201
|
|
202
|
Eakteiman G, Moses-Koch R, Moshitzky P, Mestre-Rincon N, Vassão DG, Luck K, Sertchook R, Malka O, Morin S. Targeting detoxification genes by phloem-mediated RNAi: A new approach for controlling phloem-feeding insect pests. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 100:10-21. [PMID: 29859812 DOI: 10.1016/j.ibmb.2018.05.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/29/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
Many phloem-feeding insects are considered severe pests of agriculture and are controlled mainly by chemical insecticides. Continued extensive use of these inputs is environmentally undesirable, and also leads to the development of insecticide resistance. Here, we used a plant-mediated RNA interference (RNAi) approach, to develop a new control strategy for phloem-feeding insects. The approach aims to silence "key" detoxification genes, involved in the insect's ability to neutralize defensive and toxic plant chemistry. We targeted a glutathione S-transferase (GST) gene, BtGSTs5, in the phloem-feeding whitefly Bemisia tabaci, a devastating global agricultural pest. We report three major findings. First, significant down regulation of the BtGSTs5 gene was obtained in the gut of B. tabaci when the insects were fed on Arabidopsis thaliana transgenic plants expressing dsRNA against BtGSTs5 under a phloem-specific promoter. This brings evidence that phloem-feeding insects can be efficiently targeted by plant-mediated RNAi. Second, in-silico and in-vitro analyses indicated that the BtGSTs5 enzyme can accept as substrates, hydrolyzed aliphatic- and indolic-glucosinolates, and produce their corresponding detoxified conjugates. Third, performance assays suggested that the BtGSTs5 gene silencing prolongs the developmental period of B. tabaci nymphs. Taken together, these findings suggest that BtGSTs5 is likely to play an important role in enabling B. tabaci to successfully feed on glucosinolate-producing plants. Targeting the gene by RNAi in Brassicaceae cropping systems, will likely not eliminate the pest populations from the fields but will significantly reduce their success over the growing season, support prominent activity of natural enemies, eventually allowing the establishment of stable and sustainable agroecosystem.
Collapse
Affiliation(s)
- Galit Eakteiman
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, 76100 Israel.
| | - Rita Moses-Koch
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, 76100 Israel
| | - Pnina Moshitzky
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, 76100 Israel
| | | | - Daniel G Vassão
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Katrin Luck
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | - Osnat Malka
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, 76100 Israel
| | - Shai Morin
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, 76100 Israel
| |
Collapse
|
203
|
Abbaoui B, Lucas CR, Riedl KM, Clinton SK, Mortazavi A. Cruciferous Vegetables, Isothiocyanates, and Bladder Cancer Prevention. Mol Nutr Food Res 2018; 62:e1800079. [PMID: 30079608 DOI: 10.1002/mnfr.201800079] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/11/2018] [Indexed: 12/16/2022]
Abstract
Bladder cancer is a significant health burden due to its high prevalence, risk of mortality, morbidity, and high cost of medical care. Epidemiologic evidence suggests that diets rich in cruciferous vegetables, particularly broccoli, are associated with lower bladder cancer risk. Phytochemicals in cruciferous vegetables, such as glucosinolates, which are enzymatically hydrolyzed to bioactive isothiocyanates, are possible mediators of an anticancer effect. In vitro studies have shown inhibition of bladder cancer cell lines, cell cycle arrest, and induction of apoptosis by these isothiocyanates, in particular sulforaphane and erucin. Although not yet completely understood, many mechanisms of anticancer activity at the steps of cancer initiation, promotion, and progression have been attributed to these isothiocyanates. They target multiple pathways including the adaptive stress response, phase I/II enzyme modulation, pro-growth, pro-survival, pro-inflammatory signaling, angiogenesis, and even epigenetic modulation. Multiple in vivo studies have shown the bioavailability of isothiocyanates and their antitumoral effects. Although human studies are limited, they support oral bioavailability with reasonable plasma and urine concentrations achieved. Overall, both cell and animal studies support a potential role for isothiocyanates in bladder cancer prevention and treatment. Future studies are necessary to examine clinically relevant outcomes and define guidelines on ameliorating the bladder cancer burden.
Collapse
Affiliation(s)
- Besma Abbaoui
- Foods for Health Discovery Theme, The College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH, 43210.,Department of Food Science and Technology, The College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH, 43210.,Integrated Biomedical Science Graduate Program, College of Medicine, The Ohio State University, Columbus, OH, 43210
| | - Christopher R Lucas
- Integrated Biomedical Science Graduate Program, College of Medicine, The Ohio State University, Columbus, OH, 43210.,Department of Mechanical and Aerospace Engineering, The College of Engineering, The Ohio State University, Columbus, OH, 43210.,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210
| | - Ken M Riedl
- Department of Food Science and Technology, The College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH, 43210.,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210
| | - Steven K Clinton
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210.,Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, 43210
| | - Amir Mortazavi
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210.,Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, 43210
| |
Collapse
|
204
|
Moreira X, Abdala-Roberts L, Gols R, Francisco M. Plant domestication decreases both constitutive and induced chemical defences by direct selection against defensive traits. Sci Rep 2018; 8:12678. [PMID: 30140028 PMCID: PMC6107632 DOI: 10.1038/s41598-018-31041-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/10/2018] [Indexed: 11/27/2022] Open
Abstract
Studies reporting domestication effects on plant defences have focused on constitutive, but not on induced defences. However, theory predicts a trade-off between constitutive (CD) and induced defences (ID), which intrinsically links both defensive strategies and argues for their joint consideration in plant domestications studies. We measured constitutive and induced glucosinolates in wild cabbage (Brassica oleracea ssp. oleracea) and two domesticated varieties (B. oleracea var. acephala and B. oleracea var. capitata) in which the leaves have been selected to grow larger. We also estimated leaf area (proxy of leaf size) to assess size-defence trade-offs and whether domestication effects on defences are indirect via selection for larger leaves. Both CD and ID were lower in domesticated than in wild cabbage and they were negatively correlated (i.e. traded off) in all of the cabbage lines studied. Reductions in CD were similar in magnitude for leaves and stems, and CD and leaf size were uncorrelated. We conclude that domestication of cabbage has reduced levels not only constitutive defences but also their inducibility, and that reductions in CD may span organs not targeted by breeding. This reduction in defences in domesticated cabbage is presumably the result of direct selection rather than indirect effects via trade-offs between size and defences.
Collapse
Affiliation(s)
- Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Apartado de correos 28, 36080, Pontevedra, Galicia, Spain.
| | - Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116, Itzimná, 97000, Mérida, Yucatán, Mexico
| | - Rieta Gols
- Laboratory of Entomology, Wageningen University, PO Box 16, 6700 AA, Wageningen, The Netherlands
| | - Marta Francisco
- Misión Biológica de Galicia (MBG-CSIC), Apartado de correos 28, 36080, Pontevedra, Galicia, Spain.
| |
Collapse
|
205
|
Nallu S, Hill JA, Don K, Sahagun C, Zhang W, Meslin C, Snell-Rood E, Clark NL, Morehouse NI, Bergelson J, Wheat CW, Kronforst MR. The molecular genetic basis of herbivory between butterflies and their host plants. Nat Ecol Evol 2018; 2:1418-1427. [PMID: 30076351 PMCID: PMC6149523 DOI: 10.1038/s41559-018-0629-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 07/02/2018] [Indexed: 12/30/2022]
Abstract
Interactions between herbivorous insects and their host-plants are a central component of terrestrial food webs and a critical topic in agriculture, where a substantial fraction of potential crop yield is lost annually to pests. Important insights into plant-insect interactions have come from research on specific plant defenses and insect detoxification mechanisms. Yet, much remains unknown about the molecular mechanisms that mediate plant-insect interactions. Here we use multiple genome-wide approaches to map the molecular basis of herbivory from both plant and insect perspectives, focusing on butterflies and their larval host-plants. Parallel genome-wide association studies in the Cabbage White butterfly, Pieris rapae, and its host-plant, Arabidopsis thaliana, pinpointed a small number of butterfly and plant genes that influenced herbivory. These genes, along with much of the genome, were regulated in a dynamic way over the time course of the feeding interaction. Comparative analyses, including diverse butterfly/plant systems, showed a variety of genome-wide responses to herbivory, yet a core set of highly conserved genes in butterflies as well as their host-plants. These results greatly expand our understanding of the genomic causes and evolutionary consequences of ecological interactions across two of nature’s most diverse taxa, butterflies and flowering plants.
Collapse
Affiliation(s)
- Sumitha Nallu
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Jason A Hill
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Kristine Don
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Carlos Sahagun
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Wei Zhang
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA.,Peking-Tsinghua Center for Life Sciences, State Key Laboratory of Protein and Plant Gene Research, and School of Life Sciences, Peking University, Beijing, China
| | - Camille Meslin
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.,Institut National de la Recherche Agronomique (INRA), Institute of Ecology and Environmental Sciences of Paris (IEES-Paris), Versailles , France
| | - Emilie Snell-Rood
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - Nathan L Clark
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nathan I Morehouse
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Joy Bergelson
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | | | - Marcus R Kronforst
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
206
|
Soufbaf M, Fathipour Y, Harvey JA, Hui C. Finish line plant-insect interactions mediated by insect feeding mode and plant interference: a case study of Brassica interactions with diamondback moth and turnip aphid. INSECT SCIENCE 2018; 25:690-702. [PMID: 28092131 DOI: 10.1111/1744-7917.12439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 12/02/2016] [Accepted: 12/08/2016] [Indexed: 06/06/2023]
Abstract
There are gaps in our understanding of plant responses under different insect phytophagy modes and their subsequent effects on the insect herbivores' performance at late season. Here we compared different types of insect feeding by an aphid, Lipaphis erysimi, and a lepidopteran, Plutella xylostella, and how this affected defensive metabolites in leaves of 2 Brassica species when plants gain maturity. Thiocyanate concentrations after P. xylostella and L. erysimi feeding activities were the same. Total phenolics was higher after the phloem feeder feeding than the folivore activity. The plants compensatory responses (i.e., tolerance) to L. erysimi feeding was significantly higher than the responses to P. xylostella. This study showed that L. erysimi had higher carbon than P. xylostella whereas nitrogen in P. xylostella was 1.42 times that in L. erysimi. Population size of the phloem feeder was not affected by plant species or insect coexistence. However, there was no correlation between plant defensive metabolites and both insects' population size and biomass. This suggests that plant root biomass and tolerance index after different insect herbivory modes are not necessarily unidirectional. Importantly, the interaction between the folivore and the phloem feeder insects is asymmetric and the phloem feeder might be a trickier problem for plants than the folivore. Moreover, as both plants' common and special defenses decreased under interspecific interference, we suggest that specialist insect herbivores can be more challenged in ecosystems in which plants are not involved in interspecific interference.
