201
|
Zhang R, Liu Q, Peng J, Wang M, Li T, Liu J, Cui M, Zhang X, Gao X, Liao Q, Zhao Y. CXCL5 overexpression predicts a poor prognosis in pancreatic ductal adenocarcinoma and is correlated with immune cell infiltration. J Cancer 2020; 11:2371-2381. [PMID: 32201508 PMCID: PMC7065995 DOI: 10.7150/jca.40517] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 01/20/2020] [Indexed: 02/07/2023] Open
Abstract
Background: C-X-C motif chemokine 5 (CXCL5) is an important attractant for immune cell accumulation in tumor tissues. Recent evidence has shown that CXCL5 could promote carcinogenesis and cancer progression in a variety of cancer types. However, the relationships between CXCL5, immune cell infiltration and pancreatic ductal adenocarcinoma (PDAC) remain largely unknown. This study aimed to explore the role and regulative mechanism of CXCL5 in PDAC carcinogenesis. Materials and Methods: The expression of CXCL5 in PDAC was analyzed based on online databases and tissue microarray staining, and Western blotting of CXCL5 in PDAC cell lines and patient samples. The correlation between CXCL5 expression and clinicopathological features, prognosis and immune cell infiltration in tumor tissues was analyzed. Results: High expression of CXCL5 was observed both in PDAC tumor tissue and PDAC cell lines, compared to normal pancreas tissues and normal ductal epithelium cells. High CXCL5 expression in tumor tissues was positively correlated with an advanced T stage (p=0.036), a positive tumor lymph node metastasis (p=0.014), a poor differentiation status (p=0.003) and a poor prognosis (p=0.001). Combination of CA242 and CXCL5 expression (p<0.0001) served as a better prognostic factor than CA242 alone (p=0.006). In addition, PDAC patients with high CXCL5 expression had more intratumoral M2 polarized macrophages (p=0.0248), neutrophils (p=0.0068) and IgG+ plasma cells (p=0.0133) than patients with low CXCL5 expression. Conclusions: The expression of CXCL5 is elevated in pancreatic cancer cells. High CXCL5 expression is positively correlated with poor survival and the increased infiltration of several types of immune suppressive cells. Thus, CXCL5 could be a promising therapeutic target for PDAC immunotherapy.
Collapse
Affiliation(s)
- Ronghua Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Qiaofei Liu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Junya Peng
- Department of Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Mengyi Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Tong Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jingkai Liu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ming Cui
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiang Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiang Gao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Quan Liao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
202
|
Søreide K, Roalsø M, Aunan JR. Is There a Trojan Horse to Aggressive Pancreatic Cancer Biology? A Review of the Trypsin-PAR2 Axis to Proliferation, Early Invasion, and Metastasis. J Pancreat Cancer 2020; 6:12-20. [PMID: 32064449 PMCID: PMC7014313 DOI: 10.1089/pancan.2019.0014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Purpose: Pancreatic cancer is one of the most lethal of solid tumors and is associated with aggressive cancer biology. The purpose is to review the role of trypsin and effect on molecular and cellular processes potentially explaining the aggressive biology in pancreatic cancer. Methods: A narrative literature review of studies investigating trypsin and its effect on protease systems in cancer, with special reference to pancreatic cancer biology. Results: Proteases, such as trypsin, provides a significant advantage to developing tumors through the ability to remodel the extracellular matrix, promote cell invasion and migration, and facilitate angiogenesis. Trypsin is a digestive enzyme produced by the exocrine pancreas that is also related to mechanisms of proliferation, invasion and metastasis. Several of these mechanisms may be co-regulated or influenced by activation of proteinase-activated receptor 2 (PAR-2). The current role in pancreatic cancer is not clear but emerging data suggest several potential mechanisms. Trypsin may act as a Trojan horse in the pancreatic gland, facilitating several molecular pathways from the onset, which leads to rapid progression of the disease. Pancreatic cancer cell lines containing PAR-2 proliferate upon exposure to trypsin, whereas cancer cell lines not containing PAR-2 fail to proliferate upon trypsin expression. Several mechanisms of action include a proinflammatory environment, signals inducing proliferation and migration, and direct and indirect evidence for mechanisms promoting invasion and metastasis. Novel techniques (such as organoid models) and increased understanding of mechanisms (such as the microbiome) may yield improved understanding into the role of trypsin in pancreatic carcinogenesis. Conclusion: Trypsin is naturally present in the pancreatic gland and may experience pathological activation intracellularly and in the neoplastic environment, which speeds up molecular mechanisms of proliferation, invasion, and metastasis. Further investigation of these processes will provide important insights into how pancreatic cancer evolves, and suggest new ways for treatment.
Collapse
Affiliation(s)
- Kjetil Søreide
- Gastrointestinal Translational Research Unit, Laboratory for Molecular Medicine, Stavanger University Hospital, Stavanger, Norway.,Department of Gastrointestinal Surgery, HPB Unit, Stavanger University Hospital, Stavanger, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Marcus Roalsø
- Gastrointestinal Translational Research Unit, Laboratory for Molecular Medicine, Stavanger University Hospital, Stavanger, Norway.,Department of Gastrointestinal Surgery, HPB Unit, Stavanger University Hospital, Stavanger, Norway.,Faculty of Health and Medicine, University of Stavanger, Stavanger, Norway
| | - Jan Rune Aunan
- Gastrointestinal Translational Research Unit, Laboratory for Molecular Medicine, Stavanger University Hospital, Stavanger, Norway.,Department of Gastrointestinal Surgery, HPB Unit, Stavanger University Hospital, Stavanger, Norway
| |
Collapse
|
203
|
Liu M, Zhou J, Liu X, Feng Y, Yang W, Wu F, Cheung OKW, Sun H, Zeng X, Tang W, Mok MTS, Wong J, Yeung PC, Lai PBS, Chen Z, Jin H, Chen J, Chan SL, Chan AWH, To KF, Sung JJY, Chen M, Cheng ASL. Targeting monocyte-intrinsic enhancer reprogramming improves immunotherapy efficacy in hepatocellular carcinoma. Gut 2020; 69:365-379. [PMID: 31076403 DOI: 10.1136/gutjnl-2018-317257] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 03/01/2019] [Accepted: 04/15/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC), mostly developed in fibrotic/cirrhotic liver, exhibits relatively low responsiveness to immune checkpoint blockade (ICB) therapy. As myeloid-derived suppressor cell (MDSC) is pivotal for immunosuppression, we investigated its role and regulation in the fibrotic microenvironment with an aim of developing mechanism-based combination immunotherapy. DESIGN Functional significance of MDSCs was evaluated by flow cytometry using two orthotopic HCC models in fibrotic liver setting via carbon tetrachloride or high-fat high-carbohydrate diet and verified by clinical specimens. Mechanistic studies were conducted in human hepatic stellate cell (HSC)-peripheral blood mononuclear cell culture systems and fibrotic-HCC patient-derived MDSCs. The efficacy of single or combined therapy with anti-programmed death-1-ligand-1 (anti-PD-L1) and a clinically trialled BET bromodomain inhibitor i-BET762 was determined. RESULTS Accumulation of monocytic MDSCs (M-MDSCs), but not polymorphonuclear MDSCs, in fibrotic livers significantly correlated with reduced tumour-infiltrating lymphocytes (TILs) and increased tumorigenicity in both mouse models. In human HCCs, the tumour-surrounding fibrotic livers were markedly enriched with M-MDSC, with its surrogate marker CD33 significantly associated with aggressive tumour phenotypes and poor survival rates. Mechanistically, activated HSCs induced monocyte-intrinsic p38 MAPK signalling to trigger enhancer reprogramming for M-MDSC development and immunosuppression. Treatment with p38 MAPK inhibitor abrogated HSC-M-MDSC crosstalk to prevent HCC growth. Concomitant with patient-derived M-MDSC suppression by i-BET762, combined treatment with anti-PD-L1 synergistically enhanced TILs, resulting in tumour eradication and prolonged survival in the fibrotic-HCC mouse model. CONCLUSION Our results signify how non-tumour-intrinsic properties in the desmoplastic microenvironment can be exploited to reinstate immunosurveillance, providing readily translatable combination strategies to empower HCC immunotherapy.
Collapse
Affiliation(s)
- Man Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jingying Zhou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoyu Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu Feng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Weiqin Yang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Feng Wu
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Otto Ka-Wing Cheung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hanyong Sun
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.,Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China, Shanghai, China
| | - Xuezhen Zeng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenshu Tang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Myth T S Mok
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - John Wong
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Philip Chun Yeung
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Paul Bo San Lai
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhiwei Chen
- AIDS Institute, Department of Microbiology and Research Center for Infection and Immunity, The University of Hong Kong, Hong Kong, China
| | - Hongchuan Jin
- Labortaory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang, Sir Runrun Shaw hospital, Medical School of Zhejiang University, Hang Zhou, China
| | - Jie Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Stephen Lam Chan
- Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Anthony W H Chan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Joseph J Y Sung
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Alfred Sze-Lok Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
204
|
Han X, Xu Y, Geranpayehvaghei M, Anderson GJ, Li Y, Nie G. Emerging nanomedicines for anti-stromal therapy against desmoplastic tumors. Biomaterials 2020; 232:119745. [DOI: 10.1016/j.biomaterials.2019.119745] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/29/2019] [Accepted: 12/25/2019] [Indexed: 02/09/2023]
|
205
|
Xie Y, Hang Y, Wang Y, Sleightholm R, Prajapati DR, Bader J, Yu A, Tang W, Jaramillo L, Li J, Singh RK, Oupický D. Stromal Modulation and Treatment of Metastatic Pancreatic Cancer with Local Intraperitoneal Triple miRNA/siRNA Nanotherapy. ACS NANO 2020; 14:255-271. [PMID: 31927946 PMCID: PMC7041410 DOI: 10.1021/acsnano.9b03978] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Nanomedicines achieve tumor-targeted delivery mainly through enhanced permeability and retention (EPR) effect following intravenous (IV) administration. Unfortunately, the EPR effect is severely compromised in pancreatic cancer due to hypovascularity and dense desmoplastic stroma. Intraperitoneal (IP) administration may be an effective EPR-independent local delivery approach to target peritoneal tumors. Besides improved delivery, effective combination delivery strategies are needed to improve pancreatic cancer therapy by targeting both cancer cells and cellular interactions within the tumor stroma. Here, we described simple cholesterol-modified polymeric CXCR4 antagonist (PCX) nanoparticles (to block cancer-stroma interactions) for codelivery of anti-miR-210 (to inactivate stroma-producing pancreatic stellate cells (PSCs)) and siKRASG12D (to kill pancreatic cancer cells). IP administration delivered the nanoparticles to an orthotopic syngeneic pancreatic tumors as a result of preferential localization to the tumors and metastases with disrupted mesothelium and effective tumor penetration. The local IP delivery resulted in nearly 15-fold higher tumor accumulation than delivery by IV injection. Through antagonism of CXCR4 and downregulation of miR-210/KRASG12D, the triple-action nanoparticles favorably modulated desmoplastic tumor microenvironment via inactivating PSCs and promoting the infiltration of cytotoxic T cells. The combined therapy displayed improved therapeutic effect when compared with individual therapies as documented by the delayed tumor growth, depletion of stroma, reduction of immunosuppression, inhibition of metastasis, and prolonged survival. Overall, we present data that a local IP delivery of a miRNA/siRNA combination holds the potential to improve pancreatic cancer therapy.
Collapse
Affiliation(s)
- Ying Xie
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| | - Yu Hang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| | - Yazhe Wang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| | - Richard Sleightholm
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| | - Dipakkumar R Prajapati
- Department of Pathology and Microbiology , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| | - Johannes Bader
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy , Ludwig-Maximilians-Universität München , 81337 Munich , Germany
| | - Ao Yu
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| | - Weimin Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| | - Lee Jaramillo
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
- Bohemica Pharmaceuticals, LLC , La Vista , Nebraska 68128 , United States
| | - Jing Li
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| | - Rakesh K Singh
- Department of Pathology and Microbiology , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| |
Collapse
|
206
|
Li X, Li J, Zhang B, Gu Y, Li Q, Gu G, Xiong J, Li Y, Yang X, Qian Z. Comparative peptidome profiling reveals critical roles for peptides in the pathology of pancreatic cancer. Int J Biochem Cell Biol 2020; 120:105687. [PMID: 31927104 DOI: 10.1016/j.biocel.2020.105687] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/05/2019] [Accepted: 01/08/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUNDS/AIMS Pancreatic cancer is a digestive system tumour disease with a notably poor prognosis and a 5-year survival rate of less than 10 %. In recent years, peptide drugs have shown great clinical value in antitumour applications. We aim to identify differentially expressed peptides by using peptidomics techniques to explore the mechanisms involved in the development and pathology of pancreatic cancer. METHODS We performed peptidomic analysis of pancreatic cancer and paired paracancerous tissues by using ITRAQ labelling technology and conducted in-depth bioinformatics analysis and functional studies on differentially expressed peptides. RESULTS A total of 2,881 peptides were identified, of which 133 were differentially expressed (116 were upregulated and 17 were downregulated). By using GO analysis, the differentially expressed peptides were found to be closely related to the tumour microenvironment and extracellular matrix. KEGG enrichment analysis revealed that precursor proteins were closely related to the T2DM and RAS signalling pathways. The endogenous peptide P1DG can significantly inhibit the proliferation, migration and invasion of pancreatic cancer cells. CONCLUSION P1DG and its precursor GAPDH may be closely related to the proliferation, migration and invasion of pancreatic cancer. Peptidomics can aid in understanding the pathogenesis of pancreatic cancer more comprehensively.
Collapse
Affiliation(s)
- Xingxing Li
- Pancreas Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingyun Li
- Nanjing Maternal and Child Health Medical Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), 123rd Tianfei Street, Mochou Road, Nanjing, 210004, China
| | - Bin Zhang
- Pancreas Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuqing Gu
- Pancreas Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qian Li
- Nanjing Maternal and Child Health Medical Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), 123rd Tianfei Street, Mochou Road, Nanjing, 210004, China
| | - Guangliang Gu
- Pancreas Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiageng Xiong
- Pancreas Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanan Li
- Pancreas Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaojun Yang
- Pancreas Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Zhuyin Qian
- Pancreas Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
207
|
Wang K, He H. Pancreatic Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1296:243-257. [PMID: 34185297 DOI: 10.1007/978-3-030-59038-3_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The pancreatic ductal adenocarcinoma (PDAC) microenvironment is a diverse and complex milieu of immune, stromal, and tumor cells and is characterized by a dense stroma, which mediates the interaction between the tumor and the immune system within the tumor microenvironment (TME). The interaction between stromal and tumor cells signals and shapes the immune infiltration of TME. The desmoplastic compartment contains infiltrated immune cells including tumor-associated macrophages (TAMs) and large numbers of fibroblasts/myofibroblasts dominated by pancreatic stellate cells (PSCs) which contribute to fibrosis. The highly fibrotic stroma with its extensive infiltration of immunosuppressive cells forms the major component of the pro-tumorigenic microenvironment (Laklai et al. Nat Med 22:497-505, 2016, Zhu et al. Cancer Res 74:5057-5069, 2014) provides a barrier to the delivery of cytotoxic agents and limits T-cell access to tumor cells (Feig et al. Proc Natl Acad Sci USA 110:20212-20217, 2013, Provenzano et al Cancer Cell 21:418-429, 2012). Activated PSCs reduced infiltration of cytotoxic T cells to the juxtatumoral stroma (immediately adjacent to the tumor epithelial cells) of PDAC (Ene-Obong et al. Gastroenterology 145:1121-1132, 2013). M1 macrophages activate an immune response against tumor, but M2 macrophages are involved in immunosuppression promoting tumor progression (Noy and Pollard Immunity 41:49-61, 2014, Ruffell et al. Trends Immunol 33:119-126, 2012). The desmoplastic stroma is reported to protect tumor cells against chemotherapies, promoting their proliferation and migration. However, experimental depletion of the desmoplastic stroma has led to more aggressive cancers in animal studies (Nielsen et al. World J Gastroenterol 22:2678-2700, 2016). Hence reprogramming rather than simple depletion of the PDAC stroma has the potential for developing new therapeutic strategies for PC treatment. Modulation of PSCs/fibrosis and immune infiltration/inflammation composes the major aspects of TME reprogramming.
