201
|
Wang B, Starr AL, Fraser HB. Cell-type-specific cis-regulatory divergence in gene expression and chromatin accessibility revealed by human-chimpanzee hybrid cells. eLife 2024; 12:RP89594. [PMID: 38358392 PMCID: PMC10942608 DOI: 10.7554/elife.89594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Although gene expression divergence has long been postulated to be the primary driver of human evolution, identifying the genes and genetic variants underlying uniquely human traits has proven to be quite challenging. Theory suggests that cell-type-specific cis-regulatory variants may fuel evolutionary adaptation due to the specificity of their effects. These variants can precisely tune the expression of a single gene in a single cell-type, avoiding the potentially deleterious consequences of trans-acting changes and non-cell type-specific changes that can impact many genes and cell types, respectively. It has recently become possible to quantify human-specific cis-acting regulatory divergence by measuring allele-specific expression in human-chimpanzee hybrid cells-the product of fusing induced pluripotent stem (iPS) cells of each species in vitro. However, these cis-regulatory changes have only been explored in a limited number of cell types. Here, we quantify human-chimpanzee cis-regulatory divergence in gene expression and chromatin accessibility across six cell types, enabling the identification of highly cell-type-specific cis-regulatory changes. We find that cell-type-specific genes and regulatory elements evolve faster than those shared across cell types, suggesting an important role for genes with cell-type-specific expression in human evolution. Furthermore, we identify several instances of lineage-specific natural selection that may have played key roles in specific cell types, such as coordinated changes in the cis-regulation of dozens of genes involved in neuronal firing in motor neurons. Finally, using novel metrics and a machine learning model, we identify genetic variants that likely alter chromatin accessibility and transcription factor binding, leading to neuron-specific changes in the expression of the neurodevelopmentally important genes FABP7 and GAD1. Overall, our results demonstrate that integrative analysis of cis-regulatory divergence in chromatin accessibility and gene expression across cell types is a promising approach to identify the specific genes and genetic variants that make us human.
Collapse
Affiliation(s)
- Ban Wang
- Department of Biology, Stanford UniversityStanfordUnited States
| | | | - Hunter B Fraser
- Department of Biology, Stanford UniversityStanfordUnited States
| |
Collapse
|
202
|
van der Moolen M, Lovera A, Ersoy F, Mommo S, Loskill P, Cesare P. Cancer-mediated axonal guidance of sensory neurons in a microelectrode-based innervation MPS. Biofabrication 2024; 16:025013. [PMID: 38262053 DOI: 10.1088/1758-5090/ad218a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/23/2024] [Indexed: 01/25/2024]
Abstract
Despite recent advances in the field of microphysiological systems (MPSs), availability of models capable of mimicking the interactions between the nervous system and innervated tissues is still limited. This represents a significant challenge in identifying the underlying processes of various pathological conditions, including neuropathic, cardiovascular and metabolic disorders. In this novel study, we introduce a compartmentalized three-dimensional (3D) coculture system that enables physiologically relevant tissue innervation while recording neuronal excitability. By integrating custom microelectrode arrays into tailored glass chips microfabricated via selective laser-etching, we developed an entirely novel class of innervation MPSs (INV-MPS). This INV-MPS allows for manipulation, visualization, and electrophysiological analysis of individual axons innervating complex 3D tissues. Here, we focused on sensory innervation of 3D tumor tissue as a model case study since cancer-induced pain represents a major unmet medical need. The system was compared with existing nociception models and successfully replicated axonal chemoattraction mediated by nerve growth factor (NGF). Remarkably, in the absence of NGF, 3D cancer spheroids cocultured in the adjacent compartment induced sensory neurons to consistently cross the separating barrier and establish fine innervation. Moreover, we observed that crossing sensory fibers could be chemically excited by distal application of known pain-inducing agonists only when cocultured with cancer cells. To our knowledge, this is the first system showcasing morphological and electrophysiological analysis of 3D-innervated tumor tissuein vitro, paving the way for a plethora of studies into innervation-related diseases and improving our understanding of underlying pathophysiology.
Collapse
Affiliation(s)
- Matthijs van der Moolen
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
- Department for Microphysiological Systems, Institute of Biomedical Engineering, Eberhard Karls University Tübingen, Österbergstr. 3, 72074 Tübingen, Germany
| | - Andrea Lovera
- FEMTOprint SA, Via Industria 3, 6933 Muzzano, Switzerland
| | - Fulya Ersoy
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
- Department for Microphysiological Systems, Institute of Biomedical Engineering, Eberhard Karls University Tübingen, Österbergstr. 3, 72074 Tübingen, Germany
| | - Sacha Mommo
- FEMTOprint SA, Via Industria 3, 6933 Muzzano, Switzerland
| | - Peter Loskill
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
- Department for Microphysiological Systems, Institute of Biomedical Engineering, Eberhard Karls University Tübingen, Österbergstr. 3, 72074 Tübingen, Germany
| | - Paolo Cesare
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
- Department for Microphysiological Systems, Institute of Biomedical Engineering, Eberhard Karls University Tübingen, Österbergstr. 3, 72074 Tübingen, Germany
- Current address: Eurac Research, Institute for Biomedicine, via Volta 13A, 39100 Bolzano, Italy
| |
Collapse
|
203
|
Biswas B, Eapen V, Morris MJ, Jones NM. Combined Effect of Maternal Separation and Early-Life Immune Activation on Brain and Behaviour of Rat Offspring. Biomolecules 2024; 14:197. [PMID: 38397434 PMCID: PMC10886936 DOI: 10.3390/biom14020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/14/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Adversity during early life, a critical period for brain development, increases vulnerability and can have a lasting impact on the brain and behaviour of a child. However, the long-term effects of cumulative early-life stressors on brain and behaviour are not well known. We studied a 2-hit rat model of early-life adversity using maternal separation (MS) and immune activation (lipopolysaccharide (LPS)). Rat pups underwent MS for 15 (control) or 180 (MS) minutes per day from postnatal day (P)2-14 and were administered saline or LPS (intraperitoneal) on P3. Open-field (OFT) and object-place recognition tests were performed on rat offspring at P33-35 and P42-50, respectively. The pre-frontal cortex (PFC) and hippocampus were removed at the experimental endpoint (P52-55) for mRNA expression. MS induced anxiety-like behaviour in OFT in male and reduced locomotor activity in both male and female offspring. LPS induced a subtle decline in memory in the object-place recognition test in male offspring. MS increased glial fibrillary acidic protein (GFAP) and brain-derived neurotrophic factor expression in PFC and ionised calcium-binding adapter molecule-1 expression in male hippocampus. MS and LPS resulted in distinct behavioural phenotypes in a sex-specific manner. The combination of MS and LPS had a synergistic effect on the anxiety-like behaviour, locomotor activity, and GFAP mRNA expression outcomes.
Collapse
Affiliation(s)
- Bharti Biswas
- School of Clinical Medicine, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW 2052, Australia; (B.B.); (V.E.)
- School of Biomedical Sciences, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Valsamma Eapen
- School of Clinical Medicine, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW 2052, Australia; (B.B.); (V.E.)
| | - Margaret J. Morris
- School of Biomedical Sciences, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Nicole M. Jones
- School of Biomedical Sciences, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW 2052, Australia
| |
Collapse
|
204
|
Leon WRM, Steffen DM, Dale-Huang FR, Rakela B, Breevoort A, Romero-Rodriguez R, Hasenstaub AR, Stryker MP, Weiner JA, Alvarez-Buylla A. The clustered gamma protocadherin PcdhγC4 isoform regulates cortical interneuron programmed cell death in the mouse cortex. Proc Natl Acad Sci U S A 2024; 121:e2313596120. [PMID: 38285948 PMCID: PMC10861877 DOI: 10.1073/pnas.2313596120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/16/2023] [Indexed: 01/31/2024] Open
Abstract
Cortical inhibitory interneurons (cINs) are born in the ventral forebrain and migrate into the cortex where they make connections with locally produced excitatory glutamatergic neurons. Cortical function critically depends on the number of cINs, which is also key to establishing the appropriate inhibitory/excitatory balance. The final number of cINs is determined during a postnatal period of programmed cell death (PCD) when ~40% of the young cINs are eliminated. Previous work shows that the loss of clustered gamma protocadherins (Pcdhgs), but not of genes in the Pcdha or Pcdhb clusters, dramatically increased BAX-dependent cIN PCD. Here, we show that PcdhγC4 is highly expressed in cINs of the mouse cortex and that this expression increases during PCD. The sole deletion of the PcdhγC4 isoform, but not of the other 21 isoforms in the Pcdhg gene cluster, increased cIN PCD. Viral expression of the PcdhγC4, in cIN lacking the function of the entire Pcdhg cluster, rescued most of these cells from cell death. We conclude that PcdhγC4 plays a critical role in regulating the survival of cINs during their normal period of PCD. This highlights how a single isoform of the Pcdhg cluster, which has been linked to human neurodevelopmental disorders, is essential to adjust cIN cell numbers during cortical development.
Collapse
Affiliation(s)
- Walter R. Mancia Leon
- Department of Neurological Surgery and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA94143
| | - David M. Steffen
- Department of Neurological Surgery and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA94143
- Department of Biology, The University of Iowa, Iowa City, IA52242
| | - Fiona R. Dale-Huang
- Department of Neurological Surgery and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA94143
| | - Benjamin Rakela
- Department of Physiology, University of California, San Francisco, San Francisco, CA94143
| | - Arnar Breevoort
- Department of Physiology, University of California, San Francisco, San Francisco, CA94143
| | - Ricardo Romero-Rodriguez
- Department of Neurological Surgery and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA94143
| | - Andrea R. Hasenstaub
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA94143
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA94143
| | - Michael P. Stryker
- Department of Physiology, University of California, San Francisco, San Francisco, CA94143
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA94143
| | - Joshua A. Weiner
- Department of Biology, The University of Iowa, Iowa City, IA52242
| | - Arturo Alvarez-Buylla
- Department of Neurological Surgery and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA94143
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA94143
| |
Collapse
|
205
|
Treble-Barna A, Petersen BA, Stec Z, Conley YP, Fink EL, Kochanek PM. Brain-Derived Neurotrophic Factor in Pediatric Acquired Brain Injury and Recovery. Biomolecules 2024; 14:191. [PMID: 38397427 PMCID: PMC10886547 DOI: 10.3390/biom14020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
We review emerging preclinical and clinical evidence regarding brain-derived neurotrophic factor (BDNF) protein, genotype, and DNA methylation (DNAm) as biomarkers of outcomes in three important etiologies of pediatric acquired brain injury (ABI), traumatic brain injury, global cerebral ischemia, and stroke. We also summarize evidence suggesting that BDNF is (1) involved in the biological embedding of the psychosocial environment, (2) responsive to rehabilitative therapies, and (3) potentially modifiable. BDNF's unique potential as a biomarker of neuroplasticity and neural repair that is reflective of and responsive to both pre- and post-injury environmental influences separates it from traditional protein biomarkers of structural brain injury with exciting potential to advance pediatric ABI management by increasing the accuracy of prognostic tools and informing clinical decision making through the monitoring of therapeutic effects.
Collapse
Affiliation(s)
- Amery Treble-Barna
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (B.A.P.); (Z.S.)
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (E.L.F.); (P.M.K.)
| | - Bailey A. Petersen
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (B.A.P.); (Z.S.)
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (E.L.F.); (P.M.K.)
| | - Zachary Stec
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (B.A.P.); (Z.S.)
| | - Yvette P. Conley
- Department of Health Promotion & Development, University of Pittsburgh School of Nursing, Pittsburgh, PA 15213, USA;
| | - Ericka L. Fink
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (E.L.F.); (P.M.K.)
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Patrick M. Kochanek
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (E.L.F.); (P.M.K.)
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
206
|
Eleiwa NZH, Elsayed ASF, Said EN, Metwally MMM, Abd-Elhakim YM. Di (2-ethylhexyl) phthalate alters neurobehavioral responses and oxidative status, architecture, and GFAP and BDNF signaling in juvenile rat's brain: Protective role of Coenzyme10. Food Chem Toxicol 2024; 184:114372. [PMID: 38113957 DOI: 10.1016/j.fct.2023.114372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), a phthalate plasticizer, is widely spread in the environment, presenting hazards to human health and food safety. Hence, this study examined the probable preventive role of coenzyme10 (CQ10) (10 mg/kg.b.wt) against DEHP (500 mg/kg.wt) - induced neurotoxic and neurobehavioral impacts in juvenile (34 ± 1.01g and 3 weeks old) male Sprague Dawley rats in 35-days oral dosing trial. The results indicated that CQ10 significantly protected against DEHP-induced memory impairment, anxiety, depression, spatial learning disorders, and repetitive/stereotypic-like behavior. Besides, the DEHP-induced depletion in dopamine and gamma amino butyric acid levels was significantly restored by CQ10. Moreover, CQ10 significantly protected against the exhaustion of CAT, GPx, SOD, GSH, and GSH/GSSG ratio, as well as the increase in malondialdehyde, Caspas-3, interleukin-6, and tumor necrosis factor-alpha brain content accompanying with DEHP exposure. Furthermore, CQ10 significantly protected the brain from the DEHP-induced neurodegenerative alterations. Also, the increased immunoexpression of brain-derived neurotrophic factor, not glial fibrillary acidic protein, in the cerebral, hippocampal, and cerebellar brain tissues due to DEHP exposure was alleviated with CQ10. This study's findings provide conclusive evidence that CQ10 has the potential to be used as an efficient natural protective agent against the neurobehavioral and neurotoxic consequences of DEHP.
