201
|
A Fragile Balance: Does Neutrophil Extracellular Trap Formation Drive Pulmonary Disease Progression? Cells 2021; 10:cells10081932. [PMID: 34440701 PMCID: PMC8394734 DOI: 10.3390/cells10081932] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
Neutrophils act as the first line of defense during infection and inflammation. Once activated, they are able to fulfil numerous tasks to fight inflammatory insults while keeping a balanced immune response. Besides well-known functions, such as phagocytosis and degranulation, neutrophils are also able to release "neutrophil extracellular traps" (NETs). In response to most stimuli, the neutrophils release decondensed chromatin in a NADPH oxidase-dependent manner decorated with histones and granule proteins, such as neutrophil elastase, myeloperoxidase, and cathelicidins. Although primarily supposed to prevent microbial dissemination and fight infections, there is increasing evidence that an overwhelming NET response correlates with poor outcome in many diseases. Lung-related diseases especially, such as bacterial pneumonia, cystic fibrosis, chronic obstructive pulmonary disease, aspergillosis, influenza, and COVID-19, are often affected by massive NET formation. Highly vascularized areas as in the lung are susceptible to immunothrombotic events promoted by chromatin fibers. Keeping this fragile equilibrium seems to be the key for an appropriate immune response. Therapies targeting dysregulated NET formation might positively influence many disease progressions. This review highlights recent findings on the pathophysiological influence of NET formation in different bacterial, viral, and non-infectious lung diseases and summarizes medical treatment strategies.
Collapse
|
202
|
Yang A, Wu Y, Yu G, Wang H. Role of specialized pro-resolving lipid mediators in pulmonary inflammation diseases: mechanisms and development. Respir Res 2021; 22:204. [PMID: 34261470 PMCID: PMC8279385 DOI: 10.1186/s12931-021-01792-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammation is an essential mechanism of various diseases. The development and resolution of inflammation are complex immune-modulation processes which induce the involvement of various types of immune cells. Specialized pro-resolving lipid mediators (SPMs) have been demonstrated to be signaling molecules in inflammation. SPMs are involved in the pathophysiology of different diseases, especially respiratory diseases, including asthma, pneumonia, and chronic obstructive pulmonary disease. All of these diseases are related to the inflammatory response and its persistence. Therefore, a deeper understanding of the mechanisms and development of inflammation in respiratory disease, and the roles of the SPM family in the resolution process, might be useful in the quest for novel therapies and preventive measures for pulmonary diseases.
Collapse
Affiliation(s)
- Ailin Yang
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xicheng, , Beijing, 100050, China
| | - Yanjun Wu
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xicheng, , Beijing, 100050, China
| | - Ganggang Yu
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xicheng, , Beijing, 100050, China.
| | - Haoyan Wang
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xicheng, , Beijing, 100050, China.
| |
Collapse
|
203
|
Abuaita BH, Sule GJ, Schultz TL, Gao F, Knight JS, O'Riordan MX. The IRE1α Stress Signaling Axis Is a Key Regulator of Neutrophil Antimicrobial Effector Function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:210-220. [PMID: 34145058 DOI: 10.4049/jimmunol.2001321] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/26/2021] [Indexed: 12/12/2022]
Abstract
Activation of the endoplasmic reticulum stress sensor, IRE1α, is required for effective immune responses against bacterial infection and is associated with human inflammatory diseases in which neutrophils are a key immune component. However, the specific role of IRE1α in regulating neutrophil effector function has not been studied. In this study, we show that infection-induced IRE1α activation licenses neutrophil antimicrobial capacity, including IL-1β production, formation of neutrophil extracellular traps (NETs), and methicillin-resistant Staphylococcus aureus (MRSA) killing. Inhibition of IRE1α diminished production of mitochondrial reactive oxygen species and decreased CASPASE-2 activation, which both contributed to neutrophil antimicrobial activity. Mice deficient in CASPASE-2 or neutrophil IRE1α were highly susceptible to MRSA infection and failed to effectively form NETs in the s.c. abscess. IRE1α activation enhanced calcium influx and citrullination of histone H3 independently of mitochondrial reactive oxygen species production, suggesting that IRE1α coordinates multiple pathways required for NET formation. Our data demonstrate that the IRE1α-CASPASE-2 axis is a major driver of neutrophil activity against MRSA infection and highlight the importance of IRE1α in neutrophil antibacterial function.
Collapse
Affiliation(s)
- Basel H Abuaita
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI; and
| | - Gautam J Sule
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Tracey L Schultz
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI; and
| | - Fushan Gao
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI; and
| | - Jason S Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Mary X O'Riordan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI; and
| |
Collapse
|
204
|
Kotas ME, Dion J, Van Dyken S, Ricardo-Gonzalez RR, Danel CJ, Taillé C, Mouthon L, Locksley RM, Terrier B. A role for IL-33-activated ILC2s in eosinophilic vasculitis. JCI Insight 2021; 6:143366. [PMID: 33974563 PMCID: PMC8262498 DOI: 10.1172/jci.insight.143366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 05/05/2021] [Indexed: 01/21/2023] Open
Abstract
Eosinophilic granulomatosis with polyangiitis (EGPA) is a rare but serious disease with poorly understood mechanisms. Here, we report that patients with EGPA have elevated levels of TSLP, IL-25, and soluble ST2, which are well-characterized cytokine “alarmins” that activate or modulate type 2 innate lymphoid cells (ILC2s). Patients with active EGPA have a concurrent reduction in circulating ILC2s, suggesting a role for ILC2s in the pathogenesis of this disease. To explore the mechanism of these findings in patients, we established a model of EGPA in which active vasculitis and pulmonary hemorrhage were induced by IL-33 administration in predisposed, hypereosinophilic mice. In this model, induction of pulmonary hemorrhage and vasculitis was dependent on ILC2s and signaling through IL4Rα. In the absence of IL4Rα or STAT6, IL-33–treated mice had less vascular leak and pulmonary edema, less endothelial activation, and reduced eotaxin production, cumulatively leading to a reduction of pathologic eosinophil migration into the lung parenchyma. These results offer a mouse model for use in future mechanistic studies of EGPA, and they suggest that IL-33, ILC2s, and IL4Rα signaling may be potential targets for further study and therapeutic targeting in patients with EGPA.
Collapse
Affiliation(s)
- Maya E Kotas
- Division of Pulmonary, Critical Care, Allergy & Sleep Medicine, University of California, San Francisco, California, USA
| | - Jérémie Dion
- Department of Internal Medicine, National Referral Center for Rare and Systemic Autoimmune Diseases, Cochin Hospital, AP-HP, Paris, France
| | - Steven Van Dyken
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, Missouri, USA
| | | | | | - Camille Taillé
- Department of Pulmonology, Bichat Hospital, AP-HP, Paris, France
| | - Luc Mouthon
- Department of Internal Medicine, National Referral Center for Rare and Systemic Autoimmune Diseases, Cochin Hospital, AP-HP, Paris, France
| | - Richard M Locksley
- Howard Hughes Medical Institute, University of California, San Francisco, California, USA.,Department of Medicine, University of California, San Francisco, California, USA
| | - Benjamin Terrier
- Department of Internal Medicine, National Referral Center for Rare and Systemic Autoimmune Diseases, Cochin Hospital, AP-HP, Paris, France
| |
Collapse
|
205
|
Ahmad RS, Eubank TD, Lukomski S, Boone BA. Immune Cell Modulation of the Extracellular Matrix Contributes to the Pathogenesis of Pancreatic Cancer. Biomolecules 2021; 11:biom11060901. [PMID: 34204306 PMCID: PMC8234537 DOI: 10.3390/biom11060901] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/07/2021] [Accepted: 06/13/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with a five-year survival rate of only 9%. PDAC is characterized by a dense, fibrotic stroma composed of extracellular matrix (ECM) proteins. This desmoplastic stroma is a hallmark of PDAC, representing a significant physical barrier that is immunosuppressive and obstructs penetration of cytotoxic chemotherapy agents into the tumor microenvironment (TME). Additionally, dense ECM promotes hypoxia, making tumor cells refractive to radiation therapy and alters their metabolism, thereby supporting proliferation and survival. In this review, we outline the significant contribution of fibrosis to the pathogenesis of pancreatic cancer, with a focus on the cross talk between immune cells and pancreatic stellate cells that contribute to ECM deposition. We emphasize the cellular mechanisms by which neutrophils and macrophages, specifically, modulate the ECM in favor of PDAC-progression. Furthermore, we investigate how activated stellate cells and ECM influence immune cells and promote immunosuppression in PDAC. Finally, we summarize therapeutic strategies that target the stroma and hinder immune cell promotion of fibrogenesis, which have unfortunately led to mixed results. An enhanced understanding of the complex interactions between the pancreatic tumor ECM and immune cells may uncover novel treatment strategies that are desperately needed for this devastating disease.
Collapse
Affiliation(s)
- Ramiz S. Ahmad
- Department of Surgery, West Virginia University, Morgantown, WV 26506, USA;
| | - Timothy D. Eubank
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506, USA; (T.D.E.); (S.L.)
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Slawomir Lukomski
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506, USA; (T.D.E.); (S.L.)
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Brian A. Boone
- Department of Surgery, West Virginia University, Morgantown, WV 26506, USA;
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506, USA; (T.D.E.); (S.L.)
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA
- Correspondence:
| |
Collapse
|
206
|
Gu Z, Li L, Li Q, Tan H, Zou Z, Chen X, Zhang Z, Zhou Y, Wei D, Liu C, Huang Q, Maegele M, Cai D, Huang M. Polydatin alleviates severe traumatic brain injury induced acute lung injury by inhibiting S100B mediated NETs formation. Int Immunopharmacol 2021; 98:107699. [PMID: 34147911 DOI: 10.1016/j.intimp.2021.107699] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 04/10/2021] [Accepted: 04/18/2021] [Indexed: 12/28/2022]
Abstract
Severe traumatic brain injury (sTBI)-induced acute lung injury (sTBI-ALI) is regarded as the most common complication of sTBI that is an independent predictor of poor outcomes in patients with sTBI and strongly increases sTBI mortality. Polydatin (PD) has been shown to have a potential therapeutic effect on sTBI-induced neurons injury and sepsis-induced acute lung injury (ALI), therefore, it is reasonable to believe that PD has a protective effect on sTBI-ALI. Here, to clarify the PD protective effect following sTBI-ALI, a rat brain injury model of lateral fluid percussion was established to mimic sTBI. As a result, sTBI induced ALI, and caused an increasing of wet/dry weight ratio and lung vascular permeability, as well as sTBI promoted oxidative stress response in the lung; sTBI caused inflammatory cytokines release, such as IL-6, IL-1β, TNF-α and MCP-1; and sTBI promoted NETs formation, mainly including an increasing expression of MPO, NE and CitH3. Simultaneously, sTBI induced a significant increase in the level of S100B; however, when inhibition of S100B, the expression of MPO, NE and CITH3 were significantly inhibited following sTBI. Inhibition of S100B also promoted lung vascular permeability recovery and alleviated oxidative stress response. Furthermore, PD treatmentreduced the pathological lung damage, promoted lung vascular permeability recovery, alleviated oxidative stress response and inflammatory cytokines release; more importantly, PD inhibited the expression of S100B, and NETs formation in the lung following sTBI. These results indicate that PD alleviates sTBI-ALI by inhibiting S100B mediated NETs formation. Thus, PD may be valuable in sTBI-ALI treatment.
Collapse
Affiliation(s)
- Zhengtao Gu
- Department of Traumatology and Orthopedic Surgery, Shunde Hospital of Southern Medical University, The First People's Hospital of Shunde, Foshan, Guangdong, China; Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China; Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China; Department of Pathophysiology, Southern Medical University, Guangdong Provincial Key Laboratory of Shock and Microcirculation Research, Guangzhou, China
| | - Li Li
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China; Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China; Department of Pathophysiology, Southern Medical University, Guangdong Provincial Key Laboratory of Shock and Microcirculation Research, Guangzhou, China
| | - Qin Li
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China; Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China; Department of Pathophysiology, Southern Medical University, Guangdong Provincial Key Laboratory of Shock and Microcirculation Research, Guangzhou, China
| | - Hongping Tan
- Department of Epilepsy Center, Guangdong Sanjiu Brain Hospital, Guangzhou, Guangdong, China
| | - Zhimin Zou
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China; Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China; Department of Pathophysiology, Southern Medical University, Guangdong Provincial Key Laboratory of Shock and Microcirculation Research, Guangzhou, China
| | - Xueyong Chen
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China; Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China; Department of Pathophysiology, Southern Medical University, Guangdong Provincial Key Laboratory of Shock and Microcirculation Research, Guangzhou, China
| | - Zichen Zhang
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China; Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China; Department of Pathophysiology, Southern Medical University, Guangdong Provincial Key Laboratory of Shock and Microcirculation Research, Guangzhou, China
| | - Yijun Zhou
- Department of Orthopaedic , The First people's Hospital of Changde, Guangde Clinical Institute of Xiangya Medical College of South Central University, Changde, Hunan, China
| | - Danian Wei
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China; Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Chengyong Liu
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China; Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Qiaobing Huang
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China; Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China; Department of Pathophysiology, Southern Medical University, Guangdong Provincial Key Laboratory of Shock and Microcirculation Research, Guangzhou, China
| | - Marc Maegele
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China; Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China; Department of Traumatology and Orthopedic Surgery, Cologne-Merheim Medical Center (CMMC), University Witten/Herdecke (UW/H), Campus Cologne-Merheim, Cologne, Germany
| | - Daozhang Cai
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China; Department of Orthopedics, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Academy of Orthopedics Guangdong Province, Guangzhou, Guangdong, China.
| | - Mingguang Huang
- Department of Traumatology and Orthopedic Surgery, Shunde Hospital of Southern Medical University, The First People's Hospital of Shunde, Foshan, Guangdong, China.
| |
Collapse
|
207
|
Pandolfi L, Bozzini S, Frangipane V, Percivalle E, De Luigi A, Violatto MB, Lopez G, Gabanti E, Carsana L, D'Amato M, Morosini M, De Amici M, Nebuloni M, Fossali T, Colombo R, Saracino L, Codullo V, Gnecchi M, Bigini P, Baldanti F, Lilleri D, Meloni F. Neutrophil Extracellular Traps Induce the Epithelial-Mesenchymal Transition: Implications in Post-COVID-19 Fibrosis. Front Immunol 2021; 12:663303. [PMID: 34194429 PMCID: PMC8236949 DOI: 10.3389/fimmu.2021.663303] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/31/2021] [Indexed: 12/18/2022] Open
Abstract
The release of neutrophil extracellular traps (NETs), a process termed NETosis, avoids pathogen spread but may cause tissue injury. NETs have been found in severe COVID-19 patients, but their role in disease development is still unknown. The aim of this study is to assess the capacity of NETs to drive epithelial-mesenchymal transition (EMT) of lung epithelial cells and to analyze the involvement of NETs in COVID-19. Bronchoalveolar lavage fluid of severe COVID-19 patients showed high concentration of NETs that correlates with neutrophils count; moreover, the analysis of lung tissues of COVID-19 deceased patients showed a subset of alveolar reactive pneumocytes with a co-expression of epithelial marker and a mesenchymal marker, confirming the induction of EMT mechanism after severe SARS-CoV2 infection. By airway in vitro models, cultivating A549 or 16HBE at air-liquid interface, adding alveolar macrophages (AM), neutrophils and SARS-CoV2, we demonstrated that to trigger a complete EMT expression pattern are necessary the induction of NETosis by SARS-CoV2 and the secretion of AM factors (TGF-β, IL8 and IL1β). All our results highlight the possible mechanism that can induce lung fibrosis after SARS-CoV2 infection.
