201
|
Abstract
Insulin resistance is characteristic of obesity, type 2 diabetes, and components of the cardiometabolic syndrome, including hypertension and dyslipidemia, that collectively contribute to a substantial risk for cardiovascular disease. Metabolic actions of insulin in classic insulin target tissues (eg, skeletal muscle, fat, and liver), as well as actions in nonclassic targets (eg, cardiovascular tissue), help to explain why insulin resistance and metabolic dysregulation are central in the pathogenesis of the cardiometabolic syndrome and cardiovascular disease. Glucose and lipid metabolism are largely dependent on mitochondria to generate energy in cells. Thereby, when nutrient oxidation is inefficient, the ratio of ATP production/oxygen consumption is low, leading to an increased production of superoxide anions. Reactive oxygen species formation may have maladaptive consequences that increase the rate of mutagenesis and stimulate proinflammatory processes. In addition to reactive oxygen species formation, genetic factors, aging, and reduced mitochondrial biogenesis all contribute to mitochondrial dysfunction. These factors also contribute to insulin resistance in classic and nonclassic insulin target tissues. Insulin resistance emanating from mitochondrial dysfunction may contribute to metabolic and cardiovascular abnormalities and subsequent increases in cardiovascular disease. Furthermore, interventions that improve mitochondrial function also improve insulin resistance. Collectively, these observations suggest that mitochondrial dysfunction may be a central cause of insulin resistance and associated complications. In this review, we discuss mechanisms of mitochondrial dysfunction related to the pathophysiology of insulin resistance in classic insulin-responsive tissue, as well as cardiovascular tissue.
Collapse
Affiliation(s)
- Jeong-A Kim
- Department of Internal Medicine, University of Missouri-Columbia School of Medicine, Columbia, Missouri, USA
| | | | | |
Collapse
|
202
|
Bakker W, Sipkema P, Stehouwer CDA, Serne EH, Smulders YM, van Hinsbergh VWM, Eringa EC. Protein kinase C theta activation induces insulin-mediated constriction of muscle resistance arteries. Diabetes 2008; 57:706-13. [PMID: 18086904 DOI: 10.2337/db07-0792] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Protein kinase C (PKC) theta activation is associated with insulin resistance and obesity, but the underlying mechanisms have not been fully elucidated. Impairment of insulin-mediated vasoreactivity in muscle contributes to insulin resistance, but it is unknown whether PKC theta is involved. In this study, we investigated whether PKC theta activation impairs insulin-mediated vasoreactivity and insulin signaling in muscle resistance arteries. RESEARCH DESIGN AND METHODS Vasoreactivity of isolated resistance arteries of mouse gracilis muscles to insulin (0.02-20 nmol/l) was studied in a pressure myograph with or without PKC theta activation by palmitic acid (PA) (100 micromol/l). RESULTS In the absence of PKC theta activation, insulin did not alter arterial diameter, which was caused by a balance of nitric oxide-dependent vasodilator and endothelin-dependent vasoconstrictor effects. Using three-dimensional microscopy and Western blotting of muscle resistance arteries, we found that PKC theta is abundantly expressed in endothelium of muscle resistance arteries of both mice and humans and is activated by pathophysiological levels of PA, as indicated by phosphorylation at Thr(538) in mouse resistance arteries. In the presence of PA, insulin induced vasoconstriction (21 +/- 6% at 2 nmol/l insulin), which was abolished by pharmacological or genetic inactivation of PKC theta. Analysis of intracellular signaling in muscle resistance arteries showed that PKC theta activation reduced insulin-mediated Akt phosphorylation (Ser(473)) and increased extracellular signal-related kinase (ERK) 1/2 phosphorylation. Inhibition of PKC theta restored insulin-mediated vasoreactivity and insulin-mediated activation of Akt and ERK1/2 in the presence of PA. CONCLUSIONS PKC theta activation induces insulin-mediated vasoconstriction by inhibition of Akt and stimulation of ERK1/2 in muscle resistance arteries. This provides a new mechanism linking PKC theta activation to insulin resistance.
Collapse
Affiliation(s)
- Wineke Bakker
- Laboratory of Physiology, Institute for Cardiovascular Research, Vrije Universiteit Medical Center, van der Boechorststraat 7, 1081BT Amsterdam, Netherlands
| | | | | | | | | | | | | |
Collapse
|
203
|
de Luca C, Olefsky JM. Inflammation and insulin resistance. FEBS Lett 2007; 582:97-105. [PMID: 18053812 DOI: 10.1016/j.febslet.2007.11.057] [Citation(s) in RCA: 786] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 11/19/2007] [Accepted: 11/19/2007] [Indexed: 02/06/2023]
Abstract
Obesity-induced chronic inflammation is a key component in the pathogenesis of insulin resistance and the Metabolic syndrome. In this review, we focus on the interconnection between obesity, inflammation and insulin resistance. Pro-inflammatory cytokines can cause insulin resistance in adipose tissue, skeletal muscle and liver by inhibiting insulin signal transduction. The sources of cytokines in insulin resistant states are the insulin target tissue themselves, primarily fat and liver, but to a larger extent the activated tissue resident macrophages. While the initiating factors of this inflammatory response remain to be fully determined, chronic inflammation in these tissues could cause localized insulin resistance via autocrine/paracrine cytokine signaling and systemic insulin resistance via endocrine cytokine signaling all of which contribute to the abnormal metabolic state.
Collapse
Affiliation(s)
- Carl de Luca
- University of California at San Diego, Department of Medicine (0673), 225 Stein Clinical Research Building, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | |
Collapse
|
204
|
Affiliation(s)
- Brent E Wisse
- Department of Medicine, Harborview Medical Center and University of Washington, Seattle, WA 98104, USA
| | | | | |
Collapse
|
205
|
Jonk AM, Houben AJHM, de Jongh RT, Serné EH, Schaper NC, Stehouwer CDA. Microvascular dysfunction in obesity: a potential mechanism in the pathogenesis of obesity-associated insulin resistance and hypertension. Physiology (Bethesda) 2007; 22:252-60. [PMID: 17699878 DOI: 10.1152/physiol.00012.2007] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Obesity is an important risk factor for insulin resistance and hypertension and plays a central role in the metabolic syndrome. Insight into the pathophysiology of this syndrome may lead to new treatments. This paper has reviewed the evidence for an important role for the microcirculation as a possible link between obesity, insulin resistance and hypertension.
