201
|
Tang L, Chen R, Xu X. Synthetic lethality: A promising therapeutic strategy for hepatocellular carcinoma. Cancer Lett 2020; 476:120-128. [PMID: 32070778 DOI: 10.1016/j.canlet.2020.02.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC), the main cause of liver cancer-related death, is one of the main cancers in terms of incidence and mortality. However, HCC is difficult to target and develops strong drug resistance. Therefore, a new treatment strategy is urgently needed. The clinical application of the concept of synthetic lethality in recent years provides a new therapeutic direction for the accurate treatment of HCC. Here, we introduce the concept of synthetic lethality, the screening used to study synthetic lethality, and the identified and potential genetic interactions that induce synthetic lethality in HCC. In addition, we propose opportunities and challenges for translating synthetic lethal interactions to the clinical treatment of HCC.
Collapse
Affiliation(s)
- Linsong Tang
- Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHFPC Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, 310003, China.
| | - Ronggao Chen
- Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHFPC Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, 310003, China.
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHFPC Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, 310003, China.
| |
Collapse
|
202
|
Al-Azzam N. Sirtuin 6 and metabolic genes interplay in Warburg effect in cancers. J Clin Biochem Nutr 2020; 66:169-175. [PMID: 32523242 DOI: 10.3164/jcbn.19-110] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/13/2019] [Indexed: 01/10/2023] Open
Abstract
Under oxygen availability, normal cells undergo mitochondrial oxidative phosphorylation to metabolize glucose and yield up to 36 ATPs per glucose molecule for cellular functions, and undergo non-oxidative metabolism (glycolysis) under hypoxic and proliferating conditions to yield 2 ATP per glucose. These cells metabolize glucose to pyruvate via glycolysis followed by conversion of pyruvate to lactate via lactate dehydrogenase. However, cancer cells have the ability to undergo glycolysis and ferment glucose to lactate regardless of oxygen availability; a phenomenon first addressed by Otto Warburg and called, "Warburg effect". Numerous glycolytic genes/proteins have been identified in tumors; that include glucose transporter 1 (GLUT1), hexokinase 2 (HK2), pyruvate kinase-M2 splice isoform (PKM2), and lactate dehydrogenase (LDH-A). Histone deacetylase sirtuin 6 (SIRT6), an epigenetic regulator, is highly expressed in various cancers. SIRT6 plays an important role in Warburg effect by regulating many glycolytic genes. Loss of SIRT6 enhances tumor growth via enhancing glycolysis. This review is mainly concerned with exploring the most recent advances in understanding the roles of the metabolic genes (GLUT1, HK2, PKM2, and LDH-A) and the epigenetic regulator SIRT6 in cancer metabolism and how SIRT6 can modulate these metabolic genes expression and its possible use as a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Nosayba Al-Azzam
- Department of Physiology and Biochemistry, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| |
Collapse
|
203
|
Zhu WW, Lu M, Wang XY, Zhou X, Gao C, Qin LX. The fuel and engine: The roles of reprogrammed metabolism in metastasis of primary liver cancer. Genes Dis 2020; 7:299-307. [PMID: 32884984 PMCID: PMC7452537 DOI: 10.1016/j.gendis.2020.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/30/2019] [Accepted: 01/28/2020] [Indexed: 02/06/2023] Open
Abstract
Metastasis and metabolism reprogramming are two major hallmarks of cancer. In the initiation and progression of cancer, tumor cells are known to undergo fundamental metabolic changes to sustain their development and progression. In recent years, much more attentions have been drawn to their important roles in facilitating cancer metastasis through regulating the biological properties. In this review, we summarized the recent progresses in the studies of metabolism reprogramming of cancer metastasis, particularly of primary liver cancer, and highlight their potential applications.
Collapse
Affiliation(s)
- Wen-Wei Zhu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Ming Lu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Xiang-Yu Wang
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Xu Zhou
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Chao Gao
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Lun-Xiu Qin
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| |
Collapse
|
204
|
El Hassouni B, Granchi C, Vallés-Martí A, Supadmanaba IGP, Bononi G, Tuccinardi T, Funel N, Jimenez CR, Peters GJ, Giovannetti E, Minutolo F. The dichotomous role of the glycolytic metabolism pathway in cancer metastasis: Interplay with the complex tumor microenvironment and novel therapeutic strategies. Semin Cancer Biol 2020; 60:238-248. [PMID: 31445217 DOI: 10.1016/j.semcancer.2019.08.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/17/2019] [Accepted: 08/20/2019] [Indexed: 02/07/2023]
Abstract
Cancer metastasis to distant organs is initiated by tumor cells that disseminate from primary heterogeneous tumors. The subsequent growth and survival of tumor metastases depend on different metabolic changes, which constitute one of the enigmatic properties of tumor cells. Aerobic glycolysis, 'the Warburg effect', contributes to tumor energy supply, by oxidizing glucose in a faster manner compared to oxidative phosphorylation, leading to an increased lactate production by lactate dehydrogenase A (LDH-A), which in turn affects the immune response. Surrounding stromal cells contribute to feedback mechanisms further prompting the acquisition of pro-invasive metabolic features. Hence, therapeutic strategies targeting the glycolytic pathway are intensively investigated, with a special interest on their anti-metastatic properties. Various small molecules, such as LDH-A inhibitors, have shown pre-clinical activity against different cancer types, and blocking LDH-A could also help in designing future complimentary therapies. Modulation of specific targets in cells with an altered glycolytic metabolism should indeed result in a milder and distinct toxicity profile, compared to conventional cytotoxic therapy, while a combination treatment with vitamin C leading to increasing reactive oxygen species levels, should further inhibit cancer cell survival and invasion. In this review we describe the impact of metabolic reprogramming in cancer metastasis, the contribution of lactate in this aberrant process and its effect on oncogenic processes. Furthermore, we discuss experimental compounds that target glycolytic metabolism, such as LDH-A inhibitors, and their potential to improve current and experimental therapeutics against metastatic tumors.
Collapse
Affiliation(s)
- Btissame El Hassouni
- Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.
| | - Carlotta Granchi
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6 and 33, 56126, Pisa, Italy
| | - Andrea Vallés-Martí
- Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - I Gede Putu Supadmanaba
- Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Giulia Bononi
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6 and 33, 56126, Pisa, Italy
| | - Tiziano Tuccinardi
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6 and 33, 56126, Pisa, Italy
| | - Niccola Funel
- Cancer Pharmacology Lab, AIRC Start Up Unit, Pisa, Italy
| | - Connie R Jimenez
- Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Godefridus J Peters
- Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands; Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands; Cancer Pharmacology Lab, AIRC Start Up Unit, Pisa, Italy; Fondazione Pisana per la Scienza, Pisa, Italy.
| | - Filippo Minutolo
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6 and 33, 56126, Pisa, Italy
| |
Collapse
|
205
|
Cargill KR, Sims-Lucas S. Von Hippel-Lindau: implications in development and disease-response. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:142. [PMID: 32175434 DOI: 10.21037/atm.2019.11.46] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kasey R Cargill
- Department of Pediatrics, Division of Nephrology, University of Pittsburgh, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Sunder Sims-Lucas
- Department of Pediatrics, Division of Nephrology, University of Pittsburgh, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
206
|
Meziou S, Ringuette Goulet C, Hovington H, Lefebvre V, Lavallée É, Bergeron M, Brisson H, Champagne A, Neveu B, Lacombe D, Beauregard JM, Buteau FA, Riopel J, Pouliot F. GLUT1 expression in high-risk prostate cancer: correlation with 18F-FDG-PET/CT and clinical outcome. Prostate Cancer Prostatic Dis 2020; 23:441-448. [PMID: 31932660 DOI: 10.1038/s41391-020-0202-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/17/2019] [Accepted: 01/06/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Tumour 18F-FDG-uptake is of prognostic value in high-risk and metastatic prostate cancer (PCa). The aim of this study is to investigate the underlying glucose metabolism mechanisms of 18F-FDG-uptake on PET/CT imaging in PCa. METHODS Retrospective analysis was conducted for 94 patients diagnosed with a Gleason sum ≥8 adenocarcinoma of the prostate at biopsy between July 2011 and July 2014 who underwent 18F-FDG-PET/CT imaging before radical prostatectomy (RP). 18F-FDG-uptake in primary lesion was measured by a blinded reader using maximum standardised uptake value (SUVmax). GLUT1, GLUT12 and HK2 expression were blindly scored after immunohistochemistry on specimens RP by three pathologists. Correlations between GLUT1, GLUT12 and HK2, and SUVmax were assessed using Spearman's rank correlation test. Survival probabilities were based on the Kaplan-Meier method. RESULTS With a median follow-up of 4.5 years, 56% (n = 53) of patients had biochemical recurrence (BCR), 7% (n = 7) progressed to castration-resistant prostate cancer (CRPC) disease, 13% (n = 12) developed metastasis and 6% (n = 6) died. Correlation was found between GLUT1 expression and SUVmax level (r = 0.25, p = 0.02). In addition, SUVmax was significantly higher in tumours with high GLUT1 expression (n = 17, 5.74 ± 1.67) than tumours with low GLUT1 expression (n = 71, 2.68 ± 0.31, p = 0.004). Moreover, a significant association was found between GLUT1 expression levels and SUVmax level (p = 0.005), lymph node status (p = 0.05), volume of cancer (p = 0.01), CRPC disease progression (p = 0.02) and metastasis development (p = 0.04). No significant difference between GLUT12 and HEX2 expression and SUVmax have been found. CONCLUSIONS GLUT1 expression in PCa tumours correlates with 18F-FDG-uptake and poor prognostic factors. These results suggest that this transporter is involved in the molecular mechanism of 18F-FDG-uptake in high-risk PCa and raise interest in targeting metabolic dependencies of PCa cells as a selective anticancer strategy.