Collapse
Affiliation(s)
- Mahmoud Soufbaf
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Yaghoub Fathipour
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Jeffrey A Harvey
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, Wageningen, the Netherlands
- Section Animal Ecology, Department of Ecological Sciences, VU University Amsterdam, Amsterdam, the Netherlands
| | - Cang Hui
- Department of Mathematical Sciences, Centre for Invasion Biology, Stellenbosch University, Matieland, South Africa
- Mathematical and Physical Biosciences, African Institute for Mathematical Sciences, Cape Town, South Africa
| |
Collapse
|
207
|
Qi J, Malook SU, Shen G, Gao L, Zhang C, Li J, Zhang J, Wang L, Wu J. Current understanding of maize and rice defense against insect herbivores. PLANT DIVERSITY 2018; 40:189-195. [PMID: 30740564 PMCID: PMC6137261 DOI: 10.1016/j.pld.2018.06.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/28/2018] [Accepted: 06/28/2018] [Indexed: 05/25/2023]
Abstract
Plants have sophisticated defense systems to fend off insect herbivores. How plants defend against herbivores in dicotyledonous plants, such as Arabidopsis and tobacco, have been relatively well studied, yet little is known about the defense responses in monocotyledons. Here, we review the current understanding of rice (Oryza sativa) and maize (Zea mays) defense against insects. In rice and maize, elicitors derived from insect herbivore oral secretions or oviposition fluids activate phytohormone signaling, and transcriptomic changes mediated mainly by transcription factors lead to accumulation of defense-related secondary metabolites. Direct defenses, such as trypsin protein inhibitors in rice and benzoxazinoids in maize, have anti-digestive or toxic effects on insect herbivores. Herbivory-induced plant volatiles, such as terpenes, are indirect defenses, which attract the natural enemies of herbivores. R gene-mediated defenses against herbivores are also discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
208
|
Santos NA, Teixeira NC, Valim JOS, Almeida EFA, Oliveira MGA, Campos WG. Sulfur fertilization increases defense metabolites and nitrogen but decreases plant resistance against a host-specific insect. BULLETIN OF ENTOMOLOGICAL RESEARCH 2018; 108:479-486. [PMID: 29061199 DOI: 10.1017/s0007485317001018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We tested the sulfur-modulated plant resistance hypothesis using potted cabbage (Brassica oleracea var. capitata) plants that were grown without and with increasing levels of sulfur fertilization. Changes in plant chemical traits were assessed and developmental performance of Plutella xylostella, a highly host-specific leaf-chewing insect, was followed. Leaf sulfur concentration gradually increased with growing addition of sulfur in soil; however, there was a generalized saturation response curve, with a plateau phase, for improvements in total leaf nitrogen, defense glucosinolates and insect performance. Plutella xylostella performed better in sulfur-fertilized cabbage probably because of the higher level of nitrogen, despite of the higher content of glucosinolates, which are toxic for many non-specialized insects. Despite the importance of sulfur in plant nutrition and production, especially for Brassica crops, our results showed that sulfur fertilization could decrease plant resistance against insects with high feeding specialization.
Collapse
Affiliation(s)
- N A Santos
- Department of Biosystems Engineering,Federal University of São João del Rei,São João del Rei,MG, 36301-160,Brazil
| | - N C Teixeira
- Department of Biosystems Engineering,Federal University of São João del Rei,São João del Rei,MG, 36301-160,Brazil
| | - J O S Valim
- Department of Biosystems Engineering,Federal University of São João del Rei,São João del Rei,MG, 36301-160,Brazil
| | - E F A Almeida
- Institute of Agricultural Science,Federal University of Minas Gerais,Montes Claros,MG, 39525-000,Brazil
| | - M G A Oliveira
- Department of Biochemistry and Molecular Biology,Federal University of Viçosa,Viçosa,MG 36570-900,Brazil
| | - W G Campos
- Department of Biosystems Engineering,Federal University of São João del Rei,São João del Rei,MG, 36301-160,Brazil
| |
Collapse
|
209
|
Lee JH, Lee J, Kim H, Chae WB, Kim SJ, Lim YP, Oh MH. Brassinosteroids regulate glucosinolate biosynthesis in Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2018; 163:450-458. [PMID: 29315590 DOI: 10.1111/ppl.12691] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 06/07/2023]
Abstract
Plants must constantly adjust their growth and defense responses to deal with the wide variety of stresses they encounter in their environment. Among phytohormones, brassinosteroids (BRs) are an important group of plant steroid hormones involved in numerous aspects of the plant lifecycle including growth, development and responses to various stresses including insect attacks. Here, we show that BRs regulate glucosinolate (GS) biosynthesis and function in insect herbivory. Preference tests and larval feeding experiments using the generalist herbivore, diamondback moth (Plutella xylostella), revealed that the larvae prefer to feed on Arabidopsis thaliana brassinosteroid insensitive 1 (bri1-5) plants over wild-type Ws-2 or BRI1-Flag (bri1-5 background) transgenic plants, which results in an increase in larval weight. Analysis of GS contents showed that 3-(methylsulfinyl) propyl GS (C3) levels were higher in bri1-5 than in Ws2 and BRI1-Flag transgenic plants, whereas sinigrin (2-propenylglucosinolate), glucoerucin (4-methylthiobutylglucosinolate) and glucobrassicin (indol-3-ylmethylglucosinolate) levels were lower in this mutant. We investigated the effect of brassinolide (BL) on GS biosynthesis in Arabidopsis and radish (Raphanus sativus L.) by monitoring the expression levels of GS biosynthetic genes, including MAM1, MAM3, BCAT4 and AOP2, which increased in a BL-dependent manner. These results suggest that BRs regulate GS profiles in higher plants, which function in defense responses against insects.
Collapse
Affiliation(s)
- Ji H Lee
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Jeongyeo Lee
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - HyeRan Kim
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Won B Chae
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, RDA, Wanju, Republic of Korea
| | - Sun-Ju Kim
- Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Yong P Lim
- Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon, Republic of Korea
| | - Man-Ho Oh
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
210
|
Julius BT, Slewinski TL, Baker RF, Tzin V, Zhou S, Bihmidine S, Jander G, Braun DM. Maize Carbohydrate partitioning defective1 impacts carbohydrate distribution, callose accumulation, and phloem function. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3917-3931. [PMID: 29846660 PMCID: PMC6054164 DOI: 10.1093/jxb/ery203] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/18/2018] [Indexed: 05/19/2023]
Abstract
Plants synthesize carbohydrates in photosynthetic tissues, with the majority of plants transporting sucrose to non-photosynthetic tissues to sustain growth and development. While the anatomical, biochemical, and physiological processes regulating sucrose long-distance transport are well characterized, little is known concerning the genes controlling whole-plant carbohydrate partitioning. To identify loci influencing carbon export from leaves, we screened mutagenized maize plants for phenotypes associated with reduced carbohydrate transport, including chlorosis and excessive starch and soluble sugars in leaves. Carbohydrate partitioning defective1 (Cpd1) was identified as a semi-dominant mutant exhibiting these phenotypes. Phloem transport experiments suggested that the hyperaccumulation of starch and soluble sugars in the Cpd1/+ mutant leaves was due to inhibited sucrose export. Interestingly, ectopic callose deposits were observed in the phloem of mutant leaves, and probably underlie the decreased transport. In addition to the carbohydrate hyperaccumulation phenotype, Cpd1/+ mutants overaccumulate benzoxazinoid defense compounds and exhibit increased tolerance when attacked by aphids. However, double mutant studies between Cpd1/+ and benzoxazinoid-less plants indicate that the ectopic callose and carbon hyperaccumulation are independent of benzoxazinoid production. Based on the formation of callose occlusions in the developing phloem, we hypothesize that the cpd1 gene functions early in phloem development, thereby impacting whole-plant carbohydrate partitioning.
Collapse
Affiliation(s)
- Benjamin T Julius
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri-Columbia, Columbia, MO, USA
| | - Thomas L Slewinski
- Department of Biology, Pennsylvania State University, State College, PA, USA
| | - R Frank Baker
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri-Columbia, Columbia, MO, USA
| | - Vered Tzin
- Boyce Thompson Institute, Ithaca, NY, USA
| | | | - Saadia Bihmidine
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri-Columbia, Columbia, MO, USA
| | | | - David M Braun
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri-Columbia, Columbia, MO, USA
| |
Collapse
|
211
|
Steiner AM, Busching C, Vogel H, Wittstock U. Molecular identification and characterization of rhodaneses from the insect herbivore Pieris rapae. Sci Rep 2018; 8:10819. [PMID: 30018390 PMCID: PMC6050342 DOI: 10.1038/s41598-018-29148-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/27/2018] [Indexed: 11/24/2022] Open
Abstract
The association of cabbage white butterflies (Pieris spec., Lepidoptera: Pieridae) with their glucosinolate-containing host plants represents a well-investigated example of the sequential evolution of plant defenses and insect herbivore counteradaptations. The defensive potential of glucosinolates, a group of amino acid-derived thioglucosides present in plants of the Brassicales order, arises mainly from their rapid breakdown upon tissue disruption resulting in formation of toxic isothiocyanates. Larvae of P. rapae are able to feed exclusively on glucosinolate-containing plants due to expression of a nitrile-specifier protein in their gut which redirects glucosinolate breakdown to the formation of nitriles. The release of equimolar amounts of cyanide upon further metabolism of the benzylglucosinolate-derived nitrile suggests that the larvae are also equipped with efficient means of cyanide detoxification such as β-cyanoalanine synthases or rhodaneses. While insect β-cyanoalanine synthases have recently been identified at the molecular level, no sequence information was available of characterized insect rhodaneses. Here, we identify and characterize two single-domain rhodaneses from P. rapae, PrTST1 and PrTST2. The enzymes differ in their kinetic properties, predicted subcellular localization and expression in P. rapae indicating different physiological roles. Phylogenetic analysis together with putative lepidopteran rhodanese sequences indicates an expansion of the rhodanese family in Pieridae.
Collapse
Affiliation(s)
- Anna-Maria Steiner
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstr. 1, 38106, Braunschweig, Germany
| | - Christine Busching
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstr. 1, 38106, Braunschweig, Germany
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Ute Wittstock
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstr. 1, 38106, Braunschweig, Germany.
| |
Collapse
|
212
|
Nouri-Ganbalani G, Borzoui E, Shahnavazi M, Nouri A. Induction of Resistance Against Plutella xylostella (L.) (Lep.: Plutellidae) by Jasmonic Acid and Mealy Cabbage Aphid Feeding in Brassica napus L. Front Physiol 2018; 9:859. [PMID: 30050454 PMCID: PMC6052903 DOI: 10.3389/fphys.2018.00859] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/15/2018] [Indexed: 11/30/2022] Open
Abstract
The diamondback moth, Plutella xylostella (L.), has become the most destructive insect pest of cruciferous plants, such as B. napus throughout the world including Iran. In this study, the induction of resistance was activated in oilseed rape plants (Brassica napus L.) using foliar application of jasmonic acid (JA) and mealy cabbage aphid either individually or in combination against diamondback moth. Induced resistance by inducers significantly reduced the population growth parameters, as well as the survival rate of immature P. xylostella. Also, the nutritional indices of P. xylostella were studied to evaluate the potential impact of induced resistance on the insect feeding behavior. The values of the efficiency of conversion of ingested food, the efficiency of conversion of digested food, relative consumption rate, and relative growth rate of P. xylostella on JA-treated plants were significantly reduced compared to control. These are because glucosinolates and proteinase inhibitors are induced following treatment of plants. Also, we found a significantly higher glucose oxidase activity in the salivary gland extracts of larvae fed on JA treatment. These results express that JA and/or Aphid application induces systemic defenses in oilseed rape that have a negative effect on P. xylostella fitness. These findings develop our knowledge the effects of induced defenses on P. xylostella.
Collapse
Affiliation(s)
- Gadir Nouri-Ganbalani
- Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Ehsan Borzoui
- Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Maryam Shahnavazi
- Department of Oral and Maxillofacial Radiology, Faculty of Density, AJA University of Medical Sciences, Tehran, Iran
| | - Alireza Nouri
- Institute of Higher Education of Sabalan Ardabil, Ardabil, Iran
| |
Collapse
|
213
|
Roberts HR, Warren JM, Provan J. Evidence for facultative protocarnivory in Capsella bursa-pastoris seeds. Sci Rep 2018; 8:10120. [PMID: 29973685 PMCID: PMC6031654 DOI: 10.1038/s41598-018-28564-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/01/2018] [Indexed: 11/28/2022] Open
Abstract
Many plants derive nutrients by attracting, ensnaring and killing invertebrates, a process that is described as “protocarnivory”. This has been observed in seeds of the weed Capsella bursa-pastoris, but it is unclear as to whether it confers any material benefit in terms of germination, establishment and development. In the present study, seeds were germinated in zero, low, medium and high nutrient soils in both the presence and absence of nematodes (Steinernema feltiae). Nematodes were attracted to the seeds, with many dying within three days. Germination rates and seedling fresh masses were higher at all nutrient levels, and seedling fresh lengths were higher in all but the zero nutrient treatment, in the presence of nematodes. After transplantation, young plant fresh root lengths and dried leaf and root masses were generally higher in plants that had been germinated in the presence of nematodes across all nutrient levels, with the majority of significant differences being observed in the low-nutrient treatment. Our findings suggest that protocarnivory may play a role in the germination, establishment and early development of C. bursa-pastoris, and that this process may be facultative, since differences between nematode and non-nematode treatments were generally more pronounced in soils with low nutrient levels.
