201
|
Sari A, Aslan M, Ekinci O. The effect of steroids used in the treatment of coronavirus disease 2019 on infections in intensive care. North Clin Istanb 2022; 9:131-139. [PMID: 35582516 PMCID: PMC9039641 DOI: 10.14744/nci.2022.43827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/07/2022] [Indexed: 12/01/2022] Open
Abstract
Objective Cytokine storm in coronavirus disease 2019 (COVID-19) patients causes lung damage and acute respiratory distress syndrome (ARDS). Immunomodulators such as steroids are widely used to control this situation. This study investigates the effectiveness of steroids used in COVID-19 patients, and their effects on secondary infections, morbidity, and mortality. Methods Data were obtained by retrospectively scanning the files of patients in our hospital's intensive care unit clinic during the three peak periods. Results Between the steroid and non-steroid groups, there was no statistically significant difference in reproductive rates. These rates were 49.7% and 43.2%, respectively. Reproductive rates among steroid types were determined as 25 (56.8%) in the Methylprednisolone group, 18 (69.2%) (Highest) in the Dexamethasone + Methylprednisolone group, and 54 (43.2%) (Lowest) in the Dexamethasone group. Steroid treatment duration was effective on reproduction. Steroids cause more infections, especially after invasive procedures (Tracheal intubation, central venous catheter, etc.). In the groups with and without tracheal aspirate steroids, the growth rates were 71 (76.3%) and 32 (54.2%) respectively. There was no difference in mortality between the groups. Conclusion Cytokine storm causes lung damage and ARDS. Steroids can be useful in controlling this hyper-inflammatory situation. However, increased secondary infections, an important side effect of steroids, increase mortality. Steroids more often cause these infections, especially in patients undergoing invasive Strict adherence to infection control measures during steroid treatment will reduce this risk. In conclusion, while steroids reduce mortality by controlling the hyper-inflammatory picture, they also increase mortality with increased secondary infections. Preventing infections enables success with steroids.
Collapse
Affiliation(s)
- Ahmet Sari
- Department of Anesthesiology and Reanimation ICU, University of Health Sciences, Haydarpasa Numune Training and Research Hospital, Istanbul, Turkey
| | - Mesut Aslan
- Department of Anesthesiology and Reanimation ICU, University of Health Sciences, Haydarpasa Numune Training and Research Hospital, Istanbul, Turkey
| | - Osman Ekinci
- Department of Anesthesiology and Reanimation ICU, University of Health Sciences, Haydarpasa Numune Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
202
|
Pence S, Caykara B, Pence HH, Tekin S, Keskin BC, Uncu AT, Uncu AO, Ozturk E. Transcriptomic analysis of asymptomatic and symptomatic severe Turkish patients in SARS-CoV-2 infection. North Clin Istanb 2022; 9:122-130. [PMID: 35582503 PMCID: PMC9039630 DOI: 10.14744/nci.2022.28000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/22/2022] [Indexed: 11/20/2022] Open
Abstract
Objective Coronavirus disease 2019 (COVID-19), leading to mild infection (MI), acute respiratory distress syndrome or death in different persons. Although the basis of these variabilities has not been fully elucidated, some possible findings have been encountered. In the present study, we aimed to reveal genes with different expression profiles by next-generation sequencing of RNA isolated from blood taken from infected patients to reveal molecular causes of different response. Methods Two healthy, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-negative control individuals (NCI), two SARS-CoV-2-positive patients who have MI, and two patients who have critical infection (CI) were included in the study. Total RNA was extracted from blood samples and sequenced. Raw RNA-Seq data were analyzed on Galaxy platform for the identification of differentially expressed genes and their pathway involvements. Results We found that 199 and 521 genes were downregulated in whole blood of COVID-19-positive CI patients compared to NCI and MI patients, respectively. We identified 21 gene ontology pathways commonly downregulated in CI patients compared to both NCI and MI, mostly associated with innate and adaptive immune responses. Three hundred and fifty-four and 600 genes were found to be upregulated compared to NCI and MI, respectively. Upregulated six pathways included genes that function in inflammatory response and inflammatory cytokine release. Conclusion The transcriptional profile of CI patients deviates more significantly from that of MI in terms of the number of differentially expressed genes, implying that genotypic differences may account for the severity of SARS-CoV-2 infection and inflammatory responses through differential regulation of gene expression. Therefore, further studies that involve whole genome analysis coupled with differential expression analysis are required in order to determine the dynamics of genotype - gene expression profile associations.
Collapse
Affiliation(s)
- Sadrettin Pence
- Department of Physiology, Istanbul Medeniyet University Faculty of Medicine, Istanbul, Turkey
| | - Burcu Caykara
- Department of Physiology, Istanbul Medeniyet University Faculty of Medicine, Istanbul, Turkey
| | - Halime Hanim Pence
- Department of Biochemistry, Health Sciences University Faculty of Medicine, Istanbul, Turkey
| | - Saban Tekin
- Department of Medical Biology, Health Sciences University, Faculty of Medicine, Istanbul, Turkey
- TUBITAK, Marmara Research Center, Gene Engineering and Biotechnology Institute, Kocaeli, Turkey
| | - Birsen Cevher Keskin
- TUBITAK, Marmara Research Center, Gene Engineering and Biotechnology Institute, Kocaeli, Turkey
| | - Ali Tevfik Uncu
- Department of Molecular Biology and Genetics, Necmettin Erbakan University Faculty of Science, Konya, Turkey
| | - Ayse Ozgur Uncu
- Department of Biotechnology, Necmettin Erbakan University Faculty of Science, Konya, Turkey
| | - Erman Ozturk
- Division of Hematology, Department of Internal Diseases, Istanbul Medeniyet University Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
203
|
Massrali A, Adhya D, Srivastava DP, Baron-Cohen S, Kotter MR. Virus-Induced Maternal Immune Activation as an Environmental Factor in the Etiology of Autism and Schizophrenia. Front Neurosci 2022; 16:834058. [PMID: 35495047 PMCID: PMC9039720 DOI: 10.3389/fnins.2022.834058] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/01/2022] [Indexed: 12/22/2022] Open
Abstract
Maternal immune activation (MIA) is mediated by activation of inflammatory pathways resulting in increased levels of cytokines and chemokines that cross the placental and blood-brain barriers altering fetal neural development. Maternal viral infection is one of the most well-known causes for immune activation in pregnant women. MIA and immune abnormalities are key players in the etiology of developmental conditions such as autism, schizophrenia, ADHD, and depression. Experimental evidence implicating MIA in with different effects in the offspring is complex. For decades, scientists have relied on either MIA models or human epidemiological data or a combination of both. MIA models are generated using infection/pathogenic agents to induce an immunological reaction in rodents and monitor the effects. Human epidemiological studies investigate a link between maternal infection and/or high levels of cytokines in pregnant mothers and the likelihood of developing conditions. In this review, we discuss the importance of understanding the relationship between virus-mediated MIA and neurodevelopmental conditions, focusing on autism and schizophrenia. We further discuss the different methods of studying MIA and their limitations and focus on the different factors contributing to MIA heterogeneity.
Collapse
Affiliation(s)
- Aïcha Massrali
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Dwaipayan Adhya
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Deepak P. Srivastava
- Department of Basic and Clinical Neuroscience, King’s College London, London, United Kingdom
| | - Simon Baron-Cohen
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Mark R. Kotter
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
204
|
Figueiredo DLA, Ximenez JPB, Seiva FRF, Panis C, Bezerra RDS, Ferrasa A, Cecchini AL, de Medeiros AI, Almeida AMF, Ramão A, Boldt ABW, Moya CF, Chin CM, de Paula D, Rech D, Gradia DF, Malheiros D, Venturini D, Tavares ER, Carraro E, Ribeiro EMDSF, Pereira EM, Tuon FF, Follador FAC, Fernandes GSA, Volpato H, Cólus IMDS, de Oliveira JC, Rodrigues JHDS, dos Santos JL, Visentainer JEL, Brandi JC, Serpeloni JM, Bonini JS, de Oliveira KB, Fiorentin K, Lucio LC, Faccin-Galhardi LC, Ferreto LED, Lioni LMY, Consolaro MEL, Vicari MR, Arbex MA, Pileggi M, Watanabe MAE, Costa MAR, Giannini MJSM, Amarante MK, Khalil NM, de Lima QA, Herai RH, Guembarovski RL, Shinsato RN, Mainardes RM, Giuliatti S, Yamada-Ogatta SF, Gerber VKDQ, Pavanelli WR, da Silva WC, Petzl-Erler ML, Valente V, Soares CP, Cavalli LR, Silva WA. COVID-19: The question of genetic diversity and therapeutic intervention approaches. Genet Mol Biol 2022; 44:e20200452. [PMID: 35421211 PMCID: PMC9075701 DOI: 10.1590/1678-4685-gmb-2020-0452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 12/24/2021] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV-2), is the largest pandemic in modern history with very high infection rates and considerable mortality. The disease, which emerged in China's Wuhan province, had its first reported case on December 29, 2019, and spread rapidly worldwide. On March 11, 2020, the World Health Organization (WHO) declared the COVID-19 outbreak a pandemic and global health emergency. Since the outbreak, efforts to develop COVID-19 vaccines, engineer new drugs, and evaluate existing ones for drug repurposing have been intensively undertaken to find ways to control this pandemic. COVID-19 therapeutic strategies aim to impair molecular pathways involved in the virus entrance and replication or interfere in the patients' overreaction and immunopathology. Moreover, nanotechnology could be an approach to boost the activity of new drugs. Several COVID-19 vaccine candidates have received emergency-use or full authorization in one or more countries, and others are being developed and tested. This review assesses the different strategies currently proposed to control COVID-19 and the issues or limitations imposed on some approaches by the human and viral genetic variability.
Collapse
Affiliation(s)
- David Livingstone Alves Figueiredo
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Medicina, Guarapuava, PR, Brazil
- Instituto para Pesquisa do Câncer (IPEC), Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - João Paulo Bianchi Ximenez
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Análises Clínicas, Toxicologia e Ciência de Alimentos, Ribeirão Preto, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Fábio Rodrigues Ferreira Seiva
- Universidade Estadual do Norte do Paraná (UENP), Centro de Ciências Biológicas, Bandeirantes, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Carolina Panis
- Universidade Estadual do Oeste do Paraná, Francisco Beltrão, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Rafael dos Santos Bezerra
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Hemocentro Regional de Ribeirão Preto, Ribeirão Preto, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Adriano Ferrasa
- Universidade Estadual de Ponta Grossa, Ponta Grossa, Programa de Pós Graduação em Computação Aplicada, Ponta Grossa, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Alessandra Lourenço Cecchini
- Universidade Estadual de Londrina, Departamento de Patologia Geral, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Alexandra Ivo de Medeiros
- Universidade Federal do Paraná, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Ana Marisa Fusco Almeida
- Universidade Federal do Paraná, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Anelisa Ramão
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Ciências Biológicas, Guarapuava, PR, Brazil
| | - Angelica Beate Winter Boldt
- Universidade Federal do Paraná, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Carla Fredrichsen Moya
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Medicina Veterinária, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Chung Man Chin
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Fármacos e Medicamentos, Araraquara, SP, Brazil
- União das Faculdades dos Grandes Lagos (UNILAGO), Centro de Pesquisa Avançada em Medicina, São José do Rio Preto, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Daniel de Paula
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Farmácia, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Daniel Rech
- Universidade Estadual do Oeste do Paraná (UNIOESTE), Hospital do Câncer Francisco Beltrão, Laboratório de Biologia de Tumores, Francisco Beltrão, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Daniela Fiori Gradia
- Universidade Federal do Paraná, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Danielle Malheiros
- Universidade Federal do Paraná, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Danielle Venturini
- Universidade Estadual de Londrina, Centro de Ciências da Saúde, Departamento de patologia, clínica e toxicologia, Laboratório de bioquímica clínica, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Eliandro Reis Tavares
- Universidade Estadual de Londrina, Departamento de Microbiologia, Centro de Ciências Biológicas, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Emerson Carraro
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Laboratório de Virologia Clínica, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Enilze Maria de Souza Fonseca Ribeiro
- Universidade Federal do Paraná, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Evani Marques Pereira
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Enfermagem, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Felipe Francisco Tuon
- Universidade Católica do Paraná, Laboratório de Doenças Infecciosas Emergentes, Pontifícia Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Franciele Aní Caovilla Follador
- Universidade Estadual do Oeste do Paraná, Departamento de Ciências da Vida, Programa de Pós-Graduação em Ciências Aplicadas à Saúde, Francisco Beltrão, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Glaura Scantamburlo Alves Fernandes
- Universidade Estadual de Londrina, Departamento de Biologia Geral, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Hélito Volpato
- Universidade Estadual do Paraná (UNESPAR), Faculdade de Ciências Biológicas, Centro de Ciências Humanas e Educação, Paranavaí, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Ilce Mara de Syllos Cólus
- Universidade Estadual de Londrina, Departamento de Biologia Geral, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Jaqueline Carvalho de Oliveira
- Universidade Federal do Paraná, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Jean Henrique da Silva Rodrigues
- Universidade do Estado de São Paulo (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Fármacos e Medicamentos, Araraquara, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Jean Leandro dos Santos
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Fármacos e Medicamentos, Araraquara, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Jeane Eliete Laguila Visentainer
- Universidade Estadual de Maringá, Laboratório de Imunogenética, Maringá, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Juliana Cristina Brandi
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Araraquara, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Juliana Mara Serpeloni
- Universidade Estadual de Londrina, Departamento de Biologia Geral, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Juliana Sartori Bonini
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Laboratório de Neuropsicofarmacologia, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Karen Brajão de Oliveira
- Universidade Estadual de Londrina, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Laboratório de Genética Molecular e Imunologia, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Karine Fiorentin
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Léia Carolina Lucio
- Universidade Estadual do Oeste do Paraná, Programa de Pós-Graduação em Ciências Aplicadas à Saúde, Centro de Ciências da Saúde, Francisco Beltrão, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Ligia Carla Faccin-Galhardi
- Universidade Estadual de Londrina, Departamento de Microbiologia, Centro de Ciências Biológicas, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Lirane Elize Defante Ferreto
- Universidade Estadual do Oeste do Paraná, Programa de Pós-Graduação em Ciências Aplicadas à Saúde, Centro de Ciências da Saúde, Francisco Beltrão, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Lucy Megumi Yamauchi Lioni
- Universidade Estadual do Norte do Paraná (UENP), Centro de Ciências Biológicas, Bandeirantes, PR, Brazil
- Universidade Estadual de Londrina, Departamento de Microbiologia, Centro de Ciências Biológicas, Londrina, PR, Brazil
| | - Marcia Edilaine Lopes Consolaro
- Universidade Estadual de Maringá, Departamento de Análises Clínicas e Biomedicina, Maringá, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Marcelo Ricardo Vicari
- Universidade Estadual de Ponta Grossa, Departamento de Biologia e Genética Estrutural e Molecular, Ponta Grossa, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Marcos Abdo Arbex
- Universidade de Araraquara, Faculdade de Medicina, Área temática de Pneumologia, Araraquara, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Marcos Pileggi
- Universidade Estadual de Ponta Grossa, Departamento de Biologia e Genética Estrutural e Molecular, Ponta Grossa, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Maria Angelica Ehara Watanabe
- Universidade Estadual de Londrina, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Laboratório de Imunologia, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Maria Antônia Ramos Costa
- Universidade do Estado do Paraná, Colegiada de Enfermagem, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Maria José S. Mendes Giannini
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Araraquara, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Marla Karine Amarante
- Universidade Estadual de Londrina, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Laboratório de Imunologia, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Najeh Maissar Khalil
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Farmácia, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Quirino Alves de Lima
- Universidade Estadual de Maringá, Laboratório de Imunogenética, Maringá, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Roberto H. Herai
- Universidade Católica do Paraná (PUCPR), Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Laboratório Experimental Multiusuário, Curitiba, PR, Brazil
- Universitário Católico Salesiano Auxilium (UNISALESIANO), Faculdade de Medicina, Centro Araçatuba, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Roberta Losi Guembarovski
- Universidade Estadual de Londrina, Departamento de Biologia Geral, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Rogério N. Shinsato
- Universidade Católica do Paraná (PUCPR), Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Laboratório Experimental Multiusuário, Curitiba, PR, Brazil
- Universitário Católico Salesiano Auxilium (UNISALESIANO), Faculdade de Medicina, Centro Araçatuba, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Rubiana Mara Mainardes
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Farmácia, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Silvana Giuliatti
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Hemocentro Regional de Ribeirão Preto, Ribeirão Preto, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Sueli Fumie Yamada-Ogatta
- Universidade Estadual de Londrina, Departamento de Microbiologia, Centro de Ciências Biológicas, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Viviane Knuppel de Quadros Gerber
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Enfermagem, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Wander Rogério Pavanelli
- Universidade Estadual de Londrina, Laboratório de Imunoparasitologia de Doenças Negligenciadas e Câncer, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Weber Claudio da Silva
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Farmácia, Guarapuava, PR, Brazil
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Laboratório de Neuropsicofarmacologia, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Maria Luiza Petzl-Erler
- Universidade Federal do Paraná, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Valeria Valente
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Araraquara, SP, Brazil
- Faculdade de Medicina de Ribeirão Preto, Centro de Terapia Celular (CEPID/FAPESP), Ribeirão Preto, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Christiane Pienna Soares
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Araraquara, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Luciane Regina Cavalli
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Wilson Araujo Silva
- Instituto para Pesquisa do Câncer (IPEC), Guarapuava, PR, Brazil
- Faculdade de Medicina de Ribeirão Preto, Centro de Terapia Celular (CEPID/FAPESP), Ribeirão Preto, SP, Brazil
- Instituto Nacional de Ciência e Tecnologia em Células-Tronco e Terapia Celular (INCT/CNPq), Ribeirão Preto, SP, Brazil
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Genética, Ribeirão Preto, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| |
Collapse
|
205
|
In Vitro SARS-CoV-2 Infection of Microvascular Endothelial Cells: Effect on Pro-Inflammatory Cytokine and Chemokine Release. Int J Mol Sci 2022; 23:ijms23074063. [PMID: 35409421 PMCID: PMC8999888 DOI: 10.3390/ijms23074063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 11/17/2022] Open
Abstract
In the novel pandemic of Coronavirus Disease 2019, high levels of pro-inflammatory cytokines lead to endothelial activation and dysfunction, promoting a pro-coagulative state, thrombotic events, and microvasculature injuries. The aim of the present work was to investigate the effect of SARS-CoV-2 on pro-inflammatory cytokines, tissue factor, and chemokine release, with Human Microvascular Endothelial Cells (HMEC-1). ACE2 receptor expression was evaluated by western blot analysis. SARS-CoV-2 infection was assessed by one-step RT-PCR until 7 days post-infection (p.i.), and by Transmission Electron Microscopy (TEM). IL-6, TNF-α, IL-8, IFN-α, and hTF mRNA expression levels were detected by RT-PCR, while cytokine release was evaluated by ELISA. HMEC-1 expressed ACE2 receptor and SARS-CoV-2 infection showed a constant viral load. TEM analysis showed virions localized in the cytoplasm. Expression of IL-6 at 24 h and IFN-α mRNA at 24 h and 48 h p.i. was higher in infected than uninfected HMEC-1 (p < 0.05). IL-6 levels were significantly higher in supernatants from infected HMEC-1 (p < 0.001) at 24 h, 48 h, and 72 h p.i., while IL-8 levels were significantly lower at 24 h p.i. (p < 0.001). These data indicate that in vitro microvascular endothelial cells are susceptible to SARS-CoV-2 infection but slightly contribute to viral amplification. However, SARS-CoV-2 infection might trigger the increase of pro-inflammatory mediators.
