201
|
Das H, Wang Z, Niazi MKK, Aggarwal R, Lu J, Kanji S, Das M, Joseph M, Gurcan M, Cristini V. Impact of diffusion barriers to small cytotoxic molecules on the efficacy of immunotherapy in breast cancer. PLoS One 2013; 8:e61398. [PMID: 23620747 PMCID: PMC3631240 DOI: 10.1371/journal.pone.0061398] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 03/08/2013] [Indexed: 11/18/2022] Open
Abstract
Molecular-focused cancer therapies, e.g., molecularly targeted therapy and immunotherapy, so far demonstrate only limited efficacy in cancer patients. We hypothesize that underestimating the role of biophysical factors that impact the delivery of drugs or cytotoxic cells to the target sites (for associated preferential cytotoxicity or cell signaling modulation) may be responsible for the poor clinical outcome. Therefore, instead of focusing exclusively on the investigation of molecular mechanisms in cancer cells, convection-diffusion of cytotoxic molecules and migration of cancer-killing cells within tumor tissue should be taken into account to improve therapeutic effectiveness. To test this hypothesis, we have developed a mathematical model of the interstitial diffusion and uptake of small cytotoxic molecules secreted by T-cells, which is capable of predicting breast cancer growth inhibition as measured both in vitro and in vivo. Our analysis shows that diffusion barriers of cytotoxic molecules conspire with γδ T-cell scarcity in tissue to limit the inhibitory effects of γδ T-cells on cancer cells. This may increase the necessary ratios of γδ T-cells to cancer cells within tissue to unrealistic values for having an intended therapeutic effect, and decrease the effectiveness of the immunotherapeutic treatment.
Collapse
Affiliation(s)
- Hiranmoy Das
- Department of Medicine, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (HD); (MG); (VC)
| | - Zhihui Wang
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - M. Khalid Khan Niazi
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, United States of America
| | - Reeva Aggarwal
- Department of Medicine, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Jingwei Lu
- Department of Medicine, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Suman Kanji
- Department of Medicine, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Manjusri Das
- Department of Medicine, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Matthew Joseph
- Department of Medicine, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Metin Gurcan
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (HD); (MG); (VC)
| | - Vittorio Cristini
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, United States of America
- Department of Chemical Engineering and Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico, United States of America
- * E-mail: (HD); (MG); (VC)
| |
Collapse
|
202
|
Enhanced therapeutic efficacy of iRGD-conjugated crosslinked multilayer liposomes for drug delivery. BIOMED RESEARCH INTERNATIONAL 2013; 2013:378380. [PMID: 23691500 PMCID: PMC3652104 DOI: 10.1155/2013/378380] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 03/06/2013] [Accepted: 03/18/2013] [Indexed: 12/27/2022]
Abstract
Targeting nanoparticles by conjugating various specific ligands has shown potential therapeutic efficacy in nanomedicine. However, poor penetration of antitumor drugs into solid tumors remains a major obstacle. Here, we describe a targeting strategy for antitumor drug delivery by conjugating a crosslinked multilamellar liposomal vesicle (cMLV) formulation with a tumor-penetrating peptide, iRGD. The results showed that iRGD peptides could facilitate the binding and cellular uptake of drug-loaded cMLVs and consequently enhance the antitumor efficacy in breast tumor cells, including multidrug-resistant cells. Moreover, colocalization data revealed that iRGD-conjugated cMLVs (iRGD-cMLVs) entered cells via the clathrin-mediated pathway, followed by endosome-lysosome transport for efficient drug delivery. Finally, in vivo study indicated that iRGD-cMLVs could deliver anticancer drugs efficiently to mediate significant tumor suppression.
Collapse
|
203
|
Abstract
This review surveys selected methods of manufacture and applications of microdevices-miniaturized functional devices capable of handling cell and tissue cultures or producing particles-and discusses their potential relevance to nanomedicine. Many characteristics of microdevices such as miniaturization, increased throughput, and the ability to mimic organ-specific microenvironments are promising for the rapid, low-cost evaluation of the efficacy and toxicity of nanomaterials. Their potential to accurately reproduce the physiological environments that occur in vivo could reduce dependence on animal models in pharmacological testing. Technologies in microfabrications and microfluidics are widely applicable for nanomaterial synthesis and for the development of diagnostic devices. Although the use of microdevices in nanomedicine is still in its infancy, these technologies show promise for enhancing fundamental and applied research in nanomedicine.
Collapse
Affiliation(s)
- Michinao Hashimoto
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
204
|
Ozcelikkale A, Ghosh S, Han B. Multifaceted Transport Characteristics of Nanomedicine: Needs for Characterization in Dynamic Environment. Mol Pharm 2013; 10:2111-26. [PMID: 23517188 DOI: 10.1021/mp3005947] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Altug Ozcelikkale
- School
of Mechanical Engineering and ‡Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana,
United States
| | - Soham Ghosh
- School
of Mechanical Engineering and ‡Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana,
United States
| | - Bumsoo Han
- School
of Mechanical Engineering and ‡Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana,
United States
| |
Collapse
|
205
|
Maldonado CR, Gómez-Blanco N, Jauregui-Osoro M, Brunton VG, Yate L, Mareque-Rivas JC. QD-filled micelles which combine SPECT and optical imaging with light-induced activation of a platinum(IV) prodrug for anticancer applications. Chem Commun (Camb) 2013; 49:3985-7. [PMID: 23552819 DOI: 10.1039/c3cc39104c] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fac-[(99m)Tc(OH2)3(CO)3](+) complex reacts with QD-filled micelles to create a bimodal SPECT-optical imaging probe which upon visible light irradiation generates cisplatin from an inert Pt(IV) prodrug.
Collapse
|
206
|
Assali M, Cid JJ, Pernía-Leal M, Muñoz-Bravo M, Fernández I, Wellinger RE, Khiar N. Glyconanosomes: disk-shaped nanomaterials for the water solubilization and delivery of hydrophobic molecules. ACS NANO 2013; 7:2145-2153. [PMID: 23421374 DOI: 10.1021/nn304986x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Herein, we describe the first report on a new class of disk-shaped and quite monodisperse water-soluble nanomaterials that we named glyconanosomes (GNS). GNSs were obtained by sliding out the cylindrical structures formed upon self-organization and photopolymerization of glycolipid 1 on single-walled carbon nanotube (SWCNT) sidewalls. GNSs present a sheltered hydrophobic inner cavity formed by the carbonated tails, surrounded by PEG and lactose moieties. The amphiphilic character of GNSs allows the water solubility of insoluble hydrophobic cargos such as a perylene-bisimide derivative, [60]fullerene, or the anti-carcinogenic drug camptothecin (CPT). GNS/C60 inclusion complexes are able to establish specific interactions between peanut agglutinin (PNA) lectin and the lactose moiety surrounding the complexes, while CPT solubilized by GNS shows higher cytotoxicity toward MCF7-type breast cancer cells than CPT alone. Thus, GNS represents an attractive extension of nanoparticle-based drug delivery systems.
Collapse
Affiliation(s)
- Mohyeddin Assali
- Laboratory of Asymmetric Synthesis and Functional Nanosystems, Instituto de Investigaciones Químicas (IIQ), CSIC and Universidad de Sevilla, C/Américo Vepucio 49, 41092 Seville, Spain
| | | | | | | | | | | | | |
Collapse
|
207
|
Wen AM, Rambhia PH, French RH, Steinmetz NF. Design rules for nanomedical engineering: from physical virology to the applications of virus-based materials in medicine. J Biol Phys 2013; 39:301-25. [PMID: 23860875 PMCID: PMC3662409 DOI: 10.1007/s10867-013-9314-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 02/07/2013] [Indexed: 12/17/2022] Open
Abstract
Physical virology seeks to define the principles of physics underlying viral infections, traditionally focusing on the fundamental processes governing virus assembly, maturation, and disassembly. A detailed understanding of virus structure and assembly has facilitated the development and analysis of virus-based materials for medical applications. In this Physical Virology review article, we discuss the recent developments in nanomedicine that help us to understand how physical properties affect the in vivo fate and clinical impact of (virus-based) nanoparticles. We summarize and discuss the design rules that need to be considered for the successful development and translation of virus-based nanomaterials from bench to bedside.
Collapse
Affiliation(s)
- Amy M. Wen
- />Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Pooja H. Rambhia
- />Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Roger H. French
- />Materials Science and Engineering, School of Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 USA
| | - Nicole F. Steinmetz
- />Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
- />Materials Science and Engineering, School of Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 USA
- />Department of Radiology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| |
Collapse
|
208
|
Abstract
Nanotechnology is a multidisciplinary field originating from the interaction of several different disciplines, such as engineering, physics, biology and chemistry. New materials and devices effectively interact with the body at molecular level, yielding a brand new range of highly selective and targeted applications designed to maximize the therapeutic efficiency while reducing the side effects. Liposomes, quantum dots, carbon nanotubes and superparamagnetic nanoparticles are among the most assessed nanotechnologies. Meanwhile, other futuristic platforms are paving the way toward a new scientific paradigm, able to deeply change the research path in the medical science. The growth of nanotechnology, driven by the dramatic advances in science and technology, clearly creates new opportunities for the development of the medical science and disease treatment in human health care. Despite the concerns and the on-going studies about their safety, nanotechnology clearly emerges as holding the promise of delivering one of the greatest breakthroughs in the history of medical science.
