201
|
Abstract
PURPOSE OF REVIEW T cells can efficaciously control HIV replication, and it has been hypothesized that inducing those responses before exposure occurs may prevent HIV infection. However, conventional attempts to generate protective CD8 T-cell responses against HIV have generally failed. Based on current knowledge from chronic HIV infection and previous vaccine trials, this review details optimal CD8 and CD4 T-cell response design that may confer protection from HIV infection. RECENT FINDINGS The failure of two vaccines geared toward inducing T-cell response (STEP trial and HVTN505/Phambili) as well as the modest protection of the RV144 that mainly demonstrated nonneutralizing antibodies to be a correlate of protection have rattled the idea that a pure T-cell-based vaccine may induce protection. Moreover, in the recent years, CD4 T cells, and in particular the T follicular helper cell subset, received attention as a critical component for T-cell-inducing and antibody-inducing vaccines. SUMMARY It is apparent that all vaccines depend for their efficacy on a cellular component either to directly kill virally infected cells or to provide important helper signals for the development of efficacious B-cell responses. Recent vaccine trials have had a major impact on the field and are guiding new approaches for HIV vaccine design.
Collapse
|
202
|
Abstract
A key unresolved challenge for developing an effective HIV‐1 vaccine is the discovery of strategies to elicit immune responses that are able to cross‐protect against a significant fraction of the diverse viruses that are circulating worldwide. Here, we summarize some of the immunological implications of HIV‐1 diversity, and outline the rationale behind several polyvalent vaccine design strategies that are currently under evaluation. Vaccine‐elicited T‐cell responses, which contribute to the control of HIV‐1 in natural infections, are currently being considered in both prevention and treatment settings. Approaches now in preclinical and human trials include full proteins in novel vectors, concatenated conserved protein regions, and polyvalent strategies that improve coverage of epitope diversity and enhance the cross‐reactivity of responses. While many barriers to vaccine induction of broadly neutralizing antibody (bNAb) responses remain, epitope diversification has emerged as both a challenge and an opportunity. Recent longitudinal studies have traced the emergence of bNAbs in HIV‐1 infection, inspiring novel approaches to recapitulate and accelerate the events that give rise to potent bNAb in vivo. In this review, we have selected two such lineage‐based design strategies to illustrate how such in‐depth analysis can offer conceptual improvements that may bring us closer to an effective vaccine.
Collapse
Affiliation(s)
- Bette Korber
- Theoretical Biology and Biophysics, T6, Los Alamos National Laboratory, Los Alamos, NM, USA.,New Mexico Consortium, Los Alamos, NM, USA
| | - Peter Hraber
- Theoretical Biology and Biophysics, T6, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Kshitij Wagh
- Theoretical Biology and Biophysics, T6, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Beatrice H Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
203
|
Ying G, Wang J, Kumar V, Zajonc DM. Crystal structure of Qa-1a with bound Qa-1 determinant modifier peptide. PLoS One 2017; 12:e0182296. [PMID: 28767728 PMCID: PMC5540586 DOI: 10.1371/journal.pone.0182296] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/14/2017] [Indexed: 11/29/2022] Open
Abstract
Qa-1 is a non-classical Major Histocompatibility (MHC) class I molecule that generally presents hydrophobic peptides including Qdm derived from the leader sequence of classical MHC I molecules for immune surveillance by NK cells. Qa-1 bound peptides derived from the TCR Vβ8.2 of activated T cells also activates CD8+ regulatory T cells to control autoimmunity and maintain self-tolerance. Four allotypes of Qa-1 (Qa-1a-d) are expressed that are highly conserved in sequence but have several variations that could affect peptide binding to Qa-1 or TCR recognition. Here, we determined the structure of Qa-1a with bound Qdm peptide. While the overall structure is very similar to that of Qa-1b, there are several amino acid differences around the peptide binding platform that could affect TCR recognition. Most notably, two amino acid substitutions are found in the pocket P2, which binds the anchor residue Met2 of the Qdm peptide. These residues affect both the size and shape of the binding pocket, as well as affect the charge at physiologic pH, suggesting Qa-1a and Qa-1b could present slightly distinct peptide reservoirs, which could presumably be recognized by different populations of CD8+ T cells.
Collapse
Affiliation(s)
- Ge Ying
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology (LJI), La Jolla, California, United States of America
| | - Jing Wang
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology (LJI), La Jolla, California, United States of America
| | - Vipin Kumar
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Dirk M. Zajonc
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology (LJI), La Jolla, California, United States of America
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
204
|
Martins MA, Tully DC, Shin YC, Gonzalez-Nieto L, Weisgrau KL, Bean DJ, Gadgil R, Gutman MJ, Domingues A, Maxwell HS, Magnani DM, Ricciardi M, Pedreño-Lopez N, Bailey V, Cruz MA, Lima NS, Bonaldo MC, Altman JD, Rakasz E, Capuano S, Reimann KA, Piatak M, Lifson JD, Desrosiers RC, Allen TM, Watkins DI. Rare Control of SIVmac239 Infection in a Vaccinated Rhesus Macaque. AIDS Res Hum Retroviruses 2017; 33:843-858. [PMID: 28503929 DOI: 10.1089/aid.2017.0046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Effector memory T cell (TEM) responses display potent antiviral properties and have been linked to stringent control of simian immunodeficiency virus (SIV) replication. Since recurrent antigen stimulation drives the differentiation of CD8+ T cells toward the TEM phenotype, in this study we incorporated a persistent herpesviral vector into a heterologous prime/boost/boost vaccine approach to maximize the induction of TEM responses. This new regimen resulted in CD8+ TEM-biased responses in four rhesus macaques, three of which controlled viral replication to <1,000 viral RNA copies/ml of plasma for more than 6 months after infection with SIVmac239. Over the course of this study, we made a series of interesting observations in one of these successful controller animals. Indeed, in vivo elimination of CD8αβ+ T cells using a new CD8β-depleting antibody did not abrogate virologic control in this monkey. Only after its CD8α+ lymphocytes were depleted did SIV rebound, suggesting that CD8αα+ but not CD8αβ+ cells were controlling viral replication. By 2 weeks postinfection (PI), the only SIV sequences that could be detected in this animal harbored a small in-frame deletion in nef affecting six amino acids. Deep sequencing of the SIVmac239 challenge stock revealed no evidence of this polymorphism. However, sequencing of the rebound virus following CD8α depletion at week 38.4 PI again revealed only the six-amino acid deletion in nef. While any role for immunological pressure on the selection of this deleted variant remains uncertain, our data provide anecdotal evidence that control of SIV replication can be maintained without an intact CD8αβ+ T cell compartment.
Collapse
Affiliation(s)
| | - Damien C. Tully
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts
| | - Young C. Shin
- Department of Pathology, University of Miami, Miami, Florida
| | | | - Kim L. Weisgrau
- Wisconsin National Primate Research Center, University of Wisconsin—Madison, Madison, Wisconsin
| | - David J. Bean
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts
| | - Rujuta Gadgil
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts
| | | | - Aline Domingues
- Department of Pathology, University of Miami, Miami, Florida
| | | | | | | | | | - Varian Bailey
- Department of Pathology, University of Miami, Miami, Florida
| | - Michael A. Cruz
- Department of Pathology, University of Miami, Miami, Florida
| | - Noemia S. Lima
- Laboratório de Biologia Molecular de Flavivirus, Instituto Oswaldo Cruz–FIOCRUZ, Rio de Janeiro, Brazil
| | - Myrna C. Bonaldo
- Laboratório de Biologia Molecular de Flavivirus, Instituto Oswaldo Cruz–FIOCRUZ, Rio de Janeiro, Brazil
| | - John D. Altman
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia
| | - Eva Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin—Madison, Madison, Wisconsin
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin—Madison, Madison, Wisconsin
| | - Keith A. Reimann
- MassBiologics, University of Massachusetts Medical School, Boston, Massachusetts
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | | | - Todd M. Allen
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts
| | | |
Collapse
|
205
|
Früh K, Picker L. CD8+ T cell programming by cytomegalovirus vectors: applications in prophylactic and therapeutic vaccination. Curr Opin Immunol 2017; 47:52-56. [PMID: 28734175 DOI: 10.1016/j.coi.2017.06.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 06/22/2017] [Indexed: 12/31/2022]
Abstract
Vectors based on cytomegalovirus (CMV) represent a novel vaccine platform that maintains high frequencies of non-exhausted effector memory T cells in both CMV sero-positive and sero-negative individuals. In non-human primate models, CMV vectored vaccines provide unprecedented protection against simian immunodeficiency virus (SIV). Moreover, CMV vectors can be genetically altered to program highly diverse CD8+ T cell responses that differ in their epitope targeting including conventional, MHC-I restricted CD8+ T cells as well as unconventional CD8+ T cells restricted by MHC class II or non-polymorphic MHC-E. By modifying cytomegaloviral determinants that control unconventional T cell priming it is possible to uniquely tailor the CD8+ T cell response for each individual disease target in order to maximize prophylactic or therapeutic protection.
Collapse
Affiliation(s)
- Klaus Früh
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, 97006, United States.
| | - Louis Picker
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, 97006, United States.
| |
Collapse
|
206
|
Moyo N, Borthwick NJ, Wee EG, Capucci S, Crook A, Dorrell L, Hanke T. Long-term follow up of human T-cell responses to conserved HIV-1 regions elicited by DNA/simian adenovirus/MVA vaccine regimens. PLoS One 2017; 12:e0181382. [PMID: 28719652 PMCID: PMC5515449 DOI: 10.1371/journal.pone.0181382] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 06/29/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Durability of vaccine-elicited immune responses is one of the key determinants for vaccine success. Our aim is to develop a vaccination strategy against the human immunodeficiency virus type 1 (HIV-1), which induces protective and durable CD8+ T-cell responses. The central theorem of our approach is to focus T cells on highly conserved regions of the HIV-1 proteome and this is achieved through the use of the first-generation conserved vaccine immunogen HIVconsv. This immunogen vectored by plasmid DNA, simian adenovirus and poxvirus MVA was tested in healthy, HIV-1-negative adults in UK and induced high magnitudes of HIVconsv-specific plurifunctional CD8+ T cells capable of in vitro HIV-1 inhibition. Here, we assessed the durability of these responses. METHODS Vaccine recipients in trial HIV-CORE 002 were invited to provide a blood sample at 1 and 2 years after vaccination. Their PBMCs were tested in IFN-γ ELISPOT, 25-analyte Luminex, CFSE proliferation and intracellular cytokine staining assays, the last enhanced by HLA-peptide dextramer analysis. RESULTS 12/12 (1 year) and 8/8 (2 years) returning subjects had median (range) of 990 (150-2495) and 763 (70-1745) IFN-γ SFU/106 PBMC specific for HIVconsv, respectively, and recognized 5 (1-6) out of 6 peptide pools at 2 years. Over one-half of the HIVconsv-specific cells expressed at least 3 functions IFN-γ, TNF-α and CD107a, and were capable of proliferation. Among dextramer-reactive cells, naïve, transitional, effector and terminally differentiated memory subsets were similarly represented. CONCLUSIONS First generation HIVconsv vaccine induced human T cells, which were plurifunctional and persisted for at least 2 years. TRIAL REGISTRATION ClinicalTrials.gov NCT01151319.