Collapse
|
206
|
Ničkčović VP, Nikolić GR, Nedeljković BM, Mitić N, Danić SF, Mitić J, Marčetić Z, Sokolović D, Veselinović AM. In silico approach for the development of novel antiviral compounds based on SARS-COV-2 protease inhibition. CHEMICKE ZVESTI 2022; 76:4393-4404. [PMID: 35400796 PMCID: PMC8977062 DOI: 10.1007/s11696-022-02170-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 03/05/2022] [Indexed: 11/03/2022]
Abstract
The COVID-19 pandemic emerged in 2019, bringing with it the need for greater stores of effective antiviral drugs. This paper deals with the conformation-independent, QSAR model, developed by employing the Monte Carlo optimization method, as well as molecular graphs and the SMILES notation-based descriptors for the purpose of modeling the SARS-CoV-3CLpro enzyme inhibition. The main purpose was developing a reproducible model involving easy interpretation, utilized for a quick prediction of the inhibitory activity of SAR-CoV-3CLpro. The following statistical parameters were present in the best-developed QSAR model: (training set) R 2 = 0.9314, Q 2 = 0.9271; (test set) R 2 = 0.9243, Q 2 = 0.8986. Molecular fragments, defined as SMILES notation descriptors, that have a positive and negative impact on 3CLpro inhibition were identified on the basis of the results obtained for structural indicators, and were applied to the computer-aided design of five new compounds with (4-methoxyphenyl)[2-(methylsulfanyl)-6,7-dihydro-1H-[1,4]dioxino[2,3-f]benzimidazol-1-yl]methanone as a template molecule. Molecular docking studies were used to examine the potential inhibition effect of designed molecules on SARS-CoV-3CLpro enzyme inhibition and obtained results have high correlation with the QSAR modeling results. In addition, the interactions between the designed molecules and amino acids from the 3CLpro active site were determined, and the energies they yield were calculated. Supplementary Information The online version contains supplementary material available at 10.1007/s11696-022-02170-8.
Collapse
Affiliation(s)
| | | | | | - Nebojša Mitić
- Medical Faculty, University of Priština, Kosovska Mitrovica, Serbia
| | | | - Jadranka Mitić
- Medical Faculty, University of Priština, Kosovska Mitrovica, Serbia
| | - Zoran Marčetić
- Medical Faculty, University of Priština, Kosovska Mitrovica, Serbia
| | - Dušan Sokolović
- Department of Biochemistry, Faculty of Medicine, University of Niš, Niš, Serbia
| | - Aleksandar M. Veselinović
- Department of Chemistry, Faculty of Medicine, University of Niš, Bulevar Dr Zorana Đinđića 81, 18000 Niš, Serbia
| |
Collapse
|
207
|
Khan AR, Misdary C, Yegya-Raman N, Kim S, Narayanan N, Siddiqui S, Salgame P, Radbel J, Groote FD, Michel C, Mehnert J, Hernandez C, Braciale T, Malhotra J, Gentile MA, Jabbour SK. Montelukast in hospitalized patients diagnosed with COVID-19. J Asthma 2022; 59:780-786. [PMID: 33577360 PMCID: PMC7938648 DOI: 10.1080/02770903.2021.1881967] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/07/2020] [Accepted: 01/24/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Several therapeutic agents have been assessed for the treatment of COVID-19, but few approaches have been proven efficacious. Because leukotriene receptor antagonists, such as montelukast have been shown to reduce both cytokine release and lung inflammation in preclinical models of viral influenza and acute respiratory distress syndrome, we hypothesized that therapy with montelukast could be used to treat COVID-19. The objective of this study was to determine if montelukast treatment would reduce the rate of clinical deterioration as measured by the COVID-19 Ordinal Scale. METHODS We performed a retrospective analysis of COVID-19 confirmed hospitalized patients treated with or without montelukast. We used "clinical deterioration" as the primary endpoint, a binary outcome defined as any increase in the Ordinal Scale value from Day 1 to Day 3 of the hospital stay, as these data were uniformly available for all admitted patients before hospital discharge. Rates of clinical deterioration between the montelukast and non-montelukast groups were compared using the Fisher's exact test. Univariate logistic regression was also used to assess the association between montelukast use and clinical deterioration. A total of 92 patients were analyzed, 30 who received montelukast at the discretion of the treating physician and 62 patients who did not receive montelukast. RESULTS Patients receiving montelukast experienced significantly fewer events of clinical deterioration compared with patients not receiving montelukast (10% vs 32%, p = 0.022). Our findings suggest that montelukast associates with a reduction in clinical deterioration for COVID-19 confirmed patients as measured on the COVID-19 Ordinal Scale. CONCLUSIONS Hospitalized COVID-19 patients treated with montelukast had fewer events of clinical deterioration, indicating that this treatment may have clinical activity. While this retrospective study highlights a potential pathway for COVID-19 treatment, this hypothesis requires further study by prospective studies.
Collapse
Affiliation(s)
- Ahsan R. Khan
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Christian Misdary
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Nikhil Yegya-Raman
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Sinae Kim
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Navaneeth Narayanan
- Rutgers University Ernest Mario School of Pharmacy, Rutgers University, New Brunswick, NJ, USA
- Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Sheraz Siddiqui
- Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Padmini Salgame
- The Center for Emerging Pathogens, Department of Medicine, Rutgers University – New Jersey Medical School, Newark, NJ, USA
| | - Jared Radbel
- Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | | | - Carl Michel
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Janice Mehnert
- Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Caleb Hernandez
- Department of Emergency Medicine, Coney Island Hospital, Brooklyn, NY, USA
- Certa Dose, Inc, Denver, CO, USA
| | - Thomas Braciale
- Certa Dose, Inc, Denver, CO, USA
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jyoti Malhotra
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
- Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Michael A. Gentile
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Merck & Co., Inc, Kenilworth, NJ, USA
| | - Salma K. Jabbour
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
- Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
208
|
Pechlivanidou E, Vlachakis D, Tsarouhas K, Panidis D, Tsitsimpikou C, Darviri C, Kouretas D, Bacopoulou F. The prognostic role of micronutrient status and supplements in COVID-19 outcomes: A systematic review. Food Chem Toxicol 2022; 162:112901. [PMID: 35227861 PMCID: PMC8873042 DOI: 10.1016/j.fct.2022.112901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 12/23/2022]
Abstract
Micronutrients constitute an adjuvant treatment for respiratory viral infections. Since there is no effective antiviral therapy for COVID-19 yet, adjuvant intervention for the survival of critically ill patients may be significant. Search of the PubMed, CINAHL and Cochrane databases was carried out to find human studies investigating the prognostic role of micronutrient status and the effects of micronutrient supplementation intervention in COVID-19 outcomes of adult patients. Patients with certain comorbidities (diabetes mellitus type 2, obesity, renal failure, liver dysfunction etc.) or pregnant women were excluded. 31 studies (27 observational studies and 4 clinical trials) spanning the years 2020-2021, pertaining to 8624 COVID-19 patients (mean age±SD, 61 ± 9 years) were included in this systematic review. Few studies provided direct evidence on the association of serum levels of vitamin D, calcium, zinc, magnesium, phosphorus and selenium to patients' survival or death. Vitamin D and calcium were the most studied micronutrients and those with a probable promising favorable impact on patients. This review highlights the importance of a balanced nutritional status for a favorable outcome in COVID-19. Micronutrients' deficiency on admission to hospital seems to be related to a high risk for ICU admission, intubation and even death. Nevertheless, evidence for intervention remains unclear.
Collapse
Affiliation(s)
- Evmorfia Pechlivanidou
- Center for Adolescent Medicine and UNESCO Chair in Adolescent Health Care, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, 11527, Greece
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, 11855, Greece
| | - Konstantinos Tsarouhas
- Department of Cardiology, University Hospital of Larissa, Mezourlo, Larissa, 41110, Greece
| | | | | | - Christina Darviri
- Postgraduate Program "The Science of Stress and Health Promotion", School of Medicine, National and Kapodistrian University of Athens, 4 Soranou Ephessiou Street, 11527, Athens, Greece
| | - Dimitrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Flora Bacopoulou
- Center for Adolescent Medicine and UNESCO Chair in Adolescent Health Care, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, 11527, Greece; Postgraduate Program "The Science of Stress and Health Promotion", School of Medicine, National and Kapodistrian University of Athens, 4 Soranou Ephessiou Street, 11527, Athens, Greece.
| |
Collapse
|
209
|
Wang LL, Yang JW, Xu JF. Severe acute respiratory syndrome coronavirus 2 causes lung inflammation and injury. Clin Microbiol Infect 2022; 28:513-520. [PMID: 34861410 PMCID: PMC8632799 DOI: 10.1016/j.cmi.2021.11.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/01/2021] [Accepted: 11/25/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND As of 14 October 2021, coronavirus disease 2019 (COVID-19) has affected more than 246 million individuals and caused more than 4.9 million deaths worldwide. COVID-19 has caused significant damage to the health, economy and lives of people worldwide. Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is not as lethal as SARS coronavirus or Middle East respiratory syndrome coronavirus, its high transmissibility has had disastrous consequences for public health and health-care systems worldwide given the lack of effective treatment at present. OBJECTIVES To clarify the mechanisms by which SARS-CoV-2 caused lung inflammation and injury, from the molecular mechanism to lung damage and tissue repair, from research to clinical practice, and then presented clinical requirements. SOURCES References for this review were identified through searches '(COVID-19 [Title]) OR (SARS-CoV-2 [Title])' on PubMed, and focused on the pathological damage and clinical practice of COVID-19. CONTENT We comprehensively reviewed the process of lung inflammation and injury during SARS-CoV-2 infection, including pyroptosis of alveolar epithelial cells, cytokine storm and thrombotic inflammatory mechanisms. IMPLICATIONS This review describes SARS-CoV-2 in comparison to SARS and explores why most people have mild inflammatory responses, even asymptomatic infections, and only a few develop severe disease. It suggests that future therapeutic strategies may be targeted antiviral therapy, the pathogenic pathways in the lung inflammatory response, and enhancing repair and regeneration in lung injury.
Collapse
Affiliation(s)
| | | | - Jin-Fu Xu
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
210
|
Kocherlakota C, Nagaraju B, Arjun N, Srinath A, Kothapalli KSD, Brenna JT. Inhalation of nebulized omega-3 fatty acids mitigate LPS-induced acute lung inflammation in rats: Implications for treatment of COPD and COVID-19. Prostaglandins Leukot Essent Fatty Acids 2022; 179:102426. [PMID: 35381532 PMCID: PMC8964507 DOI: 10.1016/j.plefa.2022.102426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 01/08/2023]
Abstract
Many current treatment options for lung inflammation and thrombosis come with unwanted side effects. The natural omega-3 fatty acids (O3FA) are generally anti-inflammatory and antithrombotic. O3FA are always administered orally and occasionally by intravenous (IV) infusion. The main goal of this study is to determine if O3FA administered by inhalation of a nebulized formulation mitigates LPS-induced acute lung inflammation in male Wistar rats. Inflammation was triggered by intraperitoneal injection of LPS once a day for 14 days. One hour post-injection, rats received nebulized treatments consisting of egg lecithin emulsified O3, Budesonide and Montelukast, and blends of O3 and Melatonin or Montelukast or Cannabidiol; O3 was in the form of free fatty acids for all groups except one group with ethyl esters. Lung histology and cytokines were determined in n = 3 rats per group at day 8 and day 15. All groups had alveolar histiocytosis severity scores half or less than that of the disease control (Cd) treated with LPS and saline only inhalation. IL-6, TNF-α, TGF-β, and IL-10 were attenuated in all O3FA groups. IL-1β was attenuated in most but not all O3 groups. O3 administered as ethyl ester was overall most effective in mitigating LPS effects. No evidence of lipid pneumonia or other chronic distress was observed. These preclinical data suggest that O3FA formulations should be further investigated as treatments in lung inflammation and thrombosis related lung disorders, including asthma, chronic obstructive pulmonary disease, lung cancer and acute respiratory distress such as COVID-19.
Collapse
Affiliation(s)
| | - Banda Nagaraju
- Leiutis Pharmaceuticals LLP, Plot No. 23, TIE 1st Phase, Balanagar, Hyderabad, Telangana 500037, India
| | - Narala Arjun
- Leiutis Pharmaceuticals LLP, Plot No. 23, TIE 1st Phase, Balanagar, Hyderabad, Telangana 500037, India
| | - Akula Srinath
- Leiutis Pharmaceuticals LLP, Plot No. 23, TIE 1st Phase, Balanagar, Hyderabad, Telangana 500037, India
| | - Kumar S D Kothapalli
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, United States.
| | - J Thomas Brenna
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, United States.
| |
Collapse
|
211
|
Nolasco AN. Production of SARS-CoV-2 Specific IFN-γ/IL-10 Co-producing CD4 T Cells from Convalescent Donors to Treat COVID-19: A Hypothesis. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2022; 7:53-59. [DOI: 10.14218/erhm.2021.00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
212
|
Dwivedi S, Choudhary P, Gupta A, Singh S. The cross-talk between mucormycosis, steroids and diabetes mellitus amidst the global contagion of COVID-19. Crit Rev Microbiol 2022; 49:318-333. [PMID: 35324372 DOI: 10.1080/1040841x.2022.2052795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mucormycosis is an opportunistic fungal disease that targets individuals having an impaired immune system due to a wide array of risk factors including HIV-AIDS, immunosuppressive therapy, diabetes mellitus, etc. The current explosive outbreak of coronavirus disease 2019 (COVID-19) has become the latest threat to such patients who are already susceptible to secondary infections. Physiological outcomes of COVID-19 end up in a cascade of grave alterations to the immunological profile and irreparable harm to their respiratory passage, heart and kidneys. Corticosteroidal treatment facilitates faster recovery and alleviates the adverse pathological effects of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). But clinical reports lend this approach a darker perspective especially if these patients have pre-existing diabetes mellitus. The mucormycotic fungal genera belonging to the order Mucorales not only survive but thrive under the comorbidity of COVID-19 and diabetes, often staying undetected until they have inflicted irreversible damage. Steroidal usage has been noted to be a common thread in the sudden spurt in secondary fungal infections among COVID-19 cases. Once considered a rare occurrence, mucormycosis has now acquired a notoriously lethal status in mainstream medical hierarchy. We set out to investigate whether corticosteroidal therapy against COVID-19 emboldens the development of mucormycosis. We also assess the conditions brought forth by steroidal usage and uncontrolled progression of diabetes in COVID-19 cases and their effect on the susceptibility towards mucormycosis.
