201
|
Dhalla AK, Yang M, Ning Y, Kahlig KM, Krause M, Rajamani S, Belardinelli L. Blockade of Na+ channels in pancreatic α-cells has antidiabetic effects. Diabetes 2014; 63:3545-56. [PMID: 24812428 DOI: 10.2337/db13-1562] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Pancreatic α-cells express voltage-gated Na(+) channels (NaChs), which support the generation of electrical activity leading to an increase in intracellular calcium, and cause exocytosis of glucagon. Ranolazine, a NaCh blocker, is approved for treatment of angina. In addition to its antianginal effects, ranolazine has been shown to reduce HbA1c levels in patients with type 2 diabetes mellitus and coronary artery disease; however, the mechanism behind its antidiabetic effect has been unclear. We tested the hypothesis that ranolazine exerts its antidiabetic effects by inhibiting glucagon release via blockade of NaChs in the pancreatic α-cells. Our data show that ranolazine, via blockade of NaChs in pancreatic α-cells, inhibits their electrical activity and reduces glucagon release. We found that glucagon release in human pancreatic islets is mediated by the Nav1.3 isoform. In animal models of diabetes, ranolazine and a more selective NaCh blocker (GS-458967) lowered postprandial and basal glucagon levels, which were associated with a reduction in hyperglycemia, confirming that glucose-lowering effects of ranolazine are due to the blockade of NaChs. This mechanism of action is unique in that no other approved antidiabetic drugs act via this mechanism, and raises the prospect that selective Nav1.3 blockers may constitute a novel approach for the treatment of diabetes.
Collapse
Affiliation(s)
- Arvinder K Dhalla
- Department of Biology, Cardiovascular Therapeutic Area, Gilead Sciences, Inc., Fremont, CA
| | - Ming Yang
- Department of Biology, Cardiovascular Therapeutic Area, Gilead Sciences, Inc., Fremont, CA
| | - Yun Ning
- Department of Biology, Cardiovascular Therapeutic Area, Gilead Sciences, Inc., Fremont, CA
| | - Kristopher M Kahlig
- Department of Biology, Cardiovascular Therapeutic Area, Gilead Sciences, Inc., Fremont, CA
| | - Michael Krause
- Department of Biology, Cardiovascular Therapeutic Area, Gilead Sciences, Inc., Fremont, CA
| | - Sridharan Rajamani
- Department of Biology, Cardiovascular Therapeutic Area, Gilead Sciences, Inc., Fremont, CA
| | - Luiz Belardinelli
- Department of Biology, Cardiovascular Therapeutic Area, Gilead Sciences, Inc., Fremont, CA
| |
Collapse
|
202
|
Osipovich AB, Long Q, Manduchi E, Gangula R, Hipkens SB, Schneider J, Okubo T, Stoeckert CJ, Takada S, Magnuson MA. Insm1 promotes endocrine cell differentiation by modulating the expression of a network of genes that includes Neurog3 and Ripply3. Development 2014; 141:2939-49. [PMID: 25053427 PMCID: PMC4197673 DOI: 10.1242/dev.104810] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Insulinoma associated 1 (Insm1) plays an important role in regulating the development of cells in the central and peripheral nervous systems, olfactory epithelium and endocrine pancreas. To better define the role of Insm1 in pancreatic endocrine cell development we generated mice with an Insm1GFPCre reporter allele and used them to study Insm1-expressing and null populations. Endocrine progenitor cells lacking Insm1 were less differentiated and exhibited broad defects in hormone production, cell proliferation and cell migration. Embryos lacking Insm1 contained greater amounts of a non-coding Neurog3 mRNA splice variant and had fewer Neurog3/Insm1 co-expressing progenitor cells, suggesting that Insm1 positively regulates Neurog3. Moreover, endocrine progenitor cells that express either high or low levels of Pdx1, and thus may be biased towards the formation of specific cell lineages, exhibited cell type-specific differences in the genes regulated by Insm1. Analysis of the function of Ripply3, an Insm1-regulated gene enriched in the Pdx1-high cell population, revealed that it negatively regulates the proliferation of early endocrine cells. Taken together, these findings indicate that in developing pancreatic endocrine cells Insm1 promotes the transition from a ductal progenitor to a committed endocrine cell by repressing a progenitor cell program and activating genes essential for RNA splicing, cell migration, controlled cellular proliferation, vasculogenesis, extracellular matrix and hormone secretion.
Collapse
Affiliation(s)
- Anna B Osipovich
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Qiaoming Long
- Department of Animal Science, Cornell University, Ithaca, NY 14850, USA
| | - Elisabetta Manduchi
- Penn Center for Bioinformatics, Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Rama Gangula
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Susan B Hipkens
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Judsen Schneider
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Tadashi Okubo
- Department of Laboratory Animal Science, Kitasato University School of Medicine, Sagamihara, 252-0374, Japan
| | - Christian J Stoeckert
- Penn Center for Bioinformatics, Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Shinji Takada
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
| | - Mark A Magnuson
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
203
|
Soleimanpour SA, Gupta A, Bakay M, Ferrari AM, Groff DN, Fadista J, Spruce LA, Kushner JA, Groop L, Seeholzer SH, Kaufman BA, Hakonarson H, Stoffers DA. The diabetes susceptibility gene Clec16a regulates mitophagy. Cell 2014; 157:1577-90. [PMID: 24949970 DOI: 10.1016/j.cell.2014.05.016] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 02/24/2014] [Accepted: 05/09/2014] [Indexed: 12/22/2022]
Abstract
Clec16a has been identified as a disease susceptibility gene for type 1 diabetes, multiple sclerosis, and adrenal dysfunction, but its function is unknown. Here we report that Clec16a is a membrane-associated endosomal protein that interacts with E3 ubiquitin ligase Nrdp1. Loss of Clec16a leads to an increase in the Nrdp1 target Parkin, a master regulator of mitophagy. Islets from mice with pancreas-specific deletion of Clec16a have abnormal mitochondria with reduced oxygen consumption and ATP concentration, both of which are required for normal β cell function. Indeed, pancreatic Clec16a is required for normal glucose-stimulated insulin release. Moreover, patients harboring a diabetogenic SNP in the Clec16a gene have reduced islet Clec16a expression and reduced insulin secretion. Thus, Clec16a controls β cell function and prevents diabetes by controlling mitophagy. This pathway could be targeted for prevention and control of diabetes and may extend to the pathogenesis of other Clec16a- and Parkin-associated diseases.
Collapse
Affiliation(s)
- Scott A Soleimanpour
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine and the Institute for Diabetes, Obesity and Metabolism of the University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Aditi Gupta
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine and the Institute for Diabetes, Obesity and Metabolism of the University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Marina Bakay
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alana M Ferrari
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine and the Institute for Diabetes, Obesity and Metabolism of the University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - David N Groff
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine and the Institute for Diabetes, Obesity and Metabolism of the University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - João Fadista
- Lund University Diabetes Center, Department of Clinical Sciences, Diabetes & Endocrinology, Skåne University Hospital, Lund University, SE-205 02 Malmö, Sweden
| | - Lynn A Spruce
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Jake A Kushner
- McNair Medical Institute, Pediatric Diabetes and Endocrinology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Leif Groop
- Lund University Diabetes Center, Department of Clinical Sciences, Diabetes & Endocrinology, Skåne University Hospital, Lund University, SE-205 02 Malmö, Sweden
| | - Steven H Seeholzer
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Brett A Kaufman
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Doris A Stoffers
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine and the Institute for Diabetes, Obesity and Metabolism of the University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
204
|
Zac-Varghese S, Trapp S, Richards P, Sayers S, Sun G, Bloom SR, Reimann F, Gribble FM, Rutter GA. The Peutz-Jeghers kinase LKB1 suppresses polyp growth from intestinal cells of a proglucagon-expressing lineage in mice. Dis Model Mech 2014; 7:1275-86. [PMID: 25190708 PMCID: PMC4213731 DOI: 10.1242/dmm.014720] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Liver kinase B1 (LKB1; also known as STK11) is a serine/threonine kinase and tumour suppressor that is mutated in Peutz-Jeghers syndrome (PJS), a premalignant syndrome associated with the development of gastrointestinal polyps. Proglucagon-expressing enteroendocrine cells are involved in the control of glucose homeostasis and the regulation of appetite through the secretion of gut hormones such as glucagon-like peptide-1 (GLP-1) and peptide tyrosine tyrosine (PYY). To determine the role of LKB1 in these cells, we bred mice bearing floxed alleles of Lkb1 against animals carrying Cre recombinase under proglucagon promoter control. These mice (GluLKB1KO) were viable and displayed near-normal growth rates and glucose homeostasis. However, they developed large polyps at the gastro-duodenal junction, and displayed premature mortality (death from 120 days of age). Histological analysis of the polyps demonstrated that they had a PJS-like appearance with an arborising smooth-muscle core. Circulating GLP-1 levels were normal in GluLKB1KO mice and the polyps expressed low levels of the peptide, similar to levels in the neighbouring duodenum. Lineage tracing using a Rosa26tdRFP transgene revealed, unexpectedly, that enterocytes within the polyps were derived from non-proglucagon-expressing precursors, whereas connective tissue was largely derived from proglucagon-expressing precursors. Developmental studies in wild-type mice suggested that a subpopulation of proglucagon-expressing cells undergo epithelial-mesenchymal transition (EMT) to become smooth-muscle-like cells. Thus, it is likely that polyps in the GluLKB1KO mice developed from a unique population of smooth-muscle-like cells derived from a proglucagon-expressing precursor. The loss of LKB1 within this subpopulation seems to be sufficient to drive tumorigenesis.