Collapse
Affiliation(s)
- Hattie R Roberts
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - John M Warren
- Papua New Guinea University of Natural Resources and the Environment, Port Moresby, Papua New Guinea
| | - Jim Provan
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK.
| |
Collapse
|
214
|
Shirakawa M, Hara-Nishimura I. Specialized Vacuoles of Myrosin Cells: Chemical Defense Strategy in Brassicales Plants. PLANT & CELL PHYSIOLOGY 2018; 59:1309-1316. [PMID: 29897512 DOI: 10.1093/pcp/pcy082] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/13/2018] [Indexed: 05/20/2023]
Abstract
Plant vacuoles display many versatile functions. Vacuoles in vegetative tissues are generally involved in protein degradation, and are called lytic vacuoles. However, vegetative vacuoles in specialized cells can accumulate large concentrations of proteins, such as those in idioblast myrosin cells along veins in the order Brassicales, which store large amounts of myrosinases (thioglucoside glucohydrolase and thioglucoside glucohydrolase). Myrosinases cleave the bond between sulfur and glucose in sulfur-rich compounds (glucosinolates) to produce toxic compounds (isothiocyanates) when plants are damaged by pests. This defense strategy is called the myrosinase-glucosinolate system. Recent studies identified atypical myrosinases, PENETRATION 2 (PEN2) and PYK10, along with key components for development of myrosin cells. In this review, we discuss three topics in the myrosinase-glucosinolate system. First, we summarize the complexity and importance of the myrosinase-glucosinolate system, including classical myrosinases, atypical myrosinases and the system that counteracts the myrosinase-glucosinolate system. Secondly, we describe molecular machineries underlying myrosin cell development, including specific reporters, cell lineage, cell differentiation and cell fate determination. The master regulators for myrosin cell differentiation, FAMA and SCREAM, are key transcription factors involved in guard cell differentiation. This indicates that myrosin cells and guard cells share similar transcriptional networks. Finally, we hypothesize that the myrosinase-glucosinolate system may have originated in stomata of ancestral Brassicales plants and, after that, plants co-opted this defense strategy into idioblasts near veins at inner tissue layers.
Collapse
Affiliation(s)
- Makoto Shirakawa
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | | |
Collapse
|
215
|
Arabidopsis mutants impaired in glutathione biosynthesis exhibit higher sensitivity towards the glucosinolate hydrolysis product allyl-isothiocyanate. Sci Rep 2018; 8:9809. [PMID: 29955088 PMCID: PMC6023892 DOI: 10.1038/s41598-018-28099-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 06/15/2018] [Indexed: 11/16/2022] Open
Abstract
Upon tissue damage the plant secondary metabolites glucosinolates can generate various hydrolysis products, including isothiocyanates (ITCs). Their role in plant defence against insects and pest and their potential health benefits have been well documented, but our knowledge regarding the endogenous molecular mechanisms of their effect in plants is limited. Here we investigated the effect of allyl-isothiocyanate (AITC) on Arabidopsis thaliana mutants impaired in homeostasis of the low-molecular weight thiol glutathione. We show that glutathione is important for the AITC-induced physiological responses, since mutants deficient in glutathione biosynthesis displayed a lower biomass and higher root growth inhibition than WT seedlings. These mutants were also more susceptible than WT to another ITC, sulforaphane. Sulforaphane was however more potent in inhibiting root growth than AITC. Combining AITC with the glutathione biosynthesis inhibitor L-buthionine-sulfoximine (BSO) led to an even stronger phenotype than observed for the single treatments. Furthermore, transgenic plants expressing the redox-sensitive fluorescent biomarker roGFP2 indicated more oxidative conditions during AITC treatment. Taken together, we provide genetic evidence that glutathione plays an important role in AITC-induced growth inhibition, although further studies need to be conducted to reveal the underlying mechanisms.
Collapse
|
216
|
Klopsch R, Witzel K, Artemyeva A, Ruppel S, Hanschen FS. Genotypic Variation of Glucosinolates and Their Breakdown Products in Leaves of Brassica rapa. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5481-5490. [PMID: 29746112 DOI: 10.1021/acs.jafc.8b01038] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
An in-depth glucosinolate (GLS) profiling was performed on a core collection of 91 Brassica rapa accessions, representing diverse morphotypes of heterogeneous geographical origin, to better understand the natural variation in GLS accumulation and GLS breakdown product formation. Leaves of the 91 B. rapa accessions were analyzed for their GLS composition by UHPLC-DAD and the corresponding breakdown products by GC-MS. Fifteen different GLSs were identified, and aliphatic GLSs prevailed regarding diversity and concentration. Twenty-three GLS breakdown products were identified, among them nine isothiocyanates, ten nitriles, and four epithionitriles. Epithionitriles were the prevailing breakdown products due to the high abundance of alkenyl GLSs. The large scale data set allowed the identification of correlations in abundance of specific GLSs or of GLS breakdown products. Discriminant function analysis identified subspecies with high levels of similarity in the acquired metabolite profiles. In general, the five main subspecies grouped significantly in terms of their GLS profiles.
Collapse
Affiliation(s)
- Rebecca Klopsch
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1 , 14979 Großbeeren , Germany
| | - Katja Witzel
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1 , 14979 Großbeeren , Germany
| | - Anna Artemyeva
- N.I.Vavilov Institute of Plant Genetic Resources, Bolshaya Morskaya Street 42-44 , 190000 St. Petersburg , Russia
- Agrophysical Research Institute, Grazhdanskiy prospect 14 , 195220 St. Petersburg , Russia
| | - Silke Ruppel
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1 , 14979 Großbeeren , Germany
| | - Franziska S Hanschen
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1 , 14979 Großbeeren , Germany
| |
Collapse
|
217
|
Tsunoda T, Grosser K, Dam NM. Locally and systemically induced glucosinolates follow optimal defence allocation theory upon root herbivory. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13147] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Tomonori Tsunoda
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Department of Biological SciencesTokyo Metropolitan University Hachioji Tokyo Japan
| | - Katharina Grosser
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Institute of BiodiversityFriedrich Schiller University Jena Jena Germany
| | - Nicole M. Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Institute of BiodiversityFriedrich Schiller University Jena Jena Germany
| |
Collapse
|
218
|
Humphrey PT, Gloss AD, Frazier J, Nelson-Dittrich AC, Faries S, Whiteman NK. Heritable plant phenotypes track light and herbivory levels at fine spatial scales. Oecologia 2018; 187:427-445. [PMID: 29603095 PMCID: PMC5999565 DOI: 10.1007/s00442-018-4116-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 03/11/2018] [Indexed: 02/03/2023]
Abstract
Organismal phenotypes often co-vary with environmental variables across broad geographic ranges. Less is known about the extent to which phenotypes match local conditions when multiple biotic and abiotic stressors vary at fine spatial scales. Bittercress (Brassicaceae: Cardamine cordifolia), a perennial forb, grows across a microgeographic mosaic of two contrasting herbivory regimes: high herbivory in meadows (sun habitats) and low herbivory in deeply shaded forest understories (shade habitats). We tested for local phenotypic differentiation in plant size, leaf morphology, and anti-herbivore defense (realized resistance and defensive chemicals, i.e., glucosinolates) across this habitat mosaic through reciprocal transplant-common garden experiments with clonally propagated rhizomes. We found habitat-specific divergence in morphological and defensive phenotypes that manifested as contrasting responses to growth in shade common gardens: weak petiole elongation and attenuated defenses in populations from shade habitats, and strong petiole elongation and elevated defenses in populations from sun habitats. These divergent phenotypes are generally consistent with reciprocal local adaptation: plants from shade habitats that naturally experience low herbivory show reduced investment in defense and an attenuated shade avoidance response, owing to its ineffectiveness within forest understories. By contrast, plants from sun habitats with high herbivory show shade-induced elongation, but no evidence of attenuated defenses canonically associated with elongation in shade-intolerant plant species. Finally, we observed differences in flowering phenology between habitat types that could potentially contribute to inter-habitat divergence by reducing gene flow. This study illuminates how clonally heritable plant phenotypes track a fine-grained mosaic of herbivore pressure and light availability in a native plant.
Collapse
Affiliation(s)
- P T Humphrey
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
- Rocky Mountain Biological Laboratory, Gothic, CO, 81224, USA
| | - A D Gloss
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
- Rocky Mountain Biological Laboratory, Gothic, CO, 81224, USA
| | - J Frazier
- Rocky Mountain Biological Laboratory, Gothic, CO, 81224, USA
| | - A C Nelson-Dittrich
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - S Faries
- Rocky Mountain Biological Laboratory, Gothic, CO, 81224, USA
| | - N K Whiteman
- Rocky Mountain Biological Laboratory, Gothic, CO, 81224, USA.
- Department of Integrative Biology, University of California, Berkeley, CA, 91645, USA.
| |
Collapse
|
219
|
Kang ZW, Liu FH, Zhang ZF, Tian HG, Liu TX. Volatile β-Ocimene Can Regulate Developmental Performance of Peach Aphid Myzus persicae Through Activation of Defense Responses in Chinese Cabbage Brassica pekinensis. FRONTIERS IN PLANT SCIENCE 2018; 9:708. [PMID: 29892310 PMCID: PMC5985497 DOI: 10.3389/fpls.2018.00708] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/09/2018] [Indexed: 05/24/2023]
Abstract
In nature, plants have evolved sophisticated defense mechanisms against the attack of pathogens and insect herbivores. Plant volatile-mediated plant-to-plant communication has been assessed in multitrophic systems in different plant species and different pest species. β-ocimene is recognized as an herbivore-induced plant volatile that play an important role in the chemical communication between plants and pests. However, it is still unclear whether β-ocimene can active the defense mechanism of Chinese cabbage Brassica pekinensis against the peach aphid Myzus persicae. In this study, we found that treatment of Chinese cabbage with β-ocimene inhibited the growth of M. persicae in terms of weight gain and reproduction. Moreover, β-ocimene treatment negatively influenced the feeding behavior of M. persicae by shortening the total feeding period and phloem ingestion and increasing the frequency of stylet puncture. When given a choice, winged aphids preferred to settle on healthy Chinese cabbage compared with β-ocimene-treated plants. In addition, performance of the parasitoid Aphidius gifuensis in terms of Y-tube olfaction and landings was better on β-ocimene-treated Chinese cabbage than on healthy plants. Furthermore, β-ocimene significantly increased the expression levels of salicylic acid and jasmonic acid marker genes and the accumulation of glucosinolates. Surprisingly, the transcriptional levels of detoxifying enzymes (CYP6CY3, CYP4, and GST) in aphids reared on β-ocimene-treated Chinese cabbage were significantly higher than those of aphids reared on healthy plants. In summary, our results indicated that β-ocimene can activate the defense response of Chinese cabbage against M. persicae, and that M. persicae can also adjust its detoxifying enzymes machinery to counter the host plant defense reaction.
Collapse
Affiliation(s)
- Zhi-Wei Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Fang-Hua Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Xianyang, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhan-Feng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Hong-Gang Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Xianyang, China
| |
Collapse
|
220
|
Boddum T, Molnár BP, Hill SR, Birgersson GÅO, Hansson BS, Abreha KB, Andreasson E, Hillbur Y. Host Attraction and Selection in the Swede Midge (Contarinia nasturtii). Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
221
|
Gols R, van Dam NM, Reichelt M, Gershenzon J, Raaijmakers CE, Bullock JM, Harvey JA. Seasonal and herbivore-induced dynamics of foliar glucosinolates in wild cabbage ( Brassica oleracea). CHEMOECOLOGY 2018; 28:77-89. [PMID: 29904237 PMCID: PMC5988764 DOI: 10.1007/s00049-018-0258-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 05/03/2018] [Indexed: 12/02/2022]
Abstract
Levels of plant secondary metabolites are not static and often change in relation to plant ontogeny. They also respond to abiotic and biotic changes in the environment, e.g., they often increase in response to biotic stress, such as herbivory. In contrast with short-lived annual plant species, especially those with growing periods of less than 2-3 months, investment in defensive compounds of vegetative tissues in biennial and perennial species may also vary over the course of an entire growing season. In garden experiments, we investigated the dynamics of secondary metabolites, i.e. glucosinolates (GSLs) in the perennial wild cabbage (Brassica oleracea), which was grown from seeds originating from three populations that differ in GSL chemistry. We compared temporal long-term dynamics of GSLs over the course of two growing seasons and short-term dynamics in response to herbivory by Pieris rapae caterpillars in a more controlled greenhouse experiment. Long-term dynamics differed for aliphatic GSLs (gradual increase from May to December) and indole GSLs (rapid increase until mid-summer after which concentrations decreased or stabilized). In spring, GSL levels in new shoots were similar to those found in the previous year. Short-term dynamics in response to herbivory primarily affected indole GSLs, which increased during the 2-week feeding period by P. rapae. Herbivore-induced changes in the concentrations of aliphatic GSLs were population-specific and their concentrations were found to increase in primarily one population only. We discuss our results considering the biology and ecology of wild cabbage.