Collapse
Affiliation(s)
- Nathifa Moyo
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicola J Borthwick
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Edmund G Wee
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Silvia Capucci
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Alison Crook
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Lucy Dorrell
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- NDM Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Tomáš Hanke
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
207
|
Harriff MJ, Wolfe LM, Swarbrick G, Null M, Cansler ME, Canfield ET, Vogt T, Toren KG, Li W, Jackson M, Lewinsohn DA, Dobos KM, Lewinsohn DM. HLA-E Presents Glycopeptides from the Mycobacterium tuberculosis Protein MPT32 to Human CD8 + T cells. Sci Rep 2017; 7:4622. [PMID: 28676677 PMCID: PMC5496856 DOI: 10.1038/s41598-017-04894-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/22/2017] [Indexed: 12/17/2022] Open
Abstract
Infection with Mycobacterium tuberculosis (Mtb), the bacterium that causes tuberculosis, remains a global health concern. Both classically and non-classically restricted cytotoxic CD8+ T cells are important to the control of Mtb infection. We and others have demonstrated that the non-classical MHC I molecule HLA-E can present pathogen-derived peptides to CD8+ T cells. In this manuscript, we identified the antigen recognized by an HLA-E-restricted CD8+ T cell clone isolated from an Mtb latently infected individual as a peptide from the Mtb protein, MPT32. Recognition by the CD8+ T cell clone required N-terminal O-linked mannosylation of MPT32 by a mannosyltransferase encoded by the Rv1002c gene. This is the first description of a post-translationally modified Mtb-derived protein antigen presented in the context of an HLA-E specific CD8+ T cell immune response. The identification of an immune response that targets a unique mycobacterial modification is novel and may have practical impact in the development of vaccines and diagnostics.
Collapse
Affiliation(s)
- Melanie J Harriff
- Veterans Administration Portland Health Care System, Research & Development, 3710 SW US Veterans Hospital Road, Portland, OR, 97239, USA.
- Oregon Health & Sciences University, Department of Pulmonary and Critical Care Medicine, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | - Lisa M Wolfe
- Colorado State University, Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - Gwendolyn Swarbrick
- Oregon Health & Sciences University, Department of Pediatrics, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Megan Null
- Oregon Health & Sciences University, Department of Pediatrics, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Meghan E Cansler
- Oregon Health & Sciences University, Department of Pediatrics, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Elizabeth T Canfield
- Oregon Health & Sciences University, Department of Pulmonary and Critical Care Medicine, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Todd Vogt
- Oregon Health & Sciences University, Department of Pulmonary and Critical Care Medicine, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Katelynne Gardner Toren
- Oregon Health & Sciences University, Department of Pulmonary and Critical Care Medicine, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Wei Li
- Colorado State University, Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - Mary Jackson
- Colorado State University, Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - Deborah A Lewinsohn
- Oregon Health & Sciences University, Department of Pediatrics, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Karen M Dobos
- Colorado State University, Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - David M Lewinsohn
- Veterans Administration Portland Health Care System, Research & Development, 3710 SW US Veterans Hospital Road, Portland, OR, 97239, USA.
- Oregon Health & Sciences University, Department of Pulmonary and Critical Care Medicine, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
208
|
Martins MA, Shin YC, Gonzalez-Nieto L, Domingues A, Gutman MJ, Maxwell HS, Castro I, Magnani DM, Ricciardi M, Pedreño-Lopez N, Bailey V, Betancourt D, Altman JD, Pauthner M, Burton DR, von Bredow B, Evans DT, Yuan M, Parks CL, Ejima K, Allison DB, Rakasz E, Barber GN, Capuano S, Lifson JD, Desrosiers RC, Watkins DI. Vaccine-induced immune responses against both Gag and Env improve control of simian immunodeficiency virus replication in rectally challenged rhesus macaques. PLoS Pathog 2017; 13:e1006529. [PMID: 28732035 PMCID: PMC5540612 DOI: 10.1371/journal.ppat.1006529] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/02/2017] [Accepted: 07/13/2017] [Indexed: 01/28/2023] Open
Abstract
The ability to control lentivirus replication may be determined, in part, by the extent to which individual viral proteins are targeted by the immune system. Consequently, defining the antigens that elicit the most protective immune responses may facilitate the design of effective HIV-1 vaccines. Here we vaccinated four groups of rhesus macaques with a heterologous vector prime/boost/boost/boost (PBBB) regimen expressing the following simian immunodeficiency virus (SIV) genes: env, gag, vif, rev, tat, and nef (Group 1); env, vif, rev, tat, and nef (Group 2); gag, vif, rev, tat, and nef (Group 3); or vif, rev, tat, and nef (Group 4). Following repeated intrarectal challenges with a marginal dose of the neutralization-resistant SIVmac239 clone, vaccinees in Groups 1-3 became infected at similar rates compared to control animals. Unexpectedly, vaccinees in Group 4 became infected at a slower pace than the other animals, although this difference was not statistically significant. Group 1 exhibited the best post-acquisition virologic control of SIV infection, with significant reductions in both peak and chronic phase viremia. Indeed, 5/8 Group 1 vaccinees had viral loads of less than 2,000 vRNA copies/mL of plasma in the chronic phase. Vaccine regimens that did not contain gag (Group 2), env (Group 3), or both of these inserts (Group 4) were largely ineffective at decreasing viremia. Thus, vaccine-induced immune responses against both Gag and Env appeared to maximize control of immunodeficiency virus replication. Collectively, these findings are relevant for HIV-1 vaccine design as they provide additional insights into which of the lentiviral proteins might serve as the best vaccine immunogens.
Collapse
Affiliation(s)
- Mauricio A. Martins
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| | - Young C. Shin
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| | - Lucas Gonzalez-Nieto
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| | - Aline Domingues
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| | - Martin J. Gutman
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| | - Helen S. Maxwell
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| | - Iris Castro
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| | - Diogo M. Magnani
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| | - Michael Ricciardi
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| | - Nuria Pedreño-Lopez
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| | - Varian Bailey
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| | - Dillon Betancourt
- Department of Microbiology and Immunology, University of Miami, Miami, Florida, United States of America
| | - John D. Altman
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| | - Matthias Pauthner
- Department of Immunology and Microbiology, IAVI Neutralizing Antibody Center, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), The Scripps Research Institute, La Jolla, California, United States of America
| | - Dennis R. Burton
- Department of Immunology and Microbiology, IAVI Neutralizing Antibody Center, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), The Scripps Research Institute, La Jolla, California, United States of America
| | - Benjamin von Bredow
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - David T. Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Maoli Yuan
- International AIDS Vaccine Initiative, AIDS Vaccine Design and Development Laboratory, Brooklyn, New York, United States of America
| | - Christopher L. Parks
- International AIDS Vaccine Initiative, AIDS Vaccine Design and Development Laboratory, Brooklyn, New York, United States of America
| | - Keisuke Ejima
- Section on Statistical Genetics, Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - David B. Allison
- Section on Statistical Genetics, Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Eva Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Glen N. Barber
- Department of Cell Biology, University of Miami, Miami, Florida, United States of America
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Ronald C. Desrosiers
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| | - David I. Watkins
- Department of Pathology, University of Miami, Miami, Florida, United States of America
| |
Collapse
|
209
|
Bailer SM, Funk C, Riedl A, Ruzsics Z. Herpesviral vectors and their application in oncolytic therapy, vaccination, and gene transfer. Virus Genes 2017. [PMID: 28634751 DOI: 10.1007/s11262-017-1482-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Herpesviruses are enveloped DNA viruses that infect vertebrate cells. Their high potential cloning capacity and the lifelong persistence of their genomes in various host cells make them attractive platforms for vector-based therapy. In this review, we would like to highlight recent advances of three major areas of herpesvirus vector development and application: (i) oncolytic therapy, (ii) recombinant vaccines, and (iii) large capacity gene transfer vehicles.
Collapse
Affiliation(s)
- Susanne M Bailer
- Institute for Interfacial Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstrasse 12, 70569, Stuttgart, Germany. .,Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB, Nobelstrasse 12, 70569, Stuttgart, Germany.
| | - Christina Funk
- Institute for Interfacial Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstrasse 12, 70569, Stuttgart, Germany.,Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB, Nobelstrasse 12, 70569, Stuttgart, Germany
| | - André Riedl
- Department for Medical Microbiology and Hygiene, Institute of Virology, University Medical Center Freiburg, Hermann-Herder-Strasse 11, 79104, Freiburg, Germany.,German Center for Infection Research - DZIF, Freiburg, Germany
| | - Zsolt Ruzsics
- Department for Medical Microbiology and Hygiene, Institute of Virology, University Medical Center Freiburg, Hermann-Herder-Strasse 11, 79104, Freiburg, Germany. .,German Center for Infection Research - DZIF, Freiburg, Germany.
| |
Collapse
|
210
|
Erkes DA, Wilski NA, Snyder CM. Intratumoral infection by CMV may change the tumor environment by directly interacting with tumor-associated macrophages to promote cancer immunity. Hum Vaccin Immunother 2017; 13:1778-1785. [PMID: 28604162 DOI: 10.1080/21645515.2017.1331795] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cytomegalovirus (CMV) is a herpesvirus that induces an extremely robust and sustained immune response. For this reason, CMV has been proposed as a vaccine vector to promote immunity to both pathogens and cancer. However, exploration of CMV as a vaccine vector is at an early stage and there are many questions. Using a mouse melanoma model, we recently found that a CMV-based vaccine induced large populations of melanoma-specific T cells, but was not effective at slowing tumor growth unless it was injected directly into the tumor. These surprising results have led us to hypothesize that CMV may be adept at modulating the tumor micro-environment through its infection of macrophages. Importantly, injection of CMV into the growing tumor synergized with blockade of the PD-1 checkpoint to clear well-established tumors. Here, we discuss our results in the context of CMV-based vaccines for pathogens and cancer.
Collapse
Affiliation(s)
- Dan A Erkes
- a Department of Microbiology and Immunology, Sidney Kimmel Cancer Center , Thomas Jefferson University , Philadelphia , PA , USA
| | - Nicole A Wilski
- a Department of Microbiology and Immunology, Sidney Kimmel Cancer Center , Thomas Jefferson University , Philadelphia , PA , USA
| | - Christopher M Snyder
- a Department of Microbiology and Immunology, Sidney Kimmel Cancer Center , Thomas Jefferson University , Philadelphia , PA , USA
| |
Collapse
|
211
|
Hinkula J, Petkov S, Ljungberg K, Hallengärd D, Bråve A, Isaguliants M, Falkeborn T, Sharma S, Liakina V, Robb M, Eller M, Moss B, Biberfeld G, Sandström E, Nilsson C, Markland K, Blomberg P, Wahren B. HIVIS-DNA or HIVISopt-DNA priming followed by CMDR vaccinia-based boosts induce both humoral and cellular murine immune responses to HIV. Heliyon 2017; 3:e00339. [PMID: 28721397 PMCID: PMC5496381 DOI: 10.1016/j.heliyon.2017.e00339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/19/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND In order to develop a more effective prophylactic HIV-1 vaccine it is important optimize the components, improve Envelope glycoprotein immunogenicity as well as to explore prime-boost immunization schedules. It is also valuable to include several HIV-1 subtype antigens representing the world-wide epidemic. METHODS HIVIS-DNA plasmids which include Env genes of subtypes A, B and C together with Gag subtypes A and B and RTmut/Rev of subtype B were modified as follows: the Envelope sequences were shortened, codon optimized, provided with an FT4 sequence and an immunodominant region mutated. The reverse transcriptase (RT) gene was shortened to contain the most immunogenic N-terminal fragment and fused with an inactivated viral protease vPR gene. HIVISopt-DNA thus contains fewer plasmids but additional PR epitopes compared to the native HIVIS-DNA. DNA components were delivered intradermally to young Balb/c mice once, using a needle-free Biojector® immediately followed by dermal electroporation. Vaccinia-based MVA-CMDR boosts including Env gene E and Gag-RT genes A were delivered intramuscularly by needle, once or twice. RESULTS Both HIVIS-DNA and HIVISopt-DNA primed humoral and cell mediated responses well. When boosted with heterologous MVA-CMDR (subtypes A and E) virus inhibitory neutralizing antibodies were obtained to HIV-1 subtypes A, B, C and AE. Both plasmid compositions boosted with MVA-CMDR generated HIV-1 specific cellular responses directed against HIV-1 Env, Gag and Pol, as measured by IFNγ ELISpot. It was shown that DNA priming augmented the vector MVA immunological boosting effects, the HIVISopt-DNA with a trend to improved (Env) neutralization, the HIVIS-DNA with a trend to better (Gag) cell mediated immune reponses. CONCLUSIONS HIVIS-DNA was modified to obtain HIVISopt-DNA that had fewer plasmids, and additional epitopes. Even with one DNA prime followed by two MVA-CMDR boosts, humoral and cell-mediated immune responses were readily induced by priming with either DNA construct composition. Priming by HIV-DNA augmented neutralizing antibody responses revealed by boosting with the vaccinia-based heterologous sequences. Cellular and antibody responses covered selected strains representing HIV-1 subtypes A, B, C and CRF01_AE. We assume this is related to the inclusion of heterologous full genes in the vaccine schedule.