Collapse
Affiliation(s)
- Sagen Zac-Varghese
- Department of Investigative Medicine, Imperial College London, London, W12 ONN, UK
| | - Stefan Trapp
- Department of Surgery and Cancer, Imperial College London, London, W12 ONN, UK
| | - Paul Richards
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - Sophie Sayers
- Department of Cell Biology, Imperial College London, London, W12 ONN, UK
| | - Gao Sun
- Department of Cell Biology, Imperial College London, London, W12 ONN, UK
| | - Stephen R Bloom
- Department of Investigative Medicine, Imperial College London, London, W12 ONN, UK
| | - Frank Reimann
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - Fiona M Gribble
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - Guy A Rutter
- Department of Cell Biology, Imperial College London, London, W12 ONN, UK.
| |
Collapse
|
205
|
Alejandro EU, Gregg B, Wallen T, Kumusoglu D, Meister D, Chen A, Merrins MJ, Satin LS, Liu M, Arvan P, Bernal-Mizrachi E. Maternal diet-induced microRNAs and mTOR underlie β cell dysfunction in offspring. J Clin Invest 2014; 124:4395-410. [PMID: 25180600 DOI: 10.1172/jci74237] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 07/24/2014] [Indexed: 01/07/2023] Open
Abstract
A maternal diet that is low in protein increases the susceptibility of offspring to type 2 diabetes by inducing long-term alterations in β cell mass and function. Nutrients and growth factor signaling converge through mTOR, suggesting that this pathway participates in β cell programming during fetal development. Here, we revealed that newborns of dams exposed to low-protein diet (LP0.5) throughout pregnancy exhibited decreased insulin levels, a lower β cell fraction, and reduced mTOR signaling. Adult offspring of LP0.5-exposed mothers exhibited glucose intolerance as a result of an insulin secretory defect and not β cell mass reduction. The β cell insulin secretory defect was distal to glucose-dependent Ca2+ influx and resulted from reduced proinsulin biosynthesis and insulin content. Islets from offspring of LP0.5-fed dams exhibited reduced mTOR and increased expression of a subset of microRNAs, and blockade of microRNA-199a-3p and -342 in these islets restored mTOR and insulin secretion to normal. Finally, transient β cell activation of mTORC1 signaling in offspring during the last week of pregnancy of mothers fed a LP0.5 rescued the defect in the neonatal β cell fraction and metabolic abnormalities in the adult. Together, these findings indicate that a maternal low-protein diet alters microRNA and mTOR expression in the offspring, influencing insulin secretion and glucose homeostasis.
Collapse
|
206
|
Wang L, Luk CT, Schroer SA, Smith AM, Li X, Cai EP, Gaisano H, MacDonald PE, Hao Z, Mak TW, Woo M. Dichotomous role of pancreatic HUWE1/MULE/ARF-BP1 in modulating beta cell apoptosis in mice under physiological and genotoxic conditions. Diabetologia 2014; 57:1889-98. [PMID: 24981769 DOI: 10.1007/s00125-014-3295-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/14/2014] [Indexed: 01/09/2023]
Abstract
AIMS/HYPOTHESIS Diabetes mellitus represents a significant burden on the health of the global population. Both type 1 and type 2 diabetes share a common feature of a reduction in functional beta cell mass. A newly discovered ubiquitination molecule HECT, UBA and WWE domain containing 1, E3 ubiquitin protein ligase (HUWE1 [also known as MULE or ARF-BP1]) is a critical regulator of p53-dependent apoptosis. However, its role in islet homeostasis is not entirely clear. METHODS We generated mice with pancreas-specific deletion of Huwe1 using a Cre-loxP recombination system driven by the Pdx1 promoter (Pdx1cre (+) Huwe1 (fl/fl)) to assess the in vivo role of HUWE1 in the pancreas. RESULTS Targeted deletion of Huwe1 in the pancreas preferentially activated p53-mediated beta cell apoptosis, leading to reduced beta cell mass and diminished insulin exocytosis. These defects were aggravated by ageing, with progressive further decline in insulin secretion and glucose homeostasis in older mice. Intriguingly, Huwe1 deletion provided protection against genotoxicity, such that Pdx1cre (+) Huwe1 (fl/fl) mice were resistant to multiple-low-dose-streptozotocin-induced beta cell apoptosis and diabetes. CONCLUSION/INTERPRETATION HUWE1 expression in the pancreas is essential in determining beta cell mass. Furthermore, HUWE1 demonstrated divergent roles in regulating beta cell apoptosis depending on physiological or genotoxic conditions.
Collapse
Affiliation(s)
- Linyuan Wang
- Toronto General Research Institute, University Health Network, MaRS Ctre, TMDT, 101 College St, 10th floor, Rm 10-363, Toronto, ON, Canada, M5G 1L7
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Chow SZ, Speck M, Yoganathan P, Nackiewicz D, Hansen AM, Ladefoged M, Rabe B, Rose-John S, Voshol PJ, Lynn FC, Herrera PL, Müller W, Ellingsgaard H, Ehses JA. Glycoprotein 130 receptor signaling mediates α-cell dysfunction in a rodent model of type 2 diabetes. Diabetes 2014; 63:2984-95. [PMID: 24812426 DOI: 10.2337/db13-1121] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Dysregulated glucagon secretion accompanies islet inflammation in type 2 diabetes. We recently discovered that interleukin (IL)-6 stimulates glucagon secretion from human and rodent islets. IL-6 family cytokines require the glycoprotein 130 (gp130) receptor to signal. In this study, we elucidated the effects of α-cell gp130 receptor signaling on glycemic control in type 2 diabetes. IL-6 family cytokines were elevated in islets in rodent models of this disease. gp130 receptor activation increased STAT3 phosphorylation in primary α-cells and stimulated glucagon secretion. Pancreatic α-cell gp130 knockout (αgp130KO) mice showed no differences in glycemic control, α-cell function, or α-cell mass. However, when subjected to streptozotocin plus high-fat diet to induce islet inflammation and pathophysiology modeling type 2 diabetes, αgp130KO mice had reduced fasting glycemia, improved glucose tolerance, reduced fasting insulin, and improved α-cell function. Hyperinsulinemic-euglycemic clamps revealed no differences in insulin sensitivity. We conclude that in a setting of islet inflammation and pathophysiology modeling type 2 diabetes, activation of α-cell gp130 receptor signaling has deleterious effects on α-cell function, promoting hyperglycemia. Antagonism of α-cell gp130 receptor signaling may be useful for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Samuel Z Chow
- Department of Surgery, Faculty of Medicine, University of British Columbia, Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Madeleine Speck
- Department of Surgery, Faculty of Medicine, University of British Columbia, Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Piriya Yoganathan
- Department of Surgery, Faculty of Medicine, University of British Columbia, Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Dominika Nackiewicz
- Department of Surgery, Faculty of Medicine, University of British Columbia, Child and Family Research Institute, Vancouver, British Columbia, Canada
| | | | | | - Björn Rabe
- Institute of Biochemistry, Medical Faculty, Christian Albrechts University of Kiel, Kiel, Germany
| | - Stefan Rose-John
- Institute of Biochemistry, Medical Faculty, Christian Albrechts University of Kiel, Kiel, Germany
| | - Peter J Voshol
- Institute of Metabolic Science, University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, U.K
| | - Francis C Lynn
- Department of Surgery, Faculty of Medicine, University of British Columbia, Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Pedro L Herrera
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Werner Müller
- Faculty of Life Sciences, University of Manchester, Manchester, U.K
| | - Helga Ellingsgaard
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jan A Ehses
- Department of Surgery, Faculty of Medicine, University of British Columbia, Child and Family Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
208
|
Zhang Q, Chibalina MV, Bengtsson M, Groschner LN, Ramracheya R, Rorsman NJG, Leiss V, Nassar MA, Welling A, Gribble FM, Reimann F, Hofmann F, Wood JN, Ashcroft FM, Rorsman P. Na+ current properties in islet α- and β-cells reflect cell-specific Scn3a and Scn9a expression. J Physiol 2014; 592:4677-96. [PMID: 25172946 PMCID: PMC4253470 DOI: 10.1113/jphysiol.2014.274209] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mouse pancreatic β- and α-cells are equipped with voltage-gated Na+ currents that inactivate over widely different membrane potentials (half-maximal inactivation (V0.5) at −100 mV and −50 mV in β- and α-cells, respectively). Single-cell PCR analyses show that both α- and β-cells have Nav1.3 (Scn3) and Nav1.7 (Scn9a) α subunits, but their relative proportions differ: β-cells principally express Nav1.7 and α-cells Nav1.3. In α-cells, genetically ablating Scn3a reduces the Na+ current by 80%. In β-cells, knockout of Scn9a lowers the Na+ current by >85%, unveiling a small Scn3a-dependent component. Glucagon and insulin secretion are inhibited in Scn3a−/− islets but unaffected in Scn9a-deficient islets. Thus, Nav1.3 is the functionally important Na+ channel α subunit in both α- and β-cells because Nav1.7 is largely inactive at physiological membrane potentials due to its unusually negative voltage dependence of inactivation. Interestingly, the Nav1.7 sequence in brain and islets is identical and yet the V0.5 for inactivation is >30 mV more negative in β-cells. This may indicate the presence of an intracellular factor that modulates the voltage dependence of inactivation.