Collapse
Affiliation(s)
- Rieta Gols
- Laboratory of Entomology, Wageningen University & Research, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - Nicole M. van Dam
- German Centre for Integrative Biodiversity Research, Leipzig, Germany
| | | | | | | | | | - Jeffrey A. Harvey
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
- Department of Ecological Sciences, Section Animal Ecology, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
222
|
Peters K, Worrich A, Weinhold A, Alka O, Balcke G, Birkemeyer C, Bruelheide H, Calf OW, Dietz S, Dührkop K, Gaquerel E, Heinig U, Kücklich M, Macel M, Müller C, Poeschl Y, Pohnert G, Ristok C, Rodríguez VM, Ruttkies C, Schuman M, Schweiger R, Shahaf N, Steinbeck C, Tortosa M, Treutler H, Ueberschaar N, Velasco P, Weiß BM, Widdig A, Neumann S, Dam NMV. Current Challenges in Plant Eco-Metabolomics. Int J Mol Sci 2018; 19:E1385. [PMID: 29734799 PMCID: PMC5983679 DOI: 10.3390/ijms19051385] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 12/22/2022] Open
Abstract
The relatively new research discipline of Eco-Metabolomics is the application of metabolomics techniques to ecology with the aim to characterise biochemical interactions of organisms across different spatial and temporal scales. Metabolomics is an untargeted biochemical approach to measure many thousands of metabolites in different species, including plants and animals. Changes in metabolite concentrations can provide mechanistic evidence for biochemical processes that are relevant at ecological scales. These include physiological, phenotypic and morphological responses of plants and communities to environmental changes and also interactions with other organisms. Traditionally, research in biochemistry and ecology comes from two different directions and is performed at distinct spatiotemporal scales. Biochemical studies most often focus on intrinsic processes in individuals at physiological and cellular scales. Generally, they take a bottom-up approach scaling up cellular processes from spatiotemporally fine to coarser scales. Ecological studies usually focus on extrinsic processes acting upon organisms at population and community scales and typically study top-down and bottom-up processes in combination. Eco-Metabolomics is a transdisciplinary research discipline that links biochemistry and ecology and connects the distinct spatiotemporal scales. In this review, we focus on approaches to study chemical and biochemical interactions of plants at various ecological levels, mainly plant⁻organismal interactions, and discuss related examples from other domains. We present recent developments and highlight advancements in Eco-Metabolomics over the last decade from various angles. We further address the five key challenges: (1) complex experimental designs and large variation of metabolite profiles; (2) feature extraction; (3) metabolite identification; (4) statistical analyses; and (5) bioinformatics software tools and workflows. The presented solutions to these challenges will advance connecting the distinct spatiotemporal scales and bridging biochemistry and ecology.
Collapse
Affiliation(s)
- Kristian Peters
- Leibniz Institute of Plant Biochemistry, Stress and Developmental Biology, Weinberg 3, 06120 Halle (Saale), Germany.
| | - Anja Worrich
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743 Jena, Germany.
- UFZ-Helmholtz-Centre for Environmental Research, Department Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany.
| | - Alexander Weinhold
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743 Jena, Germany.
| | - Oliver Alka
- Applied Bioinformatics Group, Center for Bioinformatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany.
| | - Gerd Balcke
- Leibniz Institute of Plant Biochemistry, Cell and Metabolic Biology, Weinberg 3, 06120 Halle (Saale), Germany.
| | - Claudia Birkemeyer
- Institute of Analytical Chemistry, University of Leipzig, Linnéstr. 3, 04103 Leipzig, Germany.
| | - Helge Bruelheide
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle (Saale), Germany.
| | - Onno W Calf
- Molecular Interaction Ecology, Institute for Water and Wetland Research (IWWR), Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Sophie Dietz
- Leibniz Institute of Plant Biochemistry, Stress and Developmental Biology, Weinberg 3, 06120 Halle (Saale), Germany.
| | - Kai Dührkop
- Department of Bioinformatics, Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany.
| | - Emmanuel Gaquerel
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany.
| | - Uwe Heinig
- Weizmann Institute of Science, Faculty of Biochemistry, Department of Plant Sciences, 234 Herzl St., P.O. Box 26, Rehovot 7610001, Israel.
| | - Marlen Kücklich
- Institute of Biology, University of Leipzig, Talstraße 33, 04109 Leipzig, Germany.
| | - Mirka Macel
- Molecular Interaction Ecology, Institute for Water and Wetland Research (IWWR), Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Caroline Müller
- Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| | - Yvonne Poeschl
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.
- Institute of Informatics, Martin Luther University Halle-Wittenberg, Von-Seckendorff-Platz 1, 06120 Halle (Saale), Germany.
| | - Georg Pohnert
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr. 8, 07743 Jena, Germany.
| | - Christian Ristok
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.
| | - Victor Manuel Rodríguez
- Group of Genetics, Breeding and Biochemistry of Brassica, Misión Biológica de Galicia (CSIC), Apartado 28, 36080 Pontevedra, Spain.
| | - Christoph Ruttkies
- Leibniz Institute of Plant Biochemistry, Stress and Developmental Biology, Weinberg 3, 06120 Halle (Saale), Germany.
| | - Meredith Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany.
| | - Rabea Schweiger
- Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| | - Nir Shahaf
- Weizmann Institute of Science, Faculty of Biochemistry, Department of Plant Sciences, 234 Herzl St., P.O. Box 26, Rehovot 7610001, Israel.
| | - Christoph Steinbeck
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr. 8, 07743 Jena, Germany.
| | - Maria Tortosa
- Group of Genetics, Breeding and Biochemistry of Brassica, Misión Biológica de Galicia (CSIC), Apartado 28, 36080 Pontevedra, Spain.
| | - Hendrik Treutler
- Leibniz Institute of Plant Biochemistry, Stress and Developmental Biology, Weinberg 3, 06120 Halle (Saale), Germany.
| | - Nico Ueberschaar
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr. 8, 07743 Jena, Germany.
| | - Pablo Velasco
- Group of Genetics, Breeding and Biochemistry of Brassica, Misión Biológica de Galicia (CSIC), Apartado 28, 36080 Pontevedra, Spain.
| | - Brigitte M Weiß
- Institute of Biology, University of Leipzig, Talstraße 33, 04109 Leipzig, Germany.
| | - Anja Widdig
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.
- Institute of Biology, University of Leipzig, Talstraße 33, 04109 Leipzig, Germany.
- Research Group of Primate Kin Selection, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany.
| | - Steffen Neumann
- Leibniz Institute of Plant Biochemistry, Stress and Developmental Biology, Weinberg 3, 06120 Halle (Saale), Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.
| | - Nicole M van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743 Jena, Germany.
| |
Collapse
|
223
|
Harvey JA, Gols R. Effects of plant-mediated differences in host quality on the development of two related endoparasitoids with different host-utilization strategies. JOURNAL OF INSECT PHYSIOLOGY 2018; 107:110-115. [PMID: 29555347 DOI: 10.1016/j.jinsphys.2018.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 06/08/2023]
Abstract
Among parasitoids that develop inside the bodies of feeding, growing hosts (so-called 'koinobiont' endoparasitoids), two strategies have evolved to dispose of host resources. The larvae of one group consumes most host tissues before pupation, whereas in the other the parasitoid larvae consume only host hemolymph and fat body and at maturity emerge through the host cuticle to pupate externally. Here we compared development and survival (to adult emergence) of two related larval endoparasitoids (Braconidae: Microgastrinae) of the diamondback moth, Plutella xylostella. Larvae of Dolichogenidea sicaria are tissue feeders whereas larvae of Cotesia vestalis are hemolymph feeders. Here, development of P. xylostella and the two parasitoids was compared on three populations (one cultivar [Cyrus], two wild, [Winspit and Kimmeridge]) of cabbage that have been shown to vary in direct defense and hence quality. Survival of P. xylostella and C. vestalis (to adult eclosion) did not vary with cabbage population, but did so in D. sicaria, where survival was lower when reared on the wild populations than on the cultivar. Furthermore, adult herbivore mass was significantly higher and development was significantly shorter in moths reared on the cultivar. The tissue-feeing D. sicaria was larger but took longer to develop than the hemolymph-feeder C. vestalis. The performance of both parasitoids was better on the cabbage cultivar than on the wild populations, although the effects were less apparent than in the host. Our results show that (1) differences in plant quality are diffused up the food chain, and (2) the effects of host quality are reflected on the development of both parasitoids.
Collapse
Affiliation(s)
- Jeffrey A Harvey
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6700 EH Wageningen, The Netherlands; Department of Ecological Sciences - Animal Ecology, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | - Rieta Gols
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 4, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
224
|
Rivera-Vega LJ, Stanley BA, Stanley A, Felton GW. Proteomic analysis of labial saliva of the generalist cabbage looper (Trichoplusia ni) and its role in interactions with host plants. JOURNAL OF INSECT PHYSIOLOGY 2018; 107:97-103. [PMID: 29505761 DOI: 10.1016/j.jinsphys.2018.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 02/26/2018] [Accepted: 03/01/2018] [Indexed: 05/13/2023]
Abstract
Insect saliva is one of the first secretions to come in contact with plants during feeding. The composition and role of caterpillar saliva has not been as thoroughly studied as that of sucking insects. This study focuses on characterizing the proteome of the cabbage looper (Trichoplusia ni) saliva using iTRAQ labeling and LC-MS/MS. We also measured how the saliva proteome changed when larvae were reared on different diets - cabbage, tomato, and an artificial pinto bean diet. We identified 254 proteins in the saliva out of which 63 were differentially expressed. A large percentage (56%) of the proteins identified function in protein metabolism, followed by proteins involved in vesicle transport (6%) and oxidoreductase activity (5%), among other categories. Several proteins identified are antioxidants or reactive oxygen species (ROS) scavengers. Among these ROS scavengers, we identified a catalase and further analyzed its gene expression and enzymatic activity. We also applied commercial, purified catalase on tomato and measured the activity of defensive proteins - trypsin proteinase inhibitor, polyphenol oxidase and peroxidase. Catalase gene expression was significantly higher in the salivary glands of larvae fed on tomato. Also, catalase suppressed the induction of tomato trypsin proteinase inhibitor levels, but not the induction of polyphenol oxidase or peroxidase. These results add to our understanding of proteomic plasticity in saliva and its role in herbivore offense against plant defenses.
Collapse
Affiliation(s)
- Loren J Rivera-Vega
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Bruce A Stanley
- Section of Research Resources, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Anne Stanley
- Section of Research Resources, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Gary W Felton
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
225
|
Abstract
Plant vacuoles are multifunctional organelles. On the one hand, most vegetative tissues develop lytic vacuoles that have a role in degradation. On the other hand, seed cells have two types of storage vacuoles: protein storage vacuoles (PSVs) in endosperm and embryonic cells and metabolite storage vacuoles in seed coats. Vacuolar proteins and metabolites are synthesized on the endoplasmic reticulum and then transported to the vacuoles via Golgi-dependent and Golgi-independent pathways. Proprotein precursors delivered to the vacuoles are converted into their respective mature forms by vacuolar processing enzyme, which also regulates various kinds of programmed cell death in plants. We summarize two types of vacuolar membrane dynamics that occur during defense responses: vacuolar membrane collapse to attack viral pathogens and fusion of vacuolar and plasma membranes to attack bacterial pathogens. We also describe the chemical defense against herbivores brought about by the presence of PSVs in the idioblast myrosin cell.