Collapse
Affiliation(s)
- Kai Wang
- Department of Surgery, University of Melbourne, Austin Health, Heidelberg, VIC, Australia
| | - Hong He
- Department of Surgery, University of Melbourne, Austin Health, Heidelberg, VIC, Australia.
| |
Collapse
|
208
|
Al Alawi R, Alhamdani MSS, Hoheisel JD, Baqi Y. Antifibrotic and tumor microenvironment modulating effect of date palm fruit (Phoenix dactylifera L.) extracts in pancreatic cancer. Biomed Pharmacother 2020; 121:109522. [DOI: 10.1016/j.biopha.2019.109522] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/22/2019] [Accepted: 10/01/2019] [Indexed: 12/16/2022] Open
|
209
|
Zhao H, Jiang X, Duan L, Yang L, Wang W, Ren Z. Liraglutide suppresses the metastasis of PANC-1 co-cultured with pancreatic stellate cells through modulating intracellular calcium content. Endocr J 2019; 66:1053-1062. [PMID: 31474673 DOI: 10.1507/endocrj.ej19-0215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In this study, we aim to explore the anti-tumor effect of liraglutide (Lira), an anti-diabetic medicine, on pancreatic cancer cell PANC-1 co-cultured with or without pancreatic stellate cells (PSCs). The chemical count kit-8 and Annexin V-FITC apoptosis detection were conducted to investigate the effect of Lira on cell viability and proliferation of PANC-1 with or without PSCs co-culture. Then, the wound healing and transwell experiments were performed to explore the influence of Lira on PANC-1 cells' migration and invasion capabilities. To identify the potential action mechanism of Lira on PANC-1, the expression of E-cadherin and N-cadherin and the intracellular calcium content in PANC-1, after Lira administration, were detected. The results indicated that Lira in 100 and 1,000 nmol/L, effectively decreased the cell viability and dose-dependently promoted cell apoptosis of PANC-1 co-cultured with or without PSCs. Lira significantly reduced the migration and invasion of PANC-1 and also reduced the inducing effect of PSCs to PANC-1. Lira effectively induced the expression of E-cadherin and suppressed the expression of N-cadherin with a dose-dependent manner. Otherwise, Lira significantly reduced the abnormal high content of calcium in PANC-1 and also weakened the elevation of calcium in PANC-1 induced by cell-cell interaction. The current study firstly indicated that Lira suppressed the cell proliferation, migration and invasion of PANC-1 with or without PSCs co-culture. This effect was partially due to the calcium modulation of Lira and its influence on Ca2+-binding proteins, such as E-cadherin and N-cadherin.
Collapse
Affiliation(s)
- Hejun Zhao
- Department of Endocrinology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Xia Jiang
- Department of Endocrinology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Lijun Duan
- Department of Endocrinology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Lei Yang
- Clinical Laboratory, Tianjin First Central Hospital, Tianjin 300192, China
| | - Wenyi Wang
- International Medical Center, Tianjin First Central Hospital, Tianjin 300192, China
| | - Zhipeng Ren
- Department of Orthopaedics, Tianjin Hospital, Tianjin 300211, China
- Graduate School, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
210
|
Inhibition of PAK1 suppresses pancreatic cancer by stimulation of anti-tumour immunity through down-regulation of PD-L1. Cancer Lett 2019; 472:8-18. [PMID: 31857154 DOI: 10.1016/j.canlet.2019.12.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/12/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023]
Abstract
Immunotherapies have not yielded significant clinical benefits for pancreatic ductal adenocarcinoma (PDA) because of the existence of an immunosuppressive tumour microenvironment (TME) characterized by a desmoplastic stroma containing infiltrated immune cells and activated pancreatic stellate cells (PSCs). This study aims to investigate the involvement of PAK1 in anti-tumour immunity. In PDA patients, low PAK1 expression, low activation of PSC and high CD8+ T cell/PAK1 ratios correlated with longer overall survival. In a murine PDA model, PAK1 knockout increased intra-tumoral CD4+ and CD8+ T cells, inhibited PSCs activation and extended survival. Inhibition of PAK1 reduced PSC-stimulated PDA cell proliferation and migration, blocked PSC-mediated protection of PDA cells from killing by cytotoxic lymphocytes and decreased intrinsic and PSC-stimulated PD-L1 expression in PDA cells, which further sensitized PDA cells to cytotoxic lymphocytes. Inhibition of PAK1 stimulates anti-tumour immunity by increasing intra-tumoral CD4+ and CD8+ T cells, and by sensitizing PDA cells to killing by cytotoxic lymphocytes via down-regulation of intrinsic and PSC-stimulated PD-L1 expression. PAK1 inhibitors, especially in combination with immune checkpoint inhibitors may result in improved efficacy of immunotherapy of PDA.
Collapse
|
211
|
Lim ZF, Ma PC. Emerging insights of tumor heterogeneity and drug resistance mechanisms in lung cancer targeted therapy. J Hematol Oncol 2019; 12:134. [PMID: 31815659 PMCID: PMC6902404 DOI: 10.1186/s13045-019-0818-2] [Citation(s) in RCA: 345] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/31/2019] [Indexed: 02/07/2023] Open
Abstract
The biggest hurdle to targeted cancer therapy is the inevitable emergence of drug resistance. Tumor cells employ different mechanisms to resist the targeting agent. Most commonly in EGFR-mutant non-small cell lung cancer, secondary resistance mutations on the target kinase domain emerge to diminish the binding affinity of first- and second-generation inhibitors. Other alternative resistance mechanisms include activating complementary bypass pathways and phenotypic transformation. Sequential monotherapies promise to temporarily address the problem of acquired drug resistance, but evidently are limited by the tumor cells' ability to adapt and evolve new resistance mechanisms to persist in the drug environment. Recent studies have nominated a model of drug resistance and tumor progression under targeted therapy as a result of a small subpopulation of cells being able to endure the drug (minimal residual disease cells) and eventually develop further mutations that allow them to regrow and become the dominant population in the therapy-resistant tumor. This subpopulation of cells appears to have developed through a subclonal event, resulting in driver mutations different from the driver mutation that is tumor-initiating in the most common ancestor. As such, an understanding of intratumoral heterogeneity-the driving force behind minimal residual disease-is vital for the identification of resistance drivers that results from branching evolution. Currently available methods allow for a more comprehensive and holistic analysis of tumor heterogeneity in that issues associated with spatial and temporal heterogeneity can now be properly addressed. This review provides some background regarding intratumoral heterogeneity and how it leads to incomplete molecular response to targeted therapies, and proposes the use of single-cell methods, sequential liquid biopsy, and multiregion sequencing to discover the link between intratumoral heterogeneity and early adaptive drug resistance. In summary, minimal residual disease as a result of intratumoral heterogeneity is the earliest form of acquired drug resistance. Emerging technologies such as liquid biopsy and single-cell methods allow for studying targetable drivers of minimal residual disease and contribute to preemptive combinatorial targeting of both drivers of the tumor and its minimal residual disease cells.
Collapse
Affiliation(s)
- Zuan-Fu Lim
- WVU Cancer Institute, West Virginia University, Morgantown, WV, 26506, USA.,Cancer Cell Biology Program, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA.,Penn State Cancer Institute, Penn State Health Milton S. Hershey Medical Center, Penn State University, P.O. Box 850, Mail Code CH46, 500 University Drive, Hershey, PA, 17033-0850, USA
| | - Patrick C Ma
- Penn State Cancer Institute, Penn State Health Milton S. Hershey Medical Center, Penn State University, P.O. Box 850, Mail Code CH46, 500 University Drive, Hershey, PA, 17033-0850, USA.
| |
Collapse
|
212
|
Han L, Jiang J, Xue M, Qin T, Xiao Y, Wu E, Shen X, Ma Q, Ma J. Sonic hedgehog signaling pathway promotes pancreatic cancer pain via nerve growth factor. Reg Anesth Pain Med 2019; 45:137-144. [PMID: 31792027 DOI: 10.1136/rapm-2019-100991] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/30/2019] [Accepted: 11/03/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Many patients with pancreatic cancer (PC) suffer from abdominal pain and back pain. However, the cause of pain associated with PC is largely unclear. In this study, we tested the potential influence of the sonic hedgehog (sHH) signaling pathway on PC pain. METHODS Substance P (SP) and calcitonin gene-related peptide (CGRP) expression was measured in cultured PC cells and dorsal root ganglions (DRG) by real-time PCR, western blotting analysis and ELISA. Small interfering RNA transfection and plasmid constructs were used to regulate the expression of sHH in the AsPc-1 and Panc-1 cell lines. Pain-related behavior was observed in an orthotopic tumor model in nude mice. RESULTS In this study, the results show that sHH increased the expression of SP and CGRP in DRGs in a concentration and time-dependent manner. Additionally, sHH secretion from PC cells could activate the sHH signaling pathway and, in turn, increase the expression of nerve growth factor (NGF), P75, and TrkA in DRGs. Furthermore, the sHH signaling pathway and NGF/NGF receptor contributed to pain sensitivity in a nude mouse model. CONCLUSION Our results demonstrate that PC pain originates from the sHH signaling pathway, and NGF mediates the pain mechanism via regulating SP and CGRP.
Collapse
Affiliation(s)
- Liang Han
- Department of Hepatobiliary Surgery, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Jie Jiang
- Department of Medical Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Mengwen Xue
- Department of Anesthesiology, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, China
| | - Tao Qin
- Department of Hepatobiliary Surgery, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Ying Xiao
- Department of Hepatobiliary Surgery, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Erxi Wu
- Department of Surgery, Baylor Scott and White Health, Dallas, Texas, USA.,Department of Neurosurgery, Baylor Scott and White Health, Dallas, Texas, USA
| | - Xin Shen
- Department of Anesthesiology, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, China
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Jiguang Ma
- Department of Anesthesiology, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, China
| |
Collapse
|
213
|
Roger E, Martel S, Bertrand-Chapel A, Depollier A, Chuvin N, Pommier RM, Yacoub K, Caligaris C, Cardot-Ruffino V, Chauvet V, Aires S, Mohkam K, Mabrut JY, Adham M, Fenouil T, Hervieu V, Broutier L, Castets M, Neuzillet C, Cassier PA, Tomasini R, Sentis S, Bartholin L. Schwann cells support oncogenic potential of pancreatic cancer cells through TGFβ signaling. Cell Death Dis 2019; 10:886. [PMID: 31767842 PMCID: PMC6877617 DOI: 10.1038/s41419-019-2116-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/09/2019] [Accepted: 11/05/2019] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the solid tumors with the poorest prognosis. The stroma of this tumor is abundant and composed of extracellular matrix and stromal cells (including cancer-associated fibroblasts and immune cells). Nerve fibers invading this stroma represent a hallmark of PDAC, involved in neural remodeling, which participates in neuropathic pain, cancer cell dissemination and tumor relapse after surgery. Pancreatic cancer-associated neural remodeling is regulated through functional interplays mediated by physical and molecular interactions between cancer cells, nerve cells and surrounding Schwann cells, and other stromal cells. In the present study, we show that Schwann cells (glial cells supporting peripheral neurons) can enhance aggressiveness (migration, invasion, tumorigenicity) of pancreatic cancer cells in a transforming growth factor beta (TGFβ)-dependent manner. Indeed, we reveal that conditioned medium from Schwann cells contains high amounts of TGFβ able to activate the TGFβ-SMAD signaling pathway in cancer cells. We also observed in human PDAC samples that high levels of TGFβ signaling activation were positively correlated with perineural invasion. Secretome analyses by mass spectrometry of Schwann cells and pancreatic cancer cells cultured alone or in combination highlighted the central role of TGFβ in neuro-epithelial interactions, as illustrated by proteomic signatures related to cell adhesion and motility. Altogether, these results demonstrate that Schwann cells are a meaningful source of TGFβ in PDAC, which plays a crucial role in the acquisition of aggressive properties by pancreatic cancer cells.