Collapse
Affiliation(s)
- Naglaa Z H Eleiwa
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Alaa S F Elsayed
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Enas N Said
- Department of Behaviour and Management of Animal, Poultry and Aquatic, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed M M Metwally
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, King Salman International University, Ras Sudr, Egypt; Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
207
|
Ciceri G, Baggiolini A, Cho HS, Kshirsagar M, Benito-Kwiecinski S, Walsh RM, Aromolaran KA, Gonzalez-Hernandez AJ, Munguba H, Koo SY, Xu N, Sevilla KJ, Goldstein PA, Levitz J, Leslie CS, Koche RP, Studer L. An epigenetic barrier sets the timing of human neuronal maturation. Nature 2024; 626:881-890. [PMID: 38297124 PMCID: PMC10881400 DOI: 10.1038/s41586-023-06984-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/15/2023] [Indexed: 02/02/2024]
Abstract
The pace of human brain development is highly protracted compared with most other species1-7. The maturation of cortical neurons is particularly slow, taking months to years to develop adult functions3-5. Remarkably, such protracted timing is retained in cortical neurons derived from human pluripotent stem cells (hPSCs) during in vitro differentiation or upon transplantation into the mouse brain4,8,9. Those findings suggest the presence of a cell-intrinsic clock setting the pace of neuronal maturation, although the molecular nature of this clock remains unknown. Here we identify an epigenetic developmental programme that sets the timing of human neuronal maturation. First, we developed a hPSC-based approach to synchronize the birth of cortical neurons in vitro which enabled us to define an atlas of morphological, functional and molecular maturation. We observed a slow unfolding of maturation programmes, limited by the retention of specific epigenetic factors. Loss of function of several of those factors in cortical neurons enables precocious maturation. Transient inhibition of EZH2, EHMT1 and EHMT2 or DOT1L, at progenitor stage primes newly born neurons to rapidly acquire mature properties upon differentiation. Thus our findings reveal that the rate at which human neurons mature is set well before neurogenesis through the establishment of an epigenetic barrier in progenitor cells. Mechanistically, this barrier holds transcriptional maturation programmes in a poised state that is gradually released to ensure the prolonged timeline of human cortical neuron maturation.
Collapse
Affiliation(s)
- Gabriele Ciceri
- The Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Arianna Baggiolini
- The Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Institute of Oncology Research (IOR), Bellinzona Institutes of Science (BIOS+), Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Hyein S Cho
- The Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Meghana Kshirsagar
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Microsoft AI for Good Research, Redmond, WA, USA
| | - Silvia Benito-Kwiecinski
- The Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ryan M Walsh
- The Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - Hermany Munguba
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - So Yeon Koo
- The Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Neuroscience PhD Program, New York, NY, USA
| | - Nan Xu
- The Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kaylin J Sevilla
- The Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Peter A Goldstein
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Christina S Leslie
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Richard P Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
208
|
Li Y, Liu A, Chen K, Li L, Zhang X, Zou F, Zhang X, Meng X. Sodium butyrate alleviates lead-induced neuroinflammation and improves cognitive and memory impairment through the ACSS2/H3K9ac/BDNF pathway. ENVIRONMENT INTERNATIONAL 2024; 184:108479. [PMID: 38340407 DOI: 10.1016/j.envint.2024.108479] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/09/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Lead is an environmentally widespread neurotoxic pollutant. Although the neurotoxicity of lead has been found to be closely associated with metabolic disorders, the effects of short-chain fatty acids on the neurotoxicity of lead and its mechanisms have not yet been explored. In this study, the results of open field tests and Morris water maze tests demonstrated that chronic lead exposure caused learning and memory deficits and anxiety-like symptoms in mice. The serum butyric acid content of lead-treated mice decreased in a dose-dependent manner, and oral administration of butyrate significantly improved cognitive memory impairment and anxiety symptoms in lead-exposed mice. Moreover, butyrate alleviated neuroinflammation caused by lead exposure by inhibiting the STAT3 signaling in microglia. Butyrate also promoted the expression of acetyl-CoA synthetase ACSS2 in hippocampal neurons, thereby increasing the content of acetyl-CoA and restoring the expression of both histone H3K9ac and the downstream BDNF. We also found that the median butyric acid concentration in high-lead exposure humans was remarkably lower than that in the low-lead exposure humans (45.16 μg/L vs. 60.92 μg/L, P < 0.01), and that butyric acid significantly mediated the relationship of lead exposure with the Montreal cognitive assessment scores, with a contribution rate of 27.57 %. In conclusion, our results suggest that butyrate supplementation is a possible therapeutic strategy for lead-induced neurotoxicity.
Collapse
Affiliation(s)
- Yunting Li
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Anfei Liu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Kaiju Chen
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Lifan Li
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiaoshun Zhang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xingmei Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
209
|
Xiang S, Lu X. Selective type II TRK inhibitors overcome xDFG mutation mediated acquired resistance to the second-generation inhibitors selitrectinib and repotrectinib. Acta Pharm Sin B 2024; 14:517-532. [PMID: 38322338 PMCID: PMC10840435 DOI: 10.1016/j.apsb.2023.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/15/2023] [Accepted: 10/24/2023] [Indexed: 02/08/2024] Open
Abstract
Neurotrophic receptor kinase (NTRK) fusions are actionable oncogenic drivers of multiple pediatric and adult solid tumors, and tropomyosin receptor kinase (TRK) has been considered as an attractive therapeutic target for "pan-cancer" harboring these fusions. Currently, two generations TRK inhibitors have been developed. The representative second-generation inhibitors selitrectinib and repotrectinib were designed to overcome clinic acquired resistance of the first-generation inhibitors larotrectinib or entrectinib resulted from solvent-front and gatekeeper on-target mutations. However, xDFG (TRKAG667C/A/S, homologous TRKCG696C/A/S) and some double mutations still confer resistance to selitrectinib and repotrectinib, and overcoming these resistances represents a major unmet clinical need. In this review, we summarize the acquired resistance mechanism of the first- and second-generation TRK inhibitors, and firstly put forward the emerging selective type II TRK inhibitors to overcome xDFG mutations mediated resistance. Additionally, we concluded our perspectives on new challenges and future directions in this field.
Collapse
Affiliation(s)
- Shuang Xiang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
210
|
Seidl LF, Winter S, Aigner L, Schartner J. A Neurofilament-L reporter cell line for the quantification of early neuronal differentiation: A Bioassay for neurotrophic activities. Heliyon 2024; 10:e24753. [PMID: 38304771 PMCID: PMC10831791 DOI: 10.1016/j.heliyon.2024.e24753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 12/12/2023] [Accepted: 01/12/2024] [Indexed: 02/03/2024] Open
Abstract
Background Neurotrophic activity constitutes a crucial factor in the recovery from neurological injuries and is impaired in neurodegenerative disorders. Preclinical studies of neurotrophic factors to improve outcome of neurodegenerative diseases have yielded promising results. However, due to the complexity of these therapies, the clinical translation of this approach was so far not successful and more feasible treatments with neurotrophic activity may be promising alternatives. Therefore, highly sensitive and robust assays for compound screening are required. New method Nerve growth factor is known to induce Neurofilament-L (NF-L) expression in a rat pheochromocytoma cell line (PC12 cells) during early neuronal differentiation. We generated and characterized an enhanced green fluorescent protein (EGFP)-NF-L reporter PC12 cell line for the development of a cell-based assay (designated Neurofilament-L Bioassay) that allows straightforward quantification of early neuronal differentiation based on NF-L expression. Results Using Cerebrolysin® as a role model for a pharmacological compound that stimulates neurotrophic activity in the central nervous system, the Neurofilament-L Bioassay was proved to be a robust, specific, and reproducible method. Comparison with existing methods It was already shown that NF-L expression correlates with neurite outgrowth in PC12 cells. Currently, quantification of neurite outgrowth is the most commonly used method to evaluate neuronal differentiation in PC12 cells, an approach that is time-consuming and of high variability. Conclusions This work describes the development of an EGFP-NF-L reporter PC12 cell-based assay as a robust and reproducible tool for "high throughput" compound screening for neurotrophic activity.
Collapse
Affiliation(s)
- Lisa-Franziska Seidl
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- EVER Neuro Pharma, Oberburgau 3, 4866 Unterach, Austria
| | - Stefan Winter
- EVER Neuro Pharma, Oberburgau 3, 4866 Unterach, Austria
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
| | | |
Collapse
|
211
|
Viudez-Martínez A, Torregrosa AB, Navarrete F, García-Gutiérrez MS. Understanding the Biological Relationship between Migraine and Depression. Biomolecules 2024; 14:163. [PMID: 38397400 PMCID: PMC10886628 DOI: 10.3390/biom14020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/25/2024] Open
Abstract
Migraine is a highly prevalent neurological disorder. Among the risk factors identified, psychiatric comorbidities, such as depression, seem to play an important role in its onset and clinical course. Patients with migraine are 2.5 times more likely to develop a depressive disorder; this risk becomes even higher in patients suffering from chronic migraine or migraine with aura. This relationship is bidirectional, since depression also predicts an earlier/worse onset of migraine, increasing the risk of migraine chronicity and, consequently, requiring a higher healthcare expenditure compared to migraine alone. All these data suggest that migraine and depression may share overlapping biological mechanisms. Herein, this review explores this topic in further detail: firstly, by introducing the common epidemiological and risk factors for this comorbidity; secondly, by focusing on providing the cumulative evidence of common biological aspects, with a particular emphasis on the serotoninergic system, neuropeptides such as calcitonin-gene-related peptide (CGRP), pituitary adenylate cyclase-activating polypeptide (PACAP), substance P, neuropeptide Y and orexins, sexual hormones, and the immune system; lastly, by remarking on the future challenges required to elucidate the etiopathological mechanisms of migraine and depression and providing updated information regarding new key targets for the pharmacological treatment of these clinical entities.
Collapse
Affiliation(s)
- Adrián Viudez-Martínez
- Hospital Pharmacy Service, Hospital General Dr. Balmis de Alicante, 03010 Alicante, Spain;
| | - Abraham B. Torregrosa
- Instituto de Neurociencias, Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain; (A.B.T.); (F.N.)
- Research Network on Primary Addictions, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain; (A.B.T.); (F.N.)
- Research Network on Primary Addictions, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain; (A.B.T.); (F.N.)
- Research Network on Primary Addictions, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| |
Collapse
|
212
|
Fontanella RA, Ghosh P, Pesapane A, Taktaz F, Puocci A, Franzese M, Feliciano MF, Tortorella G, Scisciola L, Sommella E, Ambrosino C, Paolisso G, Barbieri M. Tirzepatide prevents neurodegeneration through multiple molecular pathways. J Transl Med 2024; 22:114. [PMID: 38287296 PMCID: PMC10823712 DOI: 10.1186/s12967-024-04927-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/23/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Several evidence demonstrated that glucagon-like peptide 1 receptor agonists (GLP1-RAs) reduce the risk of dementia in type 2 diabetes patients by improving memory, learning, and overcoming cognitive impairment. In this study, we elucidated the molecular processes underlying the protective effect of Tirzepatide (TIR), a dual glucose-dependent insulinotropic polypeptide receptor agonist (GIP-RA)/ GLP-1RA, against learning and memory disorders. METHODS We investigated the effects of TIR on markers of neuronal growth (CREB and BDNF), apoptosis (BAX/Bcl2 ratio) differentiation (pAkt, MAP2, GAP43, and AGBL4), and insulin resistance (GLUT1, GLUT4, GLUT3 and SORBS1) in a neuroblastoma cell line (SHSY5Y) exposed to normal and high glucose concentration. The potential role on DNA methylation of genes involved in neuroprotection and epigenetic modulators of neuronal growth (miRNA 34a), apoptosis (miRNA 212), and differentiation (miRNA 29c) was also investigated. The cell proliferation was detected by measuring Ki-67 through flow cytometry. The data were analysed by SPSS IBM Version 23 or GraphPad Prism 7.0 software and expressed as the means ± SEM. Differences between the mean values were considered significant at a p-value of < 0.05. GraphPad Prism software was used for drawing figures. RESULTS For the first time, it was highlighted: (a) the role of TIR in the activation of the pAkt/CREB/BDNF pathway and the downstream signaling cascade; (b) TIR efficacy in neuroprotection; (c) TIR counteracting of hyperglycemia and insulin resistance-related effects at the neuronal level. CONCLUSIONS We demonstrated that TIR can ameliorate high glucose-induced neurodegeneration and overcome neuronal insulin resistance. Thus, this study provides new insight into the potential role of TIR in improving diabetes-related neuropathy.
Collapse
Affiliation(s)
- Rosaria Anna Fontanella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Puja Ghosh
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Ada Pesapane
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Fatemeh Taktaz
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Armando Puocci
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Martina Franzese
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Federica Feliciano
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanni Tortorella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Eduardo Sommella
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
| | - Concetta Ambrosino
- Biogem Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
- UniCamillus, International Medical University, Rome, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
213
|
Haloui R, Mkhayar K, Daoui O, El Khattabi K, El Abbouchi A, Chtita S, Elkhattabi S. Design of new small molecules derived from indolin-2-one as potent TRKs inhibitors using a computer-aided drug design approach. J Biomol Struct Dyn 2024:1-18. [PMID: 38217880 DOI: 10.1080/07391102.2024.2302944] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024]
Abstract
Tropomyosin receptor kinase (TRKs) enzymes are responsible for cancers associated with the neurotrophic tyrosine kinase receptor gene fusion and are identified as effective targets for anticancer drug discovery. A series of small-molecule indolin-2-one derivatives showed remarkable biological activity against TRKs enzymatic activity. These small molecules could have an excellent profile for pharmaceutical application in the treatment of cancers caused by TRKs activity. The aim of this study is to modify the structure of these molecules to obtain new molecules with improved TRK inhibitory activity and pharmacokinetic properties favorable to the design of new drugs. Based on these series, we carried out a 3D-QSAR study. As a result, robust and reliable CoMFA and CoMSIA models are developed and applied to the design of 11 new molecules. These new molecules have a biological activity superior to the most active molecule in the starting series. The eleven designed molecules are screened using drug-likeness, ADMET proprieties, molecular docking, and MM-GBSA filters. The results of this screening identified the T1, T3, and T4 molecules as the best candidates for strong inhibition of TRKs enzymatic activity. In addition, molecular dynamics simulations are performed for TRK free and complexed with ligands T1, T3, and T4 to evaluate the stability of ligand-protein complexes over the simulation time. On the other hand, we proposed experimental synthesis routes for these newly designed molecules. Finally, the designed molecules T1, T2, and T3 have great potential to become reliable candidates for the conception of new drug inhibitors of TRKs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rachid Haloui
- Laboratory of Engineering, Systems, and Applications, National School of Applied Sciences, Sidi Mohamed Ben Abdellah-Fez University, Fez, Morocco
| | - Khaoula Mkhayar
- Laboratory of Engineering, Systems, and Applications, National School of Applied Sciences, Sidi Mohamed Ben Abdellah-Fez University, Fez, Morocco
| | - Ossama Daoui
- Laboratory of Engineering, Systems, and Applications, National School of Applied Sciences, Sidi Mohamed Ben Abdellah-Fez University, Fez, Morocco
| | - Kaouakeb El Khattabi
- Department of Fundamental Sciences, Faculty of Medicine Dentistry, Mohammed V University of Rabat, Rabat, Morocco
| | - Abdelmoula El Abbouchi
- Euromed Research Center, Euromed Faculty of Pharmacy, Euromed University of Fes (UEMF), Fez, Morocco
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Souad Elkhattabi
- Laboratory of Engineering, Systems, and Applications, National School of Applied Sciences, Sidi Mohamed Ben Abdellah-Fez University, Fez, Morocco
| |
Collapse
|
214
|
Martini L, Baek SH, Lo I, Raby BA, Silverman E, Weiss S, Glass K, Halu A. Detecting and dissecting signaling crosstalk via the multilayer network integration of signaling and regulatory interactions. Nucleic Acids Res 2024; 52:e5. [PMID: 37953325 PMCID: PMC10783515 DOI: 10.1093/nar/gkad1035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 06/27/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023] Open
Abstract
The versatility of cellular response arises from the communication, or crosstalk, of signaling pathways in a complex network of signaling and transcriptional regulatory interactions. Understanding the various mechanisms underlying crosstalk on a global scale requires untargeted computational approaches. We present a network-based statistical approach, MuXTalk, that uses high-dimensional edges called multilinks to model the unique ways in which signaling and regulatory interactions can interface. We demonstrate that the signaling-regulatory interface is located primarily in the intermediary region between signaling pathways where crosstalk occurs, and that multilinks can differentiate between distinct signaling-transcriptional mechanisms. Using statistically over-represented multilinks as proxies of crosstalk, we infer crosstalk among 60 signaling pathways, expanding currently available crosstalk databases by more than five-fold. MuXTalk surpasses existing methods in terms of model performance metrics, identifies additions to manual curation efforts, and pinpoints potential mediators of crosstalk. Moreover, it accommodates the inherent context-dependence of crosstalk, allowing future applications to cell type- and disease-specific crosstalk.
