201
|
Ibe S, Fujita K, Toyomoto T, Shimazaki N, Kaneko R, Tanabe A, Takebe I, Kuroda S, Kobayashi T, Toji S, Tamai K, Yamamoto H, Koiwai O. Terminal deoxynucleotidyltransferase is negatively regulated by direct interaction with proliferating cell nuclear antigen. Genes Cells 2001; 6:815-24. [PMID: 11554927 DOI: 10.1046/j.1365-2443.2001.00460.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The repertoires of Ig and TcR are generated by a combinatorial rearrangement of variable (V), diversity (D), and joining (J) segments (V(D)J recombination) in B- and T-cells. Terminal deoxynucleotidyltransferase (TdT) adds extra nucleotides (N nucleotides) at the junctions of the gene segments to enhance the Ig and TcR genes diversity. Using an anti-TdT antibody column, TdT has been purified as a member of a megadalton protein complex from rat thymus. The N region would be synthesized with the large protein complex. RESULTS The cDNAs for proliferating cell nuclear antigen (PCNA) were isolated by yeast two-hybrid screening as the gene products which directly interacted with TdT. The interaction between PCNA and TdT was confirmed by co-immunoprecipitation, both in vitro and in vivo. TdT binds directly to a PCNA trimer, as shown by gel filtration. TdT interacts with PCNA in its DNA polymerization domain (DPD), but not in its BRCA-1 C-terminal (BRCT) domain. TdT activity was reduced to 17% of the maximum value by TdT/PCNA complex formation. CONCLUSION TdT interacts directly with PCNA through its DPD. A functional consequence of this interaction is the negative regulation of TdT activity. These findings suggest that TdT catalyses the addition of N nucleotides under the negative control of PCNA during V(D)J recombination.
Collapse
Affiliation(s)
- S Ibe
- Faculty of Science and Technology, Department of Applied Biological Science, Science University of Tokyo, Noda, Chiba 278-8510, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Zhao F, Vilardi A, Neely RJ, Choi JK. Promotion of cell cycle progression by basic helix-loop-helix E2A. Mol Cell Biol 2001; 21:6346-57. [PMID: 11509675 PMCID: PMC87370 DOI: 10.1128/mcb.21.18.6346-6357.2001] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Normal B-cell development requires the E2A gene and its encoded transcription factors E12 and E47. Current models predict that E2A promotes cell differentiation and inhibits G(1) cell cycle progression. The latter raises the conundrum of how B cells proliferate while expressing high levels of E2A protein. To study the relationship between E2A and cell proliferation, we established a tissue culture-based model in which the activity of E2A can be modulated in an inducible manner using E47R, an E47-estrogen fusion construct, and E47ERT, a dominant negative E47-estrogen fusion construct. The two constructs were subcloned into retroviral vectors and expressed in the human pre-B-cell line 697, the human myeloid progenitor cell line K562, and the murine fibroblastic cell line NIH 3T3. In both B cells and non-B cells, suppression of E2A activity by E47ERT inhibited G(1) progression and was associated with decreased expression of multiple cyclins including the G(1)-phase cyclin D2 and cyclin D3. Consistent with these findings, E2A null mice expressed decreased levels of cyclin D2 and cyclin D3 transcripts. In complementary experiments, ectopic expression of E47R promoted G(1) progression and was associated with increased levels of multiple cyclins, including cyclin D2 and cyclin D3. The induction of some cyclin transcripts occurred even in the absence of protein synthesis. We conclude that, in some cells, E2A can promote cell cycle progression, contrary to the present view that E2A inhibits G(1) progression.
Collapse
Affiliation(s)
- F Zhao
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
203
|
Boulé JB, Rougeon F, Papanicolaou C. Terminal deoxynucleotidyl transferase indiscriminately incorporates ribonucleotides and deoxyribonucleotides. J Biol Chem 2001; 276:31388-93. [PMID: 11406636 DOI: 10.1074/jbc.m105272200] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Terminal deoxynucleotidyl transferase (TdT) catalyzes the condensation of deoxyribonucleotides on 3'-hydroxyl ends of DNA strands in a template-independent manner and adds N-regions to gene segment junctions during V(D)J recombination. Although TdT is able to incorporate a few ribonucleotides in vitro, TdT discrimination between ribo- and deoxyribonucleotides has never been studied. We found that TdT shows only a minor preference for incorporation of deoxyribonucleotides over ribonucleotides on DNA strands. However, incorporation of ribonucleotides alone or in the presence of deoxyribonucleotides generally leads to premature chain termination, reflecting an impeded accommodation of ribo- or mixed ribo/deoxyribonucleic acid substrates by TdT. An essential catalytic aspartate in TdT was identified, which is a first step toward understanding the apparent lack of sugar discrimination by TdT.
Collapse
Affiliation(s)
- J B Boulé
- Unité de Génétique et Biochimie du Développement, URA CNRS 1960, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France
| | | | | |
Collapse
|
204
|
Abstract
B cell development is a highly regulated process whereby functional peripheral subsets are produced from hematopoietic stem cells, in the fetal liver before birth and in the bone marrow afterward. Here we review progress in understanding some aspects of this process in the mouse bone marrow, focusing on delineation of the earliest stages of commitment, on pre-B cell receptor selection, and B cell tolerance during the immature-to-mature B cell transition. Then we note some of the distinctions in hematopoiesis and pre-B selection between fetal liver and adult bone marrow, drawing a connection from fetal development to B-1/CD5(+) B cells. Finally, focusing on CD5(+) cells, we consider the forces that influence the generation and maintenance of this distinctive peripheral B cell population, enriched for natural autoreactive specificities that are encoded by particular germline V(H)-V(L) combinations.
Collapse
Affiliation(s)
- R R Hardy
- Institute for Cancer Research, Fox Chase Cancer Center, 7701 Burholme Ave., Philadelphia, Pennsylvania 19111, USA.
| | | |
Collapse
|
205
|
Gonda H, Sugai M, Katakai T, Sugo N, Aratani Y, Koyama H, Mori KJ, Shimizu A. DNA polymerase beta is not essential for the formation of palindromic (P) region of T cell receptor gene. Immunol Lett 2001; 78:45-9. [PMID: 11470151 DOI: 10.1016/s0165-2478(01)00232-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Formation of palindromic (P) region at the variable (V)-diversity (D)-joining (J) junction in DNA polymerase beta (pol-beta) deficient mice were investigated by sequencing of reverse transcriptase-polymerase chain reaction (RT-PCR) products of mRNAs encoding the beta chain of T cell receptor (TCR). Total 42 and 43 cDNA clones encoding V(beta8)-D(beta)-J(beta)-C(beta) from E18.5 embryonic thymocytes of pol-beta gene knocked-out and wild type control mouse, respectively, were sequenced. Among them five and six clones from pol-beta knocked-out and wild type, respectively, have P insertions of two nucleotides. This result unequivocally indicates that pol-beta, which is one of the repair-type DNA polymerases most abundantly expressed in thymus and spleen, is not essential for the formation of P region.
Collapse
Affiliation(s)
- H Gonda
- Center for Molecular Biology and Genetics, Kyoto University, 53 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | |
Collapse
|
206
|
Yamashita N, Shimazaki N, Ibe S, Kaneko R, Tanabe A, Toyomoto T, Fujita K, Hasegawa T, Toji S, Tamai K, Yamamoto H, Koiwai O. Terminal deoxynucleotidyltransferase directly interacts with a novel nuclear protein that is homologous to p65. Genes Cells 2001; 6:641-52. [PMID: 11473582 DOI: 10.1046/j.1365-2443.2001.00449.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Terminal deoxynucleotidyltransferase (TdT) is a DNA polymerase that enhances Ig and TcR gene diversity in the N region in B- and T-cells. TdT is found as a member of a large protein complex in the lysate of the thymocytes. To elucidate the molecular mechanism of the synthesis of the N region, we first attempted to isolate the genes with products that are interacting directly with TdT. RESULTS Using a yeast two-hybrid system, we isolated a cDNA clone encoding a novel nuclear protein that interacts with TdT. This protein was designated as TdT interacting factor 1 (TdIF1). TdIF1 has a high degree of homology to the transcription factor p65, which belongs to the nuclear receptor superfamily. TdIF1 contains HMG-I and HMG-Y DNA binding domains (AT-hooks) and can bind to single- and double-stranded DNA. TdT and TdIF1 were co-eluted at position 232 kDa by gel filtration of MOLT4 lysate. TdIF1 can enhance TdT activity fourfold in vitro assay system using oligo(dT)16 as primers. CONCLUSIONS TdIF1 binds directly to TdT, both in vitro and in vivo. TdIF1 and TdT exist as the members of a 232 kDa protein complex. TdIF1 can enhance TdT activity maximum fourfold in vitro assay system, suggesting that it positively regulates the synthesis of the N region during V(D)J recombination in the Ig and TcR genes.