Collapse
Affiliation(s)
- J Hinkula
- Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - S Petkov
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - K Ljungberg
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - D Hallengärd
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - A Bråve
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - M Isaguliants
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - T Falkeborn
- Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden
| | - S Sharma
- Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden
| | - V Liakina
- Faculty of Medicine, Vilnius University 2, 08661 Vilnius, Lithuania
| | - M Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, 20892 MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, 20892 MD, USA
| | - M Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, 20892 MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, 20892 MD, USA
| | - B Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892 MD, USA
| | - G Biberfeld
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - E Sandström
- Department of South Hospital, Karolinska Institutet, 11883 Stockholm, Sweden
| | - C Nilsson
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - K Markland
- Clinical Research Center and Vecura, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - P Blomberg
- Clinical Research Center and Vecura, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - B Wahren
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
212
|
Murray SE, Nesterenko PA, Vanarsdall AL, Munks MW, Smart SM, Veziroglu EM, Sagario LC, Lee R, Claas FHJ, Doxiadis IIN, McVoy MA, Adler SP, Hill AB. Fibroblast-adapted human CMV vaccines elicit predominantly conventional CD8 T cell responses in humans. J Exp Med 2017; 214:1889-1899. [PMID: 28566275 PMCID: PMC5502433 DOI: 10.1084/jem.20161988] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/11/2017] [Accepted: 04/13/2017] [Indexed: 01/26/2023] Open
Abstract
Fibroblast-adapted rhesus CMV–vectored vaccines protect macaques from SIV challenge and elicit unconventional CD8 T cell responses. In contrast, Murray et al. show that humans vaccinated with fibroblast-adapted human CMV vaccines generate conventional CD8 T cell responses. Cytomegalovirus (CMV)-based vaccines have shown remarkable efficacy in the rhesus macaque model of acquired immune deficiency syndrome, enabling 50% of vaccinated monkeys to clear a subsequent virulent simian immunodeficiency virus challenge. The protective vaccine elicited unconventional CD8 T cell responses that were entirely restricted by MHC II or the nonclassical MHC I molecule, MHC-E. These unconventional responses were only elicited by a fibroblast-adapted rhesus CMV vector with limited tissue tropism; a repaired vector with normal tropism elicited conventional responses. Testing whether these unusual protective CD8 T responses could be elicited in humans requires vaccinating human subjects with a fibroblast-adapted mutant of human CMV (HCMV). In this study, we describe the CD8 T cell responses of human subjects vaccinated with two fibroblast-adapted HCMV vaccines. Most responses were identified as conventional classically MHC I restricted, and we found no evidence for MHC II or HLA-E restriction. These results indicate that fibroblast adaptation alone is unlikely to explain the unconventional responses observed in macaques.
Collapse
Affiliation(s)
- Susan E Murray
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR.,Department of Biology, University of Portland, Portland, OR
| | - Pavlo A Nesterenko
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR
| | - Adam L Vanarsdall
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR
| | - Michael W Munks
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR
| | - Savannah M Smart
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR
| | - Eren M Veziroglu
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR
| | - Lavinia C Sagario
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR
| | - Ronzo Lee
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA
| | - Frans H J Claas
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Ilias I N Doxiadis
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Michael A McVoy
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA
| | | | - Ann B Hill
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR
| |
Collapse
|
213
|
HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells. Nat Biotechnol 2017; 35:765-772. [PMID: 28504668 PMCID: PMC5548598 DOI: 10.1038/nbt.3860] [Citation(s) in RCA: 428] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 03/24/2017] [Indexed: 02/07/2023]
Abstract
Polymorphisms in the human leukocyte antigen (HLA) class I genes can cause the rejection of pluripotent stem cell (PSC)-derived products in allogeneic recipients. Disruption of the Beta-2 Microglobulin (B2M) gene eliminates surface expression of all class I molecules, but leaves the cells vulnerable to lysis by natural killer (NK) cells. Here we show that this ‘missing self’ response can be prevented by forced expression of minimally polymorphic HLA-E molecules. We use adeno-associated virus (AAV)-mediated gene editing to knock in HLA-E genes at the B2M locus in human PSCs in a manner that confers inducible, regulated, surface expression of HLA-E single-chain dimers (fused to B2M) or trimers (fused to B2M and a peptide antigen), without surface expression of HLA-A, B or C. These HLA-engineered PSCs and their differentiated derivatives are not recognized as allogeneic by CD8+ T cells, do not bind anti-HLA antibodies, and are resistant to NK-mediated lysis. Our approach provides a potential source of universal donor cells for applications where the differentiated derivatives lack HLA class II expression.
Collapse
|
214
|
McMichael AJ, Picker LJ. Unusual antigen presentation offers new insight into HIV vaccine design. Curr Opin Immunol 2017; 46:75-81. [PMID: 28505602 DOI: 10.1016/j.coi.2017.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/21/2017] [Accepted: 04/17/2017] [Indexed: 11/29/2022]
Abstract
Recent findings with a rhesus monkey cytomegalovirus based simian immunodeficiency virus vaccine have identified strong CD8+ T cell responses that are restricted by MHC-E. Also mycobacteria specific CD8+ T cells, that are MHC-E restricted, have been identified. MHC-E therefore can present a wide range of epitope peptides to CD8+ T cells, alongside its well defined role in presenting a conserved MHC-class I signal peptide to the NKG2A/C-CD94 receptor on natural killer cells. Here we explore the antigen processing pathways involved in these atypical T cell responses.
Collapse
Affiliation(s)
- Andrew J McMichael
- Nuffield Deparment of Medicine, Oxford University, Old Road Campus, Oxford OX37FZ, UK.
| | - Louis J Picker
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006-3448, United States
| |
Collapse
|
215
|
Bian Y, Shang S, Siddiqui S, Zhao J, Joosten SA, Ottenhoff THM, Cantor H, Wang CR. MHC Ib molecule Qa-1 presents Mycobacterium tuberculosis peptide antigens to CD8+ T cells and contributes to protection against infection. PLoS Pathog 2017; 13:e1006384. [PMID: 28475642 PMCID: PMC5435364 DOI: 10.1371/journal.ppat.1006384] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 05/17/2017] [Accepted: 04/26/2017] [Indexed: 11/18/2022] Open
Abstract
A number of nonclassical MHC Ib molecules recognizing distinct microbial antigens have been implicated in the immune response to Mycobacterium tuberculosis (Mtb). HLA-E has been identified to present numerous Mtb peptides to CD8+ T cells, with multiple HLA-E-restricted cytotoxic T lymphocyte (CTL) and regulatory T cell lines isolated from patients with active and latent tuberculosis (TB). In other disease models, HLA-E and its mouse homolog Qa-1 can act as antigen presenting molecules as well as regulators of the immune response. However, it is unclear what precise role(s) HLA-E/Qa-1 play in the immune response to Mtb. In this study, we found that murine Qa-1 can bind and present Mtb peptide antigens to CD8+ T effector cells during aerosol Mtb infection. Further, mice lacking Qa-1 (Qa-1-/-) were more susceptible to high-dose Mtb infection compared to wild-type controls, with higher bacterial burdens and increased mortality. The increased susceptibility of Qa-1-/- mice was associated with dysregulated T cells that were more activated and produced higher levels of pro-inflammatory cytokines. T cells from Qa-1-/- mice also had increased expression of inhibitory and apoptosis-associated cell surface markers such as CD94/NKG2A, KLRG1, PD-1, Fas-L, and CTLA-4. As such, they were more prone to cell death and had decreased capacity in promoting the killing of Mtb in infected macrophages. Lastly, comparing the immune responses of Qa-1 mutant knock-in mice deficient in either Qa-1-restricted CD8+ Tregs (Qa-1 D227K) or the inhibitory Qa-1-CD94/NKG2A interaction (Qa-1 R72A) with Qa-1-/- and wild-type controls indicated that both of these Qa-1-mediated mechanisms were involved in suppression of the immune response in Mtb infection. Our findings reveal that Qa-1 participates in the immune response to Mtb infection by presenting peptide antigens as well as regulating immune responses, resulting in more effective anti-Mtb immunity. The disease tuberculosis (TB) is caused by the microbe Mycobacterium tuberculosis (Mtb), and remains a major public health concern. More research is needed to understand the diverse immune responses against Mtb to develop better vaccines. Mouse Qa-1 and its human counterpart HLA-E are nonclassical MHC I molecules that can activate or inhibit immune responses in a variety of diseases. However, their role during the immune response to Mtb remains unknown. We found that Qa-1 can present Mtb peptides to activate CD8+ T effector cells during aerosol Mtb infection. Further, Mtb-infected mice that lacked Qa-1 (Qa-1-/-) had higher numbers of bacteria and died more often than infected mice that expressed Qa-1 (Qa-1+/+). The lack of Qa-1 results in over-activation of the immune response upon infection, which is less efficient in controlling Mtb. Using mice expressing different mutant forms of Qa-1, we showed that Qa-1 can regulate immune responses against Mtb through the interaction with inhibitory CD94/NKG2A receptors as well as the activation of regulatory CD8+ T cells. We believe our study sheds light on the diverse mechanisms at play in generating protective immune responses against Mtb and will inform future mouse and human studies.
Collapse
Affiliation(s)
- Yao Bian
- Department of Microbiology and Immunology, Feinberg School of Medicine Northwestern University, Chicago, Illinois, United States of America
| | - Shaobin Shang
- Department of Microbiology and Immunology, Feinberg School of Medicine Northwestern University, Chicago, Illinois, United States of America
| | - Sarah Siddiqui
- Department of Microbiology and Immunology, Feinberg School of Medicine Northwestern University, Chicago, Illinois, United States of America
| | - Jie Zhao
- Department of Microbiology and Immunology, Feinberg School of Medicine Northwestern University, Chicago, Illinois, United States of America
| | - Simone A. Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Harvey Cantor
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School Boston, Massachusetts, United States of America
| | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Feinberg School of Medicine Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
216
|
Leal L, Lucero C, Gatell JM, Gallart T, Plana M, García F. New challenges in therapeutic vaccines against HIV infection. Expert Rev Vaccines 2017; 16:587-600. [PMID: 28431490 DOI: 10.1080/14760584.2017.1322513] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION There is a growing interest in developing curative strategies for HIV infection. Therapeutic vaccines are one of the most promising approaches. We will review the current knowledge and the new challenges in this research field. Areas covered: PubMed and ClinicalTrial.gov databases were searched to review the progress and prospects for clinical development of immunotherapies aimed to cure HIV infection. Dendritic cells (DC)-based vaccines have yielded the best results in the field. However, major immune-virologic barriers may hamper current vaccine strategies. We will focus on some new challenges as the antigen presentation by DCs, CTL escape mutations, B cell follicle sanctuary, host immune environment (inflammation, immune activation, tolerance), latent reservoir and the lack of surrogate markers of response. Finally, we will review the rationale for designing new therapeutic vaccine candidates to be used alone or in combination with other strategies to improve their effectiveness. Expert commentary: In the next future, the combination of DCs targeting candidates, inserts to redirect responses to unmutated parts of the virus, adjuvants to redirect responses to sanctuaries or improve the balance between activation/tolerance (IL-15, anti-PD1 antibodies) and latency reversing agents could be necessary to finally achieve the remission of HIV-1 infection.