Collapse
|
209
|
Koshkaryev A, Sawant R, Deshpande M, Torchilin V. Immunoconjugates and long circulating systems: origins, current state of the art and future directions. Adv Drug Deliv Rev 2013; 65:24-35. [PMID: 22964425 DOI: 10.1016/j.addr.2012.08.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/15/2012] [Accepted: 08/22/2012] [Indexed: 12/31/2022]
Abstract
Significant progress has been made recently in the area of immunoconjugated drugs and drug delivery systems (DDS). The immuno-modification of either the drug or DDS has proven to be a very promising approach that has significantly improved the targeted accumulation in pathological sites while decreasing its undesirable side effects in healthy tissues. The arrangement for both prolonged life in the circulation and specific target recognition represents another potent strategy in the development of immuno-targeted systems. The longevity of immuno-targeted DDS such as immunoliposomes and immunomicelles improves their targetability even in the presence of the additional passive accumulation in areas with a compromised vasculature. The added use of the immuno-targeted systems takes advantage of the specific microenvironment of pathological sites including lowered pH, increased temperature, and variation in the enzymatic activity. "Smart" stimulus-responsive systems combine different valuable functionalities including PEG-protection, targeting antibody, cell-penetration, and stimulus-sensitive functions. In this review we examined the evolution, current status and future directions in the area of therapeutical immunoconjugates and long-circulating immuno-targeted DDS.
Collapse
Affiliation(s)
- Alexander Koshkaryev
- Center for Pharmaceutical Biotechnology & Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
210
|
Lee KL, Hubbard LC, Hern S, Yildiz I, Gratzl M, Steinmetz NF. Shape matters: the diffusion rates of TMV rods and CPMV icosahedrons in a spheroid model of extracellular matrix are distinct. Biomater Sci 2013; 1. [PMID: 24244867 DOI: 10.1039/c3bm00191a] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanomaterial-based carrier systems hold great promise to deliver therapies with increased efficacy and reduced side effects. While the state-of-the-art carrier system is a sphere, recent data indicate that elongated rods and filaments have advantageous flow and margination properties, resulting in enhanced vascular targeting and tumor homing. Here, we report on the distinct diffusion rates of two bio-inspired carrier systems: 30 nm-sized spherical cowpea mosaic virus (CPMV) and 300×18 nm-sized tobacco mosaic virus (TMV) with a tubular structure, using a spheroid model of the tumor microenvironment and fluorescent imaging.
Collapse
Affiliation(s)
- Karin L Lee
- Department of Biomedical Engineering, Case Western Reserve University, Schools of Medicine and Engineering, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | | | | | | | |
Collapse
|
211
|
Sciumè G, Shelton S, Gray WG, Miller CT, Hussain F, Ferrari M, Decuzzi P, Schrefler BA. A multiphase model for three-dimensional tumor growth. NEW JOURNAL OF PHYSICS 2013; 15:015005. [PMID: 24554920 PMCID: PMC3926362 DOI: 10.1088/1367-2630/15/1/015005] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Several mathematical formulations have analyzed the time-dependent behaviour of a tumor mass. However, most of these propose simplifications that compromise the physical soundness of the model. Here, multiphase porous media mechanics is extended to model tumor evolution, using governing equations obtained via the Thermodynamically Constrained Averaging Theory (TCAT). A tumor mass is treated as a multiphase medium composed of an extracellular matrix (ECM); tumor cells (TC), which may become necrotic depending on the nutrient concentration and tumor phase pressure; healthy cells (HC); and an interstitial fluid (IF) for the transport of nutrients. The equations are solved by a Finite Element method to predict the growth rate of the tumor mass as a function of the initial tumor-to-healthy cell density ratio, nutrient concentration, mechanical strain, cell adhesion and geometry. Results are shown for three cases of practical biological interest such as multicellular tumor spheroids (MTS) and tumor cords. First, the model is validated by experimental data for time-dependent growth of an MTS in a culture medium. The tumor growth pattern follows a biphasic behaviour: initially, the rapidly growing tumor cells tend to saturate the volume available without any significant increase in overall tumor size; then, a classical Gompertzian pattern is observed for the MTS radius variation with time. A core with necrotic cells appears for tumor sizes larger than 150 μm, surrounded by a shell of viable tumor cells whose thickness stays almost constant with time. A formula to estimate the size of the necrotic core is proposed. In the second case, the MTS is confined within a healthy tissue. The growth rate is reduced, as compared to the first case - mostly due to the relative adhesion of the tumor and healthy cells to the ECM, and the less favourable transport of nutrients. In particular, for tumor cells adhering less avidly to the ECM, the healthy tissue is progressively displaced as the malignant mass grows, whereas tumor cell infiltration is predicted for the opposite condition. Interestingly, the infiltration potential of the tumor mass is mostly driven by the relative cell adhesion to the ECM. In the third case, a tumor cord model is analyzed where the malignant cells grow around microvessels in a 3D geometry. It is shown that tumor cells tend to migrate among adjacent vessels seeking new oxygen and nutrient. This model can predict and optimize the efficacy of anticancer therapeutic strategies. It can be further developed to answer questions on tumor biophysics, related to the effects of ECM stiffness and cell adhesion on tumor cell proliferation.
Collapse
Affiliation(s)
- G Sciumè
- Department of Civil, Environmental and Architectural Engineering, University of Padua, Italy
- Laboratoire de Mécanique et Technologie, Ecole Normale Supérieure de Cachan, France
| | - S Shelton
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, USA
| | - WG Gray
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, USA
| | - CT Miller
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, USA
| | - F Hussain
- Department of Mechanical Engineering, University of Houston, USA
- Department of Nanomedicine, The Methodist Hospital Research Institute, Houston, USA
| | - M Ferrari
- Department of Nanomedicine, The Methodist Hospital Research Institute, Houston, USA
- Department of Medicine, Weill Cornell Medical College of Cornell University, New York, USA
| | - P Decuzzi
- Department of Nanomedicine, The Methodist Hospital Research Institute, Houston, USA
- Department of Translational Imaging, The Methodist Hospital Research Institute, Houston, USA
| | - BA Schrefler
- Department of Civil, Environmental and Architectural Engineering, University of Padua, Italy
- Department of Nanomedicine, The Methodist Hospital Research Institute, Houston, USA
| |
Collapse
|
212
|
Marrache S, Pathak RK, Darley KL, Choi JH, Zaver D, Kolishetti N, Dhar S. Nanocarriers for tracking and treating diseases. Curr Med Chem 2013; 20:3500-14. [PMID: 23834187 PMCID: PMC8085808 DOI: 10.2174/0929867311320280007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/04/2013] [Indexed: 12/11/2022]
Abstract
Site directed drug delivery with high efficacy is the biggest challenge in the area of current pharmaceuticals. Biodegradable polymer-based controlled release nanoparticle platforms could be beneficial for targeted delivery of therapeutics and contrast agents for a myriad of important human diseases. Biodegradable nanoparticles, which can be engineered to load multiple drugs with varied physicochemical properties, contrast agents, and cellular or intracellular component targeting moieties, have emerged as potential alternatives for tracking and treating human diseases. In this review, we will highlight the current advances in the design and execution of such platforms for their potential application in the diagnosis and treatment of variety of diseases ranging from cancer to Alzheimer's and we will provide a critical analysis of the associated challenges for their possible clinical translation.
Collapse
Affiliation(s)
- Sean Marrache
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602
| | - Rakesh Kumar Pathak
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602
| | - Kasey L. Darley
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602
| | - Joshua H. Choi
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602
| | - Dhillon Zaver
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602
| | | | - Shanta Dhar
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
213
|
Annapragada AV, Hoffman E, Divekar A, Karathanasis E, Ghaghada KB. High-resolution CT vascular imaging using blood pool contrast agents. Methodist Debakey Cardiovasc J 2012; 8:18-22. [PMID: 22891106 DOI: 10.14797/mdcj-8-1-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
While the evolution of computed tomography imaging in the last 2 decades has been driven almost exclusively by improvements in the instrumentation and processing algorithms, there have been comparatively modest advances in contrast agent technology.A notable change in the last decade has been the development of blood pool contrast agents based on nanoparticle technology.While not yet ready for clinical use, the stable and uniform opacification provided by these agents in normal vasculature and controlled extravasation in compromised vasculature enables novel techniques for imaging and diagnosis of pathologies. This manuscript presents preclinical examples demonstrating cardiovascular pathologies and tumor characterization by high-resolution computed tomography imaging.