Collapse
Affiliation(s)
- Quan Zhang
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Margarita V Chibalina
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Martin Bengtsson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Lukas N Groschner
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Reshma Ramracheya
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Nils J G Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Veronika Leiss
- Institut für Pharmakologie und Toxikologie, TU München, Biedersteiner Str. 29, 80802, München, Germany Institut für Pharmakologie und Toxikologie, Eberhard-Karls Universität, Wilhelmstr. 56, 72074, Tübingen, Germany
| | - Mohammed A Nassar
- Molecular Nociception Group, University College London (UCL), Gower Street, London, WC1E 6BT, UK Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Andrea Welling
- Institut für Pharmakologie und Toxikologie, TU München, Biedersteiner Str. 29, 80802, München, Germany
| | - Fiona M Gribble
- Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Frank Reimann
- Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Franz Hofmann
- Institut für Pharmakologie und Toxikologie, TU München, Biedersteiner Str. 29, 80802, München, Germany FOR 923, Institut für Pharmakologie und Toxikologie, TU München, Biedersteiner Str. 29, 80802, München, Germany
| | - John N Wood
- Molecular Nociception Group, University College London (UCL), Gower Street, London, WC1E 6BT, UK
| | - Frances M Ashcroft
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, OX3 7LJ, UK Department of Neuroscience and Physiology, Sahlgren's Academy, University of Göteborg, Box 430, SE40530, Göteborg, Sweden
| |
Collapse
|
209
|
Conrad E, Stein R, Hunter CS. Revealing transcription factors during human pancreatic β cell development. Trends Endocrinol Metab 2014; 25:407-14. [PMID: 24831984 PMCID: PMC4167784 DOI: 10.1016/j.tem.2014.03.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/19/2014] [Accepted: 03/25/2014] [Indexed: 12/14/2022]
Abstract
Developing cell-based diabetes therapies requires examining transcriptional mechanisms underlying human β cell development. However, increased knowledge is hampered by low availability of fetal pancreatic tissue and gene targeting strategies. Rodent models have elucidated transcription factor roles during islet organogenesis and maturation, but differences between mouse and human islets have been identified. The past 5 years have seen strides toward generating human β cell lines, the examination of human transcription factor expression, and studies utilizing induced pluripotent stem cells (iPS cells) and human embryonic stem (hES) cells to generate β-like cells. Nevertheless, much remains to be resolved. We present current knowledge of developing human β cell transcription factor expression, as compared to rodents. We also discuss recent studies employing transcription factor or epigenetic modulation to generate β cells.
Collapse
Affiliation(s)
- Elizabeth Conrad
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, 2215 Garland Ave, Nashville, TN 37232, USA
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, 2215 Garland Ave, Nashville, TN 37232, USA
| | - Chad S Hunter
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, 2215 Garland Ave, Nashville, TN 37232, USA.
| |
Collapse
|
210
|
Piran R, Lee SH, Li CR, Charbono A, Bradley LM, Levine F. Pharmacological induction of pancreatic islet cell transdifferentiation: relevance to type I diabetes. Cell Death Dis 2014; 5:e1357. [PMID: 25077543 PMCID: PMC4123101 DOI: 10.1038/cddis.2014.311] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 05/19/2014] [Accepted: 06/16/2014] [Indexed: 12/22/2022]
Abstract
Type I diabetes (T1D) is an autoimmune disease in which an immune response to pancreatic β-cells results in their loss over time. Although the conventional view is that this loss is due to autoimmune destruction, we present evidence of an additional phenomenon in which autoimmunity promotes islet endocrine cell transdifferentiation. The end result is a large excess of δ-cells, resulting from α- to β- to δ-cell transdifferentiation. Intermediates in the process of transdifferentiation were present in murine and human T1D. Here, we report that the peptide caerulein was sufficient in the context of severe β-cell deficiency to induce efficient induction of α- to β- to δ-cell transdifferentiation in a manner very similar to what occurred in T1D. This was demonstrated by genetic lineage tracing and time course analysis. Islet transdifferentiation proceeded in an islet autonomous manner, indicating the existence of a sensing mechanism that controls the transdifferentiation process within each islet. The finding of evidence for islet cell transdifferentiation in rodent and human T1D and its induction by a single peptide in a model of T1D has important implications for the development of β-cell regeneration therapies for diabetes.
Collapse
Affiliation(s)
- R Piran
- Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - S-H Lee
- Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - C-R Li
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - A Charbono
- Animal Facility, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - L M Bradley
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - F Levine
- Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
211
|
Avolio F, Pfeifer A, Courtney M, Gjernes E, Ben-Othman N, Vieira A, Druelle N, Faurite B, Collombat P. From pancreas morphogenesis to β-cell regeneration. Curr Top Dev Biol 2014; 106:217-38. [PMID: 24290351 DOI: 10.1016/b978-0-12-416021-7.00006-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Type 1 diabetes is a metabolic disease resulting in the selective loss of pancreatic insulin-producing β-cells and affecting millions of people worldwide. The side effects of diabetes are varied and include cardiovascular, neuropathologic, and kidney diseases. Despite the most recent advances in diabetes care, patients suffering from type 1 diabetes still display a shortened life expectancy compared to their healthy counterparts. In an effort to improve β-cell-replacement therapies, numerous approaches are currently being pursued, most of these aiming at finding ways to differentiate stem/progenitor cells into β-like cells by mimicking embryonic development. Unfortunately, these efforts have hitherto not allowed the generation of fully functional β-cells. This chapter summarizes recent findings, allowing a better insight into the molecular mechanisms underlying the genesis of β-cells during the course of pancreatic morphogenesis. Furthermore, a focus is made on new research avenues concerning the conversion of pre-existing pancreatic cells into β-like cells, such approaches holding great promise for the development of type 1 diabetes therapies.
Collapse
Affiliation(s)
- Fabio Avolio
- Univ. Nice Sophia Antipolis, iBV, UMR 7277, Nice, France; Inserm, iBV, U1091, Nice, France; CNRS, iBV, UMR 7277, Nice, France
| | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Rivera JF, Costes S, Gurlo T, Glabe CG, Butler PC. Autophagy defends pancreatic β cells from human islet amyloid polypeptide-induced toxicity. J Clin Invest 2014; 124:3489-500. [PMID: 25036708 DOI: 10.1172/jci71981] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 05/23/2014] [Indexed: 12/21/2022] Open
Abstract
Type 2 diabetes (T2D) is characterized by a deficiency in β cell mass, increased β cell apoptosis, and extracellular accumulation of islet amyloid derived from islet amyloid polypeptide (IAPP), which β cells coexpress with insulin. IAPP expression is increased in the context of insulin resistance, the major risk factor for developing T2D. Human IAPP is potentially toxic, especially as membrane-permeant oligomers, which have been observed to accumulate within β cells of patients with T2D and rodents expressing human IAPP. Here, we determined that β cell IAPP content is regulated by autophagy through p62-dependent lysosomal degradation. Induction of high levels of human IAPP in mouse β cells resulted in accumulation of this amyloidogenic protein as relatively inert fibrils within cytosolic p62-positive inclusions, which temporarily averts formation of toxic oligomers. Mice hemizygous for transgenic expression of human IAPP did not develop diabetes; however, loss of β cell-specific autophagy in these animals induced diabetes, which was attributable to accumulation of toxic human IAPP oligomers and loss of β cell mass. In human IAPP-expressing mice that lack β cell autophagy, increased oxidative damage and loss of an antioxidant-protective pathway appeared to contribute to increased β cell apoptosis. These findings indicate that autophagy/lysosomal degradation defends β cells against proteotoxicity induced by oligomerization-prone human IAPP.
Collapse
|
213
|
Sharoyko VV, Abels M, Sun J, Nicholas LM, Mollet IG, Stamenkovic JA, Göhring I, Malmgren S, Storm P, Fadista J, Spégel P, Metodiev MD, Larsson NG, Eliasson L, Wierup N, Mulder H. Loss of TFB1M results in mitochondrial dysfunction that leads to impaired insulin secretion and diabetes. Hum Mol Genet 2014; 23:5733-49. [PMID: 24916378 DOI: 10.1093/hmg/ddu288] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We have previously identified transcription factor B1 mitochondrial (TFB1M) as a type 2 diabetes (T2D) risk gene, using human and mouse genetics. To further understand the function of TFB1M and how it is associated with T2D, we created a β-cell-specific knockout of Tfb1m, which gradually developed diabetes. Prior to the onset of diabetes, β-Tfb1m(-/-) mice exhibited retarded glucose clearance owing to impaired insulin secretion. β-Tfb1m(-/-) islets released less insulin in response to fuels, contained less insulin and secretory granules and displayed reduced β-cell mass. Moreover, mitochondria in Tfb1m-deficient β-cells were more abundant with disrupted architecture. TFB1M is known to control mitochondrial protein translation by adenine dimethylation of 12S ribosomal RNA (rRNA). Here, we found that the levels of TFB1M and mitochondrial-encoded proteins, mitochondrial 12S rRNA methylation, ATP production and oxygen consumption were reduced in β-Tfb1m(-/-) islets. Furthermore, the levels of reactive oxygen species (ROS) in response to cellular stress were increased whereas induction of defense mechanisms was attenuated. We also show increased apoptosis and necrosis as well as infiltration of macrophages and CD4(+) cells in the islets. Taken together, our findings demonstrate that Tfb1m-deficiency in β-cells caused mitochondrial dysfunction and subsequently diabetes owing to combined loss of β-cell function and mass. These observations reflect pathogenetic processes in human islets: using RNA sequencing, we found that the TFB1M risk variant exhibited a negative gene-dosage effect on islet TFB1M mRNA levels, as well as insulin secretion. Our findings highlight the role of mitochondrial dysfunction in impairments of β-cell function and mass, the hallmarks of T2D.