Collapse
Affiliation(s)
- Lorna Leal
- a Infectious Diseases Unit, HIVACAT, Hospital Clínic, IDIBAPS , University of Barcelona , Barcelona , Spain
| | - Constanza Lucero
- a Infectious Diseases Unit, HIVACAT, Hospital Clínic, IDIBAPS , University of Barcelona , Barcelona , Spain
| | - Josep M Gatell
- a Infectious Diseases Unit, HIVACAT, Hospital Clínic, IDIBAPS , University of Barcelona , Barcelona , Spain
| | - Teresa Gallart
- b Retrovirology and Viral Immunopathology Laboratories, HIVACAT, Hospital Clínic, IDIBAPS , University of Barcelona , Barcelona , Spain
| | - Montserrat Plana
- b Retrovirology and Viral Immunopathology Laboratories, HIVACAT, Hospital Clínic, IDIBAPS , University of Barcelona , Barcelona , Spain
| | - Felipe García
- a Infectious Diseases Unit, HIVACAT, Hospital Clínic, IDIBAPS , University of Barcelona , Barcelona , Spain
| |
Collapse
|
217
|
Kosinska AD, Bauer T, Protzer U. Therapeutic vaccination for chronic hepatitis B. Curr Opin Virol 2017; 23:75-81. [PMID: 28453967 DOI: 10.1016/j.coviro.2017.03.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/06/2017] [Accepted: 03/15/2017] [Indexed: 12/17/2022]
Abstract
A therapeutic vaccine is meant to activate the patient's immune system to fight and finally control or ideally eliminate an already established infectious pathogen. Whereas the success of prophylactic vaccination is based on rapid antibody-mediated neutralization of an invading pathogen, control and elimination of persistent viruses such as hepatitis, herpes or papilloma viruses requires multi-specific and polyfunctional effector T cell responses. These are ideally directed against continuously expressed viral antigens to keep the pathogen in check. Activation of a humoral immune response in order to lower viral antigen load and to limit virus spread, however, confers an additional benefit. Therapeutic vaccines are under development for a number of chronic infections and require an intelligent vaccine design. Hepatitis B virus (HBV) infection may serve as a prime example since a spontaneous, immune-mediated recovery of chronic hepatitis B and an elimination of the virus is possible even if it is observed only in very rare cases. In this review, we summarize the current knowledge and potential improvements of therapeutic vaccines for chronic hepatitis B.
Collapse
Affiliation(s)
- Anna D Kosinska
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany; German Center for Infection research (DZIF), Munich Partner Site, Germany
| | - Tanja Bauer
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany; German Center for Infection research (DZIF), Munich Partner Site, Germany
| | - Ulrike Protzer
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany; German Center for Infection research (DZIF), Munich Partner Site, Germany.
| |
Collapse
|
218
|
Reasons for optimism in the search for new vaccines for tuberculosis. Epidemiol Infect 2017; 145:1750-1756. [PMID: 28414012 DOI: 10.1017/s095026881700067x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the development of vaccines for tuberculosis (TB), the combination of the will, funding, scientific rigor, new tools, refined animal models and improved clinical trial designs are all converging at an opportune moment. The lack of optimism that has surrounded the likelihood for finding novel TB vaccines has resulted from a lack of correlates of vaccine-induced protection, a lack of tool candidate vaccines to probe the immunologic space, which may be needed, and the negative result of one recent trial. A vaccine for TB that can be delivered at a reasonable cost to the marketplace will have greater impact on the incidence of new cases of TB than any intervention in world history. Now is the time to increase resources, both financial and human intellectual capacity, for a global tuberculosis vaccine effort.
Collapse
|
219
|
Riley JL, Montaner LJ. Cell-Mediated Immunity to Target the Persistent Human Immunodeficiency Virus Reservoir. J Infect Dis 2017; 215:S160-S171. [PMID: 28520969 PMCID: PMC5853458 DOI: 10.1093/infdis/jix002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Effective clearance of virally infected cells requires the sequential activity of innate and adaptive immunity effectors. In human immunodeficiency virus (HIV) infection, naturally induced cell-mediated immune responses rarely eradicate infection. However, optimized immune responses could potentially be leveraged in HIV cure efforts if epitope escape and lack of sustained effector memory responses were to be addressed. Here we review leading HIV cure strategies that harness cell-mediated control against HIV in stably suppressed antiretroviral-treated subjects. We focus on strategies that may maximize target recognition and eradication by the sequential activation of a reconstituted immune system, together with delivery of optimal T-cell responses that can eliminate the reservoir and serve as means to maintain control of HIV spread in the absence of antiretroviral therapy (ART). As evidenced by the evolution of ART, we argue that a combination of immune-based strategies will be a superior path to cell-mediated HIV control and eradication. Available data from several human pilot trials already identify target strategies that may maximize antiviral pressure by joining innate and engineered T cell responses toward testing for sustained HIV remission and/or cure.
Collapse
Affiliation(s)
- James L Riley
- Department of Microbiology and Center for Cellular Immunotherapies, University of Pennsylvania, and
| | - Luis J Montaner
- HIV-1 Immunopathogenesis Laboratory, Wistar Institute, Philadelphia, Pennsylvania
| |
Collapse
|
220
|
Ramsuran V, Hernández-Sanchez PG, O'hUigin C, Sharma G, Spence N, Augusto DG, Gao X, García-Sepúlveda CA, Kaur G, Mehra NK, Carrington M. Sequence and Phylogenetic Analysis of the Untranslated Promoter Regions for HLA Class I Genes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:2320-2329. [PMID: 28148735 PMCID: PMC5340644 DOI: 10.4049/jimmunol.1601679] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/02/2017] [Indexed: 01/09/2023]
Abstract
Polymorphisms located within the MHC have been linked to many disease outcomes by mechanisms not yet fully understood in most cases. Variants located within untranslated regions of HLA genes are involved in allele-specific expression and may therefore underlie some of these disease associations. We determined sequences extending nearly 2 kb upstream of the transcription start site for 68 alleles from 57 major lineages of classical HLA class I genes. The nucleotide diversity within this promoter segment roughly follows that seen within the coding regions, with HLA-B showing the highest (∼1.9%), followed by HLA-A (∼1.8%), and HLA-C showing the lowest diversity (∼0.9%). Despite its greater diversity, HLA-B mRNA expression levels determined in 178 European Americans do not vary in an allele- or lineage-specific manner, unlike the differential expression levels of HLA-A or HLA-C reported previously. Close proximity of promoter sequences in phylogenetic trees is roughly reflected by similarity of expression pattern for most HLA-A and -C loci. Although promoter sequence divergence might impact promoter activity, we observed no clear link between the phylogenetic structures as represented by pairwise nucleotide differences in the promoter regions with estimated differences in mRNA expression levels for the classical class I loci. Further, no pair of class I loci showed coordinated expression levels, suggesting that distinct mechanisms across loci determine their expression level under nonstimulated conditions. These data serve as a foundation for more in-depth analysis of the functional consequences of promoter region variation within the classical HLA class I loci.
Collapse
Affiliation(s)
- Veron Ramsuran
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139
| | - Pedro G Hernández-Sanchez
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
- Laboratorio de Genómica Viral y Humana, Facultad de Medicina de la Universidad Autónoma de San Luis Potosi, 78210 San Luis Potosi, Mexico
| | - Colm O'hUigin
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Gaurav Sharma
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi 110029, India
- Laboratory Oncology, Dr. B.R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India; and
| | - Niamh Spence
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
- Laboratory Oncology, Dr. B.R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India; and
| | - Danillo G Augusto
- Laboratório de Genética Molecular Humana, Departamento de Genética, Universidade Federal do Paraná, Curitiba, CEP 81531-980, Brazil
| | - Xiaojiang Gao
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Christian A García-Sepúlveda
- Laboratorio de Genómica Viral y Humana, Facultad de Medicina de la Universidad Autónoma de San Luis Potosi, 78210 San Luis Potosi, Mexico
| | - Gurvinder Kaur
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Narinder K Mehra
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Mary Carrington
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702;
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139
| |
Collapse
|
221
|
van Hateren A, Bailey A, Elliott T. Recent advances in Major Histocompatibility Complex (MHC) class I antigen presentation: Plastic MHC molecules and TAPBPR-mediated quality control. F1000Res 2017; 6:158. [PMID: 28299193 PMCID: PMC5321123 DOI: 10.12688/f1000research.10474.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2017] [Indexed: 01/25/2023] Open
Abstract
We have known since the late 1980s that the function of classical major histocompatibility complex (MHC) class I molecules is to bind peptides and display them at the cell surface to cytotoxic T cells. Recognition by these sentinels of the immune system can lead to the destruction of the presenting cell, thus protecting the host from pathogens and cancer. Classical MHC class I molecules (MHC I hereafter) are co-dominantly expressed, polygenic, and exceptionally polymorphic and have significant sequence diversity. Thus, in most species, there are many different MHC I allotypes expressed, each with different peptide-binding specificity, which can have a dramatic effect on disease outcome. Although MHC allotypes vary in their primary sequence, they share common tertiary and quaternary structures. Here, we review the evidence that, despite this commonality, polymorphic amino acid differences between allotypes alter the ability of MHC I molecules to change shape (that is, their conformational plasticity). We discuss how the peptide loading co-factor tapasin might modify this plasticity to augment peptide loading. Lastly, we consider recent findings concerning the functions of the non-classical MHC I molecule HLA-E as well as the tapasin-related protein TAPBPR (transporter associated with antigen presentation binding protein-related), which has been shown to act as a second quality-control stage in MHC I antigen presentation.
Collapse
Affiliation(s)
- Andy van Hateren
- Institute for Life Sciences and Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Alistair Bailey
- Institute for Life Sciences and Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Tim Elliott
- Institute for Life Sciences and Cancer Sciences Unit, University of Southampton, Southampton, UK
| |
Collapse
|
222
|
Yang Y, Zhu Q, Sun W, Guo J, Ning X, Li Q, Guo Y, Li J, Kou Z, Zhou Y. A recombinant multi-epitope protein MEP1 elicits efficient long-term immune responses against HIV-1 infection. Hum Vaccin Immunother 2017; 13:1-9. [PMID: 28281860 DOI: 10.1080/21645515.2017.1281488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The effective protective HIV vaccine should elicit either protective antibodies or effective T cell response, or both. To improve the efficacy of HIV-1 vaccines, HLA polymorphism and HIV-1 diversity are 2 key factors to be considered for vaccine development. In this study, we expressed a recombinant multi-epitope protein MEP1 which has the same amino acid sequence as a DNA vaccine for Chinese population in our previous report. We found that MEP1 alone could elicit moderate levels of humoral and cellular immune responses, but these responses could not provide protection from challenge with a recombinant virus rTTV-lucgag, which expresses Gag of HIV-1 CRF_07BC. Nevertheless, when MEP1 was immunized with aluminum adjuvant, both humoral and cellular immune responses were significantly increased, and they were protective against virus infection; meanwhile, MEP1 with aluminum not only elicited early (10 d post immunization) but also a long-term (at least 44 weeks post immunization) immune responses in BALB/c mice. These results suggested that MEP1 has the potential to be developed as an effective vaccine candidate, and that suitable adjuvant is necessary for this protein to generate protective immune responses.