Collapse
Affiliation(s)
- Elodie Roger
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon (CRCL), Lyon, 69373, France
| | - Sylvie Martel
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon (CRCL), Lyon, 69373, France
| | - Adrien Bertrand-Chapel
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon (CRCL), Lyon, 69373, France
| | - Arnaud Depollier
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon (CRCL), Lyon, 69373, France
| | - Nicolas Chuvin
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon (CRCL), Lyon, 69373, France.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Roxane M Pommier
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon (CRCL), Lyon, 69373, France
| | - Karam Yacoub
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon (CRCL), Lyon, 69373, France
| | - Cassandre Caligaris
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon (CRCL), Lyon, 69373, France
| | - Victoire Cardot-Ruffino
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon (CRCL), Lyon, 69373, France
| | - Véronique Chauvet
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon (CRCL), Lyon, 69373, France
| | - Sophie Aires
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon (CRCL), Lyon, 69373, France
| | - Kayvan Mohkam
- Hospices Civils de Lyon, Croix Rousse hospital, Claude-Bernard Lyon 1 University, Department of General Surgery & Liver Transplantation, Lyon, France
| | - Jean-Yves Mabrut
- Hospices Civils de Lyon, Croix Rousse hospital, Claude-Bernard Lyon 1 University, Department of General Surgery & Liver Transplantation, Lyon, France
| | - Mustapha Adham
- Hospices Civils de Lyon, Edouard Herriot hospital, Claude-Bernard Lyon 1 University, Department of General Surgery & Liver Transplantation, Lyon, France
| | - Tanguy Fenouil
- Hospices Civils de Lyon Institute of Pathology EST, CRCL INSERM U1052, University Lyon 1, Lyon, France
| | - Valérie Hervieu
- Hospices Civils de Lyon Institute of Pathology EST, CRCL INSERM U1052, University Lyon 1, Lyon, France
| | - Laura Broutier
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon (CRCL), Lyon, 69373, France
| | - Marie Castets
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon (CRCL), Lyon, 69373, France
| | - Cindy Neuzillet
- Medical Oncology Department, Curie Institute, Versailles Saint-Quentin University, 35 rue Dailly, 92210, Saint Cloud, France
| | - Philippe A Cassier
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon (CRCL), Lyon, 69373, France.,Departement d'Oncologie Médicale, Centre Léon Bérard, Lyon, 69008, France
| | - Richard Tomasini
- Aix-Marseille Université, Institut Paoli-Calmettes, INSERM U1068, CNRS UMR 7258, Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Stéphanie Sentis
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon (CRCL), Lyon, 69373, France
| | - Laurent Bartholin
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon (CRCL), Lyon, 69373, France.
| |
Collapse
|
214
|
Madamsetty VS, Pal K, Keshavan S, Caulfield TR, Dutta SK, Wang E, Fadeel B, Mukhopadhyay D. Development of multi-drug loaded PEGylated nanodiamonds to inhibit tumor growth and metastasis in genetically engineered mouse models of pancreatic cancer. NANOSCALE 2019; 11:22006-22018. [PMID: 31710073 DOI: 10.1039/c9nr05478b] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease. Nanomedicine, however, offers new opportunities to facilitate drug delivery in PDAC. Our previous work has shown that poly(ethylene glycol)-functionalized nanodiamond (ND) mediated drug delivery offered a considerable improvement over free drug in PDAC. Inspired by this result and guided by molecular simulations, we opted for simultaneous loading of irinotecan and curcumin in ultra-small PEGylated NDs (ND-IRT + CUR). We observed that ND-IRT + CUR was more efficacious in killing AsPC-1 and PANC-1 cells than NDs with single drugs. Using NDs functionalized with a near-infrared (NIR) dye, we demonstrated the preferential localization of the NDs in tumors and metastatic lesions. We further demonstrate that ND-IRT + CUR is capable of producing pronounced anti-tumor effects in two different clinically relevant, immune-competent genetic models of PDAC. Cytokine profiling indicated that NDs with or without drugs downregulated the expression of IL-10, a key modulator of the tumor microenvironment. Thus, using a combination of in silico, in vitro, and in vivo approaches, we show for the first time the remarkable anti-tumor efficacy of PEGylated NDs carrying a dual payload of irinotecan plus curcumin. These results highlight the potential use of such nano-carriers in the treatment of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL 32224, USA.
| | | | | | | | | | | | | | | |
Collapse
|
215
|
Deficiency of the adrenomedullin-RAMP3 system suppresses metastasis through the modification of cancer-associated fibroblasts. Oncogene 2019; 39:1914-1930. [PMID: 31754214 DOI: 10.1038/s41388-019-1112-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 02/07/2023]
Abstract
Tumor metastasis is a primary source of morbidity and mortality in cancer. Adrenomedullin (AM) is a multifunctional peptide regulated by receptor activity-modifying proteins (RAMPs). We previously reported that the AM-RAMP2 system is involved in tumor angiogenesis, but the function of the AM-RAMP3 system remains largely unknown. Here, we investigated the actions of the AM-RAMP2 and 3 systems in the tumor microenvironment and their impact on metastasis. PAN02 pancreatic cancer cells were injected into the spleens of mice, leading to spontaneous liver metastasis. Tumor metastasis was enhanced in vascular endothelial cell-specific RAMP2 knockout mice (DI-E-RAMP2-/-). By contrast, metastasis was suppressed in RAMP3-/- mice, where the number of podoplanin (PDPN)-positive cancer-associated fibroblasts (CAFs) was reduced in the periphery of tumors at metastatic sites. Because PDPN-positive CAFs are a hallmark of tumor malignancy, we assessed the regulation of PDPN and found that Src/Cas/PDPN signaling is mediated by RAMP3. In fact, RAMP3 deficiency CAFs suppressed migration, proliferation, and metastasis in co-cultures with tumor cells in vitro and in vivo. Moreover, the activation of RAMP2 in RAMP3-/- mice suppressed both tumor growth and metastasis. Based on these results, we suggest that the upregulation of PDPN in DI-E-RAMP2-/- mice increases malignancy, while the downregulation of PDPN in RAMP3-/- mice reduces it. Selective activation of RAMP2 and inhibition of RAMP3 would therefore be expected to suppress tumor metastasis. This study provides the first evidence that understanding and targeting to AM-RAMP systems could contribute to the development of novel therapeutics against metastasis.
Collapse
|
216
|
Rezaee M, Wang J, Razavi M, Ren G, Zheng F, Hussein A, Ullah M, Thakor AS. A Study Comparing the Effects of Targeted Intra-Arterial and Systemic Chemotherapy in an Orthotopic Mouse Model of Pancreatic Cancer. Sci Rep 2019; 9:15929. [PMID: 31685925 PMCID: PMC6828954 DOI: 10.1038/s41598-019-52490-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 10/18/2019] [Indexed: 02/06/2023] Open
Abstract
Systemic chemotherapy is the first line treatment for patients with unresectable pancreatic cancer, however, insufficient drug delivery to the pancreas is a major problem resulting in poor outcomes. We evaluated the therapeutic effects of targeted intra-arterial (IA) delivery of gemcitabine directly into the pancreas in an orthotopic mouse model of pancreatic cancer. Nude mice with orthotopic pancreatic tumors were randomly assigned into 3 groups receiving gemcitabine: systemic intravenous (IV) injection (low: 0.3 mg/kg and high: 100 mg/kg) and direct IA injection (0.3 mg/kg). Treatments were administered weekly for 2 weeks. IA treatment resulted in a significantly greater reduction in tumor growth compared to low IV treatment. To achieve a comparable reduction in tumor growth as seen with IA treatment, gemcitabine had to be given IV at over 300x the dose (high IV treatment) which was associated with some toxicity. After 2 weeks, tumor samples from animals treated with IA gemcitabine had significantly lower residual cancer cells, higher cellular necrosis and evidence of increased apoptosis when compared to animals treated with low IV gemcitabine. Our study shows targeted IA injection of gemcitabine directly into the pancreas, via its arterial blood supply, has a superior therapeutic effect in reducing tumor growth compared to the same concentration administered by conventional systemic injection.
Collapse
MESH Headings
- Administration, Intravenous
- Animals
- Antimetabolites, Antineoplastic/adverse effects
- Antimetabolites, Antineoplastic/therapeutic use
- Cell Line, Tumor
- Deoxycytidine/adverse effects
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/therapeutic use
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drug Administration Schedule
- Female
- Humans
- Infusions, Intra-Arterial
- Male
- Mice
- Mice, Nude
- Neoplasm, Residual
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Transplantation, Heterologous
- Gemcitabine
Collapse
Affiliation(s)
- Melika Rezaee
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, California, 94304, USA
- Chicago Medical School, Rosalind Franklin University, North Chicago, Illinois, 60064, USA
| | - Jing Wang
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, California, 94304, USA
| | - Mehdi Razavi
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, California, 94304, USA
| | - Gang Ren
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, California, 94304, USA
| | - Fengyan Zheng
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, California, 94304, USA
| | - Ahmed Hussein
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, California, 94304, USA
| | - Mujib Ullah
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, California, 94304, USA
| | - Avnesh S Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, California, 94304, USA.
| |
Collapse
|
217
|
Wang L, Yang L, Chen L, Chen Z. Do Patients Diagnosed with Metastatic Pancreatic Cancer Benefit from Primary Tumor Surgery? A Propensity-Adjusted, Population-Based Surveillance, Epidemiology and End Results (SEER) Analysis. Med Sci Monit 2019; 25:8230-8241. [PMID: 31677259 PMCID: PMC6852709 DOI: 10.12659/msm.917106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background With the progress in surgical techniques and management of complications, pancreatic resection can be safely performed in experienced hospitals. Pancreatic resection enables surgeons to assess the effect of surgery for metastatic cases, even when there is limited information. In the present study we evaluated the role of primary tumor resection for metastatic pancreatic cancer (mPC) by using the Surveillance, Epidemiology and End Results (SEER) database. Material/Methods Metastatic pancreatic cancer patients treated at our hospital from 2004 to 2015 were identified. The effect of surgery on cancer-specific survival was assessed by restricted mean survival time (RMST) and stabilized inverse probability of treatment weight-adjusted analysis after propensity score matching (PSM). Results A total of 2694 mPC patients were included. Of this population, 365 adults underwent primary tumor resection. After propensity matching, postsurgical patients had longer RMST than non-surgery patients (1: 1 PSM 11.60 months vs. 8.98 months; 1: 2 PSM 11.61 months vs. 9.10 months; p<0.01). Stabilized inverse probability of treatment weight-adjusted analysis yielded similar results (p<0.01). Conclusions Our study supports the hypothesis that patients with mPC can benefit from primary tumor surgery. However, the surgical inclusion criteria and the appropriate role of surgery, such as its effect on symptom control, quality of life, and the extent to which it prolongs survival for metastatic pancreatic cancer, remain to be completely assessed by well-designed, prospective, randomized clinical trials.
Collapse
Affiliation(s)
- Lai Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China (mainland).,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China (mainland)
| | - Lina Yang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China (mainland).,Cancer Institute, Fudan University, Shanghai, China (mainland)
| | - Lianyu Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China (mainland).,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China (mainland)
| | - Zhen Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China (mainland).,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China (mainland)
| |
Collapse
|
218
|
Chen X, Yu Q, Liu Y, Sheng Q, Shi K, Wang Y, Li M, Zhang Z, He Q. Synergistic cytotoxicity and co-autophagy inhibition in pancreatic tumor cells and cancer-associated fibroblasts by dual functional peptide-modified liposomes. Acta Biomater 2019; 99:339-349. [PMID: 31499197 DOI: 10.1016/j.actbio.2019.09.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/17/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a highly fatal disease with 5-year survival of ∼8.5%. Nanoplatforms such as nab-paclitaxel and nanoliposomal irinotecan demonstrate superiority and utility in treating different progressions of PDA by prolonging the median overall survival by only a few months. Due to the dense surrounding stroma and the high autophagy in pancreatic cancer, integrin ɑvβ3 targeting, acid environmental sensitive, TR peptide-modified liposomal platforms loaded with combined autophagy inhibiting hydroxychloroquine (HCQ), and cytotoxic paclitaxel (PTX) were designed (TR-PTX/HCQ-Lip) to accomplish the aim of synergistically killing tumor cells while inhibiting stroma fibrosis. The results showed that TR peptide-modified liposomes (TR-Lip) have superior targeting and penetrating effects both in vitro and in vivo. TR-PTX/HCQ-Lip efficiently inhibited autophagy in pancreatic cells and surrounding cancer-associated fibroblasts. The synergistic anti-fibrosis roles were also confirmed both in vitro and in vivo, all of which contributes to the enhanced curative effects of TR-PTX/HCQ-Lip in both heterogenetic and orthotopic pancreatic cancer models. STATEMENT OF SIGNIFICANCE: Autophagy plays a significant role in pancreatic ductal adenocarcinoma, especially in activating cancer associated fibroblasts which is also related to collagen generation that promotes the formation of dense stroma, which hinder the cytotoxic drugs to target and kill cancer cells. In this study, we designed integrin ɑvβ3 targeting, acid environmental sensitive liposomal platforms to co-loaded paclitaxel and the autophagy inhibitor hydroxychloroquine. The results showed that the muti-functional liposomes can target to the pancreatic tumor and efficiently kill tumor cells and inhibit stroma fibrosis, thus improve the therapeutic effect in orthotopic pancreatic cancer models.
Collapse
Affiliation(s)
- Xiaoxiao Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610064, PR China
| | - Qianwen Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610064, PR China
| | - Yinke Liu
- West China School of Stomotology, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, PR China
| | - Qinglin Sheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610064, PR China
| | - Kairong Shi
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610064, PR China
| | - Yang Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610064, PR China
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610064, PR China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610064, PR China
| | - Qin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610064, PR China.
| |
Collapse
|
219
|
Lu J, Roy B, Anderson M, Leggett CL, Levy MJ, Pogue B, Hasan T, Wang KK. Verteporfin- and sodium porfimer-mediated photodynamic therapy enhances pancreatic cancer cell death without activating stromal cells in the microenvironment. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-11. [PMID: 31741351 PMCID: PMC7003148 DOI: 10.1117/1.jbo.24.11.118001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 10/18/2019] [Indexed: 05/05/2023]
Abstract
The goal of our study was to determine the susceptibility of different pancreatic cell lines to clinically applicable photodynamic therapy (PDT). The efficacy of PDT of two different commercially available photosensitizers, verteporfin and sodium porfimer, was compared using a panel of four different pancreatic cancer cell lines, PANC-1, BxPC-3, CAPAN-2, and MIA PaCa-2, and an immortalized non-neoplastic pancreatic ductal epithelium cell line, HPNE. The minimum effective concentrations and dose-dependent curves of verteporfin and sodium porfimer on PANC-1 were determined. Since pancreatic cancer is known to have significant stromal components, the effect of PDT on stromal cells was also assessed. To mimic tumor-stroma interaction, a co-culture of primary human fibroblasts or human pancreatic stellate cell (HPSCs) line with PANC-1 was used to test verteporfin-PDT-mediated cell death of PANC-1. Two cytokines (TNF-α and IL-1β) were used for stimulation of primary fibroblasts (derived from human esophageal biopsies) or HPSCs. The increased expression of smooth muscle actin (α-SMA) confirmed the activation of fibroblasts or HPSC upon treatment with TNF-α and IL-1β. Cell death assays showed that both sodium porfimer- and verteporfin-mediated PDT-induced cell death in a dose-dependent manner. However, verteporfin-PDT treatment had a greater efficiency with 60 × lower concentration than sodium porfimer-PDT in the PANC-1 incubated with stimulated fibroblasts or HPSC. Moreover, activation of stromal cells did not affect the treatment of the pancreatic cancer cell lines, suggesting that the effects of PDT are independent of the inflammatory microenvironment found in this two-dimensional culture model of cancers.