Collapse
Affiliation(s)
- Laura Pandolfi
- Research Laboratory of Lung Diseases, Section of Cell Biology, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Sara Bozzini
- Research Laboratory of Lung Diseases, Section of Cell Biology, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Vanessa Frangipane
- Research Laboratory of Lung Diseases, Section of Cell Biology, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Elena Percivalle
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico S. Matteo Foundation, Pavia, Italy
| | - Ada De Luigi
- Laboratory of Biochemistry and Protein Chemistry, Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Milano, Italy
| | - Martina Bruna Violatto
- Laboratory of Biochemistry and Protein Chemistry, Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Milano, Italy
| | - Gianluca Lopez
- Pathology Unit, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milano, Milano, Italy
| | - Elisa Gabanti
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico S. Matteo Foundation, Pavia, Italy
| | - Luca Carsana
- Pathology Unit, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milano, Milano, Italy
| | - Maura D'Amato
- Research Laboratory of Lung Diseases, Section of Cell Biology, IRCCS Policlinico San Matteo Foundation, Pavia, Italy.,Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Monica Morosini
- Research Laboratory of Lung Diseases, Section of Cell Biology, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Mara De Amici
- Laboratory of Immuno Allergology Clinical Chemistry and Pediatrics Clinic, Foundation IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Manuela Nebuloni
- Pathology Unit, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milano, Milano, Italy
| | - Tommaso Fossali
- Division of Anaesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Milan, Italy
| | - Riccardo Colombo
- Division of Anaesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Milan, Italy
| | - Laura Saracino
- Unit of Pneumology, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Veronica Codullo
- Unit of Rheumatology, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Massimiliano Gnecchi
- Coronary Care Unit and Laboratory of Clinical and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Molecular Medicine, Cardiology Unit, University of Pavia, Pavia, Italy
| | - Paolo Bigini
- Laboratory of Biochemistry and Protein Chemistry, Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Milano, Italy
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico S. Matteo Foundation, Pavia, Italy
| | - Daniele Lilleri
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico S. Matteo Foundation, Pavia, Italy
| | - Federica Meloni
- Research Laboratory of Lung Diseases, Section of Cell Biology, IRCCS Policlinico San Matteo Foundation, Pavia, Italy.,Department of Internal Medicine, University of Pavia, Pavia, Italy.,Department of Internal Medicine, Policlinico San Matteo Foundation, Pavia, Italy
| |
Collapse
|
208
|
To Trap a Pathogen: Neutrophil Extracellular Traps and Their Role in Mucosal Epithelial and Skin Diseases. Cells 2021; 10:cells10061469. [PMID: 34208037 PMCID: PMC8230648 DOI: 10.3390/cells10061469] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 12/18/2022] Open
Abstract
Neutrophils are the most abundant circulating innate immune cells and comprise the first immune defense line, as they are the most rapidly recruited cells at sites of infection or inflammation. Their main microbicidal mechanisms are degranulation, phagocytosis, cytokine secretion and the formation of extracellular traps. Neutrophil extracellular traps (NETs) are a microbicidal mechanism that involves neutrophil death. Since their discovery, in vitro and in vivo neutrophils have been challenged with a range of stimuli capable of inducing or inhibiting NET formation, with the objective to understand its function and regulation in health and disease. These networks composed of DNA and granular components are capable of immobilizing and killing pathogens. They comprise enzymes such as myeloperoxidase, elastase, cathepsin G, acid hydrolases and cationic peptides, all with antimicrobial and antifungal activity. Therefore, the excessive formation of NETs can also lead to tissue damage and promote local and systemic inflammation. Based on this concept, in this review, we focus on the role of NETs in different infectious and inflammatory diseases of the mucosal epithelia and skin.
Collapse
|
209
|
Hawez A, Taha D, Algaber A, Madhi R, Rahman M, Thorlacius H. MiR-155 regulates neutrophil extracellular trap formation and lung injury in abdominal sepsis. J Leukoc Biol 2021; 111:391-400. [PMID: 34114683 DOI: 10.1002/jlb.3a1220-789rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Neutrophil extracellular traps (NETs)-mediated tissue damage is a hallmark in abdominal sepsis. Under certain conditions, microRNAs (miRs) can regulate protein expression and cellular functions. The aim of this study was to investigate the role of miR-155 in sepsis-induced NET formation, lung inflammation, and tissue damage. Abdominal sepsis was induced in wild-type (WT) C57BL/6 and miR-155 gene-deficient mice by cecal ligation and puncture (CLP). The amount of DNA-histone complex formation as well as myeloperoxidase (MPO) and citrullinated histone 3 in neutrophils isolated from bone marrow were examined by ELISA and flow cytometry. NETs were detected by electron microscopy in the septic lung. Levels of PAD4 and citrullinated histone 3 were determined by Western blot in the blood neutrophils. Lung levels of MPO, CXC chemokines, and plasma levels of DNA-histone complexes and CXC chemokines were quantified. In vitro studies revealed that neutrophils from miR-155 gene-deficient mice had less NETs forming ability than WT neutrophils. In the miR-155 gene-deficient mice, CLP yielded much less NETs in the lung tissue compared with WT control. CLP-induced PAD4 levels, histone 3 citrullination, edema, MPO activity, and neutrophil recruitment in the lung were markedly reduced in the mice lacking miR-155. Furthermore, tissue and plasma levels of CXCL1 and CXCL2 were significantly lower in the miR-155 gene-deficient mice compared with WT after induction of abdominal sepsis. Taken together, our findings suggest that miR-155 regulates pulmonary formation of NETs in abdominal sepsis via PAD4 up-regulation and histone 3 citrullination. Thus, targeting miR-155 could be a useful target to reduce pulmonary damage in abdominal sepsis.
Collapse
Affiliation(s)
- Avin Hawez
- Department of Surgery, Clinical Sciences, Malmö, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Dler Taha
- Department of Surgery, Clinical Sciences, Malmö, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Anwar Algaber
- Department of Surgery, Clinical Sciences, Malmö, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Raed Madhi
- Department of Surgery, Clinical Sciences, Malmö, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Milladur Rahman
- Department of Surgery, Clinical Sciences, Malmö, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Henrik Thorlacius
- Department of Surgery, Clinical Sciences, Malmö, Skåne University Hospital, Lund University, Malmö, Sweden
| |
Collapse
|
210
|
Kvietys PR, Fakhoury HMA, Kadan S, Yaqinuddin A, Al-Mutairy E, Al-Kattan K. COVID-19: Lung-Centric Immunothrombosis. Front Cell Infect Microbiol 2021; 11:679878. [PMID: 34178722 PMCID: PMC8226089 DOI: 10.3389/fcimb.2021.679878] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
The respiratory tract is the major site of infection by SARS-CoV-2, the virus causing COVID-19. The pulmonary infection can lead to acute respiratory distress syndrome (ARDS) and ultimately, death. An excessive innate immune response plays a major role in the development of ARDS in COVID-19 patients. In this scenario, activation of lung epithelia and resident macrophages by the virus results in local cytokine production and recruitment of neutrophils. Activated neutrophils extrude a web of DNA-based cytoplasmic material containing antimicrobials referred to as neutrophil extracellular traps (NETs). While NETs are a defensive strategy against invading microbes, they can also serve as a nidus for accumulation of activated platelets and coagulation factors, forming thrombi. This immunothrombosis can result in occlusion of blood vessels leading to ischemic damage. Herein we address evidence in favor of a lung-centric immunothrombosis and suggest a lung-centric therapeutic approach to the ARDS of COVID-19.
Collapse
Affiliation(s)
| | | | - Sana Kadan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Eid Al-Mutairy
- Department of Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh, Saudi Arabia
| | | |
Collapse
|
211
|
Nucera F, Lo Bello F, Shen SS, Ruggeri P, Coppolino I, Di Stefano A, Stellato C, Casolaro V, Hansbro PM, Adcock IM, Caramori G. Role of Atypical Chemokines and Chemokine Receptors Pathways in the Pathogenesis of COPD. Curr Med Chem 2021; 28:2577-2653. [PMID: 32819230 DOI: 10.2174/0929867327999200819145327] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 11/22/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) represents a heightened inflammatory response in the lung generally resulting from tobacco smoking-induced recruitment and activation of inflammatory cells and/or activation of lower airway structural cells. Several mediators can modulate activation and recruitment of these cells, particularly those belonging to the chemokines (conventional and atypical) family. There is emerging evidence for complex roles of atypical chemokines and their receptors (such as high mobility group box 1 (HMGB1), antimicrobial peptides, receptor for advanced glycosylation end products (RAGE) or toll-like receptors (TLRs)) in the pathogenesis of COPD, both in the stable disease and during exacerbations. Modulators of these pathways represent potential novel therapies for COPD and many are now in preclinical development. Inhibition of only a single atypical chemokine or receptor may not block inflammatory processes because there is redundancy in this network. However, there are many animal studies that encourage studies for modulating the atypical chemokine network in COPD. Thus, few pharmaceutical companies maintain a significant interest in developing agents that target these molecules as potential antiinflammatory drugs. Antibody-based (biological) and small molecule drug (SMD)-based therapies targeting atypical chemokines and/or their receptors are mostly at the preclinical stage and their progression to clinical trials is eagerly awaited. These agents will most likely enhance our knowledge about the role of atypical chemokines in COPD pathophysiology and thereby improve COPD management.
Collapse
Affiliation(s)
- Francesco Nucera
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Federica Lo Bello
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Sj S Shen
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology, Ultimo, Sydney, Australia
| | - Paolo Ruggeri
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Irene Coppolino
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Antonino Di Stefano
- Division of Pneumology, Cyto- Immunopathology Laboratory of the Cardio-Respiratory System, Clinical Scientific Institutes Maugeri IRCCS, Veruno, Italy
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry, Salerno Medical School, University of Salerno, Salerno, Italy
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry, Salerno Medical School, University of Salerno, Salerno, Italy
| | - Phil M Hansbro
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology, Ultimo, Sydney, Australia
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Gaetano Caramori
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| |
Collapse
|
212
|
Hazeldine J, Lord JM. Neutrophils and COVID-19: Active Participants and Rational Therapeutic Targets. Front Immunol 2021; 12:680134. [PMID: 34149717 PMCID: PMC8206563 DOI: 10.3389/fimmu.2021.680134] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/17/2021] [Indexed: 01/08/2023] Open
Abstract
Whilst the majority of individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative pathogen of COVID-19, experience mild to moderate symptoms, approximately 20% develop severe respiratory complications that may progress to acute respiratory distress syndrome, pulmonary failure and death. To date, single cell and high-throughput systems based analyses of the peripheral and pulmonary immune responses to SARS-CoV-2 suggest that a hyperactive and dysregulated immune response underpins the development of severe disease, with a prominent role assigned to neutrophils. Characterised in part by robust generation of neutrophil extracellular traps (NETs), the presence of immature, immunosuppressive and activated neutrophil subsets in the circulation, and neutrophilic infiltrates in the lung, a granulocytic signature is emerging as a defining feature of severe COVID-19. Furthermore, an assessment of the number, maturity status and/or function of circulating neutrophils at the time of hospital admission has shown promise as a prognostic tool for the early identification of patients at risk of clinical deterioration. Here, by summarising the results of studies that have examined the peripheral and pulmonary immune response to SARS-CoV-2, we provide a comprehensive overview of the changes that occur in the composition, phenotype and function of the neutrophil pool in COVID-19 patients of differing disease severities and discuss potential mediators of SARS-CoV-2-induced neutrophil dysfunction. With few specific treatments currently approved for COVID-19, we conclude the review by discussing whether neutrophils represent a potential therapeutic target for the treatment of patients with severe COVID-19.
