author. Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA. Fax: +1 434 2437244. http://lilab.medicine.virginia.edu
| |
Collapse
|