Collapse
Affiliation(s)
- Jingjing Lu
- Mayo Clinic and Foundation, Barrett’s Esophagus Unit, Division of Gastroenterology and Hepatology, Rochester, Minnesota, United States
- Peking University Third Hospital, Gastroenterology Department, Beijing, China
| | - Bhaskar Roy
- Mayo Clinic and Foundation, Barrett’s Esophagus Unit, Division of Gastroenterology and Hepatology, Rochester, Minnesota, United States
| | - Marlys Anderson
- Mayo Clinic and Foundation, Barrett’s Esophagus Unit, Division of Gastroenterology and Hepatology, Rochester, Minnesota, United States
| | - Cadman L. Leggett
- Mayo Clinic and Foundation, Barrett’s Esophagus Unit, Division of Gastroenterology and Hepatology, Rochester, Minnesota, United States
| | - Michael J. Levy
- Mayo Clinic and Foundation, Barrett’s Esophagus Unit, Division of Gastroenterology and Hepatology, Rochester, Minnesota, United States
| | - Brian Pogue
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - Tayyaba Hasan
- Harvard School of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Kenneth K. Wang
- Mayo Clinic and Foundation, Barrett’s Esophagus Unit, Division of Gastroenterology and Hepatology, Rochester, Minnesota, United States
| |
Collapse
|
220
|
Dey S, Kwon JJ, Liu S, Hodge GA, Taleb S, Zimmers TA, Wan J, Kota J. miR-29a Is Repressed by MYC in Pancreatic Cancer and Its Restoration Drives Tumor-Suppressive Effects via Downregulation of LOXL2. Mol Cancer Res 2019; 18:311-323. [PMID: 31662451 DOI: 10.1158/1541-7786.mcr-19-0594] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/11/2019] [Accepted: 10/25/2019] [Indexed: 12/21/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an intractable cancer with a dismal prognosis. miR-29a is commonly downregulated in PDAC; however, mechanisms for its loss and role still remain unclear. Here, we show that in PDAC, repression of miR-29a is directly mediated by MYC via promoter activity. RNA sequencing analysis, integrated with miRNA target prediction, identified global miR-29a downstream targets in PDAC. Target enrichment coupled with gene ontology and survival correlation analyses identified the top five miR-29a-downregulated target genes (LOXL2, MYBL2, CLDN1, HGK, and NRAS) that are known to promote tumorigenic mechanisms. Functional validation confirmed that upregulation of miR-29a is sufficient to ablate translational expression of these five genes in PDAC. We show that the most promising target among the identified genes, LOXL2, is repressed by miR-29a via 3'-untranslated region binding. Pancreatic tissues from a PDAC murine model and patient biopsies showed overall high LOXL2 expression with inverse correlations with miR-29a levels. Collectively, our data delineate an antitumorigenic, regulatory role of miR-29a and a novel MYC-miR-29a-LOXL2 regulatory axis in PDAC pathogenesis, indicating the potential of the molecule in therapeutic opportunities. IMPLICATIONS: This study unravels a novel functional role of miR-29a in PDAC pathogenesis and identifies an MYC-miR-29a-LOXL2 axis in regulation of the disease progression, implicating miR-29a as a potential therapeutic target for PDAC. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/18/2/311/F1.large.jpg.
Collapse
Affiliation(s)
- Shatovisha Dey
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jason J Kwon
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Gabriel A Hodge
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Solaema Taleb
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Teresa A Zimmers
- The Melvin and Bren Simon Cancer Center, IUSM, Indianapolis, Indiana.,Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana.,The Melvin and Bren Simon Cancer Center, IUSM, Indianapolis, Indiana
| | - Janaiah Kota
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana. .,The Melvin and Bren Simon Cancer Center, IUSM, Indianapolis, Indiana
| |
Collapse
|
221
|
Zinger A, Koren L, Adir O, Poley M, Alyan M, Yaari Z, Noor N, Krinsky N, Simon A, Gibori H, Krayem M, Mumblat Y, Kasten S, Ofir S, Fridman E, Milman N, Lübtow MM, Liba L, Shklover J, Shainsky-Roitman J, Binenbaum Y, Hershkovitz D, Gil Z, Dvir T, Luxenhofer R, Satchi-Fainaro R, Schroeder A. Collagenase Nanoparticles Enhance the Penetration of Drugs into Pancreatic Tumors. ACS NANO 2019; 13:11008-11021. [PMID: 31503443 PMCID: PMC6837877 DOI: 10.1021/acsnano.9b02395] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Overexpressed extracellular matrix (ECM) in pancreatic ductal adenocarcinoma (PDAC) limits drug penetration into the tumor and is associated with poor prognosis. Here, we demonstrate that a pretreatment based on a proteolytic-enzyme nanoparticle system disassembles the dense PDAC collagen stroma and increases drug penetration into the pancreatic tumor. More specifically, the collagozome, a 100 nm liposome encapsulating collagenase, was rationally designed to protect the collagenase from premature deactivation and prolonged its release rate at the target site. Collagen is the main component of the PDAC stroma, reaching 12.8 ± 2.3% vol in diseased mice pancreases, compared to 1.4 ± 0.4% in healthy mice. Upon intravenous injection of the collagozome, ∼1% of the injected dose reached the pancreas over 8 h, reducing the level of fibrotic tissue to 5.6 ± 0.8%. The collagozome pretreatment allowed increased drug penetration into the pancreas and improved PDAC treatment. PDAC tumors, pretreated with the collagozome followed by paclitaxel micelles, were 87% smaller than tumors pretreated with empty liposomes followed by paclitaxel micelles. Interestingly, degrading the ECM did not increase the number of circulating tumor cells or metastasis. This strategy holds promise for degrading the extracellular stroma in other diseases as well, such as liver fibrosis, enhancing tissue permeability before drug administration.
Collapse
Affiliation(s)
- Assaf Zinger
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Lilach Koren
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Omer Adir
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Maria Poley
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Mohammed Alyan
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Zvi Yaari
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Nadav Noor
- The School for Molecular Cell Biology and Biotechnology and the Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv 6997800, Israel
| | - Nitzan Krinsky
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Assaf Simon
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Hadas Gibori
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997800, Israel
| | - Majd Krayem
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Yelena Mumblat
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Shira Kasten
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Sivan Ofir
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Eran Fridman
- Department of Otolaryngology Head and Neck Surgery, Rambam Healthcare Campus, Technion-Israel Institute of Technology, Haifa 3200000, Israel
| | - Neta Milman
- Department of Otolaryngology Head and Neck Surgery, Rambam Healthcare Campus, Technion-Israel Institute of Technology, Haifa 3200000, Israel
| | - Michael M. Lübtow
- Functional Polymer Materials, Lehrstuhl für Chemische Technologie der Materialsynthese, Julius-Maximilians-Universität Würzburg, Röntgenring 11, Würzburg 97070, Germany
| | - Lior Liba
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Jeny Shklover
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Janna Shainsky-Roitman
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Yoav Binenbaum
- Department of Otolaryngology Head and Neck Surgery, Rambam Healthcare Campus, Technion-Israel Institute of Technology, Haifa 3200000, Israel
| | - Dov Hershkovitz
- Department of Pathology, Tel-Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997800, Israel
| | - Ziv Gil
- Department of Otolaryngology Head and Neck Surgery, Rambam Healthcare Campus, Technion-Israel Institute of Technology, Haifa 3200000, Israel
| | - Tal Dvir
- The School for Molecular Cell Biology and Biotechnology and the Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv 6997800, Israel
| | - Robert Luxenhofer
- Functional Polymer Materials, Lehrstuhl für Chemische Technologie der Materialsynthese, Julius-Maximilians-Universität Würzburg, Röntgenring 11, Würzburg 97070, Germany
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997800, Israel
| | - Avi Schroeder
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
- Corresponding author: (AS)
| |
Collapse
|
222
|
Abstract
Cancer can be conceptualized as arising from somatic mutations resulting in a single renegade cell escaping from the constraints of multicellularity. Thus, the era of precision medicine has led to intense focus on the cancer cell to target these mutations that result in oncogenic signaling and sustain malignancy. However, in pancreatic ductal adenocarcinoma (PDAC) there are only four abundantly common driver mutations (KRAS, CDKN2A, TP53, and SMAD4), which are not currently actionable. Thus, precision therapy for PDAC must look beyond the cancer cell. In fact, PDAC is more than a collection of renegade cells, instead representing an extensive, supportive ecosystem, having developed over several years, and consisting of numerous interactions between the cancer cells, normal mesenchymal cells, immune cells, and the dense extracellular matrix. In this issue, Huang and colleagues demonstrate how elucidation of these complex relationships within the tumor microenvironment (TME) can be exploited for therapeutic intervention in PDAC. They identify in a subset of PDAC with mutations in TGFβ signaling, that a paracrine signaling axis can be abrogated to modulate the TME and improve outcomes.
Collapse
Affiliation(s)
- Ryan M Carr
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Martin E Fernandez-Zapico
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
223
|
Jiang Y, Zhan H. Communication between EMT and PD-L1 signaling: New insights into tumor immune evasion. Cancer Lett 2019; 468:72-81. [PMID: 31605776 DOI: 10.1016/j.canlet.2019.10.013] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/17/2019] [Accepted: 10/04/2019] [Indexed: 12/21/2022]
Abstract
Immune checkpoint blockage has been considered a breakthrough in cancer treatment, achieving encouraging anti-tumor effects in some advanced solid malignancies. However, low response rate and therapeutic resistance represent significant challenges in this field. In addition to its typical role in embryonic development and tissue fibrosis, epithelial-mesenchymal transition (EMT) plays a pivotal role in tumor immunosuppression and immune evasion. Previous studies revealed that EMT is associated with activation of different immune checkpoint molecules, including PD-L1. EMT-induced immune escape promotes cancer progression and may also provide a platform for discovery of novel therapeutic approaches and predictive biomarkers for checkpoint inhibitor therapeutic response. Here, we summarize recent findings focused on EMT-induced immune suppression and evasion in the tumor microenvironment (TME). EMT transcription factors (EMT-TFs), immune cells, cell plasticity and their regulatory role in the immune response are thoroughly reviewed. Bidirectional regulation between EMT and PD-L1 signaling is discussed in terms of cancer immune escape and possible combined therapies. Additionally, we investigated the value of preclinical or clinical trials using EMT targeted therapy combined with PD-L1 inhibitors. This review may help to further understand the role of EMT and PD-L1 signaling in cancer immune evasion. Meanwhile, additional molecular mechanistic studies and clinical trials are urgently needed.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Hanxiang Zhan
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China.
| |
Collapse
|
224
|
Geismann C, Schäfer H, Gundlach JP, Hauser C, Egberts JH, Schneider G, Arlt A. NF-κB Dependent Chemokine Signaling in Pancreatic Cancer. Cancers (Basel) 2019; 11:cancers11101445. [PMID: 31561620 PMCID: PMC6826905 DOI: 10.3390/cancers11101445] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/12/2019] [Accepted: 09/24/2019] [Indexed: 12/14/2022] Open
Abstract
Pancreatic cancer is one of the carcinomas with the worst prognoses, as shown by its five-year survival rate of 9%. Although there have been new therapeutic innovations, the effectiveness of these therapies is still limited, resulting in pancreatic ductal adenocarcinoma (PDAC) becoming the second leading cause of cancer-related death in 2020 in the US. In addition to tumor cell intrinsic resistance mechanisms, this disease exhibits a complex stroma consisting of fibroblasts, immune cells, neuronal and vascular cells, along with extracellular matrix, all conferring therapeutic resistance by several mechanisms. The NF-κB pathway is involved in both the tumor cell-intrinsic and microenvironment-mediated therapeutic resistance by regulating the transcription of a plethora of target genes. These genes are involved in nearly all scenarios described as the hallmarks of cancer. In addition to classical regulators of apoptosis, NF-κB regulates the expression of chemokines and their receptors, both in the tumor cells and in cells of the microenvironment. These chemokines mediate autocrine and paracrine loops among tumor cells but also cross-signaling between tumor cells and the stroma. In this review, we will focus on NF-κB-mediated chemokine signaling, with an emphasis on therapy resistance in pancreatic cancer.
Collapse
Affiliation(s)
- Claudia Geismann
- Laboratory of Molecular Gastroenterology & Hepatology, Department of Internal Medicine I, UKSH-Campus Kiel, 24105 Kiel, Germany.
| | - Heiner Schäfer
- Laboratory of Molecular Gastroenterology & Hepatology, Department of Internal Medicine I, UKSH-Campus Kiel, 24105 Kiel, Germany.
- Institute of Experimental Cancer Research, UKSH Campus Kiel, 24105 Kiel, Germany.
| | | | | | | | - Günter Schneider
- Technische Universität München, Klinikum rechts der Isar, II. Medizinische Klinik, 81675 Munich, Germany.
| | - Alexander Arlt
- Laboratory of Molecular Gastroenterology & Hepatology, Department of Internal Medicine I, UKSH-Campus Kiel, 24105 Kiel, Germany.
| |
Collapse
|
225
|
Wang HC, Lin YL, Hsu CC, Chao YJ, Hou YC, Chiu TJ, Huang PH, Tang MJ, Chen LT, Shan YS. Pancreatic stellate cells activated by mutant KRAS-mediated PAI-1 upregulation foster pancreatic cancer progression via IL-8. Theranostics 2019; 9:7168-7183. [PMID: 31695760 PMCID: PMC6831292 DOI: 10.7150/thno.36830] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 09/02/2019] [Indexed: 12/15/2022] Open
Abstract
Background: The dense fibrotic stroma enveloping pancreatic tumors is a major cause of drug resistance. Pancreatic stellate cells (PSCs) in the stroma can be activated to induce intra-tumor fibrosis and worsen patient survival; however, the molecular basics for the regulation of PSC activation remains unclear. Methods: The in vitro coculture system was used to study cancer cell-PSC interactions. Atomic force microscopy was used to measure the stiffness of tumor tissues and coculture gels. Cytokine arrays, qPCR, and Western blotting were performed to identify the potential factors involved in PSC activation and to elucidate underlying pathways. Results: PSC activation characterized by α-SMA expression was associated with increased pancreatic tumor stiffness and poor prognosis. Coculture with cancer cells induced PSC activation, which increased organotypic coculture gel stiffness and cancer cell invasion. Cancer cells-derived PAI-1 identified from coculture medium could activate PSCs, consistent with pancreatic cancer tissue microarray analysis showing a strong positive correlation between PAI-1 and α-SMA expression. Suppression by knocking down PAI-1 in cancer cells demonstrated the requirement of PAI-1 for coculture-induced PSC activation and gel stiffness. PAI-1 could be upregulated by KRAS in pancreatic cancer cells through ERK. In PSCs, inhibition of LRP-1, ERK, and c-JUN neutralized the effect of PAI-1, suggesting the contribution of LRP-1/ERK/c-JUN signaling. Furthermore, activated PSCs might exacerbate malignant behavior of cancer cells via IL-8 because suppression of IL-8 signaling reduced pancreatic tumor growth and fibrosis in vivo. Conclusions: KRAS-mutant pancreatic cancer cells can activate PSCs through PAI-1/LRP-1 signaling to promote fibrosis and cancer progression.
Collapse
|
226
|
Shen CN, Goh KS, Huang CR, Chiang TC, Lee CY, Jeng YM, Peng SJ, Chien HJ, Chung MH, Chou YH, Hsieh CC, Kulkarni S, Pasricha PJ, Tien YW, Tang SC. Lymphatic vessel remodeling and invasion in pancreatic cancer progression. EBioMedicine 2019; 47:98-113. [PMID: 31495721 PMCID: PMC6796580 DOI: 10.1016/j.ebiom.2019.08.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 08/15/2019] [Accepted: 08/15/2019] [Indexed: 12/11/2022] Open
Abstract
Background The lymphatic system is involved in metastasis in pancreatic cancer progression. In cancer staging, lymphatic spread has been used to assess the invasiveness of tumor cells. However, from the endothelium's perspective, the analysis downplays the peri-lesional activities of lymphatic vessels. This unintended bias is largely due to the lack of 3-dimensional (3-D) tissue information to depict the lesion microstructure and vasculature in a global and integrated fashion. Methods We targeted the pancreas as the model organ to investigate lymphatic vessel remodeling in cancer lesion progression. Transparent pancreases were prepared by tissue clearing to facilitate deep-tissue, tile-scanning microscopy for 3-D lymphatic network imaging. Findings In human pancreatic ductal adenocarcinoma, we identify the close association between the pancreatic intraepithelial neoplasia (PanIN) lesions and the lymphatic network. In mouse models of PanIN (elastase-CreER;LSL-KrasG12D and elastase-CreER;LSL-KrasG12D;p53+/−), the 3-D image data reveal the peri-lesional lymphangiogenesis, endothelial invagination, formation of the bridge/valve-like luminal tubules, vasodilation, and luminal invasion. In the orthotopic mouse model of pancreatic cancer, we identify the localized, graft-induced lymphangiogenesis and the peri- and intra-tumoral lymphatic vessel invasion. Interpretation The integrated view of duct lesions and vascular remodeling suggests an active role, rather than a passive target, of lymphatic vessels in the metastasis of pancreatic cancer. Our 3-D image data provide insights into the pancreatic cancer microenvironment and establish the technical and morphological foundation for systematic detection and 3-D analysis of lymphatic vessel invasion. Fund Taiwan Academia Sinica (AS-107-TP-L15 and AS-105-TP-B15), Ministry of Science and Technology (MOST 106-2321-B-001-048, 106-0210-01-15-02, 106-2321-B-002-034, and 106-2314-B-007-004-MY2), and Taiwan National Health Research Institutes (NHRI EX107-10524EI).