Collapse
Affiliation(s)
- N Yamashita
- Faculty of Science & Technology, Department of Applied Biological Science, Science University of Tokyo, Noda, Chiba 278-8510, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Strauchen JA, Miller LK. Terminal deoxynucleotidyl transferase-positive cells in human tonsils. Am J Clin Pathol 2001; 116:12-6. [PMID: 11447741 DOI: 10.1309/m8v2-dwpb-dvx1-ubpc] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
To study the possible cellular origin of recently recognized indolent terminal deoxynucleotidyl transferase (TdT)-positive T-lymphoblastic proliferations of the tonsils and oropharynx, we studied normal human tonsils for the presence of TdT-positive cells. TdT-positive cells were readily demonstrated in the tonsils from 15 children and adults by immunohistochemical staining. TdT-positive cells were distributed in discrete foci at the periphery of lobules of lymphoid tissue and adjacent to fibrous septa and had the morphologic features of small to medium-sized lymphocytes. Double-antibody staining indicated the TdT-positive cells had the phenotype of uncommitted early lymphoid precursors (CD3-, CD79a-, CD10-). Foci of TdT-positive cells were not identified in 6 reactive lymph nodes studied as controls. These studies indicate that tonsils, like bone marrow and thymus, are sites of lymphopoiesis. The presence of TdT-positive precursor cells in human tonsils may be a factor in the pathogenesis of recently described indolent T-lymphoblastic proliferations involving the tonsils and oropharynx. The presence of TdT-positive cells in human tonsils should not be misinterpreted as evidence of lymphoblastic lymphoma or leukemia.
Collapse
Affiliation(s)
- J A Strauchen
- Dept of Pathology, Mount Sinai School of Medicine, One Gustave Levy Place, New York, NY 10029, USA
| | | |
Collapse
|
208
|
Kouro T, Medina KL, Oritani K, Kincade PW. Characteristics of early murine B-lymphocyte precursors and their direct sensitivity to negative regulators. Blood 2001; 97:2708-15. [PMID: 11313262 DOI: 10.1182/blood.v97.9.2708] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Recently, a collection of surface markers was exploited to isolate viable Lin(-) TdT(+) cells from murine bone marrow. These early pro-B cells were enriched for B-lineage lymphocyte precursor activity measured by short-term culture and had little responsiveness to myeloid growth factors. Early precursors can be propagated with remarkably high cloning frequencies in stromal cell-free, serum-free cultures, permitting this analysis of direct regulatory factors. Expression of the interleukin-7 receptor (IL-7Ralpha) chain marks functional precursors and IL-7 is necessary for progression beyond the CD45RA(+) CD19(-) stage. Efficient survival and differentiation were only observed when stem cell factor and Flt-3 ligand were also present. IL-7-responsive CD19(+) precursors are estrogen resistant. However, B-lineage differentiation was selectively abrogated when highly purified Lin(-) precursors were treated with hormone in the absence of stromal cells. In addition, early stages of B lymphopoiesis were arrested by limitin, a new interferon (IFN)-like cytokine as well as IFN-alpha, IFN-gamma, or transforming growth factor beta (TGF-beta), but not by epidermal growth factor (EGF). Lin(-) TdT(+) early pro-B cells are shown here to be CD27(+) AA4.1(+/-)Ki-67(+) Ly-6C(-) Ly-6A/Sca-1(Lo/-)Thy-1(-)CD43(+) CD4(+/-)CD16/32(Lo/-)CD44(Hi) and similar in some respects to the "common lymphoid progenitors" (CLP) identified by others. Although early pro-B cells have lost myeloid differentiation potential, transplantation experiments described here reveal that at least some can generate T lymphocytes. Of particular importance is the demonstration that a pivotal early stage of lymphopoiesis is directly sensitive to negative regulation by hormones and cytokines.
Collapse
Affiliation(s)
- T Kouro
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|
209
|
Sekiguchi JM, Gao Y, Gu Y, Frank K, Sun Y, Chaudhuri J, Zhu C, Cheng HL, Manis J, Ferguson D, Davidson L, Greenberg ME, Alt FW. Nonhomologous end-joining proteins are required for V(D)J recombination, normal growth, and neurogenesis. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2001; 64:169-81. [PMID: 11232282 DOI: 10.1101/sqb.1999.64.169] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- J M Sekiguchi
- Howard Hughes Medical Institute, Children's Hospital, Center for Blood Research, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Purugganan MM, Shah S, Kearney JF, Roth DB. Ku80 is required for addition of N nucleotides to V(D)J recombination junctions by terminal deoxynucleotidyl transferase. Nucleic Acids Res 2001; 29:1638-46. [PMID: 11266568 PMCID: PMC31272 DOI: 10.1093/nar/29.7.1638] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
V(D)J recombination generates a remarkably diverse repertoire of antigen receptors through the rearrangement of germline DNA. Terminal deoxynucleotidyl transferase (TdT), a polymerase that adds random nucleotides (N regions) to recombination junctions, is a key enzyme contributing to this diversity. The current model is that TdT adds N regions during V(D)J recombination by random collision with the DNA ends, without a dependence on other cellular factors. We previously demonstrated, however, that V(D)J junctions from Ku80-deficient mice unexpectedly lack N regions, although the mechanism responsible for this effect remains undefined in the mouse system. One possibility is that junctions are formed in these mice during a stage in development when TdT is not expressed. Alternatively, Ku80 may be required for the expression, nuclear localization or enzymatic activity of TdT. Here we show that V(D)J junctions isolated from Ku80-deficient fibroblasts are devoid of N regions, as were junctions in Ku80-deficient mice. In these cells TdT protein is abundant at the time of recombination, localizes properly to the nucleus and is enzymatically active. Based on these data, we propose that TdT does not add to recombination junctions through random collision but is actively recruited to the V(D)J recombinase complex by Ku80.
Collapse
Affiliation(s)
- M M Purugganan
- Department of Immunology, M929, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
211
|
Shimamura M, Miura-Ohnuma J, Huang YY. Major sites for the differentiation of V alpha 14(+) NKT cells inferred from the V-J junctional sequences of the invariant T-cell receptor alpha chain. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:56-61. [PMID: 11121102 DOI: 10.1046/j.1432-1327.2001.01842.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
CD1d-restricted mouse NK1.1(+) TCR alpha beta(+) natural killer T (NKT) cells predominantly use an invariant TCR alpha chain encoded by V alpha 14 and J alpha 281 gene segments with a one-nucleotide N region. We found that NKT cells generated in the culture of fetal liver precursors possessed V alpha 14-J alpha 281 junctions that could be produced without the action of terminal deoxyribonucleotidyl transferase (TdT), indicating that NKT cells derived from fetal liver precursors are distinguishable from those from adult precursors with TdT expression. In fact, the frequency of the fetal-form sequences decreased with ageing. Surprisingly, the fetal-type sequences were predominantly observed in the lymphoid organs of athymic mice with the exception of bone marrow, where a sequence peculiar to the organ, with TdT-involved conversion from the invariant junction, was frequently present. These findings suggest that there are two independent sites of V alpha 14(+) NKT cell development, the hematopoietic organs throughout life (the developing liver and adult bone marrow) and, principally, the mature thymus.
Collapse
Affiliation(s)
- M Shimamura
- Mitsubishi Kasei Institute of Life Sciences, Machida, Tokyo, Japan.
| | | | | |
Collapse
|
212
|
Williams CJ, Grandal I, Vesprini DJ, Wojtyra U, Danska JS, Guidos CJ. Irradiation promotes V(D)J joining and RAG-dependent neoplastic transformation in SCID T-cell precursors. Mol Cell Biol 2001; 21:400-13. [PMID: 11134329 PMCID: PMC86582 DOI: 10.1128/mcb.21.2.400-413.2001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2000] [Accepted: 10/17/2000] [Indexed: 11/20/2022] Open
Abstract
Defects in the nonhomologous end-joining (NHEJ) pathway of double-stranded DNA break repair severely impair V(D)J joining and selectively predispose mice to the development of lymphoid neoplasia. This connection was first noted in mice with the severe combined immune deficient (SCID) mutation in the DNA-dependent protein kinase (DNA-PK). SCID mice spontaneously develop thymic lymphoma with low incidence and long latency. However, we and others showed that low-dose irradiation of SCID mice dramatically increases the frequency and decreases the latency of thymic lymphomagenesis, but irradiation does not promote the development of other tumors. We have used this model to explore the mechanistic basis by which defects in NHEJ confer selective and profound susceptibility to lymphoid oncogenesis. Here, we show that radiation quantitatively and qualitatively improves V(D)J joining in SCID cells, in the absence of T-cell receptor-mediated cellular selection. Furthermore, we show that the lymphocyte-specific endonuclease encoded by the recombinase-activating genes (RAG-1 and RAG-2) is required for radiation-induced thymic lymphomagenesis in SCID mice. Collectively, these data suggest that irradiation induces a DNA-PK-independent NHEJ pathway that facilitates V(D)J joining, but also promotes oncogenic misjoining of RAG-1/2-induced breaks in SCID T-cell precursors.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cell Division/radiation effects
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/radiation effects
- Complementarity Determining Regions/genetics
- DNA Damage
- DNA Nucleotidyltransferases/metabolism
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Gene Deletion
- Gene Rearrangement, T-Lymphocyte/genetics
- Gene Rearrangement, T-Lymphocyte/radiation effects
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Lymphoma/genetics
- Lymphoma/pathology
- Mice
- Mice, Knockout
- Mice, SCID
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/physiology
- Recombination, Genetic/genetics
- Recombination, Genetic/radiation effects
- Stem Cells/metabolism
- Stem Cells/pathology
- Stem Cells/radiation effects
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
- T-Lymphocytes/radiation effects
- Thymus Neoplasms/genetics
- Thymus Neoplasms/pathology
- Transgenes/genetics
- Tumor Cells, Cultured
- VDJ Recombinases
Collapse
Affiliation(s)
- C J Williams
- Hospital for Sick Children Research Institute and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
213
|
Hofle M, Linthicum DS, Ioerger T. Analysis of diversity of nucleotide and amino acid distributions in the VD and DJ joining regions in Ig heavy chains. Mol Immunol 2000; 37:827-35. [PMID: 11257304 DOI: 10.1016/s0161-5890(00)00110-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Nucleotide fill-in between the germ line V, D and J genes in the H3 loop of immunoglobulins contributes to the diversity of the antibody repertoire. This fill-in process is mediated by terminal deoxynucleotidyl transferase (TdT), which has been widely believed to insert nucleotides in a random fashion. Using a database of 2443 immunoglobulin sequences, we identified the regions of nucleotide fill-in between the V-D and D-J gene regions. We translated the fill-in nucleotides and measured the diversity within the two regions both at the nucleotide and amino acid level. We found that the nucleotide and amino acid distributions that resulted from nucleotide fill-in were in fact not random. Examination of the synonymous substitution rates of nucleotides revealed evidence suggesting that TdT plays a less significant role in generating antibody diversity than previously thought. We observed preferences for polar residues, which are more likely to encourage interaction with ligand than non-polar residues and are often found in loop regions in general. We also observed a preference for the insertion of smaller residues versus larger residues of similar biochemical properties, aiding in loop flexibility. We interpret these findings to reflect the significant influence of biochemical (i.e. folding) constraints and/or binding affinity constraints (at the cellular/selectional level) on the sequence diversity in the H3 region. These constraints act as a filter on the randomness generated by nucleotide addition by TdT, as well as other diversity generating processes such as recombination of VDJ gene segments and somatic mutation. The results of this study suggest that the antibody repertoire might be reduced from what is traditionally believed.