Collapse
Affiliation(s)
- Tomoo Shimada
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;
| | - Junpei Takagi
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;
- Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan
| | - Takuji Ichino
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan
| | - Makoto Shirakawa
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Ikuko Hara-Nishimura
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;
- Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan
| |
Collapse
|
226
|
Abstract
Insect pests are responsible for substantial crop losses worldwide through direct damage and transmission of plant diseases, and novel approaches that complement or replace broad-spectrum chemical insecticides will facilitate the sustainable intensification of food production in the coming decades. Multiple strategies for improved crop resistance to insect pests, especially strategies relating to plant secondary metabolism and immunity and microbiome science, are becoming available. Recent advances in metabolic engineering of plant secondary chemistry offer the promise of specific toxicity or deterrence to insect pests; improved understanding of plant immunity against insects provides routes to optimize plant defenses against insects; and the microbiomes of insect pests can be exploited, either as a target or as a vehicle for delivery of insecticidal agents. Implementation of these advances will be facilitated by ongoing advances in plant breeding and genetic technologies.
Collapse
Affiliation(s)
- Angela E Douglas
- Department of Entomology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA;
| |
Collapse
|
227
|
Cao HH, Zhang ZF, Wang XF, Liu TX. Nutrition versus defense: Why Myzus persicae (green peach aphid) prefers and performs better on young leaves of cabbage. PLoS One 2018; 13:e0196219. [PMID: 29684073 PMCID: PMC5912751 DOI: 10.1371/journal.pone.0196219] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 04/09/2018] [Indexed: 11/18/2022] Open
Abstract
Plant leaves of different ages differ in nutrients and toxic metabolites and thus exhibit various resistance levels against insect herbivores. However, little is known about the influence of leaf ontogeny on plant resistance to phloem-feeding insects. In this study, we found that the green peach aphid, Myzus persicae, preferred to settle on young cabbage leaves compared with mature or old leaves, although young leaves contained the highest concentration of glucosinolates. Furthermore, aphids feeding on young leaves had higher levels of glucosinolates in their body, but aphids performed better on young leaves in terms of body weight and population growth. Phloem sap of young leaves had higher amino acid:sugar molar ratio than mature leaves, and aphids feeding on young leaves showed two times longer phloem feeding time and five times more honeydew excretion than on other leaves. These results indicate that aphids acquired the highest amount of nutrients and defensive metabolites when feeding on young cabbage leaves that are strong natural plant sinks. Accordingly, we propose that aphids generally prefer to obtain more nutrition rather than avoiding host plant defense, and total amount of nutrition that aphids could obtain is significantly influenced by leaf ontogeny or source-sink status of feeding sites.
Collapse
Affiliation(s)
- He-He Cao
- Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhan-Feng Zhang
- Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiao-Feng Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Tong-Xian Liu
- Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail:
| |
Collapse
|
228
|
Molnár BP, Boddum T, Hill SR, Hansson BS, Hillbur Y, Birgersson G. Ecological and Phylogenetic Relationships Shape the Peripheral Olfactory Systems of Highly Specialized Gall Midges (Cecidomiiydae). Front Physiol 2018; 9:323. [PMID: 29666586 PMCID: PMC5891623 DOI: 10.3389/fphys.2018.00323] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/15/2018] [Indexed: 11/13/2022] Open
Abstract
Insects use sensitive olfactory systems to detect relevant host volatiles and avoid unsuitable hosts in a complex environmental odor landscape. Insects with short lifespans, such as gall midges (Diptera: Cecidomyiidae), are under strong selection pressure to detect and locate suitable hosts for their offspring in a short period of time. Ephemeral gall midges constitute excellent models for investigating the role of olfaction in host choice, host shift, and speciation. Midges mate near their site of emergence and females migrate in order to locate hosts for oviposition, thus females are expected to be more responsive to olfactory cues emitted by the host compared to males. In this study, we explored the correlation between host choice and the function of the peripheral olfactory system in 12 species of gall midges, including species with close phylogenetic relationships that use widely different host plants and more distantly related gall midge species that use similar hosts. We tested the antennal responses of males and females of the 12 species to a blend of 45 known insect attractants using coupled gas chromatographic-electroantennographic detection. When the species-specific response profiles of the gall midges were compared to a newly generated molecular-based phylogeny, we found they responded to the compounds in a sex- and species-specific manner. We found the physiological response profiles of species that use annual host plants, and thus have to locate their host every season, are similar for species with similar hosts despite large phylogenetic distances. In addition, we found closely related species with perennial hosts demonstrated odor response profiles that were consistent with their phylogenetic history. The ecology of the gall midges affects the tuning of the peripheral olfactory system, which in turn demonstrates a correlation between olfaction and speciation in the context of host use.
Collapse
Affiliation(s)
- Béla P Molnár
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden.,Centre for Agricultural Research, Plant Protection Institute, Hungarian Academy of Sciences, Budapest, Hungary
| | - Tina Boddum
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Sharon R Hill
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ylva Hillbur
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden.,General Directorate, International Institute for Tropical Agriculture, Ibadan, Nigeria
| | - Göran Birgersson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
229
|
Gruber M, Alahakoon U, Taheri A, Nagubushana N, Zhou R, Aung B, Sharpe A, Hannoufa A, Bonham-Smith P, Hegedus D DD. The biochemical composition and transcriptome of cotyledons from Brassica napus lines expressing the AtGL3 transcription factor and exhibiting reduced flea beetle feeding. BMC PLANT BIOLOGY 2018; 18:64. [PMID: 29661140 PMCID: PMC5902958 DOI: 10.1186/s12870-018-1277-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 03/29/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Previously, transgenic trichome-bearing (hairy leaf) Brassica napus lines expressing either the Arabidopsis thaliana GL3 gene (line AtGL3+) [1] or the AtGL3 gene in combination with an RNAi construct to down-regulate TTG1 (line K-5-8) [2] were developed. The leaves of these lines exhibited altered insect feeding (flea beetle) and oviposition (diamondback moth) behaviour compared to the non-transgenic semi-glabrous leaves of B. napus cv. Westar. Interestingly, the cotyledons of these lines remained glabrous, but also showed reduced feeding by flea beetles. Here we examine the composition and global transcriptome of the glabrous cotyledons from these transgenic lines to ascertain the mechanism(s) underlying this unexpected phenomenon. RESULTS Approximately, 7500 genes were up-regulated in cotyledons of each hairy line, compared with < 30 that were down-regulated. The up-regulated genes included those involved in cell wall synthesis, secondary metabolite production, redox, stress and hormone-related responses that have the potential to impact host plant cues required to elicit defense responses toward insect pests. In particular, the expression of glucosinolate biosynthetic and degradation genes were substantially altered in the glabrous cotyledons of the two hairy leaf lines. The transcriptomic data was supported by glucosinolate and cell wall composition profiles of the cotyledons. Changes in gene expression were much more extreme in the AtGL3+ line compared with the K-5-8 line in terms of diversity and intensity. CONCLUSIONS The study provides a roadmap for the isolation and identification of insect resistance compounds and proteins in the glabrous cotyledons of these hairy leaf lines. It also confirms the impact of mis-expression of GL3 and TTG1 on types of metabolism other than those associated with trichomes. Finally, the large number of up-regulated genes encoding heat shock proteins, PR proteins, protease inhibitors, glucosinolate synthesis/breakdown factors, abiotic stress factors, redox proteins, transcription factors, and proteins required for auxin metabolism also suggest that these cotyledons are now primed for resistance to other forms of biotic and abiotic stress.
Collapse
Affiliation(s)
- Margaret Gruber
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N0X2 Canada
| | - Ushan Alahakoon
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N0X2 Canada
- Department of Biology, University of Saskatchewan, Saskatoon, SK Canada
- Present Address: DOW Agro-Sciences, Saskatoon, SK Canada
| | - Ali Taheri
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N0X2 Canada
- Present Address: Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN USA
| | - Nayidu Nagubushana
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N0X2 Canada
| | - Rong Zhou
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N0X2 Canada
| | - Banyar Aung
- Agriculture and Agri-Food Canada, London, ON Canada
- Department of Biology, Western University, London, ON Canada
| | - Andrew Sharpe
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK Canada
| | - Abdelali Hannoufa
- Agriculture and Agri-Food Canada, London, ON Canada
- Department of Biology, Western University, London, ON Canada
| | - Peta Bonham-Smith
- Department of Biology, University of Saskatchewan, Saskatoon, SK Canada
| | - Dwayne D. Hegedus D
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N0X2 Canada
- Department of Food and Bio-Product Sciences, University of Saskatchewan, Saskatoon, SK Canada
| |
Collapse
|
230
|
Wagner MR, Mitchell-Olds T. Plasticity of plant defense and its evolutionary implications in wild populations of Boechera stricta. Evolution 2018. [PMID: 29522254 DOI: 10.1111/evo.13469] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Phenotypic plasticity is thought to impact evolutionary trajectories by shifting trait values in a direction that is either favored by natural selection ("adaptive" plasticity) or disfavored ("nonadaptive" plasticity). However, it is unclear how commonly each of these types of plasticity occurs in natural populations. To answer this question, we measured glucosinolate defensive chemistry and reproductive fitness in over 1500 individuals of the wild perennial mustard Boechera stricta, planted in four common gardens across central Idaho, United States. Glucosinolate profiles-including total glucosinolate concentration as well as the relative abundances and overall diversity of different compounds-were strongly plastic both among habitats and within habitats. Patterns of glucosinolate plasticity varied greatly among genotypes. Plasticity among sites was predicted to affect fitness in 27.1% of cases; more often than expected by chance, glucosinolate plasticity increased rather than decreased relative fitness. In contrast, we found no evidence for within-habitat selection on glucosinolate reaction norm slopes (i.e., plasticity along a continuous environmental gradient). Together, our results indicate that glucosinolate plasticity may improve the ability of B. stricta populations to persist after migration to new habitats.
Collapse
Affiliation(s)
- Maggie R Wagner
- Program in Genetics and Genomics, Department of Biology, Duke University, Durham, North Carolina 27708.,Current Address: Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695
| | - Thomas Mitchell-Olds
- Program in Genetics and Genomics, Department of Biology, Duke University, Durham, North Carolina 27708
| |
Collapse
|
231
|
Chiu YC, Juvik JA, Ku KM. Targeted Metabolomic and Transcriptomic Analyses of "Red Russian" Kale (Brassicae napus var. pabularia) Following Methyl Jasmonate Treatment and Larval Infestation by the Cabbage Looper (Trichoplusia ni Hübner). Int J Mol Sci 2018; 19:E1058. [PMID: 29614820 PMCID: PMC5979517 DOI: 10.3390/ijms19041058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 12/26/2022] Open
Abstract
Methyl jasmonate (MeJA), synthesized in the jasmonic acid (JA) pathway, has been found to upregulate glucosinolate (GS) biosynthesis in plant species of the Brassicaceae family. Exogenous application of MeJA has shown to increase tissue GS concentrations and the formation of myrosinase-mediated GS hydrolysis products (GSHPs). In vitro and in vivo assays have demonstrated the potential health-promoting effects of certain GSHPs. MeJA is also known to elicit and induce genes associated with defense mechanisms to insect herbivory in Brassica species. To investigate the relationship between MeJA-induced GS biosynthesis and insect defense, three treatments were applied to "Red Russian" kale (Brassicae napus var. pabularia) seedlings: (1) a 250 µM MeJA leaf spray treatment; (2) leaf infestation with larvae of the cabbage looper (Trichoplusia ni (Hübner)); (3) control treatment (neither larval infestation nor MeJA application). Samples of leaf tissue from the three treatments were then assayed for changes in GS and GSHP concentrations, GS gene biosynthesis expression, and myrosinase activity. Major differences were observed between the three treatments in the levels of GS accumulation and GS gene expression. The insect-damaged samples showed significantly lower aliphatic GS accumulation, while both MeJA and T. ni infestation treatments induced greater accumulation of indolyl GS. The gene expression levels of CYP81F4, MYB34, and MYB122 were significantly upregulated in samples treated with MeJA and insects compared to the control group, which explained the increased indolyl GS concentration. The results suggest that the metabolic changes promoted by MeJA application and the insect herbivory response share common mechanisms of induction. This work provides potentially useful information for kale pest control and nutritional quality.