Collapse
Affiliation(s)
- Chia-Ning Shen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - King-Siang Goh
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chi-Ruei Huang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Tsai-Chen Chiang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Yuan Lee
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Yung-Ming Jeng
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Shih-Jung Peng
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan; Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Hung-Jen Chien
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Mei-Hsin Chung
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan; Department of Pathology, National Taiwan University Hospital - Hsinchu Branch, Hsinchu, Taiwan
| | - Ya-Hsien Chou
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Chi-Che Hsieh
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Subhash Kulkarni
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pankaj J Pasricha
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yu-Wen Tien
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.
| | - Shiue-Cheng Tang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan; Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
227
|
Attiyeh MA, Chakraborty J, McIntyre CA, Kappagantula R, Chou Y, Askan G, Seier K, Gonen M, Basturk O, Balachandran VP, Kingham TP, D'Angelica MI, Drebin JA, Jarnagin WR, Allen PJ, Iacobuzio-Donahue CA, Simpson AL, Do RK. CT radiomics associations with genotype and stromal content in pancreatic ductal adenocarcinoma. Abdom Radiol (NY) 2019; 44:3148-3157. [PMID: 31243486 PMCID: PMC6692205 DOI: 10.1007/s00261-019-02112-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE The aim of this study was to investigate the relationship between CT imaging phenotypes and genetic and biological characteristics in pancreatic ductal adenocarcinoma (PDAC). METHODS In this retrospective study, consecutive patients between April 2015 and June 2016 who underwent PDAC resection were included if previously consented to a targeted sequencing protocol. Mutation status of known PDAC driver genes (KRAS, TP53, CDKN2A, and SMAD4) in the primary tumor was determined by targeted DNA sequencing and results were validated by immunohistochemistry (IHC). Radiomic features of the tumor were extracted from the preoperative CT scan and used to predict genotype and stromal content. RESULTS The cohort for analysis consisted of 35 patients. Genomic and IHC analysis revealed alterations in KRAS in 34 (97%) patients, and changes in expression of CDKN2A in 29 (83%), SMAD4 in 16 (46%), and in TP53 in 29 (83%) patients. Models created from radiomic features demonstrated associations with SMAD4 status and the number of genes altered. The number of genes altered was the only significant predictor of overall survival (p = 0.016). By linear regression analysis, a prediction model for stromal content achieved an R2 value of 0.731 with a root mean square error of 19.5. CONCLUSIONS In this study, we demonstrate that in PDAC SMAD4 status and tumor stromal content can be predicted using radiomic analysis of preoperative CT imaging. These data show an association between resectable PDAC imaging features and underlying tumor biology and their potential for future precision medicine.
Collapse
Affiliation(s)
- Marc A Attiyeh
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jayasree Chakraborty
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Caitlin A McIntyre
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rajya Kappagantula
- Department of Pathology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yuting Chou
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gokce Askan
- Department of Pathology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kenneth Seier
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mithat Gonen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Olca Basturk
- Department of Pathology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vinod P Balachandran
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - T Peter Kingham
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael I D'Angelica
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jeffrey A Drebin
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - William R Jarnagin
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Peter J Allen
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christine A Iacobuzio-Donahue
- Department of Pathology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amber L Simpson
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Richard K Do
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, C-276F, New York, NY, 10065, USA.
| |
Collapse
|
228
|
Gaustad JV, Simonsen TG, Wegner CS, Rofstad EK. Vascularization, Oxygenation, and the Effect of Sunitinib Treatment in Pancreatic Ductal Adenocarcinoma Xenografts. Front Oncol 2019; 9:845. [PMID: 31555596 PMCID: PMC6727195 DOI: 10.3389/fonc.2019.00845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/19/2019] [Indexed: 12/29/2022] Open
Abstract
The purpose of the study was to investigate vascularization, oxygenation, and the effect of sunitinib treatment in pancreatic ductal adenocarcinoma (PDAC). BxPC-3 and Capan-2 xenografts grown in dorsal window chambers were used as preclinical models of human PDAC. Tumor angiogenesis and the morphology and function of tumor vascular networks were studied by intravital microscopy, and tumor hypoxia was assessed by immunohistochemistry. The PDAC models differed in vessel distribution and oxygenation, and the differences were induced by the initial tumor angiogenesis. In both models, sunitinib treatment reduced intratumor and peritumor vessel densities by selectively removing small-diameter vessels. Sunitinb treatment resulted in a general decrease in vessel density and scattered hypoxia in BxPC-3 tumors, and depleted most vessels and induced massive hypoxia in central parts of Capan-2 tumors. The study demonstrates that PDAC xenografts can differ in vascularization, and the differences can impact oxygenation and effects of treatment. Neoadjuvant sunitinib treatment is inappropriate in combination with conventional therapy for human PDACs resembling the PDAC xenografts used here, because sunitinib-induced hypoxia can impair the effect of most conventional therapies.
Collapse
Affiliation(s)
- Jon-Vidar Gaustad
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Trude G Simonsen
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Catherine S Wegner
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Einar K Rofstad
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
229
|
Mizutani Y, Kobayashi H, Iida T, Asai N, Masamune A, Hara A, Esaki N, Ushida K, Mii S, Shiraki Y, Ando K, Weng L, Ishihara S, Ponik SM, Conklin MW, Haga H, Nagasaka A, Miyata T, Matsuyama M, Kobayashi T, Fujii T, Yamada S, Yamaguchi J, Wang T, Woods SL, Worthley D, Shimamura T, Fujishiro M, Hirooka Y, Enomoto A, Takahashi M. Meflin-Positive Cancer-Associated Fibroblasts Inhibit Pancreatic Carcinogenesis. Cancer Res 2019; 79:5367-5381. [PMID: 31439548 DOI: 10.1158/0008-5472.can-19-0454] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 06/17/2019] [Accepted: 08/01/2019] [Indexed: 11/16/2022]
Abstract
Cancer-associated fibroblasts (CAF) constitute a major component of the tumor microenvironment. Recent observations in genetically engineered mouse models and clinical studies have suggested that there may exist at least two functionally different populations of CAFs, that is, cancer-promoting CAFs (pCAF) and cancer-restraining CAFs (rCAF). Although various pCAF markers have been identified, the identity of rCAFs remains unknown because of the lack of rCAF-specific marker(s). In this study, we found that Meflin, a glycosylphosphatidylinositol-anchored protein that is a marker of mesenchymal stromal/stem cells and maintains their undifferentiated state, is expressed by pancreatic stellate cells that are a source of CAFs in pancreatic ductal adenocarcinoma (PDAC). In situ hybridization analysis of 71 human PDAC tissues revealed that the infiltration of Meflin-positive CAFs correlated with favorable patient outcome. Consistent herewith, Meflin deficiency led to significant tumor progression with poorly differentiated histology in a PDAC mouse model. Similarly, genetic ablation of Meflin-positive CAFs resulted in poor differentiation of tumors in a syngeneic transplantation model. Conversely, delivery of a Meflin-expressing lentivirus into the tumor stroma or overexpression of Meflin in CAFs suppressed the growth of xenograft tumors. Lineage tracing revealed that Meflin-positive cells gave rise to α-smooth muscle actin-positive CAFs that are positive or negative for Meflin, suggesting a mechanism for generating CAF heterogeneity. Meflin deficiency or low expression resulted in straightened stromal collagen fibers, which represent a signature for aggressive tumors, in mouse or human PDAC tissues, respectively. Together, the data suggest that Meflin is a marker of rCAFs that suppress PDAC progression. SIGNIFICANCE: Meflin marks and functionally contributes to a subset of cancer-associated fibroblasts that exert antitumoral effects.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/20/5367/F1.large.jpg.
Collapse
Affiliation(s)
- Yasuyuki Mizutani
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kobayashi
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- School of Medicine, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Tadashi Iida
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoya Asai
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Molecular Pathology, Center for Neurological Disease and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akitoshi Hara
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobutoshi Esaki
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kaori Ushida
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinji Mii
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukihiro Shiraki
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenju Ando
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Liang Weng
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Suzanne M Ponik
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Matthew W Conklin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Hisashi Haga
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Arata Nagasaka
- Division of Anatomy, Department of Human Development and Fostering, Meikai University School of Dentistry, Sakado, Japan
| | - Takaki Miyata
- Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Makoto Matsuyama
- Division of Molecular Genetics, Shigei Medical Research Institute, Okayama, Japan
| | - Tomoe Kobayashi
- Division of Molecular Genetics, Shigei Medical Research Institute, Okayama, Japan
| | - Tsutomu Fujii
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Suguru Yamada
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Junpei Yamaguchi
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tongtong Wang
- School of Medicine, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Susan L Woods
- School of Medicine, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Daniel Worthley
- School of Medicine, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Teppei Shimamura
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiki Hirooka
- Department of Liver, Biliary Tract and Pancreas Diseases, Fujita Health University, Toyoake, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Masahide Takahashi
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
- Division of Molecular Pathology, Center for Neurological Disease and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
230
|
Vennin C, Mélénec P, Rouet R, Nobis M, Cazet AS, Murphy KJ, Herrmann D, Reed DA, Lucas MC, Warren SC, Elgundi Z, Pinese M, Kalna G, Roden D, Samuel M, Zaratzian A, Grey ST, Da Silva A, Leung W, Mathivanan S, Wang Y, Braithwaite AW, Christ D, Benda A, Parkin A, Phillips PA, Whitelock JM, Gill AJ, Sansom OJ, Croucher DR, Parker BL, Pajic M, Morton JP, Cox TR, Timpson P. CAF hierarchy driven by pancreatic cancer cell p53-status creates a pro-metastatic and chemoresistant environment via perlecan. Nat Commun 2019; 10:3637. [PMID: 31406163 PMCID: PMC6691013 DOI: 10.1038/s41467-019-10968-6] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 06/11/2019] [Indexed: 12/15/2022] Open
Abstract
Heterogeneous subtypes of cancer-associated fibroblasts (CAFs) coexist within pancreatic cancer tissues and can both promote and restrain disease progression. Here, we interrogate how cancer cells harboring distinct alterations in p53 manipulate CAFs. We reveal the existence of a p53-driven hierarchy, where cancer cells with a gain-of-function (GOF) mutant p53 educate a dominant population of CAFs that establish a pro-metastatic environment for GOF and null p53 cancer cells alike. We also demonstrate that CAFs educated by null p53 cancer cells may be reprogrammed by either GOF mutant p53 cells or their CAFs. We identify perlecan as a key component of this pro-metastatic environment. Using intravital imaging, we observe that these dominant CAFs delay cancer cell response to chemotherapy. Lastly, we reveal that depleting perlecan in the stroma combined with chemotherapy prolongs mouse survival, supporting it as a potential target for anti-stromal therapies in pancreatic cancer.
Collapse
Affiliation(s)
- Claire Vennin
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
- Molecular Pathology department, the Netherlands Cancer Institute, Amsterdam, 1066CX, the Netherlands
| | - Pauline Mélénec
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Romain Rouet
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Max Nobis
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Aurélie S Cazet
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Kendelle J Murphy
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - David Herrmann
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Daniel A Reed
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Morghan C Lucas
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Sean C Warren
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Zehra Elgundi
- Graduate school of Biomedical Engineering, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
| | - Mark Pinese
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Gabriella Kalna
- Cancer Research UK Beatson Institute, Glasgow Scotland, G61 BD, UK
| | - Daniel Roden
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Monisha Samuel
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Anaiis Zaratzian
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
| | - Shane T Grey
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Andrew Da Silva
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
| | - Wilfred Leung
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Suresh Mathivanan
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Yingxiao Wang
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, CA, 92121, USA
| | - Anthony W Braithwaite
- Children's Medical Research Institute, University of Sydney, Sydney, NSW, 2006, Australia
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
- Maurice Wilkins Centre, University of Otago, Dunedin, 9054, New Zealand
| | - Daniel Christ
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Ales Benda
- Biomedical imaging facility, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Ashleigh Parkin
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Phoebe A Phillips
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - John M Whitelock
- Graduate school of Biomedical Engineering, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
| | - Anthony J Gill
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, Sydney, NSW, 2065, Australia
- Cancer Diagnosis and Pathology Research Group, Kolling Institute of Medical Research, St Leonards, NSW, 2065, Australia
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow Scotland, G61 BD, UK
| | - David R Croucher
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Benjamin L Parker
- Schools of Life and Environmental Sciences, the Charles Perkin Centre, the University of Sydney, Sydney, NSW, 2006, Australia
| | - Marina Pajic
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | | | - Thomas R Cox
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia.
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia.
| | - Paul Timpson
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia.
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia.
| |
Collapse
|
231
|
Zeltz C, Primac I, Erusappan P, Alam J, Noel A, Gullberg D. Cancer-associated fibroblasts in desmoplastic tumors: emerging role of integrins. Semin Cancer Biol 2019; 62:166-181. [PMID: 31415910 DOI: 10.1016/j.semcancer.2019.08.004] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023]
Abstract
The tumor microenvironment (TME) is a complex meshwork of extracellular matrix (ECM) macromolecules filled with a collection of cells including cancer-associated fibroblasts (CAFs), blood vessel associated smooth muscle cells, pericytes, endothelial cells, mesenchymal stem cells and a variety of immune cells. In tumors the homeostasis governing ECM synthesis and turnover is disturbed resulting in abnormal blood vessel formation and excessive fibrillar collagen accumulations of varying stiffness and organization. The disturbed ECM homeostasis opens up for new types of paracrine, cell-cell and cell-ECM interactions with large consequences for tumor growth, angiogenesis, metastasis, immune suppression and resistance to treatments. As a main producer of ECM and paracrine signals the CAF is a central cell type in these events. Whereas the paracrine signaling has been extensively studied in the context of tumor-stroma interactions, the nature of the numerous integrin-mediated cell-ECM interactions occurring in the TME remains understudied. In this review we will discuss and dissect the role of known and potential CAF interactions in the TME, during both tumorigenesis and chemoresistance-induced events, with a special focus on the "interaction landscape" in desmoplastic breast, lung and pancreatic cancers. As an example of the multifaceted mode of action of the stromal collagen receptor integrin α11β1, we will summarize our current understanding on the role of this CAF-expressed integrin in these three tumor types.