Collapse
Affiliation(s)
- M Hofle
- Department of Computer Science, Texas A&M University, College Station, TX 77843-3112, USA
| | | | | |
Collapse
|
214
|
Harfst E, Cooper S, Neubauer S, Distel L, Grawunder U. Normal V(D)J recombination in cells from patients with Nijmegen breakage syndrome. Mol Immunol 2000; 37:915-29. [PMID: 11282395 DOI: 10.1016/s0161-5890(01)00008-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The majority of antigen receptor diversity in mammals is generated by V(D)J recombination. During this process DNA double strand breaks are introduced at recombination signals by lymphoid specific RAG1/2 proteins generating blunt ended signal ends and hairpinned coding ends. Rejoining of all DNA ends requires ubiquitously expressed DNA repair proteins, such as Ku70/86 and DNA ligase IV/XRCC4. In addition, the formation of coding joints depends on the function of the scid gene encoding the catalytic subunit of DNA-dependent protein kinase, DNA-PK(CS), that is somehow required for processing of coding end hairpins. Recently, it was shown that purified RAG1/2 proteins can cleave DNA hairpins in vitro, but the same activity was also described for a protein complex of the DNA repair proteins Nbs1/Mre11/Rad50. This leaves the possibility that either protein complex might be involved in coding end processing in V(D)J recombination. We have therefore analyzed V(D)J recombination in cells from patients with Nijmegen breakage syndrome, carrying a mutation in the nbs1 gene. We find that V(D)J recombination frequencies and the quality of signal and coding joining are comparable to wild-type controls, as analyzed by a cellular V(D)J recombination assay. In addition, we did not detect significant differences in CDR3 sequences of endogenous Ig lambdaL and kappaL chain gene loci cloned from peripheral blood lymphocytes of an NBS patient and of healthy individuals. These findings suggest that the Nbs1/Mre11/Rad50 complex is not involved in coding end processing of V(D)J recombination.
Collapse
Affiliation(s)
- E Harfst
- Basel Institute for Immunology, Grenzacherstr. 487, CH-4005, Basel, Switzerland
| | | | | | | | | |
Collapse
|
215
|
Boulé JB, Rougeon F, Papanicolaou C. Comparison of the two murine terminal [corrected] deoxynucleotidyltransferase terminal isoforms. A 20-amino acid insertion in the highly conserved carboxyl-terminal region modifies the thermosensitivity but not the catalytic activity. J Biol Chem 2000; 275:28984-8. [PMID: 10878023 DOI: 10.1074/jbc.m005544200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Terminal deoxynucleotidyltransferase (TdT) catalyzes the addition of nucleotides to 3'-hydroxyl ends of DNA strands in a template-independent manner and has been shown to add N-regions to gene segment junctions during V(D)J recombination. TdT is highly conserved in all vertebrate species, with a second isoform, characterized by a 20-amino acid insertion near the COOH-terminal end, described only in the mouse. The two murine isoforms differ in their subcellular localization, and the long isoform (TdTL) has previously been found to be unable to add N-regions. Using purified protein produced in a high level expression system in Escherichia coli, we were able to carry out detailed catalytic comparisons of these two TdT isoforms. We discovered that TdTL exhibits terminal transferase activity with kinetic parameters similar to those of the conserved TdT isoform (TdTS). We observed, however, that TdTL is inactivated at physiologic temperature but stable at lower temperatures. This thermal sensitivity of TdTL polymerase activity is not correlated with a significant change in the circular dichroism spectrum of the protein. Thus, the 20-amino acid insertion in TdTL does not affect the catalytic activity but modifies the thermosensitivity.
Collapse
Affiliation(s)
- J B Boulé
- Unité de Génétique et Biochimie du Développement, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France
| | | | | |
Collapse
|
216
|
Fugmann SD, Lee AI, Shockett PE, Villey IJ, Schatz DG. The RAG proteins and V(D)J recombination: complexes, ends, and transposition. Annu Rev Immunol 2000; 18:495-527. [PMID: 10837067 DOI: 10.1146/annurev.immunol.18.1.495] [Citation(s) in RCA: 450] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
V(D)J recombination proceeds through a series of protein:DNA complexes mediated in part by the RAG1 and RAG2 proteins. These proteins are responsible for sequence-specific DNA recognition and DNA cleavage, and they appear to perform multiple postcleavage roles in the reaction as well. Here we review the interaction of the RAG proteins with DNA, the chemistry of the cleavage reaction, and the higher order complexes in which these events take place. We also discuss postcleavage functions of the RAG proteins, including recent evidence indicating that they initiate the process of coding end processing by nicking hairpin DNA termini. Finally, we discuss the evolutionary and functional implications of the finding that RAG1 and RAG2 constitute a transposase, and we consider RAG protein biochemistry in the context of several bacterial transposition systems. This suggests a model of the RAG protein active site in which two divalent metal ions serve alternating and opposite roles as activators of attacking hydroxyl groups and stabilizers of oxyanion leaving groups.
Collapse
Affiliation(s)
- S D Fugmann
- Howard Hughes Medical Institute, Section of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520-8011, USA
| | | | | | | | | |
Collapse
|
217
|
Abstract
Neonatal animals are able to mount an effective immune response, both humoral and cellular, when immunized using conditions that maximize stimulation of antigen presenting cells, T cells, and B cells. In adults, somatic mutation is a key feature of the humoral immune response because it contributes to the generation of high affinity memory B cells. Recent evidence that B cells in neonatal mice and human infants can somatically mutate their immunoglobulin heavy chains suggests that neonates can utilize somatic mutation not only to diversify their restricted germline antibody repertoire, but also to improve upon this repertoire by the generation of B cells which can produce higher affinity antibodies. By extrapolation, if vaccination of children early in life resulted in somatic mutation and affinity maturation, this could provide a more protective antibody response to childhood diseases.
Collapse
Affiliation(s)
- J L Press
- The Rosenstiel Research Center, Brandeis University, Waltham, MA 02454-9110, USA.
| |
Collapse
|
218
|
Reya T, O'Riordan M, Okamura R, Devaney E, Willert K, Nusse R, Grosschedl R. Wnt signaling regulates B lymphocyte proliferation through a LEF-1 dependent mechanism. Immunity 2000; 13:15-24. [PMID: 10933391 DOI: 10.1016/s1074-7613(00)00004-2] [Citation(s) in RCA: 342] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lymphocyte enhancer factor-1 (LEF-1) is a member of the LEF-1/TCF family of transcription factors, which have been implicated in Wnt signaling and tumorigenesis. LEF-1 was originally identified in pre-B and T cells, but its function in B lymphocyte development remains unknown. Here we report that LEF-1-deficient mice exhibit defects in pro-B cell proliferation and survival in vitro and in vivo. We further show that Lef1-/- pro-B cells display elevated levels of fas and c-myc transcription, providing a potential mechanism for their increased sensitivity to apoptosis. Finally, we establish a link between Wnt signaling and normal B cell development by demonstrating that Wnt proteins are mitogenic for pro-B cells and that this effect is mediated by LEF-1.