Collapse
Affiliation(s)
- Jon Hazeldine
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Janet M. Lord
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Birmingham Biomedical Research Centre, University Hospital Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
213
|
Song N, Wang W, Wang Y, Guan Y, Xu S, Guo MY. Hydrogen sulfide of air induces macrophage extracellular traps to aggravate inflammatory injury via the regulation of miR-15b-5p on MAPK and insulin signals in trachea of chickens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:145407. [PMID: 33548704 DOI: 10.1016/j.scitotenv.2021.145407] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/16/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Hydrogen sulfide (H2S) is an environmental contaminant to cause the airway damage. The release of macrophage extracellular traps (METs) is the mechanism of immune protection to harmful stimulation via microRNAs, but excessive METs cause the injury. However, few studies have attempted to interpret the mechanism of an organism injury due to H2S via METs in chickens. Here, we investigated the transcriptome profiles, pathological morphologic changes and METs release from chicken trachea after H2S exposure. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that 10 differentially expressed genes were related to the METs release, the MAPK and insulin signaling pathways. Morphological and immunofluorescence analysis showed that H2S caused airway injury and MET release. H2S activated the targeting effect of miRNA-15b-5p on activating transcription factor 2 (ATF2). Western blotting and real time quantitative PCR results showed that H2S down-regulated the levels of dual specificity protein phosophatase1 (DUSP1) but up-regulated p38 MAP Kinase (p38) in the MAPK signal pathway. And the expression of phosphoinositide-dependent protein kinase 1 (PDK1), serine/threonine kinase (Akt), and protein kinase ζ subtypes (PKCζ) in the insulin signal pathway were increased after H2S exposure. These promoted the release of myeloperoxidase (MPO) and degradation histone 4 (H4) to induce the release of METs. Taken together, miR-15b-5p targeted ATF2 to mediate METs release, which triggered trachea inflammatory injury via MAPK and insulin signals after H2S exposure. These results will provide new insights into the toxicological mechanisms of H2S and environmental ecotoxicology.
Collapse
Affiliation(s)
- Nuan Song
- College of Veterinary Medicine, Northeast Agricultural University; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China
| | - Wei Wang
- College of Veterinary Medicine, Northeast Agricultural University; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China
| | - Yue Wang
- College of Veterinary Medicine, Northeast Agricultural University; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China
| | - Yalin Guan
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China
| | - Meng-Yao Guo
- College of Veterinary Medicine, Northeast Agricultural University; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China.
| |
Collapse
|
214
|
Wu MA, Fossali T, Pandolfi L, Carsana L, Ottolina D, Frangipane V, Rech R, Tosoni A, Lopez G, Agarossi A, Cogliati C, Meloni F, Marchini B, Nebuloni M, Catena E, Colombo R. Hypoalbuminemia in COVID-19: assessing the hypothesis for underlying pulmonary capillary leakage. J Intern Med 2021; 289:861-872. [PMID: 33411411 DOI: 10.1111/joim.13208] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/03/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Since the first observations of patients with COVID-19, significant hypoalbuminaemia was detected. Its causes have not been investigated yet. OBJECTIVE We hypothesized that pulmonary capillary leakage affects the severity of respiratory failure, causing a shift of fluids and proteins through the epithelial-endothelial barrier. METHODS One hundred seventy-four COVID-19 patients with respiratory symptoms, 92 admitted to the intermediate medicine ward (IMW) and 82 to the intensive care unit (ICU) at Luigi Sacco Hospital in Milan, were studied. RESULTS Baseline characteristics at admission were considered. Proteins, interleukin 8 (IL-8) and interleukin 10 (IL-10) in bronchoalveolar lavage fluid (BALF) were analysed in 26 ICU patients. In addition, ten autopsy ultrastructural lung studies were performed in patients with COVID-19 and compared with postmortem findings in a control group (bacterial pneumonia-ARDS and H1N1-ARDS). ICU patients had lower serum albumin than IMW patients [20 (18-23) vs 28 (24-33) g L-1 , P < 0.001]. Serum albumin was lower in more compromised groups (lower PaO2 -to-FiO2 ratio and worst chest X-ray findings) and was associated with 30 days of probability of survival. Protein concentration was correlated with IL-8 and IL-10 levels in BALF. Electron microscopy examinations of eight out of ten COVID-19 lung tissues showed loosening of junctional complexes, quantitatively more pronounced than in controls, and direct viral infection of type 2 pneumocytes and endothelial cells. CONCLUSION Hypoalbuminaemia may serve as severity marker of epithelial-endothelial damage in patients with COVID-19. There are clues that pulmonary capillary leak syndrome plays a key role in the pathogenesis of COVID-19 and might be a potential therapeutic target.
Collapse
Affiliation(s)
- M A Wu
- From the, Division of Internal Medicine, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Milan, Italy
| | - T Fossali
- Division of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Milan, Italy
| | - L Pandolfi
- Research Laboratory of Lung Diseases, Section of Cell Biology, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - L Carsana
- Pathology Unit, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Milan, Italy
| | - D Ottolina
- Division of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Milan, Italy
| | - V Frangipane
- Research Laboratory of Lung Diseases, Section of Cell Biology, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - R Rech
- Division of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Milan, Italy
| | - A Tosoni
- Pathology Unit, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Milan, Italy
| | - G Lopez
- Pathology Unit, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Milan, Italy
| | - A Agarossi
- Division of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Milan, Italy
| | - C Cogliati
- From the, Division of Internal Medicine, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Milan, Italy
| | - F Meloni
- Department of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation, Pavia, Italy.,Department of Internal Medicine, Section of Pneumology, University of Pavia, Pavia, Italy
| | - B Marchini
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - M Nebuloni
- Pathology Unit, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Milan, Italy.,Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - E Catena
- Division of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Milan, Italy
| | - R Colombo
- Division of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Milan, Italy
| |
Collapse
|
215
|
Götz P, Braumandl A, Kübler M, Kumaraswami K, Ishikawa-Ankerhold H, Lasch M, Deindl E. C3 Deficiency Leads to Increased Angiogenesis and Elevated Pro-Angiogenic Leukocyte Recruitment in Ischemic Muscle Tissue. Int J Mol Sci 2021; 22:5800. [PMID: 34071589 PMCID: PMC8198161 DOI: 10.3390/ijms22115800] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/24/2022] Open
Abstract
The complement system is a potent inflammatory trigger, activator, and chemoattractant for leukocytes, which play a crucial role in promoting angiogenesis. However, little information is available about the influence of the complement system on angiogenesis in ischemic muscle tissue. To address this topic and analyze the impact of the complement system on angiogenesis, we induced muscle ischemia in complement factor C3 deficient (C3-/-) and wildtype control mice by femoral artery ligation (FAL). At 24 h and 7 days after FAL, we isolated the ischemic gastrocnemius muscles and investigated them by means of (immuno-)histological analyses. C3-/- mice showed elevated ischemic damage 7 days after FAL, as evidenced by H&E staining. In addition, angiogenesis was increased in C3-/- mice, as demonstrated by increased capillary/muscle fiber ratio and increased proliferating endothelial cells (CD31+/BrdU+). Moreover, our results showed that the total number of leukocytes (CD45+) was increased in C3-/- mice, which was based on an increased number of neutrophils (MPO+), neutrophil extracellular trap formation (MPO+/CitH3+), and macrophages (CD68+) displaying a shift toward an anti-inflammatory and pro-angiogenic M2-like polarized phenotype (CD68+/MRC1+). In summary, we show that the deficiency of complement factor C3 increased neutrophil and M2-like polarized macrophage accumulation in ischemic muscle tissue, contributing to angiogenesis.
Collapse
Affiliation(s)
- Philipp Götz
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (P.G.); (A.B.); (M.K.); (K.K.); (H.I.-A.); (M.L.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Anna Braumandl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (P.G.); (A.B.); (M.K.); (K.K.); (H.I.-A.); (M.L.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Matthias Kübler
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (P.G.); (A.B.); (M.K.); (K.K.); (H.I.-A.); (M.L.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Konda Kumaraswami
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (P.G.); (A.B.); (M.K.); (K.K.); (H.I.-A.); (M.L.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Hellen Ishikawa-Ankerhold
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (P.G.); (A.B.); (M.K.); (K.K.); (H.I.-A.); (M.L.)
- Department of Internal Medicine I, Faculty of Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Manuel Lasch
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (P.G.); (A.B.); (M.K.); (K.K.); (H.I.-A.); (M.L.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Elisabeth Deindl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (P.G.); (A.B.); (M.K.); (K.K.); (H.I.-A.); (M.L.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
216
|
Ouwendijk WJD, Raadsen MP, van Kampen JJA, Verdijk RM, von der Thusen JH, Guo L, Hoek RAS, van den Akker JPC, Endeman H, Langerak T, Molenkamp R, Gommers D, Koopmans MPG, van Gorp ECM, Verjans GMGM, Haagmans BL. High Levels of Neutrophil Extracellular Traps Persist in the Lower Respiratory Tract of Critically Ill Patients With Coronavirus Disease 2019. J Infect Dis 2021; 223:1512-1521. [PMID: 33507309 PMCID: PMC7928833 DOI: 10.1093/infdis/jiab050] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/25/2021] [Indexed: 01/08/2023] Open
Affiliation(s)
| | | | | | | | | | - Lihui Guo
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Department of Experimental Immunology, Amsterdam Infection and Immune Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Rogier A S Hoek
- Department Pulmonary Medicine, Erasmus MC, Rotterdam, the Netherlands
| | | | - Henrik Endeman
- Department of Adult Intensive Care, Erasmus MC, Rotterdam, the Netherlands
| | - Thomas Langerak
- Department of Viroscience, Erasmus MC, Rotterdam,the Netherlands
| | | | - Diederik Gommers
- Department of Adult Intensive Care, Erasmus MC, Rotterdam, the Netherlands
| | | | | | | | - Bart L Haagmans
- Department of Viroscience, Erasmus MC, Rotterdam,the Netherlands
| |
Collapse
|
217
|
Iliadi V, Konstantinidou I, Aftzoglou K, Iliadis S, Konstantinidis TG, Tsigalou C. The Emerging Role of Neutrophils in the Pathogenesis of Thrombosis in COVID-19. Int J Mol Sci 2021; 22:5368. [PMID: 34065210 PMCID: PMC8161034 DOI: 10.3390/ijms22105368] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022] Open
Abstract
Previous studies have shown that COVID-19 leads to thrombotic complications, which have been associated with high morbidity and mortality rates. Neutrophils are the largest population of white blood cells and play a pivotal role in innate immunity. During an infection, neutrophils migrate from circulation to the infection site, contributing to killing pathogens. This mechanism is regulated by chemokines such as IL-8. Moreover, it was shown that neutrophils play an important role in thromboinflammation. Through a diverse repertoire of mechanisms, neutrophils, apart from directly killing pathogens, are able to activate the formation of thrombi. In COVID-19 patients, neutrophil activation promotes neutrophil extracellular trap (NET) formation, platelet aggregation, and cell damage. Furthermore, neutrophils participate in the pathogenesis of endothelitis. Overall, this review summarizes recent progress in research on the pathogenesis of COVID-19, highlighting the role of the prothrombotic action of neutrophils in NET formation.
Collapse
Affiliation(s)
- Valeria Iliadi
- Medical School, Izhevsk State Medical Academy, Kommunarov Street 281, 426034 Izhevsk, Russia; (V.I.); (S.I.)
| | | | | | - Sergios Iliadis
- Medical School, Izhevsk State Medical Academy, Kommunarov Street 281, 426034 Izhevsk, Russia; (V.I.); (S.I.)
| | - Theocharis G. Konstantinidis
- Blood Transfusion Center, University General Hospital of Alexandroupolis Dragana Campus, 68100 Alexandroupolis, Greece
| | - Christina Tsigalou
- Laboratory of Microbiology, Democritus University of Thrace, Dragana Campus, 68100 Alexandroupolis, Greece;
| |
Collapse
|
218
|
Osaka M, Deushi M, Aoyama J, Funakoshi T, Ishigami A, Yoshida M. High-Fat Diet Enhances Neutrophil Adhesion in LDLR-Null Mice Via Hypercitrullination of Histone H3. ACTA ACUST UNITED AC 2021; 6:507-523. [PMID: 34222722 PMCID: PMC8246031 DOI: 10.1016/j.jacbts.2021.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022]
Abstract
Neutrophil adhesion on the atheroprone femoral artery of high-fat diet-fed low-density lipoprotein receptor-null mice was enhanced more than in wild-type mice. The inhibition of histone H3 citrullination of neutrophils reversed the enhancement of neutrophil adhesion, suggesting that hypercitrullination contributes to enhanced neutrophil adhesion. Furthermore, pemafibrate reduced the citrullination of histone H3 in these mice. Therefore, the hypercitrullination of histone H3 in neutrophils contributes to atherosclerotic vascular inflammation.