Collapse
Affiliation(s)
- Cédric Zeltz
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway; Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Irina Primac
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liege (ULiège), Liege, Belgium
| | - Pugazendhi Erusappan
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway; Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Jahedul Alam
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Agnes Noel
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liege (ULiège), Liege, Belgium
| | - Donald Gullberg
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway.
| |
Collapse
|
232
|
Takahashi H, Katsuta E, Yan L, Dasgupta S, Takabe K. High expression of Annexin A2 is associated with DNA repair, metabolic alteration, and worse survival in pancreatic ductal adenocarcinoma. Surgery 2019; 166:150-156. [PMID: 31171367 PMCID: PMC6661011 DOI: 10.1016/j.surg.2019.04.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/12/2019] [Accepted: 04/17/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Annexin A2 (ANXA2) is a known driver of cancer progression. We investigated what mechanism associates with ANXA2 high expression and its survival impact using a bioinformatic approach in pancreatic ductal adenocarcinoma. METHODS Primary pancreatic tumor (n = 185) cohort in The Cancer Genome Atlas and Gene set enrichment analysis were used. RESULTS There were no significant associations between ANXA2 expression and clinicopathologic features of the patients investigated. The ANXA2 high tumors enriched some of the known downstream signaling, such as NF-κB (P = .028) and tumor necrosis factor (P = .044) pathways, whereas others, such as angiogenesis or epithelial-mesenchymal transition, were not associated. ANXA2 high expression tumors enriched DNA repair-related gene sets (DNA repair; P = .011, p53 pathway; P = .036) and cell proliferation-related gene sets (MYC targets; P = .041). In addition, new association with metabolism related gene sets, such as glycolysis (P = .016), nucleic acid metabolism (P = .001), and pyrimidine metabolism (P = .004) were identified in the ANXA2 high group. Patients with high ANXA2 expression demonstrated significantly worse disease-free survival (P = .001) and overall survival (P = .014), with high ANXA2 being an independent risk factor. CONCLUSION High ANXA2 expression was associated with NF-κB and tumor necrosis factor signaling, DNA repair, cell proliferation, and metabolic alteration and worse prognosis in pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Hideo Takahashi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Eriko Katsuta
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Li Yan
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Subhamoy Dasgupta
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY; Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, the State University of New York, Buffalo, NY; Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan; Department of Surgery, Yokohama City University, Yokohama, Japan; Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| |
Collapse
|
233
|
Huai Y, Zhang Y, Xiong X, Das S, Bhattacharya R, Mukherjee P. Gold Nanoparticles sensitize pancreatic cancer cells to gemcitabine. Cell Stress 2019; 3:267-279. [PMID: 31440741 PMCID: PMC6702449 DOI: 10.15698/cst2019.08.195] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/03/2019] [Accepted: 07/12/2019] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest solid cancers with dismal prognosis. Several mechanisms that are mainly responsible for aggressiveness and therapy resistance of PDAC cells include epithelial to mesenchymal transition (EMT), stemness and Mitogen Activated Protein Kinase (MAPK) signaling. Strategies that inhibit these mechanisms are critically important to improve therapeutic outcome in PDAC. In the current study, we wanted to investigate whether gold nanoparticles (AuNPs) could sensitize pancreatic cancer cells to the chemotherapeutic agent gemcitabine. We demonstrated that treatment with AuNPs of 20 nm diameter inhibited migration and colony forming ability of pancreatic cancer cells. Pre-treatment with AuNPs sensitized pancreatic cancer cells to gemcitabine in both viability and colony forming assays. Mechanistically, pre-treatment of pancreatic cancer cells with AuNPs decreased gemcitabine induced EMT, stemness and MAPK activation. Taken together, these findings suggest that AuNPs could be considered as a potential agent to sensitize pancreatic cancer cells to gemcitabine.
Collapse
Affiliation(s)
- Yanyan Huai
- Department of Pathology, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Yushan Zhang
- Department of Pathology, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Xunhao Xiong
- Department of Pathology, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Shamik Das
- Peggy and Charles Stephenson Cancer Center, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Resham Bhattacharya
- Peggy and Charles Stephenson Cancer Center, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Priyabrata Mukherjee
- Department of Pathology, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Peggy and Charles Stephenson Cancer Center, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
234
|
Fang Y, Zhou W, Rong Y, Kuang T, Xu X, Wu W, Wang D, Lou W. Exosomal miRNA-106b from cancer-associated fibroblast promotes gemcitabine resistance in pancreatic cancer. Exp Cell Res 2019; 383:111543. [PMID: 31374207 DOI: 10.1016/j.yexcr.2019.111543] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/22/2019] [Accepted: 07/29/2019] [Indexed: 12/25/2022]
Abstract
Gemcitabine (GEM)-based chemotherapy is commonly used to treat pancreatic cancer. However, acquired resistance to GEM remains a challenge in pancreatic cancer patients. Here we tested whether cancer-associated fibroblasts (CAFs) play vital roles in regulating drug resistance by transferring exosomal miRNA to cancer cells. CAFs were isolated from primary fibroblast of pancreatic cancer patients, and exosomes were collected and identified through transmission electron microscopy and western blotting analysis. The functions of CAFs-derived exosomal miRNA in regulating drug resistance were further investigated. We found that CAFs were innately resistant to GEM. The conditioned medium (CM) and the exosomes derived from CAFs contributed to GEM resistance, and GEM treatment further enhanced the effect of CAFs or CAFs-exosomes on pancreatic cancer cells proliferation. MiR-106b level was upregulated in CAFs and CAFs-exosomes following GEM treatment. MiR-106b was directly transferred from CAFs to pancreatic cancer cells through exosomes. Pretreatment of CAFs with miR-106b inhibitor suppressed miR-106b expression in CAFs-exosomes and resulted in a decreased resistance of cancer cells to GEM. MiR-106b promoted GEM resistance of cancer cells by directly targeting TP53INP1. Summarily, our data demonstrated that CAFs-derived exosomal miR-106b plays a vital role in causing GEM resistance of pancreatic cancer, thus offering a new target for sensitizing pancreatic cancer cells to GEM.
Collapse
Affiliation(s)
- Yuan Fang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wentao Zhou
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yefei Rong
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Tiantao Kuang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xuefeng Xu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wenchuan Wu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Dansong Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Wenhui Lou
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
235
|
Matsuda Y. Age-related morphological changes in the pancreas and their association with pancreatic carcinogenesis. Pathol Int 2019; 69:450-462. [PMID: 31339204 DOI: 10.1111/pin.12837] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 06/26/2019] [Indexed: 12/14/2022]
Abstract
Age-related pathological changes in the pancreas have been unclear because they are often minor and nonspecific. However, recent studies have shown that they are closely related to various pathological conditions such as pancreatic cancer and diabetes mellitus. Knowledge of age-related changes is important to determine appropriate prevention, detection, and treatment strategies for various diseases observed in elderly patients. We present a review of the pathological age-related non-neoplastic changes in the exocrine pancreas such as pancreatic fatty replacement, lobulocentric pancreatic atrophy, pancreatic duct ectasia, and metaplasia of exocrine pancreas, as well as changes in islet cells. We have discussed common pancreatic neoplasms in elderly patients, such as pancreatic intraepithelial neoplasia (PanIN), intraductal papillary mucinous neoplasms (IPMNs), and pancreatic ductal adenocarcinoma (PDAC). Age-related pathological changes play a key role in pancreatic carcinogenesis via telomere dysfunction. Further studies are warranted to clarify molecular mechanisms of pancreatic carcinogenesis in elderly patients.
Collapse
Affiliation(s)
- Yoko Matsuda
- Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
236
|
Lanki M, Seppänen H, Mustonen H, Hagström J, Haglund C. Toll-like receptor 1 predicts favorable prognosis in pancreatic cancer. PLoS One 2019; 14:e0219245. [PMID: 31314777 PMCID: PMC6636725 DOI: 10.1371/journal.pone.0219245] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/20/2019] [Indexed: 01/03/2023] Open
Abstract
Background The link between inflammation and carcinogenesis is indisputable. In trying to understand key factors at play, cancer research has developed an interest in the toll-like receptors (TLRs), which have shown signs of having prognostic value in various adenocarcinomas. We began investigating the expression of toll-like receptors 1, 3, 5, 7, and 9 to evaluate their prognostic value of patients with pancreatic ductal adenocarcinoma (PDAC). Methods We collected tumor biopsies from 154 stage I-III PDAC patients surgically treated at Helsinki University Hospital between 2002 and 2011, excluding patients undergoing neoadjuvant therapy. We used tissue microarray slides and immunohistochemistry to assess expression of TLRs 1, 3, 5, 7, and 9 in PDAC tissue. Immunopositivity scores and clinicopathological characteristics were subjected to Fisher’s exact test or the linear-by-linear association test. For the survival analysis, we applied the Kaplan-Meier method and log-rank test, and the Cox regression proportional hazard model served for univariate and multivariate analyses. Results Strong TLR1 expression was observable in 60 (39%), strong TLR3 in 48 (31%), strong TLR5 in 58 (38%), strong TLR7 in 14 (9%), and strong TLR9 in 22 (14%) patients. The multivariate analysis showed strong TLR1 expression to associate with better survival than moderate, low, or negative expression (HR = 0.68; 95% CI 0.47–0.99; p = 0.044). Additionally, those few patients with tumors negative for TLR1, TLR3, TLR7, or TLR9 fared poorly (HR = 2.41; 95% CI 1.31–4.43; p = 0.005; n = 13). Conclusion Strong TLR1 expression suggested better prognosis in PDAC patients, whereas negative expression of TLR1, TLR3, TLR7, or TLR9 was a sign of poor prognosis.
Collapse
Affiliation(s)
- Mira Lanki
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Translational Cancer Medicine Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- * E-mail:
| | - Hanna Seppänen
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Translational Cancer Medicine Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Harri Mustonen
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Translational Cancer Medicine Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jaana Hagström
- Translational Cancer Medicine Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Caj Haglund
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Translational Cancer Medicine Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
237
|
Ruckert MT, de Andrade PV, Santos VS, Silveira VS. Protein tyrosine phosphatases: promising targets in pancreatic ductal adenocarcinoma. Cell Mol Life Sci 2019; 76:2571-2592. [PMID: 30982078 PMCID: PMC11105579 DOI: 10.1007/s00018-019-03095-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 03/25/2019] [Accepted: 04/08/2019] [Indexed: 12/21/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer. It is the fourth leading cause of cancer-related death and is associated with a very poor prognosis. KRAS driver mutations occur in approximately 95% of PDAC cases and cause the activation of several signaling pathways such as mitogen-activated protein kinase (MAPK) pathways. Regulation of these signaling pathways is orchestrated by feedback loops mediated by the balance between protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs), leading to activation or inhibition of its downstream targets. The human PTPome comprises 125 members, and these proteins are classified into three distinct families according to their structure. Since PTP activity description, it has become clear that they have both inhibitory and stimulatory effects on cancer-associated signaling processes and that deregulation of PTP function is closely associated with tumorigenesis. Several PTPs have displayed either tumor suppressor or oncogenic characteristics during the development and progression of PDAC. In this sense, PTPs have been presented as promising candidates for the treatment of human pancreatic cancer, and many PTP inhibitors have been developed since these proteins were first associated with cancer. Nevertheless, some challenges persist regarding the development of effective and safe methods to target these molecules and deliver these drugs. In this review, we discuss the role of PTPs in tumorigenesis as tumor suppressor and oncogenic proteins. We have focused on the differential expression of these proteins in PDAC, as well as their clinical implications and possible targeting for pharmacological inhibition in cancer therapy.
Collapse
Affiliation(s)
- Mariana Tannús Ruckert
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, Brazil
| | - Pamela Viani de Andrade
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, Brazil
| | - Verena Silva Santos
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, Brazil
| | - Vanessa Silva Silveira
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
238
|
Ligorio M, Sil S, Malagon-Lopez J, Nieman LT, Misale S, Di Pilato M, Ebright RY, Karabacak MN, Kulkarni AS, Liu A, Vincent Jordan N, Franses JW, Philipp J, Kreuzer J, Desai N, Arora KS, Rajurkar M, Horwitz E, Neyaz A, Tai E, Magnus NKC, Vo KD, Yashaswini CN, Marangoni F, Boukhali M, Fatherree JP, Damon LJ, Xega K, Desai R, Choz M, Bersani F, Langenbucher A, Thapar V, Morris R, Wellner UF, Schilling O, Lawrence MS, Liss AS, Rivera MN, Deshpande V, Benes CH, Maheswaran S, Haber DA, Fernandez-Del-Castillo C, Ferrone CR, Haas W, Aryee MJ, Ting DT. Stromal Microenvironment Shapes the Intratumoral Architecture of Pancreatic Cancer. Cell 2019; 178:160-175.e27. [PMID: 31155233 PMCID: PMC6697165 DOI: 10.1016/j.cell.2019.05.012] [Citation(s) in RCA: 374] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/29/2019] [Accepted: 05/03/2019] [Indexed: 01/05/2023]
Abstract
Single-cell technologies have described heterogeneity across tissues, but the spatial distribution and forces that drive single-cell phenotypes have not been well defined. Combining single-cell RNA and protein analytics in studying the role of stromal cancer-associated fibroblasts (CAFs) in modulating heterogeneity in pancreatic cancer (pancreatic ductal adenocarcinoma [PDAC]) model systems, we have identified significant single-cell population shifts toward invasive epithelial-to-mesenchymal transition (EMT) and proliferative (PRO) phenotypes linked with mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3) signaling. Using high-content digital imaging of RNA in situ hybridization in 195 PDAC tumors, we quantified these EMT and PRO subpopulations in 319,626 individual cancer cells that can be classified within the context of distinct tumor gland "units." Tumor gland typing provided an additional layer of intratumoral heterogeneity that was associated with differences in stromal abundance and clinical outcomes. This demonstrates the impact of the stroma in shaping tumor architecture by altering inherent patterns of tumor glands in human PDAC.