Collapse
Affiliation(s)
- Leonardo Martini
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Computer, Control, and Management Engineering, Sapienza University of Rome, Rome, 00185, Italy
| | - Seung Han Baek
- Division of Pulmonary Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ian Lo
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Benjamin A Raby
- Division of Pulmonary Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kimberly Glass
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Arda Halu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
215
|
Zammit AR, Klein HU, Yu L, Levey AI, Seyfried NT, Wingo AP, Wingo TS, Schneider JA, Bennett DA, Buchman AS. Proteome-wide Analyses Identified Cortical Proteins Associated With Resilience for Varied Cognitive Abilities. Neurology 2024; 102:e207816. [PMID: 38165375 PMCID: PMC10834136 DOI: 10.1212/wnl.0000000000207816] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/26/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Prior work suggests that cognitive resilience may contribute to the heterogeneity of cognitive decline. This study examined whether distinct cortical proteins provide resilience for different cognitive abilities. METHODS Participants were from the Religious Orders Study or the Rush Memory and Aging Project who had undergone annual assessments of 5 cognitive abilities and postmortem assessment of 9 Alzheimer disease and related dementia (ADRD) pathologies. Proteome-wide examination of the dorsolateral prefrontal cortex using tandem mass tag and liquid chromatography-mass spectrometry yielded 8,425 high-abundance proteins. We applied linear mixed-effect models to quantify residual cognitive change (cognitive resilience) of 5 cognitive abilities by regressing out cognitive decline related to age, sex, education, and indices of ADRD pathologies. Then we added terms for each of the individual proteins to identify cognitive resilience proteins associated with the different cognitive abilities. RESULTS We included 604 decedents (69% female; mean age at death = 89 years) with proteomic data. A total of 47 cortical proteins that provide cognitive resilience were identified: 22 were associated with specific cognitive abilities, and 25 were common to at least 2 cognitive abilities. NRN1 was the only protein that was associated with more than 2 cognitive abilities (semantic memory: estimate = 0.020, SE = 0.004, p = 2.2 × 10-6; episodic memory: estimate = 0.029, SE = 0.004, p = 5.8 × 10-1; and working memory: estimate = 0.021, SE = 0.004, p = 1.2 × 10-7). Exploratory gene ontology analysis suggested that among top molecular pathways, mitochondrial translation was a molecular mechanism providing resilience in episodic memory, while nuclear-transcribed messenger RNA catabolic processes provided resilience in working memory. DISCUSSION This study identified cortical proteins associated with various cognitive abilities. Differential associations across abilities may reflect distinct underlying biological pathways. These data provide potential high-value targets for further mechanistic and drug discovery studies to develop targeted treatments to prevent loss of cognition.
Collapse
Affiliation(s)
- Andrea R Zammit
- From the Rush Alzheimer's Disease Center (A.R.Z., L.Y., J.A.S., D.A.B., A.S.B.), and Departments of Psychiatry and Behavioral Sciences (A.R.Z.), Neurological Sciences (L.Y., J.A.S., D.A.B., A.S.B.), and Pathology (J.A.S.), Rush University Medical Center, Chicago, IL; Department of Neurology (H.-U.K.), Columbia University Medical Center, New York, NY; Departments of Neurology (A.I.L., N.T.S., T.S.W.) Psychiatry (A.P.W.), and Human Genetics (T.S.W.), and the Goizueta Alzheimer's Disease Center (T.S.W.), Emory University School of Medicine, Atlanta, GA; Department of Biochemistry (N.T.S.), Emory University, Atlanta, GA; and Division of Mental Health (A.P.W.), Atlanta VA Medical Center, Decatur, GA
| | - Hans-Ulrich Klein
- From the Rush Alzheimer's Disease Center (A.R.Z., L.Y., J.A.S., D.A.B., A.S.B.), and Departments of Psychiatry and Behavioral Sciences (A.R.Z.), Neurological Sciences (L.Y., J.A.S., D.A.B., A.S.B.), and Pathology (J.A.S.), Rush University Medical Center, Chicago, IL; Department of Neurology (H.-U.K.), Columbia University Medical Center, New York, NY; Departments of Neurology (A.I.L., N.T.S., T.S.W.) Psychiatry (A.P.W.), and Human Genetics (T.S.W.), and the Goizueta Alzheimer's Disease Center (T.S.W.), Emory University School of Medicine, Atlanta, GA; Department of Biochemistry (N.T.S.), Emory University, Atlanta, GA; and Division of Mental Health (A.P.W.), Atlanta VA Medical Center, Decatur, GA
| | - Lei Yu
- From the Rush Alzheimer's Disease Center (A.R.Z., L.Y., J.A.S., D.A.B., A.S.B.), and Departments of Psychiatry and Behavioral Sciences (A.R.Z.), Neurological Sciences (L.Y., J.A.S., D.A.B., A.S.B.), and Pathology (J.A.S.), Rush University Medical Center, Chicago, IL; Department of Neurology (H.-U.K.), Columbia University Medical Center, New York, NY; Departments of Neurology (A.I.L., N.T.S., T.S.W.) Psychiatry (A.P.W.), and Human Genetics (T.S.W.), and the Goizueta Alzheimer's Disease Center (T.S.W.), Emory University School of Medicine, Atlanta, GA; Department of Biochemistry (N.T.S.), Emory University, Atlanta, GA; and Division of Mental Health (A.P.W.), Atlanta VA Medical Center, Decatur, GA
| | - Allan I Levey
- From the Rush Alzheimer's Disease Center (A.R.Z., L.Y., J.A.S., D.A.B., A.S.B.), and Departments of Psychiatry and Behavioral Sciences (A.R.Z.), Neurological Sciences (L.Y., J.A.S., D.A.B., A.S.B.), and Pathology (J.A.S.), Rush University Medical Center, Chicago, IL; Department of Neurology (H.-U.K.), Columbia University Medical Center, New York, NY; Departments of Neurology (A.I.L., N.T.S., T.S.W.) Psychiatry (A.P.W.), and Human Genetics (T.S.W.), and the Goizueta Alzheimer's Disease Center (T.S.W.), Emory University School of Medicine, Atlanta, GA; Department of Biochemistry (N.T.S.), Emory University, Atlanta, GA; and Division of Mental Health (A.P.W.), Atlanta VA Medical Center, Decatur, GA
| | - Nicholas T Seyfried
- From the Rush Alzheimer's Disease Center (A.R.Z., L.Y., J.A.S., D.A.B., A.S.B.), and Departments of Psychiatry and Behavioral Sciences (A.R.Z.), Neurological Sciences (L.Y., J.A.S., D.A.B., A.S.B.), and Pathology (J.A.S.), Rush University Medical Center, Chicago, IL; Department of Neurology (H.-U.K.), Columbia University Medical Center, New York, NY; Departments of Neurology (A.I.L., N.T.S., T.S.W.) Psychiatry (A.P.W.), and Human Genetics (T.S.W.), and the Goizueta Alzheimer's Disease Center (T.S.W.), Emory University School of Medicine, Atlanta, GA; Department of Biochemistry (N.T.S.), Emory University, Atlanta, GA; and Division of Mental Health (A.P.W.), Atlanta VA Medical Center, Decatur, GA
| | - Aliza P Wingo
- From the Rush Alzheimer's Disease Center (A.R.Z., L.Y., J.A.S., D.A.B., A.S.B.), and Departments of Psychiatry and Behavioral Sciences (A.R.Z.), Neurological Sciences (L.Y., J.A.S., D.A.B., A.S.B.), and Pathology (J.A.S.), Rush University Medical Center, Chicago, IL; Department of Neurology (H.-U.K.), Columbia University Medical Center, New York, NY; Departments of Neurology (A.I.L., N.T.S., T.S.W.) Psychiatry (A.P.W.), and Human Genetics (T.S.W.), and the Goizueta Alzheimer's Disease Center (T.S.W.), Emory University School of Medicine, Atlanta, GA; Department of Biochemistry (N.T.S.), Emory University, Atlanta, GA; and Division of Mental Health (A.P.W.), Atlanta VA Medical Center, Decatur, GA
| | - Thomas S Wingo
- From the Rush Alzheimer's Disease Center (A.R.Z., L.Y., J.A.S., D.A.B., A.S.B.), and Departments of Psychiatry and Behavioral Sciences (A.R.Z.), Neurological Sciences (L.Y., J.A.S., D.A.B., A.S.B.), and Pathology (J.A.S.), Rush University Medical Center, Chicago, IL; Department of Neurology (H.-U.K.), Columbia University Medical Center, New York, NY; Departments of Neurology (A.I.L., N.T.S., T.S.W.) Psychiatry (A.P.W.), and Human Genetics (T.S.W.), and the Goizueta Alzheimer's Disease Center (T.S.W.), Emory University School of Medicine, Atlanta, GA; Department of Biochemistry (N.T.S.), Emory University, Atlanta, GA; and Division of Mental Health (A.P.W.), Atlanta VA Medical Center, Decatur, GA
| | - Julie A Schneider
- From the Rush Alzheimer's Disease Center (A.R.Z., L.Y., J.A.S., D.A.B., A.S.B.), and Departments of Psychiatry and Behavioral Sciences (A.R.Z.), Neurological Sciences (L.Y., J.A.S., D.A.B., A.S.B.), and Pathology (J.A.S.), Rush University Medical Center, Chicago, IL; Department of Neurology (H.-U.K.), Columbia University Medical Center, New York, NY; Departments of Neurology (A.I.L., N.T.S., T.S.W.) Psychiatry (A.P.W.), and Human Genetics (T.S.W.), and the Goizueta Alzheimer's Disease Center (T.S.W.), Emory University School of Medicine, Atlanta, GA; Department of Biochemistry (N.T.S.), Emory University, Atlanta, GA; and Division of Mental Health (A.P.W.), Atlanta VA Medical Center, Decatur, GA
| | - David A Bennett
- From the Rush Alzheimer's Disease Center (A.R.Z., L.Y., J.A.S., D.A.B., A.S.B.), and Departments of Psychiatry and Behavioral Sciences (A.R.Z.), Neurological Sciences (L.Y., J.A.S., D.A.B., A.S.B.), and Pathology (J.A.S.), Rush University Medical Center, Chicago, IL; Department of Neurology (H.-U.K.), Columbia University Medical Center, New York, NY; Departments of Neurology (A.I.L., N.T.S., T.S.W.) Psychiatry (A.P.W.), and Human Genetics (T.S.W.), and the Goizueta Alzheimer's Disease Center (T.S.W.), Emory University School of Medicine, Atlanta, GA; Department of Biochemistry (N.T.S.), Emory University, Atlanta, GA; and Division of Mental Health (A.P.W.), Atlanta VA Medical Center, Decatur, GA
| | - Aron S Buchman
- From the Rush Alzheimer's Disease Center (A.R.Z., L.Y., J.A.S., D.A.B., A.S.B.), and Departments of Psychiatry and Behavioral Sciences (A.R.Z.), Neurological Sciences (L.Y., J.A.S., D.A.B., A.S.B.), and Pathology (J.A.S.), Rush University Medical Center, Chicago, IL; Department of Neurology (H.-U.K.), Columbia University Medical Center, New York, NY; Departments of Neurology (A.I.L., N.T.S., T.S.W.) Psychiatry (A.P.W.), and Human Genetics (T.S.W.), and the Goizueta Alzheimer's Disease Center (T.S.W.), Emory University School of Medicine, Atlanta, GA; Department of Biochemistry (N.T.S.), Emory University, Atlanta, GA; and Division of Mental Health (A.P.W.), Atlanta VA Medical Center, Decatur, GA
| |
Collapse
|
216
|
Chen Y, Sun J, Tao J, Sun T. Treatments and regulatory mechanisms of acoustic stimuli on mood disorders and neurological diseases. Front Neurosci 2024; 17:1322486. [PMID: 38249579 PMCID: PMC10796816 DOI: 10.3389/fnins.2023.1322486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Acoustic stimuli such as music or ambient noise can significantly affect physiological and psychological health in humans. We here summarize positive effects of music therapy in premature infant distress regulation, performance enhancement, sleep quality control, and treatment of mental disorders. Specifically, music therapy exhibits promising effects on treatment of neurological disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). We also highlight regulatory mechanisms by which auditory intervention affects an organism, encompassing modulation of immune responses, gene expression, neurotransmitter regulation and neural circuitry. As a safe, cost-effective and non-invasive intervention, music therapy offers substantial potential in treating a variety of neurological conditions.