Collapse
Key Words
- BM, bone marrow
- BW, body weight
- DNaseI, deoxyribonuclease I
- GM-CSF, granulocyte-macrophage colony-stimulating factor
- HFD, high-fat diet
- HUVECs, human umbilical vein endothelial cells
- IVM, intravital microscopy
- LDLR, low-density lipoprotein receptor
- LysM, lysosome M
- MPO, myeloperoxidase
- NC, normal chow
- NE, neutrophil elastase
- NET, neutrophil extracellular trap
- PAD4, peptidylarginine deiminase 4
- PPAR, peroxisome proliferator-activated receptor
- TC, total cholesterol
- TDFA, N-acetyl-l-threonyl-l-α-aspartyl-N5-(2-fluoro-1-iminoethyl)-l-ornithinamide trifluoroacetate salt
- TG, triglyceride
- citrullination
- cxcl1
- eGFP, enhanced green fluorescent protein
- in vivo imaging
- neutrophil
- vascular inflammation
- wt, wild type
Collapse
Affiliation(s)
- Mizuko Osaka
- Department of Life Science and Bioethics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Nutrition and Metabolism in Cardiovascular Disease, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Michiyo Deushi
- Department of Life Science and Bioethics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jiro Aoyama
- Department of Life Science and Bioethics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomoko Funakoshi
- Research Team for Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.,Department of Physiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akihito Ishigami
- Research Team for Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Masayuki Yoshida
- Department of Life Science and Bioethics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
219
|
Khezri MR, Zolbanin NM, Ghasemnejad-Berenji M, Jafari R. Azithromycin: Immunomodulatory and antiviral properties for SARS-CoV-2 infection. Eur J Pharmacol 2021; 905:174191. [PMID: 34015317 PMCID: PMC8127529 DOI: 10.1016/j.ejphar.2021.174191] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 05/01/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023]
Abstract
Azithromycin, a member of the macrolide family of antibiotics, is commonly used to treat respiratory bacterial infections. Nevertheless, multiple pharmacological effects of the drug have been revealed in several investigations. Conceivably, the immunomodulatory properties of azithromycin are among its critical features, leading to its application in treating inflammatory diseases, such as asthma and chronic obstructive pulmonary disease (COPD). Additionally, azithromycin may directly inhibit viral load as well as its replication, or it could demonstrate indirect inhibitory impacts that might be associated with the expression of antiviral genes. Currently, coronavirus disease 2019 (COVID-19) is an extra urgent issue affecting the entire world, and it is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Acute respiratory distress syndrome (ARDS), which is associated with hyper inflammation due to cytokine release, is among the leading causes of death in COVID-19 patients with critical conditions. The present paper aims to review the immunomodulatory and antiviral properties of azithromycin as well as its potential clinical applications in the management of COVID-19 patients.
Collapse
Affiliation(s)
| | - Naime Majidi Zolbanin
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Morteza Ghasemnejad-Berenji
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Reza Jafari
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
220
|
Rattis BAC, Ramos SG, Celes MRN. Curcumin as a Potential Treatment for COVID-19. Front Pharmacol 2021; 12:675287. [PMID: 34025433 PMCID: PMC8138567 DOI: 10.3389/fphar.2021.675287] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/21/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease that rapidly spread throughout the world leading to high mortality rates. Despite the knowledge of previous diseases caused by viruses of the same family, such as MERS and SARS-CoV, management and treatment of patients with COVID-19 is a challenge. One of the best strategies around the world to help combat the COVID-19 has been directed to drug repositioning; however, these drugs are not specific to this new virus. Additionally, the pathophysiology of COVID-19 is highly heterogeneous, and the way of SARS-CoV-2 modulates the different systems in the host remains unidentified, despite recent discoveries. This complex and multifactorial response requires a comprehensive therapeutic approach, enabling the integration and refinement of therapeutic responses of a given single compound that has several action potentials. In this context, natural compounds, such as Curcumin, have shown beneficial effects on the progression of inflammatory diseases due to its numerous action mechanisms: antiviral, anti-inflammatory, anticoagulant, antiplatelet, and cytoprotective. These and many other effects of curcumin make it a promising target in the adjuvant treatment of COVID-19. Hence, the purpose of this review is to specifically point out how curcumin could interfere at different times/points during the infection caused by SARS-CoV-2, providing a substantial contribution of curcumin as a new adjuvant therapy for the treatment of COVID-19.
Collapse
Affiliation(s)
- Bruna A. C. Rattis
- Department of Pathology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, Brazil
| | - Simone G. Ramos
- Department of Pathology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Mara R. N. Celes
- Department of Pathology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, Brazil
| |
Collapse
|
221
|
Trivedi S, Grossmann AH, Jensen O, Cody MJ, Wahlig TA, Hayakawa Serpa P, Langelier C, Warren KJ, Yost CC, Leung DT. Intestinal Infection Is Associated With Impaired Lung Innate Immunity to Secondary Respiratory Infection. Open Forum Infect Dis 2021; 8:ofab237. [PMID: 34189172 PMCID: PMC8231398 DOI: 10.1093/ofid/ofab237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/05/2021] [Indexed: 11/23/2022] Open
Abstract
Background Pneumonia and diarrhea are among the leading causes of death worldwide, and epidemiological studies have demonstrated that diarrhea is associated with an increased risk of subsequent pneumonia. Our aim was to determine the impact of intestinal infection on innate immune responses in the lung. Methods Using a mouse model of intestinal infection by Salmonella enterica serovar Typhimurium (S. Typhimurium [ST]), we investigated associations between gastrointestinal infections and lung innate immune responses to bacterial (Klebsiella pneumoniae) challenge. Results We found alterations in frequencies of innate immune cells in the lungs of intestinally infected mice compared with uninfected mice. On subsequent challenge with K. pneumoniae, we found that mice with prior intestinal infection have higher lung bacterial burden and inflammation, increased neutrophil margination, and neutrophil extracellular traps, but lower overall numbers of neutrophils, compared with mice without prior intestinal infection. Total numbers of dendritic cells, innate-like T cells, and natural killer cells were not different between mice with and without prior intestinal infection. Conclusions Together, these results suggest that intestinal infection impacts lung innate immune responses, most notably neutrophil characteristics, potentially resulting in increased susceptibility to secondary pneumonia.
Collapse
Affiliation(s)
- Shubhanshi Trivedi
- Division of Infectious Disease, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Allie H Grossmann
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA.,Division of Anatomic Pathology, Department of Pathology, University of Utah, Salt Lake City, Utah, USA.,Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Owen Jensen
- Division of Infectious Disease, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Mark J Cody
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Taylor A Wahlig
- Division of Infectious Disease, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Paula Hayakawa Serpa
- Chan Zuckerberg Biohub, San Francisco, California, USA.,Division of Infectious Diseases, Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Charles Langelier
- Chan Zuckerberg Biohub, San Francisco, California, USA.,Division of Infectious Diseases, Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Kristi J Warren
- Division of Pulmonary Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Christian C Yost
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA.,Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Daniel T Leung
- Division of Infectious Disease, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.,Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
222
|
Bonaventura A, Vecchié A, Dagna L, Martinod K, Dixon DL, Van Tassell BW, Dentali F, Montecucco F, Massberg S, Levi M, Abbate A. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat Rev Immunol 2021; 21:319-329. [PMID: 33824483 PMCID: PMC8023349 DOI: 10.1038/s41577-021-00536-9] [Citation(s) in RCA: 624] [Impact Index Per Article: 156.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 02/07/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a clinical syndrome caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Patients with severe disease show hyperactivation of the immune system, which can affect multiple organs besides the lungs. Here, we propose that SARS-CoV-2 infection induces a process known as immunothrombosis, in which activated neutrophils and monocytes interact with platelets and the coagulation cascade, leading to intravascular clot formation in small and larger vessels. Microthrombotic complications may contribute to acute respiratory distress syndrome (ARDS) and other organ dysfunctions. Therapeutic strategies aimed at reducing immunothrombosis may therefore be useful. Several antithrombotic and immunomodulating drugs have been proposed as candidates to treat patients with SARS-CoV-2 infection. The growing understanding of SARS-CoV-2 infection pathogenesis and how it contributes to critical illness and its complications may help to improve risk stratification and develop targeted therapies to reduce the acute and long-term consequences of this disease.
Collapse
Affiliation(s)
- Aldo Bonaventura
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA.
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy.
- Department of Internal Medicine, ASST dei Sette Laghi, Varese, Italy.
| | - Alessandra Vecchié
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
- Department of Internal Medicine, ASST dei Sette Laghi, Varese, Italy
| | - Lorenzo Dagna
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Kimberly Martinod
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Dave L Dixon
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
- Department of Pharmacotherapy and Outcome Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Benjamin W Van Tassell
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
- Department of Pharmacotherapy and Outcome Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Francesco Dentali
- Department of Medicine and Surgery, Insubria University, Varese, Italy
| | - Fabrizio Montecucco
- IRCCS Ospedale Policlinico San Martino Genova - Italian Cardiovascular Network, Genoa, Italy
- First Clinic of Internal Medicine, Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Steffen Massberg
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) e.V., Partner Site Munich Heart Alliance, Munich, Germany
- Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität, Munich, Germany
| | - Marcel Levi
- Department of Medicine and Cardio-metabolic Programme - NIHR UCLH/UCL BRC, University College London Hospitals NHS Foundation Trust, London, UK
| | - Antonio Abbate
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
223
|
Absence of Cold-Inducible RNA-Binding Protein (CIRP) Promotes Angiogenesis and Regeneration of Ischemic Tissue by Inducing M2-Like Macrophage Polarization. Biomedicines 2021; 9:biomedicines9040395. [PMID: 33916904 PMCID: PMC8067566 DOI: 10.3390/biomedicines9040395] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/31/2021] [Accepted: 04/04/2021] [Indexed: 12/19/2022] Open
Abstract
Cold-inducible RNA-binding protein (CIRP) is an intracellular RNA-chaperone and extracellular promoter of inflammation, which is increasingly expressed and released under conditions of hypoxia and cold stress. The functional relevance of CIRP for angiogenesis and regeneration of ischemic muscle tissue has never been investigated and is the topic of the present study. We investigated the role of CIRP employing CIRP deficient mice along with a hindlimb model of ischemia-induced angiogenesis. 1 and 7 days after femoral artery ligation or sham operation, gastrocnemius muscles of CIRP-deficient and wildtype mice were isolated and processed for (immuno-) histological analyses. CIRP deficient mice showed decreased ischemic tissue damage as evidenced by Hematoxylin and Eosin staining, whereas angiogenesis was enhanced as demonstrated by increased capillary/muscle fiber ratio and number of proliferating endothelial (CD31+/BrdU+) cells on day 7 after surgery. Moreover, CIRP deficiency resulted in a reduction of total leukocyte count (CD45+), neutrophils (myeloperoxidase, MPO+), neutrophil extracellular traps (NETs) (MPO+/CitH3+), and inflammatory M1-like polarized macrophages (CD68+/MRC1-), whereas the number of tissue regenerating M2-like polarized macrophages (CD68+/MRC1-) was increased in ischemic tissue samples. In summary, we show that the absence of CIRP ameliorates angiogenesis and regeneration of ischemic muscle tissue, most likely by influencing macrophage polarization in direction to regenerative M2-like macrophages.
Collapse
|
224
|
Siegel ER, Croze RH, Fang X, Matthay MA, Gotts JE. Inhibition of the lipoxin A4 and resolvin D1 receptor impairs host response to acute lung injury caused by pneumococcal pneumonia in mice. Am J Physiol Lung Cell Mol Physiol 2021; 320:L1085-L1092. [PMID: 33822656 DOI: 10.1152/ajplung.00046.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Resolution of the acute respiratory distress syndrome (ARDS) from pneumonia requires repair of the injured lung endothelium and alveolar epithelium, removal of neutrophils from the distal airspaces of the lung, and clearance of the pathogen. Previous studies have demonstrated the importance of specialized proresolving mediators (SPMs) in the regulation of host responses during inflammation. Although ARDS is commonly caused by Streptococcus pneumoniae, the role of lipoxin A4 (LXA4) and resolvin D1 (RvD1) in pneumococcal pneumonia is not well understood. In the present experimental study, we tested the hypothesis that endogenous SPMs play a role in the resolution of lung injury in a clinically relevant model of bacterial pneumonia. Blockade of formyl peptide receptor 2 (ALX/FPR2), the receptor for LXA4 and RvD1, with the peptide WRW4 resulted in more pulmonary edema, greater protein accumulation in the air spaces, and increased bacteria accumulation in the air spaces and the blood. Inhibition of this receptor was also associated with decreased levels of proinflammatory cytokines. Even in the presence of antibiotic treatment, WRW4 inhibited the resolution of lung injury. In summary, these experiments demonstrated two novel findings: LXA4 and RvD1 contribute to the resolution of lung injury due to pneumococcal pneumonia, and the mechanism of their benefit likely includes augmenting bacterial clearance and reducing pulmonary edema via the restoration of lung alveolar-capillary barrier permeability.
Collapse
Affiliation(s)
- Emily R Siegel
- School of Medicine, University of California, San Francisco, California
| | - Roxanne H Croze
- Cardiovascular Research Institute, University of California, San Francisco, California
| | - Xiaohui Fang
- Cardiovascular Research Institute, University of California, San Francisco, California
| | - Michael A Matthay
- Cardiovascular Research Institute, University of California, San Francisco, California.,Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, California.,Department of Anesthesia and Perioperative Care, University of California, San Francisco, California
| | - Jeffrey E Gotts
- Cardiovascular Research Institute, University of California, San Francisco, California.,Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, California.,Department of Anesthesia and Perioperative Care, University of California, San Francisco, California
| |
Collapse
|
225
|
Gómez RM, López Ortiz AO, Schattner M. Platelets and extracellular traps in infections. Platelets 2021; 32:305-313. [PMID: 31984825 DOI: 10.1080/09537104.2020.1718631] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022]
Abstract
Platelets have a well-recognized role in hemostasis and thrombosis, and they are important amplifiers of inflammation and innate immune responses. The formation of DNA extracellular traps (ETs) is a complex cellular mechanism, which occurs in response to microbial infections and sterile inflammation, and results in the release of DNA complexed with histones and various granular proteins. ETs were first discovered in neutrophils (NETs); however, it is now accepted that other leukocytes, including eosinophils (EETs) and monocytes/macrophages (MoETs/METs), can also generate them. Moreover, several types of ETs have been described.Increasing evidence has demonstrated that platelets modulate the formation of ETs. This review summarizes recent findings about the physiopathological role of platelets in the formation of ETs during infection and future perspectives in the field.