Collapse
Affiliation(s)
- Shrey Dwivedi
- Department of Applied Science, Indian Institute of Information Technology, Allahabad, India
| | - Princy Choudhary
- Department of Applied Science, Indian Institute of Information Technology, Allahabad, India
| | - Ayushi Gupta
- Department of Applied Science, Indian Institute of Information Technology, Allahabad, India
| | - Sangeeta Singh
- Department of Applied Science, Indian Institute of Information Technology, Allahabad, India
| |
Collapse
|
213
|
Diagnostic and Therapeutic Potential for HNP-1, HBD-1 and HBD-4 in Pregnant Women with COVID-19. Int J Mol Sci 2022; 23:ijms23073450. [PMID: 35408809 PMCID: PMC8998699 DOI: 10.3390/ijms23073450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 01/27/2023] Open
Abstract
Pregnancy is characterized by significant immunological changes and a cytokine profile, as well as vitamin deficiencies that can cause problems for the correct development of a fetus. Defensins are small antimicrobial peptides that are part of the innate immune system and are involved in several biological activities. Following that, this study aims to compare the levels of various cytokines and to investigate the role of defensins between pregnant women with confirmed COVID-19 infection and pregnant women without any defined risk factor. TNF-α, TGF-β, IL-2 and IL-10, β-defensins, have been evaluated by gene expression in our population. At the same time, by ELISA assay IL-6, IL-8, defensin alpha 1, defensin beta 1 and defensin beta 4 have been measured. The data obtained show that mothers affected by COVID-19 have an increase in pro-inflammatory factors (TNF-α, TGF-β, IL-2, IL-6, IL-8) compared to controls; this increase could generate a sort of “protection of the fetus” from virus attacks. Contemporarily, we have an increase in the anti-inflammatory cytokine IL-10 and an increase in AMPs, which highlights how the mother’s body is responding to the viral attack. These results allow us to hypothesize a mechanism of “trafficking” of antimicrobial peptides from the mother to the fetus that would help the fetus to protect itself from the infection in progress.
Collapse
|
214
|
Bartoli A, Fournel J, Ait-Yahia L, Cadour F, Tradi F, Ghattas B, Cortaredona S, Million M, Lasbleiz A, Dutour A, Gaborit B, Jacquier A. Automatic Deep-Learning Segmentation of Epicardial Adipose Tissue from Low-Dose Chest CT and Prognosis Impact on COVID-19. Cells 2022; 11:1034. [PMID: 35326485 PMCID: PMC8947414 DOI: 10.3390/cells11061034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
Background: To develop a deep-learning (DL) pipeline that allowed an automated segmentation of epicardial adipose tissue (EAT) from low-dose computed tomography (LDCT) and investigate the link between EAT and COVID-19 clinical outcomes. Methods: This monocentric retrospective study included 353 patients: 95 for training, 20 for testing, and 238 for prognosis evaluation. EAT segmentation was obtained after thresholding on a manually segmented pericardial volume. The model was evaluated with Dice coefficient (DSC), inter-and intraobserver reproducibility, and clinical measures. Uni-and multi-variate analyzes were conducted to assess the prognosis value of the EAT volume, EAT extent, and lung lesion extent on clinical outcomes, including hospitalization, oxygen therapy, intensive care unit admission and death. Results: The mean DSC for EAT volumes was 0.85 ± 0.05. For EAT volume, the mean absolute error was 11.7 ± 8.1 cm3 with a non-significant bias of −4.0 ± 13.9 cm3 and a correlation of 0.963 with the manual measures (p < 0.01). The multivariate model providing the higher AUC to predict adverse outcome include both EAT extent and lung lesion extent (AUC = 0.805). Conclusions: A DL algorithm was developed and evaluated to obtain reproducible and precise EAT segmentation on LDCT. EAT extent in association with lung lesion extent was associated with adverse clinical outcomes with an AUC = 0.805.
Collapse
Affiliation(s)
- Axel Bartoli
- Department of Radiology, Hôpital de la TIMONE, AP-HM, 13005 Marseille, France; (L.A.-Y.); (F.C.); (F.T.); (A.J.)
- CRMBM—UMR CNRS 7339, Aix-Marseille University, 27, Boulevard Jean Moulin, 13005 Marseille, France;
| | - Joris Fournel
- CRMBM—UMR CNRS 7339, Aix-Marseille University, 27, Boulevard Jean Moulin, 13005 Marseille, France;
| | - Léa Ait-Yahia
- Department of Radiology, Hôpital de la TIMONE, AP-HM, 13005 Marseille, France; (L.A.-Y.); (F.C.); (F.T.); (A.J.)
| | - Farah Cadour
- Department of Radiology, Hôpital de la TIMONE, AP-HM, 13005 Marseille, France; (L.A.-Y.); (F.C.); (F.T.); (A.J.)
- CRMBM—UMR CNRS 7339, Aix-Marseille University, 27, Boulevard Jean Moulin, 13005 Marseille, France;
| | - Farouk Tradi
- Department of Radiology, Hôpital de la TIMONE, AP-HM, 13005 Marseille, France; (L.A.-Y.); (F.C.); (F.T.); (A.J.)
| | - Badih Ghattas
- I2M—UMR CNRS 7373, Luminy Faculty of Sciences, Aix-Marseille University, 163 Avenue de Luminy, Case 901, 13009 Marseille, France;
| | - Sébastien Cortaredona
- IHU Méditerranée Infection, 19–21 Boulevard Jean Moulin, 13005 Marseille, France; (S.C.); (M.M.)
- VITROME, SSA, IRD, Aix-Marseille University, 13005 Marseille, France
| | - Matthieu Million
- IHU Méditerranée Infection, 19–21 Boulevard Jean Moulin, 13005 Marseille, France; (S.C.); (M.M.)
- MEPHI, IRD, AP-HM, Aix Marseille University, 13005 Marseille, France
| | - Adèle Lasbleiz
- C2VN, INRAE, INSERM, Aix Marseille University, 27, Boulevard Jean Moulin, 13005 Marseille, France; (A.L.); (A.D.); (B.G.)
- Department of Endocrinology, Metabolic Diseases and Nutrition, Pôle ENDO, AP-HM, 13915 Marseille, France
| | - Anne Dutour
- C2VN, INRAE, INSERM, Aix Marseille University, 27, Boulevard Jean Moulin, 13005 Marseille, France; (A.L.); (A.D.); (B.G.)
- Department of Endocrinology, Metabolic Diseases and Nutrition, Pôle ENDO, AP-HM, 13915 Marseille, France
| | - Bénédicte Gaborit
- C2VN, INRAE, INSERM, Aix Marseille University, 27, Boulevard Jean Moulin, 13005 Marseille, France; (A.L.); (A.D.); (B.G.)
- Department of Endocrinology, Metabolic Diseases and Nutrition, Pôle ENDO, AP-HM, 13915 Marseille, France
| | - Alexis Jacquier
- Department of Radiology, Hôpital de la TIMONE, AP-HM, 13005 Marseille, France; (L.A.-Y.); (F.C.); (F.T.); (A.J.)
- CRMBM—UMR CNRS 7339, Aix-Marseille University, 27, Boulevard Jean Moulin, 13005 Marseille, France;
| |
Collapse
|
215
|
Pastorek M, Dúbrava M, Celec P. On the Origin of Neutrophil Extracellular Traps in COVID-19. Front Immunol 2022; 13:821007. [PMID: 35359960 PMCID: PMC8961727 DOI: 10.3389/fimmu.2022.821007] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
Despite ongoing vaccination COVID-19 is a global healthcare problem because of the lack of an effective targeted therapy. In severe COVID-19 manifesting as acute respiratory distress syndrome, uncontrolled innate immune system activation results in cytokine deregulation, damage-associated molecular patterns release upon tissue damage and high occurrence of thrombotic events. These pathomechanisms are linked to neutrophil function and dysfunction, particularly increased formation of neutrophil extracellular traps (NETs). While the association of NETs and severity of COVID-19 has been shown and proved, the causes of NETs formation are unclear. The aim of this review is to summarize potential inducers of NETs formation in severe COVID-19 and to discuss potential treatment options targeting NETs formation of removal.
Collapse
Affiliation(s)
- Michal Pastorek
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Martin Dúbrava
- Department of Geriatric Medicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| |
Collapse
|
216
|
Salvio G, Gianfelice C, Firmani F, Lunetti S, Ferroni R, Balercia G, Giacchetti G. Remote management of osteoporosis in the first wave of the COVID-19 pandemic. Arch Osteoporos 2022; 17:37. [PMID: 35235056 PMCID: PMC8889057 DOI: 10.1007/s11657-022-01069-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/21/2022] [Indexed: 02/03/2023]
Abstract
We conducted a survey during the first pandemic wave of coronavirus disease 2019 (COVID-19) on a large group of osteoporotic patients to evaluate the general conditions of osteoporotic patients and the impact of the pandemic on the management of osteoporosis, finding high compliance to treatments and low COVID-19 lethality. INTRODUCTION During the first pandemic wave of coronavirus disease 2019 (COVID-19), 209,254 cases were diagnosed in Italy; fatalities were 26,892 and were overwhelmingly older patients. The high prevalence of osteoporosis in this age group suggests a potential relationship between SARS-CoV-2 infection and bone metabolism. METHODS In a telephone survey conducted from April to May 2020, patients from the Osteoporosis Center, Clinic of Endocrinology and Metabolic Diseases of Umberto I Hospital (Ancona, Italy), were interviewed to evaluate the general clinical conditions of osteoporotic patients, compliance with osteoporosis medications, COVID-19 prevalence, hospitalization rate, COVID-19 mortality, and lethality. RESULTS Among the 892 patients interviewed, 77.9% were taking osteoporosis treatment and 94.6% vitamin D supplementation as prescribed at the last visit. COVID-19-like symptoms were reported by 5.1%, whereas confirmed cases were 1.2%. A total number of 33 patients had been in hospital and the hospitalization rate of those who had not discontinued vitamin D supplementation was less than 4%. There were eight deaths, two with a concomitant COVID-19 diagnosis. The prevalence of severe osteoporosis was 50% in total COVID-19 patients and 87.5% in deceased COVID-19 patients. The overall COVID-19 mortality was 0.2%; lethality was 20%, lower than the national rate of the same age group. CONCLUSIONS This large group of osteoporotic patients showed high compliance and lower COVID-19 lethality compared to patients of the same age. Novel approaches such as telemedicine can provide critical support for the remote follow-up of patients with chronic diseases also in the setting of routine care.
Collapse
Affiliation(s)
- Gianmaria Salvio
- Department of Clinical and Molecular Sciences, Division of Endocrinology, Umberto I Hospital, Polytechnic University of Marche, Via Conca 71, 60126, Ancona, Italy
| | - Claudio Gianfelice
- Department of Clinical and Molecular Sciences, Division of Endocrinology, Umberto I Hospital, Polytechnic University of Marche, Via Conca 71, 60126, Ancona, Italy
| | - Francesca Firmani
- Department of Clinical and Molecular Sciences, Division of Endocrinology, Umberto I Hospital, Polytechnic University of Marche, Via Conca 71, 60126, Ancona, Italy
| | - Stefano Lunetti
- Department of Clinical and Molecular Sciences, Division of Endocrinology, Umberto I Hospital, Polytechnic University of Marche, Via Conca 71, 60126, Ancona, Italy
| | - Rossella Ferroni
- Department of Clinical and Molecular Sciences, Division of Endocrinology, Umberto I Hospital, Polytechnic University of Marche, Via Conca 71, 60126, Ancona, Italy
| | - Giancarlo Balercia
- Department of Clinical and Molecular Sciences, Division of Endocrinology, Umberto I Hospital, Polytechnic University of Marche, Via Conca 71, 60126, Ancona, Italy
| | - Gilberta Giacchetti
- Department of Clinical and Molecular Sciences, Division of Endocrinology, Umberto I Hospital, Polytechnic University of Marche, Via Conca 71, 60126, Ancona, Italy.
| |
Collapse
|
217
|
Al-Hajeri H, Baroun F, Abutiban F, Al-Mutairi M, Ali Y, Alawadhi A, Albasri A, Aldei A, AlEnizi A, Alhadhood N, Al-Herz A, Alkadi A, Alkanderi W, Almathkoori A, Almutairi N, Alsayegh S, Alturki A, Bahbahani H, Dehrab A, Ghanem A, Haji Hasan E, Hayat S, Saleh K, Tarakmeh H. Therapeutic role of immunomodulators during the COVID-19 pandemic- a narrative review. Postgrad Med 2022; 134:160-179. [PMID: 35086413 PMCID: PMC8862162 DOI: 10.1080/00325481.2022.2033563] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/18/2022] [Indexed: 02/07/2023]
Abstract
The emergency state caused by COVID-19 saw the use of immunomodulators despite the absence of robust research. To date, the results of relatively few randomized controlled trials have been published, and methodological approaches are riddled with bias and heterogeneity. Anti-SARS-CoV-2 antibodies, convalescent plasma and the JAK inhibitor baricitinib have gained Emergency Use Authorizations and tentative recommendations for their use in clinical practice alone or in combination with other therapies. Anti-SARS-CoV-2 antibodies are predominating the management of non-hospitalized patients, while the inpatient setting is seeing the use of convalescent plasma, baricitinib, tofacitinib, tocilizumab, sarilumab, and corticosteroids, as applicable. Available clinical data also suggest the potential clinical benefit of the early administration of blood-derived products (e.g. convalescent plasma, non-SARS-CoV-2-specific immunoglobins) and the blockade of factors implicated in the hyperinflammatory state of severe COVID-19 (Interleukin 1 and 6; Janus Kinase). Immune therapies seem to have a protective effect and using immunomodulators alone or in combination with viral replication inhibitors and other treatment modalities might prevent progression into severe COVID-19 disease, cytokine storm and death. Future trials should address existing gaps and reshape the landscape of COVID-19 management.
Collapse
Affiliation(s)
- Hebah Al-Hajeri
- Department of Rheumatology and Internal Medicine, Mubarak Al-Kabeer Hospital, Jabriya, Kuwait
| | - Fatemah Baroun
- Department of Rheumatology and Internal Medicine, AlJahra Hospital, Al-Jahra, Kuwait
| | - Fatemah Abutiban
- Department of Rheumatology and Internal Medicine, Jaber Al-Ahmad Hospital, South Surra, Kuwait
| | | | - Yasser Ali
- Rheumatology Unit, Department of Internal Medicine, Mubarak Al-Kabeer Hospital, Jabriya, Kuwait
| | - Adel Alawadhi
- Rheumatology Unit, Department of Internal Medicine, Al-Amiri Hospital, Kuwait City, Kuwait
| | - Anwar Albasri
- Rheumatology Unit, Department of Internal Medicine, Jaber Al-Ahmad Hospital, South Surra, Kuwait
| | - Ali Aldei
- Rheumatology Unit, Department of Internal Medicine, Al-Amiri Hospital, Kuwait City, Kuwait
| | - Ahmad AlEnizi
- Rheumatology Unit, Department of Internal Medicine, AlJahra Hospital, AlJahra, Kuwait
| | - Naser Alhadhood
- Rheumatology Unit, Department of Internal Medicine, Farwaneyah Hospital, AlFarwaniya, Kuwait
| | - Adeeba Al-Herz
- Rheumatology Unit, Department of Internal Medicine, Al-Amiri Hospital, Kuwait City, Kuwait
| | - Amjad Alkadi
- Rheumatology Unit, Department of Internal Medicine, Al-Sabah Hospital, Alsabah, Kuwait
| | - Waleed Alkanderi
- Rheumatology Unit, Department of Internal Medicine, Farwaneyah Hospital, AlFarwaniya, Kuwait
| | - Ammar Almathkoori
- Rheumatology Unit, Department of Internal Medicine, Al-Adan Hospital, Hadiya, Kuwait
| | - Nora Almutairi
- Rheumatology Unit, Department of Internal Medicine, Al-Sabah Hospital, Alsabah, Kuwait
| | - Saud Alsayegh
- Rheumatology Unit, Department of Internal Medicine, Jaber Al-Ahmad Armed Forces, Kuwait City, Kuwait
| | - Ali Alturki
- Rheumatology Unit, Department of Internal Medicine, Al-Adan Hospital, Hadiya, Kuwait
| | - Husain Bahbahani
- Rheumatology Unit, Department of Internal Medicine, Farwaneyah Hospital, AlFarwaniya, Kuwait
| | - Ahmad Dehrab
- Rheumatology Unit, Department of Internal Medicine, Al-Amiri Hospital, Kuwait City, Kuwait
| | - Aqeel Ghanem
- Rheumatology Unit, Department of Internal Medicine, Mubarak Al-Kabeer Hospital, Jabriya, Kuwait
| | - Eman Haji Hasan
- Rheumatology Unit, Department of Internal Medicine, Al-Amiri Hospital, Kuwait City, Kuwait
| | - Sawsan Hayat
- Rheumatology Unit, Department of Internal Medicine, Mubarak Al-Kabeer Hospital, Jabriya, Kuwait
| | - Khuloud Saleh
- Rheumatology Unit, Department of Internal Medicine, Farwaneyah Hospital, AlFarwaniya, Kuwait
| | - Hoda Tarakmeh
- Rheumatology Unit, Department of Internal Medicine, Mubarak Al-Kabeer Hospital, Jabriya, Kuwait
| |
Collapse
|
218
|
Turner-Stokes T, Edwards H, Lightstone L. COVID-19 in patients with glomerular disease. Curr Opin Nephrol Hypertens 2022; 31:191-198. [PMID: 34923542 DOI: 10.1097/mnh.0000000000000769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Managing patients with glomerular disease during the COVID-19 pandemic has been challenging, as the infection risk associated with immunosuppression must be balanced against the need to control severe glomerular disease that can lead to kidney failure. This review provides an overview of COVID-19 and the effectiveness of SARS-CoV-2 vaccination in patients with glomerular disease. RECENT FINDINGS Registry data, although biased towards outcomes of hospitalized patients, suggest that the mortality from COVID-19 is higher in patients with glomerular disease than in the general population. Glucocorticoid use prior to SARS-CoV-2 infection is associated with adverse outcomes from COVID-19. Rituximab significantly attenuates serological responses to both natural infection and vaccination against SARS-CoV-2, although it is not clear whether this leads to adverse outcomes. Case reports of disease flares occurring after vaccination have been reported, but causality in any of these cases has yet to be proven and the absolute risk remains very small. SUMMARY Patients with glomerular disease represent an at-risk group for severe COVID-19 disease and vaccination is key to reducing this risk. As immunosuppressed patients demonstrate an attenuated response to vaccination, the efficacy of a third primary dose followed by a subsequent booster is being investigated.