Collapse
Affiliation(s)
| | | | - Jiangming Sun
- Department of Clinical Sciences in Malmö, Unit of Molecular Metabolism
| | - Lisa M Nicholas
- Department of Clinical Sciences in Malmö, Unit of Molecular Metabolism
| | | | | | - Isabel Göhring
- Department of Clinical Sciences in Malmö, Unit of Molecular Metabolism
| | - Siri Malmgren
- Department of Clinical Sciences in Malmö, Unit of Molecular Metabolism
| | - Petter Storm
- Unit of Diabetes and Endocrinology, Lund University Diabetes Centre, Clinical Research Centre, Skåne University Hospital, 205 02 Malmö, Sweden and
| | - João Fadista
- Unit of Diabetes and Endocrinology, Lund University Diabetes Centre, Clinical Research Centre, Skåne University Hospital, 205 02 Malmö, Sweden and
| | - Peter Spégel
- Department of Clinical Sciences in Malmö, Unit of Molecular Metabolism
| | - Metodi D Metodiev
- Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany
| | | | | | | | - Hindrik Mulder
- Department of Clinical Sciences in Malmö, Unit of Molecular Metabolism,
| |
Collapse
|
214
|
Metzger DE, Liu C, Ziaie AS, Naji A, Zaret KS. Grg3/TLE3 and Grg1/TLE1 induce monohormonal pancreatic β-cells while repressing α-cell functions. Diabetes 2014; 63:1804-16. [PMID: 24487024 PMCID: PMC3994953 DOI: 10.2337/db13-0867] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the pancreas, α- and β-cells possess a degree of plasticity. In vitro differentiation of pluripotent cells yields mostly α- and polyhormonal β-like cells, indicating a gap in understanding of how functional monohormonal β-cells are formed and of the endogenous repressive mechanisms used to maintain β-cell identity. We show that the corepressor Grg3 is expressed in almost all β-cells throughout embryogenesis to adulthood. However, Grg3 is expressed in fewer nascent α-cells and is progressively lost from α-cells as endocrine cells mature into adulthood. We show that mouse Grg3(+/-) β-cells have increased α-specific gene expression, and Grg3(+/-) pancreata have more α-cells and more polyhormonal cells, indicating that Grg3 is required for the physiologic maintenance of monohormonal β-cell identity. Ectopic expression of Grg3 in α-cells represses glucagon and Arx, and the addition of Pdx1 induces Glut2 expression and glucose-responsive insulin secretion. Furthermore, we found that Grg1 is the predominant Groucho expressed in human β-cells but acts functionally similarly to Grg3. Overall, we find that Grg3 and Grg1 establish a monohormonal β-cell identity, and Groucho family members may be useful tools or markers for making functional β-cells.
Collapse
Affiliation(s)
- David E. Metzger
- Institute for Regenerative Medicine, Institute for Diabetes Obesity and Metabolism, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Chengyang Liu
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Smilow Center for Translational Research, Philadelphia, PA
| | - Amin Sam Ziaie
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Smilow Center for Translational Research, Philadelphia, PA
| | - Ali Naji
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Smilow Center for Translational Research, Philadelphia, PA
| | - Kenneth S. Zaret
- Institute for Regenerative Medicine, Institute for Diabetes Obesity and Metabolism, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Corresponding author: Kenneth S. Zaret,
| |
Collapse
|
215
|
Latreille M, Hausser J, Stützer I, Zhang Q, Hastoy B, Gargani S, Kerr-Conte J, Pattou F, Zavolan M, Esguerra JLS, Eliasson L, Rülicke T, Rorsman P, Stoffel M. MicroRNA-7a regulates pancreatic β cell function. J Clin Invest 2014; 124:2722-35. [PMID: 24789908 DOI: 10.1172/jci73066] [Citation(s) in RCA: 228] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Dysfunctional microRNA (miRNA) networks contribute to inappropriate responses following pathological stress and are the underlying cause of several disease conditions. In pancreatic β cells, miRNAs have been largely unstudied and little is known about how specific miRNAs regulate glucose-stimulated insulin secretion (GSIS) or impact the adaptation of β cell function to metabolic stress. In this study, we determined that miR-7 is a negative regulator of GSIS in β cells. Using Mir7a2 deficient mice, we revealed that miR-7a2 regulates β cell function by directly regulating genes that control late stages of insulin granule fusion with the plasma membrane and ternary SNARE complex activity. Transgenic mice overexpressing miR-7a in β cells developed diabetes due to impaired insulin secretion and β cell dedifferentiation. Interestingly, perturbation of miR-7a expression in β cells did not affect proliferation and apoptosis, indicating that miR-7 is dispensable for the maintenance of endocrine β cell mass. Furthermore, we found that miR-7a levels are decreased in obese/diabetic mouse models and human islets from obese and moderately diabetic individuals with compensated β cell function. Our results reveal an interconnecting miR-7 genomic circuit that regulates insulin granule exocytosis in pancreatic β cells and support a role for miR-7 in the adaptation of pancreatic β cell function in obesity and type 2 diabetes.
Collapse
|
216
|
Xiao X, Prasadan K, Guo P, El-Gohary Y, Fischbach S, Wiersch J, Gaffar I, Shiota C, Gittes GK. Pancreatic duct cells as a source of VEGF in mice. Diabetologia 2014; 57:991-1000. [PMID: 24535231 PMCID: PMC3986695 DOI: 10.1007/s00125-014-3179-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 01/16/2014] [Indexed: 12/25/2022]
Abstract
AIMS/HYPOTHESIS Vascular endothelial growth factor (VEGF) is essential for proper pancreatic development, islet vascularisation and insulin secretion. In the adult pancreas, VEGF is thought to be predominantly secreted by beta cells. Although human duct cells have previously been shown to secrete VEGF at angiogenic levels in culture, an analysis of the kinetics of VEGF synthesis and secretion, as well as elucidation of an in vivo role for this ductal VEGF in affecting islet function and physiology, has been lacking. METHODS We analysed purified duct cells independently prepared by flow cytometry, surgical isolation or laser-capture microdissection. We infected duct cells in vivo with Vegf (also known as Vegfa) short hairpin RNA (shRNA) in an intrapancreatic ductal infusion system and examined the effect of VEGF knockdown in duct cells in vitro and in vivo. RESULTS Pancreatic duct cells express high levels of Vegf mRNA. Compared with beta cells, duct cells had a much higher ratio of secreted to intracellular VEGF. As a bioassay, formation of tubular structures by human umbilical vein endothelial cells was essentially undetectable when cultured alone and was substantially increased when co-cultured with pancreatic duct cells but significantly reduced when co-cultured with duct cells pretreated with Vegf shRNA. Compared with islets transplanted alone, improved vascularisation and function was detected in the islets co-transplanted with duct cells but not in islets co-transplanted with duct cells pretreated with Vegf shRNA. CONCLUSIONS/INTERPRETATION Human islet preparations for transplantation typically contain some contaminating duct cells and our findings suggest that the presence of duct cells in the islet preparation may improve transplantation outcomes.
Collapse
Affiliation(s)
- Xiangwei Xiao
- Division of Pediatric Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Ave, Pittsburgh, PA, 15224, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Matsunari H, Kobayashi T, Watanabe M, Umeyama K, Nakano K, Kanai T, Matsuda T, Nagaya M, Hara M, Nakauchi H, Nagashima H. Transgenic pigs with pancreas-specific expression of green fluorescent protein. J Reprod Dev 2014; 60:230-237. [PMID: 24748398 PMCID: PMC4085388 DOI: 10.1262/jrd.2014-006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/11/2014] [Indexed: 11/20/2022] Open
Abstract
The development and regeneration of the pancreas is of considerable interest because of the role of these processes in pancreatic diseases, such as diabetes. Here, we sought to develop a large animal model in which the pancreatic cell lineage could be tracked. The pancreatic and duodenal homeobox-1 (Pdx1) gene promoter was conjugated to Venus, a green fluorescent protein, and introduced into 370 in vitro-matured porcine oocytes by intracytoplasmic sperm injection-mediated gene transfer. These oocytes were transferred into four recipient gilts, all of which became pregnant. Three gilts were sacrificed at 47-65 days of gestation, and the fourth was allowed to farrow. Seven of 16 fetuses obtained were transgenic (Tg) and exhibited pancreas-specific green fluorescence. The fourth recipient gilt produced a litter of six piglets, two of which were Tg. The founder Tg offspring matured normally and produced healthy first-generation (G1) progeny. A postweaning autopsy of four 27-day-old G1 Tg piglets confirmed the pancreas-specific Venus expression. Immunostaining of the pancreatic tissue indicated the transgene was expressed in β-cells. Pancreatic islets from Tg pigs were transplanted under the renal capsules of NOD/SCID mice and expressed fluorescence up to one month after transplantation. Tg G1 pigs developed normally and had blood glucose levels within the normal range. Insulin levels before and after sexual maturity were within normal ranges, as were other blood biochemistry parameters, indicating that pancreatic function was normal. We conclude that Pdx1-Venus Tg pigs represent a large animal model suitable for research on pancreatic development/regeneration and diabetes.