Collapse
Affiliation(s)
- Salma Meziou
- Urology Division, CHU de Québec Research Center, Québec, QC, Canada.,Department of Surgery, Faculty of Medicine, Laval University, Québec, QC, Canada.,Department of Pathology, CHU de Québec, Québec, QC, Canada
| | - Cassandra Ringuette Goulet
- Urology Division, CHU de Québec Research Center, Québec, QC, Canada.,Department of Surgery, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Hélène Hovington
- Urology Division, CHU de Québec Research Center, Québec, QC, Canada.,Department of Surgery, Faculty of Medicine, Laval University, Québec, QC, Canada
| | | | - Étienne Lavallée
- Urology Division, CHU de Québec Research Center, Québec, QC, Canada.,Department of Surgery, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Michelle Bergeron
- Urology Division, CHU de Québec Research Center, Québec, QC, Canada.,Department of Surgery, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Hervé Brisson
- Urology Division, CHU de Québec Research Center, Québec, QC, Canada.,Department of Surgery, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Audrey Champagne
- Urology Division, CHU de Québec Research Center, Québec, QC, Canada.,Department of Surgery, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Bertrand Neveu
- Urology Division, CHU de Québec Research Center, Québec, QC, Canada.,Department of Surgery, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Didier Lacombe
- Urology Division, CHU de Québec Research Center, Québec, QC, Canada.,Department of Surgery, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Jean-Mathieu Beauregard
- Urology Division, CHU de Québec Research Center, Québec, QC, Canada.,Department of Surgery, Faculty of Medicine, Laval University, Québec, QC, Canada.,Department of Radiology and Nuclear Medicine, Faculty of Medicine, Laval University, Québec, QC, Canada.,Department of Medical Imaging, CHU de Québec, Québec, QC, Canada
| | - François-Alexandre Buteau
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Laval University, Québec, QC, Canada.,Department of Medical Imaging, CHU de Québec, Québec, QC, Canada
| | - Julie Riopel
- Department of Pathology, CHU de Québec, Québec, QC, Canada
| | - Frédéric Pouliot
- Urology Division, CHU de Québec Research Center, Québec, QC, Canada. .,Department of Surgery, Faculty of Medicine, Laval University, Québec, QC, Canada.
| |
Collapse
|
207
|
Barbosa AM, Martel F. Targeting Glucose Transporters for Breast Cancer Therapy: The Effect of Natural and Synthetic Compounds. Cancers (Basel) 2020; 12:cancers12010154. [PMID: 31936350 PMCID: PMC7016663 DOI: 10.3390/cancers12010154] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 02/07/2023] Open
Abstract
Reprogramming of cellular energy metabolism is widely accepted to be a cancer hallmark. The deviant energetic metabolism of cancer cells-known as the Warburg effect-consists in much higher rates of glucose uptake and glycolytic oxidation coupled with the production of lactic acid, even in the presence of oxygen. Consequently, cancer cells have higher glucose needs and thus display a higher sensitivity to glucose deprivation-induced death than normal cells. So, inhibitors of glucose uptake are potential therapeutic targets in cancer. Breast cancer is the most commonly diagnosed cancer and a leading cause of cancer death in women worldwide. Overexpression of facilitative glucose transporters (GLUT), mainly GLUT1, in breast cancer cells is firmly established, and the consequences of GLUT inhibition and/or knockout are under investigation. Herein we review the compounds, both of natural and synthetic origin, found to interfere with uptake of glucose by breast cancer cells, and the consequences of interference with that mechanism on breast cancer cell biology. We will also present data where the interaction with GLUT is exploited in order to increase the efficiency or selectivity of anticancer agents, in breast cancer cells.
Collapse
Affiliation(s)
- Ana M. Barbosa
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4169-007 Porto, Portugal;
| | - Fátima Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Correspondence: ; Tel.: +351-22-042-6654
| |
Collapse
|
208
|
Tran Q, Lee H, Kim C, Kong G, Gong N, Kwon SH, Park J, Kim SH, Park J. Revisiting the Warburg Effect: Diet-Based Strategies for Cancer Prevention. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8105735. [PMID: 32802877 PMCID: PMC7426758 DOI: 10.1155/2020/8105735] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/15/2020] [Accepted: 07/18/2020] [Indexed: 12/11/2022]
Abstract
It is widely acknowledged that cancer cell energy metabolism relies mainly on anaerobic glycolysis; this phenomenon is described as the Warburg effect. However, whether the Warburg effect is caused by genetic dysregulation in cancer or is the cause of cancer remains unknown. The exact reasons and physiology of this abnormal metabolism are unclear; therefore, many researchers have attempted to reduce malignant cell growth in tumors in preclinical and clinical studies. Anticancer strategies based on the Warburg effect have involved the use of drug compounds and dietary changes. We recently reviewed applications of the Warburg effect to understand the benefits of this unusual cancer-related metabolism. In the current article, we summarize diet strategies for cancer treatment based on the Warburg effect.
Collapse
Affiliation(s)
- Quangdon Tran
- 1Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- 2Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hyunji Lee
- 1Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- 2Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Chaeyeong Kim
- 1Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- 2Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Gyeyeong Kong
- 1Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- 2Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Nayoung Gong
- 1Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- 2Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - So Hee Kwon
- 3College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Republic of Korea
| | - Jisoo Park
- 4Department of Life Science, Hyehwa Liberal Arts College, Daejeon University, Daejeon 34520, Republic of Korea
| | - Seon-Hwan Kim
- 5Department of Neurosurgery, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Jongsun Park
- 1Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- 2Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| |
Collapse
|
209
|
Wang X, Cal M, Kaiser M, Buckner FS, Lepesheva GI, Sanford AG, Wallick AI, Davis PH, Vennerstrom JL. A new chemotype with promise against Trypanosoma cruzi. Bioorg Med Chem Lett 2020; 30:126778. [PMID: 31706668 DOI: 10.1016/j.bmcl.2019.126778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 10/25/2022]
Abstract
Pyridyl benzamide 2 is a potent inhibitor of Trypanosoma cruzi, but not other protozoan parasites, and had a selectivity-index of ≥10. The initial structure-activity relationship (SAR) indicates that benzamide and sulfonamide functional groups, and N-methylpiperazine and sterically unhindered 3-pyridyl substructures are required for high activity against T. cruzi. Compound 2 and its active analogs had low to moderate metabolic stabilities in human and mouse liver microsomes.
Collapse
Affiliation(s)
- Xiaofang Wang
- College of Pharmacy, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE, United States
| | - Monica Cal
- Department of Medical Parasitology and Infection Biology, Swiss Tropical Institute, Socinstrasse 57, CH-4002 Basel, Switzerland; University of Basel, CH-4003 Basel, Switzerland
| | - Marcel Kaiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical Institute, Socinstrasse 57, CH-4002 Basel, Switzerland; University of Basel, CH-4003 Basel, Switzerland
| | - Frederick S Buckner
- Department of Medicine, University of Washington, 750 Republican Street, Seattle, WA, United States
| | - Galina I Lepesheva
- Department of Biochemistry, Vanderbilt University, 2200 Pierce Ave., Nashville, TN, United States
| | - Austin G Sanford
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, United States
| | - Alexander I Wallick
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, United States
| | - Paul H Davis
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, United States
| | - Jonathan L Vennerstrom
- College of Pharmacy, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE, United States.
| |
Collapse
|
210
|
Joly JH, Delfarah A, Phung PS, Parrish S, Graham NA. A synthetic lethal drug combination mimics glucose deprivation–induced cancer cell death in the presence of glucose. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49891-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
211
|
Joly JH, Delfarah A, Phung PS, Parrish S, Graham NA. A synthetic lethal drug combination mimics glucose deprivation-induced cancer cell death in the presence of glucose. J Biol Chem 2019; 295:1350-1365. [PMID: 31914417 DOI: 10.1074/jbc.ra119.011471] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/21/2019] [Indexed: 01/13/2023] Open
Abstract
Metabolic reprogramming in cancer cells can increase their dependence on metabolic substrates such as glucose. As such, the vulnerability of cancer cells to glucose deprivation creates an attractive opportunity for therapeutic intervention. Because it is not possible to starve tumors of glucose in vivo, here we sought to identify the mechanisms in glucose deprivation-induced cancer cell death and then designed inhibitor combinations to mimic glucose deprivation-induced cell death. Using metabolomic profiling, we found that cells undergoing glucose deprivation-induced cell death exhibited dramatic accumulation of intracellular l-cysteine and its oxidized dimer, l-cystine, and depletion of the antioxidant GSH. Building on this observation, we show that glucose deprivation-induced cell death is driven not by the lack of glucose, but rather by l-cystine import. Following glucose deprivation, the import of l-cystine and its subsequent reduction to l-cysteine depleted both NADPH and GSH pools, thereby allowing toxic accumulation of reactive oxygen species. Consistent with this model, we found that the glutamate/cystine antiporter (xCT) is required for increased sensitivity to glucose deprivation. We searched for glycolytic enzymes whose expression is essential for the survival of cancer cells with high xCT expression and identified glucose transporter type 1 (GLUT1). Testing a drug combination that co-targeted GLUT1 and GSH synthesis, we found that this combination induces synthetic lethal cell death in high xCT-expressing cell lines susceptible to glucose deprivation. These results indicate that co-targeting GLUT1 and GSH synthesis may offer a potential therapeutic approach for targeting tumors dependent on glucose for survival.
Collapse
Affiliation(s)
- James H Joly
- Mork Family Department of Chemical Engineering and Materials Science
| | - Alireza Delfarah
- Mork Family Department of Chemical Engineering and Materials Science
| | - Philip S Phung
- Mork Family Department of Chemical Engineering and Materials Science
| | - Sydney Parrish
- Mork Family Department of Chemical Engineering and Materials Science
| | - Nicholas A Graham
- Mork Family Department of Chemical Engineering and Materials Science, .,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90089
| |
Collapse
|
212
|
Yu Y, Yu Q, Zhang X. Allosteric inhibition of HIF-2α as a novel therapy for clear cell renal cell carcinoma. Drug Discov Today 2019; 24:2332-2340. [DOI: 10.1016/j.drudis.2019.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/05/2019] [Accepted: 09/12/2019] [Indexed: 01/03/2023]
|
213
|
Abdel-Wahab AF, Mahmoud W, Al-Harizy RM. Targeting glucose metabolism to suppress cancer progression: prospective of anti-glycolytic cancer therapy. Pharmacol Res 2019; 150:104511. [DOI: 10.1016/j.phrs.2019.104511] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/19/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022]
|
214
|
Vanhove K, Graulus GJ, Mesotten L, Thomeer M, Derveaux E, Noben JP, Guedens W, Adriaensens P. The Metabolic Landscape of Lung Cancer: New Insights in a Disturbed Glucose Metabolism. Front Oncol 2019; 9:1215. [PMID: 31803611 PMCID: PMC6873590 DOI: 10.3389/fonc.2019.01215] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 10/24/2019] [Indexed: 12/12/2022] Open
Abstract
Metabolism encompasses the biochemical processes that allow healthy cells to keep energy, redox balance and building blocks required for cell development, survival, and proliferation steady. Malignant cells are well-documented to reprogram their metabolism and energy production networks to support rapid proliferation and survival in harsh conditions via mutations in oncogenes and inactivation of tumor suppressor genes. Despite the histologic and genetic heterogeneity of tumors, a common set of metabolic pathways sustain the high proliferation rates observed in cancer cells. This review with a focus on lung cancer covers several fundamental principles of the disturbed glucose metabolism, such as the “Warburg” effect, the importance of the glycolysis and its branching pathways, the unanticipated gluconeogenesis and mitochondrial metabolism. Furthermore, we highlight our current understanding of the disturbed glucose metabolism and how this might result in the development of new treatments.