Collapse
Affiliation(s)
- T Reya
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, University of California, San Francisco, 94143, USA
| | | | | | | | | | | | | |
Collapse
|
219
|
Alfani E, Migliaccio AR, Sanchez M, Passarelli AM, Migliaccio G. Characterization of the T cell receptor repertoire of neonatal T cells by RT-PCR and single strand conformation polymorphism analysis. Bone Marrow Transplant 2000; 26:83-9. [PMID: 10918409 DOI: 10.1038/sj.bmt.1702434] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have analyzed by reverse transcriptase-polymerase chain reaction (RT-PCR) the individual non-germ line configurations of the T cell receptor (TCR) Vbeta chains expressed by T cells from eight individual cord blood specimens. cDNA from each cord blood was amplified using a common primer coupled with a primer specific for each of 22 variable elements of the Vbeta chain family and the amplified fragments were separated under high resolution conditions. With cDNA from adult blood (as a control), all of the TCR chains were amplified as a smear consistent with the extensive polyclonality of adult T cells. In contrast, a heterogeneous pattern of amplification was observed with cDNAs from cord blood: only 26.7+/-21.9% of the 22 Vbeta chains analyzed were amplified as a smear. The majority of them were amplified as a discrete number of bands (up to 10) (in 68.2 +/-18.7% of samples) and some of them as a single fragment (4.0+/-7.8%). Only one of the eight samples analyzed expressed the majority (72.7%) of its Vbeta chains as a smear, consistent with an adult-like TCR repertoire. In conclusion, cord blood expressed, on average, a less complex TCR repertoire than adult blood.
Collapse
Affiliation(s)
- E Alfani
- Laboratory of Cell Biology, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | |
Collapse
|
220
|
Tuaillon N, Capra JD. Evidence that terminal deoxynucleotidyltransferase expression plays a role in Ig heavy chain gene segment utilization. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:6387-97. [PMID: 10843694 DOI: 10.4049/jimmunol.164.12.6387] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TdT is a nuclear enzyme that catalyzes the addition of random nucleotides at Ig and TCR V(D)J junctions. In this paper we analyze human IgH rearrangements generated from transgenic minilocus mice in the presence or absence of TdT. In the absence of TdT, the pseudo-VH gene segment present in the minilocus is rearranged dramatically more frequently. Additionally, JH6 gene segment utilization is increased as well as the number of rearrangements involving only VH and JH gene segments. Thus, the recombination of IgH gene segments that are flanked by 23-nt spacer recombination signal sequences may be influenced by TdT expression. Extensive analysis indicates that these changes are independent of antigenic selection and cannot be explained by homology-mediated recombination. Thus, the role played by TdT may be more extensive than previously thought.
Collapse
MESH Headings
- Animals
- Antibody Diversity/genetics
- Base Sequence
- Cloning, Molecular
- DNA Nucleotidylexotransferase/biosynthesis
- DNA Nucleotidylexotransferase/deficiency
- DNA Nucleotidylexotransferase/genetics
- DNA Nucleotidylexotransferase/physiology
- Gene Rearrangement, B-Lymphocyte, Heavy Chain
- Genetic Markers/immunology
- Humans
- Immunoglobulin Heavy Chains/blood
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Heavy Chains/metabolism
- Immunoglobulin Joining Region/genetics
- Immunoglobulin Variable Region/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Molecular Sequence Data
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- N Tuaillon
- Molecualar Immunogenetics Program, Oklahoma Medical Research Foundation, Oklahoma City 73104, USA
| | | |
Collapse
|
221
|
Ruetsch NR, Bosma GC, Bosma MJ. Unexpected rearrangement and expression of the immunoglobulin lambda1 locus in scid mice. J Exp Med 2000; 191:1933-43. [PMID: 10839808 PMCID: PMC2213526 DOI: 10.1084/jem.191.11.1933] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2000] [Accepted: 04/07/2000] [Indexed: 11/25/2022] Open
Abstract
In severe combined immunodeficient (scid) mice, V(D)J recombination is severely impaired due to a recessive mutation (scid). Thus, we were surprised to find in this study that Vlambda1-Jlambda1 rearrangement is routinely detectable in scid fetal liver, adult bone marrow, and spleen in the apparent absence of completed VH-DJH and Vkappa-Jkappa rearrangements. Particularly surprising, we found the level of Vlambda1-Jlambda1 rearrangement in scid fetal liver to be comparable to that in fetal liver of wild-type mice. The majority of scid Vlambda1-Jlambda1 rearrangements contained abnormal deletions at the VJ junction, consistent with the known effect of scid. However, approximately 15% of Vlambda1-Jlambda1 rearrangements lacked abnormal deletions. Productive lambda1 transcripts resulting from in-frame rearrangements were readily detectable in scid adult bone marrow and spleen, consistent with our ability to detect lambda1-expressing cells by flow cytometry in the spleens of bcl-2-transgenic scid mice. Strikingly, lambda1 transcripts from individual scid mice often showed VJ junctional sequences with the same recurring palindromic (P) additions of three, four, or five nucleotides. To account for these findings, we suggest that (a) nonhomologous end joining of Vlambda1 and Jlambda1 coding ends in fetal B lineage cells may not be (severely) impaired by scid; (b) recurring P additions in scid lambda1 transcripts may reflect certain molecular constraints imposed by scid on the resolution of Vlambda1 and Jlambda1 hairpin coding ends; and (c), scid lymphocytes with productively rearranged Vlambda1 and Jlambda1 elements may differentiate into recombinase-inactive cells and emigrate from bone marrow to spleen.
Collapse
Affiliation(s)
- Norman R. Ruetsch
- Fox Chase Cancer Center, Institute for Cancer Research, Philadelphia, Pennsylvania 19111
| | - Gayle C. Bosma
- Fox Chase Cancer Center, Institute for Cancer Research, Philadelphia, Pennsylvania 19111
| | - Melvin J. Bosma
- Fox Chase Cancer Center, Institute for Cancer Research, Philadelphia, Pennsylvania 19111
| |
Collapse
|
222
|
Follicular lymphomas' BCL-2/IgH junctions contain templated nucleotide insertions: novel insights into the mechanism of t(14;18) translocation. Blood 2000. [DOI: 10.1182/blood.v95.11.3520] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The human t(14;18) chromosomal translocation is assumed to result from illegitimate rearrangement between BCL-2 and DH/JH gene segments during V(D)J recombination in early B cells. De novo nucleotides are found inserted in most breakpoints and have been thus far interpreted as nontemplated N region additions. In this report, we have analyzed both direct (BCL-2/JH) and reciprocal (DH/BCL-2) breakpoints derived from 40 patients with follicular lymphoma with t(14;18). Surprisingly, we found that more than 30% of the breakpoint junctions contain a novel type of templated nucleotide insertions, consisting of short copies of the surrounding BCL-2, DH, and JH sequences. The features of these templated nucleotides, including multiplicity of copies for 1 template and the occurrence of mismatches in the copies, suggest the presence of a short-patch DNA synthesis, templated and error-prone. In addition, our analysis clearly shows that t(14;18) occurs during a very restricted window of B-cell differentiation and involves 2 distinct mechanisms: V(D)J recombination, mediating the breaks on chromosome 14 during an attempted secondary DH to JH rearrangement, and an additional unidentified mechanism creating the initial breaks on chromosome 18. Altogether, these data suggest that the t(14;18) translocation is a more complex process than previously thought, involving the interaction and/or subversion of V(D)J recombination with multiple enzymatic machineries.
Collapse
|
223
|
Follicular lymphomas' BCL-2/IgH junctions contain templated nucleotide insertions: novel insights into the mechanism of t(14;18) translocation. Blood 2000. [DOI: 10.1182/blood.v95.11.3520.011k12_3520_3529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human t(14;18) chromosomal translocation is assumed to result from illegitimate rearrangement between BCL-2 and DH/JH gene segments during V(D)J recombination in early B cells. De novo nucleotides are found inserted in most breakpoints and have been thus far interpreted as nontemplated N region additions. In this report, we have analyzed both direct (BCL-2/JH) and reciprocal (DH/BCL-2) breakpoints derived from 40 patients with follicular lymphoma with t(14;18). Surprisingly, we found that more than 30% of the breakpoint junctions contain a novel type of templated nucleotide insertions, consisting of short copies of the surrounding BCL-2, DH, and JH sequences. The features of these templated nucleotides, including multiplicity of copies for 1 template and the occurrence of mismatches in the copies, suggest the presence of a short-patch DNA synthesis, templated and error-prone. In addition, our analysis clearly shows that t(14;18) occurs during a very restricted window of B-cell differentiation and involves 2 distinct mechanisms: V(D)J recombination, mediating the breaks on chromosome 14 during an attempted secondary DH to JH rearrangement, and an additional unidentified mechanism creating the initial breaks on chromosome 18. Altogether, these data suggest that the t(14;18) translocation is a more complex process than previously thought, involving the interaction and/or subversion of V(D)J recombination with multiple enzymatic machineries.
Collapse
|
224
|
Tuaillon N. Repertoire analysis in human immunoglobulin heavy chain minilocus transgenic, muMT/muMT mice. Mol Immunol 2000; 37:221-31. [PMID: 10930629 DOI: 10.1016/s0161-5890(00)00044-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mice transgenic for the human immunoglobulin heavy chain minilocus pHCl were developed several years ago to help better understand the mechanisms of VDJ recombination and antibody response. Interestingly, these minilocus transgenic mice develop a polyclonal, extremely diverse mu human immunoglobulin heavy chain repertoire, but when immunized, they exclusively use murine immunoglobulin heavy chains. Here, the data shows that when the minilocus is transferred by cross-breeding onto the muMT background, the resulting mice (HCl-muMT/muMT mice) develop polyclonal, extremely diverse mu and gamma1 human immunoglobulin heavy chain repertoires. Our data indicates that if no antigen specific antibodies are detected in pHCl transgenic mice, it is essentially due to competition with endogenous immunoglobulin heavy chain gene segments. Moreover, the data shows that despite the presence of only one functional V(H) gene segment and despite mu and gamma1 repertoires similar to the early pre-immune human repertoire, HCl-muMT/muMT mice, can develop immune responses against proteins and haptens. Finally, the data shows that in aged HC1-muMT/muMT mice, the generation of new B-cells may be impaired and old mice may mainly rely on B-cell generated earlier in life to mount immune responses.