Collapse
Affiliation(s)
- Yikai Chen
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
| | - Julianne Sun
- Xiamen Institute of Technology Attached School, Xiamen, China
| | - Junxian Tao
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
| |
Collapse
|
217
|
Mirzahosseini G, Ismael S, Salman M, Kumar S, Ishrat T. Genetic and Pharmacological Modulation of P75 Neurotrophin Receptor Attenuate Brain Damage After Ischemic Stroke in Mice. Mol Neurobiol 2024; 61:276-293. [PMID: 37606717 DOI: 10.1007/s12035-023-03550-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/29/2023] [Indexed: 08/23/2023]
Abstract
The precursor nerve growth factor (ProNGF) and its receptor p75 neurotrophin receptor (p75NTR) are upregulated in several brain diseases, including ischemic stroke. The activation of p75NTR is associated with neuronal apoptosis and inflammation. Thus, we hypothesized that p75NTR modulation attenuates brain damage and improves functional outcomes after ischemic stroke. Two sets of experiments were performed. (1) Adult wild-type (WT) C57BL/6 J mice were subjected to intraluminal suture-middle cerebral artery occlusion (MCAO) to induce cerebral ischemia. Pharmacological inhibitor of p75NTR, LM11A-31 (50 mg/kg), or normal saline was administered intraperitoneally (IP) 1 h post-MCAO, and animals survived for 24 h. (2) Adult p75NTR heterozygous knockout (p75NTR+/-) and WT were subjected to photothrombotic (pMCAO) to induce ischemic stroke, and the animals survived for 72 h. The sensory-motor function of animals was measured using Catwalk XT. The brain samples were collected to assess infarction volume, edema, hemorrhagic transformation, neuroinflammation, and signaling pathway at 24 and 72 h after the stroke. The findings described that pharmacological inhibition and genetic knocking down of p75NTR reduce infarction size, edema, and hemorrhagic transformation following ischemic stroke. Additionally, p75NTR modulation significantly decreased several anti-apoptosis markers and improved sensory motor function compared to the WT mice following ischemic stroke. Our observations exhibit that the involvement of p75NTR in ischemic stroke and modulation of p75NTR could improve the outcome of ischemic stroke by increasing cell survival and enhancing motor performance. LM11A-31 has the potential to be a promising therapeutic agent for ischemic stroke. However, more evidence is needed to illuminate the efficacy of LM11A-31 in ischemic stroke.
Collapse
Affiliation(s)
- Golnoush Mirzahosseini
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, 875 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, TN, 38163, Memphis, USA
| | - Saifudeen Ismael
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, LA, 70112, New Orleans, USA
| | - Mohd Salman
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, 875 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, TN, 38163, Memphis, USA
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, 875 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA.
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, TN, 38163, Memphis, USA.
- Neuroscience Institute, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
218
|
You J, Wang Y, Chang X, Liu Y, He Y, Zhou X, Zou J, Xiao M, Shi M, Guo D, Shen O, Zhu Z. Association between Plasma Brain-derived Neurotrophic Factor Level and Alzheimer's Disease: A Mendelian Randomization Study. Curr Neurovasc Res 2024; 20:553-559. [PMID: 38279765 DOI: 10.2174/0115672026281995231227070637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND High brain-derived neurotrophic factor (BDNF) concentrations have been found to be associated with a decreased risk of Alzheimer's disease (AD) in observational studies, but the causality for this association remains unclear. Therefore, we aimed to examine the association between genetically determined plasma BDNF levels and AD using a two-sample Mendelian randomization (MR) method. METHODS Twenty single-nucleotide polymorphisms associated with plasma BDNF concentrations were identified as genetic instruments based on a genome-wide association study with 3301 European individuals. Summary-level data on AD were obtained from the International Genomics of Alzheimer's Project, involving 21,982 AD cases and 41,944 controls of European ancestry. To evaluate the relationship between plasma BDNF concentrations and AD, we employed the inverse-variance weighted method along with a series of sensitivity analyses. RESULTS The inverse-variance weighted MR analysis showed that genetically determined BDNF concentrations were associated with a decreased risk of AD (odds ratio per SD increase, 0.91; 95% confidence interval, 0.86-0.96; p =0.001). The association between plasma BDNF concentrations and AD was further confirmed through sensitivity analyses using different MR methods, and MR-Egger regression suggested no directional pleiotropy for this association. CONCLUSION Genetically determined BDNF levels were associated with a decreased risk of AD, suggesting that BDNF was implicated in the development of AD and might be a promising target for the prevention of AD.
Collapse
Affiliation(s)
- Jiaxing You
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yinan Wang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xinyue Chang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yi Liu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yu He
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xiya Zhou
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jinyan Zou
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, China
| | - Meng Xiao
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, China
| | - Mengyao Shi
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, China
| | - Daoxia Guo
- School of Nursing, Suzhou Medical College of Soochow University, Suzhou, China
| | - Ouxi Shen
- Department of Occupational Health, Suzhou Industrial Park Center for Disease Control and Prevention, Suzhou, China
| | - Zhengbao Zhu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, China
| |
Collapse
|
219
|
Koyya P, Manthari RK, Pandrangi SL. Brain-Derived Neurotrophic Factor - The Protective Agent Against Neurological Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:353-366. [PMID: 37287291 PMCID: PMC11348470 DOI: 10.2174/1871527322666230607110617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
The burden of neurological illnesses on global health is significant. Our perception of the molecular and biological mechanisms underlying intellectual processing and behavior has significantly advanced over the last few decades, laying the groundwork for potential therapies for various neurodegenerative diseases. A growing body of literature reveals that most neurodegenerative diseases could be due to the gradual failure of neurons in the brain's neocortex, hippocampus, and various subcortical areas. Research on various experimental models has uncovered several gene components to understand the pathogenesis of neurodegenerative disorders. One among them is the brain-derived neurotrophic factor (BDNF), which performs several vital functions, enhancing synaptic plasticity and assisting in the emergence of long-term thoughts. The pathophysiology of some neurodegenerative diseases, including Alzheimer's, Parkinson's, Schizophrenia, and Huntington's, has been linked to BDNF. According to numerous research, high levels of BDNF are connected to a lower risk of developing a neurodegenerative disease. As a result, we want to concentrate on BDNF in this article and outline its protective role against neurological disorders.
Collapse
Affiliation(s)
- Prathyusha Koyya
- Department of Biotechnology, GITAM School of Science, Gandhi Institute of Technology and Management (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Ram Kumar Manthari
- Department of Biotechnology, GITAM School of Science, Gandhi Institute of Technology and Management (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Santhi Latha Pandrangi
- Department of Biochemistry and Bioinformatics, GITAM School of Science, Gandhi Institute of Technology and Management (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| |
Collapse
|
220
|
Wang Y, Liang J, Xu B, Yang J, Wu Z, Cheng L. TrkB/BDNF signaling pathway and its small molecular agonists in CNS injury. Life Sci 2024; 336:122282. [PMID: 38008209 DOI: 10.1016/j.lfs.2023.122282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 10/19/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
As one of the most prevalent neurotrophic factors in the central nervous system (CNS), brain-derived neurotrophic factor (BDNF) plays a significant role in CNS injury by binding to its specific receptor Tropomyosin-related kinase receptor B (TrkB). The BDNF/TrkB signaling pathway is crucial for neuronal survival, structural changes, and plasticity. BDNF acts as an axonal growth and extension factor, a pro-survival factor, and a synaptic modulator in the CNS. BDNF also plays an important role in the maintenance and plasticity of neuronal circuits. Several studies have demonstrated the importance of BDNF in the treatment and recovery of neurodegenerative and neurotraumatic disorders. By undertaking in-depth study on the mechanism of BDNF/TrkB function, important novel therapeutic strategies for treating neuropsychiatric disorders have been discovered. In this review, we discuss the expression patterns and mechanisms of the TrkB/BDNF signaling pathway in CNS damage and introduce several intriguing small molecule TrkB receptor agonists produced over the previous several decades.
Collapse
Affiliation(s)
- Yujin Wang
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Medical School, Tongji University, Shanghai 200433, China
| | - Jing Liang
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; School of Stomatology, Tongji University, Shanghai 200072, China
| | - Boyu Xu
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Medical School, Tongji University, Shanghai 200433, China
| | - Jin Yang
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Medical School, Tongji University, Shanghai 200433, China
| | - Zhourui Wu
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China.
| | - Liming Cheng
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China.
| |
Collapse
|
221
|
Yap RS, Kumar J, Teoh SL. Potential Neuroprotective Role of Neurotrophin in Traumatic Brain Injury. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1189-1202. [PMID: 38279761 DOI: 10.2174/0118715273289222231219094225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 01/28/2024]
Abstract
Traumatic brain injury (TBI) is a major global health issue that affects millions of people every year. It is caused by any form of external force, resulting in temporary or permanent impairments in the brain. The pathophysiological process following TBI usually involves excitotoxicity, mitochondrial dysfunction, oxidative stress, inflammation, ischemia, and apoptotic cell death. It is challenging to find treatment for TBI due to its heterogeneous nature, and no therapeutic interventions have been approved thus far. Neurotrophins may represent an alternative approach for TBI treatment because they influence various functional activities in the brain. The present review highlights recent studies on neurotrophins shown to possess neuroprotective roles in TBI. Neurotrophins, specifically brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) have demonstrated reduced neuronal death, alleviated neuroinflammatory responses and improved neurological functions following TBI via their immunomodulatory, anti-inflammatory and antioxidant properties. Further studies are required to ensure the efficacy and safety of neurotrophins to be used as TBI treatment in clinical settings.
Collapse
Affiliation(s)
- Rei Shian Yap
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
222
|
Xie W, Gao Q, Artigas Ramirez MD, Zhang H, Liu Y, Weng Q. Seasonal expressions of nerve growth factor (NGF), and its receptor TrkA and p75 in the scent glands of muskrats (Ondatra zibethicus). Comp Biochem Physiol B Biochem Mol Biol 2024; 269:110905. [PMID: 37769961 DOI: 10.1016/j.cbpb.2023.110905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
NGF, also known as nerve growth factor, is crucial for the survival and differentiation of the nervous system, in addition to being involved in a number of non-neuronal systems. The aim of this work was to investigate the immunolocalization and expression patterns of NGF, its receptor, tyrosine kinase receptor A (TrkA), and p75 in the scent glands of muskrats (Ondatra zibethicus) throughout the breeding and non-breeding seasons. The scent gland mass showed considerable seasonal variations, with higher values during the breeding season and comparatively lower levels during the non-breeding season. While no immunostaining was observed in the interstitial cells, NGF, TrkA, and p75 were immunolocalized in the scent glandular cells and epithelial cells during both breeding and non-breeding seasons. NGF, TrkA, and p75 protein and mRNA expression levels were higher in the scent glands during breeding season compared to the non-breeding season. Circulating levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone (T), and T in the scent gland were all significantly higher throughout the breeding season. The relative levels of the hormones in the plasma and the scent glands as well as NGF, TrkA, and p75 were positively associated with each other. Additionally, transcriptome analysis of the scent glands revealed that differentially expressed genes may be linked to steroid biosynthesis, the estrogen signaling pathway, and neurotransmitter transmembrane transporter function. These results suggest a potential role for NGF, TrkA, and p75 in controlling seasonal variations in the muskrats' scent gland functioning.
Collapse
Affiliation(s)
- Wenqian Xie
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Qingjing Gao
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Maria Daniela Artigas Ramirez
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Haolin Zhang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yuning Liu
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| | - Qiang Weng
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| |
Collapse
|
223
|
Kikuchi K, Kiyama R, Yoshinaga K. Efficacy of 1,5-anhydro-D-fructose on reducing mental stress: a randomized, double-blind, placebo-controlled trial-a pilot study. Biomed Res 2024; 45:209-216. [PMID: 39370299 DOI: 10.2220/biomedres.45.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Brain-derived neurotrophic factor (BDNF) plays an important role in mental stress. We have previously reported that 1,5-anhydro-D-fructose (1,5-AF) increases brain BDNF in vivo. The present randomized, controlled, double-blind study aimed to clinically evaluate the effects of 1,5-AF oral intake on mental stress in terms of three parameters: sleep, mood, and bowel issues. Healthy volunteers aged between 22 and 71 years (n = 24) were randomly assigned to receive 5.5 g of 1,5-AF or placebo orally, once daily for 4 weeks. Pre- and post-intervention, the subjects completed the Oguri-Shirakawa-Azumi Sleep Inventory, Middle-Aged and Aged Version (OSA-MA); Profile of Mood States, Second Edition (POMS2); and Constipation Assessment Scale (CAS) questionnaires. In the OSA-MA, both "sleepiness on rising" and "sleep length" were significantly improved after treatment with 1,5-AF compared with before treatment. Furthermore, in the POMS2, there was a clear tendency toward reduced "Anger-Hostility" in the 1,5-AF group after treatment, and in the CAS, there was a clear tendency toward reduced "diarrhea or liquid stool" in the 1,5-AF group after treatment. Together, our findings indicate that 1,5-AF has some effects on reducing post-intervention mental stress levels.