Collapse
Affiliation(s)
- Karolien Vanhove
- UHasselt, Faculty of Medicine and Life Sciences, LCRC, Diepenbeek, Belgium.,Department of Respiratory Medicine, Algemeen Ziekenhuis Vesalius, Tongeren, Belgium
| | - Geert-Jan Graulus
- Biomolecule Design Group, Institute for Materials Research, Hasselt University, Diepenbeek, Belgium
| | - Liesbet Mesotten
- UHasselt, Faculty of Medicine and Life Sciences, LCRC, Diepenbeek, Belgium.,Department of Nuclear Medicine, Ziekenhuis Oost Limburg, Genk, Belgium
| | - Michiel Thomeer
- UHasselt, Faculty of Medicine and Life Sciences, LCRC, Diepenbeek, Belgium.,Department of Respiratory Medicine, Ziekenhuis Oost Limburg, Genk, Belgium
| | - Elien Derveaux
- UHasselt, Faculty of Medicine and Life Sciences, LCRC, Diepenbeek, Belgium
| | - Jean-Paul Noben
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Wanda Guedens
- Biomolecule Design Group, Institute for Materials Research, Hasselt University, Diepenbeek, Belgium
| | - Peter Adriaensens
- Biomolecule Design Group, Institute for Materials Research, Hasselt University, Diepenbeek, Belgium.,Applied and Analytical Chemistry, Institute for Materials Research, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
215
|
Hif1a and Hif2a can be safely inactivated in cone photoreceptors. Sci Rep 2019; 9:16121. [PMID: 31695081 PMCID: PMC6834587 DOI: 10.1038/s41598-019-52508-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/14/2019] [Indexed: 12/30/2022] Open
Abstract
Impaired tissue oxygenation results in hypoxia and leads to the activation of hypoxia-inducible transcription factors (HIF). A chronic, HIF-triggered molecular response to hypoxia may be an important factor in the etiology of age-related macular degeneration (AMD) and is likely activated before any clinical manifestation of the disease. Thus, HIF1 and HIF2 recently emerged as potential therapeutic targets for AMD. To address and evaluate potential consequences of anti-HIF therapies for retinal physiology and function, we generated mouse lines that have Hif1a, or both Hif1a and Hif2a ablated specifically in cone photoreceptors. The knockdown of Hifs in cones did not cause detectable pathological alterations such as loss of cone photoreceptors, retinal degeneration or abnormalities of the retinal vasculature, had no impact on retinal function and resulted in a similar tolerance to hypoxic exposure. Our data indicate that HIF transcription factors are dispensable for maintaining normal cone function and survival in retinas of adult mice. This study provides the groundwork necessary to establish safety profiles for strategies aiming at antagonizing HIF1A and HIF2A function in cone photoreceptors for the treatment of retinal degenerative diseases that involve a hypoxic component such as AMD.
Collapse
|
216
|
Dengler F, Gäbel G. The Fast Lane of Hypoxic Adaptation: Glucose Transport Is Modulated via A HIF-Hydroxylase-AMPK-Axis in Jejunum Epithelium. Int J Mol Sci 2019; 20:ijms20204993. [PMID: 31601024 PMCID: PMC6834319 DOI: 10.3390/ijms20204993] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/21/2022] Open
Abstract
The intestinal epithelium is able to adapt to varying blood flow and, thus, oxygen availability. Still, the adaptation fails under pathologic situations. A better understanding of the mechanisms underlying the epithelial adaptation to hypoxia could help to improve the therapeutic approach. We hypothesized that the short-term adaptation to hypoxia is mediated via AMP-activated protein kinase (AMPK) and that it is coupled to the long-term adaptation by a common regulation mechanism, the HIF-hydroxylase enzymes. Further, we hypothesized the transepithelial transport of glucose to be part of this short-term adaptation. We conducted Ussing chamber studies using isolated lagomorph jejunum epithelium and cell culture experiments with CaCo-2 cells. The epithelia and cells were incubated under 100% and 21% O2, respectively, with the panhydroxylase inhibitor dimethyloxalylglycine (DMOG) or under 1% O2. We showed an activation of AMPK under hypoxia and after incubation with DMOG by Western blot. This could be related to functional effects like an impairment of Na+-coupled glucose transport. Inhibitor studies revealed a recruitment of glucose transporter 1 under hypoxia, but not after incubation with DMOG. Summing up, we showed an influence of hydroxylase enzymes on AMPK activity and similarities between hypoxia and the effects of hydroxylase inhibition on functional changes.
Collapse
Affiliation(s)
- Franziska Dengler
- Institute of Veterinary Physiology, University of Leipzig, 04103 Leipzig, Germany.
| | - Gotthold Gäbel
- Institute of Veterinary Physiology, University of Leipzig, 04103 Leipzig, Germany.
| |
Collapse
|
217
|
Di Dedda C, Vignali D, Piemonti L, Monti P. Pharmacological Targeting of GLUT1 to Control Autoreactive T Cell Responses. Int J Mol Sci 2019; 20:E4962. [PMID: 31597342 PMCID: PMC6801424 DOI: 10.3390/ijms20194962] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 01/10/2023] Open
Abstract
An increasing body of evidence indicates that bio-energetic metabolism of T cells can be manipulated to control T cell responses. This potentially finds a field of application in the control of the T cell responses in autoimmune diseases, including in type 1 diabetes (T1D). Of the possible metabolic targets, Glut1 gained considerable interest because of its pivotal role in glucose uptake to fuel glycolysis in activated T cells, and the recent development of a novel class of small molecules that act as selective inhibitor of Glut1. We believe we can foresee a possible application of pharmacological Glut1 blockade approach to control autoreactive T cells that destroy insulin producing beta cells. However, Glut1 is expressed in a broad range of cells in the body and off-target and side effect are possible complications. Moreover, the duration of the treatment and the age of patients are critical aspects that need to be addressed to reduce toxicity. In this paper, we will review recent literature to determine whether it is possible to design a pharmacological Glut1 blocking strategy and how to apply this to autoimmunity in T1D.
Collapse
Affiliation(s)
- Carla Di Dedda
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, 20133 Milan, Italy.
| | - Debora Vignali
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, 20133 Milan, Italy.
| | - Lorenzo Piemonti
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, 20133 Milan, Italy.
| | - Paolo Monti
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, 20133 Milan, Italy.
| |
Collapse
|
218
|
Selka A, Doiron JA, Lyons P, Dastous S, Chiasson A, Cormier M, Turcotte S, Surette ME, Touaibia M. Discovery of a novel 2,5-dihydroxycinnamic acid-based 5-lipoxygenase inhibitor that induces apoptosis and may impair autophagic flux in RCC4 renal cancer cells. Eur J Med Chem 2019; 179:347-357. [DOI: 10.1016/j.ejmech.2019.06.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 12/14/2022]
|
219
|
Hsieh IS, Gopula B, Chou CC, Wu HY, Chang GD, Wu WJ, Chang CS, Chu PC, Chen CS. Development of Novel Irreversible Pyruvate Kinase M2 Inhibitors. J Med Chem 2019; 62:8497-8510. [PMID: 31465224 DOI: 10.1021/acs.jmedchem.9b00763] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As cancer cells undergo metabolic reprogramming in the course of tumorigenesis, targeting energy metabolism represents a promising strategy in cancer therapy. Among various metabolic enzymes examined, pyruvate kinase M2 type (PKM2) has received much attention in light of its multifaceted function in promoting tumor growth and progression. In this study, we reported the development of a novel irreversible inhibitor of PKM2, compound 1, that exhibits a differential tumor-suppressive effect among an array of cancer cell lines. We further used a clickable activity-based protein profiling (ABPP) probe and SILAC coupled with LC-MS/MS to identify the Cys-317 and Cys-326 residues of PKM2 as the covalent binding sites. Equally important, compound 1 at 10 mg/kg was effective in suppressing xenograft tumor growth in nude mice without causing acute toxicity by targeting both metabolic and oncogenic functions. Together, these data suggest its translational potential to foster new strategies for cancer therapy.
Collapse
Affiliation(s)
- I-Shan Hsieh
- Institute of Biological Chemistry , Academia Sinica , Taipei 11529 , Taiwan
| | - Balraj Gopula
- Institute of Biological Chemistry , Academia Sinica , Taipei 11529 , Taiwan
- Drug Development Center , China Medical University , Taichung 40402 , Taiwan
| | - Chi-Chi Chou
- Institute of Biological Chemistry , Academia Sinica , Taipei 11529 , Taiwan
| | - Hsiang-Yi Wu
- Institute of Biological Chemistry , Academia Sinica , Taipei 11529 , Taiwan
| | - Geen-Dong Chang
- Institute of Biochemical Sciences , National Taiwan University , Taipei 10617 , Taiwan
| | - Wen-Jin Wu
- Institute of Biological Chemistry , Academia Sinica , Taipei 11529 , Taiwan
| | - Chih-Shiang Chang
- Drug Development Center , China Medical University , Taichung 40402 , Taiwan
- School of Pharmacy, College of Pharmacy, China Medical University , Taichung 40402 , Taiwan
| | - Po-Chen Chu
- Drug Development Center , China Medical University , Taichung 40402 , Taiwan
- Department of Cosmeceutics and Graduate Institute of Cosmeceutics , China Medical University , Taichung 40402 , Taiwan
| | - Ching S Chen
- Institute of New Drug Development , China Medical University , Taichung 40402 , Taiwan
- Department of Medical Research , China Medical University Hospital, China Medical University , Taichung 40447 , Taiwan
| |
Collapse
|
220
|
The cytotoxic effect and glucose uptake modulation of Baeckea frutescens on breast cancer cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:220. [PMID: 31426778 PMCID: PMC6700976 DOI: 10.1186/s12906-019-2628-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/06/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Baeckea frutescens (B. frutescens) of the family Myrtaceae is a plant that has been used in traditional medicine. It is known to have antibacterial, antipyretic and cytoprotective properties. The objective of this study is to explore the mechanism of B. frutescens leaves extracts in eliminating breast cancer cells. METHOD B. frutescens leaves extracts were prepared using Soxhlet apparatus with solvents of different polarity. The selective cytotoxicity of these extracts at various concentrations (20 to 160 μg/ml) were tested using cell viability assay after 24, 48 and 72 h of treatment. The IC50 value in human breast cancer (MCF-7 and MDA-MB-231) and mammary breast (MCF10A) cell lines were determined. Apoptotic study using AO/PI double staining was performed using fluorescent microscope. The glucose uptake was measured using 2-NBDG, a fluorescent glucose analogue. The phytochemical screening was performed for alkaloids, flavonoids, tannins, triterpenoids, and phenols. RESULTS B. frutescens leaves extracts showed IC50 value ranging from 10 -127μg/ml in MCF-7 cells after 72 h of treatment. Hexane extract had the lowest IC50 value (10μg/ml), indicating its potent selective cytotoxic activity. Morphology of MCF-7 cells after treatment with B. frutescens extracts exhibited evidence of apoptosis that included membrane blebbing and chromatin condensation. In the glucose uptake assay, B. frutescens extracts suppressed glucose uptake in cancer cells as early as 24 h upon treatment. The inhibition was significantly lower compared to the positive control WZB117 at their respective IC50 value after 72 h incubation. It was also shown that the glucose inhibition is selective towards cancer cells compared to normal cells. The phytochemical analysis of the extract using hexane as the solvent in particular gave similar quantities of tannin, triterpenoids, flavonoid and phenols. Presumably, these metabolites have a synergistic effect in the in vitro testing, producing the potent IC50 value and subsequently cell death. CONCLUSION This study reports the potent selective cytotoxic effect of B. frutescens leaves hexane extract against MCF-7 cancer cells. B. frutescens extracts selectively suppressed cancer cells glucose uptake and subsequently induced cancer cell death. These findings suggest a new role of B. frutescens in cancer cell metabolism.