Collapse
Affiliation(s)
- Ananth V Annapragada
- Singleton Department of Pediatric Radiology, Texas Children’s Hospital, Houston, TX, USA
| | | | | | | | | |
Collapse
|
214
|
Guo P, Fu BM. Effect of wall compliance and permeability on blood-flow rate in counter-current microvessels formed from anastomosis during tumor-induced angiogenesis. J Biomech Eng 2012; 134:041003. [PMID: 22667678 DOI: 10.1115/1.4006338] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tumor blood-flow is inhomogeneous because of heterogeneity in tumor vasculature, vessel-wall leakiness, and compliance. Experimental studies have shown that normalization of tumor vasculature by antiangiogenic therapy can improve tumor microcirculation and enhance the delivery of therapeutic agents to tumors. To elucidate the quantitative relationship between the vessel-wall compliance and permeability and the blood-flow rate in the microvessels of the tumor tissue, the tumor tissue with the normalized vasculature, and the normal tissue, we developed a transport model to simultaneously predict the interstitial fluid pressure (IFP), interstitial fluid velocity (IFV) and the blood-flow rate in a counter-current microvessel loop, which occurs from anastomosis in tumor-induced angiogenesis during tumor growth. Our model predicts that although the vessel-wall leakiness greatly affects the IFP and IFV, it has a negligible effect on the intravascular driving force (pressure gradient) for both rigid and compliant vessels, and thus a negligible effect on the blood-flow rate if the vessel wall is rigid. In contrast, the wall compliance contributes moderately to the IFP and IFV, but significantly to the vessel radius and to the blood-flow rate. However, the combined effects of vessel leakiness and compliance can increase IFP, which leads to a partial collapse in the blood vessels and an increase in the flow resistance. Furthermore, our model predictions speculate a new approach for enhancing drug delivery to tumor by modulating the vessel-wall compliance in addition to reducing the vessel-wall leakiness and normalizing the vessel density.
Collapse
Affiliation(s)
- Peng Guo
- Department of Biomedical Engineering, The City College of the City University of New York, 160 Convent Avenue, New York, NY 10031, USA
| | | |
Collapse
|
215
|
Boohaker RJ, Lee MW, Vishnubhotla P, Perez JM, Khaled AR. The use of therapeutic peptides to target and to kill cancer cells. Curr Med Chem 2012; 19:3794-804. [PMID: 22725698 DOI: 10.2174/092986712801661004] [Citation(s) in RCA: 242] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Revised: 04/27/2012] [Accepted: 05/03/2012] [Indexed: 02/06/2023]
Abstract
Peptide therapeutics is a promising field for emerging anti-cancer agents. Benefits include the ease and rapid synthesis of peptides and capacity for modifications. An existing and vast knowledge base of protein structure and function can be exploited for novel peptide design. Current research focuses on developing peptides that can (1) serve as tumor targeting moieties and (2) permeabilize membranes with cytotoxic consequences. A survey of recent findings reveals significant trends. Amphiphilic peptides with clusters of hydrophobic and cationic residues are features of anti-microbial peptides that confer the ability to eradicate microbes and show considerable anti-cancer toxicity. Peptides that assemble and form pores can disrupt cell or organelle membranes and cause apoptotic or necrotic death. Cell permeable and tumor-homing peptides can carry biologically active cargo to tumors or tumor vasculature. The challenge lies in developing the clinical application of therapeutic peptides. Improving delivery to tumors, minimizing non-specific toxic effects and discerning pharmacokinetic properties are high among the needs to produce a powerful therapeutic peptide for cancer treatment.
Collapse
Affiliation(s)
- R J Boohaker
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL 32827, USA
| | | | | | | | | |
Collapse
|
216
|
Erickson HK, Lambert JM. ADME of antibody-maytansinoid conjugates. AAPS J 2012; 14:799-805. [PMID: 22875610 PMCID: PMC3475867 DOI: 10.1208/s12248-012-9386-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 06/21/2012] [Indexed: 12/30/2022] Open
Abstract
The concept of treating cancer with antibody-drug conjugates (ADCs) has gained momentum with the favorable activity and safety of trastuzumab emtansine (T-DM1), SAR3419, and lorvotuzumab mertansine (IMGN901). All three ADCs utilize maytansinoid cell-killing agents which target tubulin and suppress microtubule dynamics. Each ADC utilizes a different optimized chemical linker to attach the maytansinoid to the antibody. Characterizing the absorption, distribution, metabolism, and excretion (ADME) of these ADCs in preclinical animal models is important to understanding their efficacy and safety profiles. The ADME properties of these ADCs in rodents were inferred from studies with radio-labeled ADCs prepared with nonbinding antibodies since T-DM1, SAR3419, IMGN901 all lack cross-reactivity with rodent antigens. For studies exploring tumor localization and activation in tumor-bearing mice, tritium-labeled T-DM1, SAR3419, and IMGN901 were utilized. The chemical nature of the linker was found to have a significant impact on the ADME properties of these ADCs-particularly on the plasma pharmacokinetics and observed catabolites in tumor and liver tissues. Despite these differences, T-DM1, SAR3419, and IMGN901 were all found to facilitate efficient deliveries of active maytansinoid catabolites to the tumor tissue in mouse xenograft models. In addition, all three ADCs were effectively detoxified during hepatobiliary elimination in rodents.
Collapse
Affiliation(s)
- Hans K Erickson
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, USA.
| | | |
Collapse
|
217
|
|
218
|
Amruthwar SS, Janorkar AV. Preparation and characterization of elastin-like polypeptide scaffolds for local delivery of antibiotics and proteins. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:2903-2912. [PMID: 22926272 DOI: 10.1007/s10856-012-4749-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 08/10/2012] [Indexed: 05/27/2023]
Abstract
Tissue engineering applications could benefit from simultaneous release of growth factors, signaling molecules, and antibiotics to obtain optimal healing of tissues. Elastin-like polypeptides (ELPs) are genetically engineered polymers that possess good biocompatibility, are biodegradable, and exhibit mechanical properties similar to natural elastin. In addition, ELPs exhibit a characteristic inverse phase transition temperature (T(t)). This T(t) behavior is widely exploited in hyperthermia mediated drug delivery. The objectives of this research were to prepare ELP hydrogel scaffolds using a novel ultrasonication method and to investigate the release of a model protein (bovine serum albumin, BSA) and a commonly used antibiotic in periodontal therapy (doxycycline) from the scaffolds at two different temperatures (25 °C <T(t) vs. 37 °C >T(t)). Both BSA and doxycycline showed a gradual time dependent release and showed a trend of higher release fractions with higher loading doses. Based on the comparison between the release profiles at the two selected temperatures, the release was higher at 37 °C compared to that at 25 °C for both the loading concentrations of doxycycline (0.05 and 0.1 % v/v) and only one of the loading concentrations of BSA (0.5 % v/v) studied, while the release was higher at 25 °C compared to that at 37 °C only for the other loading concentration of BSA (1 % v/v) studied. These results suggested that the drug molecular weight and loading concentration were significant factors that affected the release kinetics. The experiments in this study demonstrated that the ELP hydrogel scaffolds can successfully release proteins and antibiotics critical to tissue engineering.
Collapse
Affiliation(s)
- Shruti S Amruthwar
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | | |
Collapse
|
219
|
Janthur WD, Cantoni N, Mamot C. Drug conjugates such as Antibody Drug Conjugates (ADCs), immunotoxins and immunoliposomes challenge daily clinical practice. Int J Mol Sci 2012; 13:16020-45. [PMID: 23443108 PMCID: PMC3546676 DOI: 10.3390/ijms131216020] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/15/2012] [Accepted: 11/19/2012] [Indexed: 12/13/2022] Open
Abstract
Drug conjugates have been studied extensively in preclinical in vitro and in vivo models but to date only a few compounds have progressed to the clinical setting. This situation is now changing with the publication of studies demonstrating a significant impact on clinical practice and highlighting the potential of this new class of targeted therapies. This review summarizes the pharmacological and molecular background of the main drug conjugation systems, namely antibody drug conjugates (ADCs), immunotoxins and immunoliposomes. All these compounds combine the specific targeting moiety of an antibody or similar construct with the efficacy of a toxic drug. The aim of this strategy is to target tumor cells specifically while sparing normal tissue, thus resulting in high efficacy and low toxicity. Recently, several strategies have been investigated in phase I clinical trials and some have entered phase III clinical development. This review provides a detailed overview of various strategies and critically discusses the most relevant achievements. Examples of the most advanced compounds include T-DM1 and brentuximab vedotin. However, additional promising strategies such as immunotoxins and immunoliposmes are already in clinical development. In summary, targeted drug delivery by drug conjugates is a new emerging class of anti-cancer therapy that may play a major role in the future.