Collapse
Affiliation(s)
- N Tuaillon
- National Institutes of Health, National Eye Institute, Bethesda, MD 20892-1857, USA.
| |
Collapse
|
225
|
Aono A, Enomoto H, Yoshida N, Yoshizaki K, Kishimoto T, Komori T. Forced expression of terminal deoxynucleotidyl transferase in fetal thymus resulted in a decrease in gammadelta T cells and random dissemination of Vgamma3Vdelta1 T cells in skin of newborn but not adult mice. Immunology 2000; 99:489-497. [PMID: 10792495 PMCID: PMC2327197 DOI: 10.1046/j.1365-2567.2000.00987.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/1999] [Revised: 11/18/1999] [Accepted: 11/18/1999] [Indexed: 11/20/2022] Open
Abstract
The repertoire of lymphocyte receptor genes encoded in a germline is further diversified by a number of processes, including the template-independent addition of nucleotides (N regions) by means of terminal deoxynucleotidyl transferase (TdT). Normally, mouse gammadelta T cells in the early fetal thymus, whose T-cell receptor (TCR) genes lack N regions and are encoded by Vgamma3-Jgamma1 and Vdelta1-Ddelta2-Jdelta2 with canonical junctions (invariant Vgamma3Vdelta1), are thought to be the precursors of dendritic epidermal T cells (DETC). We generated mutant mice whose endogenous TdT promoter was replaced with the lck promoter through homologous recombination. These mutant mice expressed TdT in fetal thymus, had abundant N regions and infrequent canonical junctions in gamma and delta rearrangements, and showed a decreased number of gammadelta T cells. Various Vgamma3Vdelta1 T cells, most of which had N regions in their TCR genes, were found to disseminate in the skin of newborn mutant mice, whereas normal numbers of DETCs with the invariant Vgamma3Vdelta1 rearrangement were observed in adult mutants. These data demonstrate that the regulation of TdT expression during fetal development is important for the generation of gammadelta T cells, and that Vgamma3Vdelta1 T cells, which have various junctional sequences in their TCR genes, randomly disseminate in skin, but invariant Vgamma3Vdelta1 T cells have a great advantage for proliferation in skin.
Collapse
MESH Headings
- Animals
- Animals, Newborn/immunology
- Cell Movement/physiology
- DNA Nucleotidylexotransferase/genetics
- Gene Expression
- Gene Rearrangement, gamma-Chain T-Cell Antigen Receptor
- Gene Targeting
- Immunoglobulin Joining Region/genetics
- Immunoglobulin Variable Region/genetics
- Mice
- Mice, Mutant Strains
- Promoter Regions, Genetic
- RNA, Messenger/analysis
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Skin/immunology
- T-Lymphocytes/enzymology
- T-Lymphocytes/metabolism
- Thymus Gland/embryology
- Thymus Gland/enzymology
Collapse
Affiliation(s)
- A Aono
- The Department of Molecular Medicine, Osaka University Medical School, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
226
|
Arzumanov AA, Victorova LS, Jasko MV, Yesipov DS, Krayevsky AA. Terminal deoxynucleotidyl transferase catalyzes the reaction of DNA phosphorylation. Nucleic Acids Res 2000; 28:1276-81. [PMID: 10666473 PMCID: PMC102600 DOI: 10.1093/nar/28.5.1276] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/1999] [Revised: 10/09/1999] [Accepted: 01/05/2000] [Indexed: 11/13/2022] Open
Abstract
The reaction of phosphorylation and phosphonylation of an oligodeoxynucleotide 3'-terminal hydroxyl (oligodeoxynucleotidyl kinase activity) catalyzed by calf thymus terminal deoxynucleotidyl transferase (TDT) was found. Triphosphates modified at Palpha-, Palpha,gamma- or Palpha,beta,gamma-residues served as low-molecular weight substrates. The reaction was TDT specific; human DNA polymerasesalphaandbeta, as well as AMV reverse transcriptase did not catalyze it. The donor activity of modified triphosphates or triphosphonates depended on their structure and was increased with an increase in their hydrophobicity. The substrate activity of some modified triphosphates was up to one order of magnitude higher than that of ddTTP.
Collapse
Affiliation(s)
- A A Arzumanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, Moscow 117984, Russia
| | | | | | | | | |
Collapse
|
227
|
Hammarsten O, DeFazio LG, Chu G. Activation of DNA-dependent protein kinase by single-stranded DNA ends. J Biol Chem 2000; 275:1541-50. [PMID: 10636842 DOI: 10.1074/jbc.275.3.1541] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA-dependent protein kinase (DNA-PK) is involved in joining DNA double-strand breaks induced by ionizing radiation or V(D)J recombination. The kinase is activated by DNA ends and composed of a DNA binding subunit, Ku, and a catalytic subunit, DNA-PK(CS). To define the DNA structure required for kinase activation, we synthesized a series of DNA molecules and tested their interactions with purified DNA-PK(CS). The addition of unpaired single strands to blunt DNA ends increased binding and activation of the kinase. When single-stranded loops were added to the DNA ends, binding was preserved, but kinase activation was severely reduced. Obstruction of DNA ends by streptavidin reduced both binding and activation of the kinase. Significantly, short single-stranded oligonucleotides of 3-10 bases were capable of activating DNA-PK(CS). Taken together, these data indicate that kinase activation involves a specific interaction with free single-stranded DNA ends. The structure of DNA-PK(CS) contains an open channel large enough for double-stranded DNA and an adjacent enclosed cavity with the dimensions of single-stranded DNA. The data presented here support a model in which duplex DNA binds to the open channel, and a single-stranded DNA end is inserted into the enclosed cavity to activate the kinase.
Collapse
Affiliation(s)
- O Hammarsten
- Department of Medicine, Stanford University School of Medicine, Stanford, California 94305-5115, USA
| | | | | |
Collapse
|
228
|
Li S, Hammer RE, George-Raizen JB, Meyers KC, Garrard WT. High-level rearrangement and transcription of yeast artificial chromosome-based mouse Ig kappa transgenes containing distal regions of the contig. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:812-24. [PMID: 10623827 DOI: 10.4049/jimmunol.164.2.812] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mouse Ig kappa L chain gene locus has been extensively studied, but to date high-level expression of germline transgenes has not been achieved. Reasoning that each end of the locus may contain regulatory elements because these regions are not deleted upon V kappa-J kappa joining, we used yeast artificial chromosome-based techniques to fuse distal regions of the contig to create transgene miniloci. The largest minilocus (290 kb) possessed all members of the upstream V kappa 2 gene family including their entire 5' and 3' flanking sequences, along with one member of a downstream V kappa 21 gene family. In addition, again using yeast artificial chromosome-based technology, we created Ig kappa miniloci that contained differing lengths of sequences 5' of the most distal V kappa 2 gene family member. In transgenic mice, Ig kappa miniloci exhibited position-independent and copy number-dependent germline transcription. Ig kappa miniloci were rearranged in tissue and developmental stage-specific manners. The levels of rearrangement and transcription of the distal and proximal V kappa gene families were similar to their endogenous counterparts and appeared to be responsive to allelic exclusion, but were differentially sensitive to numerous position effects. The minilocus that contained the longest 5' region exhibited significantly greater recombination of the upstream V kappa 2 genes but not the downstream V kappa 21 gene, providing evidence for a local recombination stimulating element. These results provide evidence that our miniloci contain nearly all regulatory elements required for bona fide Ig kappa gene expression, making them useful substrates for functional analyses of cis-acting sequences in the future.
Collapse
MESH Headings
- Alleles
- Animals
- B-Lymphocytes/cytology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Chromosomes, Artificial, Yeast/genetics
- Chromosomes, Artificial, Yeast/immunology
- Contig Mapping
- Crosses, Genetic
- Gene Dosage
- Gene Rearrangement, B-Lymphocyte, Light Chain/genetics
- Genes, Immunoglobulin/genetics
- Genetic Markers/immunology
- Germ Cells/immunology
- Germ Cells/metabolism
- Immunoglobulin Joining Region/genetics
- Immunoglobulin Variable Region/genetics
- Immunoglobulin kappa-Chains/chemistry
- Immunoglobulin kappa-Chains/genetics
- Mice
- Mice, Transgenic
- Multigene Family/immunology
- Reproducibility of Results
- Transcription, Genetic/immunology
- Transgenes/immunology
Collapse
Affiliation(s)
- S Li
- Department of Molecular Biology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | | | | | | | | |
Collapse
|
229
|
Chemical reactions catalyzed by DNA polymerases. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2000. [DOI: 10.1007/bf02758854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
230
|
Molano ID, Wloch MK, Alexander AA, Watanabe H, Gilkeson GS. Effect of a genetic deficiency of terminal deoxynucleotidyl transferase on autoantibody production by C57BL6 Fas(lpr) mice. Clin Immunol 2000; 94:24-32. [PMID: 10607487 DOI: 10.1006/clim.1999.4797] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Terminal deoxynucleotidyl transferase (TdT) adds nontemplate coded nucleotides (N additions) between the recombining ends of immunoglobulin and T cell receptor genes. These nucleotides add significant diversity to the Ig and TCR repertoires. Amino acids coded for by these nucleotides play a key role in the binding of self antigens by autoantibodies and autoreactive T cells. To determine the effect of a lack of N additions on autoantibody production, we bred the TdT knockout genotype onto the autoimmune C57BL/6-Fas(lpr) background. TdT-deficient mice had significantly lower sera anti-DNA and rheumatoid factor activity than their TdT-producing littermates. C57BL/6-Fas(lpr) TdT-deficient mice had shorter VH CDR3 regions and fewer VH CDR3 arginines [0.6% versus 4. 7%] than their TdT-producing littermates. These data indicate that the absence of TdT limited the production of anti-DNA antibodies and rheumatoid factors in C57BL/6-Fas(lpr) mice, likely due to constraints on Ig diversity secondary to the lack of TdT-derived N additions.