Collapse
Affiliation(s)
- Matteo Ligorio
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Srinjoy Sil
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jose Malagon-Lopez
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Linda T Nieman
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sandra Misale
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Mauro Di Pilato
- Division of Rheumatology, Allergy, and Immunology, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Richard Y Ebright
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Murat N Karabacak
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Center for Engineering in Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02114, USA
| | | | - Ann Liu
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Joseph W Franses
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Julia Philipp
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Johannes Kreuzer
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Niyati Desai
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kshitij S Arora
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Mihir Rajurkar
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Elad Horwitz
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Azfar Neyaz
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Eric Tai
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Kevin D Vo
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Francesco Marangoni
- Division of Rheumatology, Allergy, and Immunology, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Myriam Boukhali
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Leah J Damon
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kristina Xega
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Rushil Desai
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Melissa Choz
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Francesca Bersani
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Adam Langenbucher
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Vishal Thapar
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Robert Morris
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Oliver Schilling
- Institute of Pathology, University Medical Center Freiburg, Germany
| | | | - Andrew S Liss
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Miguel N Rivera
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Vikram Deshpande
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Cyril H Benes
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Shyamala Maheswaran
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Daniel A Haber
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Division of Rheumatology, Allergy, and Immunology, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02114, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Carlos Fernandez-Del-Castillo
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Cristina R Ferrone
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Wilhelm Haas
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Martin J Aryee
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| | - David T Ting
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
239
|
Li Y, Tang Y, Chen S, Liu Y, Wang S, Tian Y, Wang C, Teng Z, Lu G. Sequential therapy for pancreatic cancer by losartan- and gemcitabine-loaded magnetic mesoporous spheres. RSC Adv 2019; 9:19690-19698. [PMID: 35519380 PMCID: PMC9065328 DOI: 10.1039/c9ra02180a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/22/2019] [Indexed: 12/28/2022] Open
Abstract
Sequential therapy has attracted increasing attention for cancer treatment, in which multiple drugs can be used to enhance the therapeutic efficacy. In this work, sequential therapy is demonstrated using amino functionalized Fe3O4 embedded periodic mesoporous organosilica spheres (Fe3O4@PMO-NH2) and Fe3O4@PMO as drug carriers. Losartan can inhibit type I collagen and hyaluronic acid of the pancreatic cancer matrix, which is safe and inexpensive, and does not increase the risk of tumor metastasis. First, losartan is loaded in the Fe3O4@PMO-NH2 (Fe3O4@PMO-NH2-Los) to treat pancreatic cancer. Immunohistochemistry staining of tumor slices after treatment with Fe3O4@PMO-NH2-Los confirms that collagen and hyaluronan acid are significantly reduced. The major solid components in the extracellular matrix of the tumor are reduced, which facilitates the penetration of nanodrugs into the tumor site. Afterward, gemcitabine loaded Fe3O4@PMO (Fe3O4@PMO-Gem) is sequentially delivered to treat pancreatic cancer, which shows strong killing ability for the pancreatic cancer cells. Comparing with a saline group, the tumor volume treated with Fe3O4@PMO-NH2-Los, Fe3O4@PMO-Gem, and Fe3O4@PMO-NH2-Los + Fe3O4@PMO-Gem decreases to 92.6%, 60.7%, and 28.6%, respectively, suggesting that the sequential therapy significantly inhibits pancreatic tumor growth compared to the mono-therapy strategy. Taken together, this study provides a promising approach for nanomaterials-based sequential therapy for pancreatic cancer treatment. Sequential therapy has attracted increasing attention for cancer treatment, in which multiple drugs can be used to enhance the therapeutic efficacy.![]()
Collapse
Affiliation(s)
- Yanjun Li
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University Nanjing 210002 P. R. China
| | - Yuxia Tang
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University Nanjing 210002 P. R. China
| | - Sui Chen
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University Nanjing 210002 P. R. China
| | - Ying Liu
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University Nanjing 210002 P. R. China
| | - Shouju Wang
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University Nanjing 210002 P. R. China .,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 P. R. China
| | - Ying Tian
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University Nanjing 210002 P. R. China
| | - Chunyan Wang
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University Nanjing 210002 P. R. China
| | - Zhaogang Teng
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University Nanjing 210002 P. R. China .,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 P. R. China
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University Nanjing 210002 P. R. China .,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 P. R. China
| |
Collapse
|
240
|
Macrophage-expressed CD51 promotes cancer stem cell properties via the TGF-β1/smad2/3 axis in pancreatic cancer. Cancer Lett 2019; 459:204-215. [PMID: 31199988 DOI: 10.1016/j.canlet.2019.06.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/01/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022]
Abstract
Macrophage-targeted therapy offers new options for intractable pancreatic ductal adenocarcinoma (PDAC), which has a low 5-year survival rate. However, the factors regulating the biological function and phenotype of macrophages in PDAC are incompletely understood. Here, we found that CD51 was positively associated with the poor prognosis of PDAC patients and was highly expressed on macrophages but not on pancreatic cancer cells. Subsequently, we found that CD51 was a marker of macrophages, which promoted the stemness of pancreatic cancer cells. Furthermore, knockdown of CD51 in macrophages drove macrophages toward an M1-like phenotype. Mechanistically, macrophage-expressed CD51 contributed to the acquisition of stemness traits of pancreatic cancer cells by regulating the TGF-β1/smad2/3 pathway. Our data demonstrate the central role played by macrophage-expressed CD51 in the acquisition of stemness traits of pancreatic cancer cells through the paracrine induction of TGF-β1. We first show the connection between the CD51/TGF-β1/smad2/3 axis and PDAC cancer stem cell properties and then indicate that CD51-targeted therapy is a new therapeutic modality for PDAC.
Collapse
|
241
|
Goetze RG, Buchholz SM, Ou N, Zhang Q, Patil S, Schirmer M, Singh SK, Ellenrieder V, Hessmann E, Lu QB, Neesse A. Preclinical Evaluation of 1,2-Diamino-4,5-Dibromobenzene in Genetically Engineered Mouse Models of Pancreatic Cancer. Cells 2019; 8:cells8060563. [PMID: 31181844 PMCID: PMC6627568 DOI: 10.3390/cells8060563] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) is highly resistant to standard chemo- and radiotherapy. Recently, a new class of non-platinum-based halogenated molecules (called FMD compounds) was discovered that selectively kills cancer cells. Here, we investigate the potential of 1,2-Diamino-4,5-dibromobenzene (2Br-DAB) in combination with standard chemotherapy and radiotherapy in murine and human PDAC. Methods: Cell viability and colony formation was performed in human (Panc1, BxPC3, PaTu8988t, MiaPaCa) and three murine LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre (KPC) pancreatic cancer cell lines. In vivo, preclinical experiments were conducted in LSL-KrasG12D/+;p48-Cre (KC) and KPC mice using 2Br-DAB (7 mg/kg, i.p.), +/- radiation (10 × 1.8 Gy), gemcitabine (100 mg/kg, i.p.), or a combination. Tumor growth and therapeutic response were assessed by high-resolution ultrasound and immunohistochemistry. Results: 2Br-DAB significantly reduced cell viability in human and murine pancreatic cancer cell lines in a dose-dependent manner. In particular, colony formation in human Panc1 cells was significantly decreased upon 25 µM 2Br-DAB + radiation treatment compared with vehicle control (p = 0.03). In vivo, 2Br-DAB reduced tumor frequency in KC mice. In the KPC model, 2Br-DAB or gemcitabine monotherapy had comparable therapeutic effects. Furthermore, the combination of gemcitabine and 2Br-DAB or 2Br-DAB and 18 Gy irradiation showed additional antineoplastic effects. Conclusions: 2Br-DAB is effective in killing pancreatic cancer cells in vitro. 2Br-DAB was not toxic in vivo, and additional antineoplastic effects were observed in combination with irradiation.
Collapse
Affiliation(s)
- Robert G Goetze
- Department of Gastroenterology and Gastrointestinal Oncology, University Medicine Goettingen, 37075 Goettingen, Germany.
| | - Soeren M Buchholz
- Department of Gastroenterology and Gastrointestinal Oncology, University Medicine Goettingen, 37075 Goettingen, Germany.
| | - Ning Ou
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Qinrong Zhang
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Shilpa Patil
- Department of Gastroenterology and Gastrointestinal Oncology, University Medicine Goettingen, 37075 Goettingen, Germany.
| | - Markus Schirmer
- Department of Radiotherapy and Radiation Oncology, University Medicine Goettingen, 37075 Goettingen, Germany.
| | - Shiv K Singh
- Department of Gastroenterology and Gastrointestinal Oncology, University Medicine Goettingen, 37075 Goettingen, Germany.
| | - Volker Ellenrieder
- Department of Gastroenterology and Gastrointestinal Oncology, University Medicine Goettingen, 37075 Goettingen, Germany.
| | - Elisabeth Hessmann
- Department of Gastroenterology and Gastrointestinal Oncology, University Medicine Goettingen, 37075 Goettingen, Germany.
| | - Qing-Bin Lu
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Albrecht Neesse
- Department of Gastroenterology and Gastrointestinal Oncology, University Medicine Goettingen, 37075 Goettingen, Germany.
| |
Collapse
|
242
|
Eberle-Singh JA, Sagalovskiy I, Maurer HC, Sastra SA, Palermo CF, Decker AR, Kim MJ, Sheedy J, Mollin A, Cao L, Hu J, Branstrom A, Weetall M, Olive KP. Effective Delivery of a Microtubule Polymerization Inhibitor Synergizes with Standard Regimens in Models of Pancreatic Ductal Adenocarcinoma. Clin Cancer Res 2019; 25:5548-5560. [PMID: 31175095 DOI: 10.1158/1078-0432.ccr-18-3281] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 03/26/2019] [Accepted: 06/03/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDA) is a deadly cancer that is broadly chemoresistant, due in part to biophysical properties of tumor stroma, which serves as a barrier to drug delivery for most classical chemotherapeutic drugs. The goal of this work is to evaluate the preclinical efficacy and mechanisms of PTC596, a novel agent with potent anticancer properties in vitro and desirable pharmacologic properties in vivo.Experimental Design: We assessed the pharmacology, mechanism, and preclinical efficacy of PTC596 in combination with standards of care, using multiple preclinical models of PDA. RESULTS We found that PTC596 has pharmacologic properties that overcome the barrier to drug delivery in PDA, including a long circulating half-life, lack of P-glycoprotein substrate activity, and high systemic tolerability. We also found that PTC596 combined synergistically with standard clinical regimens to improve efficacy in multiple model systems, including the chemoresistant genetically engineered "KPC" model of PDA. Through mechanistic studies, we learned that PTC596 functions as a direct microtubule polymerization inhibitor, yet a prior clinical trial found that it lacks peripheral neurotoxicity, in contrast to other such agents. Strikingly, we found that PTC596 synergized with the standard clinical backbone regimen gemcitabine/nab-paclitaxel, yielding potent, durable regressions in a PDX model. Moreover, similar efficacy was achieved in combination with nab-paclitaxel alone, highlighting a specific synergistic interaction between two different microtubule-targeted agents in the setting of pancreatic ductal adenocarcinoma. CONCLUSIONS These data demonstrate clear rationale for the development of PTC596 in combination with standard-of-care chemotherapy for PDA.
Collapse
Affiliation(s)
- Jaime A Eberle-Singh
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, New York.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Irina Sagalovskiy
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, New York.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - H Carlo Maurer
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, New York.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Stephen A Sastra
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, New York.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Carmine F Palermo
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, New York.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Amanda R Decker
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, New York.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | | | | | - Anna Mollin
- PTC Therapeutics, South Plainfield, New Jersey
| | | | - Jianhua Hu
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York.,Department of Biostatistics, Columbia University Medical Center, New York, New York
| | | | | | - Kenneth P Olive
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, New York. .,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| |
Collapse
|
243
|
Maurer C, Holmstrom SR, He J, Laise P, Su T, Ahmed A, Hibshoosh H, Chabot JA, Oberstein PE, Sepulveda AR, Genkinger JM, Zhang J, Iuga AC, Bansal M, Califano A, Olive KP. Experimental microdissection enables functional harmonisation of pancreatic cancer subtypes. Gut 2019; 68:1034-1043. [PMID: 30658994 PMCID: PMC6509007 DOI: 10.1136/gutjnl-2018-317706] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/03/2018] [Accepted: 12/08/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Pancreatic ductal adenocarcinoma (PDA) has among the highest stromal fractions of any cancer and this has complicated attempts at expression-based molecular classification. The goal of this work is to profile purified samples of human PDA epithelium and stroma and examine their respective contributions to gene expression in bulk PDA samples. DESIGN We used laser capture microdissection (LCM) and RNA sequencing to profile the expression of 60 matched pairs of human PDA malignant epithelium and stroma samples. We then used these data to train a computational model that allowed us to infer tissue composition and generate virtual compartment-specific expression profiles from bulk gene expression cohorts. RESULTS Our analysis found significant variation in the tissue composition of pancreatic tumours from different public cohorts. Computational removal of stromal gene expression resulted in the reclassification of some tumours, reconciling functional differences between different cohorts. Furthermore, we established a novel classification signature from a total of 110 purified human PDA stroma samples, finding two groups that differ in the extracellular matrix-associated and immune-associated processes. Lastly, a systematic evaluation of cross-compartment subtypes spanning four patient cohorts indicated partial dependence between epithelial and stromal molecular subtypes. CONCLUSION Our findings add clarity to the nature and number of molecular subtypes in PDA, expand our understanding of global transcriptional programmes in the stroma and harmonise the results of molecular subtyping efforts across independent cohorts.
Collapse
Affiliation(s)
- C Maurer
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, USA
- Department of Medicine, Division of Digestiveand Liver Diseases, Columbia University Medical Center, New York, New York, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - SR Holmstrom
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, USA
- Department of Medicine, Division of Digestiveand Liver Diseases, Columbia University Medical Center, New York, New York, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - J He
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, USA
- Department of Biomedical Informatics, Columbia Unicersity Medical Center, New York, New York, USA
- Department Systems Biology, Columbia University Medical Center, New York, New York, USA
| | - P Laise
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, USA
- Department of Biomedical Informatics, Columbia Unicersity Medical Center, New York, New York, USA
- Department Systems Biology, Columbia University Medical Center, New York, New York, USA
| | - T Su
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - A Ahmed
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - H Hibshoosh
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, USA
- Department Systems Biology, Columbia University Medical Center, New York, New York, USA
| | - JA Chabot
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, USA
- Department of Surgery, Division of GI/EndocrineSurgery, Columbia University Medical Center, New York, New York, USA
| | - PE Oberstein
- Department of Medicine, Division of Hematology and Oncology, New York University Langone Medical Center, New York, New York, USA
| | - AR Sepulveda
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, USA
- Department Systems Biology, Columbia University Medical Center, New York, New York, USA
| | - JM Genkinger
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, USA
- Department of Epidemiology, Mailman School of Public Health, New York, New York, USA
| | - J Zhang
- Department of Computer Science and Engineering, University of California, San Diego, California, USA
| | - AC Iuga
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, USA
- Department Systems Biology, Columbia University Medical Center, New York, New York, USA
| | - M Bansal
- PsychoGenics Inc, Paramus, New Jersey, USA
| | - A Califano
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, USA
- Department of Biomedical Informatics, Columbia Unicersity Medical Center, New York, New York, USA
- Department Systems Biology, Columbia University Medical Center, New York, New York, USA
- Correspondence should be addressed to: Kenneth P. Olive, Columbia University Medical Center, 1130 Saint Nicholas Avenue, ICRC 217A New York, NY 10032, phone: 212-851-4678, , Andrea Califano, Columbia University Medical Center 1130 Saint Nicholas Avenue, ICRC 912 New York, NY 10032, phone: 212-851-5183,
| | - KP Olive
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, USA
- Department of Medicine, Division of Digestiveand Liver Diseases, Columbia University Medical Center, New York, New York, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
- Correspondence should be addressed to: Kenneth P. Olive, Columbia University Medical Center, 1130 Saint Nicholas Avenue, ICRC 217A New York, NY 10032, phone: 212-851-4678, , Andrea Califano, Columbia University Medical Center 1130 Saint Nicholas Avenue, ICRC 912 New York, NY 10032, phone: 212-851-5183,
| |
Collapse
|
244
|
Zeltz C, Alam J, Liu H, Erusappan PM, Hoschuetzky H, Molven A, Parajuli H, Cukierman E, Costea DE, Lu N, Gullberg D. α11β1 Integrin is Induced in a Subset of Cancer-Associated Fibroblasts in Desmoplastic Tumor Stroma and Mediates In Vitro Cell Migration. Cancers (Basel) 2019; 11:E765. [PMID: 31159419 PMCID: PMC6627481 DOI: 10.3390/cancers11060765] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/26/2019] [Accepted: 05/29/2019] [Indexed: 01/06/2023] Open
Abstract
Integrin α11β1 is a collagen receptor that has been reported to be overexpressed in the stroma of non-small cell lung cancer (NSCLC) and of head and neck squamous cell carcinoma (HNSCC). In the current study, we further analyzed integrin α11 expression in 14 tumor types by screening a tumor tissue array while using mAb 203E3, a newly developed monoclonal antibody to human α11. Different degrees of expression of integrin α11 were observed in the stroma of breast, ovary, skin, lung, uterus, stomach, and pancreatic ductal adenocarcinoma (PDAC) tumors. Co-expression queries with the myofibroblastic cancer-associated fibroblast (myCAF) marker, alpha smooth muscle actin (αSMA), demonstrated a moderate level of α11+ in myCAFs associated with PDAC and HNSCC tumors, and a lack of α11 expression in additional stromal cells (i.e., cells positive for fibroblast-specific protein 1 (FSP1) and NG2). The new function-blocking α11 antibody, mAb 203E1, inhibited cell adhesion to collagen I, partially hindered fibroblast-mediated collagen remodeling and obstructed the three-dimensional (3D) migration rates of PDAC myCAFs. Our data demonstrate that integrin α11 is expressed in a subset of non-pericyte-derived CAFs in a range of cancers and suggest that α11β1 constitutes an important receptor for collagen remodeling and CAF migration in the tumor microenvironment (TME).