Collapse
Affiliation(s)
- Wolf-Dieter Janthur
- Division of Hematology/Oncology, Cantonal Hospital of Aarau, CH-5001 Aarau, Switzerland; E-Mails: (W.-D.J.); (N.C.)
| | - Nathan Cantoni
- Division of Hematology/Oncology, Cantonal Hospital of Aarau, CH-5001 Aarau, Switzerland; E-Mails: (W.-D.J.); (N.C.)
| | - Christoph Mamot
- Division of Hematology/Oncology, Cantonal Hospital of Aarau, CH-5001 Aarau, Switzerland; E-Mails: (W.-D.J.); (N.C.)
| |
Collapse
|
220
|
Li Z, Wu L, Hu P, Han S, Zhang T, Fan H, Jin W, Jin Q, Mu Y. Soft nanomaterial-based targeting polymersomes for near-infrared fluorescence multispectral in vivo imaging. NANOSCALE 2012; 4:7097-7105. [PMID: 23069779 DOI: 10.1039/c2nr32047a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We report here the soft nanomaterial-based targeting polymersomes for near-infrared (NIR) fluorescence imaging to carry out in vivo tumor detection. Two polymersome-based NIR fluorescent probes were prepared through the self-assembly of amphiphilic block copolymers, poly(butadiene-b-ethylene oxide) (PEO-b-PBD). Each of them was encapsulated with distinct hydrophobic near-infrared dyes (DiD and DiR) and modified with different targeting ligands (anti-CEA antibody and anti-EGFR antibody), respectively. After simultaneous injection of these two probes into the tumor-bearing mice via tail vein, multispectral near-infrared fluorescence images were obtained. The results indicate that both probes are successfully directed to the tumor foci, where two distinguishable fluorescent signals were detected through the unmixed fluorescence images. By taking advantage of two targeting polymersome-based probes with distinct fluorescent features, the proposed multispectral near-infrared fluorescence imaging method can greatly improve the specificity and accuracy for in vivo tumor detection.
Collapse
Affiliation(s)
- Zuhong Li
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Department of Control Science and Technology, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Godin B, Chiappini C, Srinivasan S, Alexander JF, Yokoi K, Ferrari M, Decuzzi P, Liu X. Discoidal Porous Silicon Particles: Fabrication and Biodistribution in Breast Cancer Bearing Mice. ADVANCED FUNCTIONAL MATERIALS 2012; 22:4225-4235. [PMID: 23227000 PMCID: PMC3516182 DOI: 10.1002/adfm.201200869] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Porous silicon (pSi) is emerging as a promising material in the development of nanovectors for the systemic delivery of therapeutic and imaging agents. The integration of photolithographic patterning, typical of the semiconductor industry, with electrochemical silicon etching provides a highly flexible strategy to fabricate monodisperse and precisely tailored nanovectors. Here, a microfabrication strategy for direct lithographic patterning of discoidal pSi particles is presented that enables precise and independent control over particle size, shape, and porous structure. Discoidal pSi nanovectors with diameters ranging from 500 to 2600 nm, heights from 200 to 700 nm, pore sizes from 5 to 150 nm, and porosities from 40 to 90% are demonstrated. The degradation in serum, interaction with immune and endothelial cells in vitro, and biodistribution in mice bearing breast tumors are assessed for two discoidal nanovectors with sizes of 600 nm × 400 nm and 1000 nm × 400 nm. It is shown that both particle types are degraded after 24 h of continuous gentle agitation in serum, do not stimulate cytokine release from macrophages or affect endothelial cell viability, and accumulate up to about 10% of the injected dose per gram tissue in orthotopic murine models of breast cancer. The accumulation of the discoidal pSi nanovectors into the breast tumor mass is found to be up to five times higher than for spherical silica beads with similar diameters.
Collapse
Affiliation(s)
- Biana Godin
- Department of Nanomedicine, The Methodist Hospital Research Institute, 6670 Bertner Ave, Houston, TX 77030, USA
| | - Ciro Chiappini
- Department of Nanomedicine, The Methodist Hospital Research Institute, 6670 Bertner Ave, Houston, TX 77030, USA
| | - Srimeenakshi Srinivasan
- Department of Nanomedicine, The Methodist Hospital Research Institute, 6670 Bertner Ave, Houston, TX 77030, USA
| | - Jenolyn F. Alexander
- Department of Nanomedicine, The Methodist Hospital Research Institute, 6670 Bertner Ave, Houston, TX 77030, USA
| | - Kenji Yokoi
- Department of Nanomedicine, The Methodist Hospital Research Institute, 6670 Bertner Ave, Houston, TX 77030, USA
| | - Mauro Ferrari
- Department of Nanomedicine, The Methodist Hospital Research Institute, 6670 Bertner Ave, Houston, TX 77030, USA
| | - Paolo Decuzzi
- Department of Nanomedicine, The Methodist Hospital Research Institute, 6670 Bertner Ave, Houston, TX 77030, USA
| | - Xuewu Liu
- Department of Nanomedicine, The Methodist Hospital Research Institute, 6670 Bertner Ave, Houston, TX 77030, USA
| |
Collapse
|
222
|
Park S, Kang S, Chen X, Kim EJ, Kim J, Kim N, Kim J, Jin MM. Tumor suppression via paclitaxel-loaded drug carriers that target inflammation marker upregulated in tumor vasculature and macrophages. Biomaterials 2012; 34:598-605. [PMID: 23099063 DOI: 10.1016/j.biomaterials.2012.10.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Accepted: 10/03/2012] [Indexed: 12/18/2022]
Abstract
Clinically approved chemotherapeutic nanoparticles may provide advantages over free drugs by achieving slower clearance and preferential accumulation in tumors. However, the lack of leaky vasculatures can create barriers to the permeation of ~100 nm-sized nanoparticles in solid tumors. We hypothesized that nanoparticles designed to target both tumor and tumor stroma would penetrate deeper into the tumors. To construct such comprehensive drug carriers, we utilized cross-linked amphiphilic polymer nanoparticles and functionalized them to target ICAM-1, a biomarker prevalent in various tumors and inflamed tumor stroma. The targeting moiety was derived from the modular domain present in α(L) integrin, which was engineered for high affinity and cross-reactivity with human and murine ICAM-1. ICAM-1-selective delivery of paclitaxel produced potent tumor suppression of not only ICAM-1-positive cervical cancer cells but also ICAM-1-negative tumors, presumably by causing cytotoxicity in tumor-associated endothelium (CD31(+)) and macrophages (CD68(+)) over-expressing ICAM-1. Contrary to the strategies of targeting only the tumor or specific tumor stromal constituents, we present a strategy in delivering therapeutics to the major cellular components of solid tumors. Drug carriers against inflammation-biomarkers may be effective against many different types of tumors, while being less susceptible to the highly mutable nature of tumor markers.
Collapse
Affiliation(s)
- Spencer Park
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | |
Collapse
|
223
|
Blache CA, Manuel ER, Kaltcheva TI, Wong AN, Ellenhorn JDI, Blazar BR, Diamond DJ. Systemic delivery of Salmonella typhimurium transformed with IDO shRNA enhances intratumoral vector colonization and suppresses tumor growth. Cancer Res 2012; 72:6447-56. [PMID: 23090116 DOI: 10.1158/0008-5472.can-12-0193] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Generating antitumor responses through the inhibition of tumor-derived immune suppression represents a promising strategy in the development of cancer immunotherapeutics. Here, we present a strategy incorporating delivery of the bacterium Salmonella typhimurium (ST), naturally tropic for the hypoxic tumor environment, transformed with a small hairpin RNA (shRNA) plasmid against the immunosuppressive molecule indoleamine 2,3-dioxygenase 1 (shIDO). When systemically delivered into mice, shIDO silences host IDO expression and leads to massive intratumoral cell death that is associated with significant tumor infiltration by polymorphonuclear neutrophils (PMN). shIDO-ST treatment causes tumor cell death independently of host IDO and adaptive immunity, which may have important implications for use in immunosuppressed patients with cancer. Furthermore, shIDO-ST treatment increases reactive oxygen species (ROS) produced by infiltrating PMNs and, conversely, PMN immunodepletion abrogates tumor control. Silencing of host IDO significantly enhances S. typhimurium colonization, suggesting that IDO expression within the tumor controls the immune response to S. typhimurium. In summary, we present a novel approach to cancer treatment that involves the specific silencing of tumor-derived IDO that allows for the recruitment of ROS-producing PMNs, which may act primarily to clear S. typhimurium infection, but in the process also induces apoptosis of surrounding tumor tissue resulting in a vigorous antitumor effect.