Collapse
Affiliation(s)
- Tabitha Turner-Stokes
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London
- Imperial College Renal and Transplant Centre, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| | - Helena Edwards
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London
- Imperial College Renal and Transplant Centre, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| | - Liz Lightstone
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London
- Imperial College Renal and Transplant Centre, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| |
Collapse
|
219
|
Razi S, Molavi Z, Mirmotalebisohi SA, Niknam Z, Sameni M, Niazi V, Adibi A, Yazdani M, Ranjbar MM, Zali H. Mesenchymal Stem Cells in the Treatment of New Coronavirus Pandemic: A Novel Promising Therapeutic Approach. Adv Pharm Bull 2022; 12:206-216. [PMID: 35620342 PMCID: PMC9106958 DOI: 10.34172/apb.2022.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/12/2021] [Accepted: 03/25/2021] [Indexed: 11/09/2022] Open
Abstract
After severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) outbreaks, coronavirus disease 2019 (COVID-19) is the third coronavirus epidemic that soon turned into a pandemic. This virus causes acute respiratory syndrome in infected people. The mortality rate of SARS-CoV-2 infection will probably rise unless efficient treatments or vaccines are developed. The global funding and medical communities have started performing more than five hundred clinical examinations on a broad spectrum of repurposed drugs to acquire effective treatments. Besides, other novel treatment approaches have also recently emerged, including cellular host-directed therapies. They counteract the unwanted responses of the host immune system that led to the severe pathogenesis of SARS-CoV-2. This brief review focuses on mesenchymal stem cell (MSC) principles in treating the COVID-19. The US clinical trials database and the world health organization database for clinical trials have reported 82 clinical trials (altogether) exploring the effects of MSCs in COVID-19 treatment. MSCs also had better be tried for treating other pathogens worldwide. MSC treatment may have the potential to end the high mortality rate of COVID-19. Besides, it also limits the long-term inability of survivors.
Collapse
Affiliation(s)
- Sara Razi
- Proteomics Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Molavi
- Proteomics Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Seyed Amir Mirmotalebisohi
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Niknam
- Proteomics Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Marzieh Sameni
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Niazi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirjafar Adibi
- Departments of Orthopedics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Yazdani
- Institute of Biochemistry and Biophysics, Tehran University, Tehran, Iran
| | - Mohammad Mehdi Ranjbar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Hakimeh Zali
- Proteomics Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
220
|
Hassan SS, Basu P, Redwan EM, Lundstrom K, Choudhury PP, Serrano-Aroca Á, Azad GK, Aljabali AAA, Palu G, Abd El-Aziz TM, Barh D, Uhal BD, Adadi P, Takayama K, Bazan NG, Tambuwala MM, Lal A, Chauhan G, Baetas-da-Cruz W, Sherchan SP, Uversky VN. Periodically aperiodic pattern of SARS-CoV-2 mutations underpins the uncertainty of its origin and evolution. ENVIRONMENTAL RESEARCH 2022; 204:112092. [PMID: 34562480 PMCID: PMC8457672 DOI: 10.1016/j.envres.2021.112092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 05/20/2023]
Abstract
Various lineages of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) have contributed to prolongation of the Coronavirus Disease 2019 (COVID-19) pandemic. Several non-synonymous mutations in SARS-CoV-2 proteins have generated multiple SARS-CoV-2 variants. In our previous report, we have shown that an evenly uneven distribution of unique protein variants of SARS-CoV-2 is geo-location or demography-specific. However, the correlation between the demographic transmutability of the SARS-CoV-2 infection and mutations in various proteins remains unknown due to hidden symmetry/asymmetry in the occurrence of mutations. This study tracked how these mutations are emerging in SARS-CoV-2 proteins in six model countries and globally. In a geo-location, considering the mutations having a frequency of detection of at least 500 in each SARS-CoV-2 protein, we studied the country-wise percentage of invariant residues. Our data revealed that since October 2020, highly frequent mutations in SARS-CoV-2 have been observed mostly in the Open Reading Frame (ORF) 7b and ORF8, worldwide. No such highly frequent mutations in any of the SARS-CoV-2 proteins were found in the UK, India, and Brazil, which does not correlate with the degree of transmissibility of the virus in India and Brazil. However, we have found a signature that SARS-CoV-2 proteins were evolving at a higher rate, and considering global data, mutations are detected in the majority of the available amino acid locations. Fractal analysis of each protein's normalized factor time series showed a periodically aperiodic emergence of dominant variants for SARS-CoV-2 protein mutations across different countries. It was noticed that certain high-frequency variants have emerged in the last couple of months, and thus the emerging SARS-CoV-2 strains are expected to contain prevalent mutations in the ORF3a, membrane, and ORF8 proteins. In contrast to other beta-coronaviruses, SARS-CoV-2 variants have rapidly emerged based on demographically dependent mutations. Characterization of the periodically aperiodic nature of the demographic spread of SARS-CoV-2 variants in various countries can contribute to the identification of the origin of SARS-CoV-2.
Collapse
Affiliation(s)
- Sk Sarif Hassan
- Department of Mathematics, Pingla Thana Mahavidyalaya, Maligram, Paschim Medinipur, 721140, West Bengal, India.
| | - Pallab Basu
- School of Physics, University of the Witwatersrand, Johannesburg, Braamfontein 2000, 721140, South Africa.
| | - Elrashdy M Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg EL-Arab, 21934, Alexandria, Egypt.
| | | | - Pabitra Pal Choudhury
- Indian Statistical Institute, Applied Statistics Unit, 203 B T Road, Kolkata, 700108, India.
| | - Ángel Serrano-Aroca
- Biomaterials & Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, San Vicente Mártir, Valencia 46001, Spain.
| | | | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Faculty of Pharmacy, Irbid, 566, Jordan.
| | - Giorgio Palu
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121, Padova, Italy.
| | - Tarek Mohamed Abd El-Aziz
- Zoology Department, Faculty of Science, Minia University, El-Minia, 61519, Egypt; Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA.
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, WB, India; Departamento de Geńetica, Ecologia e Evolucao, Instituto de Cîencias Bioĺogicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Bruce D Uhal
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA.
| | - Parise Adadi
- Department of Food Science, University of Otago, Dunedin, 9054, New Zealand.
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 6068507, Japan.
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, LSU Health New Orleans, New Orleans, LA, 70112, USA.
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, BT52 1SA, Northern Ireland, UK.
| | - Amos Lal
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Gaurav Chauhan
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, 64849, Monterrey, Nuevo Léon, Mexico.
| | - Wagner Baetas-da-Cruz
- Translational Laboratory in Molecular Physiology, Centre for Experimental Surgery, College of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| | - Samendra P Sherchan
- Department of Environmental Health Sciences, Tulane University, New Orleans, LA, 70112, USA.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA; Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy pereulok, 9, Dolgoprudny, 141700, Russia.
| |
Collapse
|
221
|
Proverbio D, Kemp F, Magni S, Gonçalves J. Performance of early warning signals for disease re-emergence: A case study on COVID-19 data. PLoS Comput Biol 2022; 18:e1009958. [PMID: 35353809 PMCID: PMC9000113 DOI: 10.1371/journal.pcbi.1009958] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 04/11/2022] [Accepted: 02/23/2022] [Indexed: 01/12/2023] Open
Abstract
Developing measures for rapid and early detection of disease re-emergence is important to perform science-based risk assessment of epidemic threats. In the past few years, several early warning signals (EWS) from complex systems theory have been introduced to detect impending critical transitions and extend the set of indicators. However, it is still debated whether they are generically applicable or potentially sensitive to some dynamical characteristics such as system noise and rates of approach to critical parameter values. Moreover, testing on empirical data has, so far, been limited. Hence, verifying EWS performance remains a challenge. In this study, we tackle this question by analyzing the performance of common EWS, such as increasing variance and autocorrelation, in detecting the emergence of COVID-19 outbreaks in various countries. Our work illustrates that these EWS might be successful in detecting disease emergence when some basic assumptions are satisfied: a slow forcing through the transitions and not-fat-tailed noise. In uncertain cases, we observe that noise properties or commensurable time scales may obscure the expected early warning signals. Overall, our results suggest that EWS can be useful for active monitoring of epidemic dynamics, but that their performance is sensitive to certain features of the underlying dynamics. Our findings thus pave a connection between theoretical and empirical studies, constituting a further step towards the application of EWS indicators for informing public health policies.
Collapse
Affiliation(s)
- Daniele Proverbio
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom
| | - Françoise Kemp
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Stefano Magni
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Jorge Gonçalves
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
222
|
Cordeiro A, Ribamar A, Ramalho A. Adipose tissue dysfunction and MAFLD in obesity on the scene of COVID-19. Clin Res Hepatol Gastroenterol 2022; 46:101807. [PMID: 34543756 PMCID: PMC8447553 DOI: 10.1016/j.clinre.2021.101807] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/19/2021] [Accepted: 09/07/2021] [Indexed: 02/04/2023]
Abstract
Obesity is a known risk factor for respiratory infection and many other chronic diseases, including metabolic dysfunction-associated fatty liver disease (MAFLD), previously known as nonalcoholic fatty liver disease (NAFLD). Recently, it has been considered an important and independent predictor for coronavirus disease 2019 (COVID-19) complications in adults, especially cardiopulmonary, presenting in a great number of individuals in critical care. In obesity, adipose tissue (AT) undergoes expansion via several processes: expansion of adipocytes and insufficient vascularization lead to hypoxia; adipocyte apoptosis/necrosis; irregular fatty acid flux; and enhanced secretion of inflammatory adipokines, cytokines, and chemokines. In individuals with obesity the liver can also become a target of COVID-19 infection, although major liver damage is uncommon. COVID-19 acute pandemic often develops in patients with major metabolic abnormalities, including fatty liver disease, which is part of a chronic pandemic together with body fat accumulation. During metabolic abnormalities, the expansion of metabolically active fat parallels chronic inflammatory changes, the development of Insulin Resistance (IR), and in the liver, the accumulation of fat, possibly, an underlying fibrosis. SARS-Cov-2 virus might affect the liver by direct or indirect mechanisms. The current epidemic of obesity and related metabolic diseases has extensively contributed to increase the number of severe cases and deaths from COVID-19, resulting in a health, political and economic crisis with long-lasting consequences. In this review, the authors explore the relationship between AT dysfunction and MAFLD in obesity on the scene of COVID-19.
Collapse
Affiliation(s)
- Adryana Cordeiro
- Department of Social Applied Nutrition, Micronutrients Research Center (NPqM), Institute of Nutrition, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal.
| | - Amanda Ribamar
- Department of Social Applied Nutrition, Micronutrients Research Center (NPqM), Institute of Nutrition, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Faculty of Medicine, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Andrea Ramalho
- Department of Social Applied Nutrition, Micronutrients Research Center (NPqM), Institute of Nutrition, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
223
|
Menter DG, Afshar-Kharghan V, Shen JP, Martch SL, Maitra A, Kopetz S, Honn KV, Sood AK. Of vascular defense, hemostasis, cancer, and platelet biology: an evolutionary perspective. Cancer Metastasis Rev 2022; 41:147-172. [PMID: 35022962 PMCID: PMC8754476 DOI: 10.1007/s10555-022-10019-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/04/2022] [Indexed: 01/08/2023]
Abstract
We have established considerable expertise in studying the role of platelets in cancer biology. From this expertise, we were keen to recognize the numerous venous-, arterial-, microvascular-, and macrovascular thrombotic events and immunologic disorders are caused by severe, acute-respiratory-syndrome coronavirus 2 (SARS-CoV-2) infections. With this offering, we explore the evolutionary connections that place platelets at the center of hemostasis, immunity, and adaptive phylogeny. Coevolutionary changes have also occurred in vertebrate viruses and their vertebrate hosts that reflect their respective evolutionary interactions. As mammals adapted from aquatic to terrestrial life and the heavy blood loss associated with placentalization-based live birth, platelets evolved phylogenetically from thrombocytes toward higher megakaryocyte-blebbing-based production rates and the lack of nuclei. With no nuclei and robust RNA synthesis, this adaptation may have influenced viral replication to become less efficient after virus particles are engulfed. Human platelets express numerous receptors that bind viral particles, which developed from archetypal origins to initiate aggregation and exocytic-release of thrombo-, immuno-, angiogenic-, growth-, and repair-stimulatory granule contents. Whether by direct, evolutionary, selective pressure, or not, these responses may help to contain virus spread, attract immune cells for eradication, and stimulate angiogenesis, growth, and wound repair after viral damage. Because mammalian and marsupial platelets became smaller and more plate-like their biophysical properties improved in function, which facilitated distribution near vessel walls in fluid-shear fields. This adaptation increased the probability that platelets could then interact with and engulf shedding virus particles. Platelets also generate circulating microvesicles that increase membrane surface-area encounters and mark viral targets. In order to match virus-production rates, billions of platelets are generated and turned over per day to continually provide active defenses and adaptation to suppress the spectrum of evolving threats like SARS-CoV-2.
Collapse
Affiliation(s)
- David G Menter
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Vahid Afshar-Kharghan
- Division of Internal Medicine, Benign Hematology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - John Paul Shen
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephanie L Martch
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anirban Maitra
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Scott Kopetz
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kenneth V Honn
- Department of Pathology, Bioactive Lipids Research Program, Wayne State University, 5101 Cass Ave. 430 Chemistry, Detroit, MI, 48202, USA
- Department of Pathology, Wayne State University School of Medicine, 431 Chemistry Bldg, Detroit, MI, 48202, USA
- Cancer Biology Division, Wayne State University School of Medicine, 431 Chemistry Bldg, Detroit, MI, 48202, USA
| | - Anil K Sood
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
224
|
Murphy EJ, Rezoagli E, Pogue R, Simonassi-Paiva B, Abidin IIZ, Fehrenbach GW, O'Neil E, Major I, Laffey JG, Rowan N. Immunomodulatory activity of β-glucan polysaccharides isolated from different species of mushroom - A potential treatment for inflammatory lung conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:152177. [PMID: 34875322 PMCID: PMC9752827 DOI: 10.1016/j.scitotenv.2021.152177] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 05/08/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is the most common form of acute severe hypoxemic respiratory failure in the critically ill with a hospital mortality of 40%. Alveolar inflammation is one of the hallmarks for this disease. β-Glucans are polysaccharides isolated from a variety of natural sources including mushrooms, with documented immune modulating properties. To investigate the immunomodulatory activity of β-glucans and their potential as a treatment for ARDS, we isolated and measured glucan-rich polysaccharides from seven species of mushrooms. We used three models of in-vitro injury in THP-1 macrophages, Peripheral blood mononuclear cells (CD14+) (PMBCs) isolated from healthy volunteers and lung epithelial cell lines. We observed variance between β-glucan content in extracts isolated from seven mushroom species. The extracts with the highest β-glucan content found was Lentinus edodes which contained 70% w/w and Hypsizygus tessellatus which contained 80% w/w with low levels of α-glucan. The extracts had the ability to induce secretion of up to 4000 pg/mL of the inflammatory cytokine IL-6, and up to 5000 pg/mL and 500 pg/mL of the anti-inflammatory cytokines IL-22 and IL-10, respectively, at a concentration of 1 mg/mL in THP-1 macrophages. In the presence of cytokine injury, IL-8 was reduced from 15,000 pg/mL to as low as 10,000 pg/mL in THP-1 macrophages. After insult with LPS, phagocytosis dropped from 70-90% to as low 10% in CD14+ PBMCs. After LPS insult CCL8 relative gene expression was reduced, and IL-10 relative gene expression increased from 50 to 250-fold in THP-1 macrophages. In lung epithelial cells, both A549 and BEAS-2B after IL-1β insult, IL-8 levels dropped from 10,000 pg/mL to as low as 6000 pg/mL. TNF-α levels dropped 10-fold from 100 pg/mL to just below 10 pg/mL. These results demonstrate the therapeutic potential of β-glucans in inflammatory lung conditions. Findings also advance bio-based research that connects green innovation with One Health applications for the betterment of society.