Collapse
Affiliation(s)
- Ricardo M Gómez
- Laboratorio De Virus Animales, Instituto De Biotecnología Y Biología Molecular, CONICET-UNLP, La Plata, Argentina
- Global Viral Network, Baltimore, MD, USA
| | - Aída O López Ortiz
- Laboratorio De Virus Animales, Instituto De Biotecnología Y Biología Molecular, CONICET-UNLP, La Plata, Argentina
- Laboratorio De Trombosis Experimental, Instituto De Medicina Experimental, CONICET-ANM, Buenos Aires, Argentina
| | - Mirta Schattner
- Laboratorio De Trombosis Experimental, Instituto De Medicina Experimental, CONICET-ANM, Buenos Aires, Argentina
| |
Collapse
|
226
|
Abstract
Thromboinflammation involves complex interactions between actors of inflammation and immunity and components of the hemostatic system, which are elicited upon infection or tissue injury. In this context, the interplay between platelets and innate immune cells has been intensively investigated. The ATP-gated P2X1 ion channel, expressed on both platelets and neutrophils is of particular interest. On platelets, this ion channel contributes to platelet activation and thrombosis, especially under high shear stress conditions of small arteries, whereas on neutrophils, it is involved in chemotaxis and in mitigating the activation of circulating cells. In vitro studies indicate that it may also be implicated in platelet-dependent immune responses during bacterial infection. More recently, in a mouse model of intestinal epithelial barrier disruption causing systemic inflammation, it has been reported that neutrophil P2X1 ion channel could play a protective role against exaggerated inflammation-associated thrombosis. This review will focus on this unique role of the ATP-gated P2X1 ion channel in thromboinflammation, highlighting possible implications and pointing to the need for further investigation of the role of P2X1 ion channels in the interplay between platelets and neutrophils during thrombus formation under various sterile or infectious inflammatory settings and in distinct vascular beds.
Collapse
Affiliation(s)
- Cécile Oury
- GIGA Cardiovascular Sciences, Laboratory of Cardiology, University of Liège, Liège, Belgium
| | - Odile Wéra
- GIGA Cardiovascular Sciences, Laboratory of Cardiology, University of Liège, Liège, Belgium
| |
Collapse
|
227
|
Domon H, Terao Y. The Role of Neutrophils and Neutrophil Elastase in Pneumococcal Pneumonia. Front Cell Infect Microbiol 2021; 11:615959. [PMID: 33796475 PMCID: PMC8008068 DOI: 10.3389/fcimb.2021.615959] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 03/01/2021] [Indexed: 12/11/2022] Open
Abstract
Streptococcus pneumoniae, also known as pneumococcus, is a Gram-positive diplococcus and a major human pathogen. This bacterium is a leading cause of bacterial pneumonia, otitis media, meningitis, and septicemia, and is a major cause of morbidity and mortality worldwide. To date, studies on S. pneumoniae have mainly focused on the role of its virulence factors including toxins, cell surface proteins, and capsules. However, accumulating evidence indicates that in addition to these studies, knowledge of host factors and host-pathogen interactions is essential for understanding the pathogenesis of pneumococcal diseases. Recent studies have demonstrated that neutrophil accumulation, which is generally considered to play a critical role in host defense during bacterial infections, can significantly contribute to lung injury and immune subversion, leading to pneumococcal invasion of the bloodstream. Here, we review bacterial and host factors, focusing on the role of neutrophils and their elastase, which contribute to the progression of pneumococcal pneumonia.
Collapse
Affiliation(s)
- Hisanori Domon
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
228
|
Hasan A, Al-Ozairi E, Al-Baqsumi Z, Ahmad R, Al-Mulla F. Cellular and Humoral Immune Responses in Covid-19 and Immunotherapeutic Approaches. Immunotargets Ther 2021; 10:63-85. [PMID: 33728277 PMCID: PMC7955763 DOI: 10.2147/itt.s280706] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/22/2020] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (Covid-19), caused by the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can range in severity from asymptomatic to severe/critical disease. SARS-CoV-2 uses angiotensin-converting enzyme 2 to infect cells leading to a strong inflammatory response, which is most profound in patients who progress to severe Covid-19. Recent studies have begun to unravel some of the differences in the innate and adaptive immune response to SARS-CoV-2 in patients with different degrees of disease severity. These studies have attributed the severe form of Covid-19 to a dysfunctional innate immune response, such as a delayed and/or deficient type I interferon response, coupled with an exaggerated and/or a dysfunctional adaptive immunity. Differences in T-cell (including CD4+ T-cells, CD8+ T-cells, T follicular helper cells, γδ-T-cells, and regulatory T-cells) and B-cell (transitional cells, double-negative 2 cells, antibody-secreting cells) responses have been identified in patients with severe disease compared to mild cases. Moreover, differences in the kinetic/titer of neutralizing antibody responses have been described in severe disease, which may be confounded by antibody-dependent enhancement. Importantly, the presence of preexisting autoantibodies against type I interferon has been described as a major cause of severe/critical disease. Additionally, priorVaccine and multiple vaccine exposure, trained innate immunity, cross-reactive immunity, and serological immune imprinting may all contribute towards disease severity and outcome. Several therapeutic and preventative approaches have been under intense investigations; these include vaccines (three of which have passed Phase 3 clinical trials), therapeutic antibodies, and immunosuppressants.
Collapse
Affiliation(s)
- Amal Hasan
- Department of Immunology and Microbiology, Research Division, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
| | - Ebaa Al-Ozairi
- Clinical Research Unit, Medical Division, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
- Department of Medicine, Faculty of Medicine, Jabriya, Kuwait City, Kuwait
| | - Zahraa Al-Baqsumi
- Department of Immunology and Microbiology, Research Division, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
| | - Rasheed Ahmad
- Department of Immunology and Microbiology, Research Division, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Functional Genomics, Research Division, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
| |
Collapse
|
229
|
Othman A, Sekheri M, Filep JG. Roles of neutrophil granule proteins in orchestrating inflammation and immunity. FEBS J 2021; 289:3932-3953. [PMID: 33683814 PMCID: PMC9546106 DOI: 10.1111/febs.15803] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/17/2021] [Accepted: 03/05/2021] [Indexed: 12/17/2022]
Abstract
Neutrophil granulocytes form the first line of host defense against invading pathogens and tissue injury. They are rapidly recruited from the blood to the affected sites, where they deploy an impressive arsenal of effectors to eliminate invading microbes and damaged cells. This capacity is endowed in part by readily mobilizable proteins acquired during granulopoiesis and stored in multiple types of cytosolic granules with each granule type containing a unique cargo. Once released, granule proteins contribute to killing bacteria within the phagosome or the extracellular milieu, but are also capable of inflicting collateral tissue damage. Neutrophil-driven inflammation underlies many common diseases. Research over the last decade has documented neutrophil heterogeneity and functional versatility far beyond their antimicrobial function. Emerging evidence indicates that neutrophils utilize granule proteins to interact with innate and adaptive immune cells and orchestrate the inflammatory response. Granule proteins have been identified as important modulators of neutrophil trafficking, reverse transendothelial migration, phagocytosis, neutrophil life span, neutrophil extracellular trap formation, efferocytosis, cytokine activity, and autoimmunity. Hence, defining their roles within the inflammatory locus is critical for minimizing damage to the neighboring tissue and return to homeostasis. Here, we provide an overview of recent advances in the regulation of degranulation, granule protein functions, and signaling in modulating neutrophil-mediated immunity. We also discuss how targeting granule proteins and/or signaling could be harnessed for therapeutic benefits.
Collapse
Affiliation(s)
- Amira Othman
- Department of Pathology and Cell Biology, University of Montreal, QC, Canada.,Department of Biomedical Sciences, University of Montreal, QC, Canada.,Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
| | - Meriem Sekheri
- Department of Biomedical Sciences, University of Montreal, QC, Canada.,Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
| | - János G Filep
- Department of Pathology and Cell Biology, University of Montreal, QC, Canada.,Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
| |
Collapse
|
230
|
Godement M, Zhu J, Cerf C, Vieillard-Baron A, Maillon A, Zuber B, Bardet V, Geri G. Neutrophil Extracellular Traps in SARS-CoV2 Related Pneumonia in ICU Patients: The NETCOV2 Study. Front Med (Lausanne) 2021; 8:615984. [PMID: 33708778 PMCID: PMC7940514 DOI: 10.3389/fmed.2021.615984] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/29/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a poorly understood disease involving a high inflammatory status. Neutrophil extracellular traps (NETs) have been described as a new pathway to contain infectious diseases but can also participate in the imbalance of the inflammatory and the coagulation systems. NETs could be a therapeutic target in COVID-19 patients. Methods: Consecutive patients with SARS-CoV2 related pneumonia admitted to the intensive care unit were included in a prospective bicentric study. Neutrophil extracellular trap concentrations were quantified in whole blood samples at day-1 and day-3 by flow cytometry. The primary outcome was the association between the blood NET quantification at ICU admission and the number of days with refractory hypoxemia defined by a PaO2/FIO2 ratio ≤100 mmHg. Results: Among 181 patients admitted to the ICUs for acute respiratory failure related to SARS-CoV2 pneumonia, 58 were included in the analysis. Patients were 62 [54, 69] years old in median, mostly male (75.9%). The median number of days with severe hypoxemia was 4 [2, 6] days and day-28 mortality was 27.6% (n = 16). The blood level of NETs significantly decreased between day-1 and day-3 in patients who survived (59.5 [30.5, 116.6] to 47 [33.2, 62.4] p = 0.006; 8.6 [3.4, 18.0] to 4 [1.4, 10.7] p = 0.001 and 7.4 [4.0, 16.7] to 2.6 [1.0, 8.3] p = 0.001 for MPO+, Cit-H3+, and MPO+ Cit-H3+ NETs, respectively) while it remained stable in patients who died (38.4 [26.0, 54.8] to 44.5 [36.4, 77.7] p = 0.542; 4.9 [1.3, 13.0] to 5.5 [2.8, 6.9] p = 0.839 and 4 [1.3, 13.6] to 2.7 [1.4, 4.5] p = 0.421 for MPO+, Cit-H3+, and MPO+ Cit-H3+ NETs, respectively). In multivariable negative binomial regression, the blood level of MPO+ NETs was negatively associated with the number of days with severe hypoxemia within 7 days (0.84 [0.73, 0.97]), while neither Cit-H3+ NETs nor double-positive NETs were significantly associated with the primary outcome. Conclusion: The whole blood level of NETs at day-1 was negatively associated with the number of days with severe hypoxemia in patients admitted to the intensive care unit for SARS-CoV2 related pneumonia. The lack of decrease of the blood level of NETs between day-1 and day-3 discriminated patients who died within day-28.
Collapse
Affiliation(s)
- Mathieu Godement
- Medical Intensive Care Unit, Ambroise Paré Hospital, APHP, Paris, France.,Paris Saclay University, Saint-Aubin, France
| | - Jaja Zhu
- Paris Saclay University, Saint-Aubin, France.,Biological Hematology Department, Ambroise Paré Hospital, APHP, Paris, France
| | - Charles Cerf
- Medico-Surgical Intensive Care Unit, Foch Hospital, Paris, France
| | - Antoine Vieillard-Baron
- Medical Intensive Care Unit, Ambroise Paré Hospital, APHP, Paris, France.,Paris Saclay University, Saint-Aubin, France.,INSERM UMR 1018, Clinical Epidemiology Team, CESP, Paris, France.,FHU SEPSIS (Saclay Endeavour to PersonnaliSe Interventions for Sepsis), Paris Saclay University, Saint-Aubin, France
| | - Agathe Maillon
- Paris Saclay University, Saint-Aubin, France.,Biological Hematology Department, Ambroise Paré Hospital, APHP, Paris, France
| | - Benjamin Zuber
- Medico-Surgical Intensive Care Unit, Foch Hospital, Paris, France
| | - Valérie Bardet
- Paris Saclay University, Saint-Aubin, France.,Biological Hematology Department, Ambroise Paré Hospital, APHP, Paris, France.,FHU SEPSIS (Saclay Endeavour to PersonnaliSe Interventions for Sepsis), Paris Saclay University, Saint-Aubin, France
| | - Guillaume Geri
- Medical Intensive Care Unit, Ambroise Paré Hospital, APHP, Paris, France.,Paris Saclay University, Saint-Aubin, France.,INSERM UMR 1018, Clinical Epidemiology Team, CESP, Paris, France.,FHU SEPSIS (Saclay Endeavour to PersonnaliSe Interventions for Sepsis), Paris Saclay University, Saint-Aubin, France
| |
Collapse
|
231
|
Silver Nanoparticles Induce Neutrophil Extracellular Traps Via Activation of PAD and Neutrophil Elastase. Biomolecules 2021; 11:biom11020317. [PMID: 33669660 PMCID: PMC7922014 DOI: 10.3390/biom11020317] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 01/08/2023] Open
Abstract
Silver nanoparticles (AgNPs) are widely used in various fields because of their antimicrobial properties. However, many studies have reported that AgNPs can be harmful to both microorganisms and humans. Reactive oxygen species (ROS) are a key factor of cytotoxicity of AgNPs in mammalian cells and an important factor in the immune reaction of neutrophils. The immune reactions of neutrophils include the expulsion of webs of DNA surrounded by histones and granular proteins. These webs of DNA are termed neutrophil extracellular traps (NETs). NETs allow neutrophils to catch and destroy pathogens in extracellular spaces. In this study, we investigated how AgNPs stimulate neutrophils, specifically focusing on NETs. Freshly isolated human neutrophils were treated with 5 or 100 nm AgNPs. The 5 nm AgNPs induced NET formation, but the 100 nm AgNPs did not. Subsequently, we investigated the mechanism of AgNP-induced NETs using known inhibitors related to NET formation. AgNP-induced NETs were dependent on ROS, peptidyl arginine deiminase, and neutrophil elastase. The result in this study indicates that treatment of 5 nm AgNPs induce NET formation through histone citrullination by peptidyl arginine deiminase and histone cleavage by neutrophil elastase.