Collapse
Affiliation(s)
- Kiyoshi Kikuchi
- Division of Brain Science, Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan
| | - Ryoji Kiyama
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima 890-8544, Japan
| | - Kazuhiro Yoshinaga
- Department of Research and Development, SUNUS CO., LTD., 3-20 Nanei, Kagoshima, Kagoshima 891-0196, Japan
| |
Collapse
|
224
|
Saleh O, Albakri K, Altiti A, Abutair I, Shalan S, Mohd OB, Negida A, Mushtaq G, Kamal MA. The Role of Non-coding RNAs in Alzheimer's Disease: Pathogenesis, Novel Biomarkers, and Potential Therapeutic Targets. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:731-745. [PMID: 37211844 DOI: 10.2174/1871527322666230519113201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 05/23/2023]
Abstract
Long non-coding RNAs (IncRNAs) are regulatory RNA transcripts that have recently been associated with the onset of many neurodegenerative illnesses, including Alzheimer's disease (AD). Several IncRNAs have been found to be associated with AD pathophysiology, each with a distinct mechanism. In this review, we focused on the role of IncRNAs in the pathogenesis of AD and their potential as novel biomarkers and therapeutic targets. Searching for relevant articles was done using the PubMed and Cochrane library databases. Studies had to be published in full text in English in order to be considered. Some IncRNAs were found to be upregulated, while others were downregulated. Dysregulation of IncRNAs expression may contribute to AD pathogenesis. Their effects manifest as the synthesis of beta-amyloid (Aβ) plaques increases, thereby altering neuronal plasticity, inducing inflammation, and promoting apoptosis. Despite the need for more investigations, IncRNAs could potentially increase the sensitivity of early detection of AD. Until now, there has been no effective treatment for AD. Hence, InRNAs are promising molecules and may serve as potential therapeutic targets. Although several dysregulated AD-associated lncRNAs have been discovered, the functional characterization of most lncRNAs is still lacking.
Collapse
Affiliation(s)
- Othman Saleh
- Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Khaled Albakri
- Faculty of Medicine, The Hashemite University, Zarqa, Jordan
- Medical Research Group of Egypt, Cairo, Egypt
| | | | - Iser Abutair
- Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Suhaib Shalan
- Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | | | - Ahmed Negida
- Medical Research Group of Egypt, Cairo, Egypt
- Department of Global Health and Social Medicine, Harvard Medical School, 641 Huntington Ave, Boston, MA, 02115, USA
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
- Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Gohar Mushtaq
- Center for Scientific Research, Faculty of Medicine, Idlib University, Idlib, Syria
| | - Mohammad A Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Sichuan, China
- King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia 1216, Bangladesh
- Enzymoics, 7 Peterlee place, Hebersham, NSW 2770, Novel Global Community Educational Foundation, Hebersham, Australia
| |
Collapse
|
225
|
Perrottelli A, Marzocchi FF, Caporusso E, Giordano GM, Giuliani L, Melillo A, Pezzella P, Bucci P, Mucci A, Galderisi S. Advances in the understanding of the pathophysiology of schizophrenia and bipolar disorder through induced pluripotent stem cell models. J Psychiatry Neurosci 2024; 49:E109-E125. [PMID: 38490647 PMCID: PMC10950363 DOI: 10.1503/jpn.230112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 08/04/2023] [Accepted: 01/08/2024] [Indexed: 03/17/2024] Open
Abstract
The pathophysiology of schizophrenia and bipolar disorder involves a complex interaction between genetic and environmental factors that begins in the early stages of neurodevelopment. Recent advancements in the field of induced pluripotent stem cells (iPSCs) offer a promising tool for understanding the neurobiological alterations involved in these disorders and, potentially, for developing new treatment options. In this review, we summarize the results of iPSC-based research on schizophrenia and bipolar disorder, showing disturbances in neurodevelopmental processes, imbalance in glutamatergic-GABAergic transmission and neuromorphological alterations. The limitations of the reviewed literature are also highlighted, particularly the methodological heterogeneity of the studies, the limited number of studies developing iPSC models of both diseases simultaneously, and the lack of in-depth clinical characterization of the included samples. Further studies are needed to advance knowledge on the common and disease-specific pathophysiological features of schizophrenia and bipolar disorder and to promote the development of new treatment options.
Collapse
Affiliation(s)
| | | | | | | | - Luigi Giuliani
- From the University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonio Melillo
- From the University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Paola Bucci
- From the University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Armida Mucci
- From the University of Campania "Luigi Vanvitelli", Naples, Italy
| | | |
Collapse
|
226
|
Matsuoka Y, Nakasone H, Kasahara R, Fukuchi M. Expression Profiles of Brain-Derived Neurotrophic Factor Splice Variants in the Hippocampus of Alzheimer's Disease Model Mouse. Biol Pharm Bull 2024; 47:1858-1867. [PMID: 39522980 DOI: 10.1248/bpb.b24-00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Dysregulation of brain-derived neurotrophic factor (BDNF) has been implicated in Alzheimer's disease (AD). In this study, we investigated the temporal dynamics of BDNF expression in the hippocampus of 5xFAD mice, an AD model, focusing on sex and age differences and Bdnf mRNA splice variants. At 3 months of age, female wild-type (WT) mice exhibited significantly higher Bdnf mRNA levels compared to males. However, this difference was abolished in female 5xFAD mice. At 6 months of age, no sex differences in Bdnf mRNA levels were observed in WT mice, and the levels tended to be lower in female 5xFAD mice. Additionally, a significant decrease in the mRNA levels of full-length tropomyosin-related kinase B (TrkB), a BDNF receptor, was found in female 5xFAD mice at 6 months, while mRNA levels of the truncated TrkB were increased in both male and female 5xFAD mice. Specifically, among the Bdnf mRNA splice variants, the levels of Bdnf exon IIA-IX, exon IIB-IX, exon IIC-IX, and exon IXA mRNA were significantly higher in female WT mice compared to male WT mice at 3 months, but this difference was lost in female 5xFAD mice. These findings suggest that the expression of specific Bdnf splice variants would be maintained at higher levels in the hippocampus of young female mice than in males but may be disrupted in AD model mice. Our study may provide insights into the relationship between sex differences in AD onset and BDNF expression.
Collapse
Affiliation(s)
- Yuka Matsuoka
- Laboratory of Molecular Neuroscience, Faculty of Pharmacy, Takasaki University of Health and Welfare
| | - Hibiki Nakasone
- Laboratory of Molecular Neuroscience, Faculty of Pharmacy, Takasaki University of Health and Welfare
| | - Rento Kasahara
- Laboratory of Molecular Neuroscience, Faculty of Pharmacy, Takasaki University of Health and Welfare
| | - Mamoru Fukuchi
- Laboratory of Molecular Neuroscience, Faculty of Pharmacy, Takasaki University of Health and Welfare
| |
Collapse
|
227
|
Jang K, Garraway SM. A review of dorsal root ganglia and primary sensory neuron plasticity mediating inflammatory and chronic neuropathic pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100151. [PMID: 38314104 PMCID: PMC10837099 DOI: 10.1016/j.ynpai.2024.100151] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/04/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024]
Abstract
Pain is a sensory state resulting from complex integration of peripheral nociceptive inputs and central processing. Pain consists of adaptive pain that is acute and beneficial for healing and maladaptive pain that is often persistent and pathological. Pain is indeed heterogeneous, and can be expressed as nociceptive, inflammatory, or neuropathic in nature. Neuropathic pain is an example of maladaptive pain that occurs after spinal cord injury (SCI), which triggers a wide range of neural plasticity. The nociceptive processing that underlies pain hypersensitivity is well-studied in the spinal cord. However, recent investigations show maladaptive plasticity that leads to pain, including neuropathic pain after SCI, also exists at peripheral sites, such as the dorsal root ganglia (DRG), which contains the cell bodies of sensory neurons. This review discusses the important role DRGs play in nociceptive processing that underlies inflammatory and neuropathic pain. Specifically, it highlights nociceptor hyperexcitability as critical to increased pain states. Furthermore, it reviews prior literature on glutamate and glutamate receptors, voltage-gated sodium channels (VGSC), and brain-derived neurotrophic factor (BDNF) signaling in the DRG as important contributors to inflammatory and neuropathic pain. We previously reviewed BDNF's role as a bidirectional neuromodulator of spinal plasticity. Here, we shift focus to the periphery and discuss BDNF-TrkB expression on nociceptors, non-nociceptor sensory neurons, and non-neuronal cells in the periphery as a potential contributor to induction and persistence of pain after SCI. Overall, this review presents a comprehensive evaluation of large bodies of work that individually focus on pain, DRG, BDNF, and SCI, to understand their interaction in nociceptive processing.
Collapse
Affiliation(s)
- Kyeongran Jang
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| | - Sandra M. Garraway
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
228
|
Findlay MC, Kundu M, Nelson JR, Cole KL, Winterton C, Tenhoeve S, Lucke-Wold B. Emerging Treatments for Subarachnoid Hemorrhage. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1345-1356. [PMID: 38409689 DOI: 10.2174/0118715273279212240130065713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/19/2023] [Accepted: 01/01/2024] [Indexed: 02/28/2024]
Abstract
The current landscape of therapeutic strategies for subarachnoid hemorrhage (SAH), a significant adverse neurological event commonly resulting from the rupture of intracranial aneurysms, is rapidly evolving. Through an in-depth exploration of the natural history of SAH, historical treatment approaches, and emerging management modalities, the present work aims to provide a broad overview of the shifting paradigms in SAH care. By synthesizing the historical management protocols with contemporary therapeutic advancements, patient-specific treatment plans can be individualized and optimized to deliver outstanding care for the best possible SAH-related outcomes.
Collapse
Affiliation(s)
- Matthew C Findlay
- Department of Neurosurgery, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Mrinmoy Kundu
- Institute of Medical Sciences and SUM Hospital, Bhubaneswar, India
| | - Jayson R Nelson
- Department of Neurosurgery, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Kyril L Cole
- Department of Neurosurgery, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Candace Winterton
- Department of Neurosurgery, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Samuel Tenhoeve
- Department of Neurosurgery, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
229
|
Antolasic EJ, Jaehne EJ, van den Buuse M. Interaction of Brain-derived Neurotrophic Factor, Exercise, and Fear Extinction: Implications for Post-traumatic Stress Disorder. Curr Neuropharmacol 2024; 22:543-556. [PMID: 37491857 PMCID: PMC10845100 DOI: 10.2174/1570159x21666230724101321] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/16/2023] [Accepted: 02/23/2023] [Indexed: 07/27/2023] Open
Abstract
Brain-Derived Neurotrophic Factor (BDNF) plays an important role in brain development, neural plasticity, and learning and memory. The Val66Met single-nucleotide polymorphism is a common genetic variant that results in deficient activity-dependent release of BDNF. This polymorphism and its impact on fear conditioning and extinction, as well as on symptoms of post-traumatic stress disorder (PTSD), have been of increasing research interest over the last two decades. More recently, it has been demonstrated that regular physical activity may ameliorate impairments in fear extinction and alleviate symptoms in individuals with PTSD via an action on BDNF levels and that there are differential responses to exercise between the Val66Met genotypes. This narrative literature review first describes the theoretical underpinnings of the development and persistence of intrusive and hypervigilance symptoms commonly seen in PTSD and their treatment. It then discusses recent literature on the involvement of BDNF and the Val66Met polymorphism in fear conditioning and extinction and its involvement in PTSD diagnosis and severity. Finally, it investigates research on the impact of physical activity on BDNF secretion, the differences between the Val66Met genotypes, and the effect on fear extinction learning and memory and symptoms of PTSD.
Collapse
Affiliation(s)
- Emily J. Antolasic
- School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Emily J. Jaehne
- School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | | |
Collapse
|
230
|
Seidl LF, Aigner L. Comparing the biological activity and composition of Cerebrolysin with other peptide preparations. J Med Life 2024; 17:24-27. [PMID: 38737662 PMCID: PMC11080511 DOI: 10.25122/jml-2024-0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 01/15/2024] [Indexed: 05/14/2024] Open
Abstract
Neurological disorders, ranging from acute forms such as stroke and traumatic brain injury to neurodegenerative diseases like dementia, are the leading cause of disability-adjusted life years (DALYs) worldwide. A promising approach to address these conditions and promote nervous system regeneration is the use of the neuropeptide preparation Cerebrolysin, which has been shown to be effective in both clinical and preclinical studies. Despite claims of similar clinical efficacy and safety by several peptide preparations, concerns regarding their generic composition and efficacy have been previously raised. Based on these reports, we analyzed the peptide composition and neurotrophic activity of several peptide preparations allegedly similar to Cerebrolysin and approved in some countries for treating neurological diseases. Our results demonstrate that these preparations lack relevant biological activity and that the peptide composition is significantly different from Cerebrolysin. peptide.
Collapse
Affiliation(s)
- Lisa-Franziska Seidl
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
231
|
Fukuyama Y, Kubo M, Harada K. Neurotrophic Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 123:1-473. [PMID: 38340248 DOI: 10.1007/978-3-031-42422-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Neurotrophins (NGF, BDNF, NT3, NT4) can decrease cell death, induce differentiation, as well as sustain the structure and function of neurons, which make them promising therapeutic agents for the treatment of neurodegenerative disorders. However, neurotrophins have not been very effective in clinical trials mostly because they cannot pass through the blood-brain barrier owing to being high-molecular-weight proteins. Thus, neurotrophin-mimic small molecules, which stimulate the synthesis of endogenous neurotrophins or enhance neurotrophic actions, may serve as promising alternatives to neurotrophins. Small-molecular-weight natural products, which have been used in dietary functional foods or in traditional medicines over the course of human history, have a great potential for the development of new therapeutic agents against neurodegenerative diseases such as Alzheimer's disease. In this contribution, a variety of natural products possessing neurotrophic properties such as neurogenesis, neurite outgrowth promotion (neuritogenesis), and neuroprotection are described, and a focus is made on the chemistry and biology of several neurotrophic natural products.
Collapse
Affiliation(s)
- Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan.
| | - Miwa Kubo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Kenichi Harada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| |
Collapse
|
232
|
Liu J, Zhang Y, Lai CJS, Xie J. Multitarget Protective Effects of JUB on Aβ-Induced Neurotoxicity and the Mechanism Predication Using Network Pharmacology Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20724-20734. [PMID: 38098161 DOI: 10.1021/acs.jafc.3c06430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Amyloid-β (Aβ) is one of the core factors in the pathogenesis of Alzheimer's disease (AD), and the accumulation of its aggregates in the brain can form age-related plaques, leading to brain cell damage and intellectual decline, which may be the common intersection of all causes of neurotoxicity. Jujuboside B (JUB) has many characteristics such as hypnosis, sedation, antianxiety, and antioxidant stress. However, it is still unclear whether JuB can alleviate the neurotoxicity caused by Aβ. Our study demonstrates that JUB improves learning and memory deficits in the nematode model. At the same time, JUB increases the antioxidant activity, prevents excessive accumulation of lipid synthesis, and resists endogenous lipofuscin deposition, thereby inhibiting the toxic effect of Aβ. In vitro, JUB can improve Aβ1-42-induced neuronal apoptosis level through the Bax/Bcl-2/caspase-3 signaling pathway and restore mitochondrial function in SH-SY5Y cells. The network pharmacology has been used to predict the potential neuroprotective mechanism of JUB. In summary, JUB exhibits neuroprotective properties employing both a neural cell and a nematode, which provides a basis for screening candidate ingredients for preventing AD.