Collapse
Affiliation(s)
- Yu-Chun Chiu
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA.
| | - John A Juvik
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Kang-Mo Ku
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
232
|
Defossez E, Pellissier L, Rasmann S. The unfolding of plant growth form-defence syndromes along elevation gradients. Ecol Lett 2018; 21:609-618. [PMID: 29484833 DOI: 10.1111/ele.12926] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/09/2018] [Accepted: 01/22/2018] [Indexed: 01/30/2023]
Abstract
Understanding the functional economics that drives plant investment of resources requires investigating the interface between plant phenotypes and the variation in ecological conditions. While allocation to defence represents a large portion of the carbon budget, this axis is usually neglected in the study of plant economic spectrum. Using a novel geometrical approach, we analysed the co-variation in a comprehensive set of functional traits related to plant growth strategies, as well as chemical defences against herbivores on all 15 Cardamine species present in the Swiss Alps. By extracting geometrical information of the functional space, we observed clustering of plants into three main syndromes. Those different strategies of growth form and defence were also distributed within distinct elevational bands demonstrating an association between the functional space and the ecological conditions. We conclude that plant strategies converge into clear syndromes that trade off abiotic tolerance, growth and defence within each elevation zone.
Collapse
Affiliation(s)
- Emmanuel Defossez
- Laboratory of Functional Ecology, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Loïc Pellissier
- Landscape Ecology, Institute of Terrestrial Ecosystems, ETH Zürich, Zürich, Switzerland.,Swiss Federal Research Institute WSL, 8903, Birmensdorf, Switzerland
| | - Sergio Rasmann
- Laboratory of Functional Ecology, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| |
Collapse
|
233
|
Aljbory Z, Chen MS. Indirect plant defense against insect herbivores: a review. INSECT SCIENCE 2018; 25:2-23. [PMID: 28035791 DOI: 10.1111/1744-7917.12436] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/06/2016] [Accepted: 12/20/2016] [Indexed: 05/09/2023]
Abstract
Plants respond to herbivore attack by launching 2 types of defenses: direct defense and indirect defense. Direct defense includes all plant traits that increase the resistance of host plants to insect herbivores by affecting the physiology and/or behavior of the attackers. Indirect defense includes all traits that by themselves do not have significant direct impact on the attacking herbivores, but can attract natural enemies of the herbivores and thus reduce plant loss. When plants recognize herbivore-associated elicitors, they produce and release a blend of volatiles that can attract predators, parasites, and other natural enemies. Known herbivore-associated elicitors include fatty acid-amino acid conjugates, sulfur-containing fatty acids, fragments of cell walls, peptides, esters, and enzymes. Identified plant volatiles include terpenes, nitrogenous compounds, and indoles. In addition, constitive traits including extrafloral nectars, food bodies, and domatia can be further induced to higher levels and attract natural enemies as well as provide food and shelter to carnivores. A better understanding of indirect plant defense at global and componential levels via advanced high throughput technologies may lead to utilization of indirect defense in suppression of herbivore damage to plants.
Collapse
Affiliation(s)
- Zainab Aljbory
- Department of Entomology, Kansas State University, Manhattan, Kansas, USA
| | - Ming-Shun Chen
- Department of Entomology, Kansas State University, Manhattan, Kansas, USA
- Hard Winter Wheat Genetics Research Unit, USDA-ARS, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
234
|
|
235
|
Agnihotri AR, Hulagabali CV, Adhav AS, Joshi RS. Mechanistic insight in potential dual role of sinigrin against Helicoverpa armigera. PHYTOCHEMISTRY 2018; 145:121-127. [PMID: 29126020 DOI: 10.1016/j.phytochem.2017.10.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
The adverse effect of glucosinolates on diverse phytophagous insects is well documented, but its impact on insect physiology has remained enigmatic. Here we report insights into detrimental effects of plant glucosinolate molecule, sinigrin, on Helicoverpa armigera growth and development. In-silico screening of multiple glucosinolates predicted sinigrin as one of the potential inhibitor of H. armigera cathepsin B and L. Insects fed on sinigrin containing diet showed significantly reduced growth (20-30%), delayed pupation (10-15%), decreased fecundity (50-80%) and developmental abnormalities. Further, sinigrin showed 50-60% inhibition of ex-vivo cathepsin like activity which might be a reason for growth and development related abnormalities. In-vitro and mass spectrometry studies highlighted the cytotoxicity caused due to the hydrolysis of sinigrin, into toxic isothiocyanates, in presence of H. armigera whole body extract. In conclusion, insect cathepsin inhibition and isothiocyanate mediated cytotoxicity lead to the dual adverse effect of sinigrin on H. armigera.
Collapse
Affiliation(s)
- Aniruddha R Agnihotri
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, 411 007, Maharashtra, India
| | - Chaitanya V Hulagabali
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, 411 007, Maharashtra, India
| | - Anmol S Adhav
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, 411 007, Maharashtra, India
| | - Rakesh S Joshi
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, 411 007, Maharashtra, India.
| |
Collapse
|
236
|
Czerniawski P, Bednarek P. Glutathione S-Transferases in the Biosynthesis of Sulfur-Containing Secondary Metabolites in Brassicaceae Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:1639. [PMID: 30483292 PMCID: PMC6243137 DOI: 10.3389/fpls.2018.01639] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/22/2018] [Indexed: 05/07/2023]
Abstract
Plants in the Brassicaceae family have evolved the capacity to produce numerous unique and structurally diverse sulfur-containing secondary metabolites, including constitutively present thio-glucosides, also known as glucosinolates, and indole-type phytoalexins, which are induced upon pathogen recognition. Studies on the glucosinolate and phytoalexin biosynthetic pathways in the model plant Arabidopsis thaliana have shown that glutathione donates the sulfur atoms that are present in these compounds, and this further suggests that specialized glutathione S-transferases (GSTs) are involved in the biosynthesis of glucosinolates and sulfur-containing phytoalexins. In addition, experimental evidence has shown that GSTs also participate in glucosinolate catabolism. Several candidate GSTs have been suggested based on co-expression analysis, however, the function of only a few of these enzymes have been validated by enzymatic assays or with phenotypes of respective mutant plants. Thus, it remains to be determined whether biosynthesis of sulfur-containing metabolites in Brassicaceae plants requires specific or nonspecific GSTs.
Collapse
|
237
|
Itoh H, Tago K, Hayatsu M, Kikuchi Y. Detoxifying symbiosis: microbe-mediated detoxification of phytotoxins and pesticides in insects. Nat Prod Rep 2018; 35:434-454. [DOI: 10.1039/c7np00051k] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Symbiotic microorganisms degrade natural and artificial toxic compounds, and confer toxin resistance on insect hosts.
Collapse
Affiliation(s)
- Hideomi Itoh
- Bioproduction Research Institute
- National Institute of Advanced Industrial Science and Technology (AIST) Hokkaido
- Sapporo 062-8517
- Japan
| | - Kanako Tago
- Institute for Agro-Environmental Sciences
- National Agriculture and Food Research Organization (NARO)
- Tsukuba 305-8604
- Japan
| | - Masahito Hayatsu
- Institute for Agro-Environmental Sciences
- National Agriculture and Food Research Organization (NARO)
- Tsukuba 305-8604
- Japan
| | - Yoshitomo Kikuchi
- Bioproduction Research Institute
- National Institute of Advanced Industrial Science and Technology (AIST) Hokkaido
- Sapporo 062-8517
- Japan
- Graduate School of Agriculture
| |
Collapse
|
238
|
Malka SK, Cheng Y. Possible Interactions between the Biosynthetic Pathways of Indole Glucosinolate and Auxin. FRONTIERS IN PLANT SCIENCE 2017; 8:2131. [PMID: 29312389 PMCID: PMC5735125 DOI: 10.3389/fpls.2017.02131] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/30/2017] [Indexed: 05/21/2023]
Abstract
Glucosinolates (GLS) are a group of plant secondary metabolites mainly found in Cruciferous plants, share a core structure consisting of a β-thioglucose moiety and a sulfonated oxime, but differ by a variable side chain derived from one of the several amino acids. These compounds are hydrolyzed upon cell damage by thioglucosidase (myrosinase), and the resulting degradation products are toxic to many pathogens and herbivores. Human beings use these compounds as flavor compounds, anti-carcinogens, and bio-pesticides. GLS metabolism is complexly linked to auxin homeostasis. Indole GLS contributes to auxin biosynthesis via metabolic intermediates indole-3-acetaldoxime (IAOx) and indole-3-acetonitrile (IAN). IAOx is proposed to be a metabolic branch point for biosynthesis of indole GLS, IAA, and camalexin. Interruption of metabolic channeling of IAOx into indole GLS leads to high-auxin production in GLS mutants. IAN is also produced as a hydrolyzed product of indole GLS and metabolized to IAA by nitrilases. In this review, we will discuss current knowledge on involvement of GLS in auxin homeostasis.
Collapse
Affiliation(s)
- Siva K. Malka
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Youfa Cheng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
239
|
|
240
|
Lachaise T, Ourry M, Lebreton L, Guillerm-Erckelboudt AY, Linglin J, Paty C, Chaminade V, Marnet N, Aubert J, Poinsot D, Cortesero AM, Mougel C. Can soil microbial diversity influence plant metabolites and life history traits of a rhizophagous insect? A demonstration in oilseed rape. INSECT SCIENCE 2017; 24:1045-1056. [PMID: 28544806 DOI: 10.1111/1744-7917.12478] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/15/2017] [Accepted: 04/19/2017] [Indexed: 05/18/2023]
Abstract
Interactions between plants and phytophagous insects play an important part in shaping the biochemical composition of plants. Reciprocally plant metabolites can influence major life history traits in these insects and largely contribute to their fitness. Plant rhizospheric microorganisms are an important biotic factor modulating plant metabolites and adaptation to stress. While plant-insects or plant-microorganisms interactions and their consequences on the plant metabolite signature are well-documented, the impact of soil microbial communities on plant defenses against phytophagous insects remains poorly known. In this study, we used oilseed rape (Brassica napus) and the cabbage root fly (Delia radicum) as biological models to tackle this question. Even though D. radicum is a belowground herbivore as a larva, its adult life history traits depend on aboveground signals. We therefore tested whether soil microbial diversity influenced emergence rate and fitness but also fly oviposition behavior, and tried to link possible effects to modifications in leaf and root metabolites. Through a removal-recolonization experiment, 3 soil microbial modalities ("high," "medium," "low") were established and assessed through amplicon sequencing of 16S and 18S ribosomal RNA genes. The "medium" modality in the rhizosphere significantly improved insect development traits. Plant-microorganism interactions were marginally associated to modulations of root metabolites profiles, which could partly explain these results. We highlighted the potential role of plant-microbial interaction in plant defenses against Delia radicum. Rhizospheric microbial communities must be taken into account when analyzing plant defenses against herbivores, being either below or aboveground.