Collapse
|
232
|
Venditto VJ, Haydar D, Abdel-Latif A, Gensel JC, Anstead MI, Pitts MG, Creameans J, Kopper TJ, Peng C, Feola DJ. Immunomodulatory Effects of Azithromycin Revisited: Potential Applications to COVID-19. Front Immunol 2021; 12:574425. [PMID: 33643308 PMCID: PMC7906979 DOI: 10.3389/fimmu.2021.574425] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
The rapid advancement of the COVID-19 pandemic has prompted an accelerated pursuit to identify effective therapeutics. Stages of the disease course have been defined by viral burden, lung pathology, and progression through phases of the immune response. Immunological factors including inflammatory cell infiltration and cytokine storm have been associated with severe disease and death. Many immunomodulatory therapies for COVID-19 are currently being investigated, and preliminary results support the premise of targeting the immune response. However, because suppressing immune mechanisms could also impact the clearance of the virus in the early stages of infection, therapeutic success is likely to depend on timing with respect to the disease course. Azithromycin is an immunomodulatory drug that has been shown to have antiviral effects and potential benefit in patients with COVID-19. Multiple immunomodulatory effects have been defined for azithromycin which could provide efficacy during the late stages of the disease, including inhibition of pro-inflammatory cytokine production, inhibition of neutrophil influx, induction of regulatory functions of macrophages, and alterations in autophagy. Here we review the published evidence of these mechanisms along with the current clinical use of azithromycin as an immunomodulatory therapeutic. We then discuss the potential impact of azithromycin on the immune response to COVID-19, as well as caution against immunosuppressive and off-target effects including cardiotoxicity in these patients. While azithromycin has the potential to contribute efficacy, its impact on the COVID-19 immune response requires additional characterization so as to better define its role in individualized therapy.
Collapse
Affiliation(s)
- Vincent J. Venditto
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Dalia Haydar
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Ahmed Abdel-Latif
- Gill Heart Institute and Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - John C. Gensel
- Department of Physiology, Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Michael I. Anstead
- Department of Pediatrics, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Michelle G. Pitts
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Jarrod Creameans
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Timothy J. Kopper
- Department of Physiology, Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Chi Peng
- Gill Heart Institute and Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - David J. Feola
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
233
|
Cichon I, Ortmann W, Santocki M, Opydo-Chanek M, Kolaczkowska E. Scrutinizing Mechanisms of the 'Obesity Paradox in Sepsis': Obesity Is Accompanied by Diminished Formation of Neutrophil Extracellular Traps (NETs) Due to Restricted Neutrophil-Platelet Interactions. Cells 2021; 10:384. [PMID: 33673387 PMCID: PMC7918512 DOI: 10.3390/cells10020384] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
Systemic inflammation is a detrimental condition associated with high mortality. However, obese individuals seem to have higher chances of surviving sepsis. To elucidate what immunological differences exist between obese and lean individuals we studied the course of endotoxemia in mice fed high-fat diet (HFD) and ob/ob animals. Intravital microscopy revealed that neutrophil extracellular trap (NET) formation in liver vasculature is negligible in obese mice in sharp contrast to their lean counterparts (ND). Unlike in lean individuals, neutrophil influx is not driven by leptin or interleukin 33 (IL-33), nor occurs via a chemokine receptor CXCR2. In obese mice less platelets interact with neutrophils forming less aggregates. Platelets transfer from ND to HFD mice partially restores NET formation, and even further so upon P-selectin blockage on them. The study reveals that in obesity the overexaggerated inflammation and NET formation are limited during sepsis due to dysfunctional platelets suggesting their targeting as a therapeutic tool in systemic inflammation.
Collapse
Affiliation(s)
| | | | | | | | - Elzbieta Kolaczkowska
- Department of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Krakow, Poland; (I.C.); (W.O.); (M.S.); (M.O.-C.)
| |
Collapse
|
234
|
Guo Y, Gao F, Wang Q, Wang K, Pan S, Pan Z, Xu S, Li L, Zhao D. Differentiation of HL-60 cells in serum-free hematopoietic cell media enhances the production of neutrophil extracellular traps. Exp Ther Med 2021; 21:353. [PMID: 33732326 PMCID: PMC7903455 DOI: 10.3892/etm.2021.9784] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are web-like structures made of chromatin and have been identified to have a role in the host's immune defense. Differentiated human promyelocytic leukemia HL-60 cells (dHL-60) have been used to study the mechanisms of NETs formation, as neutrophils have a short lifespan that limits their use. However, dHL-60 cells are inefficient at generating NETs and therefore are not ideal replacements for neutrophils in studying of NET formation. In the present study, the optimal cell culture conditions and differentiation time that result in the most effective release of NETs from dHL-60 cells upon stimulation were determined. HL-60 cells were cultured in serum (FBS) or serum-free (X-VIVO) medium and differentiated using all-trans retinoic acid (ATRA) or dimethyl sulfoxide (DMSO). dHL-60 cells were stimulated with phorbol 12-myristate 13-acetate (PMA) or Ca2+ ionophore (CI). Cell differentiation and apoptosis, as well as the formation of reactive oxygen species (ROS) and citrullinated histone H3 (citH3) were analyzed using flow cytometry. NETs were visualized using fluorescence microscopy and NET quantification was performed using PicoGreen. Induction of HL-60 cells for five days produced the best results in terms of differentiation markers and cell viability. Both ATRA- and DMSO-induced dHL-60 cells were able to release NETs upon PMA and CI stimulation; dHL-60 cells in serum-free medium produced more NETs than those in serum-containing medium. DMSO-dHL-60 (X-VIVO) cells were most efficient at producing NETs and ROS upon stimulation with PMA, while ATRA-dHL-60 (X-VIVO) cells were most efficient at producing NETs and citH3 upon stimulation with CI. It was concluded that DMSO-dHL-60 (X-VIVO) may be a model for the study of ROS-high NETosis and ATRA-dHL-60 (X-VIVO) may be suitable for ROS-low NETosis.
Collapse
Affiliation(s)
- Yun Guo
- Department of Respiratory Medicine, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Fei Gao
- Department of Intensive Care Unit, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Qian Wang
- Department of Respiratory Medicine, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Kang Wang
- Department of Laboratory, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Shanshan Pan
- Department of Respiratory Medicine, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Zhenzhen Pan
- Department of Respiratory Medicine, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Shiyao Xu
- Department of Respiratory Medicine, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Ling Li
- Department of Respiratory Medicine, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Deyu Zhao
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
235
|
Gu T, Zhao S, Jin G, Song M, Zhi Y, Zhao R, Ma F, Zheng Y, Wang K, Liu H, Xin M, Han W, Li X, Dong CD, Liu K, Dong Z. Cytokine Signature Induced by SARS-CoV-2 Spike Protein in a Mouse Model. Front Immunol 2021; 11:621441. [PMID: 33584719 PMCID: PMC7876321 DOI: 10.3389/fimmu.2020.621441] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
Although COVID-19 has become a major challenge to global health, there are currently no efficacious agents for effective treatment. Cytokine storm syndrome (CSS) can lead to acute respiratory distress syndrome (ARDS), which contributes to most COVID-19 mortalities. Research points to interleukin 6 (IL-6) as a crucial signature of the cytokine storm, and the clinical use of the IL-6 inhibitor tocilizumab shows potential for treatment of COVID-19 patient. In this study, we challenged wild-type and adenovirus-5/human angiotensin-converting enzyme 2-expressing BALB/c mice with a combination of polyinosinic-polycytidylic acid and recombinant SARS-CoV-2 spike-extracellular domain protein. High levels of TNF-α and nearly 100 times increased IL-6 were detected at 6 h, but disappeared by 24 h in bronchoalveolar lavage fluid (BALF) following immunostimulant challenge. Lung injury observed by histopathologic changes and magnetic resonance imaging at 24 h indicated that increased TNF-α and IL-6 may initiate CSS in the lung, resulting in the continual production of inflammatory cytokines. We hypothesize that TNF-α and IL-6 may contribute to the occurrence of CSS in COVID-19. We also investigated multiple monoclonal antibodies (mAbs) and inhibitors for neutralizing the pro-inflammatory phenotype of COVID-19: mAbs against IL-1α, IL-6, TNF-α, and granulocyte-macrophage colony-stimulating factor (GM-CSF), and inhibitors of p38 and JAK partially relieved CSS; mAbs against IL-6, TNF-α, and GM-CSF, and inhibitors of p38, extracellular signal-regulated kinase, and myeloperoxidase somewhat reduced neutrophilic alveolitis in the lung. This novel murine model opens a biologically safe, time-saving avenue for clarifying the mechanism of CSS/ARDS in COVID-19 and developing new therapeutic drugs.
Collapse
Affiliation(s)
- Tingxuan Gu
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Simin Zhao
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
- Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Guoguo Jin
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
- The Henan Luoyang Orthopedic Hospital, Zhengzhou, China
| | - Mengqiu Song
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Yafei Zhi
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Ran Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Fayang Ma
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Yaqiu Zheng
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Keke Wang
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Hui Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Mingxia Xin
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Wei Han
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Xiang Li
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
- Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, China
| | | | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
- Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| |
Collapse
|
236
|
Overmyer KA, Shishkova E, Miller IJ, Balnis J, Bernstein MN, Peters-Clarke TM, Meyer JG, Quan Q, Muehlbauer LK, Trujillo EA, He Y, Chopra A, Chieng HC, Tiwari A, Judson MA, Paulson B, Brademan DR, Zhu Y, Serrano LR, Linke V, Drake LA, Adam AP, Schwartz BS, Singer HA, Swanson S, Mosher DF, Stewart R, Coon JJ, Jaitovich A. Large-Scale Multi-omic Analysis of COVID-19 Severity. Cell Syst 2021; 12:23-40.e7. [PMID: 33096026 PMCID: PMC7543711 DOI: 10.1016/j.cels.2020.10.003] [Citation(s) in RCA: 404] [Impact Index Per Article: 101.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/24/2020] [Accepted: 10/05/2020] [Indexed: 01/08/2023]
Abstract
We performed RNA-seq and high-resolution mass spectrometry on 128 blood samples from COVID-19-positive and COVID-19-negative patients with diverse disease severities and outcomes. Quantified transcripts, proteins, metabolites, and lipids were associated with clinical outcomes in a curated relational database, uniquely enabling systems analysis and cross-ome correlations to molecules and patient prognoses. We mapped 219 molecular features with high significance to COVID-19 status and severity, many of which were involved in complement activation, dysregulated lipid transport, and neutrophil activation. We identified sets of covarying molecules, e.g., protein gelsolin and metabolite citrate or plasmalogens and apolipoproteins, offering pathophysiological insights and therapeutic suggestions. The observed dysregulation of platelet function, blood coagulation, acute phase response, and endotheliopathy further illuminated the unique COVID-19 phenotype. We present a web-based tool (covid-omics.app) enabling interactive exploration of our compendium and illustrate its utility through a machine learning approach for prediction of COVID-19 severity.
Collapse
Affiliation(s)
- Katherine A Overmyer
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA; Morgridge Institute for Research, Madison, WI 53562, USA
| | - Evgenia Shishkova
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA; Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53562, USA
| | - Ian J Miller
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA; Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53562, USA
| | - Joseph Balnis
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY 12208, USA; Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | | | - Trenton M Peters-Clarke
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA; Department of Chemistry, University of Wisconsin, Madison, WI 53562, USA
| | - Jesse G Meyer
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA; Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53562, USA
| | - Qiuwen Quan
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA; Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53562, USA
| | - Laura K Muehlbauer
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA; Department of Chemistry, University of Wisconsin, Madison, WI 53562, USA
| | - Edna A Trujillo
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA; Department of Chemistry, University of Wisconsin, Madison, WI 53562, USA
| | - Yuchen He
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA; Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53562, USA
| | - Amit Chopra
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY 12208, USA
| | - Hau C Chieng
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY 12208, USA
| | - Anupama Tiwari
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY 12208, USA; Division of Sleep Medicine, Albany Medical Center, Albany, NY 12208, USA
| | - Marc A Judson
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY 12208, USA
| | - Brett Paulson
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA; Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53562, USA
| | - Dain R Brademan
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA; Department of Chemistry, University of Wisconsin, Madison, WI 53562, USA
| | - Yunyun Zhu
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA; Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53562, USA
| | - Lia R Serrano
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA; Department of Chemistry, University of Wisconsin, Madison, WI 53562, USA
| | - Vanessa Linke
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA; Department of Chemistry, University of Wisconsin, Madison, WI 53562, USA
| | - Lisa A Drake
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY 12208, USA; Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Alejandro P Adam
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA; Department of Ophthalmology, Albany Medical College, Albany, NY 12208, USA
| | | | - Harold A Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Scott Swanson
- Morgridge Institute for Research, Madison, WI 53562, USA
| | - Deane F Mosher
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53562, USA
| | - Ron Stewart
- Morgridge Institute for Research, Madison, WI 53562, USA
| | - Joshua J Coon
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA; Morgridge Institute for Research, Madison, WI 53562, USA; Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53562, USA; Department of Chemistry, University of Wisconsin, Madison, WI 53562, USA.
| | - Ariel Jaitovich
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY 12208, USA; Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
237
|
Takahashi Y, Wake H, Sakaguchi M, Yoshii Y, Teshigawara K, Wang D, Nishibori M. Histidine-Rich Glycoprotein Stimulates Human Neutrophil Phagocytosis and Prolongs Survival through CLEC1A. THE JOURNAL OF IMMUNOLOGY 2021; 206:737-750. [PMID: 33452125 DOI: 10.4049/jimmunol.2000817] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022]
Abstract
Histidine-rich glycoprotein (HRG) is a multifunctional plasma protein and maintains the homeostasis of blood cells and vascular endothelial cells. In the current study, we demonstrate that HRG and recombinant HRG concentration dependently induced the phagocytic activity of isolated human neutrophils against fluorescence-labeled Escherichia coli and Staphylococcus aureus through the stimulation of CLEC1A receptors, maintaining their spherical round shape. The phagocytosis-inducing effects of HRG were inhibited by a specific anti-HRG Ab and enhanced by opsonization of bacteria with diluted serum. HRG and C5a prolonged the survival time of isolated human neutrophils, in association with a reduction in the spontaneous production of extracellular ROS. In contrast, HRG maintained the responsiveness of neutrophils to TNF-α, zymosan, and E. coli with regard to reactive oxygen species production. The blocking Ab for CLEC1A and recombinant CLEC1A-Fc fusion protein significantly inhibited the HRG-induced neutrophil rounding, phagocytic activity, and prolongation of survival time, suggesting the involvement of the CLEC1A receptor in the action of HRG on human neutrophils. These results as a whole indicated that HRG facilitated the clearance of E. coli and S. aureus by maintaining the neutrophil morphology and phagocytosis, contributing to the antiseptic effects of HRG in vivo.