Collapse
|
221
|
Ludman T, Melemedjian OK. Bortezomib-induced aerobic glycolysis contributes to chemotherapy-induced painful peripheral neuropathy. Mol Pain 2019; 15:1744806919837429. [PMID: 30810076 PMCID: PMC6452581 DOI: 10.1177/1744806919837429] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Chemotherapy-induced painful peripheral neuropathy (CIPN) is the most common toxicity associated with widely used chemotherapeutics. CIPN is the major cause of dose reduction or discontinuation of otherwise life-saving treatment. Unfortunately, CIPN can persist in cancer survivors, which adversely affects their quality of life. Moreover, available treatments are vastly inadequate, warranting a better understanding of the biochemical and metabolic mechanisms that occur in response to chemotherapeutics which would be critical for the development of novel therapies for CIPN. Using extracellular flux analysis, this study demonstrated that the proteasome inhibitor, bortezomib, enhanced glycolysis while suppressing oxidative phosphorylation in the sensory neurons of mice. This metabolic phenotype is known as aerobic glycolysis. Bortezomib upregulated lactate dehydrogenase A and pyruvate dehydrogenase kinase 1, which consequently enhanced the production of lactate and repressed pyruvate oxidation, respectively. Moreover, lactate dehydrogenase A- and pyruvate dehydrogenase kinase 1-driven aerobic glycolysis was associated with increased extracellular acidification, augmented calcium responses, and pain in bortezomib-induced CIPN. Remarkably, pharmacological blockade and in vivo knockdown of lactate dehydrogenase A or pyruvate dehydrogenase kinase 1 reversed the metabolic phenotype, attenuated calcium responses, and alleviated pain induced by bortezomib. Collectively, these results elucidate the mechanisms by which bortezomib induces aerobic glycolysis. Moreover, these findings establish aerobic glycolysis as a metabolic phenotype that underpins bortezomib-induced CIPN.
Collapse
Affiliation(s)
- Taylor Ludman
- 1 Department of Neural and Pain Sciences, School of Dentistry, University of Maryland Baltimore, Baltimore, MD, USA
| | - Ohannes K Melemedjian
- 1 Department of Neural and Pain Sciences, School of Dentistry, University of Maryland Baltimore, Baltimore, MD, USA.,2 Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, USA
| |
Collapse
|
222
|
Inhibition of GSK-3β activity suppresses HCC malignant phenotype by inhibiting glycolysis via activating AMPK/mTOR signaling. Cancer Lett 2019; 463:11-26. [PMID: 31404613 DOI: 10.1016/j.canlet.2019.08.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 12/21/2022]
Abstract
Glycogen synthase kinase-3 beta (GSK-3β) has been shown to play a critical role in the development of many cancers, but its role in hepatocellular carcinoma (HCC) remains unclear. Deregulating cellular energetics is a signature hallmark of cancer, therefore modulating cancer metabolism has become an attractive anti-cancer approach in recent years. As a key enzyme in glucose metabolism, understanding the role of GSK-3β in cancer metabolic process may facilitate the development of effective therapeutic approach for HCC. In this study, we showed that inhibition of GSK-3β led to diminished viability, metastasis and tumorigenicity in HCC cells. Suppression of GSK-3β activity also reduced glucose consumption, lactate production and adenosine triphosphate (ATP) levels in HCC cells. The decreased extracellular acidification rate (ECAR) and down-regulated key enzymes on the glycolysis pathway by GSK3β inhibition demonstrated that GSK-3β was involved in glycolysis process of HCC. Mechanistically, the metabolic change and anti-cancer effect by GSK-3β inhibition was achieved mainly through activation of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling, which negatively affected glycolysis and cell proliferation. The results from primary HCC cells and from in vivo nude mice model confirmed our observations. Our study results indicated that GSK-3β may become a promising therapeutic target for HCC.
Collapse
|
223
|
Sun N, Petiwala S, Lu C, Hutti JE, Hu M, Hu M, Domanus MH, Mitra D, Addo SN, Miller CP, Chung N. VHL Synthetic Lethality Signatures Uncovered by Genotype-Specific CRISPR-Cas9 Screens. CRISPR J 2019; 2:230-245. [DOI: 10.1089/crispr.2019.0018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Ning Sun
- AbbVie Inc., North Chicago, Illinois
| | | | | | | | - Min Hu
- AbbVie Inc., North Chicago, Illinois
| | - Mufeng Hu
- AbbVie Inc., North Chicago, Illinois
| | | | | | | | | | | |
Collapse
|
224
|
Chen RR, Yung MMH, Xuan Y, Zhan S, Leung LL, Liang RR, Leung THY, Yang H, Xu D, Sharma R, Chan KKL, Ngu SF, Ngan HYS, Chan DW. Targeting of lipid metabolism with a metabolic inhibitor cocktail eradicates peritoneal metastases in ovarian cancer cells. Commun Biol 2019; 2:281. [PMID: 31372520 PMCID: PMC6668395 DOI: 10.1038/s42003-019-0508-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/20/2019] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer is an intra-abdominal tumor in which the presence of ascites facilitates metastatic dissemination, and associated with poor prognosis. However, the significance of metabolic alterations in ovarian cancer cells in the ascites microenvironment remains unclear. Here we show ovarian cancer cells exhibited increased aggressiveness in ascites microenvironment via reprogramming of lipid metabolism. High lipid metabolic activities are found in ovarian cancer cells when cultured in the ascites microenvironment, indicating a metabolic shift from aerobic glycolysis to β-oxidation and lipogenesis. The reduced AMP-activated protein kinase (AMPK) activity due to the feedback effect of high energy production led to the activation of its downstream signaling, which in turn, enhanced the cancer growth. The combined treatment of low toxic AMPK activators, the transforming growth factor beta-activated kinase 1 (TAK1) and fatty acid synthase (FASN) inhibitors synergistically impair oncogenic augmentation of ovarian cancer. Collectively, targeting lipid metabolism signaling axis impede ovarian cancer peritoneal metastases.
Collapse
Affiliation(s)
- Rain R. Chen
- The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, P. R. China
- Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Mingo M. H. Yung
- The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, P. R. China
- Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Yang Xuan
- The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, P. R. China
| | - Shijie Zhan
- The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, P. R. China
| | - Leanne L. Leung
- The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, P. R. China
- Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Rachel R. Liang
- The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, P. R. China
- Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Thomas H. Y. Leung
- Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Huijuan Yang
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032 P.R. China
| | - Dakang Xu
- Faculty of Medical Laboratory Science, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030 P.R. China
| | - Rakesh Sharma
- Proteomics & Metabolomics Core Facility, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Karen K. L. Chan
- Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Siew-Fei Ngu
- Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Hextan Y. S. Ngan
- The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, P. R. China
- Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - David W. Chan
- The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, P. R. China
- Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
| |
Collapse
|
225
|
Zhang T, Ouyang H, Mei X, Lu B, Yu Z, Chen K, Wang Z, Ji L. Erianin alleviates diabetic retinopathy by reducing retinal inflammation initiated by microglial cells via inhibiting hyperglycemia-mediated ERK1/2-NF-κB signaling pathway. FASEB J 2019; 33:11776-11790. [PMID: 31365278 DOI: 10.1096/fj.201802614rrr] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Blood-retinal barrier (BRB) breakdown is a typical event in the early stage of diabetic retinopathy (DR). This study aims to elucidate the protection of erianin, a natural compound isolated from Dendrobium chrysotoxum Lindl, against DR development. Erianin alleviated BRB breakdown and rescued the reduced claudin1 and occludin expression in retinas from streptozotocin-induced diabetic mice. Erianin reduced microglial activation, ERK1/2 phosphorylation, NF-κB transcriptional activation, and the elevated TNF-α expression both in vitro and in vivo. ERK1/2 inhibitor U0126 abrogated NF-κB activation in d-glucose-treated BV2 cells. Erianin reduced cellular glucose uptake, and molecular docking analysis indicated the potential interaction of erianin with glucose transporter (GLUT)1. GLUT1 inhibitor (STF31) reduced the activation of the ERK1/2-NF-κB signaling pathway. Coculture with d-glucose-stimulated microglial BV2 cells and with TNF-α stimulation both induced inner BRB and outer BRB damage in human retinal endothelial cells and APRE19 cells, but erianin improved all these damages. In summary, erianin attenuated BRB breakdown during DR development by inhibiting microglia-triggered retinal inflammation via reducing cellular glucose uptake and abrogating the subsequent activation of the downstream ERK1/2-NF-κB pathway. Moreover, erianin also alleviated BRB damage induced by TNF-α released from the activated microglia.-Zhang, T., Ouyang, H., Mei, X., Lu, B., Yu, Z., Chen, K., Wang, Z., Ji, L. Erianin alleviates diabetic retinopathy by reducing retinal inflammation initiated by microglial cells via inhibiting hyperglycemia-mediated ERK1/2-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Tianyu Zhang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines-The State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hao Ouyang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines-The State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiyu Mei
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines-The State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bin Lu
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines-The State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zengyang Yu
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines-The State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kaixian Chen
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines-The State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengtao Wang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines-The State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Ji
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines-The State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
226
|
Montrose DC, Galluzzi L. Drugging cancer metabolism: Expectations vs. reality. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 347:1-26. [PMID: 31451211 DOI: 10.1016/bs.ircmb.2019.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
As compared to their normal counterparts, neoplastic cells exhibit a variety of metabolic changes that reflect not only genetic and epigenetic defects underlying malignant transformation, but also the nutritional and immunobiological conditions of the tumor microenvironment. Such alterations, including the so-called Warburg effect (an increase in glucose uptake largely feeding anabolic and antioxidant metabolism), have attracted considerable attention as potential targets for the development of novel anticancer therapeutics. However, very few drugs specifically conceived to target bioenergetic cancer metabolism are currently approved by regulatory agencies for use in humans. This reflects the elevated degree of heterogeneity and redundancy in the metabolic circuitries exploited by neoplastic cells from different tumors (even of the same type), as well as the resemblance of such metabolic pathways to those employed by highly proliferating normal cells. Here, we summarize the major metabolic alterations that accompany oncogenesis, the potential of targeting bioenergetic metabolism for cancer therapy, and the obstacles that still prevent the clinical translation of such a promising therapeutic paradigm.
Collapse
Affiliation(s)
- David C Montrose
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States.