Collapse
Affiliation(s)
- Emma J Murphy
- Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland; Department of Graduate Studies, Limerick Institute of Technology, Limerick, Ireland
| | - Emanuele Rezoagli
- Lung Biology Group, Regenerative Medicine Institute at CURAM Centre for Medical Devices, School of Medicine, National University of Ireland Galway, Galway, Ireland; Anaesthesia and Intensive Care Medicine, University Hospital Galway, Galway, Ireland; Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy.
| | - Robert Pogue
- Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland; Post-Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasilia, Brazil
| | | | | | | | - Emer O'Neil
- Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland
| | - Ian Major
- Materials Research Institute, Athlone Institute of Technology, Athlone, Ireland
| | - John G Laffey
- Lung Biology Group, Regenerative Medicine Institute at CURAM Centre for Medical Devices, School of Medicine, National University of Ireland Galway, Galway, Ireland; Anaesthesia and Intensive Care Medicine, University Hospital Galway, Galway, Ireland
| | - Neil Rowan
- Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland
| |
Collapse
|
225
|
Abstract
Coronavirus disease 2019 (COVID-19) due to infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been an ongoing pandemic causing significant morbidity and mortality worldwide. The “cytokine storm” is a critical driving force in severe COVID-19 cases, leading to hyperinflammation, multi-system organ failure, and death. A paradigm shift is emerging in our understanding of the resolution of inflammation from a passive course to an active biochemical process driven by endogenous specialized pro-resolving mediators (SPMs), such as resolvins, protectins, lipoxins, and maresins. SPMs stimulate macrophage-mediated debris clearance and counter pro-inflammatory cytokine production, a process collectively termed as the “resolution of inflammation.” Hyperinflammation is not unique to COVID-19 and also occurs in neoplastic conditions, putting individuals with underlying health conditions such as cancer at elevated risk of severe SARS-CoV-2 infection. Despite approaches to block systemic inflammation, there are no current therapies designed to stimulate the resolution of inflammation in patients with COVID-19 or cancer. A non-immunosuppressive therapeutic approach that reduces the cytokine storm in patients with COVID-19 and cancer is urgently needed. SPMs are potent immunoresolvent and organ-protective lipid autacoids that stimulate the resolution of inflammation, facilitate clearance of infections, reduce thrombus burden, and promote a return to tissue homeostasis. Targeting endogenous lipid mediators, such as SPMs, offers an entirely novel approach to control SARS-CoV-2 infection and cancer by increasing the body’s natural reserve of pro-resolving mediators without overt toxicity or immunosuppression.
Collapse
Affiliation(s)
- Chantal Barksdale
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Franciele C Kipper
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Shreya Tripathy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA. .,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA. .,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
226
|
Lucas R, Hadizamani Y, Enkhbaatar P, Csanyi G, Caldwell RW, Hundsberger H, Sridhar S, Lever AA, Hudel M, Ash D, Ushio-Fukai M, Fukai T, Chakraborty T, Verin A, Eaton DC, Romero M, Hamacher J. Dichotomous Role of Tumor Necrosis Factor in Pulmonary Barrier Function and Alveolar Fluid Clearance. Front Physiol 2022; 12:793251. [PMID: 35264975 PMCID: PMC8899333 DOI: 10.3389/fphys.2021.793251] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/30/2021] [Indexed: 02/04/2023] Open
Abstract
Alveolar-capillary leak is a hallmark of the acute respiratory distress syndrome (ARDS), a potentially lethal complication of severe sepsis, trauma and pneumonia, including COVID-19. Apart from barrier dysfunction, ARDS is characterized by hyper-inflammation and impaired alveolar fluid clearance (AFC), which foster the development of pulmonary permeability edema and hamper gas exchange. Tumor Necrosis Factor (TNF) is an evolutionarily conserved pleiotropic cytokine, involved in host immune defense against pathogens and cancer. TNF exists in both membrane-bound and soluble form and its mainly -but not exclusively- pro-inflammatory and cytolytic actions are mediated by partially overlapping TNFR1 and TNFR2 binding sites situated at the interface between neighboring subunits in the homo-trimer. Whereas TNFR1 signaling can mediate hyper-inflammation and impaired barrier function and AFC in the lungs, ligand stimulation of TNFR2 can protect from ventilation-induced lung injury. Spatially distinct from the TNFR binding sites, TNF harbors within its structure a lectin-like domain that rather protects lung function in ARDS. The lectin-like domain of TNF -mimicked by the 17 residue TIP peptide- represents a physiological mediator of alveolar-capillary barrier protection. and increases AFC in both hydrostatic and permeability pulmonary edema animal models. The TIP peptide directly activates the epithelial sodium channel (ENaC) -a key mediator of fluid and blood pressure control- upon binding to its α subunit, which is also a part of the non-selective cation channel (NSC). Activity of the lectin-like domain of TNF is preserved in complexes between TNF and its soluble TNFRs and can be physiologically relevant in pneumonia. Antibody- and soluble TNFR-based therapeutic strategies show considerable success in diseases such as rheumatoid arthritis, psoriasis and inflammatory bowel disease, but their chronic use can increase susceptibility to infection. Since the lectin-like domain of TNF does not interfere with TNF's anti-bacterial actions, while exerting protective actions in the alveolar-capillary compartments, it is currently evaluated in clinical trials in ARDS and COVID-19. A more comprehensive knowledge of the precise role of the TNFR binding sites versus the lectin-like domain of TNF in lung injury, tissue hypoxia, repair and remodeling may foster the development of novel therapeutics for ARDS.
Collapse
Affiliation(s)
- Rudolf Lucas
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States,*Correspondence: Rudolf Lucas,
| | - Yalda Hadizamani
- Lungen-und Atmungsstiftung Bern, Bern, Switzerland,Pneumology, Clinic for General Internal Medicine, Lindenhofspital Bern, Bern, Switzerland
| | - Perenlei Enkhbaatar
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, United States
| | - Gabor Csanyi
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States
| | - Robert W. Caldwell
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States
| | - Harald Hundsberger
- Department of Medical Biotechnology, University of Applied Sciences, Krems, Austria,Department of Dermatology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Supriya Sridhar
- Vascular Biology Center, Augusta University, Augusta, GA, United States
| | - Alice Ann Lever
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Martina Hudel
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Dipankar Ash
- Vascular Biology Center, Augusta University, Augusta, GA, United States
| | - Masuko Ushio-Fukai
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Tohru Fukai
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States,Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, United States
| | - Trinad Chakraborty
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Alexander Verin
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Douglas C. Eaton
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Maritza Romero
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States,Department of Anesthesiology and Perioperative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Jürg Hamacher
- Lungen-und Atmungsstiftung Bern, Bern, Switzerland,Pneumology, Clinic for General Internal Medicine, Lindenhofspital Bern, Bern, Switzerland,Medical Clinic V-Pneumology, Allergology, Intensive Care Medicine, and Environmental Medicine, Faculty of Medicine, University Medical Centre of the Saarland, Saarland University, Homburg, Germany,Institute for Clinical & Experimental Surgery, Faculty of Medicine, Saarland University, Homburg, Germany,Jürg Hamacher,
| |
Collapse
|
227
|
Grandone E, Vimercati A, Sorrentino F, Colaizzo D, Ostuni A, Ceci O, Capozza M, Tiscia G, De Laurenzo A, Mastroianno M, Cappucci F, Fischetti L, Margaglione M, Cicinelli E, Nappi L. Obstetric outcomes in pregnant COVID-19 women: the imbalance of von Willebrand factor and ADAMTS13 axis. BMC Pregnancy Childbirth 2022; 22:142. [PMID: 35189860 PMCID: PMC8860294 DOI: 10.1186/s12884-022-04405-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/12/2022] [Indexed: 01/12/2023] Open
Abstract
Background Thrombotic microangiopathy has been invoked as one of the most important mechanisms of damage in COVID-19 patients. Protease ADAMTS13 is a marker of microangiopathy responsible for controlling von Willebrand multimers size. Von Willebrand factor/ADAMTS13 ratio has been found impaired in COVID-19 patients outside pregnancy. Methods We prospectively investigated 90 pregnant women admitted to two tertiary academic hospitals in Italy with a laboratory-confirmed diagnosis of SARS-CoV-2 infection. Demographic, clinical information and routine laboratory data were collected at the hospital admission and until discharge. We investigated whether vonWillebrand /ADAMTS13 axis imbalance is a predictor of adverse outcomes. Logistic regression analysis, which controlled for potential confounders, was performed to evaluate the association between laboratory parameters and clinical outcomes. Results Most women (55.6%) were parae, with median gestational age at admission of 39 weeks. At hospital admission, 63.3% were asymptomatic for COVID-19 and 24.4% showed more than one sign or symptom of infection. Nulliparae with group O showed Willebrand / ADA MTS-13 ratios significantly lower than non-O, whereas in multiparae this difference was not observed. Logistic regression showed that ratio von Willebrand to ADAMTS13 was significantly and independently associated with preterm delivery (OR 1.9, 95%CI 1.1–3.5). Conclusion This study shows an imbalance of vonWillebrand /ADAMTS13 axis in pregnant women with COVID-19, leading to a significantly higher and independent risk of preterm delivery. Monitoring these biomarkers might support decision making process to manage and follow-up pregnancies in this setting.
Collapse
Affiliation(s)
- Elvira Grandone
- Thrombosis and Haemostasis Unit, Fondazione I.R.C.C.S. "Casa Sollievo della Sofferenza", Viale Cappuccini, 71013, Foggia, S. Giovanni Rotondo, Italy. .,Ob/Gyn Department of The First I.M. Sechenov Moscow State Medical University, Moscow, Russia. .,Ob/Gyn Institute, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| | - Antonella Vimercati
- Ob/Gyn Institute, Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Felice Sorrentino
- Ob/Gyn Institute, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Donatella Colaizzo
- Thrombosis and Haemostasis Unit, Fondazione I.R.C.C.S. "Casa Sollievo della Sofferenza", Viale Cappuccini, 71013, Foggia, S. Giovanni Rotondo, Italy
| | - Angelo Ostuni
- Immunohematology and Transfusion Medicine Service, Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, University of Bari "Aldo Moro", Bari, Italy.,Struttura Regionale Coordinamento Puglia, Bari, Italy
| | - Oronzo Ceci
- Ob/Gyn Institute, Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Manuela Capozza
- Neonatal Intensive Care Unit, Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Giovanni Tiscia
- Thrombosis and Haemostasis Unit, Fondazione I.R.C.C.S. "Casa Sollievo della Sofferenza", Viale Cappuccini, 71013, Foggia, S. Giovanni Rotondo, Italy
| | - Antonio De Laurenzo
- Thrombosis and Haemostasis Unit, Fondazione I.R.C.C.S. "Casa Sollievo della Sofferenza", Viale Cappuccini, 71013, Foggia, S. Giovanni Rotondo, Italy
| | - Mario Mastroianno
- Scientific Direction, Fondazione I.R.C.C.S. "Casa Sollievo della Sofferenza", Foggia, S. Giovanni Rotondo, Italy
| | - Filomena Cappucci
- Thrombosis and Haemostasis Unit, Fondazione I.R.C.C.S. "Casa Sollievo della Sofferenza", Viale Cappuccini, 71013, Foggia, S. Giovanni Rotondo, Italy
| | - Lucia Fischetti
- Thrombosis and Haemostasis Unit, Fondazione I.R.C.C.S. "Casa Sollievo della Sofferenza", Viale Cappuccini, 71013, Foggia, S. Giovanni Rotondo, Italy
| | | | - Ettore Cicinelli
- Ob/Gyn Institute, Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Luigi Nappi
- Ob/Gyn Institute, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
228
|
Abidi E, El Nekidy WS, Alefishat E, Rahman N, Petroianu GA, El-Lababidi R, Mallat J. Tocilizumab and COVID-19: Timing of Administration and Efficacy. Front Pharmacol 2022; 13:825749. [PMID: 35250575 PMCID: PMC8894855 DOI: 10.3389/fphar.2022.825749] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
Elevated concentrations of interleukin-6 have been demonstrated to be an important key factor in COVID-19 host immune impairment. It represents an important prognostic factor of harm associated with COVID-19 infection by stimulating a vigorous proinflammatory response, leading to the so-called "cytokine storm". Therefore, immunomodulatory interventions targeting interleukin-6 receptor antagonism have been investigated as potential treatments to counterbalance the host immune dysregulation and to support the advantageous effects of corticosteroids. Tocilizumab is a recombinant humanized monoclonal antibody that has gained much interest during the COVID-19 pandemic as an interleukin-6 receptor antagonist. Various early observational studies have reported beneficial effects of tocilizumab. Moreover, consequent randomized controlled trials have subsequently shown significant positive results about tocilizumab efficacy and safety, focusing on outcomes like mortality, risk of intensive care unit admission, and the need for mechanical ventilation, while others presented conflicting findings. In this review, we first described the pathophysiology of COVID-19 infection while highlighting the role of interleukin-6. Furthermore, we also discussed the non-conclusive evidence about tocilizumab to be used as the standard of care therapy for all patients with COVID-19 pneumonia, as well as its beneficial effects in selected patients.
Collapse
Affiliation(s)
- Emna Abidi
- Department of Pharmacy Services, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Wasim S. El Nekidy
- Department of Pharmacy Services, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States
| | - Eman Alefishat
- Department of Pharmacology, College of Medicine and Health Science, Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, The University of Jordan, Amman, Jordan
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Nadeem Rahman
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States
- Critical Care Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Georg A. Petroianu
- Department of Pharmacology, College of Medicine and Health Science, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Rania El-Lababidi
- Department of Pharmacy Services, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Jihad Mallat
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States
- Critical Care Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
- Normandy University, UNICAEN, Caen, France
| |
Collapse
|
229
|
Wang X, Sanborn MA, Dai Y, Rehman J. Temporal transcriptomic analysis using TrendCatcher identifies early and persistent neutrophil activation in severe COVID-19. JCI Insight 2022; 7:157255. [PMID: 35175937 PMCID: PMC9057597 DOI: 10.1172/jci.insight.157255] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Studying temporal gene expression shifts during disease progression provides important insights into the biological mechanisms that distinguish adaptive and maladaptive responses. Existing tools for the analysis of time course transcriptomic data are not designed to optimally identify distinct temporal patterns when analyzing dynamic differentially expressed genes (DDEGs). Moreover, there are not enough methods to assess and visualize the temporal progression of biological pathways mapped from time course transcriptomic data sets. In this study, we developed an open-source R package TrendCatcher (https://github.com/jaleesr/TrendCatcher), which applies the smoothing spline ANOVA model and break point searching strategy, to identify and visualize distinct dynamic transcriptional gene signatures and biological processes from longitudinal data sets. We used TrendCatcher to perform a systematic temporal analysis of COVID-19 peripheral blood transcriptomes, including bulk and single-cell RNA-Seq time course data. TrendCatcher uncovered the early and persistent activation of neutrophils and coagulation pathways, as well as impaired type I IFN (IFN-I) signaling in circulating cells as a hallmark of patients who progressed to severe COVID-19, whereas no such patterns were identified in individuals receiving SARS-CoV-2 vaccinations or patients with mild COVID-19. These results underscore the importance of systematic temporal analysis to identify early biomarkers and possible pathogenic therapeutic targets.