Collapse
Affiliation(s)
- Jinrui Liu
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Yanqing Zhang
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Chang-Jiang-Sheng Lai
- State Key Laboratory Breeding Base of Dao - di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junbo Xie
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
233
|
Máčová L, Kancheva R, Bičíková M. Molecular Regulation of the CNS by Vitamin D. Physiol Res 2023; 72:S339-S356. [PMID: 38116771 DOI: 10.33549/physiolres.935248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Vitamin D is a lipid-soluble vitamin that can be found in some foods. It is also produced endogenously (in the presence of ultraviolet light), transported through the blood to the targets organs and this is the reason to consider vitamin D as a hormone. It is known that vitamin D has genomic and non-genomic effects. This review is focused mainly on the vitamin D receptors, the importance of vitamin D as a neuromodulator, the role of vitamin D in the pathophysiology of devastating neurological disorders such as Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis, Parkinson's disease and the benefit of vitamin D and its derivates in alleviating these disorders.
Collapse
Affiliation(s)
- L Máčová
- Department of Steroids and Proteofactors, Institute of Endocrinology, Prague, Czech Republic
| | | | | |
Collapse
|
234
|
Wu S, Liu Y, Shi X, Zhou W, Zeng X. Elaboration of NTRK-rearranged colorectal cancer: Integration of immunoreactivity pattern, cytogenetic identity, and rearrangement variant. Dig Liver Dis 2023; 55:1757-1764. [PMID: 37142453 DOI: 10.1016/j.dld.2023.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/06/2023]
Abstract
Fused information from protein status, DNA breakage, and transcripts are still limited because of the low rate of activated-NTRK in colorectal cancer (CRC). In total, 104 archived CRC tissue samples with dMMR were analyzed using immunohistochemistry (IHC), polymerase chain reaction (PCR), and pyrosequencing to mine the NTRK-enriched CRC group, and then subjected to NTRK fusion detection using pan-tyrosine kinase IHC, fluorescence in situ hybridization (FISH), and DNA-/RNA-based next generation sequencing (NGS) assays. Of the 15 NTRK-enriched CRCs, eight NTRK fusions (53.3%, 8/15), including two TPM3(e7)-NTRK1(e10), one TPM3(e5)-NTRK1(e11), one LMNA(e10)-NTRK1(e10), two EML4(e2)-NTRK3(e14), and two ETV6(e5)-NTRK3(e15) fusions, were identified. There was no immunoreactivity for ETV6-NTRK3 fusion. In addition to cytoplasmic staining found in six specimens, membrane positive (TPM3-NTRK1 fusion) and nuclear positive (LMNA-NTRK1 fusion) were also observed in two of them. Atypical FISH-positive types were observed in four cases. Unlike IHC, NTRK-rearranged tumors appeared homogeneous on FISH. ETV6-NTRK3 may be missed in pan-TRK IHC screening for CRC. Regarding break-apart FISH, NTRK detection is difficult because of the diversity of signal patterns. Further research is warranted to identify the characteristics of NTRK-fusion CRCs.
Collapse
Affiliation(s)
- Shafei Wu
- Department of Pathology, Peking Union Medical College Hospital, Molecular Pathology Research Center, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing 100730,China
| | - Yuanyuan Liu
- Department of Pathology, Peking Union Medical College Hospital, Molecular Pathology Research Center, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing 100730,China
| | - Xiaohua Shi
- Department of Pathology, Peking Union Medical College Hospital, Molecular Pathology Research Center, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing 100730,China
| | - Weixun Zhou
- Department of Pathology, Peking Union Medical College Hospital, Molecular Pathology Research Center, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing 100730,China
| | - Xuan Zeng
- Department of Pathology, Peking Union Medical College Hospital, Molecular Pathology Research Center, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing 100730,China.
| |
Collapse
|
235
|
Agostino S, Calandretti M, Veglio F, Abate Daga F. Physical strength levels and short-term memory efficiency in primary school children: a possible match? J Sports Med Phys Fitness 2023; 63:1343-1349. [PMID: 37736663 DOI: 10.23736/s0022-4707.23.14996-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
BACKGROUND Physical strength stimulation and, in general, physical activity induces brain plasticity (functional and structural adaptations) in different cerebral areas, benefiting executive function, cognition, attention and academic performance, which is usually estimated by measuring the Intelligent Quotient (IQ), and IQ is related to short-term memory, generally during school age. However, very little is known about the role of physical strength on short-term memory efficiency. Therefore, the primary aim of this study is to examine whether the level of physical strength can positively impact short-term memory efficiency in primary school children. Additionally, if this effect is observed, the secondary goal of this study is to determine whether the age of the participants plays a role in mediating and moderating this influence. METHODS Seventy-five children from a primary school in the metropolitan area of Turin were recruited for this study. Each subject performed the overhead medicine ball toss (backwards) test to assess physical strength and the Digit Span test from the Wechsler Intelligence Scale for Children (WISC) to evaluate short-term memory efficiency. Firstly, a simple mediation model was used to identify the possible impact of physical strength levels on short-term memory efficiency and the potential role of participants' chronological age. Secondly, a moderation model was carried out to observe if age could moderate the impact of physical training on short-term memory efficiency and the different significance levels of the moderator. Significance was assumed at P<0.05. RESULTS The results showed a statistically significant direct effect of physical strength on short-term memory (Β=0.429, t(72)=3.247, P<0.01). On the contrary, age was not statistically significant (Β=0.167, t(72)=3.247, P=0.211). Furthermore, a significant interaction between strength and age was identified by the moderation model (β=-0.270, P<0.01). Specifically, the impact of physical strength levels on short-term memory increased for individuals who were above the mean age (β=0.755, P<0.001). but not for those under the mean age (β=0.215, P=0.153). This model explains 37.2% of the variance in memory (R2=0.372, F(3, 71)=14.031, P<0.001). CONCLUSIONS These findings suggest that physical strength can positively influence short-term memory. In addition, this impact is enhanced in older-age children. Thus, primary school programs should stimulate physical strength to help children develop cognitive abilities.
Collapse
Affiliation(s)
- Samuel Agostino
- Department of Medical Sciences, University of Turin, Turin, Italy
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | - Franco Veglio
- Department of Medical Sciences, University of Turin, Turin, Italy
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Federico Abate Daga
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy -
| |
Collapse
|
236
|
Israr F, Masood Ul Hasan S, Hussain M, Qazi FUR, Hasan A. Investigating In Situ Expression of Neurotrophic Factors and Partner Proteins in Irreversible Pulpitis. J Endod 2023; 49:1668-1675. [PMID: 37660765 DOI: 10.1016/j.joen.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/30/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023]
Abstract
INTRODUCTION In situ assessments of neurotrophic factors and their associated molecular partners have not been explored to date, particularly in humans. The present investigation aimed to explore the expressional dysregulation of neurotrophic factors (nerve growth factor [NGF], brain derived neurotrophic factor [BDNF], and NT4/5), their receptors (TrkA and TrkB), and their modulators (USP36 and Nedd4-2) directly in irreversibly inflamed human pulp tissues. METHODS Forty samples each of healthy and irreversibly inflamed pulp were extirpated for the study. Immunohistochemical examinations were carried out for the anatomic changes and expression of neurotrophic factors and partner proteins. Expression was digitally quantified using the IHC profiler module of ImageJ and deduced as optical density. Statistical analyses were carried out by GraphPad Prism. RESULTS Decrease in nuclear and vessel diameters was observed in irreversibly inflamed pulp tissues. NGF and BDNF were found to be significantly upregulated in symptomatic irreversible pulpitis (SIP), whereas no significant difference was observed in the expression of TrkA and TrkB. Expression of Nedd4-2, USP36, and TrkA was found positively correlated with the NGF in healthy pulp tissues. However, in SIP, positive correlation was only observed between the expression of USP36 and NGF. Among the ligands, BDNF expression was found positively correlated with NGF in healthy pulp but not with NT4/5. In the case of SIP, no correlation was observed between any neurotrophic factors. CONCLUSIONS Upregulation of NGF, BDNF, USP36 and Nedd4-2 in SIP indicates dysregulation in the molecular events underlying the disease biology and could be exploited as potential markers for the disease diagnosis.
Collapse
Affiliation(s)
- Fatima Israr
- Dr Ishrat ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi, Pakistan; Bioinformatics and Molecular Medicine Research Group, Dow Research Institute of Biotechnology and Biomedical Sciences, Dow College of Biotechnology, Dow University of Health Sciences, Karachi, Pakistan
| | - Syed Masood Ul Hasan
- Dr Ishrat ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi, Pakistan; Bioinformatics and Molecular Medicine Research Group, Dow Research Institute of Biotechnology and Biomedical Sciences, Dow College of Biotechnology, Dow University of Health Sciences, Karachi, Pakistan
| | - Mushtaq Hussain
- Bioinformatics and Molecular Medicine Research Group, Dow Research Institute of Biotechnology and Biomedical Sciences, Dow College of Biotechnology, Dow University of Health Sciences, Karachi, Pakistan.
| | - Fazal Ur Rehman Qazi
- Dr Ishrat ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi, Pakistan
| | - Arshad Hasan
- Dow Dental College, Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
237
|
Crawford CA, Williams MK, Shell AL, MacDonald KL, Considine RV, Wu W, Rand KL, Stewart JC. Effect of modernized collaborative care for depression on brain-derived neurotrophic factor (BDNF) and depressive symptom clusters: Data from the eIMPACT trial. Psychiatry Res 2023; 330:115581. [PMID: 37931480 PMCID: PMC10842310 DOI: 10.1016/j.psychres.2023.115581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) levels are lower in people with depression and are normalized following pharmacological treatment. However, it is unknown if psychological treatments for depression improve BDNF and if change in BDNF is a mediator of intervention effects on depressive symptoms. Therefore, using data from the eIMPACT trial, we sought to determine the effect of modernized collaborative care for depression on 12-month changes in BDNF and cognitive/affective and somatic depressive symptom clusters and to examine whether BDNF changes mediate intervention effects on depressive symptoms. 216 primary care patients with depression from a safety net healthcare system were randomized to 12 months of the eIMPACT intervention (internet cognitive-behavioral therapy [CBT], telephonic CBT, and select antidepressant medications) or usual primary care. Plasma BDNF was measured with commercially available kits, and depressive symptom clusters were assessed by the Patient Health Questionnaire-9. The intervention did not influence BDNF but did improve both the cognitive/affective and somatic clusters over 12 months. Changes in BDNF did not mediate the intervention effect on either cluster. Our findings suggest that modernized collaborative care is an effective treatment for both the cognitive/affective and somatic symptoms of depression and that the mechanism of action is not improvements in BDNF. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02458690.
Collapse
Affiliation(s)
- Christopher A Crawford
- Department of Psychology, Indiana University-Purdue University Indianapolis (IUPUI), 402 North Blackford Street, LD 100E, Indianapolis, IN 46202, USA
| | - Michelle K Williams
- Department of Psychology, Indiana University-Purdue University Indianapolis (IUPUI), 402 North Blackford Street, LD 100E, Indianapolis, IN 46202, USA
| | - Aubrey L Shell
- Department of Psychology, Indiana University-Purdue University Indianapolis (IUPUI), 402 North Blackford Street, LD 100E, Indianapolis, IN 46202, USA
| | - Krysha L MacDonald
- Department of Psychology, Indiana University-Purdue University Indianapolis (IUPUI), 402 North Blackford Street, LD 100E, Indianapolis, IN 46202, USA; Sandra Eskenazi Mental Health Center, Eskenazi Health, Indianapolis, IN, USA
| | - Robert V Considine
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wei Wu
- Department of Psychology, Indiana University-Purdue University Indianapolis (IUPUI), 402 North Blackford Street, LD 100E, Indianapolis, IN 46202, USA
| | - Kevin L Rand
- Department of Psychology, Indiana University-Purdue University Indianapolis (IUPUI), 402 North Blackford Street, LD 100E, Indianapolis, IN 46202, USA
| | - Jesse C Stewart
- Department of Psychology, Indiana University-Purdue University Indianapolis (IUPUI), 402 North Blackford Street, LD 100E, Indianapolis, IN 46202, USA.
| |
Collapse
|
238
|
Yaneva-Sirakova T, Traykov L, Karamfiloff K, Petrov I, Hristova J, Vassilev D. Neurotrophins in carotid atherosclerosis and stenting. Ann Med 2023; 55:335-341. [PMID: 36625566 PMCID: PMC9851235 DOI: 10.1080/07853890.2022.2163052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION Carotid stenting is used with an expanding indications. The neurotrophins are a family of proteins that induce the survival, development, and function of neurons. Carotid stenting alters cerebral blood flow and can affect neurotrophins' levels. MATERIAL AND METHODS We included 78 people: 39 with significant carotid stenoses (CS) referred for carotid stenting (mean age 67.79 ± 10.53 years) and relatively healthy control group of 39 people without carotid and vertebral artery disease (mean age 57.42 ± 15.77 years). Brain derived reurotrophic factor (BDNF) and neuronal growth factor (NGF) concentrations were evaluated with ELISA method from venous blood - once for the control group; and for the carotid stenting group: before (n33), 24 h after (n22) and at least 1 month after (n18) carotid stenting. RESULTS There was a difference between the mean neurotrophins' concentration of patients with significant carotid stenoses and the group without: BDNF p = 0.001, CI (-5.11 to -1.44) (3.10 ± 3.10 ng/ml in CS vs. 6.37 ± 4.67 ng/ml in controls); NGF p = 0.049, CI (0.64-347.75), 195.67 ± 495.34 pg/ml in CS vs. 21.48 ± 52.81 pg/ml in controls. BDNF levels before carotid stenting (3.10 ± 3.10 ng/ml) were significantly lower than the postprocedural (4.99 ± 2.57 ng/ml) - p < 0.0001, CI (-2.86 to -0.99). For NGF there was a tendency for lower values after stenting: 195.67 ± 495.34 pg/ml before vs. 94.92 ± 120.06 pg/ml after, but the result did not reach statistical significance. The neurotrophins levels one month after carotid stenting and controls' were not significantly different p < 0.01 (BDNF 5.03 ± 4.75 ng/ml vs. 6.37 ± 4.67 ng/min; NGF 47.89 ± 54.68 pg/ml vs. 21.48 pg/ml). DISCUSSION AND CONCLUSION Periprocedural and mid-term concentrations of neurotrophins after carotid stenting change in non-linear model. This may be due to changes in cerebral perfusion and also might be involved in neuronal recovery and reparation after reperfusion.KEY MESSAGESPeriprocedural and mid-term concentrations of neurotrophins after carotid stenting change in non-linear model.As the majority of them are not specific, their periprocedural change can be used as a clinical correlate to guide changes or even success in carotid stenting.Changes in neutrophins' concentrations may be due to changes in cerebral perfusion and also might be involved in neuronal recovery and reparation after reperfusion.This goes in analogy with cardiac high-sensitive troponin, used as procedural guidance in coronary interventions.