Collapse
Affiliation(s)
- Yohei Takahashi
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; and
| | - Hidenori Wake
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; and
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Yukinori Yoshii
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; and
| | - Kiyoshi Teshigawara
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; and
| | - Dengli Wang
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; and
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; and
| |
Collapse
|
238
|
Alizadeh-Tabrizi N, Hall S, Lehmann C. Intravital Imaging of Pulmonary Immune Response in Inflammation and Infection. Front Cell Dev Biol 2021; 8:620471. [PMID: 33520993 PMCID: PMC7843704 DOI: 10.3389/fcell.2020.620471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/18/2020] [Indexed: 12/29/2022] Open
Abstract
Intravital microscopy (IVM) is a unique imaging method providing insights in cellular functions and interactions in real-time, without the need for tissue extraction from the body. IVM of the lungs has specific challenges such as restricted organ accessibility, respiratory movements, and limited penetration depth. Various surgical approaches and microscopic setups have been adapted in order to overcome these challenges. Among others, these include the development of suction stabilized lung windows and the use of more advanced optical techniques. Consequently, lung IVM has uncovered mechanisms of leukocyte recruitment and function in several models of pulmonary inflammation and infection. This review focuses on bacterial pneumonia, aspiration pneumonia, sepsis-induced acute lung Injury, and cystic fibrosis, as examples of lung inflammation and infection. In addition, critical details of intravital imaging techniques of the lungs are discussed.
Collapse
Affiliation(s)
| | - Stefan Hall
- Department of Physiology & Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Christian Lehmann
- Department of Physiology & Biophysics, Dalhousie University, Halifax, NS, Canada.,Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
239
|
Loo J, Spittle DA, Newnham M. COVID-19, immunothrombosis and venous thromboembolism: biological mechanisms. Thorax 2021; 76:412-420. [PMID: 33408195 DOI: 10.1136/thoraxjnl-2020-216243] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/30/2020] [Accepted: 11/11/2020] [Indexed: 12/17/2022]
Abstract
Thrombotic events that frequently occur in COVID-19 are predominantly venous thromboemboli (VTE) and are associated with increasing disease severity and worse clinical outcomes. Distinctive microvascular abnormalities in COVID-19 include endothelial inflammation, disruption of intercellular junctions and microthrombi formation. A distinct COVID-19-associated coagulopathy along with increased cytokines and activation of platelets, endothelium and complement occur in COVID-19, which is more frequent with worsening disease severity. This proinflammatory milieu may result in immunothrombosis, a host defence mechanism that can become dysregulated, leading to excess formation of immunologically mediated thrombi which predominantly affect the microvasculature. The haemostatic and immune systems are intricately linked, and multifactorial processes are likely to contribute to VTE and immunothrombosis in COVID-19. This state-of-the-art review will explore the pathobiological mechanisms of immunothrombosis and VTE in COVID-19 focusing on: COVID-19-associated coagulopathy, pathology, endothelial dysfunction and haemostasis, the immune system and thrombosis, genetic associations and additional thrombotic mechanisms. An understanding of the complex interplay between these processes is necessary for developing and assessing how new treatments affect VTE and immunothrombosis in COVID-19.
Collapse
Affiliation(s)
- Joan Loo
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Daniella A Spittle
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Michael Newnham
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
240
|
Lee YY, Park HH, Park W, Kim H, Jang JG, Hong KS, Lee JY, Seo HS, Na DH, Kim TH, Choy YB, Ahn JH, Lee W, Park CG. Long-acting nanoparticulate DNase-1 for effective suppression of SARS-CoV-2-mediated neutrophil activities and cytokine storm. Biomaterials 2021; 267:120389. [PMID: 33130319 PMCID: PMC7583619 DOI: 10.1016/j.biomaterials.2020.120389] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/07/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new strain of coronavirus not previously identified in humans. Globally, the number of confirmed cases and mortality rates of coronavirus disease 2019 (COVID-19) have risen dramatically. Currently, there are no FDA-approved antiviral drugs and there is an urgency to develop treatment strategies that can effectively suppress SARS-CoV-2-mediated cytokine storms, acute respiratory distress syndrome (ARDS), and sepsis. As symptoms progress in patients with SARS-CoV-2 sepsis, elevated amounts of cell-free DNA (cfDNA) are produced, which in turn induce multiple organ failure in these patients. Furthermore, plasma levels of DNase-1 are markedly reduced in SARS-CoV-2 sepsis patients. In this study, we generated recombinant DNase-1-coated polydopamine-poly(ethylene glycol) nanoparticulates (named long-acting DNase-1), and hypothesized that exogenous administration of long-acting DNase-1 may suppress SARS-CoV-2-mediated neutrophil activities and the cytokine storm. Our findings suggest that exogenously administered long-acting nanoparticulate DNase-1 can effectively reduce cfDNA levels and neutrophil activities and may be used as a potential therapeutic intervention for life-threatening SARS-CoV-2-mediated illnesses.
Collapse
Affiliation(s)
- Yun Young Lee
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Hee Ho Park
- Department of Biotechnology and Bioengineering, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Wooram Park
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Hyelim Kim
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jong Geol Jang
- Division of Pulmonary and Allergy, Department of Internal Medicine, College of Medicine, Yeungnam University and Regional Center for Respiratory Diseases, Yeungnam University Medical Center, Daegu, 42415, Republic of Korea
| | - Kyung Soo Hong
- Division of Pulmonary and Allergy, Department of Internal Medicine, College of Medicine, Yeungnam University and Regional Center for Respiratory Diseases, Yeungnam University Medical Center, Daegu, 42415, Republic of Korea
| | - Jae-Young Lee
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hee Seung Seo
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Dong Hee Na
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Young Bin Choy
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - June Hong Ahn
- Division of Pulmonary and Allergy, Department of Internal Medicine, College of Medicine, Yeungnam University and Regional Center for Respiratory Diseases, Yeungnam University Medical Center, Daegu, 42415, Republic of Korea.
| | - Wonhwa Lee
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea.
| |
Collapse
|
241
|
Xu B, Wang H, Chen Z. Puerarin Inhibits Ferroptosis and Inflammation of Lung Injury Caused by Sepsis in LPS Induced Lung Epithelial Cells. Front Pediatr 2021; 9:706327. [PMID: 34422728 PMCID: PMC8371381 DOI: 10.3389/fped.2021.706327] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/23/2021] [Indexed: 01/18/2023] Open
Abstract
Background: Ferroptosis is a new type of programmed cell death, which plays an important role in lung injury caused by sepsis. Studies have reported that Puerarin (Pue) can treat lung injury caused by sepsis in children, but whether it plays a role by regulating iron death has not been reported. Methods: LPS induced human alveolar epithelial cell A549 to form a model of lung injury caused by sepsis. MTT detected the effect of Pue on A549 cell viability and the effect of Pue on LPS-induced A549 cell viability. The effects of Pue on LPS-induced inflammatory cytokines TNF-α, IL-8, IL-1β in A549 cells were determined by ELISA assay. The expression level of MDA was detected by TBARS colorimetric quantitative detection kit. GSH kit was used to detect the expression of GSH in cells. The iron kit detected the total iron level and the expression level of ferric divalent ions in the cells. DCFH-DA fluorescent probe was used to detect ROS levels. Western blot was used to detect the expression of ferroptosis-related proteins in cells. Results: Pue alleviated LPS-induced injury and inflammatory response in A549 cells, and Pue reduced the expression of ROS, MDA and GSH in LPS-induced A549 cells. In addition, Pue reduced total iron levels and ferrous ion levels in LPS-induced A549 cells, and decreased the expression of iron ferroptosis-related proteins. Conclusion: Puerarin inhibited ferroptosis and inflammation of lung injury caused by sepsis in children in LPS induced lung epithelial cells.
Collapse
Affiliation(s)
- Baiye Xu
- Department of Pediatrics, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Haidao Wang
- Department of Pediatrics, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Zhen Chen
- Department of Pediatrics, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| |
Collapse
|
242
|
Abstract
Neutrophils produce neutrophil extracellular traps (NETs) by expelling their extracellular chromatin embedded with citrullinated histone H3, myeloperoxidase, and other intracellular molecules. Since their discovery in 2004, numerous articles have demonstrated the mechanism of NET formation and their function in innate immunity and inflammation. NET components often play an antimicrobial role, but excessive NETs are deleterious and can cause inflammation and tissue damage. This review highlights recent advancements in the identification of novel pathways and mechanisms of NET formation. We also focus on the specific damaging impact of NETs in individual organs. We then discuss the progress and limitations of various NET detection assays. Collectively, these vital aspects of NETs significantly improve our understanding of the pathobiology of NETs and future diagnostics and therapeutic tools for examining and modulating NETs in inflammatory diseases.
Collapse
Affiliation(s)
- Chuyi Tan
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Departments of Surgery and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| |
Collapse
|
243
|
Abstract
Neutrophils are recruited rapidly to sites of infection in response to host- and/or microbe-derived proinflammatory molecules. At such sites, neutrophils phagocytose microbes and are activated to produce superoxide and other reactive oxygen species (ROS). In addition, neutrophils contain stores of antimicrobial peptides and enzymes that work in concert with ROS to kill ingested microbes. Neutrophils can also release chromosomal DNA bound with antimicrobial peptides and enzymes to form web-like structures known as extracellular traps. Neutrophil extracellular traps (NETs) have been reported to ensnare and kill microbes and are commonly considered to be an important component of innate host defense. Notably, the formation of NETs is most often reported as a cytolytic process. Whereas intraphagosomal killing of microbes sequesters cytotoxic antimicrobial molecules that would otherwise damage host tissues, the formation of NETs and associated extracellular release of these molecules can contribute to host tissue destruction and disease. Here we compare and contrast phagocytosis and NETs in host defense, with emphasis on recent studies of NETs that ultimately underscore the importance of phagocytosis as the primary means by which neutrophils eliminate microbes.
Collapse
Affiliation(s)
- Frank R DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Lee-Ann H Allen
- Inflammation Program, Department of Internal Medicine and Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
- VA Healthcare System, Iowa City, IA, USA
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO, USA
| |
Collapse
|
244
|
Neutralizing the pathological effects of extracellular histones with small polyanions. Nat Commun 2020; 11:6408. [PMID: 33328478 PMCID: PMC7744542 DOI: 10.1038/s41467-020-20231-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 11/19/2020] [Indexed: 12/21/2022] Open
Abstract
Extracellular histones in neutrophil extracellular traps (NETs) or in chromatin from injured tissues are highly pathological, particularly when liberated by DNases. We report the development of small polyanions (SPAs) (~0.9–1.4 kDa) that interact electrostatically with histones, neutralizing their pathological effects. In vitro, SPAs inhibited the cytotoxic, platelet-activating and erythrocyte-damaging effects of histones, mechanistic studies revealing that SPAs block disruption of lipid-bilayers by histones. In vivo, SPAs significantly inhibited sepsis, deep-vein thrombosis, and cardiac and tissue-flap models of ischemia-reperfusion injury (IRI), but appeared to differ in their capacity to neutralize NET-bound versus free histones. Analysis of sera from sepsis and cardiac IRI patients supported these differential findings. Further investigations revealed this effect was likely due to the ability of certain SPAs to displace histones from NETs, thus destabilising the structure. Finally, based on our work, a non-toxic SPA that inhibits both NET-bound and free histone mediated pathologies was identified for clinical development. Histones, proteins that bind DNA, are toxic for pathogens outside cells but can also cause multi-organ damage as seen in sepsis. Here the authors develop small negatively charged molecules that can be used as histone antidotes, and show that they improve the phenotype in mouse models with histone-related pathologies.
Collapse
|
245
|
Zimmerman GA. Platelets: inflammatory effector cells in the conflagration of cystic fibrosis lung disease. J Clin Invest 2020; 130:1632-1634. [PMID: 32175918 DOI: 10.1172/jci135949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cystic fibrosis (CF) is a multisystem disorder, but progressive inflammatory lung disease causes the greatest burden of morbidity and death. Recent translational and mechanistic studies of samples from patients, and observations in animal models, indicate that platelets may drive lung injury and contribute to dysregulated host defense in CF lung disease. In this issue of the JCI, Ortiz-Muñoz and Yu et al. explored the role that the cystic fibrosis transmembrane conductance regulator (CFTR) plays in platelet-related inflammation. The authors used mouse and human model systems to show that CFTR dysfunction in platelets increased calcium entry though the transient receptor potential cation channel 6 (TRPC6), causing hyperactivation and consequent experimental lung inflammation. The study persuasively suggests that platelets are critical thromboinflammatory effector cells in CF lung disease. In the context of platelet-related organ injury seen in a variety of other diseases and syndromes, platelets may also contribute to nonpulmonary manifestations and comorbidities of CF.