Collapse
Affiliation(s)
- Xinge Wang
- Department of Biomedical Engineering, University of Illinois Colleges of Engineering and Medicine, Chicago, United States of America
| | - Mark A Sanborn
- Department of Pharmacology and Regenerative Medicine, University of Illinois Colleges of Engineering and Medicine, Chicago, United States of America
| | - Yang Dai
- Department of Biomedical Engineering, University of Illinois Colleges of Engineering and Medicine, Chicago, United States of America
| | - Jalees Rehman
- Department of Pharmacology and Regenerative Medicine, University of Illinois Colleges of Engineering and Medicine, Chicago, United States of America
| |
Collapse
|
230
|
Ma Y, Qiu F, Deng C, Li J, Huang Y, Wu Z, Zhou Y, Zhang Y, Xiong Y, Yao Y, Zhong Y, Qu J, Su J. Integrating single-cell sequencing data with GWAS summary statistics reveals CD16+monocytes and memory CD8+T cells involved in severe COVID-19. Genome Med 2022; 14:16. [PMID: 35172892 PMCID: PMC8851814 DOI: 10.1186/s13073-022-01021-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 02/06/2022] [Indexed: 02/08/2023] Open
Abstract
Background Understanding the host genetic architecture and viral immunity contributes to the development of effective vaccines and therapeutics for controlling the COVID-19 pandemic. Alterations of immune responses in peripheral blood mononuclear cells play a crucial role in the detrimental progression of COVID-19. However, the effects of host genetic factors on immune responses for severe COVID-19 remain largely unknown. Methods We constructed a computational framework to characterize the host genetics that influence immune cell subpopulations for severe COVID-19 by integrating GWAS summary statistics (N = 969,689 samples) with four independent scRNA-seq datasets containing healthy controls and patients with mild, moderate, and severe symptom (N = 606,534 cells). We collected 10 predefined gene sets including inflammatory and cytokine genes to calculate cell state score for evaluating the immunological features of individual immune cells. Results We found that 34 risk genes were significantly associated with severe COVID-19, and the number of highly expressed genes increased with the severity of COVID-19. Three cell subtypes that are CD16+monocytes, megakaryocytes, and memory CD8+T cells were significantly enriched by COVID-19-related genetic association signals. Notably, three causal risk genes of CCR1, CXCR6, and ABO were highly expressed in these three cell types, respectively. CCR1+CD16+monocytes and ABO+ megakaryocytes with significantly up-regulated genes, including S100A12, S100A8, S100A9, and IFITM1, confer higher risk to the dysregulated immune response among severe patients. CXCR6+ memory CD8+ T cells exhibit a notable polyfunctionality including elevation of proliferation, migration, and chemotaxis. Moreover, we observed an increase in cell-cell interactions of both CCR1+ CD16+monocytes and CXCR6+ memory CD8+T cells in severe patients compared to normal controls among both PBMCs and lung tissues. The enhanced interactions of CXCR6+ memory CD8+T cells with epithelial cells facilitate the recruitment of this specific population of T cells to airways, promoting CD8+T cell-mediated immunity against COVID-19 infection. Conclusions We uncover a major genetics-modulated immunological shift between mild and severe infection, including an elevated expression of genetics-risk genes, increase in inflammatory cytokines, and of functional immune cell subsets aggravating disease severity, which provides novel insights into parsing the host genetic determinants that influence peripheral immune cells in severe COVID-19. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-022-01021-1.
Collapse
Affiliation(s)
- Yunlong Ma
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
| | - Fei Qiu
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
| | - Chunyu Deng
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jingjing Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Zhejiang, 310003, Hangzhou, China
| | - Yukuan Huang
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zeyi Wu
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yijun Zhou
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yaru Zhang
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yichun Xiong
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325011, China
| | - Yinghao Yao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325011, China
| | - Yigang Zhong
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Qu
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jianzhong Su
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China. .,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325011, China.
| |
Collapse
|
231
|
Tip of the iceberg: erectile dysfunction and COVID-19. Int J Impot Res 2022; 34:152-157. [PMID: 35152276 PMCID: PMC8853253 DOI: 10.1038/s41443-022-00540-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 12/11/2022]
Abstract
The novel severe acute respiratory syndrome coronavirus 2 caused the coronavirus 2019 (COVID-19) pandemic that resulted in more than 150 million infections and 3.5 million deaths globally. COVID-19 affected men more than women, emerging with more severe disease and higher mortality rates. Androgens may be responsible for the underlying reason of more severe disease, as androgen receptors have been implicated to mediate viral cell entry and infection. Besides, male reproductive organs have been reported to be affected by the especially severe disease, resulting in erectile dysfunction (ED). In this narrative review, we aimed to gather possible mechanisms of the development of ED led by COVID-19. Current evidence illuminates endothelial dysfunction, direct testicular damage, and the psychological burden of COVID-19 that are of the pathways of ED. Although the proposed underlying mechanisms partly fail to answer the questions by which COVID-19 leads to ED, it is important to monitor men who recovered from COVID-19 regarding the sexual dysfunction sequelae of infection and address the long‐term consequences.
Collapse
|
232
|
Well-differentiated liver cancers reveal the potential link between ACE2 dysfunction and metabolic breakdown. Sci Rep 2022; 12:1859. [PMID: 35115564 PMCID: PMC8814043 DOI: 10.1038/s41598-021-03710-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/08/2021] [Indexed: 01/08/2023] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is the receptor of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) causing Coronavirus disease 2019 (COVID-19). Transmembrane serine protease 2 (TMPRSS2) is a coreceptor. Abnormal hepatic function in COVID-19 suggests specific or bystander liver disease. Because liver cancer cells express the ACE2 viral receptor, they are widely used as models of SARS-CoV-2 infection in vitro. Therefore, the purpose of this study was to analyze ACE2 and TMPRSS2 expression and localization in human liver cancers and in non-tumor livers. We studied ACE2 and TMPRSS2 in transcriptomic datasets totaling 1503 liver cancers, followed by high-resolution confocal multiplex immunohistochemistry and quantitative image analysis of a 41-HCC tissue microarray. In cancers, we detected ACE2 and TMPRSS2 at the biliary pole of tumor hepatocytes. In whole mount sections of five normal liver samples, we identified ACE2 in hepatocyte’s bile canaliculi, biliary epithelium, sinusoidal and capillary endothelial cells. Tumors carrying mutated β-catenin showed ACE2 DNA hypomethylation and higher mRNA and protein expression, consistently with predicted β-catenin response sites in the ACE2 promoter. Finally, ACE2 and TMPRSS2 co-expression networks highlighted hepatocyte-specific functions, oxidative stress and inflammation, suggesting a link between inflammation, ACE2 dysfunction and metabolic breakdown.
Collapse
|
233
|
Chu KY, Nackeeran S, Horodyski L, Masterson TA, Ramasamy R. COVID-19 Infection Is Associated With New Onset Erectile Dysfunction: Insights From a National Registry. Sex Med 2022; 10:100478. [PMID: 34931145 PMCID: PMC8673874 DOI: 10.1016/j.esxm.2021.100478] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/09/2021] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION The short- and long-term effects of coronavirus disease 2019 (COVID-19) on erectile function and penile vasculature remains poorly understood and is of particular importance as the virus has been found to be present within the penile tissue. AIM We determined the association of COVID-19 infection and subsequent diagnoses of erectile dysfunction. METHODS We assessed the risk of ED in men with COVID-19 in the United States (US) using the TriNetX Research Network, a federated electronic medical records network of over 42 healthcare organizations and 66 million patients from the US. We identified adult men (≥ 18 years) with a recorded COVID-19 infection (ICD-10-CM B34.2, U07.1, U07.2, J12.81, J12.82, B97.29) since January 1, 2020, and compared them to an equivalent number of adult men who did not have COVID-19 over the same timeframe. Men with prior history or diagnosis of ED before January 1, 2020 were excluded. We accounted for confounding variables through propensity score matching for age, race, body mass index (BMI), and history of the following comorbid medical conditions: diabetes mellitus (E11), hypertension (I10), ischemic heart disease (I20-25), or hyperlipidemia (E78). OUTCOMES We assessed the association between COVID-19 and ED (N52) as a primary outcome through regression analysis with statistical significance assessed at P< .05. RESULTS Prior to propensity score matching, men with COVID-19 were found to be older than men without COVID-19 (47.1 ± 21.4 vs 42.4 ± 24.3 years). Additionally, men with COVID-19 were noted to have increased prevalence of diabetes mellitus (DM) and hypertension (HTN) when compared to men without COVID-19 (13% DM and 27% HTN vs 7% DM and 22% HTN). After propensity score matching, we compared 230,517 men with COVID-19 to 232,645 men without COVID-19 and found that COVID-19 diagnosis was significantly associated with ED (odds ratio 1.20, 95% confidence interval 1.004-1.248, P= .04). CLINICAL IMPLICATIONS Our findings indicate that clinicians should consider evaluating erectile dysfunction among men with recent COVID-19 diagnoses and counsel them regarding the risk of developing erectile dysfunction. STRENGTHS AND LIMITATIONS Strengths include large sample size and adjustment for confounding variables. Limitations include reliance on a global federated dataset, retrospective study design, and lack of data regarding ED (mild vs moderate vs severe), COVID-19 infection severity, or history of prostate cancer and radiation. CONCLUSION There is an increased chance of new onset erectile dysfunction post-COVID-19 infection.Chu KY, Nackeeran S, Horodyski L, et al. COVID-19 Infection Is Associated With New Onset Erectile Dysfunction: Insights From a National Registry. Sex Med 2022;10:100478.
Collapse
Affiliation(s)
- Kevin Y Chu
- Department of Urology, University of Miami, Miami, FL, USA
| | | | | | | | | |
Collapse
|
234
|
ZHANG J, ZHU J, HE S, WANG J. Efficacy of glucocorticoids, chloroquine and vitamin A on cytokine release syndrome: a network pharmacology study. J TRADIT CHIN MED 2022; 42:116-121. [PMID: 35294131 PMCID: PMC10164633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/12/2021] [Indexed: 05/10/2023]
Abstract
OBJECTIVE To verify the efficacy of glucocorticoids, chloroquine and vitamin A in the treatment of cytokine release syndrome (CRS), and to investigate the underlying mechanisms, based on network pharmacology. METHODS We used network pharmacology analysis and found 20 co-targeted genes of glucocorticoids, chloroquine, vitamin A and CRS. The pharmacological functions and therapeutic pathways of the genes were analyzed by gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment. The candidate naturally bioactive compounds against the key genes were predicted by Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. The anti-inflammatory activity of luteolin was assessed by real-time polymerase chain reaction. RESULTS Among the 20 co-targeted genes of glucocorticoids, chloroquine and vitamin A, interleukin 10 (IL-10), interleukin 2 (IL-2), interleukin 4 (IL-4) and tumor necrosis factor-α (TNF-α) were the key cytokines against CRS. The key pathway involved in the pharmacological mechanism could be cytokine-cytokine receptor interaction pathway, T cell receptor signaling pathway, Janus Kinase-signal transducer and activator of transcription signaling pathway and phosphatidylinositol 3-kinase-protein kinase B signaling pathway. Luteolin targeted by IL-10, IL-4, IL-2 and TNF-α could be one candidate drug for the treatment of CRS. CONCLUSION This study comprehensively elucidates the pharmacological mechanism for the treatment of CRS and provides a new method for the discovery of drugs for this disease.
Collapse
Affiliation(s)
- Jing ZHANG
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jingjing ZHU
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Siqi HE
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jianxun WANG
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
235
|
Niemeyer BF, Miller CM, Ledesma‐Feliciano C, Morrison JH, Jimenez‐Valdes R, Clifton C, Poeschla EM, Benam KH. Broad antiviral and anti-inflammatory efficacy of nafamostat against SARS-CoV-2 and seasonal coronaviruses in primary human bronchiolar epithelia. NANO SELECT 2022; 3:437-449. [PMID: 34541574 PMCID: PMC8441815 DOI: 10.1002/nano.202100123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022] Open
Abstract
Antiviral strategies that target host systems needed for SARS-CoV-2 replication and pathogenesis may have therapeutic potential and help mitigate resistance development. Here, we evaluate nafamostat mesylate, a potent broad-spectrum serine protease inhibitor that blocks host protease activation of the viral spike protein. SARS-CoV-2 is used to infect human polarized mucociliated primary bronchiolar epithelia reconstituted with cells derived from healthy donors, smokers and subjects with chronic obstructive pulmonary disease. Nafamostat markedly inhibits apical shedding of SARS-CoV-2 from all donors (log10 reduction). We also observe, for the first-time, anti-inflammatory effects of nafamostat on airway epithelia independent of its antiviral effects, suggesting a dual therapeutic advantage in the treatment of COVID-19. Nafamostat also exhibits antiviral properties against the seasonal human coronaviruses 229E and NL6. These findings suggest therapeutic promise for nafamostat in treating SARS-CoV-2 and other human coronaviruses.
Collapse
Affiliation(s)
- Brian F. Niemeyer
- Division of PulmonaryAllergy and Critical Care MedicineDepartment of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Caitlin M. Miller
- Division of Infectious DiseasesDepartment of MedicineAnschutz Medical CampusUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Carmen Ledesma‐Feliciano
- Division of Infectious DiseasesDepartment of MedicineAnschutz Medical CampusUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - James H. Morrison
- Division of Infectious DiseasesDepartment of MedicineAnschutz Medical CampusUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Rocio Jimenez‐Valdes
- Division of PulmonaryAllergy and Critical Care MedicineDepartment of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Clarissa Clifton
- Division of PulmonaryAllergy and Critical Care MedicineDepartment of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Eric M. Poeschla
- Division of Infectious DiseasesDepartment of MedicineAnschutz Medical CampusUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Kambez H. Benam
- Division of PulmonaryAllergy and Critical Care MedicineDepartment of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of BioengineeringUniversity of PittsburghPittsburghPennsylvaniaUSA
- Vascular Medicine InstituteUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
236
|
Chen S, Evert B, Adeniyi A, Salla‐Martret M, Lua LH, Ozberk V, Pandey M, Good MF, Suhrbier A, Halfmann P, Kawaoka Y, Rehm BHA. Ambient Temperature Stable, Scalable COVID-19 Polymer Particle Vaccines Induce Protective Immunity. Adv Healthc Mater 2022; 11:e2102089. [PMID: 34716678 PMCID: PMC8652985 DOI: 10.1002/adhm.202102089] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Indexed: 12/15/2022]
Abstract
There is an unmet need for safe and effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines that are stable and can be cost-effectively produced at large scale. Here, a biopolymer particle (BP) vaccine technology that can be quickly adapted to new and emerging variants of SARS-CoV-2 is used. Coronavirus antigen-coated BPs are described as vaccines against SARS-CoV-2. The spike protein subunit S1 or epitopes from S and M proteins (SM) plus/minus the nucleocapsid protein (N) are selected as antigens to either coat BPs during assembly inside engineered Escherichia coli or BPs are engineered to specifically ligate glycosylated spike protein (S1-ICC) produced by using baculovirus expression in insect cell culture (ICC). BP vaccines are safe and immunogenic in mice. BP vaccines, SM-BP-N and S1-ICC-BP induced protective immunity in the hamster SARS-CoV-2 infection model as shown by reduction of virus titers up to viral clearance in lungs post infection. The BP platform offers the possibility for rapid design and cost-effective large-scale manufacture of ambient temperature stable and globally available vaccines to combat the coronavirus disease 2019 (COVID-19) pandemic.