Collapse
Affiliation(s)
| | - Latchezar Traykov
- Department of Neurology, UMHAT “Alexandrovska”, Neurology Clinic, Medical University Sofia, Sofia, Bulgaria
- Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Kiril Karamfiloff
- Department of Internal medicine, UMHAT “Alexandrovska”, Cardiology Clinic, Medical University Sofia, Sofia, Bulgaria
| | - Ivo Petrov
- Acibadem City Clinic UMHAT, Sofia, Bulgaria
| | - Julieta Hristova
- Department of Clinical Laboratory and Drug Toxicity, UMHAT “Alexandrovska” Clinical laboratory, Medical University Sofia, Sofia, Bulgaria
| | - Dobrin Vassilev
- Department of Health Care, UMHAT “Medica Cor”, Ruse, University of Ruse “Angel Kanchev”, Ruse, Bulgaria
| |
Collapse
|
239
|
Gao X, Murphy MM, Peyer JG, Ni Y, Yang M, Zhang Y, Guo J, Kara N, Embree C, Tasdogan A, Ubellacker JM, Crane GM, Fang S, Zhao Z, Shen B, Morrison SJ. Leptin receptor + cells promote bone marrow innervation and regeneration by synthesizing nerve growth factor. Nat Cell Biol 2023; 25:1746-1757. [PMID: 38012403 PMCID: PMC10709146 DOI: 10.1038/s41556-023-01284-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 10/09/2023] [Indexed: 11/29/2023]
Abstract
The bone marrow contains peripheral nerves that promote haematopoietic regeneration after irradiation or chemotherapy (myeloablation), but little is known about how this is regulated. Here we found that nerve growth factor (NGF) produced by leptin receptor-expressing (LepR+) stromal cells is required to maintain nerve fibres in adult bone marrow. In nerveless bone marrow, steady-state haematopoiesis was normal but haematopoietic and vascular regeneration were impaired after myeloablation. LepR+ cells, and the adipocytes they gave rise to, increased NGF production after myeloablation, promoting nerve sprouting in the bone marrow and haematopoietic and vascular regeneration. Nerves promoted regeneration by activating β2 and β3 adrenergic receptor signalling in LepR+ cells, and potentially in adipocytes, increasing their production of multiple haematopoietic and vascular regeneration growth factors. Peripheral nerves and LepR+ cells thus promote bone marrow regeneration through a reciprocal relationship in which LepR+ cells sustain nerves by synthesizing NGF and nerves increase regeneration by promoting the production of growth factors by LepR+ cells.
Collapse
Affiliation(s)
- Xiang Gao
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Malea M Murphy
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Integrated Microscopy and Imaging Laboratory, Texas A&M Health Science Center, Texas A&M University, College Station, TX, USA
| | - James G Peyer
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cambrian Bio, Inc., New York, NY, USA
| | - Yuehan Ni
- National Institute of Biological Sciences, Beijing, China
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Min Yang
- National Institute of Biological Sciences, Beijing, China
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yixuan Zhang
- National Institute of Biological Sciences, Beijing, China
| | - Jiaming Guo
- National Institute of Biological Sciences, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Nergis Kara
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Ensoma, Inc., Boston, MA, USA
| | - Claire Embree
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alpaslan Tasdogan
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| | - Jessalyn M Ubellacker
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Genevieve M Crane
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Shentong Fang
- School of Biopharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhiyu Zhao
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bo Shen
- National Institute of Biological Sciences, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Sean J Morrison
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
240
|
Wu A, Zhang J. Neuroinflammation, memory, and depression: new approaches to hippocampal neurogenesis. J Neuroinflammation 2023; 20:283. [PMID: 38012702 PMCID: PMC10683283 DOI: 10.1186/s12974-023-02964-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023] Open
Abstract
As one of most common and severe mental disorders, major depressive disorder (MDD) significantly increases the risks of premature death and other medical conditions for patients. Neuroinflammation is the abnormal immune response in the brain, and its correlation with MDD is receiving increasing attention. Neuroinflammation has been reported to be involved in MDD through distinct neurobiological mechanisms, among which the dysregulation of neurogenesis in the dentate gyrus (DG) of the hippocampus (HPC) is receiving increasing attention. The DG of the hippocampus is one of two niches for neurogenesis in the adult mammalian brain, and neurotrophic factors are fundamental regulators of this neurogenesis process. The reported cell types involved in mediating neuroinflammation include microglia, astrocytes, oligodendrocytes, meningeal leukocytes, and peripheral immune cells which selectively penetrate the blood-brain barrier and infiltrate into inflammatory regions. This review summarizes the functions of the hippocampus affected by neuroinflammation during MDD progression and the corresponding influences on the memory of MDD patients and model animals.
Collapse
Affiliation(s)
- Anbiao Wu
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Jiyan Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| |
Collapse
|
241
|
Fioranelli M, Garo ML, Roccia MG, Prizbelek B, Sconci FR. Brain-Heart Axis: Brain-Derived Neurotrophic Factor and Cardiovascular Disease-A Review of Systematic Reviews. Life (Basel) 2023; 13:2252. [PMID: 38137853 PMCID: PMC10744648 DOI: 10.3390/life13122252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND The brain-heart axis is an intra- and bidirectional complex that links central nervous system dysfunction and cardiac dysfunction. In recent decades, brain-derived neurotrophic factor (BDNF) has emerged as a strategic molecule involved in both brain and cardiovascular disease (CVD). This systematic review of systematic reviews aimed to (1) identify and summarize the evidence for the BDNF genotype and BDNF concentration in CVD risk assessment, (2) evaluate the evidence for the use of BDNF as a biomarker of CVD recovery, and (3) evaluate rehabilitation approaches that can restore BDNF concentration. METHODS A comprehensive search strategy was developed using PRISMA. The risk of bias was assessed via ROBIS. RESULTS Seven studies were identified, most of which aimed to evaluate the role of BDNF in stroke patients. Only two systematic reviews examined the association of BDNF concentration and polymorphism in CVDs other than stroke. CONCLUSIONS The overall evidence showed that BDNF plays a fundamental role in assessing the risk of CVD occurrence, because lower BDNF concentrations and rs6265 polymorphism are often associated with CVD. Nevertheless, much work remains to be carried out in current research to investigate how BDNF is modulated in different cardiovascular diseases and in different populations.
Collapse
Affiliation(s)
- Massimo Fioranelli
- Department of Human Sciences, Guglielmo Marconi University, 00193 Rome, Italy; (M.F.); (M.G.R.)
| | - Maria Luisa Garo
- Istituto Terapie Sistemiche Integrate, Casa di Cura Sanatrix, 00199 Rome, Italy; (B.P.); (F.R.S.)
| | - Maria Grazia Roccia
- Department of Human Sciences, Guglielmo Marconi University, 00193 Rome, Italy; (M.F.); (M.G.R.)
| | - Bianca Prizbelek
- Istituto Terapie Sistemiche Integrate, Casa di Cura Sanatrix, 00199 Rome, Italy; (B.P.); (F.R.S.)
| | - Francesca Romana Sconci
- Istituto Terapie Sistemiche Integrate, Casa di Cura Sanatrix, 00199 Rome, Italy; (B.P.); (F.R.S.)
| |
Collapse
|
242
|
Gabryelska A, Turkiewicz S, Ditmer M, Gajewski A, Białasiewicz P, Strzelecki D, Chałubiński M, Sochal M. Evaluation of the Continuous Positive Airway Pressure Effect on Neurotrophins' Gene Expression and Protein Levels. Int J Mol Sci 2023; 24:16599. [PMID: 38068919 PMCID: PMC10706617 DOI: 10.3390/ijms242316599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Neurotrophins (NT) might be associated with the pathophysiology of obstructive sleep apnea (OSA) due to concurrent intermittent hypoxia and sleep fragmentation. Such a relationship could have implications for the health and overall well-being of patients; however, the literature on this subject is sparse. This study investigated the alterations in the serum protein concentration and the mRNA expression of the brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), neurotrophin-3 (NTF3), and neurotrophin-4 (NTF4) proteins following a single night of continuous positive airway pressure (CPAP) therapy. This study group consisted of 30 patients with OSA. Venous blood was collected twice after a diagnostic polysomnography (PSG) and PSG with CPAP treatment. Gene expression was assessed with a quantitative real-time polymerase chain reaction. An enzyme-linked immunosorbent assay was used to determine the protein concentrations. After CPAP treatment, BDNF, proBDNF, GDNF, and NTF4 protein levels decreased (p = 0.002, p = 0.003, p = 0.047, and p = 0.009, respectively), while NTF3 increased (p = 0.001). Sleep latency was correlated with ΔPSG + CPAP/PSG gene expression for BDNF (R = 0.387, p = 0.038), NTF3 (R = 0.440, p = 0.019), and NTF4 (R = 0.424, p = 0.025). OSA severity parameters were not associated with protein levels or gene expressions. CPAP therapy could have an impact on the posttranscriptional stages of NT synthesis. The expression of different NTs appears to be connected with sleep architecture but not with OSA severity.
Collapse
Affiliation(s)
- Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 90-419 Lodz, Poland
| | - Szymon Turkiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 90-419 Lodz, Poland
| | - Marta Ditmer
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 90-419 Lodz, Poland
| | - Adrian Gajewski
- Department of Immunology and Allergy, Medical University of Lodz, 90-419 Lodz, Poland
| | - Piotr Białasiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 90-419 Lodz, Poland
| | - Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 90-419 Lodz, Poland
| | - Maciej Chałubiński
- Department of Immunology and Allergy, Medical University of Lodz, 90-419 Lodz, Poland
| | - Marcin Sochal
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 90-419 Lodz, Poland
| |
Collapse
|
243
|
Singh A. Brain-derived neurotrophic factor - a key player in the gastrointestinal system. PRZEGLAD GASTROENTEROLOGICZNY 2023; 18:380-392. [PMID: 38572454 PMCID: PMC10985741 DOI: 10.5114/pg.2023.132957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/24/2023] [Indexed: 04/05/2024]
Abstract
Brain-derived neurotrophic factor (BDNF) is highly expressed throughout the gastrointestinal (GI) tract and plays a critical role in the regulation of intestinal motility, secretion, sensation, immunity, and mucosal integrity. Dysregulation of BDNF signalling has been implicated in the pathophysiology of various GI disorders including inflammatory bowel disease, irritable bowel syndrome, functional dyspepsia, and diabetic gastroenteropathy. This review provides a comprehensive overview of BDNF localization, synthesis, receptors, and signalling mechanisms in the gut. In addition, current evidence on the diverse physiologic and pathophysiologic roles of BDNF in the control of intestinal peristalsis, mucosal transport processes, visceral sensation, neuroimmune interactions, gastrointestinal mucosal healing, and enteric nervous system homeostasis are discussed. Finally, the therapeutic potential of targeting BDNF for the treatment of functional GI diseases is explored. Advancing knowledge of BDNF biology and mechanisms of action may lead to new therapies based on harnessing the gut trophic effects of this neurotrophin.
Collapse
Affiliation(s)
- Arjun Singh
- Department of Medicine, Division of Gastroenterology and Hepatology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
- Molecular Pharmacology Program and Chemistry, Memorial Sloan Kettering Cancer Center, New York, United States
| |
Collapse
|
244
|
Hu X, Peng J, Tang W, Xia Y, Song P. A circadian rhythm-restricted diet regulates autophagy to improve cognitive function and prolong lifespan. Biosci Trends 2023; 17:356-368. [PMID: 37722875 DOI: 10.5582/bst.2023.01221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Diet and circadian rhythms have been found to have a profound impact on health, disease, and aging. Skipping breakfast, eating late, and overeating have adverse effects on the body's metabolism and increase the risk of cardiovascular and metabolic diseases. Disturbance of circadian rhythms has been associated with increased risk of atherosclerosis, Alzheimer's disease, Parkinson's disease, and other diseases. Abnormal deposition of amyloid β (Aβ) and tau proteins in the brain and impaired synaptic function are linked to cognitive dysfunction. A restrictive diet following the circadian rhythm can affect the metabolism of lipids, glucose, and amino acids such as branched chain amino acids and cysteine. These metabolic changes contribute to autophagy through molecular mechanisms such as adenosine monophosphate-activated protein kinase (AMPK), rapamycin (mTOR), D-β-hydroxybutyrate (D-BHB), and neuropeptide Y (NPY). Autophagy, in turn, promotes the removal of abnormally deposited proteins and damaged organelles and improves cognitive function, ultimately prolonging lifespan. In addition, a diet restricted to the circadian rhythm induces increased expression of brain-derived neurotrophic factor (BDNF) in the forebrain region, regulating autophagy and increasing synaptic plasticity, thus enhancing cognitive function. Consequently, circadian rhythm-restricted diets could serve as a promising non-pharmacological treatment for preventing and improving cognitive dysfunction and prolonging lifespan.