Collapse
Affiliation(s)
- Yi Yang
- a State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing , China.,b Department of Microbiology , Third Military Medical University , Chongqing , China
| | - Qing Zhu
- c School of Laboratory Medicine and Life Science, Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Weilai Sun
- a State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing , China
| | - Jingjing Guo
- a State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing , China
| | - Xiuzhe Ning
- a State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing , China
| | - Qiao Li
- a State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing , China
| | - Yan Guo
- a State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing , China
| | - Junfeng Li
- a State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing , China
| | - Zhihua Kou
- a State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing , China.,c School of Laboratory Medicine and Life Science, Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Yusen Zhou
- c School of Laboratory Medicine and Life Science, Wenzhou Medical University , Wenzhou , Zhejiang , China
| |
Collapse
|
223
|
Kaulfuß M, Wensing I, Windmann S, Hrycak CP, Bayer W. Induction of complex immune responses and strong protection against retrovirus challenge by adenovirus-based immunization depends on the order of vaccine delivery. Retrovirology 2017; 14:8. [PMID: 28166802 PMCID: PMC5294899 DOI: 10.1186/s12977-017-0336-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 01/31/2017] [Indexed: 01/04/2023] Open
Abstract
Background In the Friend retrovirus mouse model we developed potent adenovirus-based vaccines that were designed to induce either strong Friend virus GagL85–93-specific CD8+ T cell or antibody responses, respectively. To optimize the immunization outcome we evaluated vaccination strategies using combinations of these vaccines. Results While the vaccines on their own confer strong protection from a subsequent Friend virus challenge, the simple combination of the vaccines for the establishment of an optimized immunization protocol did not result in a further improvement of vaccine effectivity. We demonstrate that the co-immunization with GagL85–93/leader-gag encoding vectors together with envelope-encoding vectors abrogates the induction of GagL85–93-specific CD8+ T cells, and in successive immunization protocols the immunization with the GagL85–93/leader-gag encoding vector had to precede the immunization with an envelope encoding vector for the efficient induction of GagL85–93-specific CD8+ T cells. Importantly, the antibody response to envelope was in fact enhanced when the mice were adenovirus-experienced from a prior immunization, highlighting the expedience of this approach. Conclusions To circumvent the immunosuppressive effect of envelope on immune responses to simultaneously or subsequently administered immunogens, we developed a two immunizations-based vaccination protocol that induces strong immune responses and confers robust protection of highly Friend virus-susceptible mice from a lethal Friend virus challenge. Electronic supplementary material The online version of this article (doi:10.1186/s12977-017-0336-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meike Kaulfuß
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Virchowstr. 179, 45147, Essen, Germany
| | - Ina Wensing
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Virchowstr. 179, 45147, Essen, Germany
| | - Sonja Windmann
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Virchowstr. 179, 45147, Essen, Germany
| | - Camilla Patrizia Hrycak
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Virchowstr. 179, 45147, Essen, Germany
| | - Wibke Bayer
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Virchowstr. 179, 45147, Essen, Germany.
| |
Collapse
|
224
|
Abstract
INTRODUCTION Despite many recent advances in the HIV prevention landscape, an effective vaccine remains the most promising tool to end the HIV-1 pandemic. Areas covered: This review summarizes past HIV vaccine efficacy trials and current vaccine strategies as well as new approaches about to move into first-in-human trials. Expert opinion: Despite many setbacks in early HIV vaccine efficacy trials, the success of RV144 has provided the glimmer of hope necessary to invigorate the vaccine field, and has led to the development of a large number of vaccine strategies aiming at inducing an array of different immune responses. The follow-up pox-protein trials, developed to replicate and enhance the polyfunctional antibody responses induced by the RV144 regimen, are already reaching efficacy trials, while a large body of work providing a more complete understanding of the development of broadly neutralizing antibodies is now being translated into immunogen design using several different strategies. T-cell based vaccines, fallen out of favor after Ad5-based trials showed increased infection rates in Ad5 seropositive vaccine recipients, are experiencing a comeback based in part on the promising results from non-human primate challenge studies using rhCMV-based immunogens. This diverse array of vaccine candidates may finally allow us to identify a broadly effective HIV vaccine able to contain the epidemic.
Collapse
Affiliation(s)
- Kristen W Cohen
- a Vaccine and Infectious Disease Division , Fred Hutchinson Cancer Research Center , Seattle , WA , USA
| | - Nicole Frahm
- a Vaccine and Infectious Disease Division , Fred Hutchinson Cancer Research Center , Seattle , WA , USA.,b Department of Global Health , University of Washington , Seattle , WA , USA
| |
Collapse
|
225
|
The Antiviral Immune Response and Its Impact on the HIV-1 Reservoir. Curr Top Microbiol Immunol 2017; 417:43-67. [PMID: 29071476 DOI: 10.1007/82_2017_72] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Latently infected resting memory CD4+ T cells represent a major barrier to HIV-1 eradication. Studies have shown that it will not be possible to cure HIV-1 infection unless these cells are eliminated. Latently infected cells probably do not express viral antigens and thus may not be susceptible to the HIV-1 specific immune response, nevertheless the size and composition of the reservoir is influenced by the immune system. In this chapter, we review the different components of the HIV-1 specific immune response and discuss how the immune system can be harnessed to eradicate the virus.
Collapse
|
226
|
Marshall NB, Vong AM, Devarajan P, Brauner MD, Kuang Y, Nayar R, Schutten EA, Castonguay CH, Berg LJ, Nutt SL, Swain SL. NKG2C/E Marks the Unique Cytotoxic CD4 T Cell Subset, ThCTL, Generated by Influenza Infection. THE JOURNAL OF IMMUNOLOGY 2016; 198:1142-1155. [PMID: 28031335 DOI: 10.4049/jimmunol.1601297] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 12/05/2016] [Indexed: 01/22/2023]
Abstract
CD4 T cells can differentiate into multiple effector subsets, including ThCTL that mediate MHC class II-restricted cytotoxicity. Although CD4 T cell-mediated cytotoxicity has been reported in multiple viral infections, their characteristics and the factors regulating their generation are unclear, in part due to a lack of a signature marker. We show in this article that, in mice, NKG2C/E identifies the ThCTL that develop in the lung during influenza A virus infection. ThCTL express the NKG2X/CD94 complex, in particular the NKG2C/E isoforms. NKG2C/E+ ThCTL are part of the lung CD4 effector population, and they mediate influenza A virus-specific cytotoxic activity. The phenotype of NKG2C/E+ ThCTL indicates they are highly activated effectors expressing high levels of binding to P-selectin, T-bet, and Blimp-1, and that more of them secrete IFN-γ and readily degranulate than non-ThCTL. ThCTL also express more cytotoxicity-associated genes including perforin and granzymes, and fewer genes associated with recirculation and memory. They are found only at the site of infection and not in other peripheral sites. These data suggest ThCTL are marked by the expression of NKG2C/E and represent a unique CD4 effector population specialized for cytotoxicity.
Collapse
Affiliation(s)
- Nikki B Marshall
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Allen M Vong
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | | | - Matthew D Brauner
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Yi Kuang
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Ribhu Nayar
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Elizabeth A Schutten
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Catherine H Castonguay
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Leslie J Berg
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Stephen L Nutt
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; and.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Susan L Swain
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605;
| |
Collapse
|
227
|
Plachter B. Prospects of a vaccine for the prevention of congenital cytomegalovirus disease. Med Microbiol Immunol 2016; 205:537-547. [PMID: 27519596 DOI: 10.1007/s00430-016-0472-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 08/03/2016] [Indexed: 02/07/2023]
Abstract
Congenital human cytomegalovirus (HCMV) infection is one leading cause of childhood disabilities. Prevention of congenital HCMV disease by vaccination has consequently been identified as a priority public healthcare goal. Several vaccine candidates have been introduced in the past that aimed at the prevention of primary HCMV infection in pregnancy. None of these has provided complete protection, and no licensed vaccine is thus far available. An additional level of complexity has been reached by recent studies indicating that the burden of HCMV transmission and disease following non-primary infections in pregnancy may be higher than previously anticipated. Substantial progress in our understanding of the immunobiology of HCMV infection in pregnancy has fostered studies to test revised or novel vaccine strategies. Preventing HCMV transmission has been identified a surrogate endpoint, rendering the conduction of vaccine studies feasible with reasonable effort. Identification of the glycoprotein complex gH/gL/UL128-131 as a mediator of HCMV host cell tropism and evaluation of that complex as a major target of the neutralizing antibody response made manufacturers consider vaccine candidates that include these proteins. Detailed structural analyses of the neutralizing determinants on HCMV glycoprotein B (gB) have revived interest in using this protein in its pre-fusion conformation for vaccine purposes. Studies in pregnant women and in animal models have provided evidence that addressing the T lymphocyte response by vaccination may be crucial to prevent HCMV transmission to the offspring. CD4 T lymphocytes may be of particular importance in this respect. A simultaneous targeting of both the humoral and cellular immune response against HCMV by vaccination thus appears warranted in order to prevent congenital HCMV infection. There is, however, still need for further research to be able to define an immunological correlate of protection against HCMV transmission during pregnancy. This brief review will highlight recent developments in our understanding of the natural history and immunobiology of HCMV infection in pregnancy and their possible impact on the strategies for the development of an HCMV vaccine.
Collapse
Affiliation(s)
- Bodo Plachter
- Institute for Virology, University Medical Center Mainz, Obere Zahlbacher Str. 67, 55101, Mainz, Germany.
| |
Collapse
|
228
|
Schultheis K, Schaefer H, Yung BS, Oh J, Muthumani K, Humeau L, Broderick KE, Smith TRF. Characterization of guinea pig T cell responses elicited after EP-assisted delivery of DNA vaccines to the skin. Vaccine 2016; 35:61-70. [PMID: 27894716 PMCID: PMC5221502 DOI: 10.1016/j.vaccine.2016.11.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/03/2016] [Accepted: 11/12/2016] [Indexed: 12/13/2022]
Abstract
The skin is an ideal target tissue for vaccine delivery for a number of reasons. It is highly accessible, and most importantly, enriched in professional antigen presenting cells. Possessing strong similarities to human skin physiology and displaying a defined epidermis, the guinea pig is an appropriate model to study epidermal delivery of vaccine. However, whilst we have characterized the humoral responses in the guinea pig associated with skin vaccine protocols we have yet to investigate the T cell responses. In response to this inadequacy, we developed an IFN-γ ELISpot assay to characterize the cellular immune response in the peripheral blood of guinea pigs. Using a nucleoprotein (NP) influenza pDNA vaccination regimen, we characterized host T cell responses. After delivery of the DNA vaccine to the guinea pig epidermis we detected robust and rapid T cell responses. The levels of IFN-γ spot-forming units averaged approximately 5000 per million cells after two immunizations. These responses were broad in that multiple regions across the NP antigen elicited a T cell response. Interestingly, we identified a number of NP immunodominant T cell epitopes to be conserved across an outbred guinea pig population, a phenomenon which was also observed after immunization with a RSV DNA vaccine. We believe this data enhances our understanding of the cellular immune response elicited to a vaccine in guinea pigs, and globally, will advance the use of this model for vaccine development, especially those targeting skin as a delivery site.