Collapse
Affiliation(s)
- Amy M Jonk
- Department of Internal Medicine, University Hospital Maastricht, and Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
| | | | | | | | | | | |
Collapse
|
206
|
Klaff LS, Wisse BE. Current controversy related to glucocorticoid and insulin therapy in the intensive care unit. Endocr Pract 2007; 13:542-9. [PMID: 17872357 DOI: 10.4158/ep.13.5.542] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To review the controversy related to the widespread use of intensive insulin treatment (IIT) to maintain normoglycemia and of glucocorticoid replacement therapy in patients with sepsis in the intensive care unit (ICU). METHODS We performed a MEDLINE search of the literature using a combination of words (critical/intensive care, endocrinology/endocrine, glucocorticoid/adrenal, insulin) to identify original studies and reviews on glucocorticoid therapy and IIT in the ICU. RESULTS Glucocorticoid replacement therapy is advocated for patients with sepsis who have relative adrenal insufficiency. The current definition of relative adrenal insufficiency is poorly supported, and validated endocrine criteria that consistently identify ICU patients likely to benefit from glucocorticoid therapy are not yet available. IIT benefits postoperative patients at high risk of infection and patients who remain in the ICU more than 3 days. Potential harm caused by early IIT administration in medical ICU patients remains controversial. The role of early nutritional supplementation in major studies about IIT is largely unexplored. Improvements in insulin infusion protocols are needed to reduce the risk of hypoglycemia related to IIT. CONCLUSION Endocrine therapy in the ICU is entering a new era. Controversies remain related to glucocorticoid and insulin therapy even as interest in new, and old, endocrine therapies is being revived.
Collapse
Affiliation(s)
- Lindy S Klaff
- The Department of Medicine, Harborview Medical Center, University of Washington, Seattle, Washington 98104-2499, USA
| | | |
Collapse
|
207
|
Couloubaly S, Deloménie C, Rousseau D, Paul JL, Grynberg A, Pourci ML. Fatty acid incorporation in endothelial cells and effects on endothelial nitric oxide synthase. Eur J Clin Invest 2007; 37:692-9. [PMID: 17696958 DOI: 10.1111/j.1365-2362.2007.01843.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND The nature of fatty acids provided by the diet as well as plasma lipid metabolism can modify the composition and properties of plasma membrane and thus the activity of membrane proteins. In humans, as well as in experimental models, diabetes is associated with both an alteration in serum lipid profile and a documented endothelial dysfunction. This in vitro study investigated on an immortalized human endothelial cell line (EA.hy 926) the specific effects of several free fatty acids (FFAs) on the composition of cellular membranes and the regulation of endothelial nitric oxide synthase (eNOS). MATERIALS AND METHODS 0.1% of lipid deprived serum was added to the incubation medium with 25 mM glucose in order to study the effects of individual fatty acids: myristic acid, palmitic acid, stearic acid, oleic acid or linoleic acid at 100 microM bound with albumin. The effects of the FFAs on the endothelial nitric oxide synthase were investigated on mRNA level by quantitative PCR, on protein level and Ser1177 phosphorylation by Western blot and on enzymatic activity on living cells using radiolabelled arginine. RESULTS Free linoleic acid increased the membrane content in n-6 fatty acids (mainly C18: n-6 and its metabolites) with a decrease in saturated and monounsaturated fatty acids. These conditions decreased the basal eNOS activity and reduced the phosphorylation of eNOS-Ser1177 due to activation by histamine. Free palmitic acid enriched the membranes with 16 : 0 with a slight decrease in monounsaturated fatty acids. These conditions increased eNOS activation without increasing Ser1177 phosphorylation upon histamine activation. The addition of the other FFAs also resulted in modifications of membrane composition, which did not to affect eNOS-Ser1177 phosphorylation. CONCLUSION Among the fatty acids used, only modification of the membrane composition due to linoleic acid supply disturbed the basal enzymatic activity and Ser1177 phosphorylation of eNOS in a way that limited the role of histamine activation. Linoleic acid might involve the dysfunction of both eNOS basal activity and its phosphorylation status and may then contribute to an impaired vasodilatation in vivo.
Collapse
Affiliation(s)
- S Couloubaly
- UMR 1154-INRA, and IFR 141, Université Paris-Sud11, Châtenay-Malabry, France
| | | | | | | | | | | |
Collapse
|
208
|
Stepp DW. Impact of obesity and insulin resistance on vasomotor tone: nitric oxide and beyond. Clin Exp Pharmacol Physiol 2007; 33:407-14. [PMID: 16700872 DOI: 10.1111/j.1440-1681.2006.04381.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
1. Obesity is rapidly increasing in Western populations, driving a parallel increase in hypertension, diabetes and vascular disease. Prior to the development of overt diabetes or hypertension, obese patients spend years in a state of progressive insulin resistance and metabolic disease. Mounting evidence suggests that this insulin-resistant state has deleterious effects on the control of blood flow, thus placing organ systems at a higher risk for end-organ damage and increasing cardiovascular mortality. 2. The purpose of the present review is to examine the current literature on the effects of obesity and insulin resistance on the acute control of vascular tone. Effects on nitric oxide (NO)-mediated control of vascular tone are particularly examined with regard to proximal causes and distal mechanisms of the impaired NO-mediation of vasodilation. 3. Finally, novel pathways of impaired control of perfusion are summarized from the recent literature to identify new avenues of exploring impaired vascular function in patients with metabolic disease.
Collapse
Affiliation(s)
- David W Stepp
- Vascular Biology Center, Medical College of Georgia, Augusta, Georgia 30912-2500, USA.