Collapse
Affiliation(s)
- Xiqi Hu
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Jun Peng
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| | - Wei Tang
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
- International Health Care Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Ying Xia
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| | - Peipei Song
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
245
|
Terracina S, Ferraguti G, Tarani L, Fanfarillo F, Tirassa P, Ralli M, Iannella G, Polimeni A, Lucarelli M, Greco A, Fiore M. Nerve Growth Factor and Autoimmune Diseases. Curr Issues Mol Biol 2023; 45:8950-8973. [PMID: 37998739 PMCID: PMC10670231 DOI: 10.3390/cimb45110562] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
NGF plays a crucial immunomodulatory role and increased levels are found in numerous tissues during autoimmune states. NGF directly modulates innate and adaptive immune responses of B and T cells and causes the release of neuropeptides and neurotransmitters controlling the immune system activation in inflamed tissues. Evidence suggests that NGF is involved in the pathogenesis of numerous immune diseases including autoimmune thyroiditis, chronic arthritis, multiple sclerosis, systemic lupus erythematosus, mastocytosis, and chronic granulomatous disease. Furthermore, as NGF levels have been linked to disease severity, it could be considered an optimal early biomarker to identify therapeutic approach efficacy. In conclusion, by gaining insights into how these molecules function and which cells they interact with, future studies can devise targeted therapies to address various neurological, immunological, and other disorders more effectively. This knowledge may pave the way for innovative treatments based on NGF manipulation aimed at improving the quality of life for individuals affected by diseases involving neurotrophins.
Collapse
Affiliation(s)
- Sergio Terracina
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesca Fanfarillo
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Paola Tirassa
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Massimo Ralli
- Department of Sensory Organs, Sapienza University of Rome, 00185 Roma, Italy
| | - Giannicola Iannella
- Department of Sensory Organs, Sapienza University of Rome, 00185 Roma, Italy
| | - Antonella Polimeni
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonio Greco
- Department of Sensory Organs, Sapienza University of Rome, 00185 Roma, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
246
|
Tyczyńska K, Krajewski PK, Nowicka-Suszko D, Janczak D, Augustyniak-Bartosik H, Krajewska M, Szepietowski JC. Neurotrophin-4 and Brain-Derived Neurotrophic Factor Serum Levels in Renal Transplant Recipients with Chronic Pruritus. Dermatol Ther (Heidelb) 2023; 13:2785-2796. [PMID: 37779167 PMCID: PMC10613176 DOI: 10.1007/s13555-023-01029-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/06/2023] [Indexed: 10/03/2023] Open
Abstract
INTRODUCTION Chronic pruritus (CP) is a common symptom defined as a sensation that provokes the desire to scratch and which lasts for at least 6 weeks. CP remains a problem for up to 21.3% of renal transplant recipients (RTRs). Our research aimed to establish the possible association between serum levels of neurotrophin-4 (NT-4) and brain-derived neurotrophic factor (BDNF) and the presence and intensity of CP in RTR. METHODS The study was performed on a group of 129 RTRs, who were divided according to the presence or absence of pruritus in the previous 3 days. The assessment of pruritus was performed with the use of a numeric rating scale (NRS), 4-Item Itch Questionnaire (4IIQ), and Itchy Quality of Life (Itchy QoL). A total of 129 blood samples with a volume of 9 ml were drawn from RTRs during the monthly routine control. Serum levels (pg/mL) of NT-4 and BDNF were measured by the ELISA. RESULTS Pruritic RTRs have statistically significantly higher serum concentrations of NT-4 serum level compared to non-pruritic RTRs (229.17 ± 143.86 pg/mL and 153.08 ± 78.19 pg/mL [p = 0.024], respectively). Moreover, a statistically significant difference between pruritic and non-pruritic RTRs with healthy controls was shown (p < 0.001 and p < 0.001, respectively). Although there was a numerically higher serum concentration of BDNF in pruritic RTRs (32.18 ± 7.31 pg/mL vs. 31.58 ± 10.84 pg/mL), the difference did not reach statistical significance. No statistically significant difference was also seen in BDNF serum levels between RTRs and healthy controls. Furthermore, there was a statistically significant, positive correlation between serum concentration of NT-4 and NRS score (p = 0.008, r = 0.357). CONCLUSIONS The results indicate higher NT-4 serum concentration in RTRs with pruritus compared to RTRs without pruritus. Furthermore, the study revealed a statistically significant, positive correlation between the serum concentration of NT-4 and NRS score.
Collapse
Affiliation(s)
- Kinga Tyczyńska
- Department of Rheumatology and Internal Medicine, Wroclaw Medical University, 50-556, Wroclaw, Poland
| | - Piotr K Krajewski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Chalubinskiego 1, 50-368, Wroclaw, Poland
| | - Danuta Nowicka-Suszko
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Chalubinskiego 1, 50-368, Wroclaw, Poland
| | - Dariusz Janczak
- Department of Vascular, General and Transplantation Surgery, Wroclaw Medical University, 50-566, Wroclaw, Poland
| | - Hanna Augustyniak-Bartosik
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556, Wroclaw, Poland
| | - Magdalena Krajewska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556, Wroclaw, Poland
| | - Jacek C Szepietowski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Chalubinskiego 1, 50-368, Wroclaw, Poland.
| |
Collapse
|
247
|
Setayesh S, Mohammad Rahimi GR. The impact of resistance training on brain-derived neurotrophic factor and depression among older adults aged 60 years or older: A systematic review and meta-analysis of randomized controlled trials. Geriatr Nurs 2023; 54:23-31. [PMID: 37703686 DOI: 10.1016/j.gerinurse.2023.08.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023]
Abstract
OBJECTIVE This systematic review and meta-analysis aimed to investigate the impact of resistance training on brain-derived neurotrophic factor (BDNF) and depression among older adults aged 60 years or older. METHOD Four electronic databases were systematically searched. RESULTS A total of 11 randomized controlled trials, with a pooled sample of 868 participants, met our inclusion criteria. Meta-analysis demonstrated that resistance training significantly improved circulating BDNF levels (mean difference; MD: 0.73 ng/ml; 95% CI [0.04, 1.42]; p = 0.04). Additionally, resistance training was associated with significant improvements in depression (standardized mean difference; SMD: -0.38; 95% CI [- 0.62, -0.14]; p = 0.002). DISCUSSION These findings suggest that resistance training may be an effective intervention for improving BDNF levels and reducing depression symptoms in older adults. Further research is needed to confirm these findings and to investigate the underlying mechanisms.
Collapse
Affiliation(s)
- Shayan Setayesh
- Department of Exercise Physiology, Sanabad Golbahar Institute of Higher Education, Golbahar, Iran
| | | |
Collapse
|
248
|
Vink HA, Ramekers D, Foster AC, Versnel H. The efficacy of a TrkB monoclonal antibody agonist in preserving the auditory nerve in deafened guinea pigs. Hear Res 2023; 439:108895. [PMID: 37837701 DOI: 10.1016/j.heares.2023.108895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/31/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
The auditory nerve typically degenerates following loss of cochlear hair cells or synapses. In the case of hair cell loss neural degeneration hinders restoration of hearing through a cochlear implant, and in the case of synaptopathy suprathreshold hearing is affected, potentially degrading speech perception in noise. It has been established that neurotrophins such as brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) can mitigate auditory nerve degeneration. Several potential BDNF mimetics have also been investigated for neurotrophic effects in the cochlea. A recent in vitro study showed favorable effects of M3, a TrkB monoclonal antibody agonist, when compared with BDNF. In the present study we set out to examine the effect of M3 on auditory nerve preservation in vivo. Thirty-one guinea pigs were bilaterally deafened, and unilaterally treated with a single 3-µl dose of 7 mg/ml, 0.7 mg/ml M3 or vehicle-only by means of a small gelatin sponge two weeks later. During the experiment and analyses the experimenters were blinded to the three treatment groups. Four weeks after treatment, we assessed the treatment effect (1) histologically, by quantifying survival of SGCs and their peripheral processes (PPs); and (2) electrophysiologically, with two different paradigms of electrically evoked compound action potential (eCAP) recordings shown to be indicative of neural health: single-pulse stimulation with varying inter-phase gap (IPG), and pulse-train stimulation with varying inter-pulse interval. We observed a consistent and significant preservative effect of M3 on SGC survival in the lower basal turn (approximately 40% more survival than in the untreated contralateral cochlea), but also in the upper middle and lower apical turn of the cochlea. This effect was similar for the two treatment groups. Survival of PPs showed a trend similar to that of the SGCs, but was only significantly higher for the highest dose of M3. The protective effect of M3 on SGCs was not reflected in any of the eCAP measures: no statistically significant differences were observed between groups in IPG effect nor between the M3 treatment groups and the control group using the pulse-train stimulation paradigm. In short, while a clear effect of M3 was observed on SGC survival, this was not clearly translated into functional preservation.
Collapse
Affiliation(s)
- Henk A Vink
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Room G.02.531, P.O. Box 85500, 3508 GA, Utrecht, the Netherlands; UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Dyan Ramekers
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Room G.02.531, P.O. Box 85500, 3508 GA, Utrecht, the Netherlands; UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | | | - Huib Versnel
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Room G.02.531, P.O. Box 85500, 3508 GA, Utrecht, the Netherlands; UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
249
|
Xiao J. Thirty years of BDNF study in central myelination: From biology to therapy. J Neurochem 2023; 167:321-336. [PMID: 37747083 DOI: 10.1111/jnc.15968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023]
Abstract
Being the highest expressed neurotrophin in the mammalian brain, the brain-derived neurotrophic factor (BDNF) is essential to neural development and plasticity in both health and diseases. Following the discovery of BDNF by Yves-Alain Barde in 1982, the main feature of BDNF's activity in myelination was first described by Cellerino et al. in 1997. Since then, genetic manipulation of the BDNF-encoding gene and its receptors in murine models has revealed the contribution of BDNF to the myelinating process in the central nervous system (CNS). The series of BDNF or receptor mouse mutants as well as the BDNF polymorphism in humans have provided new insights into the roles that BDNF signaling plays in myelination in a complex manner. 2024 marks the 30th year of BDNF's research in myelination. Here, we share our perspective on the 30-year history of BDNF in the field of CNS myelination from phenotyping to therapeutic development, focusing on genetic evidence regarding the mechanism by which BDNF regulates myelin formation and repair in the CNS. This review also discusses the current hypotheses of BDNF's action on CNS myelination: axonal- and oligodendroglial-driven mechanisms, which may be ultimately activity-dependent. Last, this review raises the challenges and opportunities of developing BDNF-based therapies for neurodegenerative diseases, opening unanswered questions for future investigation.
Collapse
Affiliation(s)
- Junhua Xiao
- School of Health Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
- School of Allied Health, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
250
|
Mitra S, Mitra M, Nandi P, Pandey M, Chakrabarty M, Saha M, Nandi DK. Efficacy of Yoga for COVID-19 Stress Prophylaxis. J Phys Act Health 2023; 20:1034-1042. [PMID: 37625797 DOI: 10.1123/jpah.2023-0035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/05/2023] [Accepted: 05/30/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND The global COVID-19 lockdown restricted daily routines due to the psychological fear of infection, which imposed an unknown universal threat on female college students, affecting physiological health and well-being. However, scant information concerning the efficacy of yogic practice on female college students during the stressful COVID-19 pandemic situation is available. METHODS In a randomized controlled trial (n = 74, age = 21.65 [4.05] y), a study was conducted with a well-conceptualized yogic module for 5 days/week for 3 months (40 min daily in the morning) among yogic volunteers. Pre-post analysis of anthropometric, physiological, and biochemical indices in pandemic-stressed female college students was done for the control and yoga groups. RESULTS After 3 months of yogic practice, significant reduction (P < .05) in heart rate (d = 0.64, meandiff = 5.43), systolic blood pressure (d = 0.59, meandiff = 5.32), cortisol (d = 0.59, meandiff = 6.354), and triglycerides (P < .01, d = 0.45, meandiff = 13.95) was observed. After yogic follow-up significant improvement (P < .01) in high-frequency (d = 0.56, meandiff = -7.3), total power (d = 0.46, meandiff = -1150) and time domain parameters of heart rate variability led to ameliorate the stress index. Superoxide dismutase (P < .01, d = 0.78, meandiff = 0.69), catalase (P < .05, d = 0.48, meandiff = -7.37), glutathione (P < .001, d = 0.83, meandiff = -4.15), high-density lipoprotein (P < .05, d = 0.48, meandiff = -11.07), and dopamine (P < .001, d = 0.97, meandiff = -135.4) values along with inflammatory markers (P < .001) significantly improved among yogic volunteers after regular practice. CONCLUSIONS Our findings suggest that a 3-month well-conceptualized yogic intervention during COVID-19 may be considered as a prophylactic tool to improve female college students' universal psychophysiological health by ameliorating autonomic functions, cardiometabolic risk factors, and immune metabolisms in an economical and environment-friendly manner.
Collapse
Affiliation(s)
- Sudeep Mitra
- Laboratory of Human Performance, PG Department of Human Physiology & BMLT, Raja Narendra Lal Khan Women's College (Autonomous), Midnapore,India
| | - Mousumi Mitra
- Laboratory of Human Performance, PG Department of Human Physiology & BMLT, Raja Narendra Lal Khan Women's College (Autonomous), Midnapore,India
| | - Purna Nandi
- Laboratory of Human Performance, PG Department of Human Physiology & BMLT, Raja Narendra Lal Khan Women's College (Autonomous), Midnapore,India
| | - Madhumita Pandey
- Laboratory of Human Performance, PG Department of Human Physiology & BMLT, Raja Narendra Lal Khan Women's College (Autonomous), Midnapore,India
| | - Mousumi Chakrabarty
- Laboratory of Human Performance, PG Department of Human Physiology & BMLT, Raja Narendra Lal Khan Women's College (Autonomous), Midnapore,India
| | - Mantu Saha
- Work Physiology & Yoga Laboratory, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organisation (DRDO), Delhi,India
| | - Dilip Kumar Nandi
- Laboratory of Human Performance, PG Department of Human Physiology & BMLT, Raja Narendra Lal Khan Women's College (Autonomous), Midnapore,India
| |
Collapse
|