Collapse
Affiliation(s)
- Katherine Schultheis
- Inovio Pharmaceuticals, Inc., 660W. Germantown Pike, Suite 110, Plymouth Meeting, PA 19462, USA
| | - Hubert Schaefer
- Intracelluar Pathogens, Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
| | - Bryan S Yung
- Inovio Pharmaceuticals, Inc., 660W. Germantown Pike, Suite 110, Plymouth Meeting, PA 19462, USA
| | - Janet Oh
- Inovio Pharmaceuticals, Inc., 660W. Germantown Pike, Suite 110, Plymouth Meeting, PA 19462, USA
| | - Karuppiah Muthumani
- Vaccine Center, The Wistar Institute of Anatomy & Biology, 3601 Spruce St., Philadelphia, PA 19104, USA
| | - Laurent Humeau
- Inovio Pharmaceuticals, Inc., 660W. Germantown Pike, Suite 110, Plymouth Meeting, PA 19462, USA
| | - Kate E Broderick
- Inovio Pharmaceuticals, Inc., 660W. Germantown Pike, Suite 110, Plymouth Meeting, PA 19462, USA
| | - Trevor R F Smith
- Inovio Pharmaceuticals, Inc., 660W. Germantown Pike, Suite 110, Plymouth Meeting, PA 19462, USA.
| |
Collapse
|
229
|
Fuchs SP, Desrosiers RC. Promise and problems associated with the use of recombinant AAV for the delivery of anti-HIV antibodies. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16068. [PMID: 28197421 PMCID: PMC5289440 DOI: 10.1038/mtm.2016.68] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/11/2016] [Indexed: 02/07/2023]
Abstract
Attempts to elicit antibodies with potent neutralizing activity against a broad range of human immunodeficiency virus (HIV) isolates have so far proven unsuccessful. Long-term delivery of monoclonal antibodies (mAbs) with such activity is a creative alternative that circumvents the need for an immune response and has the potential for creating a long-lasting sterilizing barrier against HIV. This approach is made possible by an incredible array of potent broadly neutralizing antibodies (bnAbs) that have been identified over the last several years. Recombinant adeno-associated virus (rAAV) vectors are ideally suited for long-term delivery for a variety of reasons. The only products made from rAAV are derived from the transgenes that are put into it; as long as those products are not viewed as foreign, expression from muscle tissue may continue for decades. Thus, use of rAAV to achieve long-term delivery of anti-HIV mAbs with potent neutralizing activity against a broad range of HIV-1 isolates is emerging as a promising concept for the prevention or treatment of HIV-1 infection in humans. Experiments in mice and monkeys that have demonstrated protective efficacy against AIDS virus infection have raised hopes for the promise of this approach. However, all published experiments in monkeys have encountered unwanted immune responses to the AAV-delivered antibody, and these immune responses appear to limit the levels of delivered antibody that can be achieved. In this review, we highlight the promise of rAAV-mediated antibody delivery for the prevention or treatment of HIV infection in humans, but we also discuss the obstacles that will need to be understood and solved in order for the promise of this approach to be realized.
Collapse
Affiliation(s)
- Sebastian P Fuchs
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, USA; Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ronald C Desrosiers
- Department of Pathology, Miller School of Medicine, University of Miami , Miami, Florida, USA
| |
Collapse
|
230
|
Dersh D, Yewdell JW. I've got algorithm: predicting tumor and autoimmune peptide targets for CD8+ T cells. J Clin Invest 2016; 126:4399-4401. [PMID: 27841762 DOI: 10.1172/jci91302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
CD8+ T cells play a central role in eradicating intracellular pathogens, but also are important for noninfectious diseases, including cancer and autoimmunity. The ability to clinically manipulate CD8+ T cells to target cancer and autoimmune disease is limited by our ignorance of relevant self-peptide target antigens. In this issue of the JCI, Pearson et al. describe 25,270 MHC class I-associated peptides presented by a wide range of HLA A and B allomorphs expressed by 18 different B cell lines. Via extensive bioinformatic analysis, the authors make surprising conclusions regarding the selective nature of peptide generation at the level of individual gene products and create a predictive algorithm for disease-relevant self-peptides that will be of immediate use for clinical and basic immunological research.
Collapse
|
231
|
Burwitz BJ, Malouli D, Bimber BN, Reed JS, Ventura AB, Hancock MH, Uebelhoer LS, Bhusari A, Hammond KB, Espinosa Trethewy RG, Klug A, Legasse AW, Axthelm MK, Nelson JA, Park BS, Streblow DN, Hansen SG, Picker LJ, Früh K, Sacha JB. Cross-Species Rhesus Cytomegalovirus Infection of Cynomolgus Macaques. PLoS Pathog 2016; 12:e1006014. [PMID: 27829026 PMCID: PMC5102353 DOI: 10.1371/journal.ppat.1006014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/20/2016] [Indexed: 12/14/2022] Open
Abstract
Cytomegaloviruses (CMV) are highly species-specific due to millennia of co-evolution and adaptation to their host, with no successful experimental cross-species infection in primates reported to date. Accordingly, full genome phylogenetic analysis of multiple new CMV field isolates derived from two closely related nonhuman primate species, Indian-origin rhesus macaques (RM) and Mauritian-origin cynomolgus macaques (MCM), revealed distinct and tight lineage clustering according to the species of origin, with MCM CMV isolates mirroring the limited genetic diversity of their primate host that underwent a population bottleneck 400 years ago. Despite the ability of Rhesus CMV (RhCMV) laboratory strain 68-1 to replicate efficiently in MCM fibroblasts and potently inhibit antigen presentation to MCM T cells in vitro, RhCMV 68-1 failed to productively infect MCM in vivo, even in the absence of host CD8+ T and NK cells. In contrast, RhCMV clone 68-1.2, genetically repaired to express the homologues of the HCMV anti-apoptosis gene UL36 and epithelial cell tropism genes UL128 and UL130 absent in 68-1, efficiently infected MCM as evidenced by the induction of transgene-specific T cells and virus shedding. Recombinant variants of RhCMV 68-1 and 68-1.2 revealed that expression of either UL36 or UL128 together with UL130 enabled productive MCM infection, indicating that multiple layers of cross-species restriction operate even between closely related hosts. Cumulatively, these results implicate cell tropism and evasion of apoptosis as critical determinants of CMV transmission across primate species barriers, and extend the macaque model of human CMV infection and immunology to MCM, a nonhuman primate species with uniquely simplified host immunogenetics.
Collapse
Affiliation(s)
- Benjamin J. Burwitz
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Daniel Malouli
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Benjamin N. Bimber
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Jason S. Reed
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Abigail B. Ventura
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Meaghan H. Hancock
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Luke S. Uebelhoer
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Amruta Bhusari
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Katherine B. Hammond
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Renee G. Espinosa Trethewy
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Alex Klug
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Alfred W. Legasse
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Michael K. Axthelm
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Jay A. Nelson
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Byung S. Park
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Daniel N. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Scott G. Hansen
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Louis J. Picker
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Klaus Früh
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Jonah B. Sacha
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
- * E-mail:
| |
Collapse
|
232
|
Girard MP, Le-Grand R, Picot V, Longuet C, Nabel GJ. Report of the Cent Gardes HIV Vaccines Conference, Part 2: The cellular immune response. Fondation Mérieux Conference Center, Veyrier-du-Lac, France, 25–27 October 2015. Vaccine 2016; 34:5470-5473. [DOI: 10.1016/j.vaccine.2016.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 08/29/2016] [Accepted: 09/15/2016] [Indexed: 11/28/2022]
|
233
|
Abstract
CD8+ T cells that recognize peptides presented by MHC class II molecules have been observed in a macaque SIV vaccine model. A new study by Ranasinghe et al. (2016) shows that virus-specific class-II-restricted CD8+ T cells can be found in some HIV-infected patients.
Collapse
Affiliation(s)
- Stephen A Migueles
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, Division of Intramural Research NIAID, Bethesda, MD 20892, USA
| | - Mark Connors
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, Division of Intramural Research NIAID, Bethesda, MD 20892, USA.
| |
Collapse
|
234
|
Hu X, Valentin A, Dayton F, Kulkarni V, Alicea C, Rosati M, Chowdhury B, Gautam R, Broderick KE, Sardesai NY, Martin MA, Mullins JI, Pavlakis GN, Felber BK. DNA Prime-Boost Vaccine Regimen To Increase Breadth, Magnitude, and Cytotoxicity of the Cellular Immune Responses to Subdominant Gag Epitopes of Simian Immunodeficiency Virus and HIV. THE JOURNAL OF IMMUNOLOGY 2016; 197:3999-4013. [PMID: 27733554 DOI: 10.4049/jimmunol.1600697] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/12/2016] [Indexed: 12/23/2022]
Abstract
HIV sequence diversity and the propensity of eliciting immunodominant responses targeting variable regions of the HIV proteome are hurdles in the development of an effective AIDS vaccine. An HIV-derived conserved element (CE) p24gag plasmid DNA (pDNA) vaccine is able to redirect immunodominant responses to otherwise subdominant and often more vulnerable viral targets. By homology to the HIV immunogen, seven CE were identified in SIV p27Gag Analysis of 31 rhesus macaques vaccinated with full-length SIV gag pDNA showed inefficient induction (58% response rate) of cellular responses targeting these CE. In contrast, all 14 macaques immunized with SIV p27CE pDNA developed robust T cell responses recognizing CE. Vaccination with p27CE pDNA was also critical for the efficient induction and increased the frequency of Ag-specific T cells with cytotoxic potential (granzyme B+ CD107a+) targeting subdominant CE epitopes, compared with the responses elicited by the p57gag pDNA vaccine. Following p27CE pDNA priming, two booster regimens, gag pDNA or codelivery of p27CE+gag pDNA, significantly increased the levels of CE-specific T cells. However, the CE+gag pDNA booster vaccination elicited significantly broader CE epitope recognition, and thus, a more profound alteration of the immunodominance hierarchy. Vaccination with HIV molecules showed that CE+gag pDNA booster regimen further expanded the breadth of HIV CE responses. Hence, SIV/HIV vaccine regimens comprising CE pDNA prime and CE+gag pDNA booster vaccination significantly increased cytotoxic T cell responses to subdominant highly conserved Gag epitopes and maximized response breadth.
Collapse
Affiliation(s)
- Xintao Hu
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702
| | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702
| | - Frances Dayton
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702
| | - Viraj Kulkarni
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702
| | - Candido Alicea
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702
| | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702
| | - Bhabadeb Chowdhury
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702
| | - Rajeev Gautam
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | | | | | - Malcolm A Martin
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - James I Mullins
- Department of Microbiology, University of Washington, Seattle, WA 98195.,Department of Medicine, University of Washington, Seattle, WA 98195.,Department of Global Health, University of Washington, Seattle, WA 98195; and.,Department of Laboratory Medicine, University of Washington, Seattle, WA 98195
| | - George N Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702;
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702;
| |
Collapse
|
235
|
Maness NJ. The Importance of Understanding MHC-I Diversity in Nonhuman Primate Models of Human Infectious Diseases. Toxicol Pathol 2016; 45:157-160. [PMID: 27729588 DOI: 10.1177/0192623316672072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Decades of research, including the 1996 Nobel Prize in Medicine, confirm the evolutionary and immunological importance of CD8 T lymphocytes (TCD8+) that target peptides bound by the highly variable major histocompatibility complex class I (MHC-I) proteins. However, their perceived importance has varied dramatically over the past decade. Regardless, there remains myriad reasons to consider the diversity of MHC-I alleles and the TCD8+ that target them as enormously important in infectious disease research. Thus, understanding these molecules in the best animal models of human disease could be a necessity for optimizing the translational potential of these models. Knowledge of macaque MHC has substantially improved their utility for modeling HIV and could aid in modeling other viruses as well, both in the context of distribution of alleles across treatment groups in vaccine trials and in deciphering mechanisms of immune control of pathogens for which specific MHC alleles demonstrate differential impacts on disease.