Collapse
Affiliation(s)
- Hitomi Matsunari
- Meiji University International Institute for Bio-Resource Research, Kawasaki 214-8571, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Tudurí E, Denroche HC, Kara JA, Asadi A, Fox JK, Kieffer TJ. Partial ablation of leptin signaling in mouse pancreatic α-cells does not alter either glucose or lipid homeostasis. Am J Physiol Endocrinol Metab 2014; 306:E748-55. [PMID: 24473435 DOI: 10.1152/ajpendo.00681.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The role of glucagon in the pathological condition of diabetes is gaining interest, and it has been recently reported that its action is essential for hyperglycemia to occur. Glucagon levels, which are elevated in some diabetic models, are reduced following leptin therapy. Likewise, hyperglycemia is corrected in type 1 diabetic mice treated with leptin, although the mechanisms have not been fully determined. A direct inhibitory effect of leptin on mouse and human α-cells has been demonstrated at the levels of electrical activity, calcium signaling, and glucagon secretion. In the present study we employed the Cre-loxP strategy to generate Lepr(flox/flox) Gcg-cre mice, which specifically lack leptin receptors in glucagon-secreting α-cells, to determine whether leptin resistance in α-cells contributes to hyperglucagonemia, and also whether leptin action in α-cells is required to improve glycemia in type 1 diabetes with leptin therapy. Immunohistochemical analysis of pancreas sections revealed Cre-mediated recombination in ∼ 43% of the α-cells. We observed that in vivo Lepr(flox/flox) Gcg-cre mice display normal glucose and lipid homeostasis. In addition, leptin administration in streptozotocin-induced diabetic Lepr(flox/flox) Gcg-cre mice restored euglycemia similarly to control mice. These findings suggest that loss of leptin receptor signaling in close to one-half of α-cells does not alter glucose metabolism in vivo, nor is it sufficient to prevent the therapeutic action of leptin in type 1 diabetes.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/metabolism
- Female
- Gene Deletion
- Glucagon-Secreting Cells/metabolism
- Glucose/metabolism
- Homeostasis/genetics
- Leptin/metabolism
- Leptin/therapeutic use
- Lipid Metabolism/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Receptors, Leptin/genetics
- Receptors, Leptin/metabolism
- Signal Transduction/genetics
Collapse
Affiliation(s)
- Eva Tudurí
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada; and
| | | | | | | | | | | |
Collapse
|
219
|
Kesavan G, Lieven O, Mamidi A, Öhlin ZL, Johansson JK, Li WC, Lommel S, Greiner TU, Semb H. Cdc42/N-WASP signaling links actin dynamics to pancreatic β cell delamination and differentiation. Development 2014; 141:685-96. [PMID: 24449844 DOI: 10.1242/dev.100297] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Delamination plays a pivotal role during normal development and cancer. Previous work has demonstrated that delamination and epithelial cell movement within the plane of an epithelium are associated with a change in cellular phenotype. However, how this positional change is linked to differentiation remains unknown. Using the developing mouse pancreas as a model system, we show that β cell delamination and differentiation are two independent events, which are controlled by Cdc42/N-WASP signaling. Specifically, we show that expression of constitutively active Cdc42 in β cells inhibits β cell delamination and differentiation. These processes are normally associated with junctional actin and cell-cell junction disassembly and the expression of fate-determining transcription factors, such as Isl1 and MafA. Mechanistically, we demonstrate that genetic ablation of N-WASP in β cells expressing constitutively active Cdc42 partially restores both delamination and β cell differentiation. These findings elucidate how junctional actin dynamics via Cdc42/N-WASP signaling cell-autonomously control not only epithelial delamination but also cell differentiation during mammalian organogenesis.
Collapse
Affiliation(s)
- Gokul Kesavan
- Stem Cell Center, Department of Laboratory Medicine, Lund University, BMC B10 Klinikgatan 26, SE-22184 Lund, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Ardestani A, Paroni F, Azizi Z, Kaur S, Khobragade V, Yuan T, Frogne T, Tao W, Oberholzer J, Pattou F, Conte JK, Maedler K. MST1 is a key regulator of beta cell apoptosis and dysfunction in diabetes. Nat Med 2014; 20:385-397. [PMID: 24633305 PMCID: PMC3981675 DOI: 10.1038/nm.3482] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/21/2014] [Indexed: 12/31/2022]
Abstract
Apoptotic cell death is a hallmark of the loss of insulin producing beta-cells in all forms of diabetes mellitus. Current treatment fails to halt the decline in functional beta-cell mass. Strategies to prevent beta-cell apoptosis and dysfunction are urgently needed. Here, we identified Mammalian Sterile 20-like kinase 1 (MST1) as a critical regulator of apoptotic beta-cell death and function. MST1 was strongly activated in beta-cells under diabetogenic conditions and correlated with beta-cell apoptosis. MST1 specifically induced the mitochondrial-dependent pathway of apoptosis in beta-cells through up-regulation of the BH3-only protein Bim. MST1 directly phosphorylated PDX1 at Thr11, resulting in its ubiquitination, degradation and impaired insulin secretion. Mst1 deficiency completely restored normoglycemia, beta-cell function and survival in vitro and in vivo. We show MST1 as novel pro-apoptotic kinase and key mediator of apoptotic signaling and beta-cell dysfunction, which may serve as target for the development of novel therapies for diabetes.
Collapse
Affiliation(s)
- Amin Ardestani
- Centre for Biomolecular Interactions Bremen, University of Bremen, Germany
| | - Federico Paroni
- Centre for Biomolecular Interactions Bremen, University of Bremen, Germany
| | - Zahra Azizi
- Centre for Biomolecular Interactions Bremen, University of Bremen, Germany
| | - Supreet Kaur
- Centre for Biomolecular Interactions Bremen, University of Bremen, Germany
| | | | - Ting Yuan
- Centre for Biomolecular Interactions Bremen, University of Bremen, Germany
| | - Thomas Frogne
- Department of Beta-cell Regeneration, Hagedorn Research Institute, Gentofte, Denmark
| | - Wufan Tao
- Institute of Developmental Biology and Molecular Medicine, Fudan University, Shanghai, China
| | - Jose Oberholzer
- Division of Transplantation, University of Illinois at Chicago, IL, USA
| | - Francois Pattou
- Thérapie Cellulaire du Diabète, INSERM /Université de Lille Nord de France, France
| | - Julie Kerr Conte
- Thérapie Cellulaire du Diabète, INSERM /Université de Lille Nord de France, France
| | - Kathrin Maedler
- Centre for Biomolecular Interactions Bremen, University of Bremen, Germany
| |
Collapse
|
221
|
Targeting SUR1/Abcc8-type neuroendocrine KATP channels in pancreatic islet cells. PLoS One 2014; 9:e91525. [PMID: 24621811 PMCID: PMC3951447 DOI: 10.1371/journal.pone.0091525] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 02/13/2014] [Indexed: 01/25/2023] Open
Abstract
ATP-sensitive K+ (KATP) channels play a regulatory role in hormone-secreting pancreatic islet α-, β- and δ-cells. Targeted channel deletion would assist analysis and dissection of the intraislet regulatory network. Toward this end Abcc8/Sur1 flox mice were generated and tested by crossing with glucagon-(GCG)-cre mice to target α-cell KATP channels selectively. Agonist resistance was used to quantify the percent of α-cells lacking channels. 41% of Sur1loxP/loxP;GCG-cre+ and ∼64% of Sur1loxP/−;GCG-cre+ α-cells lacked KATP channels, while ∼65% of α-cells expressed enhanced yellow fluorescent protein (EYFP) in ROSA-EYFP/GCG-cre matings. The results are consistent with a stochastic two-recombination event mechanism and a requirement that both floxed alleles are deleted.
Collapse
|
222
|
Schiesser JV, Wells JM. Generation of β cells from human pluripotent stem cells: are we there yet? Ann N Y Acad Sci 2014; 1311:124-37. [PMID: 24611778 DOI: 10.1111/nyas.12369] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In 1998, the landmark paper describing the isolation and culture of human embryonic stem cells (ESCs) was published. Since that time, the main goal of many diabetes researchers has been to derive β cells from ESCs as a renewable cell-based therapy for the treatment of patients with diabetes. In working toward this goal, numerous protocols that attempt to recapitulate normal pancreatic development have been published that result in the formation of pancreatic cell types from human pluripotent cells. This review examines stem cell differentiation methods and places them within the context of pancreatic development. We additionally compare strategies that are currently being used to generate pancreatic cell types and contrast them with approaches that have been used to generate functional cell types in different lineages. In doing this, we aim to identify how new approaches might be used to improve yield and functionality of in vitro-derived pancreatic β cells as an eventual cell-based therapy for type 1 diabetes.
Collapse
Affiliation(s)
- Jacqueline V Schiesser
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | |
Collapse
|
223
|
Pdx1 maintains β cell identity and function by repressing an α cell program. Cell Metab 2014; 19:259-71. [PMID: 24506867 PMCID: PMC3950964 DOI: 10.1016/j.cmet.2013.12.002] [Citation(s) in RCA: 306] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 07/10/2013] [Accepted: 11/19/2013] [Indexed: 12/13/2022]
Abstract
Pdx1 is a homeobox-containing transcription factor that plays a key role in pancreatic development and adult β cell function. In this study, we traced the fate of adult β cells after Pdx1 deletion. As expected, β-cell-specific removal of Pdx1 resulted in severe hyperglycemia within days. Surprisingly, a large fraction of Pdx1-deleted cells rapidly acquired ultrastructural and physiological features of α cells, indicating that a robust cellular reprogramming had occurred. Reprogrammed cells exhibited a global transcriptional shift that included derepression of the α cell transcription factor MafB, resulting in a transcriptional profile that closely resembled that of α cells. These findings indicate that Pdx1 acts as a master regulator of β cell fate by simultaneously activating genes essential for β cell identity and repressing those associated with α cell identity. We discuss the significance of these findings in the context of the emerging notion that loss of β cell identity contributes to the pathogenesis of type 2 diabetes.