| |
Collapse
|
209
|
Abstract
Insulin has important vascular actions to stimulate production of nitric oxide from endothelium. This leads to capillary recruitment, vasodilation, increased blood flow, and subsequent augmentation of glucose disposal in classical insulin target tissues (e.g., skeletal muscle). Phosphatidylinositol 3-kinase-dependent insulin-signaling pathways regulating endothelial production of nitric oxide share striking parallels with metabolic insulin-signaling pathways. Distinct MAPK-dependent insulin-signaling pathways (largely unrelated to metabolic actions of insulin) regulate secretion of the vasoconstrictor endothelin-1 from endothelium. These and other cardiovascular actions of insulin contribute to coupling metabolic and hemodynamic homeostasis under healthy conditions. Cardiovascular diseases are the leading cause of morbidity and mortality in insulin-resistant individuals. Insulin resistance is typically defined as decreased sensitivity and/or responsiveness to metabolic actions of insulin. This cardinal feature of diabetes, obesity, and dyslipidemia is also a prominent component of hypertension, coronary heart disease, and atherosclerosis that are all characterized by endothelial dysfunction. Conversely, endothelial dysfunction is often present in metabolic diseases. Insulin resistance is characterized by pathway-specific impairment in phosphatidylinositol 3-kinase-dependent signaling that in vascular endothelium contributes to a reciprocal relationship between insulin resistance and endothelial dysfunction. The clinical relevance of this coupling is highlighted by the findings that specific therapeutic interventions targeting insulin resistance often also ameliorate endothelial dysfunction (and vice versa). In this review, we discuss molecular mechanisms underlying cardiovascular actions of insulin, the reciprocal relationships between insulin resistance and endothelial dysfunction, and implications for developing beneficial therapeutic strategies that simultaneously target metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- Ranganath Muniyappa
- Diabetes Unit, National Center for Complementary and Alternative Medicine, National Institutes of Health, Bethesda, Maryland 20892-1632, USA
| | | | | | | |
Collapse
|
210
|
Abstract
PURPOSE OF REVIEW Vasodilator actions of insulin are mediated by phosphatidylinositol 3-kinase dependent insulin signaling pathways in endothelium, which stimulate production of nitric oxide. Insulin-stimulated nitric oxide mediates capillary recruitment, vasodilation, increased blood flow, and subsequent augmentation of glucose disposal in skeletal muscle. Distinct mitogen-activated protein kinase dependent insulin signaling pathways regulate secretion of the vasoconstrictor endothelin-1 from endothelium. These vascular actions of insulin contribute to the coupling of metabolic and hemodynamic homeostasis that occurs under healthy conditions. Insulin resistance is characterized by pathway-specific impairment in phosphatidylinositol 3-kinase dependent signaling in both metabolic and vascular insulin target tissues. Here we discuss consequences of pathway-specific insulin resistance in endothelium and therapeutic interventions targeting this selective impairment. RECENT FINDINGS Shared causal factors such as glucotoxicity, lipotoxicity, and inflammation selectively impair phosphatidylinositol 3-kinase dependent insulin signaling pathways, creating reciprocal relationships between insulin resistance and endothelial dysfunction. Diet, exercise, cardiovascular drugs, and insulin sensitizers simultaneously modulate phosphatidylinositol 3-kinase and mitogen-activated protein kinase dependent pathways, improving metabolic and vascular actions of insulin. SUMMARY Pathway-specific impairment in insulin action contributes to reciprocal relationships between endothelial dysfunction and insulin resistance, fostering clustering of metabolic and cardiovascular diseases in insulin-resistant states. Therapeutic interventions that target this selective impairment often simultaneously improve both metabolic and vascular function.
Collapse
Affiliation(s)
- Ranganath Muniyappa
- Diabetes Unit, National Center for Complementary and Alternative Medicine, National Institutes of Health, Bethesda, Maryland 20892-1632, USA
| | | |
Collapse
|
211
|
|
212
|
Kim F, Pham M, Luttrell I, Bannerman DD, Tupper J, Thaler J, Hawn TR, Raines EW, Schwartz MW. Toll-Like Receptor-4 Mediates Vascular Inflammation and Insulin Resistance in Diet-Induced Obesity. Circ Res 2007; 100:1589-96. [PMID: 17478729 DOI: 10.1161/circresaha.106.142851] [Citation(s) in RCA: 408] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vascular dysfunction is a major complication of metabolic disorders such as diabetes and obesity. The current studies were undertaken to determine whether inflammatory responses are activated in the vasculature of mice with diet-induced obesity, and if so, whether Toll-Like Receptor-4 (TLR4), a key mediator of innate immunity, contributes to these responses. Mice lacking TLR4 (TLR4(-/-)) and wild-type (WT) controls were fed either a low fat (LF) control diet or a diet high in saturated fat (HF) for 8 weeks. In response to HF feeding, both genotypes displayed similar increases of body weight, body fat content, and serum insulin and free fatty acid (FFA) levels compared with mice on a LF diet. In lysates of thoracic aorta from WT mice maintained on a HF diet, markers of vascular inflammation both upstream (IKKbeta activity) and downstream of the transcriptional regulator, NF-kappaB (ICAM protein and IL-6 mRNA expression), were increased and this effect was associated with cellular insulin resistance and impaired insulin stimulation of eNOS. In contrast, vascular inflammation and impaired insulin responsiveness were not evident in aortic samples taken from TLR4(-/-) mice fed the same HF diet, despite comparable increases of body fat mass. Incubation of either aortic explants from WT mice or cultured human microvascular endothelial cells with the saturated FFA, palmitate (100 micromol/L), similarly activated IKKbeta, inhibited insulin signal transduction and blocked insulin-stimulated NO production. Each of these effects was subsequently shown to be dependent on both TLR4 and NF-kappaB activation. These findings identify the TLR4 signaling pathway as a key mediator of the deleterious effects of palmitate on endothelial NO signaling, and are the first to document a key role for TLR4 in the mechanism whereby diet-induced obesity induces vascular inflammation and insulin resistance.
Collapse
Affiliation(s)
- Francis Kim
- Department of Medicine, University of Washington, Seattle, WA 98104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Bolten CW, Payne MA, McDonald WG, Blanner PM, Chott RC, Ghosh S, Arhancet GB, Staten NR, Gulve EA, Sullivan PM, Hromockyj AE, Colca JR. Thiazolidinediones inhibit the progression of established hypertension in the Dahl salt-sensitive rat. Diab Vasc Dis Res 2007; 4:117-23. [PMID: 17654445 DOI: 10.3132/dvdr.2007.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We evaluated the effects of two thiazolidinediones (TZDs), the potent PPARgamma agonist rosiglitazone currently being used to treat diabetes, and a structurally similar experimental compound that is a poor PPARgamma agonist, in a non-diabetic, established hypertension model with continuous measurement of blood pressure by telemetry. Hypertension was induced in male Dahl salt-sensitive rats by a three-week pre-treatment with 4% salt before initiation of treatment. Fasting blood samples were taken for analysis of a biomarker panel to assess metabolic, anti-inflammatory and antioxidant activity of the treatments. Both TZDs significantly reduced both systolic and diastolic blood pressure. When used at the maximally effective doses established for metabolic improvement, both compounds produced equivalent reduction in lipids and elevation of adiponectin, yet the poorer PPARgamma agonist produced significantly greater reductions in blood pressure. Neither compound had a significant effect on circulating glucose or insulin in this animal model. The data demonstrate that these TZDs lower blood pressure significantly in Dahl rats and that this cardiovascular pharmacology is not directly correlated with the metabolic actions or with the magnitude of PPARgamma activation. These data suggest that it may be possible to find insulin-sensitising agents that have beneficial cardiovascular pharmacology with broad applications for disease prevention.