Collapse
Affiliation(s)
- Céline A Blache
- Department of Virology, Division of Translational Vaccine Research, City of Hope, Duarte, California, USA
| | | | | | | | | | | | | |
Collapse
|
224
|
|
225
|
Tien J, Truslow JG, Nelson CM. Modulation of invasive phenotype by interstitial pressure-driven convection in aggregates of human breast cancer cells. PLoS One 2012; 7:e45191. [PMID: 23028839 PMCID: PMC3445465 DOI: 10.1371/journal.pone.0045191] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/16/2012] [Indexed: 11/18/2022] Open
Abstract
This paper reports the effect of elevated pressure on the invasive phenotype of patterned three-dimensional (3D) aggregates of MDA-MB-231 human breast cancer cells. We found that the directionality of the interstitial pressure profile altered the frequency of invasion by cells located at the surface of an aggregate. In particular, application of pressure at one end of an aggregate suppressed invasion at the opposite end. Experimental alteration of the configuration of cell aggregates and computational modeling of the resulting flow and solute concentration profiles revealed that elevated pressure inhibited invasion by altering the chemical composition of the interstitial fluid near the surface of the aggregate. Our data reveal a link between hydrostatic pressure, interstitial convection, and invasion.
Collapse
Affiliation(s)
- Joe Tien
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
- * E-mail: (JT); (CMN)
| | - James G. Truslow
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Celeste M. Nelson
- Department of Chemical and Biological Engineering and Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- * E-mail: (JT); (CMN)
| |
Collapse
|
226
|
Yokoi K, Godin B, Oborn CJ, Alexander JF, Liu X, Fidler IJ, Ferrari M. Porous silicon nanocarriers for dual targeting tumor associated endothelial cells and macrophages in stroma of orthotopic human pancreatic cancers. Cancer Lett 2012; 334:319-27. [PMID: 23000514 DOI: 10.1016/j.canlet.2012.09.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 09/04/2012] [Accepted: 09/10/2012] [Indexed: 01/24/2023]
Abstract
Pancreatic cancer is a highly fatal disease characterized by a dominant stroma formation. Exploring new biological targets, specifically those overexpressed in stroma cells, holds significant potential for the design of specific nanocarriers to attain homing of therapeutic and imaging agents to the tumor. In clinical specimens of pancreatic cancer, we found increased expression of CD59 in tumor associated endothelial cells as well as infiltrating cells in the stroma as compared to uninvolved pancreas. We explored this dual targeting effect using orthotopic human pancreatic cancer in nude mice. By immunofluorescence analysis, we confirmed the increased expression of Ly6C, mouse homolog of CD59, in tumor associated endothelial cells as well as in macrophages within the stroma. We decorated the surface of porous silicon nanocarriers with Ly6C antibody. Targeted nanocarriers injected intravenously accumulated to tumor associated endothelial cells within 15min. At 4h after administration, 9.8±2.3% of injected dose/g tumor of the Ly6C targeting nanocarriers accumulated in the pancreatic tumors as opposed to 0.5±1.8% with non-targeted nanocarriers. These results suggest that Ly6C (or CD59) can serve as a novel dual target to deliver therapeutic agents to the stroma of pancreatic tumors.
Collapse
Affiliation(s)
- Kenji Yokoi
- Department of Nanomedicine, The Methodist Hospital Research Institute, 6670 Bertner St., Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
227
|
Thurber GM, Dane Wittrup K. A mechanistic compartmental model for total antibody uptake in tumors. J Theor Biol 2012; 314:57-68. [PMID: 22974563 DOI: 10.1016/j.jtbi.2012.08.034] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 08/23/2012] [Accepted: 08/27/2012] [Indexed: 10/27/2022]
Abstract
Antibodies are under development to treat a variety of cancers, such as lymphomas, colon, and breast cancer. A major limitation to greater efficacy for this class of drugs is poor distribution in vivo. Localization of antibodies occurs slowly, often in insufficient therapeutic amounts, and distributes heterogeneously throughout the tumor. While the microdistribution around individual vessels is important for many therapies, the total amount of antibody localized in the tumor is paramount for many applications such as imaging, determining the therapeutic index with antibody drug conjugates, and dosing in radioimmunotherapy. With imaging and pretargeted therapeutic strategies, the time course of uptake is critical in determining when to take an image or deliver a secondary reagent. We present here a simple mechanistic model of antibody uptake and retention that captures the major rates that determine the time course of antibody concentration within a tumor including dose, affinity, plasma clearance, target expression, internalization, permeability, and vascularization. Since many of the parameters are known or can be estimated in vitro, this model can approximate the time course of antibody concentration in tumors to aid in experimental design, data interpretation, and strategies to improve localization.
Collapse
Affiliation(s)
- Greg M Thurber
- Dept. Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | |
Collapse
|
228
|
Targeted nanoparticulate drug-delivery systems for treatment of solid tumors: a review. Ther Deliv 2012; 1:713-34. [PMID: 22833959 DOI: 10.4155/tde.10.47] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Technological advancements in the field of biomaterials, polymer chemistry and drug-delivery techniques have aided the development of a number of new drug-delivery systems for targeting to solid tumors. Numerous research groups have explored the possibility of utilizing tumor-specific drug-delivery systems using nanoparticles. In this review we have attempted to highlight the achievements of some research groups actively involved in nanoparticulate drug delivery systems. The manuscript presents an in-depth discussion for nanoparticle systems such as micelles, liposomes, dendrimers, nanoemulsion, solid lipid nanoparticles and carbon fullerenes as chemotherapeutic options. The review reiterates the importance of the basic fundamentals of targeted drug delivery using nanoparticles and the influence of physiological parameters on their efficacy.
Collapse
|
229
|
Bumbaca D, Xiang H, Boswell CA, Port RE, Stainton SL, Mundo EE, Ulufatu S, Bagri A, Theil FP, Fielder PJ, Khawli LA, Shen BQ. Maximizing tumour exposure to anti-neuropilin-1 antibody requires saturation of non-tumour tissue antigenic sinks in mice. Br J Pharmacol 2012; 166:368-77. [PMID: 22074316 DOI: 10.1111/j.1476-5381.2011.01777.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Neuropilin-1 (NRP1) is a VEGF receptor that is widely expressed in normal tissues and is involved in tumour angiogenesis. MNRP1685A is a rodent and primate cross-binding human monoclonal antibody against NRP1 that exhibits inhibition of tumour growth in NPR1-expressing preclinical models. However, widespread NRP1 expression in normal tissues may affect MNRP1685A tumour uptake. The objective of this study was to assess MNRP1685A biodistribution in tumour-bearing mice to understand the relationships between dose, non-tumour tissue uptake and tumour uptake. EXPERIMENTAL APPROACH Non-tumour-bearing mice were given unlabelled MNRP1685A at 10 mg·kg(-1) . Tumour-bearing mice were given (111) In-labelled MNRP1685A along with increasing amounts of unlabelled antibody. Blood and tissues were collected from all animals to determine drug concentration (unlabelled) or radioactivity level (radiolabelled). Some animals were imaged using single photon emission computed tomography - X-ray computed tomography. KEY RESULTS MNRP1685A displayed faster serum clearance than pertuzumab, indicating that target binding affected MNRP1685A clearance. I.v. administration of (111) In-labelled MNRP1685A to tumour-bearing mice yielded minimal radioactivity in the plasma and tumour, but high levels in the lungs and liver. Co-administration of unlabelled MNRP1685A with the radiolabelled antibody was able to competitively block lungs and liver radioactivity uptake in a dose-dependent manner while augmenting plasma and tumour radioactivity levels. CONCLUSIONS AND IMPLICATIONS These results indicate that saturation of non-tumour tissue uptake is required in order to achieve tumour uptake and acceptable exposure to antibody. Utilization of a rodent and primate cross-binding antibody allows for translation of these results to clinical settings.
Collapse
Affiliation(s)
- Daniela Bumbaca
- Department of Pharmacokinetic and Pharmacodynamic Sciences, Genentech Research and Early Development, South San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Zupanic A, Kos B, Miklavcic D. Treatment planning of electroporation-based medical interventions: electrochemotherapy, gene electrotransfer and irreversible electroporation. Phys Med Biol 2012; 57:5425-40. [PMID: 22864181 DOI: 10.1088/0031-9155/57/17/5425] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In recent years, cancer electrochemotherapy (ECT), gene electrotransfer for gene therapy and DNA vaccination (GET) and tissue ablation with irreversible electroporation (IRE) have all entered clinical practice. We present a method for a personalized treatment planning procedure for ECT, GET and IRE, based on medical image analysis, numerical modelling of electroporation and optimization with the genetic algorithm, and several visualization tools for treatment plan assessment. Each treatment plan provides the attending physician with optimal positions of electrodes in the body and electric pulse parameters for optimal electroporation of the target tissues. For the studied case of a deep-seated tumour, the optimal treatment plans for ECT and IRE require at least two electrodes to be inserted into the target tissue, thus lowering the necessary voltage for electroporation and limiting damage to the surrounding healthy tissue. In GET, it is necessary to place the electrodes outside the target tissue to prevent damage to target cells intended to express the transfected genes. The presented treatment planning procedure is a valuable tool for clinical and experimental use and evaluation of electroporation-based treatments.