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States; Sandra and Edward Meyer Cancer Center, New York, NY, United States; Department of Dermatology, Yale School of Medicine, New Haven, CT, United States; Université Paris Descartes/Paris V, Paris, France.
| |
Collapse
|
227
|
Dag A, Omurtag Ozgen PS, Atasoy S. Glyconanoparticles for Targeted Tumor Therapy of Platinum Anticancer Drug. Biomacromolecules 2019; 20:2962-2972. [DOI: 10.1021/acs.biomac.9b00528] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Pinar Sinem Omurtag Ozgen
- Department of Analytical Chemistry, School of Pharmacy, Istanbul Medipol University, İstanbul 34810, Turkey
| | | |
Collapse
|
228
|
Zambrano A, Molt M, Uribe E, Salas M. Glut 1 in Cancer Cells and the Inhibitory Action of Resveratrol as A Potential Therapeutic Strategy. Int J Mol Sci 2019; 20:ijms20133374. [PMID: 31324056 PMCID: PMC6651361 DOI: 10.3390/ijms20133374] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/14/2019] [Accepted: 07/01/2019] [Indexed: 12/13/2022] Open
Abstract
An important hallmark in cancer cells is the increase in glucose uptake. GLUT1 is an important target in cancer treatment because cancer cells upregulate GLUT1, a membrane protein that facilitates the basal uptake of glucose in most cell types, to ensure the flux of sugar into metabolic pathways. The dysregulation of GLUT1 is associated with numerous disorders, including cancer and metabolic diseases. There are natural products emerging as a source for inhibitors of glucose uptake, and resveratrol is a molecule of natural origin with many properties that acts as antioxidant and antiproliferative in malignant cells. In the present review, we discuss how GLUT1 is involved in the general scheme of cancer cell metabolism, the mechanism of glucose transport, and the importance of GLUT1 structure to understand the inhibition process. Then, we review the current state-of-the-art of resveratrol and other natural products as GLUT1 inhibitors, focusing on those directed at treating different types of cancer. Targeting GLUT1 activity is a promising strategy for the development of drugs aimed at treating neoplastic growth.
Collapse
Affiliation(s)
- Angara Zambrano
- Instituto de Bioquimica y Microbiologia, Universidad Austral de Chile, Valdivia 0000000, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Concepción, Concepción 4070386, Chile
| | - Matías Molt
- Instituto de Bioquimica y Microbiologia, Universidad Austral de Chile, Valdivia 0000000, Chile
| | - Elena Uribe
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Concepción, Concepción 4070386, Chile
| | - Mónica Salas
- Instituto de Bioquimica y Microbiologia, Universidad Austral de Chile, Valdivia 0000000, Chile.
| |
Collapse
|
229
|
Cargill K, Hemker SL, Clugston A, Murali A, Mukherjee E, Liu J, Bushnell D, Bodnar AJ, Saifudeen Z, Ho J, Bates CM, Kostka D, Goetzman ES, Sims-Lucas S. Von Hippel-Lindau Acts as a Metabolic Switch Controlling Nephron Progenitor Differentiation. J Am Soc Nephrol 2019; 30:1192-1205. [PMID: 31142573 PMCID: PMC6622426 DOI: 10.1681/asn.2018111170] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/01/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Nephron progenitors, the cell population that give rise to the functional unit of the kidney, are metabolically active and self-renew under glycolytic conditions. A switch from glycolysis to mitochondrial respiration drives these cells toward differentiation, but the mechanisms that control this switch are poorly defined. Studies have demonstrated that kidney formation is highly dependent on oxygen concentration, which is largely regulated by von Hippel-Lindau (VHL; a protein component of a ubiquitin ligase complex) and hypoxia-inducible factors (a family of transcription factors activated by hypoxia). METHODS To explore VHL as a regulator defining nephron progenitor self-renewal versus differentiation, we bred Six2-TGCtg mice with VHLlox/lox mice to generate mice with a conditional deletion of VHL from Six2+ nephron progenitors. We used histologic, immunofluorescence, RNA sequencing, and metabolic assays to characterize kidneys from these mice and controls during development and up to postnatal day 21. RESULTS By embryonic day 15.5, kidneys of nephron progenitor cell-specific VHL knockout mice begin to exhibit reduced maturation of nephron progenitors. Compared with controls, VHL knockout kidneys are smaller and developmentally delayed by postnatal day 1, and have about half the number of glomeruli at postnatal day 21. VHL knockout nephron progenitors also exhibit persistent Six2 and Wt1 expression, as well as decreased mitochondrial respiration and prolonged reliance on glycolysis. CONCLUSIONS Our findings identify a novel role for VHL in mediating nephron progenitor differentiation through metabolic regulation, and suggest that VHL is required for normal kidney development.
Collapse
Affiliation(s)
- Kasey Cargill
- Rangos Research Center, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Shelby L Hemker
- Rangos Research Center, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Andrew Clugston
- Rangos Research Center, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Developmental Biology and
| | - Anjana Murali
- Rangos Research Center, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Elina Mukherjee
- Rangos Research Center, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jiao Liu
- Section of Pediatric Nephrology, Department of Pediatrics and
- The Hypertension and Renal Centers of Excellence, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Daniel Bushnell
- Rangos Research Center, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Andrew J Bodnar
- Rangos Research Center, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Zubaida Saifudeen
- Section of Pediatric Nephrology, Department of Pediatrics and
- The Hypertension and Renal Centers of Excellence, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Jacqueline Ho
- Rangos Research Center, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Carlton M Bates
- Rangos Research Center, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Dennis Kostka
- Rangos Research Center, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Developmental Biology and
| | - Eric S Goetzman
- Rangos Research Center, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sunder Sims-Lucas
- Rangos Research Center, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania;
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
230
|
Ren Y, Shen HM. Critical role of AMPK in redox regulation under glucose starvation. Redox Biol 2019; 25:101154. [PMID: 30853530 PMCID: PMC6859544 DOI: 10.1016/j.redox.2019.101154] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 02/09/2019] [Accepted: 02/27/2019] [Indexed: 12/24/2022] Open
Abstract
Glucose starvation is one of the major forms of metabolic stress in cancer cells. Deprivation of glucose impairs glycolysis and the pentose phosphate pathway, which elicits oxidative stress due to enhanced production of reactive oxygen species (ROS) and impaired antioxidant system, leading to redox imbalance and cell death. Under glucose starvation, the 5' AMP-activated protein kinase (AMPK) plays a critical role in maintaining redox homeostasis and cell survival via multiple pathways, such as regulation of fatty acid metabolism and antioxidant response. Convergence of ROS and the glucose metabolic pathway reveals novel molecular targets for the development of effective cancer therapeutic strategies. Interestingly, AMPK, along with its upstream kinase liver kinase B1 (LKB1), has been regarded to play a tumor suppressor role. However, emerging studies have provided novel insights into the pro-tumor survival function of the LKB1-AMPK pathway. Therefore, targeting metabolic and oxidative stress in cancer cells, with manipulation of AMPK activity, is a promising strategy in developing novel cancer therapeutic agents.
Collapse
Affiliation(s)
- Yi Ren
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore.
| |
Collapse
|
231
|
Scalise M, Console L, Galluccio M, Pochini L, Tonazzi A, Giangregorio N, Indiveri C. Exploiting Cysteine Residues of SLC Membrane Transporters as Targets for Drugs. SLAS DISCOVERY 2019; 24:867-881. [PMID: 31251685 DOI: 10.1177/2472555219856601] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The observation that cysteine is the top gainer amino acid during evolution attracted the attention of scientists dealing with protein chemistry. The thiol group of cysteine, indeed, is a potential site for several types of reactions with variable specificity and strength. This feature proved to be promising also in the field of membrane transporters that represent boundary proteins fundamental for cell homeostasis. These proteins are classified, according to the driving force for transport, in primary or secondary active transporters. Another frequently used classification is nowadays based on phylogenesis. Two major groups are identified that take into account both criteria: the ABC and the SLC transporters, the second being much more numerous. The cellular localization of the transporters makes them very attractive for drug design. Moreover, the presence of at least one cysteine residue in all the annotated SLC transporters, so far, highlights the possibility of using the thiol (SH) residue for covalent drug targeting. Even if a delay exists in this research field due to the scarce knowledge of structure/function relationships, the setup of novel experimental tools for studying SLC proteins of plasma and organelle membranes opens an important perspective in pharmacology.
Collapse
Affiliation(s)
- Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia e Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Lara Console
- Department DiBEST (Biologia, Ecologia e Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Michele Galluccio
- Department DiBEST (Biologia, Ecologia e Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Lorena Pochini
- Department DiBEST (Biologia, Ecologia e Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Annamaria Tonazzi
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), Bari, Italy
| | - Nicola Giangregorio
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), Bari, Italy
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia e Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| |
Collapse
|
232
|
Ben-Shachar M, Rozenberg K, Skalka N, Wollman A, Michlin M, Rosenzweig T. Activation of Insulin Signaling in Adipocytes and Myotubes by Sarcopoterium Spinosum Extract. Nutrients 2019; 11:nu11061396. [PMID: 31234331 PMCID: PMC6628217 DOI: 10.3390/nu11061396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/13/2019] [Accepted: 06/19/2019] [Indexed: 12/29/2022] Open
Abstract
Sarcopoterium spinosum (S. spinosum) is a medicinal plant, traditionally used as an antidiabetic remedy. Previous studies demonstrated its beneficial properties in the treatment of insulin resistance. The aim of this study was to further clarify the effect of S. spinosum extract (SSE) on insulin signaling. Phosphoproteomic analysis, performed in 3T3-L1 adipocytes treated with SSE, revealed the activation of insulin receptor pathways. SSE increased Glut4-facilitated glucose uptake in adipocytes, with an additive effect between SSE and insulin. While the maximal effect of insulin on glucose uptake was found at days 15–16 of differentiation, SSE-induced glucose uptake was found at an earlier stage of differentiation. Inhibition of PI3K and Akt blocked SSE-dependent glucose uptake. Western blot analysis, performed on 3T3-L1 adipocytes and L6 myotubes, showed that in contrast to insulin action, Akt was only marginally phosphorylated by SSE. Furthermore, GSK3β and PRAS40 phosphorylation as well as glucose uptake were increased by the extract. SSE also induced the phosphorylation of ERK similar to insulin. In conclusion, SSE activates insulin signaling, although the upstream event mediating its effects should be further clarified. Identifying the active molecules in SSE may lead to the development of new agents for the treatment of insulin resistance.