Collapse
Affiliation(s)
- Charles W Bolten
- Discovery Research, Pfizer Corporation, 700 Chesterfield Parkway West, Chesterfield, MO 63017, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Chai W, Liu Z. p38 mitogen-activated protein kinase mediates palmitate-induced apoptosis but not inhibitor of nuclear factor-kappaB degradation in human coronary artery endothelial cells. Endocrinology 2007; 148:1622-8. [PMID: 17234706 DOI: 10.1210/en.2006-1068] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Plasma free fatty acids are elevated in patients with type 2 diabetes and contribute to the pathogenesis of insulin resistance and endothelial dysfunction. The p38 MAPK mediates stress, inflammation, and apoptosis. Whether free fatty acids induce apoptosis and/or activate nuclear factor-kappaB inflammatory pathway in human coronary artery endothelial cells (hCAECs) and, if so, whether this involves the p38 MAPK pathway is unknown. hCAECs (passages 4-6) were grown to 70% confluence and then incubated with palmitate at concentrations of 0-300 microm for 6-48 h. Palmitate at 100, 200, or 300 microm markedly increased apoptosis after 12 h of incubation. This apoptotic effect was time (P=0.008) and dose (P=0.006) dependent. Palmitate (100 microm for 24 h) induced a greater than 2-fold increase in apoptosis, which was accompanied with a 4-fold increase in p38 MAPK activity (P<0.001). Palmitate did not affect the phosphorylation of Akt1 or ERK1/2. SB203580 (a specific inhibitor of p38 MAPK) alone did not affect cellular apoptosis; however, it abolished palmitate-induced apoptosis and p38 MAPK activation. Palmitate significantly reduced the level of inhibitor of nuclear factor-kappaB (IkappaB). However, treatment of cells with SB203580 did not restore IkappaB to baseline. We conclude that palmitate induces hCAEC apoptosis via a p38 MAPK-dependent mechanism and may participate in coronary endothelial injury in diabetes. However, palmitate-mediated IkappaB degradation in hCAECs is independent of p38 MAPK activity.
Collapse
Affiliation(s)
- Weidong Chai
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Virginia Health System, P.O. Box 801410, Charlottesville, Virginia 22908-1410, USA
| | | |
Collapse
|
215
|
Debierre-Grockiego F, Rabi K, Schmidt J, Geyer H, Geyer R, Schwarz RT. Fatty acids isolated from Toxoplasma gondii reduce glycosylphosphatidylinositol-induced tumor necrosis factor alpha production through inhibition of the NF-kappaB signaling pathway. Infect Immun 2007; 75:2886-93. [PMID: 17387164 PMCID: PMC1932898 DOI: 10.1128/iai.01431-06] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycosylphosphatidylinositols (GPIs) are involved in the pathogenicity of protozoan parasites and are known to induce inflammatory cytokines. However, we have previously shown that the family of six GPIs of Toxoplasma gondii extracted together from tachyzoites could not induce tumor necrosis factor alpha (TNF-alpha) secretion by macrophages, whereas GPIs individually separated from this extract by thin-layer chromatography (TLC) were able to stimulate the cells. In the present study we show that the TLC step makes it possible to eliminate inhibitors extracted together with the T. gondii GPIs. Among the non-GPI molecules we have isolated fatty acids able to inhibit the secretion of TNF-alpha induced by the T. gondii GPIs. Myristic and palmitic acids reduce the production of TNF-alpha through the inhibition of tyrosine phosphorylation of cytoplasmic proteins and the inhibition of NF-kappaB activation in a peroxisome proliferator-activated receptor-independent pathway and after a rapid entry into the cytoplasm of macrophages. GPIs are considered toxins inducing irreversible damage in the host, and fatty acids produced in parallel by the parasite could reduce the immune response, thus favoring the persistence of parasite infection.
Collapse
|
216
|
Rask-Madsen C, King GL. Mechanisms of Disease: endothelial dysfunction in insulin resistance and diabetes. ACTA ACUST UNITED AC 2007; 3:46-56. [PMID: 17179929 DOI: 10.1038/ncpendmet0366] [Citation(s) in RCA: 352] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 08/21/2006] [Indexed: 02/07/2023]
Abstract
Endothelial dysfunction is one manifestation of the many changes induced in the arterial wall by the metabolic abnormalities accompanying diabetes and insulin resistance. In type 1 diabetes, endothelial dysfunction is most consistently found in advanced stages of the disease. In other patients, it is associated with nondiabetic insulin resistance and probably precedes type 2 diabetes. In obesity and insulin resistance, increased secretion of proinflammatory cytokines and decreased secretion of adiponectin from adipose tissue, increased circulating levels of free fatty acids, and postprandial hyperglycemia can all alter gene expression and cell signaling in vascular endothelium, cause vascular insulin resistance, and change the release of endothelium-derived factors. In diabetes, sustained hyperglycemia causes increased intracellular concentrations of glucose metabolites in endothelial cells. These changes cause mitochondrial dysfunction, increased oxidative stress, and activation of protein kinase C. Dysfunctional endothelium displays activation of vascular NADPH oxidase, uncoupling of endothelial nitric oxide synthase, increased expression of endothelin 1, a changed balance between the production of vasodilator and vasoconstrictor prostanoids, and induction of adhesion molecules. This review describes how these and other changes influence endothelium-dependent vasodilation in patients with insulin resistance and diabetes. The clinical utility of endothelial function testing and future therapeutic targets is also discussed.
Collapse
|
217
|
Wagenmakers AJM, van Riel NAW, Frenneaux MP, Stewart PM. Integration of the metabolic and cardiovascular effects of exercise. Essays Biochem 2007; 42:193-210. [PMID: 17144889 DOI: 10.1042/bse0420193] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Most of the essays in this volume have adopted a reductionist approach and have focused on the biochemistry either in skeletal muscle or in the vascular wall. There is however a complex interaction between the biochemistry in the endothelium of the microvascular wall, the vascular smooth muscle and the skeletal muscle fibres involving signalling pathways in the three tissues and an intense exchange of signal molecules between them. In the present essay an integrative overview is given of this complex metabolic interaction and the impairments in it that lead to type 2 diabetes and cardiovascular disease.A reduced nitric oxide production by the (micro)vascular endothelium is identified as the key event and is reversible by regular exercise and a reduced calorie intake. The chapter also contains a description of the complex metabolic network controlled by the inducible transcription factor nuclear factor-kappaB, that is activated in more advanced stages of the chronic diseases, and either leads to repair of the microvascular wall or to irreversible damage and the severe complications of end stage cardiovascular disease and type 2 diabetes.
Collapse
Affiliation(s)
- Anton J M Wagenmakers
- Exercise Metabolism and Biochemistry Group, School of Sport and Exercise Sciences, University of Birmingham, UK.
| | | | | | | |
Collapse
|
218
|
Han SH, Quon MJ, Koh KK. Reciprocal relationships between abnormal metabolic parameters and endothelial dysfunction. Curr Opin Lipidol 2007; 18:58-65. [PMID: 17218834 DOI: 10.1097/mol.0b013e328012b627] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Endothelial dysfunction plays a crucial role in the pathogenesis of atherosclerosis and related cardiovascular diseases. Glucotoxicity, lipotoxicity, and inflammation all independently contribute to development of both endothelial dysfunction and insulin resistance. We review pathophysiological mechanisms underlying reciprocal relationships between endothelial dysfunction and insulin resistance and recent insights from therapeutic interventions to improve both metabolic and vascular function. RECENT FINDINGS Shared causal factors such as glucotoxicity, lipotoxicity, and inflammation interact at multiple levels creating reciprocal relationships between insulin resistance and endothelial dysfunction that help to explain frequent clustering of metabolic and cardiovascular disorders. Metabolic abnormalities implicated in the development of insulin resistance, including hyperglycemia, elevated levels of free fatty acids, accumulation of advanced glycation end products, dyslipidemias, and decreased levels of adiponectin, also contribute importantly to endothelial dysfunction. Diet, exercise, cardiovascular drugs, and insulin sensitizers simultaneously improve endothelium-dependent vascular function, reduce inflammation, and improve insulin sensitivity by both distinct and interrelated mechanisms. SUMMARY Pathophysiological mechanisms underlying reciprocal relationships between endothelial dysfunction and insulin resistance contribute to clustering of metabolic and cardiovascular diseases represented by the metabolic syndrome. Therapeutic interventions that target endothelial dysfunction or insulin resistance often simultaneously improve both metabolic and vascular function.