Collapse
Affiliation(s)
- Anze Zupanic
- University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, 1000, Ljubljana, Slovenia
| | | | | |
Collapse
|
231
|
Wang Y, Liu Y, Luehmann H, Xia X, Brown P, Jarreau C, Welch M, Xia Y. Evaluating the pharmacokinetics and in vivo cancer targeting capability of Au nanocages by positron emission tomography imaging. ACS NANO 2012; 6:5880-8. [PMID: 22690722 PMCID: PMC3404261 DOI: 10.1021/nn300464r] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Gold nanocages have recently emerged as a novel class of photothermal transducers and drug carriers for cancer treatment. However, their pharmacokinetics and tumor targeting capability remain largely unexplored due to the lack of an imaging modality for quick and reliable mapping of their distributions in vivo. Herein, Au nanocages were prepared with controlled physicochemical properties and radiolabeled with (64)Cu in high specific activities for in vivo evaluation using positron emission tomography (PET). Our pharmacokinetic studies with femtomolar administrations suggest that 30 nm nanocages had a greatly improved biodistribution profile than 55 nm nanocages, together with higher blood retention and lower hepatic and splenic uptakes. In a murine EMT-6 breast cancer model, the small cages also showed a significantly higher level of tumor uptake and a greater tumor-to-muscle ratio than the large cages. Quantitative PET imaging confirmed rapid accumulation and retention of Au nanocages inside the tumors. The ability to directly and quickly image the distribution of Au nanocages in vivo allows us to further optimize their physicochemical properties for a range of theranostic applications.
Collapse
Affiliation(s)
- Yucai Wang
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, United States
| | - Yongjian Liu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States
- Address correspondence to , , and
| | - Hannah Luehmann
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Xiaohu Xia
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, United States
| | - Paige Brown
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, United States
| | - Chad Jarreau
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Michael Welch
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States
- Address correspondence to , , and
| | - Younan Xia
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, United States
- Address correspondence to , , and
| |
Collapse
|
232
|
Ruoslahti E. Peptides as targeting elements and tissue penetration devices for nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:3747-56. [PMID: 22550056 PMCID: PMC3947925 DOI: 10.1002/adma.201200454] [Citation(s) in RCA: 322] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 02/29/2012] [Indexed: 04/14/2023]
Abstract
The use of nanoparticles in medicine (nanomedicine) has recently become an intensely studied field. Nanoparticles carrying drugs and imaging agents have already reached the clinic, but they are essentially passive delivery vehicles, not what are referred to as "smart" nanoparticles. An important function to add to make nanoparticles smarter is active homing to the target tissue. It makes nanoparticles accumulate in the target tissue at higher concentrations than would be the case without this feature, increasing therapeutic efficacy and reducing side effects. This review discusses the recent developments in the nanoparticle targeting field with emphasis on peptides that home to vascular "zip codes" in target tissues and provide a tissue- and cell-penetrating function.
Collapse
Affiliation(s)
- Erkki Ruoslahti
- Center for Nanomedicine, UCSB, Biology II Bldg., University of California, Santa Barbara, CA 93106-9610, USA.
| |
Collapse
|
233
|
Sailor MJ, Park JH. Hybrid nanoparticles for detection and treatment of cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:3779-802. [PMID: 22610698 PMCID: PMC3517011 DOI: 10.1002/adma.201200653] [Citation(s) in RCA: 312] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/05/2012] [Indexed: 05/04/2023]
Abstract
There is currently considerable effort to incorporate both diagnostic and therapeutic functions into a single nanoscale system for the more effective treatment of cancer. Nanoparticles have great potential to achieve such dual functions, particularly if more than one type of nanostructure can be incorporated in a nanoassembly, referred to in this review as a hybrid nanoparticle. Here we review recent developments in the synthesis and evaluation of such hybrid nanoparticles based on two design strategies (barge vs. tanker), in which liposomal, micellar, porous silica, polymeric, viral, noble metal, and nanotube systems are incorporated either within (barge) or at the surface of (tanker) a nanoparticle. We highlight the design factors that should be considered to obtain effective nanodevices for cancer detection and treatment.
Collapse
Affiliation(s)
- Michael J Sailor
- Materials Science and Engineering Program, Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman, La Jolla, CA 92093, USA.
| | | |
Collapse
|
234
|
Foss CA, Mease RC, Cho SY, Kim HJ, Pomper MG. GCPII imaging and cancer. Curr Med Chem 2012; 19:1346-59. [PMID: 22304713 DOI: 10.2174/092986712799462612] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 12/26/2011] [Accepted: 12/27/2011] [Indexed: 12/11/2022]
Abstract
Glutamate carboxypeptidase II (GCPII) in the central nervous system is referred to as the prostate-specific membrane antigen (PSMA) in the periphery. PSMA serves as a target for imaging and treatment of prostate cancer and because of its expression in solid tumor neovasculature has the potential to be used in this regard for other malignancies as well. An overview of GCPII/PSMA in cancer, as well as a discussion of imaging and therapy of prostate cancer using a wide variety of PSMA-targeting agents is provided.
Collapse
Affiliation(s)
- C A Foss
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical School, Baltimore, MD 21231, USA
| | | | | | | | | |
Collapse
|
235
|
Changes in global gene expression associated with 3D structure of tumors: an ex vivo matrix-free mesothelioma spheroid model. PLoS One 2012; 7:e39556. [PMID: 22737246 PMCID: PMC3380922 DOI: 10.1371/journal.pone.0039556] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 05/27/2012] [Indexed: 02/06/2023] Open
Abstract
Tumor microenvironments present significant barriers to anti-tumor agents. Molecules involved in multicellular tumor microenvironments, however, are difficult to study ex vivo. Here, we generated a matrix-free tumor spheroid model using the NCI-H226 mesothelioma cell line and compared the gene expression profiles of spheroids and monolayers using microarray analysis. Microarray analysis revealed that 142 probe sets were differentially expressed between tumor spheroids and monolayers. Gene ontology analysis revealed that upregulated genes were primarily related to immune response, wound response, lymphocyte stimulation and response to cytokine stimulation, whereas downregulated genes were primarily associated with apoptosis. Among the 142 genes, 27 are located in the membrane and related to biologic processes of cellular movement, cell-to-cell signaling, cellular growth and proliferation and morphology. Western blot analysis validated elevation of MMP2, BAFF/BLyS/TNFSF13B, RANTES/CCL5 and TNFAIP6/TSG-6 protein expression in spheroids as compared to monolayers. Thus, we have reported the first large scale comparison of the transcriptional profiles using an ex vivo matrix-free spheroid model to identify genes specific to the three-dimensional biological structure of tumors. The method described here can be used for gene expression profiling of tumors other than mesothelioma.
Collapse
|
236
|
Tichauer KM, Samkoe KS, Sexton KJ, Gunn JR, Hasan T, Pogue BW. Improved tumor contrast achieved by single time point dual-reporter fluorescence imaging. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:066001. [PMID: 22734757 PMCID: PMC3381038 DOI: 10.1117/1.jbo.17.6.066001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In this study, we demonstrate a method to quantify biomarker expression that uses an exogenous dual-reporter imaging approach to improve tumor signal detection. The uptake of two fluorophores, one nonspecific and one targeted to the epidermal growth factor receptor (EGFR), were imaged at 1 h in three types of xenograft tumors spanning a range of EGFR expression levels (n=6 in each group). Using this dual-reporter imaging methodology, tumor contrast-to-noise ratio was amplified by >6 times at 1 h postinjection and >2 times at 24 h. Furthermore, by as early as 20 min postinjection, the dual-reporter imaging signal in the tumor correlated significantly with a validated marker of receptor density (P<0.05, r=0.93). Dual-reporter imaging can improve sensitivity and specificity over conventional fluorescence imaging in applications such as fluorescence-guided surgery and directly approximates the receptor status of the tumor, a measure that could be used to inform choices of biological therapies.
Collapse
Affiliation(s)
- Kenneth M Tichauer
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire 03755, USA.
| | | | | | | | | | | |
Collapse
|
237
|
Bumbaca D, Boswell CA, Fielder PJ, Khawli LA. Physiochemical and biochemical factors influencing the pharmacokinetics of antibody therapeutics. AAPS JOURNAL 2012; 14:554-8. [PMID: 22610647 DOI: 10.1208/s12248-012-9369-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 05/08/2012] [Indexed: 01/13/2023]
Abstract
Monoclonal antibodies are increasingly being developed to treat multiple disease areas, including those related to oncology, immunology, neurology, and ophthalmology. There are multiple factors, such as charge, size, neonatal Fc receptor (FcRn) binding affinity, target affinity and biology, immunoglobulin G (IgG) subclass, degree and type of glycosylation, injection route, and injection site, that could affect the pharmacokinetics (PK) of these large macromolecular therapeutics, which in turn could have ramifications on their efficacy and safety. This minireview examines how characteristics of the antibodies could be altered to change their PK profiles. For example, it was observed that a net charge modification of at least a 1-unit shift in isoelectric point altered antibody clearance. Antibodies with enhanced affinity for FcRn at pH 6.0 display longer serum half-lives and slower clearances than wild type. Antibody fragments have different clearance rates and tissue distribution profiles than full length antibodies. Fc glycosylation is perceived to have a minimal effect on PK while that of terminal high mannose remains unclear. More investigation is warranted to determine if injection route and/or site impacts PK. Nonetheless, a better understanding of the effects of all these variations may allow for the better design of antibody therapeutics.