Collapse
|
246
|
McVey MJ, Steinberg BE, Goldenberg NM. Inflammasome activation in acute lung injury. Am J Physiol Lung Cell Mol Physiol 2020; 320:L165-L178. [PMID: 33296269 DOI: 10.1152/ajplung.00303.2020] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Inflammasomes are multiprotein complexes tasked with sensing endogenous or exogenous inflammatory signals and integrating this signal into a downstream response. Inflammasome activation has been implicated in a variety of pulmonary diseases, including pulmonary hypertension, bacterial pneumonia, COPD, and asthma. Of increasing interest is the contribution of inflammasome activation in the context of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Inflammasome activation in both the lung parenchyma and resident immune cells generates intereukin-1β (IL-1β) and IL-18, both of which drive the cascade of lung inflammation forward. Blockade of these responses has been shown to be beneficial in animal models and is a focus of translational research in the field. In this review, we will discuss the assembly and regulation of inflammasomes during lung inflammation, highlighting therapeutically viable effector steps. We will examine the importance of IL-1β and IL-18, two key products of inflammasome activation, in ALI, as well as the contribution of the pulmonary endothelial cell to this process. Finally, we will explore translational research moving toward anti-inflammasome therapies for ALI/ARDS and speculate toward future directions for the field.
Collapse
Affiliation(s)
- Mark J McVey
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Physics, Ryerson University, Toronto, Ontario, Canada
| | - Benjamin E Steinberg
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Neil M Goldenberg
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
247
|
Park HH, Park W, Lee YY, Kim H, Seo HS, Choi DW, Kwon H, Na DH, Kim T, Choy YB, Ahn JH, Lee W, Park CG. Bioinspired DNase-I-Coated Melanin-Like Nanospheres for Modulation of Infection-Associated NETosis Dysregulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001940. [PMID: 33173718 PMCID: PMC7645930 DOI: 10.1002/advs.202001940] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/23/2020] [Indexed: 05/08/2023]
Abstract
The current outbreak of the beta-coronavirus (beta-Cov) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began in December 2019. No specific antiviral treatments or vaccines are currently available. A recent study has reported that coronavirus disease 2019 (COVID-19), the disease caused by SARS-CoV-2 infection, is associated with neutrophil-specific plasma membrane rupture, and release excessive neutrophil extracellular traps (NETs) and extracellular DNAs (eDNAs). This mechanism involves the activation of NETosis, a neutrophil-specific programmed cell death, which is believed to play a crucial role in COVID-19 pathogenesis. Further progression of the disease can cause uncontrolled inflammation, leading to the initiation of cytokine storms, acute respiratory distress syndrome (ARDS), and sepsis. Herein, it is reported that DNase-I-coated melanin-like nanospheres (DNase-I pMNSs) mitigate sepsis-associated NETosis dysregulation, thereby preventing further progression of the disease. Recombinant DNase-I and poly(ethylene glycol) (PEG) are used as coatings to promote the lengthy circulation and dissolution of NET structure. The data indicate that the application of bioinspired DNase-I pMNSs reduce neutrophil counts and NETosis-related factors in the plasma of SARS-CoV-2 sepsis patients, alleviates systemic inflammation, and attenuates mortality in a septic mouse model. Altogether, the findings suggest that these nanoparticles have potential applications in the treatment of SARS-CoV-2-related illnesses and other beta-CoV-related diseases.
Collapse
Affiliation(s)
- Hee Ho Park
- Department of Biotechnology and BioengineeringKangwon National UniversityChuncheonGangwon‐do24341Republic of Korea
| | - Wooram Park
- Department of Biomedical‐Chemical EngineeringThe Catholic University of KoreaBucheon14662Republic of Korea
| | - Yun Young Lee
- Department of Biomedical EngineeringSeoul National University College of MedicineSeoul03080Republic of Korea
| | - Hyelim Kim
- College of PharmacyChungnam National UniversityDaejeon34134Republic of Korea
| | - Hee Seung Seo
- Department of Biomedical EngineeringSKKU Institute for ConvergenceSungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Dong Wook Choi
- Department of Cancer BiologyDana‐Farber Cancer InstituteHarvard Medical SchoolBostonMA02215USA
| | - Ho‐Keun Kwon
- Department of Microbiology and ImmunologyYonsei University College of MedicineSeoul03722Republic of Korea
| | - Dong Hee Na
- College of PharmacyChung‐Ang UniversitySeoul06974Republic of Korea
| | - Tae‐Hyung Kim
- School of Integrative EngineeringChung‐Ang UniversitySeoul06974Republic of Korea
| | - Young Bin Choy
- Department of Biomedical EngineeringSeoul National University College of MedicineSeoul03080Republic of Korea
| | - June Hong Ahn
- Division of Pulmonology and AllergyDepartment of Internal MedicineCollege of MedicineYeungnam University and Regional Center for Respiratory DiseasesYeungnam University Medical CenterDaegu42415Republic of Korea
| | - Wonhwa Lee
- Aging Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Daejeon34141Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical EngineeringSKKU Institute for ConvergenceSungkyunkwan University (SKKU)SuwonRepublic of Korea
- Biomedical Institute for Convergence at SKKU (BICS)Sungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
- Center for Neuroscience Imaging ResearchInstitute for Basic Science (IBS)Suwon16419Republic of Korea
- Department of Intelligent Precision Healthcare ConvergenceSKKU Institute for ConvergenceSungkyunkwan University (SKKU)Suwon16419Republic of Korea
| |
Collapse
|
248
|
Ouwendijk WJ, van den Ham HJ, Delany MW, van Kampen JJ, van Nierop GP, Mehraban T, Zaaraoui-Boutahar F, van IJcken WF, van den Brand JM, de Vries RD, Andeweg AC, Verjans GM. Alveolar barrier disruption in varicella pneumonia is associated with neutrophil extracellular trap formation. JCI Insight 2020; 5:138900. [PMID: 33021967 PMCID: PMC7710321 DOI: 10.1172/jci.insight.138900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/30/2020] [Indexed: 12/29/2022] Open
Abstract
Primary varicella-zoster virus (VZV) infection in adults is often complicated by severe pneumonia, which is difficult to treat and is associated with high morbidity and mortality. Here, the simian varicella virus (SVV) nonhuman primate (NHP) model was used to investigate the pathogenesis of varicella pneumonia. SVV infection resulted in transient fever, viremia, and robust virus replication in alveolar pneumocytes and bronchus-associated lymphoid tissue. Clearance of infectious virus from lungs coincided with robust innate immune responses, leading to recruitment of inflammatory cells, mainly neutrophils and lymphocytes, and finally severe acute lung injury. SVV infection caused neutrophil activation and formation of neutrophil extracellular traps (NETs) in vitro and in vivo. Notably, NETs were also detected in lung and blood specimens of varicella pneumonia patients. Lung pathology in the SVV NHP model was associated with dysregulated expression of alveolar epithelial cell tight junction proteins (claudin-2, claudin-10, and claudin-18) and alveolar endothelial adherens junction protein VE-cadherin. Importantly, factors released by activated neutrophils, including NETs, were sufficient to reduce claudin-18 and VE-cadherin expression in NHP lung slice cultures. Collectively, the data indicate that alveolar barrier disruption in varicella pneumonia is associated with NET formation.
Collapse
Affiliation(s)
| | - Henk-Jan van den Ham
- Department of Viroscience, Erasmus MC, Rotterdam, Netherlands.,ENPICOM BV, 's-Hertogenbosch, Netherlands
| | - Mark W Delany
- Department of Pathobiology, Faculty of Veterinary Science, Utrecht University, Utrecht, Netherlands
| | | | | | - Tamana Mehraban
- Department of Viroscience, Erasmus MC, Rotterdam, Netherlands
| | | | | | - Judith Ma van den Brand
- Department of Pathobiology, Faculty of Veterinary Science, Utrecht University, Utrecht, Netherlands
| | - Rory D de Vries
- Department of Viroscience, Erasmus MC, Rotterdam, Netherlands
| | - Arno C Andeweg
- Department of Viroscience, Erasmus MC, Rotterdam, Netherlands
| | | |
Collapse
|
249
|
Cleary SJ, Kwaan N, Tian JJ, Calabrese DR, Mallavia B, Magnen M, Greenland JR, Urisman A, Singer JP, Hays SR, Kukreja J, Hay AM, Howie HL, Toy P, Lowell CA, Morrell CN, Zimring JC, Looney MR. Complement activation on endothelium initiates antibody-mediated acute lung injury. J Clin Invest 2020; 130:5909-5923. [PMID: 32730229 PMCID: PMC7598054 DOI: 10.1172/jci138136] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
Antibodies targeting human leukocyte antigen (HLA)/major histocompatibility complex (MHC) proteins limit successful transplantation and transfusion, and their presence in blood products can cause lethal transfusion-related acute lung injury (TRALI). It is unclear which cell types are bound by these anti-leukocyte antibodies to initiate an immunologic cascade resulting in lung injury. We therefore conditionally removed MHC class I (MHC I) from likely cellular targets in antibody-mediated lung injury. Only the removal of endothelial MHC I reduced lung injury and mortality, related mechanistically to absent endothelial complement fixation and lung platelet retention. Restoration of endothelial MHC I rendered MHC I-deficient mice susceptible to lung injury. Neutrophil responses, including neutrophil extracellular trap (NET) release, were intact in endothelial MHC I-deficient mice, whereas complement depletion reduced both lung injury and NETs. Human pulmonary endothelial cells showed high HLA class I expression, and posttransfusion complement activation was increased in clinical TRALI. These results indicate that the critical source of antigen for anti-leukocyte antibodies is in fact the endothelium, which reframes our understanding of TRALI as a rapid-onset vasculitis. Inhibition of complement activation may have multiple beneficial effects of reducing endothelial injury, platelet retention, and NET release in conditions where antibodies trigger these pathogenic responses.
Collapse
Affiliation(s)
- Simon J. Cleary
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Nicholas Kwaan
- Department of Medicine, UCSF, San Francisco, California, USA
| | | | - Daniel R. Calabrese
- Department of Medicine, UCSF, San Francisco, California, USA
- Veterans Affairs Healthcare System, San Francisco, California, USA
| | - Beñat Mallavia
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Mélia Magnen
- Department of Medicine, UCSF, San Francisco, California, USA
| | - John R. Greenland
- Department of Medicine, UCSF, San Francisco, California, USA
- Veterans Affairs Healthcare System, San Francisco, California, USA
| | | | | | - Steven R. Hays
- Department of Medicine, UCSF, San Francisco, California, USA
| | | | - Ariel M. Hay
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Heather L. Howie
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Pearl Toy
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| | | | - Craig N. Morrell
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - James C. Zimring
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Mark R. Looney
- Department of Medicine, UCSF, San Francisco, California, USA
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| |
Collapse
|
250
|
Zhao X, Gu C, Wang Y. PAD4 selective inhibitor TDFA protects lipopolysaccharide-induced acute lung injury by modulating nuclear p65 localization in epithelial cells. Int Immunopharmacol 2020; 88:106923. [PMID: 32889238 DOI: 10.1016/j.intimp.2020.106923] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 11/26/2022]
Abstract
Protein arginine deiminase 4 (PAD4) serves a critical role in differentiation, development and apoptosis through gene regulation and has emerged as a potential therapeutic target for the treatment of various diseases. However, the roles of PAD4 in lipopolysaccharide (LPS)-induced acute lung injury (ALI) remain largely unknown. To investigate the roles of PAD4 during LPS-induced ALI, the present study detected the trend of PAD4 expression in the lung tissues of ALI mice. Subsequently, the efficiency of TDFA on PAD4 and citrullinated H3 histone were detected. And then, histology, the wet/dry weight ratio, survival rate, activated cells infiltration, oxidative stress levels, tight junction proteins and proinflammatory cytokine expression were detected. In addition, the level of transepithelial electrical resistance (TEER) was assessed. Finally, the level of nuclear P65, total phosphorylated P65 and P65 were measured in vivo and in vitro. The results showed that PAD4 expression was upregulated in the lung tissues of LPS-induced ALI. TDFA efficiently decreased the severity of the lung edema, attenuated the severity of pulmonary injury and improved the survival rate following lethal LPS administration. Besides, TDFA reduced activated cells infiltration and suppressed inflammation related parameters, including proinflammatory cytokines production (TNF-α, IL-6 and IL-1β) and oxidative stress (MDA, GSH and SOD). Furthermore, TDFA reversed the TEER downregulation tendency and tight junction proteins (ZO-1, Occludin, Claudin-4) levels that represent the integrity of alveolar epithelium. Eventually, TDFA exerts its protective roles through modulating nuclear localization of transcription factor NF-κB P65 in epithelial cells. Taken together, these results indicate that PAD4 inhibition may serve as a promising therapeutic approach for LPS-induced ALI.
Collapse
Affiliation(s)
- Xiaohong Zhao
- Department of Anesthesia and Perioperative Medicine, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250014, PR China; Department of Anesthesiology, The 960(th) Hospital of the People's Liberation Army of China, Jinan, Shandong 250031, PR China
| | - Changping Gu
- Department of Anesthesia and Perioperative Medicine, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250014, PR China
| | - Yuelan Wang
- Department of Anesthesia and Perioperative Medicine, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250014, PR China.
| |
Collapse
|