Collapse
Affiliation(s)
- Seung Hwan Han
- Division of Cardiology, Gachon Medical School, Incheon, South Korea
| | | | | |
Collapse
|
219
|
Rattigan S, Bradley EA, Richards SM, Clark MG. Muscle metabolism and control of capillary blood flow: insulin and exercise. Essays Biochem 2006; 42:133-44. [PMID: 17144885 DOI: 10.1042/bse0420133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The evidence that muscle metabolism is determined by available capillary surface area is examined. From newly developed methods it is clear that exercise and insulin mediate capillary recruitment as part of their actions in vivo. In all insulin-resistant states examined thus far, insulin-mediated capillary recruitment is impaired with little or no change to the exercise response. Control mechanisms for capillary recruitment for exercise and insulin are considered, and the failure of the microvasculature to respond to insulin is examined for possible mechanisms that might account for impaired vascular responses to insulin in insulin resistance.
Collapse
Affiliation(s)
- Stephen Rattigan
- University of Tasmania, Biochemistry, School of Medicine, Hobart, Tasmania, Australia.
| | | | | | | |
Collapse
|
220
|
Staiger K, Staiger H, Weigert C, Haas C, Häring HU, Kellerer M. Saturated, but not unsaturated, fatty acids induce apoptosis of human coronary artery endothelial cells via nuclear factor-kappaB activation. Diabetes 2006; 55:3121-6. [PMID: 17065351 DOI: 10.2337/db06-0188] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
High nonesterified fatty acid (NEFA) concentrations, as observed in the metabolic syndrome, trigger apoptosis of human umbilical vein endothelial cells. Since endothelial apoptosis may contribute to atherothrombosis, we studied the apoptotic susceptibility of human coronary artery endothelial cells (HCAECs) toward selected NEFAs and the underlying mechanisms. HCAECs were treated with single or combined NEFAs. Apoptosis was quantified by flow cytometry, nuclear factor kappaB (NFkappaB) activation by electrophoretic mobility shift assay, and secreted cytokines by enzyme-linked immunosorbent assay. Treatment of HCAECs with saturated NEFAs (palmitate and stearate) increased apoptosis up to fivefold (P < 0.05; n = 4). Unsaturated NEFAs (palmitoleate, oleate, and linoleate) did not promote apoptosis but prevented stearate-induced apoptosis (P < 0.05; n = 4). Saturated NEFA-induced apoptosis neither depended on ceramide formation nor on oxidative NEFA catabolism. However, NEFA activation via acyl-CoA formation was essential. Stearate activated NFkappaB and linoleate impaired stearate-induced NFkappaB activation. Pharmacological inhibition of NFkappaB and inhibitor of kappaB kinase (IKK) also blocked stearate-induced apoptosis. Finally, the saturated NEFA effect on NFkappaB was not attributable to NEFA-induced cytokine production. In conclusion, NEFAs display differential effects on HCAEC survival; saturated NEFAs (palmitate and stearate) are proapoptotic, and unsaturated NEFAs (palmitoleate, oleate, and linoleate) are antilipoapoptotic. Mechanistically, promotion of HCAEC apoptosis by saturated NEFA requires acyl-CoA formation, IKK, and NFkappaB activation.
Collapse
Affiliation(s)
- Katrin Staiger
- Internal Medicine IV, Medical Clinic, University of Tübingen, Otfried-Müller-Str. 10, D-72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
221
|
Wang XL, Zhang L, Youker K, Zhang MX, Wang J, LeMaire SA, Coselli JS, Shen YH. Free fatty acids inhibit insulin signaling-stimulated endothelial nitric oxide synthase activation through upregulating PTEN or inhibiting Akt kinase. Diabetes 2006; 55:2301-10. [PMID: 16873694 DOI: 10.2337/db05-1574] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In metabolic syndrome, a systemic deregulation of the insulin pathway leads to a combined deregulation of insulin-regulated metabolism and cardiovascular functions. Free fatty acids (FFAs), which are increased in metabolic syndrome, inhibit insulin signaling and induce metabolic insulin resistance. This study was designed to examine FFAs' effects on vascular insulin signaling and endothelial nitric oxide (NO) synthase (eNOS) activation in endothelial cells. We showed that FFAs inhibited insulin signaling and eNOS activation through different mechanisms. While linoleic acid inhibited Akt-mediated eNOS phosphorylation, palmitic acid appeared to affect the upstream signaling. Upregulation of PTEN (phosphatase and tensin homolog deleted on chromosome 10) activity and transcription by palmitic acid mediated the inhibitory effects on insulin signaling. We further found that activated stress signaling p38, but not Jun NH(2)-terminal kinase, was involved in PTEN upregulation. The p38 target transcriptional factor activating transcription factor (ATF)-2 bound to the PTEN promoter, which was increased by palmitic acid treatment. In summary, both palmitic acid and linoleic acid exert inhibitory effect on insulin signaling and eNOS activation in endothelial cells. Palmitic acid inhibits insulin signaling by promoting PTEN activity and its transcription through p38 and its downstream transcription factor ATF-2. Our findings suggest that FFA-mediated inhibition of vascular insulin signaling and eNOS activation may contribute to cardiovascular diseases in metabolic syndrome.
Collapse
Affiliation(s)
- Xing Li Wang
- DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
222
|
Song GY, Gao Y, Di YW, Pan LL, Zhou Y, Ye JM. HIGH-FAT FEEDING REDUCES ENDOTHELIUM-DEPENDENT VASODILATION IN RATS: DIFFERENTIAL MECHANISMS FOR SATURATED AND UNSATURATED FATTY ACIDS? Clin Exp Pharmacol Physiol 2006; 33:708-13. [PMID: 16895544 DOI: 10.1111/j.1440-1681.2006.04422.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
1. Chronic feeding with a high-fat diet can cause metabolic syndrome in rodents similar to humans, but the role of saturated versus unsaturated fats in vascular tension remains unclear. 2. The present study shows that rats on a diet rich in either saturated or unsaturated fat had higher blood pressure compared with chow-fed rats (approximately 130 vs 100 mmHg, respectively), along with hyperlipidaemia and insulin resistance. Compared with responses of phenylephrine-preconstricted artery segments from chow-fed rats, vasorelaxation of isolated renal arteries from high-fat fed rats was reduced substantially (> 50%) in response to acetylcholine (0.01-10 micromol/L) and moderately to nitroprusside (>or=1 micromol/L) at low concentrations. Acetylcholine-induced vasorelaxation of arteries from high-fat fed rats was also more sensitive to inhibition by the nitric oxide (NO) synthase inhibitors NG-nitro-L-arginine and methylene blue. 3. In human umbilical vein endothelial cells, the production of NO and endothelin-1 was significantly inhibited by unsaturated fatty acids. In comparison, saturated fatty acids stimulated endothelin-1 production without altering NO production. 4. The data indicate that both saturated and unsaturated high-fat feeding may result in an increase in blood pressure owing to reduced endothelium-dependent vasorelaxation in the arterial system. The impaired endothelium-dependent vasorelaxation induced by saturated and unsaturated fatty acids may involve different mechanisms.