Collapse
Affiliation(s)
- Daniela Bumbaca
- Department of Pharmacokinetic and Pharmacodynamic Sciences, Genentech, Inc., South San Francisco, California 94080, USA.
| | | | | | | |
Collapse
|
238
|
Reversible masking using low-molecular-weight neutral lipids to achieve optimal-targeted delivery. JOURNAL OF DRUG DELIVERY 2012; 2012:173465. [PMID: 22655199 PMCID: PMC3359711 DOI: 10.1155/2012/173465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 02/09/2012] [Accepted: 02/27/2012] [Indexed: 12/28/2022]
Abstract
Intravenous injection of therapeutics is required to effectively treat or cure metastatic cancer, certain cardiovascular diseases, and other acquired or inherited diseases. Using this route of delivery allows potential uptake in all disease targets that are accessed by the bloodstream. However, normal tissues and organs also have the potential for uptake of therapeutic agents. Therefore, investigators have used targeted delivery to attempt delivery solely to the target cells; however, use of ligands on the surface of delivery vehicles to target specific cell surface receptors is not sufficient to avoid nonspecific uptake. PEGylation has been used for decades to try to avoid nonspecific uptake but suffers from many problems known as “The PEGylation Dilemma.” We have solved this dilemma by replacing PEGylation with reversible masking using low-molecular-weight neutral lipids in order to achieve optimal-targeted delivery solely to target cells. Our paper will focus on this topic.
Collapse
|
239
|
Abstract
RNA interference holds the promise to knock down expression of every cancer gene. Both academic laboratories and pharmaceutical companies have committed heavily on manpower and financial resources to develop small interfering RNA (siRNA) cancer therapeutics over the last decade. Although significant advances have been made in the design of siRNA therapeutics and mechanism of action on cancer cell killing, there are still many hurdles to overcome including effective delivery of therapeutics in vivo. Nanotechnology has had an important role in the development of delivery vectors so far. This article summarizes current nanovectors for siRNA delivery, discusses technical challenges in overcoming biological barriers, and introduces the multistage vector system for tumor-specific delivery.
Collapse
Affiliation(s)
- H Shen
- The Methodist Hospital Research Institute, Houston, TX, USA
| | | | | |
Collapse
|
240
|
"Targeting" nanoparticles: the constraints of physical laws and physical barriers. J Control Release 2012; 164:115-24. [PMID: 22484196 DOI: 10.1016/j.jconrel.2012.03.022] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/10/2012] [Accepted: 03/13/2012] [Indexed: 11/20/2022]
Abstract
In comparison to the complexities of the body, its organs, its normal and aberrant cells, many nanoparticles will appear to be relatively simple objects. This view is deceptive because the physicochemical properties of nanosystems, although quite well understood on the basis of material science, surface science and colloid theory, are far from simple in practice. While their properties are largely controllable in vitro, often purportedly "designed", their administration by any route changing environments conspires to produce additional layers of complexity. Some of the key physical laws and physicochemical parameters governing the fate of nanoparticles on their journey from point of intravenous administration to desired destinations such as tumors are discussed. Much of the science relevant to nanocarrier based targeting has been elaborated in studying purely physical phenomena, but there can be found therein many analogies with biological systems. These include factors that impede quantitative targeting: diffusion in complex media, aggregation and flocculation, hindered behavior of particles in confined spaces, jamming and dispersion in flow. All of these have the ability to influence fate and destination. Most of the critical processes are particle size dependent but not always linearly so. Virtually all processes in vivo involve an element of probability. Particle size and properties can be controlled to a large extent, but stochastic processes cannot by definition. Progress has been made, but the quantitative delivery of a nanocarrier to defined sites in tumors is neither inevitable nor yet predictable.
Collapse
|
241
|
Bandekar A, Karve S, Chang MY, Mu Q, Rotolo J, Sofou S. Antitumor efficacy following the intracellular and interstitial release of liposomal doxorubicin. Biomaterials 2012; 33:4345-52. [PMID: 22429980 DOI: 10.1016/j.biomaterials.2012.02.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Accepted: 02/22/2012] [Indexed: 12/13/2022]
Abstract
pH-triggered lipid-membranes designed from biophysical principles are evaluated in the form of targeted liposomal doxorubicin with the aim to ultimately better control the growth of vascularized tumors. We compare the antitumor efficacy of anti-HER2/neu pH-triggered lipid vesicles encapsulating doxorubicin to the anti-HER2/neu form of an FDA approved liposomal doxorubicin of DSPC/cholesterol-based vesicles. The HER2/neu receptor is chosen due to its abundance in human breast cancers and its connection to low prognosis. On a subcutaneous murine BT474 xenograft model, superior control of tumor growth is demonstrated by targeted pH-triggered vesicles relative to targeted DSPC/cholesterol-based vesicles (35% vs. 19% decrease in tumor volume after 32 days upon initiation of treatment). Superior tumor control is also confirmed on SKBR3 subcutaneous xenografts of lower HER2/neu expression. The non-targeted form of pH-triggered vesicles encapsulating doxorubicin results also in better tumor control relative to the non-targeted DSPC/cholesterol-based vesicles (34% vs. 41% increase in tumor volume). Studies in BT474 multicellular spheroids suggest that the observed efficacy could be attributed to release of doxorubicin directly into the acidic tumor interstitium from pH-triggered vesicles extravasated into the tumor but not internalized by cancer cells. pH-triggered liposome carriers engineered from gel-phase bilayers that reversibly phase-separate with lowering pH, form transiently defective interfacial boundaries resulting in fast release of encapsulated doxorubicin. Our studies show that pH-triggered liposomes release encapsulated doxorubicin intracellularly and intratumorally, and may improve tumor control at the same or even lower administered doses relative to FDA approved liposomal chemotherapy.
Collapse
Affiliation(s)
- Amey Bandekar
- Biomedical Engineering, and Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
242
|
Tomasi G, Kimberley S, Rosso L, Aboagye E, Turkheimer F. Double-input compartmental modeling and spectral analysis for the quantification of positron emission tomography data in oncology. Phys Med Biol 2012; 57:1889-906. [DOI: 10.1088/0031-9155/57/7/1889] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
243
|
Raouane M, Desmaële D, Urbinati G, Massaad-Massade L, Couvreur P. Lipid conjugated oligonucleotides: a useful strategy for delivery. Bioconjug Chem 2012; 23:1091-104. [PMID: 22372953 DOI: 10.1021/bc200422w] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oligonucleotides, including antisense oligonucleotides and siRNA, are promising therapeutic agents against a variety of diseases. Effective delivery of these molecules is critical in view of their clinical application. Therefore, cation-based nanoplexes have been developed to improve the stability as well as the intracellular penetration of these short fragments of nucleic acids. However, this approach is clearly limited by the strong interaction with proteins after administration and by the inherent toxicity of these positively charged transfection materials. Neutral lipid-oligonucleotide conjugates have become a subject of considerable interest to improve the safe delivery of oligonucleotides. These molecules have been chemically conjugated to hydrophobic moieties such as cholesterol, squalene, or fatty acids to enhance their pharmacokinetic behavior and trans-membrane delivery. The present review gives an account of the main synthetic methods available to conjugate lipids to oligonucleotides and will discuss the pharmacological efficacy of this approach.
Collapse
Affiliation(s)
- Mouna Raouane
- Laboratoire de physicochimie, Pharmacotechnie et biopharmacie, UMR CNRS 8612, Université Paris Sud 11 , Faculté de pharmacie, 5 rue J. B. Clément, 92296 Châtenay-Malabry, France
| | | | | | | | | |
Collapse
|
244
|
Sawant RR, Torchilin VP. Challenges in development of targeted liposomal therapeutics. AAPS JOURNAL 2012; 14:303-15. [PMID: 22415612 DOI: 10.1208/s12248-012-9330-0] [Citation(s) in RCA: 247] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 02/03/2012] [Indexed: 01/09/2023]
Abstract
Liposomes, phospholipid vesicles with a bilayered membrane structure, have been widely used as pharmaceutical carriers for drugs and genes, in particular for treatment of cancer. To enhance the efficacy of the liposomal drugs, drug-loaded liposomes are targeted to the tumors by means of passive (enhanced permeability and retention mediated) targeting, based on the longevity of liposomes in blood and its accumulation in pathological sites with compromised vasculature, and active targeting, based on the attachment of specific ligands to the liposomal surface to bind certain antigens on the target cells. Antibody-targeted liposomes loaded with anticancer drugs demonstrate high potential for clinical applications. This review highlights evolution of liposomes for both passive and active targeting and challenges in development of targeted liposomal therapeutics specifically antibody-targeted liposomes.