Collapse
Affiliation(s)
- I D Molano
- Ralph H. Johnson VA Medical Center, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | |
Collapse
|
231
|
Affiliation(s)
- D Nemazee
- Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
232
|
Medeiros LJ, Carr J. Overview of the role of molecular methods in the diagnosis of malignant lymphomas. Arch Pathol Lab Med 1999; 123:1189-207. [PMID: 10583924 DOI: 10.5858/1999-123-1189-ootrom] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To review the role of molecular genetics in the diagnosis of malignant lymphomas. DATA SOURCES AND STUDY SELECTION Primary research studies and reviews published in the English literature that focus on molecular genetics and malignant lymphoma, in particular, clonality, chromosomal translocations, tumor suppressor genes, and Hodgkin disease. DATA EXTRACTION AND SYNTHESIS Molecular genetics has an important role in the assessment of malignant lymphomas. Clonality, detected by Southern blot analysis or the polymerase chain reaction, is helpful for establishing the diagnosis of lymphoma in lesions with ambiguous morphologic and immunophenotypic findings. Southern blot analysis is the "gold standard" for clonality assessment, but the process is labor-intensive and time-consuming. Polymerase chain reaction analysis is more convenient, but a potentially significant false-negative rate exists in the analysis of some antigen receptor genes as a result of using consensus primers and the process of somatic hypermutation. Chromosomal translocations, which result in oncogene activation, occur in many types of B- and T-cell lymphomas, and their detection is helpful in classification as well as in establishing a diagnosis of malignancy. Gene rearrangements and chromosomal translocations also can be used to monitor minimal residual disease. Tumor suppressor genes, although their analysis is relatively less useful for diagnosis, are involved in both pathogenesis and tumor progression and will be more important diagnostically as this field continues to expand. Molecular genetic analysis has played a major role in improving our understanding of Hodgkin disease. CONCLUSIONS Molecular genetic tests are currently important ancillary tools for the diagnosis and classification of malignant lymphomas, and their role is likely to increase in the future.
Collapse
Affiliation(s)
- L J Medeiros
- Division of Pathology and Laboratory Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030-4095, USA
| | | |
Collapse
|
233
|
Affiliation(s)
- S Desiderio
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
234
|
Nourrit F, Coquilleau I, D'Andon MF, Rougeon F, Doyen N. Methylation of the promoter region may be involved in tissue-specific expression of the mouse terminal deoxynucleotidyl transferase gene. J Mol Biol 1999; 292:217-27. [PMID: 10493870 DOI: 10.1006/jmbi.1999.3079] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The terminal deoxynucleotidyl transferase gene (TdT) is expressed in mice only in early B and T lymphoid precursors a few days after birth. Transactivating factors have been shown to contribute to the lymphoid specific expression of TdT, but they do not account entirely for the restriction of its expression to early precursors. Since tissue-specific expression can be modulated by other mechanisms such as DNA methylation and DNA accessibility, we evaluated the methylation pattern of the TdT gene in various expressing and non-expressing tissues and cell lines. Lymphoid and non-lymphoid organs differed significantly in their methylation profiles. In the thymus nearly complete demethylation of a Hha I site in the promoter was associated with high levels of TdT transcription. There was similar, but weaker demethylation of the TdT promoter in bone marrow, possibly due to the presence of a few TdT expressing B cell precursors. The same methylation status was also associated with TdT expression in different B and T cell lines. Kinetic studies of TdT gene demethylation and TdT transcription during thymus development showed that changes in methylation status were also involved in the differential expression of TdT in fetal and adult life. Footprinting experiments revealed the existence of three regions specifically protected by nuclear extracts from TdT -expressing cells. Together, these results suggest that promoter demethylation is involved in the control of TdT expression and implicate new promoter regions in this regulation.
Collapse
Affiliation(s)
- F Nourrit
- Unité de Génétique et Biochimie du Développement, URA CNRS 1960, Département d'Immunologie, Institut Pasteur, 25 rue du Docteur Roux, Paris Cédex 15, 75724, France
| | | | | | | | | |
Collapse
|
235
|
Anderson RS, Bollum FJ, Beattie KL. Pyrophosphorolytic dismutation of oligodeoxy-nucleotides by terminal deoxynucleotidyltransferase. Nucleic Acids Res 1999; 27:3190-6. [PMID: 10454617 PMCID: PMC148547 DOI: 10.1093/nar/27.15.3190] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Terminal transferase (TdT), when incubated with a purified(32)P-5"-end-labeled oligonucleotide of defined length in the presence of Co(2+), Mn(2+)or Mg(2+)and 2-mercaptoethanol in cacodylate or HEPES buffer, pH 7.2, exhibits the ability to remove a 3"-nucleotide from one oligonucleotide and add it to the 3"-end of another. When analyzed by urea-PAGE, this activity is observed as a disproportionation of the starting oligonucleotide into a ladder of shorter and longer oligonucleotides distributed around the starting material. Optimal metal ion concentration is 1-2 mM. All three metal ions support this activity with Co(2+)> Mn(2+) congruent with Mg(2+). Oligonucleotides p(dT) and p(dA) are more efficient substrates than p(dG) and p(dC) because the latter may form secondary structures. The dismutase activity is significant even in the presence of dNTP concentrations comparable to those that exist in the nucleus during the G(1)phase of the cell cycle. Using BetaScope image analysis the rate of pyrophosphorolytic dismutase activity was found to be only moderately slower than the poly-merization activity. These results may help explain the GC-richness of immunoglobulin gene segment joins (N regions) and the loss of bases that occur during gene rearrangements in pre-B and pre-T cells.
Collapse
Affiliation(s)
- R S Anderson
- Baylor College of Medicine, Department of Biochemistry, One Baylor Plaza, Houston TX 77030, USA.
| | | | | |
Collapse
|
236
|
Mickelsen S, Snyder C, Trujillo K, Bogue M, Roth DB, Meek K. Modulation of Terminal Deoxynucleotidyltransferase Activity by the DNA-Dependent Protein Kinase. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.2.834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Rare Ig and TCR coding joints can be isolated from mice that have a targeted deletion in the gene encoding the 86-kDa subunit of the Ku heterodimer, the regulatory subunit of the DNA-dependent protein kinase (DNA-PK). However in the coding joints isolated from Ku86−/− animals, there is an extreme paucity of N regions (the random nucleotides added during V(D)J recombination by the enzyme TdT). This finding is consistent with a decreased frequency of coding joints containing N regions isolated from C.B-17 SCID mice that express a truncated form of the catalytic subunit of the DNA-PK (DNA-PKCS). This finding suggests an unexpected role for DNA-PK in addition of N nucleotides to coding ends during V(D)J recombination. In this report, we establish that TdT forms a stable complex with DNA-PK. Furthermore, we show that DNA-PK modulates TdT activity in vitro by limiting both the length and composition of nucleotide additions.
Collapse
Affiliation(s)
- Scott Mickelsen
- *Harold C. Simmons Arthritis Research Center and Departments of Internal Medicine and Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Carolyn Snyder
- *Harold C. Simmons Arthritis Research Center and Departments of Internal Medicine and Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Kelly Trujillo
- †Department of Molecular Medicine, Institute for Biotechnology, University of Texas Health Science Center, San Antonio, TX 78245; and
| | - Molly Bogue
- ‡Department of Microbiology and Immunology and
| | - David B. Roth
- ‡Department of Microbiology and Immunology and
- §Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030
| | - Katheryn Meek
- *Harold C. Simmons Arthritis Research Center and Departments of Internal Medicine and Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75235
| |
Collapse
|
237
|
Abstract
The lymphoid cell-specific proteins RAG1 and RAG2 initiate V(D)J recombination by cleaving DNA adjacent to recombination signals, generating blunt signal ends and covalently sealed, hairpin coding ends. A critical next step in the reaction is opening of the hairpins, but the factor(s) responsible has not been identified and had been thought to be a ubiquitous component(s) of the DNA repair machinery. Here we demonstrate that RAG1 and RAG2 possess an intrinsic single-stranded nuclease activity capable of nicking hairpin coding ends at or near the hairpin tip. In Mn2+, a synthetic hairpin is nicked 5 nucleotides (nt) 5' of the hairpin tip, with more distant sites of nicking suppressed by HMG2. In Mg2+, hairpins generated by V(D)J cleavage are nicked whereas synthetic hairpins are not. Cleavage-generated hairpins are nicked at the tip and predominantly 1 to 2 nt 5' of the tip. RAG1 and RAG2 may therefore be responsible for initiating the processing of coding ends and for the generation of P nucleotides during V(D)J recombination.