Collapse
Affiliation(s)
- Guang-Yao Song
- Institute of Geriatric Medicine, General Hospital of Hebei Province, Shijiazhuang, Hebei, China.
| | | | | | | | | | | |
Collapse
|
223
|
Colca JR. Insulin sensitizers may prevent metabolic inflammation. Biochem Pharmacol 2006; 72:125-31. [PMID: 16472781 DOI: 10.1016/j.bcp.2006.01.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 12/30/2005] [Accepted: 01/03/2006] [Indexed: 02/06/2023]
Abstract
The relative decreased response of peripheral tissues to insulin (insulin resistance) is a key metabolic disturbance that predisposes a large percentage of individuals to the development of type 2 diabetes and to cardiovascular disease. As detailed in an extensive literature over the last two decades, insulin resistance co-exists in varying degrees with a variety of other key risk factors, including dyslipidemia, hypertension, and vascular inflammation, that contribute to poor cardiovascular outcomes of individuals with type 2 diabetes and metabolic syndrome. Whereas insulin resistance is generally thought of as pathology unto itself, this commentary suggests that insulin resistance is a physiological compensation to inappropriate oxidative metabolism that induces a metabolic inflammatory response. Via signaling of this inflammatory response, the protective compensation to excessive oxidative metabolism dampens metabolism by reducing insulin action, fatty acid oxidation, and eventually mitochondrial function and numbers. Such a scenario could explain the coexistence of these phenomena with obesity and reduced mitochondrial function. Recent evidence suggests that thiazolidinediones exert pharmacology through modifications of mitochondrial metabolism, preventing the metabolic inflammation and allowing the up regulation of mitochondrial biogenesis. A further understanding of these mechanisms, which are likely to involve key redox signaling events emanating from mitochondrial biochemistry, is needed to fuel new therapeutic advances for the treatment of metabolic syndrome.
Collapse
Affiliation(s)
- Jerry R Colca
- Kalamazoo Metabolic Research, 125 S. Kalamazoo Mall 604, Kalamazoo, MI 49007, USA.
| |
Collapse
|
224
|
Ellmerer M, Hamilton-Wessler M, Kim SP, Huecking K, Kirkman E, Chiu J, Richey J, Bergman RN. Reduced access to insulin-sensitive tissues in dogs with obesity secondary to increased fat intake. Diabetes 2006; 55:1769-75. [PMID: 16731841 DOI: 10.2337/db05-1509] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Physiological hyperinsulinemia provokes hemodynamic actions and augments access of macromolecules to insulin-sensitive tissues. We investigated whether induction of insulin resistance by a hypercaloric high-fat diet has an effect on the extracellular distribution of macromolecules to insulin-sensitive tissues. Male mongrel dogs were randomly selected into two groups: seven dogs were fed an isocaloric control diet ( approximately 3,900 kcal, 35% from fat), and six dogs were fed a hypercaloric high-fat diet ( approximately 5,300 kcal, 54% from fat) for a period of 12 weeks. During hyperinsulinemic-euglycemic clamps, we determined transport parameters and distribution volumes of [(14)C]inulin by applying a three-compartment model to the plasma clearance data of intravenously injected [(14)C]inulin (0.8 microCi/kg). In another study with direct cannulation of the hindlimb skeletal muscle lymphatics, we investigated the effect of physiological hyperinsulinemia on the appearance of intravenously injected [(14)C]inulin in skeletal muscle interstitial fluid and compared the effect of insulin between control and high-fat diet groups. The hypercaloric high-fat diet resulted in significant weight gain (18%; P<0.001) associated with marked increases of subcutaneous (140%; P<0.001) and omental (83%; P<0.001) fat depots, as well as peripheral insulin resistance, measured as a significant reduction of insulin-stimulated glucose uptake during clamps (-35%; P<0.05). Concomitantly, we observed a significant reduction of the peripheral distribution volume of [(14)C]inulin (-26%; P<0.05), whereas the vascular distribution volume and transport and clearance parameters did not change as a cause of the diet. The second study directly confirmed our findings, suggesting a marked reduction of insulin action to stimulate access of macromolecules to insulin-sensitive tissues (control diet 32%, P<0.01; high-fat diet 18%, NS). The present results indicate that access of macromolecules to insulin-sensitive tissues is impaired during diet-induced insulin resistance and suggest that the ability of insulin itself to stimulate tissue access is diminished. We speculate that the observed diet-induced defects in stimulation of tissue perfusion contribute to the development of peripheral insulin resistance.
Collapse
Affiliation(s)
- Martin Ellmerer
- Department of Physiology and Biophysics, University of Southern California School of Medicine, 1333 San Pablo St., MMR 626, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | |
Collapse
|
225
|
Abstract
von Willebrand factor (VWF), a glycoprotein involved in arterial thrombus formation, is released into the circulation by secretion from endothelial cells. Plasma VWF levels are determined by genetic factors including ABO blood groups and VWF mutations, and by non-genetic factors including aging, impaired nitric oxide production, inflammation, free radical production and diabetes. Plasma VWF levels have been proposed as a risk factor for cardiovascular events. Although they are only weakly associated with the risk of coronary heart disease (CHD) in the general population, they are a more promising CHD risk factor in high-risk populations with previous cardiovascular events, diabetes or old age. However, is it still unclear whether VWF levels directly determine the rate and severity of arterial thrombus formation or whether they merely reflect alteration in other endothelial functions. The future status of VWF levels as a cardiovascular risk factor depends on additional studies on the genetic determinants of both VWF levels and cardiovascular outcomes. Further studies on VWF levels as a predictor of the risk of stroke (rather than CHD) in elderly or other high-risk population are also promising. Such studies could lead to the clinical use of plasma VWF levels to refine the estimation of the cardiovascular risk and of the expected benefit of antithrombotic agents.