Collapse
Affiliation(s)
- Rupa R Sawant
- Department of Pharmaceutical Sciences and Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Mugar Building, Room 312, 360 Huntington Avenue, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
245
|
Tarbell JM, Shi ZD. Effect of the glycocalyx layer on transmission of interstitial flow shear stress to embedded cells. Biomech Model Mechanobiol 2012; 12:111-21. [PMID: 22411016 DOI: 10.1007/s10237-012-0385-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 02/24/2012] [Indexed: 11/28/2022]
Abstract
In this paper, a simple theoretical model is developed to describe the transmission of force from interstitial fluid flow to the surface of a cell covered by a proteoglycan / glycoprotein layer (glycocalyx) and embedded in an extracellular matrix. Brinkman equations are used to describe flow through the extracellular matrix and glycocalyx layers and the solid mechanical stress developed in the glycocalyx by the fluid flow loading is determined. Using reasonable values for the Darcy permeability of extracellular matrix and glycocalyx layers and interstitial flow velocity, we are able to estimate the fluid and solid shear stresses imposed on the surface of embedded vascular, cartilage and tumor cells in vivo and in vitro. The principal finding is that the surface solid stress is typically one to two orders of magnitude larger than the surface fluid stress. This indicates that interstitial flow shear stress can be sensed by the cell surface glycocalyx, supporting numerous recent observations that interstitial flow can induce mechanotransduction in embedded cells. This study may contribute to understanding of interstitial flow-related mechanobiology in embryogenesis, tumorigenesis, tissue physiology and diseases and has implications in tissue engineering.
Collapse
Affiliation(s)
- John M Tarbell
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA.
| | | |
Collapse
|
246
|
Puvanakrishnan P, Park J, Chatterjee D, Krishnan S, Tunnell JW. In vivo tumor targeting of gold nanoparticles: effect of particle type and dosing strategy. Int J Nanomedicine 2012; 7:1251-8. [PMID: 22419872 PMCID: PMC3299576 DOI: 10.2147/ijn.s29147] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Gold nanoparticles (GNPs) have gained significant interest as nanovectors for combined imaging and photothermal therapy of tumors. Delivered systemically, GNPs preferentially accumulate at the tumor site via the enhanced permeability and retention effect, and when irradiated with near infrared light, produce sufficient heat to treat tumor tissue. The efficacy of this process strongly depends on the targeting ability of the GNPs, which is a function of the particle’s geometric properties (eg, size) and dosing strategy (eg, number and amount of injections). The purpose of this study was to investigate the effect of GNP type and dosing strategy on in vivo tumor targeting. Specifically, we investigated the in vivo tumor-targeting efficiency of pegylated gold nanoshells (GNSs) and gold nanorods (GNRs) for single and multiple dosing. We used Swiss nu/nu mice with a subcutaneous tumor xenograft model that received intravenous administration for a single and multiple doses of GNS and GNR. We performed neutron activation analysis to quantify the gold present in the tumor and liver. We performed histology to determine if there was acute toxicity as a result of multiple dosing. Neutron activation analysis results showed that the smaller GNRs accumulated in higher concentrations in the tumor compared to the larger GNSs. We observed a significant increase in GNS and GNR accumulation in the liver for higher doses. However, multiple doses increased targeting efficiency with minimal effect beyond three doses of GNPs. These results suggest a significant effect of particle type and multiple doses on increasing particle accumulation and on tumor targeting ability.
Collapse
Affiliation(s)
- Priyaveena Puvanakrishnan
- Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station, Austin, TX 78712, USA.
| | | | | | | | | |
Collapse
|
247
|
van de Ven AL, Wu M, Lowengrub J, McDougall SR, Chaplain MAJ, Cristini V, Ferrari M, Frieboes HB. Integrated intravital microscopy and mathematical modeling to optimize nanotherapeutics delivery to tumors. AIP ADVANCES 2012; 2:11208. [PMID: 22489278 PMCID: PMC3321519 DOI: 10.1063/1.3699060] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 11/05/2011] [Indexed: 05/15/2023]
Abstract
Inefficient vascularization hinders the optimal transport of cell nutrients, oxygen, and drugs to cancer cells in solid tumors. Gradients of these substances maintain a heterogeneous cell-scale microenvironment through which drugs and their carriers must travel, significantly limiting optimal drug exposure. In this study, we integrate intravital microscopy with a mathematical model of cancer to evaluate the behavior of nanoparticle-based drug delivery systems designed to circumvent biophysical barriers. We simulate the effect of doxorubicin delivered via porous 1000 x 400 nm plateloid silicon particles to a solid tumor characterized by a realistic vasculature, and vary the parameters to determine how much drug per particle and how many particles need to be released within the vasculature in order to achieve remission of the tumor. We envision that this work will contribute to the development of quantitative measures of nanoparticle design and drug loading in order to optimize cancer treatment via nanotherapeutics.
Collapse
|
248
|
In vivo particle tracking and photothermal ablation using plasmon-resonant gold nanostars. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2012; 8:1355-63. [PMID: 22370335 DOI: 10.1016/j.nano.2012.02.005] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 01/26/2012] [Accepted: 02/17/2012] [Indexed: 11/21/2022]
Abstract
UNLABELLED Gold nanostars offer unique plasmon properties that efficiently transduce photon energy into heat for photothermal therapy. Nanostars, with their small core size and multiple long thin branches, exhibit high absorption cross-sections that are tunable in the near-infrared region with relatively low scattering effect, making them efficient photothermal transducers. Here, we demonstrate particle tracking and photothermal ablation both in vitro and in vivo. Using SKBR3 breast cancer cells incubated with bare nanostars, we observed photothermal ablation within 5 minutes of irradiation (980-nm continuous-wave laser, 15 W/cm2). On a mouse injected systemically with PEGylated nanostars for 2 days, extravasation of nanostars was observed and localized photothermal ablation was demonstrated on a dorsal window chamber within 10 minutes of irradiation (785-nm continuous-wave laser, 1.1 W/cm2). These preliminary results of plasmon-enhanced localized hyperthermia are encouraging and have illustrated the potential of gold nanostars as efficient photothermal agents in cancer therapy. FROM THE CLINICAL EDITOR Gold nanostars are tunable in the near-infrared region with low scattering, thus enable photothermal therapy. Encouraging preliminary results of plasmon-enhanced localized hyperthermia both in vitro and in vivo demonstrate that Au nanostars may be efficient photothermal agents for cancer therapy.
Collapse
|
249
|
Xue X, Liang XJ. Overcoming drug efflux-based multidrug resistance in cancer with nanotechnology. CHINESE JOURNAL OF CANCER 2012; 31:100-9. [PMID: 22237039 PMCID: PMC3777470 DOI: 10.5732/cjc.011.10326] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Multidrug resistance (MDR), which significantly decreases the efficacy of anticancer drugs and causes tumor recurrence, has been a major challenge in clinical cancer treatment with chemotherapeutic drugs for decades. Several mechanisms of overcoming drug resistance have been postulated. Well known P-glycoprotein (P-gp) and other drug efflux transporters are considered to be critical in pumping anticancer drugs out of cells and causing chemotherapy failure. Innovative theranostic (therapeutic and diagnostic) strategies with nanoparticles are rapidly evolving and are anticipated to offer opportunities to overcome these limits. In this review, we discuss the mechanisms of drug efflux-mediated resistance and the application of multiple nanoparticle-based platforms to overcome chemoresistance and improve therapeutic outcome.
Collapse
Affiliation(s)
- Xue Xue
- National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | | |
Collapse
|
250
|
Abstract
We have recently described a class of peptides that improve drug delivery by increasing penetration of drugs into solid tumors. These peptides contain a C-terminal C-end Rule (CendR) sequence motif (R/K)XX(R/K), which is responsible for cell internalization and tissue-penetration activity. Tumor-specific CendR peptides contain both a tumor-homing motif and a cryptic CendR motif that is proteolytically unmasked in tumor tissue. A previously described cyclic tumor-homing peptide, LyP-1 (sequence: CGNKRTRGC), contains a CendR element and is capable of tissue penetration. We use here the truncated form of LyP-1, in which the CendR motif is exposed (CGNKRTR; tLyP-1), and show that both LyP-1 and tLyP-1 internalize into cells through the neuropilin-1-dependent CendR internalization pathway. Moreover, we show that neuropilin-2 also binds tLyP-1 and that this binding equally activates the CendR pathway. Fluorescein-labeled tLyP-1 peptide and tLyP-1-conjugated nanoparticles show robust and selective homing to tumors, penetrating from the blood vessels into the tumor parenchyma. The truncated peptide is more potent in this regard than the parent peptide LyP-1. tLyP-1 furthermore improves extravasation of a co-injected nanoparticle into the tumor tissue. These properties make tLyP-1 a promising tool for targeted delivery of therapeutic and diagnostic agents to breast cancers and perhaps other types of tumors.
Collapse
|