Collapse
Affiliation(s)
- Cédric Zeltz
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway.
| | - Jahedul Alam
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway.
| | - Hengshuo Liu
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway.
| | - Pugazendhi M Erusappan
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway.
| | - Heinz Hoschuetzky
- nanoTools Antikörpertechnik, Tscheulinstr. 21, 79331 Teningen, Germany.
| | - Anders Molven
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, NO-5020 Bergen, Norway.
- Department of Pathology, Haukeland University Hospital, NO-5020 Bergen, Norway.
| | - Himalaya Parajuli
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway.
| | - Edna Cukierman
- Cancer Biology Department, Fox Chase Cancer Center, Temple Health, Philadelphia, PA 19111, USA.
| | - Daniela-Elena Costea
- Department of Pathology, Haukeland University Hospital, NO-5020 Bergen, Norway.
- Department of Clinical Medicine, Center for Cancer Biomarkers CCBIO and Gade Laboratory for Pathology, University of Bergen, NO-5020 Bergen, Norway.
| | - Ning Lu
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway.
| | - Donald Gullberg
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway.
| |
Collapse
|
245
|
El Hassouni B, Li Petri G, Liu DSK, Cascioferro S, Parrino B, Hassan W, Diana P, Ali A, Frampton AE, Giovannetti E. Pharmacogenetics of treatments for pancreatic cancer. Expert Opin Drug Metab Toxicol 2019; 15:437-447. [PMID: 31100206 DOI: 10.1080/17425255.2019.1620731] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Despite clinical efforts, pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis. The scarcity of effective therapies can be reflected by the lack of reliable biomarkers to adapt anticancer drugs prescription to tumors' and patients' features. Areas covered: Pharmacogenetics should provide the way to select patients who may benefit from a specific therapy that best matches individual and tumor genetic profile, but it has not yet led to gains in outcome. This review describes PDAC pharmacogenetics findings, critically reappraising studies on polymorphisms and -omics profiles correlated to response to gemcitabine, FOLFIRINOX, and nab-paclitaxel combinations, as well as limitations of targeted therapies. Further, we question whether personalized approaches will benefit patients to any significant degree, supporting the need of new strategies within well-designed trials and validated genomic tests for treatment decision-making. Expert opinion: A major challenge in PDAC is the identification of subgroups of patients who will benefit from treatments. Minimally-invasive tests to analyze biomarkers of drug sensitivity/toxicity should be developed alongside anticancer treatments. However, progress might fall below expectations because of tumor heterogeneity and clonal evolution. Whole-genome sequencing and liquid biopsies, as well as prospective validation in selected cohorts, should overcome the limitations of traditional pharmacogenetic approaches.
Collapse
Affiliation(s)
- Btissame El Hassouni
- a Department of Medical Oncology , Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc) , Amsterdam , The Netherlands
| | - Giovanna Li Petri
- a Department of Medical Oncology , Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc) , Amsterdam , The Netherlands.,b Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche , Università degli Studi di Palermo , Palermo , Italy
| | - Daniel S K Liu
- c Department of Surgery and Cancer , Imperial College , London , UK
| | - Stella Cascioferro
- b Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche , Università degli Studi di Palermo , Palermo , Italy
| | - Barbara Parrino
- b Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche , Università degli Studi di Palermo , Palermo , Italy
| | - Waqar Hassan
- a Department of Medical Oncology , Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc) , Amsterdam , The Netherlands
| | - Patrizia Diana
- b Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche , Università degli Studi di Palermo , Palermo , Italy
| | - Asif Ali
- d Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences , University of Glasgow , Glasgow UK.,e Institute of Basic Medical Sciences , Khyber Medical University , Peshawar , Pakistan
| | - Adam E Frampton
- c Department of Surgery and Cancer , Imperial College , London , UK
| | - Elisa Giovannetti
- a Department of Medical Oncology , Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc) , Amsterdam , The Netherlands.,f Cancer Pharmacology Lab, AIRC Start Up Unit, Fondazione Pisana per la Scienza , Pisa , Italy
| |
Collapse
|
246
|
Yuan Y, Jiang JY, Wang JM, Sun J, Li C, Liu BQ, Yan J, Meng XN, Wang HQ. BAG3-positive pancreatic stellate cells promote migration and invasion of pancreatic ductal adenocarcinoma. J Cell Mol Med 2019; 23:5006-5016. [PMID: 31119886 PMCID: PMC6653255 DOI: 10.1111/jcmm.14352] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/14/2019] [Accepted: 04/12/2019] [Indexed: 12/18/2022] Open
Abstract
BAG3 is constitutively expressed in multiple types of cancer cells and its high expression is associated with tumour progression and poor prognosis of PDAC. However, little is known about the role of BAG3 in the regulation of stromal microenvironment of PDAC. The current study demonstrated that beside PDAC tumour cells, BAG3 was also expressed in some activated stroma cells in PDAC tissue, as well as in activated PSCs. In addition, the current study demonstrated that BAG3 expression in PSCs was involved in maintenance of PSCs activation and promotion of PDACs invasion via releasing multiple cytokines. The current study demonstrated that BAG3‐positive PSCs promoted invasion of PDACs via IL‐8, MCP1, TGF‐β2 and IGFBP2 in a paracrine manner. Furthermore, BAG3 sustained PSCs activation through IL‐6, TGF‐β2 and IGFBP2 in an autocrine manner. Thereby, the current study provides a new insight into the involvement of BAG3 in remodelling of stromal microenvironment favourable for malignant progression of PDAC, indicating that BAG3 might serve as a potential target for anti‐fibrosis of PDAC.
Collapse
Affiliation(s)
- Ye Yuan
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.,Cancer Hospital of China Medical University, Liaoning Province, Shenyang, P R China.,Liaoning Cancer Hospital & Institute, Liaoning Province, Shenyang, P R China
| | - Jing-Yi Jiang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Jia-Mei Wang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China
| | - Jia Sun
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China
| | - Chao Li
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China
| | - Bao-Qin Liu
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China
| | - Jing Yan
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China
| | - Xiao-Na Meng
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China
| | - Hua-Qin Wang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
247
|
Chen YT, Chen FW, Chang TH, Wang TW, Hsu TP, Chi JY, Hsiao YW, Li CF, Wang JM. Hepatoma-derived growth factor supports the antiapoptosis and profibrosis of pancreatic stellate cells. Cancer Lett 2019; 457:180-190. [PMID: 31078734 DOI: 10.1016/j.canlet.2019.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/30/2019] [Accepted: 05/02/2019] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer is refractory and is characterized by extensively surrounding and intratumor fibrotic reactions that are contributed by activated pancreatic stellate cells (PSCs). Herein, we show that CCAAT/enhancer-binding protein δ (CEBPD) responds to transforming growth factor-β1 (TGF-β1) through reciprocal loop regulation and that activated hypoxia inducible factor-1α (HIF-1α) further contributes to the upregulation of the hepatoma-derived growth factor (HDGF) gene. Secreted HDGF contributes to the antiapoptosis of PSCs and consequently leads to the synthesis and deposition of extracellular matrix proteins for stabilizing PSC/pancreatic cancer cell (PCC) tumor foci. This result agrees with the observation that severe stromal growth positively correlated with stromal HDGF and CEBPD expression in pancreatic cancer specimens. Collectively, the identification of the TGF-β1-activated CEBPD/HIF-1α/HDGF axis provides new insights into novel discoveries of HDGF in the antiapoptosis and profibrosis of PSCs and the outgrowth of PCCs.
Collapse
Affiliation(s)
- Yi-Ting Chen
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Medical Research Department, Chi Mei Medical Center, Tainan, Taiwan
| | - Feng-Wei Chen
- Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tsung-Hao Chang
- Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tso-Wen Wang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Teng-Po Hsu
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Jhih-Ying Chi
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Wei Hsiao
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Feng Li
- Medical Research Department, Chi Mei Medical Center, Tainan, Taiwan; Department of Pathology, Chi Mei Medical Center, Tainan, Taiwan.
| | - Ju-Ming Wang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan; International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
248
|
Fibroblasts as Modulators of Local and Systemic Cancer Metabolism. Cancers (Basel) 2019; 11:cancers11050619. [PMID: 31058816 PMCID: PMC6562905 DOI: 10.3390/cancers11050619] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 01/05/2023] Open
Abstract
Fibroblast activation is an accompanying feature of solid tumor progression, resembling a conserved host response to tissue damage. Cancer-associated fibroblasts (CAFs) comprise a heterogeneous and plastic population with increasingly appreciated roles in tumor growth, metastatic capacity, and response to therapy. Classical features of fibroblasts in a wound-healing response, including profound extracellular matrix production and cytokine release, are recapitulated in cancer. Emerging evidence suggests that fibroblastic cells in the microenvironments of solid tumors also critically modulate cellular metabolism in the neoplastic compartment through mechanisms including paracrine transfer of metabolites or non-cell-autonomous regulation of metabolic signaling pathways. These metabolic functions may represent common mechanisms by which fibroblasts stimulate growth of the regenerating epithelium during a wound-healing reaction, or may reflect unique co-evolution of cancer cells and surrounding stroma within the tumor microenvironment. Here we review the recent literature supporting an important role for CAFs in regulation of cancer cell metabolism, and relevant pathways that may serve as targets for therapeutic intervention.
Collapse
|
249
|
Auciello FR, Bulusu V, Oon C, Tait-Mulder J, Berry M, Bhattacharyya S, Tumanov S, Allen-Petersen BL, Link J, Kendsersky ND, Vringer E, Schug M, Novo D, Hwang RF, Evans RM, Nixon C, Dorrell C, Morton JP, Norman JC, Sears RC, Kamphorst JJ, Sherman MH. A Stromal Lysolipid-Autotaxin Signaling Axis Promotes Pancreatic Tumor Progression. Cancer Discov 2019; 9:617-627. [PMID: 30837243 PMCID: PMC6497553 DOI: 10.1158/2159-8290.cd-18-1212] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/03/2019] [Accepted: 02/28/2019] [Indexed: 01/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) develops a pronounced stromal response reflecting an aberrant wound-healing process. This stromal reaction features transdifferentiation of tissue-resident pancreatic stellate cells (PSC) into activated cancer-associated fibroblasts, a process induced by PDAC cells but of unclear significance for PDAC progression. Here, we show that PSCs undergo a dramatic lipid metabolic shift during differentiation in the context of pancreatic tumorigenesis, including remodeling of the intracellular lipidome and secretion of abundant lipids in the activated, fibroblastic state. Specifically, stroma-derived lysophosphatidylcholines support PDAC cell synthesis of phosphatidylcholines, key components of cell membranes, and also facilitate production of the potent wound-healing mediator lysophosphatidic acid (LPA) by the extracellular enzyme autotaxin, which is overexpressed in PDAC. The autotaxin-LPA axis promotes PDAC cell proliferation, migration, and AKT activation, and genetic or pharmacologic autotaxin inhibition suppresses PDAC growth in vivo. Our work demonstrates how PDAC cells exploit the local production of wound-healing mediators to stimulate their own growth and migration. SIGNIFICANCE: Our work highlights an unanticipated role for PSCs in producing the oncogenic LPA signaling lipid and demonstrates how PDAC tumor cells co-opt the release of wound-healing mediators by neighboring PSCs to promote their own proliferation and migration.See related commentary by Biffi and Tuveson, p. 578.This article is highlighted in the In This Issue feature, p. 565.
Collapse
Affiliation(s)
- Francesca R Auciello
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Vinay Bulusu
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Chet Oon
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Jacqueline Tait-Mulder
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Mark Berry
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Sohinee Bhattacharyya
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Sergey Tumanov
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Jason Link
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon
| | - Nicholas D Kendsersky
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon
| | - Esmee Vringer
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Michelle Schug
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - David Novo
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Rosa F Hwang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ronald M Evans
- The Salk Institute for Biological Studies, Gene Expression Laboratory, Howard Hughes Medical Institute, La Jolla, California
| | - Colin Nixon
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Craig Dorrell
- Oregon Health & Science University Brenden-Colson Center for Pancreatic Care, Portland, Oregon
| | | | - Jim C Norman
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Rosalie C Sears
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon
| | - Jurre J Kamphorst
- Cancer Research UK Beatson Institute, Glasgow, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Mara H Sherman
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon.
| |
Collapse
|
250
|
Abstract
The tumour microenvironment, also termed the tumour stroma or tumour mesenchyme, includes fibroblasts, immune cells, blood vessels and the extracellular matrix and substantially influences the initiation, growth and dissemination of gastrointestinal cancer. Cancer-associated fibroblasts (CAFs) are one of the critical components of the tumour mesenchyme and not only provide physical support for epithelial cells but also are key functional regulators in cancer, promoting and retarding tumorigenesis in a context-dependent manner. In this Review, we outline the emerging understanding of gastrointestinal CAFs with a particular emphasis on their origin and heterogeneity, as well as their function in cancer cell proliferation, tumour immunity, angiogenesis, extracellular matrix remodelling and drug resistance. Moreover, we discuss the clinical implications of CAFs as biomarkers and potential targets for prevention and treatment of patients with gastrointestinal cancer.
Collapse
|