Collapse
Affiliation(s)
- U M Vischer
- Department of Cell Physiology and Metabolism and the Department of Rehabilitation and Geriatrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
226
|
Kim JA, Montagnani M, Koh KK, Quon MJ. Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms. Circulation 2006; 113:1888-904. [PMID: 16618833 DOI: 10.1161/circulationaha.105.563213] [Citation(s) in RCA: 1147] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endothelial dysfunction contributes to cardiovascular diseases, including hypertension, atherosclerosis, and coronary artery disease, which are also characterized by insulin resistance. Insulin resistance is a hallmark of metabolic disorders, including type 2 diabetes mellitus and obesity, which are also characterized by endothelial dysfunction. Metabolic actions of insulin to promote glucose disposal are augmented by vascular actions of insulin in endothelium to stimulate production of the vasodilator nitric oxide (NO). Indeed, NO-dependent increases in blood flow to skeletal muscle account for 25% to 40% of the increase in glucose uptake in response to insulin stimulation. Phosphatidylinositol 3-kinase-dependent insulin-signaling pathways in endothelium related to production of NO share striking similarities with metabolic pathways in skeletal muscle that promote glucose uptake. Other distinct nonmetabolic branches of insulin-signaling pathways regulate secretion of the vasoconstrictor endothelin-1 in endothelium. Metabolic insulin resistance is characterized by pathway-specific impairment in phosphatidylinositol 3-kinase-dependent signaling, which in endothelium may cause imbalance between production of NO and secretion of endothelin-1, leading to decreased blood flow, which worsens insulin resistance. Therapeutic interventions in animal models and human studies have demonstrated that improving endothelial function ameliorates insulin resistance, whereas improving insulin sensitivity ameliorates endothelial dysfunction. Taken together, cellular, physiological, clinical, and epidemiological studies strongly support a reciprocal relationship between endothelial dysfunction and insulin resistance that helps to link cardiovascular and metabolic diseases. In the present review, we discuss pathophysiological mechanisms, including inflammatory processes, that couple endothelial dysfunction with insulin resistance and emphasize important therapeutic implications.
Collapse
Affiliation(s)
- Jeong-a Kim
- Diabetes Unit, National Center for Complementary and Alternative Medicine, National Institutes of Health, Bethesda, MD 20892-1632, USA
| | | | | | | |
Collapse
|
227
|
Clark MG, Rattigan S, Barrett EJ. Nutritive blood flow as an essential element supporting muscle anabolism. Curr Opin Clin Nutr Metab Care 2006; 9:185-9. [PMID: 16607114 DOI: 10.1097/01.mco.0000222097.90890.c2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW Much of the recent literature concerning hormonal effects on muscle assumes that full perfusion occurs at all times such that nutrient and hormone delivery is complete. New methods to measure the extent of nutritive blood flow in muscle show that this is not the case and that anabolic hormones such as insulin increase nutritive flow and that other agents that increase bulk flow have little effect. This review examines the latest developments concerning insulin action to increase nutritive perfusion of muscle and agents that interact with this effect and which could potentially modulate anabolism. RECENT FINDINGS We examine recent attempts to define the anatomical nature of non-nutritive flow route in muscle, the quick onset of insulin action to recruit nutritive blood flow at doses lower than that which activates glucose uptake and bulk blood flow, actions of the inflammatory cytokine tumour necrosis factor alpha TNFalpha to oppose physiologic insulin action, interfibrillar fat depots that grow on the non-nutritive vasculature of muscle and underpin a 'vascrine hypothesis', and drugs that reduce insulin resistance by ameliorating vascular dysfunction. SUMMARY Recognition that nutrient and hormone delivery to muscle is controlled by microvascular perfusion and not necessarily by bulk blood flow is the key issue.
Collapse
|
228
|
Ares MPS, Stollenwerk MM. Inflammatory effects of very low-density lipoprotein and fatty acids. Future Cardiol 2006; 2:315-23. [PMID: 19804089 DOI: 10.2217/14796678.2.3.315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
High plasma triacylglycerol (triglyceride, TG) levels is a risk factor for atherosclerosis. Very large lipoproteins, such as chylomicrons, alone are not considered atherogenic, but TG-rich remnant lipoproteins can penetrate into the vascular wall. Importantly, accumulating evidence suggests that all TG-rich lipoproteins stimulate cytokine expression in circulating monocytes. Very low-density lipoprotein (VLDL) stimulates monocyte adhesion to endothelial cells and expression of inflammatory genes in macrophages. Furthermore, fatty acids released from large lipoproteins can stimulate both vascular cells and circulating monocytes. It is likely that fatty acids released from TG-rich lipoproteins contribute to atherogenesis, but the role of fatty acids in ischemic heart disease is not as direct as that of cholesterol. Fatty acids influence plasma lipoprotein levels and either stimulate or suppress numerous cellular functions relevant to atherogenesis. While certain n-3 fatty acids are good for health, most other medium- to long-chain fatty acids appear to promote inflammation in cell culture studies and need to be studied further. Nevertheless, the existing evidence supports the general conclusion that TG-rich lipoproteins and fatty acids greatly accelerate the progression of atherosclerosis. This may be because of their inflammatory effects.
Collapse
Affiliation(s)
- Mikko P S Ares
- Department of Clinical Sciences, Malmö University Hospital, Lund University, Sweden.
| | | |
Collapse
|
229
|
Smith AR, Visioli F, Hagen TM. Plasma membrane-associated endothelial nitric oxide synthase and activity in aging rat aortic vascular endothelia markedly decline with age. Arch Biochem Biophys 2006; 454:100-5. [PMID: 16982030 DOI: 10.1016/j.abb.2006.02.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 02/21/2006] [Accepted: 02/21/2006] [Indexed: 11/16/2022]
Abstract
The mechanisms leading to the age-related loss of endothelial nitric oxide (NO) and NO-dependent vasodilation remain largely unknown. Freshly isolated endothelium from young (6 months) and old (36 months) F344xBrN rats were analyzed for endothelial nitric oxide synthase (eNOS) protein, its subcellular distribution, and association with regulatory proteins. Results show that both vessel ring vasoreactivity and A23187-induced eNOS activity in isolated endothelial cells significantly (p < or = 0.05) declined with age. Levels of cGMP, a reliable marker for NO bioactivity also declined significantly (p < or = 0.01). However, no change in overall eNOS protein was evident. Subcellular fractionation studies revealed an age-related loss in active, plasma membrane-bound eNOS relative to eNOS in the Golgi/cytosol of the endothelium. Plasma membrane-associated eNOS in aged endothelium was also less complexed with the activating proteins Hsp90 and Akt and more associated with to caveolin-1, which inhibits eNOS activity. These results suggest that age-dependent loss of NO may be partly caused by differences in eNOS subcellular distribution and its association with inhibitory proteins.