Collapse
Affiliation(s)
- Shuxiong Chen
- Centre for Cell Factories and BiopolymersGriffith Institute for Drug DiscoveryGriffith UniversityNathanQLD4111Australia
| | - Benjamin Evert
- Centre for Cell Factories and BiopolymersGriffith Institute for Drug DiscoveryGriffith UniversityNathanQLD4111Australia
| | - Adetayo Adeniyi
- Protein Expression FacilityUniversity of QueenslandBrisbaneQLD4072Australia
| | | | - Linda H.‐L. Lua
- Protein Expression FacilityUniversity of QueenslandBrisbaneQLD4072Australia
| | - Victoria Ozberk
- Institute for GlycomicsGriffith UniversityGold CoastQLD4215Australia
| | - Manisha Pandey
- Institute for GlycomicsGriffith UniversityGold CoastQLD4215Australia
| | - Michael F. Good
- Institute for GlycomicsGriffith UniversityGold CoastQLD4215Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research InstituteBrisbaneQLD4006Australia
| | - Peter Halfmann
- Department of Pathobiological SciencesSchool of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | - Yoshihiro Kawaoka
- Department of Pathobiological SciencesSchool of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | - Bernd H. A. Rehm
- Centre for Cell Factories and BiopolymersGriffith Institute for Drug DiscoveryGriffith UniversityNathanQLD4111Australia
- Menzies Health Institute QueenslandGriffith UniversityGold Coast4222Australia
| |
Collapse
|
237
|
PEHLİVANLAR KÜÇÜK M, KÜÇÜK AO, PEHLİVANLAR A, AYAYDIN MÜRTEZAOĞLU S, ÇOBAN K, KILIÇ G, AYÇİÇEK O, ÖZTUNA F, BÜLBÜL Y, ÖZLÜ T. Effect of tocilizumab on intensive care patients with Covid-19 pneumonia, a retrospective cohort study. Turk J Med Sci 2022; 52:39-49. [PMID: 36161598 PMCID: PMC10734863 DOI: 10.3906/sag-2106-42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 02/22/2022] [Accepted: 11/09/2021] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND In this study, the efficacy of an IL-6 antagonist, Tocilizumab, administered in the early period was studied in intensive care patients with COVID-19 pneumonia followed by hypoxic and systemic inflammation not receiving mechanical ventilation support. METHODS Patients with COVID-19 pneumonia who have signs of hypoxia and systemic inflammation and/or who have acute bilateral infiltrates on chest radiograph and who received tocilizumab treatment were compared with the patients who received standard medical therapy. Patients who were followed up with COVID-19 pneumonia and respiratory failure between March 2020 and March 2021 were retrospectively evaluated in the study. A 400 mg - 800 mg iv dose (depending on weight) of Tocilizumab was administered. The primary endpoint was determined as intensive care unit mortality. RESULTS A total of 213 patients who were admitted with respiratory failure associated with COVID-19 to our third-level intensive care unit were evaluated. Of these patients, the study was conducted with 50 patients in the tocilizumab treatment group and 92 patients in the standard treatment group. During the intensive care period, 26 patients (28.3%) in the standard treatment group and 12 patients (24%) in the group receiving tocilizumab died. The adjusted hazard ratio for mortality in the tocilizumab group was 0.39 (95% confidence interval [CI], 0.186 to 0.808; p = 0.001 by log-rank test). During the intensive care period, 22 patients (24.8%) in the standart treatment group and 16 patients (32%) in the tocilizumab group were intubated. The adjusted hazard ratio for a primary outcome intubation in the tocilizumab group was 0.71 (95% confidence interval [CI], 0.355 to 1.424; p = 0.184 by log-rank test).
Collapse
Affiliation(s)
- Mehtap PEHLİVANLAR KÜÇÜK
- Department of Chest Diseases, Division Of Intensive Care Medicine, Faculty of Medicine, Karadeniz Technical University, Trabzon,
Turkey
| | - Ahmet Oğuzhan KÜÇÜK
- Department of Anesthesiology and Reanimation, Division of Intensive Care Medicine, Faculty of Medicine, Karadeniz Technical University, Trabzon,
Turkey
| | - Ayşegül PEHLİVANLAR
- Department of Chest Diseases, Faculty of Medicine, Karadeniz Technical University, Trabzon,
Turkey
| | | | - Kadir ÇOBAN
- Department of Chest Diseases, Faculty of Medicine, Karadeniz Technical University, Trabzon,
Turkey
| | - Gamze KILIÇ
- Department of Physical Medicine and Rehabilitation, Division of Rheumatology, Faculty of Medicine, Karadeniz Technical University, Trabzon,
Turkey
| | - Olcay AYÇİÇEK
- Department of Chest Diseases, Faculty of Medicine, Karadeniz Technical University, Trabzon,
Turkey
| | - Funda ÖZTUNA
- Department of Chest Diseases, Faculty of Medicine, Karadeniz Technical University, Trabzon,
Turkey
| | - Yılmaz BÜLBÜL
- Department of Chest Diseases, Faculty of Medicine, Karadeniz Technical University, Trabzon,
Turkey
| | - Tevfik ÖZLÜ
- Department of Chest Diseases, Faculty of Medicine, Karadeniz Technical University, Trabzon,
Turkey
| |
Collapse
|
238
|
Amin S, Aktar S, Rahman MM, Chowdhury MMH. NLRP3 inflammasome activation in COVID-19: an interlink between risk factors and disease severity. Microbes Infect 2022; 24:104913. [PMID: 34838941 PMCID: PMC8613976 DOI: 10.1016/j.micinf.2021.104913] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 02/08/2023]
Abstract
NLRP3 inflammasome is a critical immune component that plays a crucial role in mounting innate immune responses. The deleterious effects of inflammasome activation have been correlated with the COVID-19 disease severity. In the presence of several underlying disorders, the immune components of our bodies are dysregulated, creating conditions that could adversely affect us other than providing a required level of protection. In this review, we focused on the occurrence of NLRP3 inflammasome activation in response to SARS-COV-2 infection, dysregulation of NLRP3 activation events in the presence of several comorbidities, the contribution of activated NLRP3 inflammasome to the severity of COVID-19, and available therapeutics for the treatment of such NLRP3 inflammasome related diseases based on current knowledge. The primed state of immunity in individuals with comorbidities (risk factors) could accelerate many deaths and severe COVID-19 cases via activation of NLRP3 inflammasome and the release of downstream inflammatory molecules. Therefore, a detailed understanding of the host-pathogen interaction is needed to clarify the pathophysiology and select a potential therapeutic approach.
Collapse
Affiliation(s)
- Saiful Amin
- Chittagong Medical University, Chattogram, Bangladesh
| | - Salma Aktar
- Department of Microbiology, Noakhali Science and Technology University, Sonapur, Noakhali 3814, Bangladesh.
| | - Md Mijanur Rahman
- Department of Microbiology, Noakhali Science and Technology University, Sonapur, Noakhali 3814, Bangladesh
| | | |
Collapse
|
239
|
A Journey into the Clinical Relevance of Heme Oxygenase 1 for Human Inflammatory Disease and Viral Clearance: Why Does It Matter on the COVID-19 Scene? Antioxidants (Basel) 2022; 11:antiox11020276. [PMID: 35204159 PMCID: PMC8868141 DOI: 10.3390/antiox11020276] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023] Open
Abstract
Heme oxygenase 1 (HO-1), the rate-limiting enzyme in heme degradation, is involved in the maintenance of cellular homeostasis, exerting a cytoprotective role by its antioxidative and anti-inflammatory functions. HO-1 and its end products, biliverdin, carbon monoxide and free iron (Fe2+), confer cytoprotection against inflammatory and oxidative injury. Additionally, HO-1 exerts antiviral properties against a diverse range of viral infections by interfering with replication or activating the interferon (IFN) pathway. Severe cases of coronavirus disease 2019 (COVID-19), an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are characterized by systemic hyperinflammation, which, in some cases, leads to severe or fatal symptoms as a consequence of respiratory failure, lung and heart damage, kidney failure, and nervous system complications. This review summarizes the current research on the protective role of HO-1 in inflammatory diseases and against a wide range of viral infections, positioning HO-1 as an attractive target to ameliorate clinical manifestations during COVID-19.
Collapse
|
240
|
Ruiz-Rodríguez JC, Chiscano-Camón L, Ruiz-Sanmartin A, Palmada C, Paola Plata-Menchaca E, Franco-Jarava C, Pérez-Carrasco M, Hernández-González M, Ferrer R. Cytokine Hemoadsorption as Rescue Therapy for Critically Ill Patients With SARS-CoV-2 Pneumonia With Severe Respiratory Failure and Hypercytokinemia. Front Med (Lausanne) 2022; 8:779038. [PMID: 35083241 PMCID: PMC8784514 DOI: 10.3389/fmed.2021.779038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022] Open
Abstract
Introduction: A dysregulated inflammatory response, known as “cytokine storm”, plays an important role in the pathophysiology of coronavirus 2019 disease (COVID-19). Identifying patients with a dysregulated inflammatory response and at high risk for severe respiratory failure, organ dysfunction, and death is clinically relevant, as they could benefit from the specific therapies, such as cytokine removal by hemoadsorption. This study aimed to evaluate cytokine hemoadsorption as rescue therapy in critically ill patients with SARS-CoV-2 pneumonia, severe respiratory failure refractory to prone positioning, and hypercytokinemia. Methods: In this single center, observational and retrospective study, critically ill patients with SARS-CoV-2 pneumonia, severe acute respiratory failure, and hypercytokinemia were analyzed. All the patients underwent cytokine hemoadsorption using CytoSorb® (Cytosorbents Europe, Berlin, Germany). The indication for treatment was acute respiratory failure, inadequate clinical response to the prone position, and hypercytokinemia. Results: Among a total of 343 patients who were admitted to the intensive care unit (ICU) due to SARS-CoV-2 infection between March 3, 2020 and June 22, 2020, six patients received rescue therapy with cytokine hemoadsorption. All the patients needed invasive mechanical ventilation and prone positioning. A significant difference was found in the pre- and post-treatment D-dimer (17,868 mcg/ml [4,196–45,287] vs. 4,488 mcg/ml [3,166–17,076], p = 0.046), C-reactive protein (12.9 mg/dl [10.6] vs. 3.5 mg/dl [2.8], p = 0.028), ferritin (1,539 mcg/L [764–27,414] vs. 1,197 ng/ml [524–3,857], p = 0.04) and interleukin-6 (17,367 pg/ml [4,539–22,532] vs. 2,403 pg/ml [917–3,724], p = 0.043) levels. No significant differences in the pre- and post-treatment interleukin-10 levels (22.3 pg/ml [19.2–191] vs. 5.6 pg/ml [5.2–36.6], p = 0.068) were observed. Improvements in oxygenation (prehemoadsorption PaO2/FIO2 ratio 103 [18.4] vs. posthemoadsorption PaO2/FIO2 ratio 222 [20.9], p = 0.029) and in the organ dysfunction (prehemoadsorption SOFA score 9 [4.75] vs. posthemoadsorption SOFA score 7.7 [5.4], p = 0.046) were observed. ICU and in-hospital mortality was 33.7%. Conclusions: In this case series, critically ill patients with COVID-19 with severe acute respiratory failure refractory to prone positioning and hypercytokinemia who received adjuvant treatment with cytokine hemoadsorption showed a significant reduction in IL-6 plasma levels and other inflammatory biomarkers. Improvements in oxygenation and SOFA score were also observed.
Collapse
Affiliation(s)
- Juan Carlos Ruiz-Rodríguez
- Department of Intensive Care, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Departament de Medicina, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Luis Chiscano-Camón
- Department of Intensive Care, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Departament de Medicina, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Adolf Ruiz-Sanmartin
- Department of Intensive Care, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Clara Palmada
- Department of Intensive Care, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Erika Paola Plata-Menchaca
- Department of Intensive Care, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Clara Franco-Jarava
- Department of Immunology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Marcos Pérez-Carrasco
- Department of Intensive Care, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Manuel Hernández-González
- Department of Immunology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Ricard Ferrer
- Department of Intensive Care, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Departament de Medicina, Universitat Autonoma de Barcelona, Barcelona, Spain
| |
Collapse
|
241
|
Rahimmanesh I, Shariati L, Dana N, Esmaeili Y, Vaseghi G, Haghjooy Javanmard S. Cancer Occurrence as the Upcoming Complications of COVID-19. Front Mol Biosci 2022; 8:813175. [PMID: 35155571 PMCID: PMC8831861 DOI: 10.3389/fmolb.2021.813175] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Previous studies suggested that patients with comorbidities including cancer had a higher risk of mortality or developing more severe forms of COVID-19. The interaction of cancer and COVID-19 is unrecognized and potential long-term effects of COVID-19 on cancer outcome remain to be explored. Furthermore, whether COVID-19 increases the risk of cancer in those without previous history of malignancies, has not yet been studied. Cancer progression, recurrence and metastasis depend on the complex interaction between the tumor and the host inflammatory response. Extreme proinflammatory cytokine release (cytokine storm) and multi-organ failure are hallmarks of severe COVID-19. Besides impaired T-Cell response, elevated levels of cytokines, growth factors and also chemokines in the plasma of patients in the acute phase of COVID-19 as well as tissue damage and chronic low-grade inflammation in "long COVID-19" syndrome may facilitate cancer progression and recurrence. Following a systemic inflammatory response syndrome, some counterbalancing compensatory anti-inflammatory mechanisms will be activated to restore immune homeostasis. On the other hand, there remains the possibility of the integration of SARS- CoV-2 into the host genome, which potentially may cause cancer. These mechanisms have also been shown to be implicated in both tumorigenesis and metastasis. In this review, we are going to focus on potential mechanisms and the molecular interplay, which connect COVID-19, inflammation, and immune-mediated tumor progression that may propose a framework to understand the possible role of COVID-19 infection in tumorgenesis and cancer progression.
Collapse
Affiliation(s)
- Ilnaz Rahimmanesh
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Laleh Shariati
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Cancer Prevention Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasim Dana
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yasaman Esmaeili
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Golnaz Vaseghi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
242
|
Role of Polypeptide Inflammatory Biomarkers in the Diagnosis and Monitoring of COVID-19. Int J Pept Res Ther 2022; 28:59. [PMID: 35095356 PMCID: PMC8785374 DOI: 10.1007/s10989-022-10366-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2022] [Indexed: 01/08/2023]
Abstract
The COVID-19 (coronavirus disease 2019) pandemic that took over the world in December 2019 has had everlasting devastating impacts on the lives of people globally. It manifests a huge symptom spectrum ranging from asymptomatic to critically ill patients with an unpredictable outcome. Timely diagnosis and assessment of disease severity is imperative for effective treatment. Possibilities exist that by the time symptoms appear the viral load might increase beyond control. However, it is advisable to get adequately diagnosed as soon as the first symptom appears. There is an immediate requirement of reliable biomarkers of COVID-19 manifesting an early onset for effective clinical management, stratification of high risk patients and ensuring ideal resource allocation. In this review, we attempt to explore and describe important polypeptide inflammatory biomarkers, namely C-reactive protein, Procalcitonin, Ferritin, Lactate Dehydrogenase, Serum amyloid A, Interleukin-6, Tumor necrosis factor-alpha and LIGHT used in the detection and management of COVID-19. Viral pathogenesis and the role of these inflammatory biomarkers is highlighted, based on the evidences available till date. An integrative data monitoring along with their correlation with the natural disease progression is of utmost importance in the management of COVID-19. So further research and in-depth analysis of these biomarkers is warranted in the present scenario.
Collapse
|
243
|
Girona-Alarcon M, Argüello G, Esteve-Sole A, Bobillo-Perez S, Burgos-Artizzu XP, Bonet-Carne E, Mensa-Vilaró A, Codina A, Hernández-Garcia M, Jou C, Alsina L, Jordan I. Low levels of CIITA and high levels of SOCS1 predict COVID-19 disease severity in children and adults. iScience 2022; 25:103595. [PMID: 34904133 PMCID: PMC8654705 DOI: 10.1016/j.isci.2021.103595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/13/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022] Open
Abstract
It is unclear why COVID-19 ranges from asymptomatic to severe. When SARS-CoV-2 is detected, interferon (IFN) response is activated. When it is insufficient or delayed, it might lead to overproduction of cytokines and severe COVID-19. The aim was to compare cytokine and IFN patterns in children and adults with differing severity with SARS-CoV-2.It was a prospective, observational study, including 84 patients. Patients with moderate/severe disease had higher cytokines' values than patients with mild disease (p< 0.001).Two IFN genes were selected to build a decision tree for severity classification: SOCS1 (representative of the rest of the IFN genes) and CIITA (inverse correlation). Low values of CIITA and high values of SOCS1 indicated severe disease. This method correctly classified 33/38(86.8%) of children and 27/34 (79.4%) of adults. To conclude, patients with severe disease had an elevated cytokine pattern, which correlated with the IFN response, with low CIITA and high SOCS1 values.