Collapse
Affiliation(s)
- Tom Lachaise
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes 1, Le Rheu, France
| | - Morgane Ourry
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes 1, Le Rheu, France
| | - Lionel Lebreton
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes 1, Le Rheu, France
| | | | - Juliette Linglin
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes 1, Le Rheu, France
| | - Chrystelle Paty
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes 1, Université Bretagne-Loire, Rennes, France
| | - Valérie Chaminade
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes 1, Université Bretagne-Loire, Rennes, France
| | - Nathalie Marnet
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes 1, Le Rheu, France
- INRA, UR1268 BIA-Le Rheu, France
| | - Julie Aubert
- INRA-AgroParisTech, UMR 518 Applied Mathematics and Computer Sciences-Paris, France
| | - Denis Poinsot
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes 1, Université Bretagne-Loire, Rennes, France
| | - Anne-Marie Cortesero
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes 1, Université Bretagne-Loire, Rennes, France
| | - Christophe Mougel
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes 1, Le Rheu, France
| |
Collapse
|
241
|
Robert CA, Zhang X, Machado RA, Schirmer S, Lori M, Mateo P, Erb M, Gershenzon J. Sequestration and activation of plant toxins protect the western corn rootworm from enemies at multiple trophic levels. eLife 2017; 6. [PMID: 29171835 PMCID: PMC5701792 DOI: 10.7554/elife.29307] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/29/2017] [Indexed: 01/17/2023] Open
Abstract
Highly adapted herbivores can phenocopy two-component systems by stabilizing, sequestering and reactivating plant toxins. However, whether these traits protect herbivores against their enemies is poorly understood. We demonstrate that the western corn rootworm Diabrotica virgifera virgifera, the most damaging maize pest on the planet, specifically accumulates the root-derived benzoxazinoid glucosides HDMBOA-Glc and MBOA-Glc. MBOA-Glc is produced by D. virgifera through stabilization of the benzoxazinoid breakdown product MBOA by N-glycosylation. The larvae can hydrolyze HDMBOA-Glc, but not MBOA-Glc, to produce toxic MBOA upon predator attack. Accumulation of benzoxazinoids renders D. virgifera highly resistant to nematodes which inject and feed on entomopathogenic symbiotic bacteria. While HDMBOA-Glc and MBOA reduce the growth and infectivity of both the nematodes and the bacteria, MBOA-Glc repels infective juvenile nematodes. Our results illustrate how herbivores combine stabilized and reactivated plant toxins to defend themselves against a deadly symbiosis between the third and the fourth trophic level enemies. The western corn rootworm is the most damaging pest of maize plants. Out of sight, the larvae of this beetle feed on maize roots, and cause billions of dollars worth of losses each year. One of the reasons why this pest remains such a problem is it can adapt and resist many crop protection strategies. Biological control refers to combating a pest using its own natural enemies – for example, its predators. Biological control of the western corn rootworm has been attempted using nematode worms. Normally, the nematodes locate and enter an insect larvae, release bacteria that kill it, and then feed and multiply within the dead larvae. Yet, the western corn rootworm seems at least partly able to resist these nematodes, and the success of biological control in the field has been variable. Several insect herbivores are known to accumulate, or sequester, plant toxins in their own body for self-defense. Previously, in 2012, researchers reported that the western corn rootworm is resistant and attracted to the major toxins in maize roots, the benzoxazinoids. The blood-like fluid of the western corn rootworm also repels many predators. Could the western corn rootworm be sequestering maize benzoxazinoids to resist the biological control of nematodes and their bacterial partners? Plants store benzoxazinoids in a non-toxic form. If herbivores damage the plant, these molecules quickly break down into compounds that are toxic to most insects. Now Robert et al. – who include two of the researchers involved in the 2012 study – show that the western corn rootworm uses a similar defense system to protect itself against biological control nematodes and their bacterial partners. First, the larvae convert a benzoxazinoid breakdown product by adding a glucose molecule. They then release large amounts of this modified molecule to repel young nematodes. Second, via an unknown mechanism, the larvae stabilize a second plant-derived benzoxazinoid, sequester its non-toxic form in their bodies, and activate it upon nematode attack. The resulting toxins can kill both nematodes and their bacterial partners. By combining different chemical strategies to stabilize and activate plant toxins, the western corn rootworm is able to resist the nematodes used for biological control. These findings can help to explain why biological control has had limited success against the western corn rootworm. In the long run, they may lead to more effective biological control programs, for instance by stopping the western corn rootworm from sequestering benzoxazinoids or by using natural enemies that are resistant to the insect’s toxins.
Collapse
Affiliation(s)
- Christelle Am Robert
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.,Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Xi Zhang
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | | | - Stefanie Schirmer
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Martina Lori
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Pierre Mateo
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
242
|
Urbancsok J, Bones AM, Kissen R. Glucosinolate-Derived Isothiocyanates Inhibit Arabidopsis Growth and the Potency Depends on Their Side Chain Structure. Int J Mol Sci 2017; 18:ijms18112372. [PMID: 29117115 PMCID: PMC5713341 DOI: 10.3390/ijms18112372] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 01/21/2023] Open
Abstract
Isothiocyanates (ITCs), the biologically important glucosinolate breakdown products, can present health-promoting effects, play an important role in plant defense and affect plant cellular mechanisms. Here, we evaluated the biological effects of ITCs on Arabidopsis thaliana by assessing growth parameters after long-term exposure to low concentrations of aliphatic and aromatic ITCs, ranging from 1 to 1000 µM. Treatment with the aliphatic allylisothiocyanate (allyl-ITC) led to a significant reduction of root length and fresh weight in a dose-dependent manner and affected the formation of lateral roots. To assess the importance of a hormonal crosstalk in the allyl-ITC-mediated growth reduction, the response of auxin and ethylene mutants was investigated, but our results did not allow us to confirm a role for these hormones. Aromatic ITCs generally led to a more severe growth inhibition than the aliphatic allyl-ITC. Interestingly, we observed a correlation between the length of their side chain and the effect these aromatic ITCs caused on Arabidopsis thaliana, with the greatest inhibitory effect seen for 2-phenylethyl-ITC. Root growth recovered when seedlings were removed from exposure to ITCs.
Collapse
Affiliation(s)
- János Urbancsok
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491 Trondheim, Norway.
| | - Atle M Bones
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491 Trondheim, Norway.
| | - Ralph Kissen
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491 Trondheim, Norway.
| |
Collapse
|
243
|
Robin AHK, Yi GE, Laila R, Hossain MR, Park JI, Kim HR, Nou IS. Leptosphaeria maculans Alters Glucosinolate Profiles in Blackleg Disease-Resistant and -Susceptible Cabbage Lines. FRONTIERS IN PLANT SCIENCE 2017; 8:1769. [PMID: 29075281 PMCID: PMC5644266 DOI: 10.3389/fpls.2017.01769] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/28/2017] [Indexed: 05/05/2023]
Abstract
Blackleg, a fungal disease caused by Leptosphaeria maculans, is one of the most devastating diseases of Brassica crops worldwide. Despite notable progress elucidating the roles of glucosinolates in pathogen defense, the complex interaction between B. oleracea (cabbage) and L. maculans infection that leads to the selective induction of genes involved in glucosinolate production and subsequent modulation of glucosinolate profiles remains to be fully understood. The current study was designed to identify glucosinolate-biosynthesis genes induced by L. maculans and any associated alterations in glucosinolate profiles to explore their roles in blackleg resistance in 3-month-old cabbage plants. The defense responses of four cabbage lines, two resistant and two susceptible, were investigated using two L. maculans isolates, 03-02 s and 00-100 s. A simultaneous increase in the aliphatic glucosinolates glucoiberverin (GIV) and glucoerucin (GER) and the indolic glucosinolates glucobrassicin (GBS) and neoglucobrassicin (NGBS) was associated with complete resistance. An increase in either aliphatic (GIV) or indolic (GBS and MGBS) glucosinolates was associated with moderate resistance. Indolic glucobrassicin (GBS) and neoglucobrassicin (NGBS) were increased in both resistant and susceptible interactions. Pearson correlation showed positive association between GER content with GSL-OH (Bol033373) expression. Expressions of MYB34 (Bol007760), ST5a (Bol026200), and CYP81F2 (Bol026044) were positively correlated with the contents of both GBS and MGBS. Our results confirm that L. maculans infection induces glucosinolate-biosynthesis genes in cabbage, with concomitant changes in individual glucosinolate contents. In resistant lines, both aliphatic and indolic glucosinolates are associated with resistance, with aliphatic GIV and GER and indolic MGBS glucosinolates particularly important. The association between the genes, the corresponding glucosinolates, and plant resistance broaden our molecular understanding of glucosinolate mediated defense against L. maculans in cabbage.
Collapse
Affiliation(s)
- Arif Hasan Khan Robin
- Department of Horticulture, Sunchon National University, Suncheon, South Korea
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Go-Eun Yi
- Department of Horticulture, Sunchon National University, Suncheon, South Korea
| | - Rawnak Laila
- Department of Horticulture, Sunchon National University, Suncheon, South Korea
| | - Mohammad Rashed Hossain
- Department of Horticulture, Sunchon National University, Suncheon, South Korea
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Jong-In Park
- Department of Horticulture, Sunchon National University, Suncheon, South Korea
| | - Hye R. Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Ill-Sup Nou
- Department of Horticulture, Sunchon National University, Suncheon, South Korea
| |
Collapse
|
244
|
Silva GA, Pereira RM, Rodrigues-Silva N, Souza TC, Ferreira DO, Queiroz EA, Silva GAR, Picanço MC. Wax Removal and Diamondback Moth Performance in Collards Cultivars. NEOTROPICAL ENTOMOLOGY 2017; 46:571-577. [PMID: 28478539 DOI: 10.1007/s13744-017-0493-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 02/03/2017] [Indexed: 06/07/2023]
Abstract
The diamondback moth Plutella xylostella (Linnaeus, 1758) (Lepidoptera: Plutellidae) is an herbivorous specialist on Brassicaceae species. Brassicas spp. plants developed a range of defenses (chemical, physical, and morphological) to prevent herbivores attack. In this study, we reported the antixenotic and antibiotic effects of outermost layer of two species of epicuticular wax of Brassicaceae, Brassica oleracea L. var. "Santo Antônio," and Hybrid Kope F1 100MX, on larvae and adult of P. xylostella. In the choice experiment, P. xylostella adults showed an oviposition preference for collard cultivars Santo Antônio (control) and Hybrid Kope F1 100MX with wax removal. In the no-choice experiment, oviposition was 6.4 times higher in the Hybrid Kope F1 100MX with wax removal than without wax removal. There were significant differences among larvae feeding on leaf disks of Hybrid Kope F1 100MX in the treatments with (65.3 mg) and without wax removal (23.5 mg). The net reproduction rate (R 0 ), and intrinsic (rm) and finite rates of increase (λ) of P. xylostella in the cv. Santo Antônio were bigger in the treatment without wax removal (R 0 = 50.4, rm = 0.23 and λ = 1.26) than treatment with wax removal (R 0 = 28.5, rm = 0.20 and λ = 1.22). However, only the R 0 value was affected by mechanical wax removal in the Hybrid Kope F1 100MX (with wax removal R 0 = 43.3 and without wax removal R 0 = 30.8). In conclusion, the results indicate that collard's wax is important to accessibility and development of P. xylostella, and its removal changes the resistance of collard's varieties to P. xylostella.
Collapse
Affiliation(s)
- G A Silva
- Lab Entomologia Agrícola, Depto de Entomologia, Univ Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
- Lab Entomologia e Fitopatologia, Centro de Ciências e Tecnologias Agropecuárias, UENF, Campos dos Goytacazes, RJ, 28013-602, Brazil.
| | - R M Pereira
- Lab Entomologia Agrícola, Depto de Entomologia, Univ Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - N Rodrigues-Silva
- Lab Entomologia Agrícola, Depto de Entomologia, Univ Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - T C Souza
- Lab Entomologia Agrícola, Depto de Entomologia, Univ Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - D O Ferreira
- Lab Entomologia Agrícola, Depto de Entomologia, Univ Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - E A Queiroz
- Lab Entomologia Agrícola, Depto de Entomologia, Univ Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - G A R Silva
- Lab Entomologia Agrícola, Depto de Entomologia, Univ Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - M C Picanço
- Lab Entomologia Agrícola, Depto de Entomologia, Univ Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
245
|
Seo MS, Kim JS. Understanding of MYB Transcription Factors Involved in Glucosinolate Biosynthesis in Brassicaceae. Molecules 2017; 22:molecules22091549. [PMID: 28906468 PMCID: PMC6151624 DOI: 10.3390/molecules22091549] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 09/08/2017] [Accepted: 09/12/2017] [Indexed: 02/06/2023] Open
Abstract
Glucosinolates (GSLs) are widely known secondary metabolites that have anticarcinogenic and antioxidative activities in humans and defense roles in plants of the Brassicaceae family. Some R2R3-type MYB (myeloblastosis) transcription factors (TFs) control GSL biosynthesis in Arabidopsis. However, studies on the MYB TFs involved in GSL biosynthesis in Brassica species are limited because of the complexity of the genome, which includes an increased number of paralog genes as a result of genome duplication. The recent completion of the genome sequencing of the Brassica species permits the identification of MYB TFs involved in GSL biosynthesis by comparative genome analysis with A. thaliana. In this review, we describe various findings on the regulation of GSL biosynthesis in Brassicaceae. Furthermore, we identify 63 orthologous copies corresponding to five MYB TFs from Arabidopsis, except MYB76 in Brassica species. Fifty-five MYB TFs from the Brassica species possess a conserved amino acid sequence in their R2R3 MYB DNA-binding domain, and share close evolutionary relationships. Our analysis will provide useful information on the 55 MYB TFs involved in the regulation of GSL biosynthesis in Brassica species, which have a polyploid genome.