Collapse
|
224
|
Puri S, Akiyama H, Hebrok M. VHL-mediated disruption of Sox9 activity compromises β-cell identity and results in diabetes mellitus. Genes Dev 2014; 27:2563-75. [PMID: 24298056 PMCID: PMC3861670 DOI: 10.1101/gad.227785.113] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
β-Cell dysfunction contributes to diabetes mellitus. Puri et al. show that deletion of the von Hippel-Lindau (Vhlh) gene is deleterious to canonical β-cell gene expression. Vhlh loss triggers erroneous expression of factors normally active in progenitor cells, including Sox9. β-Cell-specific expression of Sox9 results in diabetes mellitus. This study reveals that perturbed β-cell identity contributes to diabetes mellitus. Precise functioning of the pancreatic β cell is paramount to whole-body glucose homeostasis, and β-cell dysfunction contributes significantly to diabetes mellitus. Using transgenic mouse models, we demonstrate that deletion of the von Hippel-Lindau (Vhlh) gene (encoding an E3 ubiquitin ligase implicated in, among other functions, oxygen sensing in pancreatic β cells) is deleterious to canonical β-cell gene expression. This triggers erroneous expression of factors normally active in progenitor cells, including effectors of the Notch, Wnt, and Hedgehog signaling cascades. Significantly, an up-regulation of the transcription factor Sox9, normally excluded from functional β cells, occurs upon deletion of Vhlh. Sox9 plays important roles during pancreas development but does not have a described role in the adult β cell. β-Cell-specific ectopic expression of Sox9 results in diabetes mellitus from similar perturbations in β-cell identity. These findings reveal that assaults on the β cell that impact the differentiation state of the cell have clear implications toward our understanding of diabetes mellitus.
Collapse
Affiliation(s)
- Sapna Puri
- Diabetes Center, Department of Medicine, University of California at San Francisco, San Francisco, California 94143, USA
| | | | | |
Collapse
|
225
|
Argonaute2 mediates compensatory expansion of the pancreatic β cell. Cell Metab 2014; 19:122-34. [PMID: 24361012 PMCID: PMC3945818 DOI: 10.1016/j.cmet.2013.11.015] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 07/26/2013] [Accepted: 11/10/2013] [Indexed: 12/31/2022]
Abstract
Pancreatic β cells adapt to compensate for increased metabolic demand during insulin resistance. Although the microRNA pathway has an essential role in β cell proliferation, the extent of its contribution is unclear. Here, we report that miR-184 is silenced in the pancreatic islets of insulin-resistant mouse models and type 2 diabetic human subjects. Reduction of miR-184 promotes the expression of its target Argonaute2 (Ago2), a component of the microRNA-induced silencing complex. Moreover, restoration of miR-184 in leptin-deficient ob/ob mice decreased Ago2 and prevented compensatory β cell expansion. Loss of Ago2 during insulin resistance blocked β cell growth and relieved the regulation of miR-375-targeted genes, including the growth suppressor Cadm1. Lastly, administration of a ketogenic diet to ob/ob mice rescued insulin sensitivity and miR-184 expression and restored Ago2 and β cell mass. This study identifies the targeting of Ago2 by miR-184 as an essential component of the compensatory response to regulate proliferation according to insulin sensitivity.
Collapse
|
226
|
El-Gohary Y, Tulachan S, Wiersch J, Guo P, Welsh C, Prasadan K, Paredes J, Shiota C, Xiao X, Wada Y, Diaz M, Gittes G. A smad signaling network regulates islet cell proliferation. Diabetes 2014; 63:224-36. [PMID: 24089514 PMCID: PMC3868054 DOI: 10.2337/db13-0432] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Pancreatic β-cell loss and dysfunction are critical components of all types of diabetes. Human and rodent β-cells are able to proliferate, and this proliferation is an important defense against the evolution and progression of diabetes. Transforming growth factor-β (TGF-β) signaling has been shown to affect β-cell development, proliferation, and function, but β-cell proliferation is thought to be the only source of new β-cells in the adult. Recently, β-cell dedifferentiation has been shown to be an important contributory mechanism to β-cell failure. In this study, we tie together these two pathways by showing that a network of intracellular TGF-β regulators, smads 7, 2, and 3, control β-cell proliferation after β-cell loss, and specifically, smad7 is necessary for that β-cell proliferation. Importantly, this smad7-mediated proliferation appears to entail passing through a transient, nonpathologic dedifferentiation of β-cells to a pancreatic polypeptide-fold hormone-positive state. TGF-β receptor II appears to be a receptor important for controlling the status of the smad network in β-cells. These studies should help our understanding of properly regulated β-cell replication.
Collapse
Affiliation(s)
- Yousef El-Gohary
- Division of Pediatric Surgery, Department of Surgery, Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Sidhartha Tulachan
- Department of Internal Medicine, St. Elizabeth Health Center, Youngstown, OH
| | - John Wiersch
- Division of Pediatric Surgery, Department of Surgery, Children’s Hospital of Pittsburgh, Pittsburgh, PA
- Department of Surgery, School of Medicine, University of Texas Health Sciences Center at San Antonio, San Antonio, TX
| | - Ping Guo
- Division of Pediatric Surgery, Department of Surgery, Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Carey Welsh
- Division of Neonatology, Department of Pediatrics, Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Krishna Prasadan
- Division of Pediatric Surgery, Department of Surgery, Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Jose Paredes
- Division of Pediatric Surgery, Department of Surgery, Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Chiyo Shiota
- Division of Pediatric Surgery, Department of Surgery, Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Xiangwei Xiao
- Division of Pediatric Surgery, Department of Surgery, Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Yoko Wada
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Marilyn Diaz
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC
| | - George Gittes
- Division of Pediatric Surgery, Department of Surgery, Children’s Hospital of Pittsburgh, Pittsburgh, PA
- Corresponding author: George Gittes,
| |
Collapse
|
227
|
VMAT2 identified as a regulator of late-stage β-cell differentiation. Nat Chem Biol 2013; 10:141-8. [PMID: 24316738 DOI: 10.1038/nchembio.1410] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 10/15/2013] [Indexed: 02/06/2023]
Abstract
Cell replacement therapy for diabetes mellitus requires cost-effective generation of high-quality, insulin-producing, pancreatic β cells from pluripotent stem cells. Development of this technique has been hampered by a lack of knowledge of the molecular mechanisms underlying β-cell differentiation. The present study identified reserpine and tetrabenazine (TBZ), both vesicular monoamine transporter 2 (VMAT2) inhibitors, as promoters of late-stage differentiation of Pdx1-positive pancreatic progenitor cells into Neurog3 (referred to henceforth as Ngn3)-positive endocrine precursors. VMAT2-controlled monoamines, such as dopamine, histamine and serotonin, negatively regulated β-cell differentiation. Reserpine or TBZ acted additively with dibutyryl adenosine 3',5'-cyclic AMP, a cell-permeable cAMP analog, to potentiate differentiation of embryonic stem (ES) cells into β cells that exhibited glucose-stimulated insulin secretion. When ES cell-derived β cells were transplanted into AKITA diabetic mice, the cells reversed hyperglycemia. Our protocol provides a basis for the understanding of β-cell differentiation and its application to a cost-effective production of functional β cells for cell therapy.
Collapse
|
228
|
Courtney M, Gjernes E, Druelle N, Ravaud C, Vieira A, Ben-Othman N, Pfeifer A, Avolio F, Leuckx G, Lacas-Gervais S, Burel-Vandenbos F, Ambrosetti D, Hecksher-Sorensen J, Ravassard P, Heimberg H, Mansouri A, Collombat P. The inactivation of Arx in pancreatic α-cells triggers their neogenesis and conversion into functional β-like cells. PLoS Genet 2013; 9:e1003934. [PMID: 24204325 PMCID: PMC3814322 DOI: 10.1371/journal.pgen.1003934] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 09/17/2013] [Indexed: 02/06/2023] Open
Abstract
Recently, it was demonstrated that pancreatic new-born glucagon-producing cells can regenerate and convert into insulin-producing β-like cells through the ectopic expression of a single gene, Pax4. Here, combining conditional loss-of-function and lineage tracing approaches, we show that the selective inhibition of the Arx gene in α-cells is sufficient to promote the conversion of adult α-cells into β-like cells at any age. Interestingly, this conversion induces the continuous mobilization of duct-lining precursor cells to adopt an endocrine cell fate, the glucagon+ cells thereby generated being subsequently converted into β-like cells upon Arx inhibition. Of interest, through the generation and analysis of Arx and Pax4 conditional double-mutants, we provide evidence that Pax4 is dispensable for these regeneration processes, indicating that Arx represents the main trigger of α-cell-mediated β-like cell neogenesis. Importantly, the loss of Arx in α-cells is sufficient to regenerate a functional β-cell mass and thereby reverse diabetes following toxin-induced β-cell depletion. Our data therefore suggest that strategies aiming at inhibiting the expression of Arx, or its molecular targets/co-factors, may pave new avenues for the treatment of diabetes. Type 1 diabetes is a condition that results from the loss of insulin-producing β-cells. Despite current therapies, diabetic patients are prone to vascular complications. Using the mouse as a model, we previously found that pancreatic glucagon-expressing cells can be regenerated and converted into β-like cells by the forced expression of a single gene, Pax4. Here, we generated transgenic mice allowing both the permanent labeling of α-cells and the inactivation of Arx solely in this cell subtype. Our results indicate that, upon Arx inactivation, α-cells can be continuously regenerated from duct-lining precursors and converted into β-like cells. Importantly, the additional loss of Pax4 does not impact these processes, suggesting that Arx is the main trigger of α-cell-mediated β-like cell neogenesis. Most interestingly, upon chemical induction of diabetes/β-cell loss, while control animals die or remain severely hyperglycemic, a normalization of the glycemia, a clear regeneration of the β-like cell mass, and an extended lifespan are noted in animals with the conditional inactivation of Arx. Our data therefore suggest that strategies aiming at inhibiting the expression of Arx, or its molecular targets/co-factors, may pave new avenues for the treatment of diabetes.