Collapse
Affiliation(s)
- Anthony R Smith
- Linus Pauling Institute and Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | | | | |
Collapse
|
230
|
Affiliation(s)
- Sae-Chul Kim
- Department of Urology, Chung-Ang University College of Medicine, Seoul, Korea
| |
Collapse
|
231
|
Abstract
Major advances have been made over the last decade towards the elucidation of the molecular mechanisms involved in the endothelium-dependent regulation of vascular tone and blood flow. While the primary endothelium-derived vasodilator autacoid is nitric oxide, it is clear that epoxyeicosatrienoic acids and other endothelium-derived hyperpolarising factors, as well as endothelin-1 and reactive oxygen species, play a significant role in the regulation of vascular tone and gene expression. This review is intended as an overview of the signalling mechanisms that link haemodynamic stimuli (such as shear stress and cyclic stretch) and endothelial cell perturbation to the activation of enzymes generating vasoactive autacoids.
Collapse
Affiliation(s)
- R Busse
- Vascular Signalling Group, Institut für Kardiovaskuläre Physiologie, Klinikum der J.W. Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | | |
Collapse
|
232
|
Kim JA, Koh KK, Quon MJ. The union of vascular and metabolic actions of insulin in sickness and in health. Arterioscler Thromb Vasc Biol 2005; 25:889-91. [PMID: 15863720 DOI: 10.1161/01.atv.0000164044.42910.6b] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
233
|
Farhangkhoee H, Khan ZA, Kaur H, Xin X, Chen S, Chakrabarti S. Vascular endothelial dysfunction in diabetic cardiomyopathy: pathogenesis and potential treatment targets. Pharmacol Ther 2005; 111:384-99. [PMID: 16343639 DOI: 10.1016/j.pharmthera.2005.10.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Accepted: 10/13/2005] [Indexed: 12/24/2022]
Abstract
Cardiovascular complications account for significant morbidity and mortality in the diabetic population. Diabetic cardiomyopathy, a prominent cardiovascular complication, has been recognized as a microvascular disease that may lead to heart failure. Pathogenesis of diabetic cardiomyopathy involves vascular endothelial cell dysfunction, as well as myocyte necrosis. Clinical trials have identified hyperglycemia as the key determinant in the development of chronic diabetic complications. Sustained hyperglycemia induces several biochemical changes including increased non-enzymatic glycation, sorbitol-myoinositol-mediated changes, redox potential alterations, and protein kinase C (PKC) activation, all of which have been implicated in diabetic cardiomyopathy. Other contributing metabolic abnormalities may include defective glucose transport, increased myocyte fatty acid uptake, and dysmetabolism. These biochemical changes manifest as hemodynamic alterations and structural changes that include capillary basement membrane (BM) thickening, interstitial fibrosis, and myocyte hypertrophy and necrosis. Diabetes-mediated biochemical anomalies show cross-interaction and complex interplay culminating in the activation of several intracellular signaling molecules. Studies in both animal and human diabetes have shown alteration of several factors including vasoactive molecules that may be instrumental in mediating structural and functional deficits at both the early and the late stages of the disease. In this review, we will highlight some of the important vascular changes leading to diabetic cardiomyopathy and discuss the emerging potential therapeutic interventions.
Collapse
Affiliation(s)
- Hana Farhangkhoee
- Department of Pathology, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
234
|
Clark MG. Comment to: Grassi G, Dell'oro R, Quarti-Trevano F et al (2005) neuroadrenergic and reflex abnormalities in patients with metabolic syndrome. Diabetologia 48:1359-1365. Diabetologia 2005; 48:2689-90. [PMID: 16270196 DOI: 10.1007/s00125-005-0012-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Accepted: 08/19/2005] [Indexed: 10/25/2022]
|
235
|
Li G, Barrett EJ, Wang H, Chai W, Liu Z. Insulin at physiological concentrations selectively activates insulin but not insulin-like growth factor I (IGF-I) or insulin/IGF-I hybrid receptors in endothelial cells. Endocrinology 2005; 146:4690-6. [PMID: 16099860 DOI: 10.1210/en.2005-0505] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In muscle, physiologic hyperinsulinemia, presumably acting on endothelial cells (ECs), dilates arterioles and regulates both total blood flow and capillary recruitment, which in turn influences glucose disposal. In cultured ECs, however, supraphysiological (e.g. >or=10 nM) insulin concentrations are typically used to study insulin receptor (IR) signaling pathways and nitric oxide generation. IGF-I receptors (IGF-IRs) are more abundant than IR in ECs, and they also respond to high concentrations of insulin. To address whether IR mediates responses to physiologic insulin stimuli, we examined the insulin concentration dependence of IR and IGF-IR-mediated insulin signaling in bovine aortic ECs (bAECs). We also assessed whether insulin/IGF-I hybrid receptors were present in bAECs. Insulin, at 100-500 pM, significantly stimulated the phosphorylation of IRbeta, Akt1, endothelial isoform of nitric oxide synthase, and ERK 1/2 but not the IGF-IRbeta subunit. At concentrations 1-5 nm or greater, insulin dose-dependently enhanced the tyrosine phosphorylation of IGF-IRbeta, and this was inhibited by IGF-IR neutralizing antibody. In addition, immunoprecipitation of IRbeta pulled down the IGF-IRbeta, and the IRbeta immunocytochemically colocalized with IGF-IRbeta, suggesting that ECs have insulin/IGF-I hybrid receptors. We conclude that: 1) insulin at physiological concentrations selectively activates IR signaling in bAECs; 2) bAECs express IGF-IR and insulin/IGF-I hybrid receptors in addition to IR; 3) high concentrations of insulin (>or=1-5 nM) activate IGF-IR and hybrid receptors as well as IR; and 4) this crossover activation can confound interpretation of studies of insulin action in ECs when high insulin concentrations are used.
Collapse
Affiliation(s)
- Guolian Li
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Virginia Health System, P.O. Box 801410, Charlottesville, Virginia 22908-1410, USA
| | | | | | | | | |
Collapse
|
236
|
Abstract
Both epidemiological studies and intervention trials support an important role of diet in reducing the risk of a variety of chronic diseases, including cardiovascular disease, and overall mortality. We discuss available evidence indicating that the generation of a pro-inflammatory milieu might be one mechanism through which unhealthy diets are linked to metabolic and cardiovascular diseases. In practical terms, fully understanding the link between diet and inflammation holds the premise to elucidate the mechanisms by which dietary patterns improve cardiovascular health.
Collapse
Affiliation(s)
- Katherine Esposito
- Division of Metabolic Diseases, Policlinico Seconda Università di Napoli, University of Naples, Piazza L. Miraglia, 80138 Naples, Italy
| | | |
Collapse
|
237
|
Abstract
Wagenmakers discusses the paper by Petersen and colleagues on insulin resistance in young lean individuals and its association with reduced phosphate transport into muscle cells and impaired mitochondrial energy generation in muscle.
Collapse
Affiliation(s)
- Anton J M Wagenmakers
- School of Sport and Exercise Sciences, University of Birmingham, Birmingham, United Kingdom.
| |
Collapse
|