Collapse
Affiliation(s)
- Mi-Suk Seo
- Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea.
| | - Jung Sun Kim
- Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea.
| |
Collapse
|
246
|
Desurmont GA, Köhler A, Maag D, Laplanche D, Xu H, Baumann J, Demairé C, Devenoges D, Glavan M, Mann L, Turlings TCJ. The spitting image of plant defenses: Effects of plant secondary chemistry on the efficacy of caterpillar regurgitant as an anti-predator defense. Ecol Evol 2017; 7:6304-6313. [PMID: 28861234 PMCID: PMC5574803 DOI: 10.1002/ece3.3174] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 04/16/2017] [Indexed: 11/30/2022] Open
Abstract
In the arms race between plants, herbivores, and their natural enemies, specialized herbivores may use plant defenses for their own benefit, and variation in plant traits may affect the benefits that herbivores derive from these defenses. Pieris brassicae is a specialist herbivore of plants containing glucosinolates, a specific class of defensive secondary metabolites. Caterpillars of P. brassicae are known to actively spit on attacking natural enemies, including their main parasitoid, the braconid wasp Cotesia glomerata. Here, we tested the hypothesis that variation in the secondary metabolites of host plants affects the efficacy of caterpillar regurgitant as an anti‐predator defense. Using a total of 10 host plants with different glucosinolate profiles, we first studied natural regurgitation events of caterpillars on parasitoids. We then studied manual applications of water or regurgitant on parasitoids during parasitization events. Results from natural regurgitation events revealed that parasitoids spent more time grooming after attack when foraging on radish and nasturtium than on Brassica spp., and when the regurgitant came in contact with the wings rather than any other body part. Results from manual applications of regurgitant showed that all parameters of parasitoid behavior (initial attack duration, attack interruption, grooming time, and likelihood of a second attack) were more affected when regurgitant was applied rather than water. The proportion of parasitoids re‐attacking a caterpillar within 15 min was the lowest when regurgitant originated from radish‐fed caterpillars. However, we found no correlation between glucosinolate content and regurgitant effects, and parasitoid behavior was equally affected when regurgitant originated from a glucosinolate‐deficient Arabidopsis thaliana mutant line. In conclusion, host plant affects to a certain extent the efficacy of spit from P. brassicae caterpillars as a defense against parasitoids, but this is not due to glucosinolate content. The nature of the defensive compounds present in the spit remains to be determined, and the ecological relevance of this anti‐predator defense needs to be further evaluated in the field.
Collapse
Affiliation(s)
| | - Angela Köhler
- Institute of Biology University of Neuchâtel Neuchâtel Switzerland
| | - Daniel Maag
- Institute of Biology University of Neuchâtel Neuchâtel Switzerland
| | - Diane Laplanche
- Institute of Biology University of Neuchâtel Neuchâtel Switzerland
| | - Hao Xu
- Institute of Biology University of Neuchâtel Neuchâtel Switzerland
| | - Julien Baumann
- Institute of Biology University of Neuchâtel Neuchâtel Switzerland
| | - Camille Demairé
- Institute of Biology University of Neuchâtel Neuchâtel Switzerland
| | | | - Mara Glavan
- Institute of Biology University of Neuchâtel Neuchâtel Switzerland
| | - Leslie Mann
- Institute of Biology University of Neuchâtel Neuchâtel Switzerland
| | - Ted C J Turlings
- Institute of Biology University of Neuchâtel Neuchâtel Switzerland
| |
Collapse
|
247
|
Pappas ML, Broekgaarden C, Broufas GD, Kant MR, Messelink GJ, Steppuhn A, Wäckers F, van Dam NM. Induced plant defences in biological control of arthropod pests: a double-edged sword. PEST MANAGEMENT SCIENCE 2017; 73:1780-1788. [PMID: 28387028 PMCID: PMC5575458 DOI: 10.1002/ps.4587] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 03/31/2017] [Accepted: 03/31/2017] [Indexed: 05/21/2023]
Abstract
Biological control is an important ecosystem service delivered by natural enemies. Together with breeding for plant defence, it constitutes one of the most promising alternatives to pesticides for controlling herbivores in sustainable crop production. Especially induced plant defences may be promising targets in plant breeding for resistance against arthropod pests. Because they are activated upon herbivore damage, costs are only incurred when defence is needed. Moreover, they can be more specific than constitutive defences. Nevertheless, inducible defence traits that are harming plant pest organisms may interfere with biological control agents, such as predators and parasitoids. Despite the vast fundamental knowledge on plant defence mechanisms and their effects on natural enemies, our understanding of the feasibility of combining biological control with induced plant defence in practice is relatively poor. In this review, we focus on arthropod pest control and present the most important features of biological control with natural enemies and of induced plant defence. Furthermore, we show potential synergies and conflicts among them and, finally, identify gaps and list opportunities for their combined use in crop protection. We suggest that breeders should focus on inducible resistance traits that are compatible with the natural enemies of arthropod pests, specifically traits that help communities of natural enemies to build up. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Maria L Pappas
- Democritus University of Thrace, Faculty of Agricultural and Forestry SciencesDepartment of Agricultural DevelopmentOrestiadaGreece
| | - Colette Broekgaarden
- Utrecht University, Faculty of ScienceDepartment of Biology, Plant − Microbe InteractionsUtrechtThe Netherlands
| | - George D Broufas
- Democritus University of Thrace, Faculty of Agricultural and Forestry SciencesDepartment of Agricultural DevelopmentOrestiadaGreece
| | - Merijn R Kant
- University of AmsterdamInstitute for Biodiversity and Ecosystem Dynamics, Section Molecular and Chemical EcologyAmsterdamThe Netherlands
| | | | - Anke Steppuhn
- Freie Universität BerlinInstitute of Biology, Molecular Ecology, Dahlem Centre of Plant SciencesBerlinGermany
| | - Felix Wäckers
- BiobestWesterloBelgium
- Lancaster UniversityLancaster Environment CentreUK
| | - Nicole M van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Friedrich Schiller University JenaInstitute of EcologyJenaGermany
| |
Collapse
|
248
|
Rivera-Vega LJ, Galbraith DA, Grozinger CM, Felton GW. Host plant driven transcriptome plasticity in the salivary glands of the cabbage looper (Trichoplusia ni). PLoS One 2017; 12:e0182636. [PMID: 28792546 PMCID: PMC5549731 DOI: 10.1371/journal.pone.0182636] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 07/22/2017] [Indexed: 02/03/2023] Open
Abstract
Generalist herbivores feed on a wide array of plants and need to adapt to varying host qualities and defenses. One of the first insect derived secretions to come in contact with the plant is the saliva. Insect saliva is potentially involved in both the pre-digestion of the host plant as well as induction/suppression of plant defenses, yet how the salivary glands respond to changes in host plant at the transcriptional level is largely unknown. The objective of this study was to determine how the labial salivary gland transcriptome varies according to the host plant on which the insect is feeding. In order to determine this, cabbage looper (Trichoplusia ni) larvae were reared on cabbage, tomato, and pinto bean artificial diet. Labial glands were dissected from fifth instar larvae and used to extract RNA for RNASeq analysis. Assembly of the resulting sequencing reads resulted in a transcriptome library for T. ni salivary glands consisting of 14,037 expressed genes. Feeding on different host plant diets resulted in substantial remodeling of the gland transcriptomes, with 4,501 transcripts significantly differentially expressed across the three treatment groups. Gene expression profiles were most similar between cabbage and artificial diet, which corresponded to the two diets on which larvae perform best. Expression of several transcripts involved in detoxification processes were differentially expressed, and transcripts involved in the spliceosome pathway were significantly downregulated in tomato-reared larvae. Overall, this study demonstrates that the transcriptomes of the salivary glands of the cabbage looper are strongly responsive to diet. It also provides a foundation for future functional studies that can help us understand the role of saliva of chewing insects in plant-herbivore interactions.
Collapse
Affiliation(s)
- Loren J. Rivera-Vega
- Department of Entomology, Pennsylvania State University, University Park, PA, United States of America
- * E-mail:
| | - David A. Galbraith
- Department of Entomology, Pennsylvania State University, University Park, PA, United States of America
| | - Christina M. Grozinger
- Department of Entomology, Pennsylvania State University, University Park, PA, United States of America
| | - Gary W. Felton
- Department of Entomology, Pennsylvania State University, University Park, PA, United States of America
| |
Collapse
|
249
|
Ponzio C, Papazian S, Albrectsen BR, Dicke M, Gols R. Dual herbivore attack and herbivore density affect metabolic profiles of Brassica nigra leaves. PLANT, CELL & ENVIRONMENT 2017; 40:1356-1367. [PMID: 28155236 DOI: 10.1111/pce.12926] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 05/18/2023]
Abstract
Plant responses to dual herbivore attack are increasingly studied, but effects on the metabolome have largely been restricted to volatile metabolites and defence-related non-volatile metabolites. However, plants subjected to stress, such as herbivory, undergo major changes in both primary and secondary metabolism. Using a naturally occurring system, we investigated metabolome-wide effects of single or dual herbivory on Brassica nigra plants by Brevicoryne brassicae aphids and Pieris brassicae caterpillars, while also considering the effect of aphid density. Metabolomic analysis of leaf material showed that single and dual herbivory had strong effects on the plant metabolome, with caterpillar feeding having the strongest influence. Additionally, aphid-density-dependent effects were found in both the single and dual infestation scenarios. Multivariate analysis revealed treatment-specific metabolomic profiles, and effects were largely driven by alterations in the glucosinolate and sugar pools. Our work shows that analysing the plant metabolome as a single entity rather than as individual metabolites provides new insights into the subcellular processes underlying plant defence against multiple herbivore attackers. These processes appear to be importantly influenced by insect density.
Collapse
Affiliation(s)
- Camille Ponzio
- Laboratory of Entomology, Wageningen University, PO Box 16, 6700 AA, Wageningen, The Netherlands
| | - Stefano Papazian
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187, Umeå, Sweden
| | - Benedicte R Albrectsen
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187, Umeå, Sweden
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, PO Box 16, 6700 AA, Wageningen, The Netherlands
| | - Rieta Gols
- Laboratory of Entomology, Wageningen University, PO Box 16, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
250
|
Keith RA, Mitchell-Olds T. Testing the optimal defense hypothesis in nature: Variation for glucosinolate profiles within plants. PLoS One 2017; 12:e0180971. [PMID: 28732049 PMCID: PMC5521783 DOI: 10.1371/journal.pone.0180971] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/24/2017] [Indexed: 11/19/2022] Open
Abstract
Plants employ highly variable chemical defenses against a broad community of herbivores, which vary in their susceptibilities to specific compounds. Variation in chemical defenses within the plant has been found in many species; the ecological and evolutionary influences on this variation, however, are less well-understood. One central theory describing the allocation of defenses in the plant is the Optimal Defense Hypothesis (ODH), which predicts that defenses will be concentrated in tissues that are of high fitness value to the plant. Although the ODH has been repeatedly supported within vegetative tissues, few studies have compared vegetative and reproductive tissues, and the results have not been conclusive. We quantified variation in glucosinolate profile and tissue value between vegetative and reproductive tissues in Boechera stricta, a close relative of Arabidopsis. B. stricta manufactures glucosinolates, a set of defensive compounds that vary genetically and are straightforward to quantify. Genetic diversity in glucosinolate profile has been previously demonstrated to be important to both herbivory and fitness in B. stricta; however, the importance of glucosinolate variation among tissues has not. Here, we investigate whether allocation of glucosinolates within the plant is consistent with the ODH. We used both clipping experiments on endogenous plants and ambient herbivory in a large-scale transplant experiment at three sites to quantify fitness effects of loss of rosette leaves, cauline leaves, and flowers and fruits. We measured glucosinolate concentration in leaves and fruits in the transplant experiment, and asked whether more valuable tissues were more defended. We also investigated within-plant variation in other aspects of the glucosinolate profile. Our results indicated that damage to fruits had a significantly larger effect on overall fitness than damage to leaves, and that fruits had much higher concentrations of glucosinolates, supporting the ODH. This is, to the best of our knowledge, the first study to explicitly compare both tissue value and chemical defense concentrations between vegetative and reproductive tissues under natural conditions.
Collapse
Affiliation(s)
- Rose A. Keith
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, United States of America
- Biology Department, Duke University, Durham, North Carolina, United States of America
| | - Thomas Mitchell-Olds
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, United States of America
- Biology Department, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|