Collapse
Affiliation(s)
- P E Shockett
- Howard Hughes Medical Institute and Section of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520-8011, USA
| | | |
Collapse
|
238
|
Yi M, Wu P, Trevorrow KW, Claflin L, Garrard WT. Evidence That the Igκ Gene MAR Regulates the Probability of Premature V-J Joining and Somatic Hypermutation. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.10.6029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
The Igκ gene contains an evolutionarily conserved nuclear matrix association region (MAR) adjacent to the intronic enhancer. To test for the function of this MAR, we created mouse lines with a targeted MAR deletion. In MAR knockout animals, the immune system was normal in nearly all respects, including the distributions of various B cell populations and Ab levels. However, in pro-B cells, enhanced rearrangement was noted on the MAR− allele in heterozygotes. In addition, the efficiencies for targeting and generating somatic mutations were reduced on MAR-deleted alleles. These results provide evidence for the MAR negatively regulating the probability of premature rearrangement and positively regulating the probability of somatic hypermutation.
Collapse
Affiliation(s)
- Ming Yi
- *Department of Molecular Biology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75235; and
| | - Peiqing Wu
- †Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Kenneth W. Trevorrow
- *Department of Molecular Biology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75235; and
| | - Latham Claflin
- †Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - William T. Garrard
- *Department of Molecular Biology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75235; and
| |
Collapse
|
239
|
Benedict CL, Kearney JF. Increased junctional diversity in fetal B cells results in a loss of protective anti-phosphorylcholine antibodies in adult mice. Immunity 1999; 10:607-17. [PMID: 10367906 DOI: 10.1016/s1074-7613(00)80060-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fetal Igs are less diverse than adult Igs, largely because of the lack of N addition in the absence of Tdt. To test whether the absence of Tdt is essential, we generated Tg mice that express Tdt and add N regions in fetal B cells. When challenged as adults with PC-containing Streptococcus pneumoniae, these mice fail to make the hallmark T15 anti-PC Ab encoded by canonical rearrangements of Ig H and L chain genes. The anti-PC Abs from these mice are altered by premature N addition and do not protect against death from virulent pneumococcal infection. These results show that maintenance of lower Ig diversity in early life is essential for the acquisition of a complete functional adult repertoire.
Collapse
Affiliation(s)
- C L Benedict
- Department of Microbiology, University of Alabama at Birmingham, 35294-3300, USA
| | | |
Collapse
|
240
|
Gangi-Peterson L, Sorscher DH, Reynolds JW, Kepler TB, Mitchell BS. Nucleotide pool imbalance and adenosine deaminase deficiency induce alterations of N-region insertions during V(D)J recombination. J Clin Invest 1999; 103:833-41. [PMID: 10079104 PMCID: PMC408138 DOI: 10.1172/jci4320] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Template-independent nucleotide additions (N regions) generated at sites of V(D)J recombination by terminal deoxynucleotidyl transferase (TdT) increase the diversity of antigen receptors. Two inborn errors of purine metabolism, deficiencies of adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP), result in defective lymphoid development and aberrant pools of 2'-deoxynucleotides that are substrates for TdT in lymphoid precursors. We have asked whether selective increases in dATP or dGTP pools result in altered N regions in an extrachromosomal substrate transfected into T-cell or pre-B-cell lines. Exposure of the transfected cells to 2'-deoxyadenosine and an ADA inhibitor increased the dATP pool and resulted in a marked increase in A-T insertions at recombination junctions, with an overall decreased frequency of V(D)J recombination. Sequence analysis of VH-DH-JH junctions from the IgM locus in B-cell lines from ADA-deficient patients demonstrated an increase in A-T insertions equivalent to that found in the transfected cells. In contrast, elevation of dGTP pools, as would occur in PNP deficiency, did not alter the already rich G-C content of N regions. We conclude that the frequency of V(D)J recombination and the composition of N-insertions are influenced by increases in dATP levels, potentially leading to alterations in antigen receptors and aberrant lymphoid development. Alterations in N-region insertions may contribute to the B-cell dysfunction associated with ADA deficiency.
Collapse
Affiliation(s)
- L Gangi-Peterson
- Curriculum in Genetics and Molecular Biology, Department of Pharmacology, University of North Carolina-Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
241
|
Bentolila LA, Olson S, Marshall A, Rougeon F, Paige CJ, Doyen N, Wu GE. Extensive Junctional Diversity in Ig Light Chain Genes from Early B Cell Progenitors of μMT Mice. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.4.2123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Nontemplated (N) nucleotide additions contribute significantly to the junctional diversity of all Ag receptor chains in adult mice except Ig light (L) chains, primarily because terminal deoxynucleotidyl transferase (TdT) expression is turned off at the time of their rearrangement in pre-B cells. However, because some Ig L chain gene rearrangements are detectable earlier during B cell ontogeny when TdT expression is thought to be maximal, we have examined the junctional processing of κ- and λ-chain genes of CD45(B220)+CD43+ pro-B cells from μMT mice. We found that both κ and λ coding junctions formed in these B cell precursors were extensively diversified with N-region additions. Together, these findings demonstrate that Ig L chain genes are equally accessible to TdT in pro-B cells as Ig heavy chain genes. Surprisingly, however, the two L chain isotypes differed in the pattern of N addition, which was more prevalent at the λ-chain locus. We observed the same diversity pattern in pre-B cells from TdT-transgenic mice. These results suggest that some aspects of TdT processing could be influenced by factors intrinsic to the sequence of Ig genes and/or the process of V(D)J recombination itself.
Collapse
Affiliation(s)
- Laurent A. Bentolila
- *Unité de Génétique et Biochimie du Développement, Unité de Recherche Associée, Centre National de la Recherche Scientifique 1960, Département d’Immunologie, Institut Pasteur, Paris, France; and
| | - Stacy Olson
- †Department of Immunology, University of Toronto, and Ontario Cancer Institute, Toronto, Canada
| | - Aaron Marshall
- †Department of Immunology, University of Toronto, and Ontario Cancer Institute, Toronto, Canada
| | - François Rougeon
- *Unité de Génétique et Biochimie du Développement, Unité de Recherche Associée, Centre National de la Recherche Scientifique 1960, Département d’Immunologie, Institut Pasteur, Paris, France; and
| | - Christopher J. Paige
- †Department of Immunology, University of Toronto, and Ontario Cancer Institute, Toronto, Canada
| | - Noëlle Doyen
- *Unité de Génétique et Biochimie du Développement, Unité de Recherche Associée, Centre National de la Recherche Scientifique 1960, Département d’Immunologie, Institut Pasteur, Paris, France; and
| | - Gillian E. Wu
- †Department of Immunology, University of Toronto, and Ontario Cancer Institute, Toronto, Canada
| |
Collapse
|
242
|
Conde C, Weller S, Gilfillan S, Marcellin L, Martin T, Pasquali JL. Terminal Deoxynucleotidyl Transferase Deficiency Reduces the Incidence of Autoimmune Nephritis in (New Zealand Black × New Zealand White)F1 Mice. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.12.7023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
Terminal deoxynucleotidyl transferase (TdT) enzyme activity in lymphocytes generates diversity in the Ag receptor repertoires by adding template-independent N nucleotides and disrupting homology-directed rearrangements. The importance of this diversity in vivo and the significance of the suppression of TdT during fetal life remain uncertain. Previous studies have shown that in TdT knockout mice (TdT°) 1) the T cell repertoire is less peptide oriented; and 2) natural autoantibody, particularly anti-DNA autoantibodies, are less polyreactive, and their mean affinities are reduced. Consequently, the suppression of TdT during early T/B cell ontogeny may participate in controlling autoimmunity. To study the impact of TdT suppression in autoimmune-prone mice, we introduced the TdT null mutation into the (NZB × NZW)F1 (B/W) mouse strain. We show that TdT deficiency significantly reduces the incidence of autoimmune nephritis and prolongs survival compared with those in control mice. Surprisingly, the long-term survivor TdT° mice produced amounts of anti-ADN and anti-histone autoantibodies similar to those of their TdT+ littermates. However, these TdT° mice showed no evidence of renal inflammation, and the immune deposits were restricted to the mesangium, whereas basal membrane deposits were clearly correlated with overt renal disease. The present study supports the idea that the absence of TdT enzyme activity in lymphocytes protects mice against autoimmunity and could offer a therapeutic approach to autoimmune diseases. Moreover, our results may help to unravel the mechanisms of lupus nephritis.