Collapse
Affiliation(s)
- Monica Courtney
- Université de Nice Sophia Antipolis, iBV, UMR 7277, Nice, France ; Inserm, iBV, U1091, Nice, France ; CNRS, iBV, UMR 7277, Nice, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Supale S, Thorel F, Merkwirth C, Gjinovci A, Herrera PL, Scorrano L, Meda P, Langer T, Maechler P. Loss of prohibitin induces mitochondrial damages altering β-cell function and survival and is responsible for gradual diabetes development. Diabetes 2013; 62:3488-99. [PMID: 23863811 PMCID: PMC3781460 DOI: 10.2337/db13-0152] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Prohibitins are highly conserved proteins mainly implicated in the maintenance of mitochondrial function and architecture. Their dysfunctions are associated with aging, cancer, obesity, and inflammation. However, their possible role in pancreatic β-cells remains unknown. The current study documents the expression of prohibitins in human and rodent islets and their key role for β-cell function and survival. Ablation of Phb2 in mouse β-cells sequentially resulted in impairment of mitochondrial function and insulin secretion, loss of β-cells, progressive alteration of glucose homeostasis, and, ultimately, severe diabetes. Remarkably, these events progressed over a 3-week period of time after weaning. Defective insulin supply in β-Phb2(-/-) mice was contributed by both β-cell dysfunction and apoptosis, temporarily compensated by increased β-cell proliferation. At the molecular level, we observed that deletion of Phb2 caused mitochondrial abnormalities, including reduction of mitochondrial DNA copy number and respiratory chain complex IV levels, altered mitochondrial activity, cleavage of L-optic atrophy 1, and mitochondrial fragmentation. Overall, our data demonstrate that Phb2 is essential for metabolic activation of mitochondria and, as a consequence, for function and survival of β-cells.
Collapse
Affiliation(s)
- Sachin Supale
- Department of Cell Physiology and Metabolism, University of Geneva Medical Centre, Geneva, Switzerland
| | - Fabrizio Thorel
- Department of Genetic Medicine and Development, University of Geneva Medical Centre, Geneva, Switzerland
| | | | - Asllan Gjinovci
- Department of Cell Physiology and Metabolism, University of Geneva Medical Centre, Geneva, Switzerland
| | - Pedro L. Herrera
- Department of Genetic Medicine and Development, University of Geneva Medical Centre, Geneva, Switzerland
| | - Luca Scorrano
- Department of Cell Physiology and Metabolism, University of Geneva Medical Centre, Geneva, Switzerland
| | - Paolo Meda
- Department of Cell Physiology and Metabolism, University of Geneva Medical Centre, Geneva, Switzerland
| | - Thomas Langer
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Pierre Maechler
- Department of Cell Physiology and Metabolism, University of Geneva Medical Centre, Geneva, Switzerland
- Corresponding author: Pierre Maechler,
| |
Collapse
|
230
|
Abstract
Pancreas homeostasis is based on replication of differentiated cells in order to maintain proper organ size and function under changing physiological demand. Recent studies suggest that acinar cells, the most abundant cell type in the pancreas, are facultative progenitors capable of reverting to embryonic-like multipotent progenitor cells under injury conditions associated with inflammation. In parallel, it is becoming apparent that within the endocrine pancreas, hormone-producing cells can lose or switch their identity under metabolic stress or in response to single gene mutations. This new view of pancreas dynamics suggests interesting links between pancreas regeneration and pathologies including diabetes and pancreatic cancer.
Collapse
Affiliation(s)
- Oren Ziv
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | |
Collapse
|
231
|
Elimination of von Hippel-Lindau function perturbs pancreas endocrine homeostasis in mice. PLoS One 2013; 8:e72213. [PMID: 23977255 PMCID: PMC3748057 DOI: 10.1371/journal.pone.0072213] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 07/08/2013] [Indexed: 12/23/2022] Open
Abstract
Mutations in the human homolog of the Vhlh gene [encoding the von-Hippel Lindau (VHL) protein] lead to tumor development. In mice, depletion of Vhlh in pancreatic ß-cells causes perturbed glucose homeostasis, but the role of this gene in other pancreatic cells is poorly understood. To investigate the function of VHL/HIF pathway in pancreatic cells, we inactivated Vhlh in the pancreatic epithelium as well as in the endocrine and exocrine lineages. Our results show that embryonic depletion of Vhlh within the pancreatic epithelium causes postnatal lethality due to severe hypoglycemia. The hypoglycemia is recapitulated in mice with endocrine-specific removal of Vhlh, while animals with loss of Vhlh predominantly in the exocrine compartment survive to adulthood with no overt defects in glucose metabolism. Mice with hypoglycemia display diminished insulin release in response to elevated glucose. Significantly, the glucagon response is impaired both in vivo (circulating glucagon levels) as well as in an in vitro secretion assay in isolated islets. Hypoxia also impairs glucagon secretion in a glucagon-expressing cell line in culture. Our results reveal a novel role for the hypoxia/HIF pathway in islet hormone secretion and maintenance of the fine balance that allows for the establishment of normoglycemia.
Collapse
|
232
|
Retinoblastoma tumor suppressor protein in pancreatic progenitors controls α- and β-cell fate. Proc Natl Acad Sci U S A 2013; 110:14723-8. [PMID: 23946427 DOI: 10.1073/pnas.1303386110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pancreatic endocrine cells expand rapidly during embryogenesis by neogenesis and proliferation, but during adulthood, islet cells have a very slow turnover. Disruption of murine retinoblastoma tumor suppressor protein (Rb) in mature pancreatic β-cells has a limited effect on cell proliferation. Here we show that deletion of Rb during embryogenesis in islet progenitors leads to an increase in the neurogenin 3-expressing precursor cell population, which persists in the postnatal period and is associated with increased β-cell mass in adults. In contrast, Rb-deficient islet precursors, through repression of the cell fate factor aristaless related homeobox, result in decreased α-cell mass. The opposing effect on survival of Rb-deficient α- and β-cells was a result of opposing effects on p53 in these cell types. As a consequence, loss of Rb in islet precursors led to a reduced α- to β-cell ratio, leading to improved glucose homeostasis and protection against diabetes.
Collapse
|
233
|
Diaferia GR, Jimenez-Caliani AJ, Ranjitkar P, Yang W, Hardiman G, Rhodes CJ, Crisa L, Cirulli V. β1 integrin is a crucial regulator of pancreatic β-cell expansion. Development 2013; 140:3360-72. [PMID: 23863477 DOI: 10.1242/dev.098533] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Development of the endocrine compartment of the pancreas, as represented by the islets of Langerhans, occurs through a series of highly regulated events encompassing branching of the pancreatic epithelium, delamination and differentiation of islet progenitors from ductal domains, followed by expansion and three-dimensional organization into islet clusters. Cellular interactions with the extracellular matrix (ECM) mediated by receptors of the integrin family are postulated to regulate key functions in these processes. Yet, specific events regulated by these receptors in the developing pancreas remain unknown. Here, we show that ablation of the β1 integrin gene in developing pancreatic β-cells reduces their ability to expand during embryonic life, during the first week of postnatal life, and thereafter. Mice lacking β1 integrin in insulin-producing cells exhibit a dramatic reduction of the number of β-cells to only ∼18% of wild-type levels. Despite the significant reduction in β-cell mass, these mutant mice are not diabetic. A thorough phenotypic analysis of β-cells lacking β1 integrin revealed a normal expression repertoire of β-cell markers, normal architectural organization within islet clusters, and a normal ultrastructure. Global gene expression analysis revealed that ablation of this ECM receptor in β-cells inhibits the expression of genes regulating cell cycle progression. Collectively, our results demonstrate that β1 integrin receptors function as crucial positive regulators of β-cell expansion.
Collapse
Affiliation(s)
- Giuseppe R Diaferia
- Department of Experimental Oncology, European Institute of Oncology (IEO), Via Adamello 16 20139, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
234
|
Yoshida Y, Fuchita M, Kimura-Koyanagi M, Kanno A, Matsuda T, Asahara SI, Hashimoto N, Isagawa T, Ogawa W, Aburatani H, Noda T, Seino S, Kasuga M, Kido Y. Contribution of insulin signaling to the regulation of pancreatic beta-cell mass during the catch-up growth period in a low birth weight mouse model. Diabetol Int 2013. [DOI: 10.1007/s13340-013-0127-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
235
|
Abstract
Cre/LoxP has broad utility for studying the function, development, and oncogenic transformation of pancreatic cells in mice. Here we provide an overview of the Cre driver lines that are available for such studies. We discuss how variegated expression, transgene silencing, and recombination in undesired cell types have conspired to limit the performance of these lines, sometimes leading to serious experimental concerns. We also discuss preferred strategies for achieving high-fidelity driver lines and remind investigators of the continuing need for caution when interpreting results obtained from any Cre/LoxP-based experiment performed in mice.
Collapse
Affiliation(s)
- Mark A Magnuson
- Center for Stem Cell Biology and Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | |
Collapse
|
236
|
Ben-Othman N, Courtney M, Vieira A, Pfeifer A, Druelle N, Gjernes E, Faurite B, Avolio F, Collombat P. From pancreatic islet formation to beta-cell regeneration. Diabetes Res Clin Pract 2013; 101:1-9. [PMID: 23380136 DOI: 10.1016/j.diabres.2013.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 01/09/2013] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus represents a major healthcare burden and, due to the increasing prevalence of type I diabetes and the complications arising from current treatments, other alternative therapies must be found. Type I diabetes arises as a result of a cell-mediated autoimmune destruction of insulin producing pancreatic β-cells. Thus, a cell replacement therapy would be appropriate, using either in vitro or in vivo cell differentiation/reprogramming from different cell sources. Increasing our understanding of the molecular mechanisms controlling endocrine cell specification during pancreas morphogenesis and gaining further insight into the complex transcriptional network and signaling pathways governing β-cell development should facilitate efforts to achieve this ultimate goal, that is to regenerate insulin-producing β-cells. This review will therefore describe briefly the genetic program underlying mouse pancreas development and present new insights regarding β-cell regeneration.