Collapse
Affiliation(s)
- Nicholas J Maness
- 1 Tulane University School of Medicine, Tulane National Primate Research Center, Covington, Louisiana, USA
| |
Collapse
|
236
|
Joosten SA, Sullivan LC, Ottenhoff THM. Characteristics of HLA-E Restricted T-Cell Responses and Their Role in Infectious Diseases. J Immunol Res 2016; 2016:2695396. [PMID: 27699181 PMCID: PMC5028793 DOI: 10.1155/2016/2695396] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/28/2016] [Accepted: 07/10/2016] [Indexed: 12/31/2022] Open
Abstract
Human HLA-E can, in addition to self-antigens, also present pathogen-derived sequences, which elicit specific T-cell responses. T-cells recognize their antigen presented by HLA-E highly specifically and have unique functional and phenotypical properties. Pathogen specific HLA-E restricted CD8+ T-cells are an interesting new player in the field of immunology. Future work should address their exact roles and relative contributions in the immune response against infectious diseases.
Collapse
Affiliation(s)
- Simone A. Joosten
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Lucy C. Sullivan
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3010, Australia
| | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| |
Collapse
|
237
|
Sturgill ER, Malouli D, Hansen SG, Burwitz BJ, Seo S, Schneider CL, Womack JL, Verweij MC, Ventura AB, Bhusari A, Jeffries KM, Legasse AW, Axthelm MK, Hudson AW, Sacha JB, Picker LJ, Früh K. Natural Killer Cell Evasion Is Essential for Infection by Rhesus Cytomegalovirus. PLoS Pathog 2016; 12:e1005868. [PMID: 27580123 PMCID: PMC5006984 DOI: 10.1371/journal.ppat.1005868] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/12/2016] [Indexed: 02/06/2023] Open
Abstract
The natural killer cell receptor NKG2D activates NK cells by engaging one of several ligands (NKG2DLs) belonging to either the MIC or ULBP families. Human cytomegalovirus (HCMV) UL16 and UL142 counteract this activation by retaining NKG2DLs and US18 and US20 act via lysomal degradation but the importance of NK cell evasion for infection is unknown. Since NKG2DLs are highly conserved in rhesus macaques, we characterized how NKG2DL interception by rhesus cytomegalovirus (RhCMV) impacts infection in vivo. Interestingly, RhCMV lacks homologs of UL16 and UL142 but instead employs Rh159, the homolog of UL148, to prevent NKG2DL surface expression. Rh159 resides in the endoplasmic reticulum and retains several NKG2DLs whereas UL148 does not interfere with NKG2DL expression. Deletion of Rh159 releases human and rhesus MIC proteins, but not ULBPs, from retention while increasing NK cell stimulation by infected cells. Importantly, RhCMV lacking Rh159 cannot infect CMV-naïve animals unless CD8+ cells, including NK cells, are depleted. However, infection can be rescued by replacing Rh159 with HCMV UL16 suggesting that Rh159 and UL16 perform similar functions in vivo. We therefore conclude that cytomegaloviral interference with NK cell activation is essential to establish but not to maintain chronic infection. Natural killer (NK) cells are an important subset of the innate immune system that rapidly responds to cellular transformation and infection. The importance of NK cell control of viral infection is dramatically illustrated by our results revealing that cytomegalovirus (CMV) is unable to establish infections in healthy individuals unless NK cell responses are subverted. By studying infection of rhesus macaques with rhesus CMV, a highly representative animal model for human CMV, we identified a key viral factor that allows RhCMV to limit NK cell activation by preventing NK cell activating ligands from trafficking to the cell surface. Importantly, we observed that this avoidance of NK cell activation is essential to establish infection in vivo because RhCMV lacking the NK cell evasion factor was unable to infect animals unless NK cells were depleted. By unmasking such viral stealth strategies it might be possible to harness innate immunity to prevent viral infection, the primary goal of CMV vaccine development.
Collapse
Affiliation(s)
- Elizabeth R. Sturgill
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Daniel Malouli
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Scott G. Hansen
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Benjamin J. Burwitz
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Seongkyung Seo
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Christine L. Schneider
- Department of Life Sciences, Carroll University, Waukesha, Wisconsin, United States of America
| | - Jennie L. Womack
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Marieke C. Verweij
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Abigail B. Ventura
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Amruta Bhusari
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Krystal M. Jeffries
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Alfred W. Legasse
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Michael K. Axthelm
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Amy W. Hudson
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Jonah B. Sacha
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Louis J. Picker
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Klaus Früh
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
- * E-mail:
| |
Collapse
|
238
|
Mutua G, Farah B, Langat R, Indangasi J, Ogola S, Onsembe B, Kopycinski JT, Hayes P, Borthwick NJ, Ashraf A, Dally L, Barin B, Tillander A, Gilmour J, De Bont J, Crook A, Hannaman D, Cox JH, Anzala O, Fast PE, Reilly M, Chinyenze K, Jaoko W, Hanke T, HIV-CORE 004 study group T. Broad HIV-1 inhibition in vitro by vaccine-elicited CD8(+) T cells in African adults. Mol Ther Methods Clin Dev 2016; 3:16061. [PMID: 27617268 PMCID: PMC5006719 DOI: 10.1038/mtm.2016.61] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 02/07/2023]
Abstract
We are developing a pan-clade HIV-1 T-cell vaccine HIVconsv, which could complement Env vaccines for prophylaxis and be a key to HIV cure. Our strategy focuses vaccine-elicited effector T-cells on functionally and structurally conserved regions (not full-length proteins and not only epitopes) of the HIV-1 proteome, which are common to most global variants and which, if mutated, cause a replicative fitness loss. Our first clinical trial in low risk HIV-1-negative adults in Oxford demonstrated the principle that naturally mostly subdominant epitopes, when taken out of the context of full-length proteins/virus and delivered by potent regimens involving combinations of simian adenovirus and poxvirus modified vaccinia virus Ankara, can induce robust CD8(+) T cells of broad specificities and functions capable of inhibiting in vitro HIV-1 replication. Here and for the first time, we tested this strategy in low risk HIV-1-negative adults in Africa. We showed that the vaccines were well tolerated and induced high frequencies of broadly HIVconsv-specific plurifunctional T cells, which inhibited in vitro viruses from four major clades A, B, C, and D. Because sub-Saharan Africa is globally the region most affected by HIV-1/AIDS, trial HIV-CORE 004 represents an important stage in the path toward efficacy evaluation of this highly rational and promising vaccine strategy.
Collapse
Affiliation(s)
- Gaudensia Mutua
- KAVI-Institute of Clinical Research, University of Nairobi, Kenya
| | - Bashir Farah
- KAVI-Institute of Clinical Research, University of Nairobi, Kenya
| | - Robert Langat
- KAVI-Institute of Clinical Research, University of Nairobi, Kenya
| | | | - Simon Ogola
- KAVI-Institute of Clinical Research, University of Nairobi, Kenya
| | - Brian Onsembe
- KAVI-Institute of Clinical Research, University of Nairobi, Kenya
| | - Jakub T Kopycinski
- Human Immunology Laboratory, International AIDS Vaccine Initiative, Imperial College, London, UK
| | - Peter Hayes
- Human Immunology Laboratory, International AIDS Vaccine Initiative, Imperial College, London, UK
| | | | - Ambreen Ashraf
- Human Immunology Laboratory, International AIDS Vaccine Initiative, Imperial College, London, UK
| | - Len Dally
- Emmes Corporation, Rockville, Maryland, USA
| | - Burc Barin
- Emmes Corporation, Rockville, Maryland, USA
| | | | - Jill Gilmour
- Human Immunology Laboratory, International AIDS Vaccine Initiative, Imperial College, London, UK
| | - Jan De Bont
- International AIDS Vaccine Initiative-New York, New York, New York, USA
| | - Alison Crook
- Jenner Institute, University of Oxford, Oxford, UK
| | - Drew Hannaman
- ICHOR Medical Systems, Inc., San Diego, California, USA
| | - Josephine H Cox
- Human Immunology Laboratory, International AIDS Vaccine Initiative, Imperial College, London, UK
| | - Omu Anzala
- KAVI-Institute of Clinical Research, University of Nairobi, Kenya
| | - Patricia E Fast
- International AIDS Vaccine Initiative-New York, New York, New York, USA
| | | | - Kundai Chinyenze
- International AIDS Vaccine Initiative-New York, New York, New York, USA
| | - Walter Jaoko
- KAVI-Institute of Clinical Research, University of Nairobi, Kenya
| | - Tomáš Hanke
- Jenner Institute, University of Oxford, Oxford, UK
- International Research Center for Medical Sciences, Kumamoto University, Japan
| | | |
Collapse
|
239
|
Lama JR, Karuna ST, Grant SP, Swann EM, Ganoza C, Segura P, Montano SM, Lacherre M, De Rosa SC, Buchbinder S, Sanchez J, McElrath MJ, Lemos MP, HVTN 914 Study Team. Transient Peripheral Immune Activation follows Elective Sigmoidoscopy or Circumcision in a Cohort Study of MSM at Risk of HIV Infection. PLoS One 2016; 11:e0160487. [PMID: 27536938 PMCID: PMC4990246 DOI: 10.1371/journal.pone.0160487] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/20/2016] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Rectal and genital sampling in HIV prevention trials permits assessments at the site of HIV entry. Yet the safety and acceptability of circumcision and sigmoidoscopy (and associated abstinence recommendations) are unknown in uncircumcised men who have sex with men (MSM) at high risk of HIV infection. METHODS Twenty-nine HIV-seronegative high-risk Peruvian MSM agreed to elective sigmoidoscopy biopsy collections (weeks 2 and 27) and circumcision (week 4) in a 28-week cohort study designed to mimic an HIV vaccine study mucosal collection protocol. We monitored adherence to abstinence recommendations, procedure-related complications, HIV infections, peripheral immune activation, and retention. RESULTS Twenty-three (79.3%) underwent a first sigmoidoscopy, 21 (72.4%) were circumcised, and 16 (55.2%) completed a second sigmoidoscopy during the study period. All who underwent procedures completed the associated follow-up safety visits. Those completing the procedures reported they were well tolerated, and complication rates were similar to those reported in the literature. Immune activation was detected during the healing period (1 week post-sigmoidoscopy, 6 weeks post-circumcision), including increases in CCR5+CD4+T cells and α4β7+CD4+T cells. Most participants adhered to post-circumcision abstinence recommendations whereas reduced adherence occurred post-sigmoidoscopy. CONCLUSION Rectosigmoid mucosal and genital tissue collections were safe in high-risk MSM. Although the clinical implications of the post-procedure increase in peripheral immune activation markers are unknown, they reinforce the need to provide ongoing risk reduction counseling and support for post-procedure abstinence recommendations. Future HIV vaccine studies should also consider the effects of mucosal and tissue collections on peripheral blood endpoints in trial design and analysis. TRIAL REGISTRATION ClinicalTrials.gov NCT02630082.