Collapse
Affiliation(s)
- Carmen Conde
- *Laboratory of Immunopathology, Institute of Immuno-Hematology, Central Hospital, and
| | - Sandra Weller
- *Laboratory of Immunopathology, Institute of Immuno-Hematology, Central Hospital, and
| | | | - Luc Marcellin
- †Department of Pathology, Hautepierre Hospital, University Hospitals of Strasbourg, Strasbourg, France; and
| | - Thierry Martin
- *Laboratory of Immunopathology, Institute of Immuno-Hematology, Central Hospital, and
| | - Jean-Louis Pasquali
- *Laboratory of Immunopathology, Institute of Immuno-Hematology, Central Hospital, and
| |
Collapse
|
243
|
Marshall AJ, Doyen N, Bentolila LA, Paige CJ, Wu GE. Terminal Deoxynucleotidyl Transferase Expression During Neonatal Life Alters DH Reading Frame Usage and Ig-Receptor-Dependent Selection of V Regions. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.12.6657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
During neonatal life, Ig diversity is limited in many respects. The absence of terminal deoxynucleotidyl transferase (TdT) expression with the consequent lack of nontemplated addition during the neonatal period, coupled with the predominant usage of a single DH reading frame (RF), leads to severe limitations of diversity in the CDR3 region of Ig heavy (H) chains. The neonatal Ig H chain repertoire is also characterized by restricted VH usage, with predominant expression of certain VH segments, such as VH81x, that are rarely evident during adult life. In this report, we examine the effect of enforced TdT expression on the neonatal repertoire of VH81xDJH rearrangements. We find that TdT synthesis abrogates DH RF bias during the fetal/neonatal period through a Ig-receptor-independent mechanism. These findings suggest that DH RF bias during neonatal life is determined largely by homology-directed joining. We also find that TdT synthesis alters the selection of productively rearranged VH81xDJH alleles in the neonatal spleen through a Ig-receptor-dependent mechanism. Analysis of predicted CDR3 amino acid sequences indicates that positive selection of VH81x-encoded H chains is correlated with the presence of a consensus sequence immediately adjacent to the VH segment. These data support the hypothesis that the CDR3 region is critical in determining the ability of VH81x-encoded H chains to form functional receptors that support positive selection of B lymphocytes. Together, our results demonstrate that TdT can indirectly influence the Ig repertoire by influencing both receptor-dependent and receptor-independent selection processes.
Collapse
Affiliation(s)
- Aaron J. Marshall
- *Ontario Cancer Institute and Department of Immunology, University of Toronto, Toronto, Ontario, Canada; and
| | - Noelle Doyen
- †Unité de Génétique et Biochimie du Développement, Unité de Recherche Associée Centre National de la Recherche Scientifique 1960, Département d’Immunologie, Institut Pasteur, Paris, France
| | - Laurent A. Bentolila
- †Unité de Génétique et Biochimie du Développement, Unité de Recherche Associée Centre National de la Recherche Scientifique 1960, Département d’Immunologie, Institut Pasteur, Paris, France
| | - Christopher J. Paige
- *Ontario Cancer Institute and Department of Immunology, University of Toronto, Toronto, Ontario, Canada; and
| | - Gillian E. Wu
- *Ontario Cancer Institute and Department of Immunology, University of Toronto, Toronto, Ontario, Canada; and
| |
Collapse
|
244
|
Boulé JB, Johnson E, Rougeon F, Papanicolaou C. High-level expression of murine terminal deoxynucleotidyl transferase in Escherichia coli grown at low temperature and overexpressing argU tRNA. Mol Biotechnol 1998; 10:199-208. [PMID: 9951698 DOI: 10.1007/bf02740839] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Terminal deoxynucleotidyl transferase (TdT) is a highly conserved vertebrate enzyme that possesses the unique ability to catalyze the random addition of deoxynucleoside 5'-triphosphates onto the 3'-hydroxyl group of a single-stranded DNA. It plays an important role in the generation of immunoglobin and T-cell receptor diversity. TdT is usually obtained from animal thymus gland or produced in a baculovirus system, but both procedures are rather tedious, and proteolysis occurs during purification. Attempts to overexpress TdT in bacteria have been unsuccessful or have yielded an enzyme with a lower specific activity. A dearth of TdT has thus hampered detailed structural and functional studies. In the present study, we report that by lowering growth temperature and overexpressing a rare arginyl tRNA, it is possible to boost the production in Escherichia coli of murine TdT with minimal proteolysis and high specific activity.
Collapse
Affiliation(s)
- J B Boulé
- Départment d'Immunologie, Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
245
|
Giorgetti CA, Press JL. Somatic Mutation in the Neonatal Mouse. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.11.6093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Several mechanisms that diversify the adult immune repertoire, such as terminal deoxynucleotidyl transferase-dependent N region addition, are not available to the neonatal mouse. One important process that contributes to protective immunity in the adult is somatic mutation, which plays a major role in the generation of high affinity memory B cells. It is not clear whether B cells in the neonatal mouse can activate the somatic mutation machinery. To investigate this, we immunized neonates with poly(l-Tyr,l-Glu)-poly-d, l-Ala–poly-l-Lys complexed with methylated BSA, or (4-hydroxy-3-nitrophenyl)acetyl coupled to chicken γ-globulin. Eight to fourteen days after priming, V(D)J rearrangements of known VH genes (VHSM7 family) were screened for mutations using a temperature-melt hybridization assay and oligonucleotide probes specific for complementarity-determining regions I and II; possible mutations were confirmed by sequence analysis. More mutations per sequence were found in heavy chains from neonates immunized with (4-hydroxy-3-nitrophenyl)acetyl coupled to chicken γ-globulin than in those from neonates immunized with poly(l-Tyr, l-Glu)-poly-d,l-Ala-poly-l-Lys complexed with methylated BSA. Mutations were found in heavy chains lacking N regions, suggesting that B cells of the putative fetal lineage can somatically mutate and diversify an initially limited repertoire. Since neonates immunized as early as 1 or 2 days after birth had mutations, the somatic mutation machinery can be activated soon after birth, suggesting that early vaccination should result in affinity maturation and protective immunity in the neonate.
Collapse
Affiliation(s)
| | - Joan L. Press
- Brandeis University, Rosenstiel Research Center, Waltham, MA 02454
| |
Collapse
|
246
|
Besmer E, Mansilla-Soto J, Cassard S, Sawchuk DJ, Brown G, Sadofsky M, Lewis SM, Nussenzweig MC, Cortes P. Hairpin coding end opening is mediated by RAG1 and RAG2 proteins. Mol Cell 1998; 2:817-28. [PMID: 9885569 DOI: 10.1016/s1097-2765(00)80296-8] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Despite the importance of hairpin opening in antigen receptor gene assembly, the molecular machinery that mediates this reaction has not been defined. Here, we show that RAG1 plus RAG2 can open DNA hairpins. Hairpin opening by RAGs is not sequence specific, but in Mg2+, hairpin opening occurs only in the context of a regulated cleavage complex. The chemical mechanism of hairpin opening by RAGs resembles RSS cleavage and 3' end processing by HIV integrase and Mu transposase in that these reactions can proceed through alcoholysis. Mutations in either RAG1 or RAG2 that interfere with RSS cleavage also interfere with hairpin opening, suggesting that RAGs have a single active site that catalyzes several distinct DNA cleavage reactions.
Collapse
Affiliation(s)
- E Besmer
- Laboratory of Molecular Immunology, Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Raaphorst FM, Gokmen E, Teale JM. Analysis of clonal diversity in mouse immunoglobulin heavy chain genes selected for size of the antigen combining site. Immunol Invest 1998; 27:355-65. [PMID: 9845421 DOI: 10.3109/08820139809022709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Size-diversity of Ig and T cell receptor antigen binding (CDR3) regions can be visualized by "CDR3 fingerprinting", and provides an estimate of B- or T-cell repertoire complexity. The method does not identify clonal diversity, however, which can only be determined by random sequencing of the CDR3s. In this study we demonstrate that a combination of fingerprinting and single strand conformation polymorphism (SSCP) analysis can be used for a rapid estimation of clonal diversity within mouse Ig antigen binding regions selected for size. This application may be useful in the analysis of clonal expansion within B- and T-cell repertoires.
Collapse
Affiliation(s)
- F M Raaphorst
- Department of Microbiology, The University of Texas Health Science Center at San Antonio, 78284, USA
| | | | | |
Collapse
|
248
|
Meffre E, Papavasiliou F, Cohen P, de Bouteiller O, Bell D, Karasuyama H, Schiff C, Banchereau J, Liu YJ, Nussenzweig MC. Antigen receptor engagement turns off the V(D)J recombination machinery in human tonsil B cells. J Exp Med 1998; 188:765-72. [PMID: 9705958 PMCID: PMC2213359 DOI: 10.1084/jem.188.4.765] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/1998] [Indexed: 11/20/2022] Open
Abstract
The germinal center (GC) is an anatomic compartment found in peripheral lymphoid organs, wherein B cells undergo clonal expansion, somatic mutation, switch recombination, and reactivate immunoglobulin gene V(D)J recombination. As a result of somatic mutation, some GC B cells develop higher affinity antibodies, whereas others suffer mutations that decrease affinity, and still others may become self-reactive. It has been proposed that secondary V(D)J rearrangements in GCs might rescue B cells whose receptors are damaged by somatic mutations. Here we present evidence that mature human tonsil B cells coexpress conventional light chains and recombination associated genes, and that they extinguish recombination activating gene and terminal deoxynucleotidyl transferase expression when their receptors are cross-linked. Thus, the response of the recombinase to receptor engagement in peripheral B cells is the opposite of the response in developing B cells to the same stimulus. These observations suggest that receptor revision is a mechanism for receptor diversification that is turned off when antigen receptors are cross-linked by the cognate antigen.
Collapse
Affiliation(s)
- E Meffre
- Laboratory of Molecular Immunology, The Rockefeller University, New York 10021-6399, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Affiliation(s)
- J R Gorman
- Howard Hughes Medical Institute, Children's Hospital, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
250
|
Hempel WM, Leduc I, Mathieu N, Tripathi RK, Ferrier P. Accessibility control of V(D)J recombination: lessons from gene targeting. Adv Immunol 1998; 69:309-52. [PMID: 9646847 DOI: 10.1016/s0065-2776(08)60610-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- W M Hempel
- Centre d'Immunologie INSERM-CNRS de Marseille-Luminy, France
| | | | | | | | | |
Collapse
|