Collapse
Affiliation(s)
- Michaella Ben-Shachar
- Departments of Molecular Biology and Nutrition Sciences, Ariel University, Ariel 40700, Israel.
| | - Konstantin Rozenberg
- Departments of Molecular Biology and Nutrition Sciences, Ariel University, Ariel 40700, Israel.
| | - Nir Skalka
- Departments of Molecular Biology and Nutrition Sciences, Ariel University, Ariel 40700, Israel.
| | - Ayala Wollman
- Departments of Molecular Biology and Nutrition Sciences, Ariel University, Ariel 40700, Israel.
| | - Michal Michlin
- Departments of Molecular Biology and Nutrition Sciences, Ariel University, Ariel 40700, Israel.
| | - Tovit Rosenzweig
- Departments of Molecular Biology and Nutrition Sciences, Ariel University, Ariel 40700, Israel.
| |
Collapse
|
233
|
Roy M, Finley SD. Metabolic reprogramming dynamics in tumor spheroids: Insights from a multicellular, multiscale model. PLoS Comput Biol 2019; 15:e1007053. [PMID: 31185009 PMCID: PMC6588258 DOI: 10.1371/journal.pcbi.1007053] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 06/21/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022] Open
Abstract
Mathematical modeling provides the predictive ability to understand the metabolic reprogramming and complex pathways that mediate cancer cells’ proliferation. We present a mathematical model using a multiscale, multicellular approach to simulate avascular tumor growth, applied to pancreatic cancer. The model spans three distinct spatial and temporal scales. At the extracellular level, reaction diffusion equations describe nutrient concentrations over a span of seconds. At the cellular level, a lattice-based energy driven stochastic approach describes cellular phenomena including adhesion, proliferation, viability and cell state transitions, occurring on the timescale of hours. At the sub-cellular level, we incorporate a detailed kinetic model of intracellular metabolite dynamics on the timescale of minutes, which enables the cells to uptake and excrete metabolites and use the metabolites to generate energy and building blocks for cell growth. This is a particularly novel aspect of the model. Certain defined criteria for the concentrations of intracellular metabolites lead to cancer cell growth, proliferation or death. Overall, we model the evolution of the tumor in both time and space. Starting with a cluster of tumor cells, the model produces an avascular tumor that quantitatively and qualitatively mimics experimental measurements of multicellular tumor spheroids. Through our model simulations, we can investigate the response of individual intracellular species under a metabolic perturbation and investigate how that response contributes to the response of the tumor as a whole. The predicted response of intracellular metabolites under various targeted strategies are difficult to resolve with experimental techniques. Thus, the model can give novel predictions as to the response of the tumor as a whole, identifies potential therapies to impede tumor growth, and predicts the effects of those therapeutic strategies. In particular, the model provides quantitative insight into the dynamic reprogramming of tumor cells at the intracellular level in response to specific metabolic perturbations. Overall, the model is a useful framework to study targeted metabolic strategies for inhibiting tumor growth. Cancer cells expertly alter their metabolism in order to sustain growth, a hallmark of cancer. Quantitative details about this metabolic reprogramming are difficult to obtain without the use of predictive mathematical models. Here, we present a robust computational model of avascular tumor growth. The novel aspect of this work lies in the incorporation of a detailed model of the dynamics of metabolism within each individual cell, which directly influence growth of the multicellular tumor as a whole. We apply the model to simulate how the tumor grows in space and time and to predict how the tumor responds to targeted inhibition of specific intracellular metabolic reactions. Our results show, first-hand, the dynamic metabolic reprogramming that occurs in cancer cells. Specifically, the model provides insight into how the cells alter their metabolism to compensate for the loss of a nutrient by exploiting alternative pathways for continued tumor growth. Our work provides a quantitative tool for identifying the impact of cellular and sub-cellular features on the evolution of a tumor. This framework is useful for developing potential cancer therapies, complementing experimental studies.
Collapse
Affiliation(s)
- Mahua Roy
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United States of America
| | - Stacey D. Finley
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United States of America
- Mork Family Department of Chemical Engineering and Materials Science; Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
234
|
Conformational Studies of Glucose Transporter 1 (GLUT1) as an Anticancer Drug Target. Molecules 2019; 24:molecules24112159. [PMID: 31181707 PMCID: PMC6600248 DOI: 10.3390/molecules24112159] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 01/15/2023] Open
Abstract
Glucose transporter 1 (GLUT1) is a facilitative glucose transporter overexpressed in various types of tumors; thus, it has been considered as an important target for cancer therapy. GLUT1 works through conformational switching from an outward-open (OOP) to an inward-open (IOP) conformation passing through an occluded conformation. It is critical to determine which conformation is preferred by bound ligands because the success of structure-based drug design depends on the appropriate starting conformation of the target protein. To find out the most favorable GLUT 1 conformation for ligand binding, we ran systemic molecular docking studies for different conformations of GLUT1 using known GLUT1 inhibitors. Our data revealed that the IOP is the preferred conformation and that residues Phe291, Phe379, Glu380, Trp388, and Trp412 may play critical roles in ligand binding to GLUT1. Our data suggests that conformational differences in these five amino acids in the different conformers of GLUT1 may be used to design ligands that inhibit GLUT1.
Collapse
|
235
|
Carvalho TM, Cardoso HJ, Figueira MI, Vaz CV, Socorro S. The peculiarities of cancer cell metabolism: A route to metastasization and a target for therapy. Eur J Med Chem 2019; 171:343-363. [PMID: 30928707 DOI: 10.1016/j.ejmech.2019.03.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023]
Abstract
The last decade has witnessed the peculiarities of metabolic reprogramming in tumour onset and progression, and their relevance in cancer therapy. Also, it has been indicated that the metastatic process may depend on the metabolic rewiring and adaptation of cancer cells to the pressure of tumour microenvironment and limiting nutrient availability. The present review gatherers the existent knowledge on the influence of tumour microenvironment and metabolic routes driving metastasis. A focus will be given to glycolysis, fatty acid metabolism, glutaminolysis, and amino acid handling. In addition, the role of metabolic waste driving metastasization will be explored. Finally, we discuss the status of cancer treatment approaches targeting metabolism. This knowledge revision will highlight the critical metabolic targets in metastasis and the chemicals already used in preclinical studies and clinical trials, providing clues that would be further exploited in medicinal chemistry research.
Collapse
Affiliation(s)
- Tiago Ma Carvalho
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Henrique J Cardoso
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Marília I Figueira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Cátia V Vaz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Sílvia Socorro
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
236
|
Wang J, Yu J, Zhang Y, Kahkoska AR, Wang Z, Fang J, Whitelegge JP, Li S, Buse JB, Gu Z. Glucose transporter inhibitor-conjugated insulin mitigates hypoglycemia. Proc Natl Acad Sci U S A 2019; 116:10744-10748. [PMID: 31097579 PMCID: PMC6561193 DOI: 10.1073/pnas.1901967116] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Insulin therapy in the setting of type 1 and advanced type 2 diabetes is complicated by increased risk of hypoglycemia. This potentially fatal complication could be mitigated by a glucose-responsive insulin analog. We report an insulin-facilitated glucose transporter (Glut) inhibitor conjugate, in which the insulin molecule is rendered glucose-responsive via conjugation to an inhibitor of Glut. The binding affinity of this insulin analog to endogenous Glut is modulated by plasma and tissue glucose levels. In hyperglycemic conditions (e.g., uncontrolled diabetes or the postprandial state), the in situ-generated insulin analog-Glut complex is driven to dissociate, freeing the insulin analog and glucose-accessible Glut to restore normoglycemia. Upon overdose, enhanced binding of insulin analog to Glut suppresses the glucose transport activity of Glut to attenuate further uptake of glucose. We demonstrate the ability of this insulin conjugate to regulate blood glucose levels within a normal range while mitigating the risk of hypoglycemia in a type 1 diabetic mouse model.
Collapse
Affiliation(s)
- Jinqiang Wang
- Department of Bioengineering, University of California, Los Angeles, CA 90095
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
| | - Jicheng Yu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27514
| | - Yuqi Zhang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27514
| | - Anna R Kahkoska
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Zejun Wang
- Department of Bioengineering, University of California, Los Angeles, CA 90095
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
| | - Jun Fang
- Department of Bioengineering, University of California, Los Angeles, CA 90095
| | - Julian P Whitelegge
- The Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, CA 90095
- Department of Medicine, University of California, Los Angeles, CA 90095
| | - John B Buse
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, CA 90095;
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90024
- Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095
| |
Collapse
|
237
|
Rubis B, Luczak MW, Krawic C, Zhitkovich A. Vitamin C increases DNA breaks and suppresses DNA damage-independent activation of ATM by bleomycin. Free Radic Biol Med 2019; 136:12-21. [PMID: 30926564 PMCID: PMC6488359 DOI: 10.1016/j.freeradbiomed.2019.03.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/25/2019] [Accepted: 03/25/2019] [Indexed: 01/07/2023]
Abstract
Bleomycin is a redox-active drug with anticancer and other clinical applications. It is also frequently used as a tool in fundamental research on cellular responses to DNA double-strand breaks (DSBs). A conversion of bleomycin into its DNA-breaking form requires Fe, one-electron donors and O2. Here, we examined how a major biological antioxidant ascorbate (reduced vitamin C), which is practically absent in standard cell culture, impacts cellular responses to bleomycin. We found that restoration of physiological levels of vitamin C in human cancer cells increased their killing by bleomycin in 2D cultures and 3D tumor spheroids. Higher cytotoxicity of bleomycin occurred in cells with normal and shRNA-depleted p53. Cellular vitamin C enhanced the ability of bleomycin by produce DSBs, which was established by direct measurements of these lesions in three cell lines. Vitamin C-restored cancer cells also showed a higher sensitivity to killing by low-dose bleomycin in combination with inhibitors of DSB repair-activating ATM or DNA-PK kinases. The presence of ascorbate in bleomycin-treated cells suppressed a DSB-independent activation of the ATM-CHK2 axis by blocking superoxide radical. In vitro studies detected a greatly superior ability of ascorbate over other cellular reducers to catalyze DSB formation by bleomycin. Ascorbate was faster than other antioxidants in promoting two steps in activation of bleomycin. Our results demonstrate strong activation effects of vitamin C on bleomycin, shifting its toxicity further toward DNA damage and making it more sensitive to manipulations of DNA repair.
Collapse
Affiliation(s)
- Blazej Rubis
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Providence, RI, 02912, USA
| | - Michal W Luczak
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Providence, RI, 02912, USA
| | - Casey Krawic
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Providence, RI, 02912, USA
| | - Anatoly Zhitkovich
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Providence, RI, 02912, USA.
| |
Collapse
|
238
|
Eijkelenkamp K, Osinga TE, Links TP, van der Horst-Schrivers ANA. Clinical implications of the oncometabolite succinate in SDHx-mutation carriers. Clin Genet 2019; 97:39-53. [PMID: 30977114 PMCID: PMC6972524 DOI: 10.1111/cge.13553] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/15/2019] [Accepted: 04/10/2019] [Indexed: 12/11/2022]
Abstract
Succinate dehydrogenase (SDH) mutations lead to the accumulation of succinate, which acts as an oncometabolite. Germline SDHx mutations predispose to paraganglioma (PGL) and pheochromocytoma (PCC), as well as to renal cell carcinoma and gastro‐intestinal stromal tumors. The SDHx genes were the first tumor suppressor genes discovered which encode for a mitochondrial enzyme, thereby supporting Otto Warburg's hypothesis in 1926 that a direct link existed between mitochondrial dysfunction and cancer. Accumulation of succinate is the hallmark of tumorigenesis in PGL and PCC. Succinate accumulation inhibits several α‐ketoglutarate dioxygenases, thereby inducing the pseudohypoxia pathway and causing epigenetic changes. Moreover, SDH loss as a consequence of SDHx mutations can lead to reprogramming of cell metabolism. Metabolomics can be used as a diagnostic tool, as succinate and other metabolites can be measured in tumor tissue, plasma and urine with different techniques. Furthermore, these pathophysiological characteristics provide insight into therapeutic targets for metastatic disease. This review provides an overview of the pathophysiology and clinical implications of oncometabolite succinate in SDHx mutations.