Collapse
Affiliation(s)
| | - Shelly T. Karuna
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Shannon P. Grant
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Edith M. Swann
- Vaccine Clinical Research Branch, Division of AIDS, National Institutes of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, Maryland, United States of America
| | | | | | | | | | - Stephen C. De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Susan Buchbinder
- San Francisco Department of Health, San Francisco, California, United States of America
| | - Jorge Sanchez
- Asociacion Civil Impacta Salud y Educacion, Lima, Peru
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Maria P. Lemos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | | |
Collapse
|
240
|
Margolis DM, Garcia JV, Hazuda DJ, Haynes BF. Latency reversal and viral clearance to cure HIV-1. Science 2016; 353:aaf6517. [PMID: 27463679 DOI: 10.1126/science.aaf6517] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Research toward a cure for human immunodeficiency virus type 1 (HIV-1) infection has joined prevention and treatment efforts in the global public health agenda. A major approach to HIV eradication envisions antiretroviral suppression, paired with targeted therapies to enforce the expression of viral antigen from quiescent HIV-1 genomes, and immunotherapies to clear latent infection. These strategies are targeted to lead to viral eradication--a cure for AIDS. Paired testing of latency reversal and clearance strategies has begun, but additional obstacles to HIV eradication may emerge. Nevertheless, there is reason for optimism that advances in long-acting antiretroviral therapy and HIV prevention strategies will contribute to efforts in HIV cure research and that the implementation of these efforts will synergize to markedly blunt the effect of the HIV pandemic on society.
Collapse
Affiliation(s)
- David M Margolis
- University of North Carolina HIV Cure Center, Department of Medicine, and Center for AIDS Research, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA. Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| | - J Victor Garcia
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Daria J Hazuda
- Merck Research Laboratories, White Horse Junction, PA, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Department of Medicine, and Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
241
|
Ewer KJ, Lambe T, Rollier CS, Spencer AJ, Hill AVS, Dorrell L. Viral vectors as vaccine platforms: from immunogenicity to impact. Curr Opin Immunol 2016; 41:47-54. [DOI: 10.1016/j.coi.2016.05.014] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 11/29/2022]
|
242
|
Deeks SG, Lewin SR, Ross AL, Ananworanich J, Benkirane M, Cannon P, Chomont N, Douek D, Lifson JD, Lo YR, Kuritzkes D, Margolis D, Mellors J, Persaud D, Tucker JD, Barre-Sinoussi F, Alter G, Auerbach J, Autran B, Barouch DH, Behrens G, Cavazzana M, Chen Z, Cohen ÉA, Corbelli GM, Eholié S, Eyal N, Fidler S, Garcia L, Grossman C, Henderson G, Henrich TJ, Jefferys R, Kiem HP, McCune J, Moodley K, Newman PA, Nijhuis M, Nsubuga MS, Ott M, Palmer S, Richman D, Saez-Cirion A, Sharp M, Siliciano J, Silvestri G, Singh J, Spire B, Taylor J, Tolstrup M, Valente S, van Lunzen J, Walensky R, Wilson I, Zack J. International AIDS Society global scientific strategy: towards an HIV cure 2016. Nat Med 2016; 22:839-50. [PMID: 27400264 PMCID: PMC5322797 DOI: 10.1038/nm.4108] [Citation(s) in RCA: 371] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/12/2016] [Indexed: 02/07/2023]
Abstract
Antiretroviral therapy is not curative. Given the challenges in providing lifelong therapy to a global population of more than 35 million people living with HIV, there is intense interest in developing a cure for HIV infection. The International AIDS Society convened a group of international experts to develop a scientific strategy for research towards an HIV cure. This Perspective summarizes the group's strategy.
Collapse
Affiliation(s)
- Steven G Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Sharon R Lewin
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Anna Laura Ross
- International and Scientific Relations Office, ANRS, Paris, France
| | - Jintanat Ananworanich
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Monsef Benkirane
- Molecular Virology Lab, Institute of Human Genetics, CNRS UPR 1142, Université de Montpellier, Montpellier, France
| | - Paula Cannon
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Nicolas Chomont
- CRCHUM and Department of Microbiology, Infectiology, and Immunology, Université de Montréal, Faculty of Medicine, Montréal, Quebec, Canada
| | - Daniel Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, USA
| | - Ying-Ru Lo
- World Health Organization Regional Office for the Western Pacific, Manila, Philippines
| | | | - David Margolis
- University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - John Mellors
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Deborah Persaud
- Johns Hopkins University School of Medicine &Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Joseph D Tucker
- University of North Carolina-Project China, Guangzhou, China
| | | | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
| | - Judith Auerbach
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Brigitte Autran
- Sorbonne Universités, UPMC Univ Paris 06, CIMI-Paris, France
- Inserm U1135, CIMI-Paris, Paris, France
- AP-HP, Hôpital Pitié-Salpêtrière, Département d'Immunologie, Paris, France
| | - Dan H Barouch
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
| | - Georg Behrens
- Clinic for Immunology and Rhematology, Hannover Medical School, Hanover, Germany
| | - Marina Cavazzana
- Centre d'Investigation Clinique en biothérapie, Hôpital Necker-Enfants Malades, Paris, France
| | - Zhiwei Chen
- AIDS Institute, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Éric A Cohen
- Institut de Recherches Cliniques de Montréal, Université de Montréal, Montréal, Quebec, Canada
| | | | - Serge Eholié
- Programme PAC-CI, Centre Hospitalier Universitaire de Treichville, Abidjan, Côte d'Ivoire
| | - Nir Eyal
- Harvard T. H. Chan School of Public Health, Department of Global Health and Population, Boston, Massachusetts, USA
| | - Sarah Fidler
- Department of Medicine, Imperial College London, London, United Kingdom
| | | | - Cynthia Grossman
- National Institute of Mental Health, NIH, Bethesda, Maryland, USA
| | - Gail Henderson
- University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Timothy J Henrich
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
- Brigham &Women's Hospital, Boston, Massachusetts, USA
| | | | - Hans-Peter Kiem
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Joseph McCune
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Keymanthri Moodley
- Centre for Medical Ethics and Law, Department of Medicine, Stellenbosch University, Western Cape, South Africa
| | - Peter A Newman
- Factor-Inwentash Faculty of Social Work, University of Toronto, Toronto, Ontario, Canada
| | - Monique Nijhuis
- Department of Medical Microbiology, Virology, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Melanie Ott
- Gladstone Institutes, University of California, San Francisco, San Francisco, California, USA
| | - Sarah Palmer
- Westmead Millennium Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Douglas Richman
- Virginia San Diego Healthcare System and University of California, San Diego, San Diego, California, USA
| | | | - Matthew Sharp
- Independent HIV Education and Advocacy Consultant, San Francisco, California, USA
| | - Janet Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Guido Silvestri
- Yerkes National Primate Research Centre, Emory University, Atlanta, Georgia, USA
| | - Jerome Singh
- Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | | | - Jeffrey Taylor
- CARE Collaboratory Community Advisory Board, Palm Springs, California, USA
| | - Martin Tolstrup
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Susana Valente
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, Jupiter, Florida, USA
| | | | - Rochelle Walensky
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ira Wilson
- Department of Health Services, Policy &Practice, Brown University School of Public Health, Providence, Rhode Island, USA
| | - Jerome Zack
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
243
|
Anderson CK, Brossay L. The role of MHC class Ib-restricted T cells during infection. Immunogenetics 2016; 68:677-91. [PMID: 27368413 DOI: 10.1007/s00251-016-0932-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/22/2016] [Indexed: 01/02/2023]
Abstract
Even though major histocompatibility complex (MHC) class Ia and many Ib molecules have similarities in structure, MHC class Ib molecules tend to have more specialized functions, which include the presentation of non-peptidic antigens to non-classical T cells. Likewise, non-classical T cells also have unique characteristics, including an innate-like phenotype in naïve animals and rapid effector functions. In this review, we discuss the role of MAIT and NKT cells during infection but also the contribution of less studied MHC class Ib-restricted T cells such as Qa-1-, Qa-2-, and M3-restricted T cells. We focus on describing the types of antigens presented to non-classical T cells, their response and cytokine profile following infection, as well as the overall impact of these T cells to the immune system.
Collapse
Affiliation(s)
- Courtney K Anderson
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Box G-B618, Providence, RI, 02912, USA
| | - Laurent Brossay
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Box G-B618, Providence, RI, 02912, USA.
| |
Collapse
|
244
|
Koff WC. A shot at AIDS. Curr Opin Biotechnol 2016; 42:147-151. [PMID: 27153215 DOI: 10.1016/j.copbio.2016.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/03/2016] [Accepted: 03/07/2016] [Indexed: 10/21/2022]
Abstract
In the almost 35 years since the discovery of HIV, there has been great progress in developing effective treatments. More recently, there have also been advances in developing novel prevention strategies. Yet a vaccine that could prevent HIV infection remains elusive. Most licensed vaccines provide protection by inducing antibodies. For HIV, vaccine-induced antibodies must be capable of protecting against the multiple variants of HIV in circulation around the globe, so-called broadly neutralizing antibodies. Recent progress in the identification and characterization of such antibodies, as well as advances in designing candidates that stimulate cellular immunity and results from recent clinical trials are fueling efforts to develop an HIV vaccine that could vanquish the virus once and for all.
Collapse
|
245
|
Schuren AB, Costa AI, Wiertz EJ. Recent advances in viral evasion of the MHC Class I processing pathway. Curr Opin Immunol 2016; 40:43-50. [PMID: 27065088 DOI: 10.1016/j.coi.2016.02.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/12/2016] [Accepted: 02/22/2016] [Indexed: 11/17/2022]
Abstract
T-cell mediated adaptive immunity against viruses relies on recognition of virus-derived peptides by CD4(+) and CD8(+) T cells. Detection of pathogen-derived peptide-MHC-I complexes triggers CD8(+) T cells to eliminate the infected cells. Viruses have evolved several mechanisms to avoid recognition, many of which target the MHC-I antigen-processing pathway. While many immune evasion strategies have been described in the context of herpesvirus infections, it is becoming clear that this 'disguise' ability is more widespread. Here, we address recent findings in viral evasion of the MHC-I antigen presentation pathway and the impact on CD8(+) T cell responses.
Collapse
Affiliation(s)
- Anouk Bc Schuren
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ana I Costa
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Emmanuel Jhj Wiertz
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
246
|
Haynes BF, Shaw GM, Korber B, Kelsoe G, Sodroski J, Hahn BH, Borrow P, McMichael AJ. HIV-Host Interactions: Implications for Vaccine Design. Cell Host Microbe 2016; 19:292-303. [PMID: 26922989 DOI: 10.1016/j.chom.2016.02.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Development of an effective AIDS vaccine is a global priority. However, the extreme diversity of HIV type 1 (HIV-1), which is a consequence of its propensity to mutate to escape immune responses, along with host factors that prevent the elicitation of protective immune responses, continue to hinder vaccine development. Breakthroughs in understanding of the biology of the transmitted virus, the structure and nature of its envelope trimer, vaccine-induced CD8 T cell control in primates, and host control of broadly neutralizing antibody elicitation have given rise to new vaccine strategies. Despite this promise, emerging data from preclinical trials reinforce the need for additional insight into virus-host biology in order to facilitate the development of a successful vaccine.
Collapse
Affiliation(s)
- Barton F Haynes
- Department of Medicine, Duke University, Durham, NC 27710, USA; Department of Immunology, Duke University, Durham, NC 27710, USA; Duke University Human Vaccine Institute, Duke University, Durham, NC 27710, USA.
| | - George M Shaw
- Departments of Medicine and Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Bette Korber
- Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - Garnett Kelsoe
- Department of Immunology, Duke University, Durham, NC 27710, USA; Duke University Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Joseph Sodroski
- Dana Farber-Cancer Institute, Harvard Medical School, Harvard University, Boston, MA 02215, USA
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Andrew J McMichael
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| |
Collapse
|