Collapse
Affiliation(s)
- Mònica Girona-Alarcon
- Paediatric Intensive Care Unit, Hospital Sant Joan de Déu, University of Barcelona, Passeig Sant Joan de Déu Number 2, Esplugues de Llobregat, 08950 Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, University of Barcelona, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Guillermo Argüello
- Faculty of Computer Science, Multimedia and Telecommunications, Universitat Oberta de Catalunya, 08018 Barcelona, Spain.,Statistics and Operations Research, Universidad de Oviedo, 33003 Oviedo, Asturias, Spain
| | - Ana Esteve-Sole
- Institut de Recerca Sant Joan de Déu, University of Barcelona, Esplugues de Llobregat, 08950 Barcelona, Spain.,Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Passeig Sant Joan de Déu Number 2, Esplugues de Llobregat, 08950 Barcelona, Spain.,Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic de Barcelona, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Sara Bobillo-Perez
- Paediatric Intensive Care Unit, Hospital Sant Joan de Déu, University of Barcelona, Passeig Sant Joan de Déu Number 2, Esplugues de Llobregat, 08950 Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, University of Barcelona, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Xavier Paolo Burgos-Artizzu
- Faculty of Computer Science, Multimedia and Telecommunications, Universitat Oberta de Catalunya, 08018 Barcelona, Spain.,BCNatal
- Fetal Medicine Research Center, Hospital Clínic and Hospital Sant Joan de Déu, University of Barcelona, 08028 Barcelona, Spain
| | - Elisenda Bonet-Carne
- Faculty of Computer Science, Multimedia and Telecommunications, Universitat Oberta de Catalunya, 08018 Barcelona, Spain.,BCNatal
- Fetal Medicine Research Center, Hospital Clínic and Hospital Sant Joan de Déu, University of Barcelona, 08028 Barcelona, Spain.,BCNatal Fetal Medicine Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.,ETSETB, Universitat Politècnica de Catalunya • BarcelonaTech, 08034 Barcelona, Spain
| | - Anna Mensa-Vilaró
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic de Barcelona, Esplugues de Llobregat, 08950 Barcelona, Spain.,BCNatal Fetal Medicine Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Anna Codina
- Pediatric Biobank Unit, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - María Hernández-Garcia
- Paediatric Service, Hospital Sant Joan de Déu, University of Barcelona, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Cristina Jou
- Department of Pathology and Biobank, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laia Alsina
- Institut de Recerca Sant Joan de Déu, University of Barcelona, Esplugues de Llobregat, 08950 Barcelona, Spain.,Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Passeig Sant Joan de Déu Number 2, Esplugues de Llobregat, 08950 Barcelona, Spain.,Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic de Barcelona, Esplugues de Llobregat, 08950 Barcelona, Spain.,Paediatrics Department, Universitat de Barcelona, 08007 Barcelona, Spain
| | - Iolanda Jordan
- Paediatric Intensive Care Unit, Hospital Sant Joan de Déu, University of Barcelona, Passeig Sant Joan de Déu Number 2, Esplugues de Llobregat, 08950 Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, University of Barcelona, Esplugues de Llobregat, 08950 Barcelona, Spain.,Paediatrics Department, Universitat de Barcelona, 08007 Barcelona, Spain
| |
Collapse
|
244
|
Baumgardner DJ, Schwank A, Kram JJF, Lehmann W, Bidwell JL, La Fratta T, Copeland K. Seroprevalence of COVID-19 IgG Antibody in Resident and Fellow Physicians in Milwaukee, Wisconsin: Analysis of a Cross-Sectional Survey. J Patient Cent Res Rev 2022; 9:75-82. [PMID: 35111886 PMCID: PMC8772610 DOI: 10.17294/2330-0698.1846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025] Open
Abstract
PURPOSE Medical trainees are likely at differential risk of exposure to COVID-19 per respective clinical activity. We sought to determine the seroprevalence of COVID-19 antibody (Ab) among resident and fellow physicians with varying degrees of exposure to COVID-19. METHODS A cross-sectional study of Milwaukee-based resident and fellow physicians, encompassing December 2019-June 2020, was conducted. Relevant variables of interest were ascertained by survey and payroll data, and Abbott ARCHITECT Ab test (index cut-off of ≥1.4) was performed. Descriptive statistics were generated, with 95% CI calculated for the study's primary outcome of seroprevalence. RESULTS Among survey respondents (92 of 148, 62%), 61% were male, 44% were non-White, mean age was 31 years, 94% had no underlying conditions, and 52% were either family or internal medicine residents. During the study period, ≥32% reported cough, headache, or sore throat and 62% traveled outside of Wisconsin. Overall, 83% thought they had a COVID-19 exposure at work and 33% outside of work; 100% expressed any exposure. Of those exposed at work, 56% received COVID-19 pay, variously receiving 69 mean hours (range: 0-452). Ultimately, 82% (75 of 92) had an Ab test completed; 1 individual (1.3%; 95% CI: 0.0-3.9) tested seropositive, was not previously diagnosed, and had received COVID-19 pay. CONCLUSIONS The low Ab seroprevalence found in resident and fellow physicians was similar to the concurrently reported 3.7% Ab-positive rate among 2456 Milwaukee-based staff in the same integrated health system. Ultimately, COVID-19 seroconversion may be nominal in properly protected resident and fellow physicians despite known potential exposures.
Collapse
Affiliation(s)
- Dennis J. Baumgardner
- Aurora UW Medical Group, Advocate Aurora Health, Milwaukee, WI
- Center for Urban Population Health, Milwaukee, WI
- Department of Family Medicine and Community Health, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Alexander Schwank
- Aurora UW Medical Group, Advocate Aurora Health, Milwaukee, WI
- Center for Urban Population Health, Milwaukee, WI
| | - Jessica J. F. Kram
- Aurora UW Medical Group, Advocate Aurora Health, Milwaukee, WI
- Center for Urban Population Health, Milwaukee, WI
- Department of Family Medicine and Community Health, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Wilhelm Lehmann
- Aurora UW Medical Group, Advocate Aurora Health, Milwaukee, WI
- Department of Family Medicine and Community Health, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Jacob L. Bidwell
- Aurora UW Medical Group, Advocate Aurora Health, Milwaukee, WI
- Department of Family Medicine and Community Health, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | | | | |
Collapse
|
245
|
Raghavan PR. Metadichol®: A Novel Nanolipid Formulation That Inhibits SARS-CoV-2 and a Multitude of Pathological Viruses In Vitro. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1558860. [PMID: 35039793 PMCID: PMC8760534 DOI: 10.1155/2022/1558860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/20/2021] [Accepted: 12/15/2021] [Indexed: 01/08/2023]
Abstract
Increasing outbreaks of new pathogenic viruses have promoted the exploration of novel alternatives to time-consuming vaccines. Thus, it is necessary to develop a universal approach to halt the spread of new and unknown viruses as they are discovered. One such promising approach is to target lipid membranes, which are common to all viruses and bacteria. The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has reaffirmed the importance of interactions between the virus envelope and the host cell plasma membrane as a critical mechanism of infection. Metadichol®, a nanolipid emulsion of long-chain alcohols, has been demonstrated as a strong candidate that inhibits the proliferation of SARS-CoV-2. Naturally derived substances, such as long-chain saturated lipid alcohols, reduce viral infectivity, including that of coronaviruses (such as SARS-CoV-2) by modifying their lipid-dependent attachment mechanism to human host cells. The receptor ACE2 mediates the entry of SARS-CoV-2 into the host cells, whereas the serine protease TMPRSS2 primes the viral S protein. In this study, Metadichol® was found to be 270 times more potent an inhibitor of TMPRSS2 (EC50 = 96 ng/mL) than camostat mesylate (EC50 = 26000 ng/mL). Additionally, it inhibits ACE with an EC50 of 71 ng/mL, but it is a very weak inhibitor of ACE2 at an EC50 of 31 μg/mL. Furthermore, the live viral assay performed in Caco-2 cells revealed that Metadichol® inhibits SARS-CoV-2 replication at an EC90 of 0.16 μg/mL. Moreover, Metadichol® had an EC90 of 0.00037 μM, making it 2081 and 3371 times more potent than remdesivir (EC50 = 0.77 μM) and chloroquine (EC50 = 1.14 μM), respectively.
Collapse
|
246
|
Kim N, Lee JM, Oh EJ, Jekarl DW, Lee DG, Im KI, Cho SG. Off-the-Shelf Partial HLA Matching SARS-CoV-2 Antigen Specific T Cell Therapy: A New Possibility for COVID-19 Treatment. Front Immunol 2022; 12:751869. [PMID: 35003063 PMCID: PMC8733616 DOI: 10.3389/fimmu.2021.751869] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022] Open
Abstract
Background Immunological characteristics of COVID-19 show pathological hyperinflammation associated with lymphopenia and dysfunctional T cell responses. These features provide a rationale for restoring functional T cell immunity in COVID-19 patients by adoptive transfer of SARS-CoV-2 specific T cells. Methods To generate SARS-CoV-2 specific T cells, we isolated peripheral blood mononuclear cells from 7 COVID-19 recovered and 13 unexposed donors. Consequently, we stimulated cells with SARS-CoV-2 peptide mixtures covering spike, membrane and nucleocapsid proteins. Then, we culture expanded cells with IL-2 for 21 days. We assessed immunophenotypes, cytokine profiles, antigen specificity of the final cell products. Results Our results show that SARS-CoV-2 specific T cells could be expanded in both COVID-19 recovered and unexposed groups. Immunophenotypes were similar in both groups showing CD4+ T cell dominance, but CD8+ and CD3+CD56+ T cells were also present. Antigen specificity was determined by ELISPOT, intracellular cytokine assay, and cytotoxicity assays. One out of 14 individuals who were previously unexposed to SARS-CoV-2 failed to show antigen specificity. Moreover, ex-vivo expanded SARS-CoV-2 specific T cells mainly consisted of central and effector memory subsets with reduced alloreactivity against HLA-unmatched cells suggesting the possibility for the development of third-party partial HLA-matching products. Discussion In conclusion, our findings show that SARS-CoV-2 specific T cell can be readily expanded from both COVID-19 and unexposed individuals and can therefore be manufactured as a biopharmaceutical product to treat severe COVID-19 patients. One Sentence Summary Ex-vivo expanded SARS-CoV-2 antigen specific T cells developed as third-party partial HLA-matching products may be a promising approach for treating severe COVID-19 patients that do not respond to previous treatment options.
Collapse
Affiliation(s)
- Nayoun Kim
- Product Development Division, LucasBio Co., Ltd., Seoul, South Korea
| | - Jong-Min Lee
- Division of Respiratory, Allergy and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Eun-Jee Oh
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Dong Wook Jekarl
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Dong-Gun Lee
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Keon-Il Im
- Product Development Division, LucasBio Co., Ltd., Seoul, South Korea.,Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, South Korea
| | - Seok-Goo Cho
- Product Development Division, LucasBio Co., Ltd., Seoul, South Korea.,Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
247
|
Shchetinin E, Baturin V, Arushanyan E, Bolatchiev A, Bobryshev D. Potential and Possible Therapeutic Effects of Melatonin on SARS-CoV-2 Infection. Antioxidants (Basel) 2022; 11:140. [PMID: 35052644 PMCID: PMC8772978 DOI: 10.3390/antiox11010140] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 12/15/2022] Open
Abstract
The absence of effective drugs for COVID-19 prevention and treatment requires the search for new candidates among approved medicines. Fundamental studies and clinical observations allow us to approach an understanding of the mechanisms of damage and protection from exposure to SARS-CoV-2, to identify possible points of application for pharmacological interventions. In this review we presented studies on the anti-inflammatory, antioxidant, and immunotropic properties of melatonin. We have attempted to present scientifically proven mechanisms of action for the potential therapeutic use of melatonin during SARS-CoV-2 infection. A wide range of pharmacological properties allows its inclusion as an effective addition to the methods of prevention and treatment of COVID-19.
Collapse
Affiliation(s)
- Evgeny Shchetinin
- Department of Pathophysiology, Stavropol State Medical University, 355000 Stavropol, Russia
| | - Vladimir Baturin
- Department of Clinical Pharmacology, Stavropol State Medical University, 355000 Stavropol, Russia
| | - Eduard Arushanyan
- Department of Pharmacology, Stavropol State Medical University, 355000 Stavropol, Russia
| | - Albert Bolatchiev
- Department of Clinical Pharmacology, Stavropol State Medical University, 355000 Stavropol, Russia
| | - Dmitriy Bobryshev
- Center of Personalized Medicine, Stavropol State Medical University, 355000 Stavropol, Russia
| |
Collapse
|
248
|
Double-blind placebo-controlled randomized clinical trial to assess the efficacy of montelukast in mild to moderate respiratory symptoms of patients with long COVID: E-SPERANZA COVID Project study protocol. Trials 2022; 23:19. [PMID: 34991703 PMCID: PMC8733792 DOI: 10.1186/s13063-021-05951-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/17/2021] [Indexed: 12/11/2022] Open
Abstract
Background The coronavirus disease 2019 (COVID-19) pandemic continues to affect the globe. After 18 months of the SARS-CoV-2 emergence, clinicians have clearly defined a subgroup of patients with lasting, disabling symptoms. While big strides have been made in understanding the acute phase of SARS-CoV-2 infection, the pathophysiology of long COVID is still largely unknown, and evidence-based, effective treatments for this condition remain unavailable. Objectives To evaluate the efficacy of 10 mg oral montelukast every 24 h versus placebo in improving quality of life associated with mild to moderate respiratory symptoms in patients with long COVID as measured with the COPD Assessment Test (CAT) questionnaire. The secondary objectives will evaluate the effect of montelukast versus placebo on improving exercise capacity, COVID-19 symptoms (asthenia, headache, mental confusion or brain fog, ageusia, and anosmia), oxygen desaturation during exertion, functional status, and mortality. Methods and analysis Phase III, randomized, double-blind clinical trial. We will include 18- to 80-year-old patients with SARS-CoV-2 infection and mild to moderate respiratory symptoms lasting more than 4 weeks. Participants will be randomly allocated in a 1:1 ratio to the intervention (experimental treatment with 10 mg/day montelukast) or the control group (placebo group), during a 28-day treatment. Follow-up will finish 56 days after the start of treatment. The primary outcome will be health-related quality of life associated with respiratory symptoms according to the COPD Assessment Test 4 weeks after starting the treatment. The following are the secondary outcomes: (a) exercise capacity and oxygen saturation (1-min sit-to-stand test); (b) Post-COVID-19 Functional Status Scale; (c) other symptoms: asthenia, headache, mental confusion (brain fog), ageusia, and anosmia (Likert scale); (d) use of healthcare resources; (e) mortality; (f) sick leave duration in days; and (g) side effects of montelukast. Ethics and dissemination This study has been approved by the Clinical Research Ethics Committee of the IDIAPJGol (reference number 21/091-C). The trial results will be published in open access, peer-reviewed journals and explained in webinars to increase awareness and understanding about long COVID among primary health professionals. Trial registration ClinicalTrials.govNCT04695704. Registered on January 5, 2021. EudraCT number 2021-000605-24. Prospectively registered.
Collapse
|
249
|
Kang K, Gao Y, Zhao M, Fei D, Ye M, Gao Y, Yang W, Wang C, Liu H, Chang G, Kang X, Luo Y, Du X, Qi J, Tian L, Zhou M, Hao C, Yu K. Cytokine levels and pathological characteristics of a patient with severe coronavirus disease 2019: a case report. Chin Med J (Engl) 2022; 135:101-103. [PMID: 34074849 PMCID: PMC8850824 DOI: 10.1097/cm9.0000000000001540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Indexed: 12/01/2022] Open
Affiliation(s)
- Kai Kang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Yang Gao
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
- Institute of Critical Care Medicine, The Sino Russian Medical Research Center of Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Mingyan Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang 150001, China
- The Cell Transplantation Key Laboratory of National Health Commission, Harbin, Heilongjiang 150001, China
| | - Dongsheng Fei
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Ming Ye
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Yan Gao
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Wei Yang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Changsong Wang
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Haitao Liu
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Guangping Chang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Xianxin Kang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Yunpeng Luo
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Xue Du
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Jiping Qi
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Lin Tian
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Min Zhou
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Chunfang Hao
- Department of Critical Care Medicine, Shuang Kuang Hospital, Shuang Ya-shan, Heilongjiang 155100, China
| | - Kaijiang Yu
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
- Institute of Critical Care Medicine, The Sino Russian Medical Research Center of Harbin Medical University, Harbin, Heilongjiang 150081, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang 150001, China
- The Cell Transplantation Key Laboratory of National Health Commission, Harbin, Heilongjiang 150001, China
| |
Collapse
|
250
|
Wang W, Zhai W, Chen Y, He Q, Zhang H. Two-dimensional material-based virus detection. Sci China Chem 2022; 65:497-513. [PMID: 35035391 PMCID: PMC8742882 DOI: 10.1007/s11426-021-1150-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022]
Abstract
Cost-effective, rapid, and accurate virus detection technologies play key roles in reducing viral transmission. Prompt and accurate virus detection enables timely treatment and effective quarantine of virus carrier, and therefore effectively reduces the possibility of large-scale spread. However, conventional virus detection techniques often suffer from slow response, high cost or sophisticated procedures. Recently, two-dimensional (2D) materials have been used as promising sensing platforms for the high-performance detection of a variety of chemical and biological substances. The unique properties of 2D materials, such as large specific area, active surface interaction with biomolecules and facile surface functionalization, provide advantages in developing novel virus detection technologies with fast response and high sensitivity. Furthermore, 2D materials possess versatile and tunable electronic, electrochemical and optical properties, making them ideal platforms to demonstrate conceptual sensing techniques and explore complex sensing mechanisms in next-generation biosensors. In this review, we first briefly summarize the virus detection techniques with an emphasis on the current efforts in fighting again COVID-19. Then, we introduce the preparation methods and properties of 2D materials utilized in biosensors, including graphene, transition metal dichalcogenides (TMDs) and other 2D materials. Furthermore, we discuss the working principles of various virus detection technologies based on emerging 2D materials, such as field-effect transistor-based virus detection, electrochemical virus detection, optical virus detection and other virus detection techniques. Then, we elaborate on the essential works in 2D material-based high-performance virus detection. Finally, our perspective on the challenges and future research direction in this field is discussed.
Collapse
Affiliation(s)
- Wenbin Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Wei Zhai
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057 China
| |
Collapse
|