Collapse
Affiliation(s)
- Karin Eijkelenkamp
- Department of Endocrinology and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Thamara E Osinga
- Department of Endocrinology and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Thera P Links
- Department of Endocrinology and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Anouk N A van der Horst-Schrivers
- Department of Endocrinology and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
239
|
Glucose transporter 1-mediated vascular translocation of nanomedicines enhances accumulation and efficacy in solid tumors. J Control Release 2019; 301:28-41. [DOI: 10.1016/j.jconrel.2019.02.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/06/2019] [Accepted: 02/17/2019] [Indexed: 12/11/2022]
|
240
|
Targeting cancer metabolism through synthetic lethality-based combinatorial treatment strategies. Curr Opin Oncol 2019; 30:338-344. [PMID: 29994904 DOI: 10.1097/cco.0000000000000467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Targeting cancer metabolism for therapy has received much attention over the last decade with various small molecule inhibitors entering clinical trials. The present review highlights the latest strategies to target glucose and glutamine metabolism for cancer therapy with a particular emphasis on novel combinatorial treatment approaches. RECENT FINDINGS Inhibitors of glucose, lactate, and glutamine transport and the ensuing metabolism are in preclinical to clinical trial stages of investigation. Recent advances in our understanding of cell-intrinsic and cell-extrinsic factors that dictate dependence on these targets have informed the development of rational, synthetic lethality-based strategies to exploit these metabolic vulnerabilities. SUMMARY Cancer cells exhibit a number of metabolic alterations with functional consequences beyond that of sustaining cellular energetics and biosynthesis. Elucidating context-specific metabolic dependencies and their connections to oncogenic signaling and epigenetic programs in tumor cells represents a promising approach to identify new metabolic drug targets for cancer therapy.
Collapse
|
241
|
CRISP-R/Cas9 Mediated Deletion of Copper Transport Genes CTR1 and DMT1 in NSCLC Cell Line H1299. Biological and Pharmacological Consequences. Cells 2019; 8:cells8040322. [PMID: 30959888 PMCID: PMC6523758 DOI: 10.3390/cells8040322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/28/2019] [Accepted: 04/03/2019] [Indexed: 12/27/2022] Open
Abstract
Copper, the highly toxic micronutrient, plays two essential roles: it is a catalytic and structural cofactor for Cu-dependent enzymes, and it acts as a secondary messenger. In the cells, copper is imported by CTR1 (high-affinity copper transporter 1), a transmembrane high-affinity copper importer, and DMT1 (divalent metal transporter). In cytosol, enzyme-specific chaperones receive copper from CTR1 C-terminus and deliver it to their apoenzymes. DMT1 cannot be a donor of catalytic copper because it does not have a cytosol domain which is required for copper transfer to the Cu-chaperons that assist the formation of cuproenzymes. Here, we assume that DMT1 can mediate copper way required for a regulatory copper pool. To verify this hypothesis, we used CRISPR/Cas9 to generate H1299 cell line with CTR1 or DMT1 single knockout (KO) and CTR1/DMT1 double knockout (DKO). To confirm KOs of the genes qRT-PCR were used. Two independent clones for each gene were selected for further studies. In CTR1 KO cells, expression of the DMT1 gene was significantly increased and vice versa. In subcellular compartments of the derived cells, copper concentration dropped, however, in nuclei basal level of copper did not change dramatically. CTR1 KO cells, but not DMT1 KO, demonstrated reduced sensitivity to cisplatin and silver ions, the agents that enter the cell through CTR1. Using single CTR1 and DMT1 KO, we were able to show that both, CTR1 and DMT1, provided the formation of vital intracellular cuproenzymes (SOD1, COX), but not secretory ceruloplasmin. The loss of CTR1 resulted in a decrease in the level of COMMD1, XIAP, and NF-κB. Differently, the DMT1 deficiency induced increase of the COMMD1, HIF1α, and XIAP levels. The possibility of using CTR1 KO and DMT1 KO cells to study homeodynamics of catalytic and signaling copper selectively is discussed.
Collapse
|
242
|
Hu Q, Li C, Wang S, Li Y, Wen B, Zhang Y, Liang K, Yao J, Ye Y, Hsiao H, Nguyen TK, Park PK, Egranov SD, Hawke DH, Marks JR, Han L, Hung MC, Zhang B, Lin C, Yang L. LncRNAs-directed PTEN enzymatic switch governs epithelial-mesenchymal transition. Cell Res 2019; 29:286-304. [PMID: 30631154 PMCID: PMC6461864 DOI: 10.1038/s41422-018-0134-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 12/07/2018] [Indexed: 02/07/2023] Open
Abstract
Despite the structural conservation of PTEN with dual-specificity phosphatases, there have been no reports regarding the regulatory mechanisms that underlie this potential dual-phosphatase activity. Here, we report that K27-linked polyubiquitination of PTEN at lysines 66 and 80 switches its phosphoinositide/protein tyrosine phosphatase activity to protein serine/threonine phosphatase activity. Mechanistically, high glucose, TGF-β, CTGF, SHH, and IL-6 induce the expression of a long non-coding RNA, GAEA (Glucose Aroused for EMT Activation), which associates with an RNA-binding E3 ligase, MEX3C, and enhances its enzymatic activity, leading to the K27-linked polyubiquitination of PTEN. The MEX3C-catalyzed PTENK27-polyUb activates its protein serine/threonine phosphatase activity and inhibits its phosphatidylinositol/protein tyrosine phosphatase activity. With this altered enzymatic activity, PTENK27-polyUb dephosphorylates the phosphoserine/threonine residues of TWIST1, SNAI1, and YAP1, leading to accumulation of these master regulators of EMT. Animals with genetic inhibition of PTENK27-polyUb, by a single nucleotide mutation generated using CRISPR/Cas9 (PtenK80R/K80R), exhibit inhibition of EMT markers during mammary gland morphogenesis in pregnancy/lactation and during cutaneous wound healing processes. Our findings illustrate an unexpected paradigm in which the lncRNA-dependent switch in PTEN protein serine/threonine phosphatase activity is important for physiological homeostasis and disease development.
Collapse
Affiliation(s)
- Qingsong Hu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Chunlai Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shouyu Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Yajuan Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bo Wen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yanyan Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Institute of Immunology, Third Military Medical University, 400038, Chongqing, China
| | - Ke Liang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Youqiong Ye
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGroven Medical School, Houston, TX, 77030, USA
| | - Heidi Hsiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Tina K Nguyen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Peter K Park
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sergey D Egranov
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - David H Hawke
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jeffrey R Marks
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Leng Han
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGroven Medical School, Houston, TX, 77030, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Program in Cancer Biology, Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bing Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Program in Cancer Biology, Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Program in Cancer Biology, Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
243
|
SIRT1 promotes GLUT1 expression and bladder cancer progression via regulation of glucose uptake. Hum Cell 2019; 32:193-201. [PMID: 30868406 DOI: 10.1007/s13577-019-00237-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/12/2019] [Indexed: 10/27/2022]
Abstract
Bladder cancer (BC) is one of the most common tumors. Metabolic reprogramming is a feature of neoplasia and tumor growth. Understanding the metabolic alterations in bladder cancer may provide new directions for bladder cancer treatment. Sirtuin 1 (SIRT1) is a lysine deacetylase of multiple targets including metabolic regulators. In pancreatic cancer, the loss of SIRT1 is accompanied by a decreased expression of proteins in the glycolysis pathway, such as GLUT1, and cancer cell proliferation. Thus, we hypothesize that SIRT1 may interact with GLUT1 to modulate the proliferation and glycolysis phenotype in bladder cancer. In the present study, the expression of SIRT1 and GLUT1 was upregulated in BC tissues and cell lines and positively correlated in tissue samples. SIRT1 overexpression or GLUT1 overexpression alone was sufficient to promote cell proliferation and glucose uptake in BC cells. EX527, a specific inhibitor of SIRT1, exerted an opposing effect on bladder cancer proliferation and glucose uptake. The effect of EX527 could be partially reversed by GLUT1 overexpression. More importantly, SIRT1 overexpression significantly promoted the transcriptional activity and expression of GLUT1, indicating that SIRT1 increases the transcription activity and expression of GLUT1, therefore, promoting the cell proliferation and glycolysis in BC cells. Our study first reported that SIRT1/GLUT1 axis promotes bladder cancer progression via regulation of glucose uptake.
Collapse
|
244
|
Fructose 1,6-Bisphosphatase 1 Expression Reduces 18F-FDG Uptake in Clear Cell Renal Cell Carcinoma. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:9463926. [PMID: 30723389 PMCID: PMC6339721 DOI: 10.1155/2019/9463926] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/23/2018] [Accepted: 12/02/2018] [Indexed: 12/26/2022]
Abstract
Purpose To determine the relationship between fructose 1,6-bisphosphatase 1 (FBP1) expression and fluorine 18 (18F) fluorodeoxyglucose (FDG) uptake in patients with clear cell renal cell carcinoma (ccRCC), and to investigate how 18F-FDG uptake and FBP1 expression are related to tumor metabolism and tumor differentiation grade. Materials and Methods A total of 54 patients with ccRCC underwent 18F-FDG combined positron emission tomography and computed tomography (PET/CT) before tumor resection. The maximum standardized uptake value (SUVmax) for the primary tumor was calculated from the 18F-FDG uptake. The relationship between SUVmax of primary tumor and the expression of FBP1, hexokinase 2 (HK2), and glucose transporter 1 (GLUT1) was analyzed via immunohistochemical analysis. Results We identified an inverse relationship between FBP1 expression and SUVmax (P=0.031). SUVmax was higher in patients with high-grade ccRCC (mean, 11.6 ± 5.0) than in those with low-grade ccRCC (mean, 3.8 ± 1.6, P < 0.001). FBP1 expression was significantly lower in patients with high-grade ccRCC (mean, 0.23 ± 0.1) than in those with low-grade ccRCC (mean, 0.57 ± 0.08; P=0.018). FBP1 status could be predicted with an accuracy of 66.7% when a SUVmax cutoff value of 3.55 was used. GLUT1 expression in ccRCC was positively correlated with 18F-FDG uptake and FBP1 status, whereas HK2 expression was not. Conclusion SUVmax in patients with ccRCC is inversely associated with the expression of FBP1, and FBP1 may inhibit 18F-FDG uptake via regulating GLUT1. SUVmax is higher in patients with high-grade ccRCC than in those with low-grade ccRCC, which could be the result of lower FBP1 expression in patients with high-grade ccRCC.
Collapse
|
245
|
Wang K, Jiang J, Lei Y, Zhou S, Wei Y, Huang C. Targeting Metabolic-Redox Circuits for Cancer Therapy. Trends Biochem Sci 2019; 44:401-414. [PMID: 30679131 DOI: 10.1016/j.tibs.2019.01.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/14/2018] [Accepted: 01/02/2019] [Indexed: 02/05/2023]
Abstract
Metabolic alterations and elevated levels of reactive oxygen species (ROS) are two characteristics of cancer. The metabolic patterns of cancer cells are elaborately reprogrammed to fulfill the high biomass demands of rapid propagation. ROS, the byproducts of metabolic processes, are accumulated in cancer cells partially due to metabolic abnormalities or oncogenic mutations. To prevent oxidative damage, cancer cells can orchestrate metabolic adaptation to maintain reduction-oxidation (redox) balance by producing reducing equivalents. ROS, acting as second messengers, can in turn manipulate metabolic pathways by directly or indirectly affecting the function of metabolic enzymes. In this review we discuss how cancer cell metabolism and redox signaling are intertwined, with an emphasis on the perspective of targeting metabolic-redox circuits for cancer therapy.
Collapse
Affiliation(s)
- Kui Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China; These authors contributed equally to this work
| | - Jingwen Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China; These authors contributed equally to this work
| | - Yunlong Lei
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, P.R. China
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital and State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China.
| |
Collapse
|
246
|
Wang L, Pavlou S, Du X, Bhuckory M, Xu H, Chen M. Glucose transporter 1 critically controls microglial activation through facilitating glycolysis. Mol Neurodegener 2019; 14:2. [PMID: 30634998 PMCID: PMC6329071 DOI: 10.1186/s13024-019-0305-9] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 01/02/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Uncontrolled microglial activation contributes to the pathogenesis of various neurodegenerative diseases. Previous studies have shown that proinflammatory microglia are powered by glycolysis, which relays on high levels of glucose uptake. This study aimed to understand how glucose uptake is facilitated in active microglia and whether microglial activation can be controlled by restricting glucose uptake. METHODS Primary murine brain microglia, BV2 cells and the newly established microglial cell line B6M7 were treated with LPS (100 ng/ml) + IFNγ (100 ng/ml) or IL-4 (20 ng/ml) for 24 h. The expression of glucose transporters (GLUTs) was examined by PCR and Western blot. Glucose uptake by microglia was inhibited using the GLUT1-specific inhibitor STF31. The metabolic profiles were tested using the Glycolysis Stress Test and Mito Stress Test Kits using the Seahorse XFe96 Analyser. Inflammatory gene expression was examined by real-time RT-PCR and protein secretion by cytokine beads array. The effect of STF31 on microglial activation and neurodegeneraion was further tested in a mouse model of light-induced retinal degeneration. RESULTS The mRNA and protein of GLUT1, 3, 4, 5, 6, 8, 9, 10, 12, and 13 were detected in microglia. The expression level of GLUT1 was the highest among all GLUTs detected. LPS + IFNγ treatment further increased GLUT1 expression. STF31 dose-dependently reduced glucose uptake and suppressed Extracellular Acidification Rate (ECAR) in naïve, M(LPS + IFNγ) and M(IL-4) microglia. The treatment also prevented the upregulation of inflammatory cytokines including TNFα, IL-1β, IL-6, and CCL2 in M(LPS + IFNγ) microglia. Interestingly, the Oxygen Consumption Rates (OCR) was increased in M(LPS + IFNγ) microglia but reduced in M(IL-4) microglia by STF31 treatment. Intraperitoneal injection of STF31 reduced light-induced microglial activation and retinal degeneration. CONCLUSION Glucose uptake in microglia is facilitated predominately by GLUT1, particularly under inflammatory conditions. Targeting GLUT1 could be an effective approach to control neuroinflammation.
Collapse
Affiliation(s)
- Luxi Wang
- The Wellcome-Wolfson Institute of Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Sofia Pavlou
- The Wellcome-Wolfson Institute of Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Xuan Du
- The Wellcome-Wolfson Institute of Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Mohajeet Bhuckory
- The Wellcome-Wolfson Institute of Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Heping Xu
- The Wellcome-Wolfson Institute of Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| | - Mei Chen
- The Wellcome-Wolfson Institute of Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| |
Collapse
|
247
|
Elias R, Sharma A, Singla N, Brugarolas J. Next Generation Sequencing in Renal Cell Carcinoma: Towards Precision Medicine. KIDNEY CANCER JOURNAL : OFFICIAL JOURNAL OF THE KIDNEY CANCER ASSOCIATION 2019; 17:94-104. [PMID: 32206160 PMCID: PMC7089604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Roy Elias
- Department of Internal Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas TX, 75390
- Department of Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas TX, 75390
| | - Akanksha Sharma
- Department of Internal Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas TX, 75390
| | - Nirmish Singla
- Department of Urology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas TX, 75390
| | - James Brugarolas
- Department of Internal Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas TX, 75390
- Department of Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas TX, 75390
| |
Collapse
|
248
|
Ma Y, Wang W, Idowu MO, Oh U, Wang XY, Temkin SM, Fang X. Ovarian Cancer Relies on Glucose Transporter 1 to Fuel Glycolysis and Growth: Anti-Tumor Activity of BAY-876. Cancers (Basel) 2018; 11:cancers11010033. [PMID: 30602670 PMCID: PMC6356953 DOI: 10.3390/cancers11010033] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 12/28/2018] [Accepted: 12/29/2018] [Indexed: 12/15/2022] Open
Abstract
The recent progresses in understanding of cancer glycolytic phenotype have offered new strategies to manage ovarian cancer and other malignancies. However, therapeutic targeting of glycolysis to treat cancer remains unsuccessful due to complex mechanisms of tumor glycolysis and the lack of selective, potent and safe glycolytic inhibitors. Recently, BAY-876 was identified as a new-generation inhibitor of glucose transporter 1 (GLUT1), a GLUT isoform commonly overexpressed but functionally poorly defined in ovarian cancer. Notably, BAY-876 has not been evaluated in any cell or preclinical animal models since its discovery. We herein took advantage of BAY-876 and molecular approaches to study GLUT1 regulation, targetability, and functional relevance to cancer glycolysis. The anti-tumor activity of BAY-876 was evaluated with ovarian cancer cell line- and patient-derived xenograft (PDX) models. Our results show that inhibition of GLUT1 is sufficient to block basal and stress-regulated glycolysis, and anchorage-dependent and independent growth of ovarian cancer cells. BAY-876 dramatically inhibits tumorigenicity of both cell line-derived xenografts and PDXs. These studies provide direct evidence that GLUT1 is causally linked to the glycolytic phenotype in ovarian cancer. BAY-876 is a potent blocker of GLUT1 activity, glycolytic metabolism and ovarian cancer growth, holding promise as a novel glycolysis-targeted anti-cancer agent.
Collapse
Affiliation(s)
- Yibao Ma
- Department of Biochemistry & Molecular Biology, Virginia Commonwealth University School of Medicine, 1101 East Marshall Street, Richmond, VA 23298, USA.
| | - Wei Wang
- Department of Biochemistry & Molecular Biology, Virginia Commonwealth University School of Medicine, 1101 East Marshall Street, Richmond, VA 23298, USA.
| | - Michael O Idowu
- Pathology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.
| | - Unsong Oh
- Neurology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.
| | - Xiang-Yang Wang
- Human & Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.
| | - Sarah M Temkin
- Gynecological Oncology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.
| | - Xianjun Fang
- Department of Biochemistry & Molecular Biology, Virginia Commonwealth University School of Medicine, 1101 East Marshall Street, Richmond, VA 23298, USA.
| |
Collapse
|
249
|
Peng Y, Xing SN, Tang HY, Wang CD, Yi FP, Liu GL, Wu XM. Influence of glucose transporter 1 activity inhibition on neuroblastoma in vitro. Gene 2018; 689:11-17. [PMID: 30553996 DOI: 10.1016/j.gene.2018.12.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/29/2018] [Accepted: 12/01/2018] [Indexed: 12/22/2022]
Abstract
Most cancer cells predominantly produce their energy through a high rate of glycolysis in the presence of abundant oxygen. Glycolysis has become a target of anticancer strategies. Previous researches showed that glucose transporter 1 (GLUT1) inhibitor is effective as anticancer agents. This study assessed the effects of the selective GLUT1 inhibitor WZB117 on regulation of neuroblastoma (NB) cell line SH-SY5Y viability, cell cycle and glycolysis in vitro. SH-SY5Y cells were grown and treated with WZB117 for up to 72 h and then subjected to cell viability, qRT-PCR, Western blot and flow cytometry analysis. Level of ATP and LDH was also analyzed. The result showed that WZB117 treatment reduced tumor cells viability, downregulated level of GLUT1 protein. Moreover, WZB117 treatment arrested tumor cells at the G0-G1 phase of the cell cycle, induced tumor cells to undergo necrosis instead of apoptosis. In addition, WZB117 treatment downregulated the levels of intracellular ATP, LDH and glycolytic enzymes. Thus, WZB117-induced GLUT1 inhibition suppressed tumor cell growth, induced cell cycle arrest and reduced glycolysis metabolites in NB cells in vitro. This study suggested that GLUT1 can be used as a potential therapeutic target for NB.
Collapse
Affiliation(s)
- Yan Peng
- Department of Physiology, Chongqing Medical University, Chongqing 400016, China; Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Si-Ning Xing
- Department of Physiology, Chongqing Medical University, Chongqing 400016, China; Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Hu-Ying Tang
- Department of Physiology, Chongqing Medical University, Chongqing 400016, China; Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Chang-Dong Wang
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Fa-Ping Yi
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Ge-Li Liu
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Xiang-Mei Wu
- Department of Physiology, Chongqing Medical University, Chongqing 400016, China; Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
250
|
Yaku K, Okabe K, Hikosaka K, Nakagawa T. NAD Metabolism in Cancer Therapeutics. Front Oncol 2018; 8:622. [PMID: 30631755 PMCID: PMC6315198 DOI: 10.3389/fonc.2018.00622] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 11/30/2018] [Indexed: 12/15/2022] Open
Abstract
Cancer cells have a unique energy metabolism for sustaining rapid proliferation. The preference for anaerobic glycolysis under normal oxygen conditions is a unique trait of cancer metabolism and is designated as the Warburg effect. Enhanced glycolysis also supports the generation of nucleotides, amino acids, lipids, and folic acid as the building blocks for cancer cell division. Nicotinamide adenine dinucleotide (NAD) is a co-enzyme that mediates redox reactions in a number of metabolic pathways, including glycolysis. Increased NAD levels enhance glycolysis and fuel cancer cells. In fact, nicotinamide phosphoribosyltransferase (Nampt), a rate-limiting enzyme for NAD synthesis in mammalian cells, is frequently amplified in several cancer cells. In addition, Nampt-specific inhibitors significantly deplete NAD levels and subsequently suppress cancer cell proliferation through inhibition of energy production pathways, such as glycolysis, tricarboxylic acid (TCA) cycle, and oxidative phosphorylation. NAD also serves as a substrate for poly(ADP-ribose) polymerase (PARP), sirtuin, and NAD gylycohydrolase (CD38 and CD157); thus, NAD regulates DNA repair, gene expression, and stress response through these enzymes. Thus, NAD metabolism is implicated in cancer pathogenesis beyond energy metabolism and considered a promising therapeutic target for cancer treatment. In this review, we present recent findings with respect to NAD metabolism and cancer pathogenesis. We also discuss the current and future perspectives regarding the therapeutics that target NAD metabolic pathways.
Collapse
Affiliation(s)
- Keisuke Yaku
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| | - Keisuke Okabe
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan.,First Department of Internal Medicine, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| | - Keisuke Hikosaka
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| | - Takashi Nakagawa
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan.,Institute of Natural Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|