Collapse
Affiliation(s)
- Nouha Ben-Othman
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Monica Courtney
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Andhira Vieira
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Anja Pfeifer
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Noémie Druelle
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Elisabet Gjernes
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Biljana Faurite
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Fabio Avolio
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Patrick Collombat
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA.
| |
Collapse
|
237
|
Akiyama M, Liew CW, Lu S, Hu J, Martinez R, Hambro B, Kennedy RT, Kulkarni RN. X-box binding protein 1 is essential for insulin regulation of pancreatic α-cell function. Diabetes 2013; 62:2439-49. [PMID: 23493568 PMCID: PMC3712068 DOI: 10.2337/db12-1747] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Patients with type 2 diabetes (T2D) often exhibit hyperglucagonemia despite hyperglycemia, implicating defective α-cell function. Although endoplasmic reticulum (ER) stress has been suggested to underlie β-cell dysfunction in T2D, its role in α-cell biology remains unclear. X-box binding protein 1 (XBP1) is a transcription factor that plays a crucial role in the unfolded protein response (UPR), and its deficiency in β-cells has been reported to impair insulin secretion, leading to glucose intolerance. To evaluate the role of XBP1 in α-cells, we created complementary in vivo (α-cell-specific XBP1 knockout [αXBPKO] mice) and in vitro (stable XBP1 knockdown α-cell line [αXBPKD]) models. The αXBPKO mice exhibited glucose intolerance, mild insulin resistance, and an inability to suppress glucagon secretion after glucose stimulation. αXBPKD cells exhibited activation of inositol-requiring enzyme 1, an upstream activator of XBP1, leading to phosphorylation of Jun NH2-terminal kinase. Interestingly, insulin treatment of αXBPKD cells reduced tyrosine phosphorylation of insulin receptor substrate 1 (IRS1) (pY(896)) and phosphorylation of Akt while enhancing serine phosphorylation (pS(307)) of IRS1. Consequently, the αXBPKD cells exhibited blunted suppression of glucagon secretion after insulin treatment in the presence of high glucose. Together, these data indicate that XBP1 deficiency in pancreatic α-cells induces altered insulin signaling and dysfunctional glucagon secretion.
Collapse
Affiliation(s)
- Masaru Akiyama
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts
| | - Chong Wee Liew
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago Illinois
| | - Shusheng Lu
- Departments of Chemistry and Pharmacology, University of Michigan, Ann Arbor, Michigan
| | - Jiang Hu
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts
| | - Rachael Martinez
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts
| | - Ben Hambro
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts
| | - Robert T. Kennedy
- Departments of Chemistry and Pharmacology, University of Michigan, Ann Arbor, Michigan
| | - Rohit N. Kulkarni
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts
- Corresponding author: Rohit N. Kulkarni,
| |
Collapse
|
238
|
Al-Hasani K, Pfeifer A, Courtney M, Ben-Othman N, Gjernes E, Vieira A, Druelle N, Avolio F, Ravassard P, Leuckx G, Lacas-Gervais S, Ambrosetti D, Benizri E, Hecksher-Sorensen J, Gounon P, Ferrer J, Gradwohl G, Heimberg H, Mansouri A, Collombat P. Adult duct-lining cells can reprogram into β-like cells able to counter repeated cycles of toxin-induced diabetes. Dev Cell 2013; 26:86-100. [PMID: 23810513 DOI: 10.1016/j.devcel.2013.05.018] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 04/16/2013] [Accepted: 05/21/2013] [Indexed: 01/27/2023]
Abstract
It was recently demonstrated that embryonic glucagon-producing cells in the pancreas can regenerate and convert into insulin-producing β-like cells through the constitutive/ectopic expression of the Pax4 gene. However, whether α cells in adult mice display the same plasticity is unknown. Similarly, the mechanisms underlying such reprogramming remain unclear. We now demonstrate that the misexpression of Pax4 in glucagon(+) cells age-independently induces their conversion into β-like cells and their glucagon shortage-mediated replacement, resulting in islet hypertrophy and in an unexpected islet neogenesis. Combining several lineage-tracing approaches, we show that, upon Pax4-mediated α-to-β-like cell conversion, pancreatic duct-lining precursor cells are continuously mobilized, re-express the developmental gene Ngn3, and successively adopt a glucagon(+) and a β-like cell identity through a mechanism involving the reawakening of the epithelial-to-mesenchymal transition. Importantly, these processes can repeatedly regenerate the whole β cell mass and thereby reverse several rounds of toxin-induced diabetes, providing perspectives to design therapeutic regenerative strategies.
Collapse
|
239
|
Jensen MV, Haldeman JM, Zhang H, Lu D, Huising MO, Vale WW, Hohmeier HE, Rosenberg P, Newgard CB. Control of voltage-gated potassium channel Kv2.2 expression by pyruvate-isocitrate cycling regulates glucose-stimulated insulin secretion. J Biol Chem 2013; 288:23128-40. [PMID: 23788641 DOI: 10.1074/jbc.m113.491654] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recent studies have shown that the pyruvate-isocitrate cycling pathway, involving the mitochondrial citrate/isocitrate carrier and the cytosolic NADP-dependent isocitrate dehydrogenase (ICDc), is involved in control of glucose-stimulated insulin secretion (GSIS). Here we demonstrate that pyruvate-isocitrate cycling regulates expression of the voltage-gated potassium channel family member Kv2.2 in islet β-cells. siRNA-mediated suppression of ICDc, citrate/isocitrate carrier, or Kv2.2 expression impaired GSIS, and the effect of ICDc knockdown was rescued by re-expression of Kv2.2. Moreover, chronic exposure of β-cells to elevated fatty acids, which impairs GSIS, resulted in decreased expression of Kv2.2. Surprisingly, knockdown of ICDc or Kv2.2 increased rather than decreased outward K(+) current in the 832/13 β-cell line. Immunoprecipitation studies demonstrated interaction of Kv2.1 and Kv2.2, and co-overexpression of the two channels reduced outward K(+) current compared with overexpression of Kv2.1 alone. Also, siRNA-mediated knockdown of ICDc enhanced the suppressive effect of the Kv2.1-selective inhibitor stromatoxin1 on K(+) currents. Our data support a model in which a key function of the pyruvate-isocitrate cycle is to maintain levels of Kv2.2 expression sufficient to allow it to serve as a negative regulator of Kv channel activity.
Collapse
Affiliation(s)
- Mette V Jensen
- Duke Institute of Molecular Physiology, Duke University Medical Center, Durham, North Carolina 27704, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Wilcox CL, Terry NA, Walp ER, Lee RA, May CL. Pancreatic α-cell specific deletion of mouse Arx leads to α-cell identity loss. PLoS One 2013; 8:e66214. [PMID: 23785486 PMCID: PMC3681972 DOI: 10.1371/journal.pone.0066214] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 05/06/2013] [Indexed: 02/06/2023] Open
Abstract
The specification and differentiation of pancreatic endocrine cell populations (α-, β-, δ, PP- and ε-cells) is orchestrated by a combination of transcriptional regulators. In the pancreas, Aristaless-related homeobox gene (Arx) is expressed first in the endocrine progenitors and then restricted to glucagon-producing α-cells. While the functional requirement of Arx in early α-cell specification has been investigated, its role in maintaining α-cell identity has yet to be explored. To study this later role of Arx, we have generated mice in which the Arx gene has been ablated specifically in glucagon-producing α-cells. Lineage-tracing studies and immunostaining analysis for endocrine hormones demonstrate that ablation of Arx in neonatal α-cells results in an α-to-β-like conversion through an intermediate bihormonal state. Furthermore, these Arx-deficient converted cells express β-cell markers including Pdx1, MafA, and Glut2. Surprisingly, short-term ablation of Arx in adult mice does not result in a similar α-to-β-like conversion. Taken together, these findings reveal a potential temporal requirement for Arx in maintaining α-cell identity.
Collapse
Affiliation(s)
- Crystal L. Wilcox
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Natalie A. Terry
- Department of Pediatrics, Division of Gastroenterology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Erik R. Walp
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Randall A. Lee
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Catherine Lee May
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
241
|
Katz LS, Geras-Raaka E, Gershengorn MC. Reprogramming adult human dermal fibroblasts to islet-like cells by epigenetic modification coupled to transcription factor modulation. Stem Cells Dev 2013; 22:2551-60. [PMID: 23627894 DOI: 10.1089/scd.2013.0134] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In this article, we describe novel conditions for culture, expansion, and transdifferentiation of primary human dermal fibroblasts (hDFs) to induce expression of transcription factors (TFs) and hormones characteristic of the islets of Langerhans. We show that histones associated with the insulin gene are hyperacetylated and that insulin gene DNA is less methylated in islet cells compared to cells that do not express insulin. Using two compounds that alter the epigenetic signature of cells, romidepsin (Romi), a histone deacetylase inhibitor, and 5-Azacytidine (5-AzC), a chemical analogue of cytidine that cannot be methylated, we show that hDFs exhibit a distinctive regulation of expression of TFs involved in islet development as well as of induction of glucagon and insulin. Overexpression of Pdx1, a TF important for islet differentiation, and silencing of musculoaponeurotic fibrosarcoma oncogene homolog B, a TF that is expressed in mature glucagon-producing cells, result in induction of insulin to a higher level compared to Romi and 5-AzC alone. The cells obtained from this protocol exhibit glucose-stimulated insulin secretion and lower blood glucose levels of diabetic mice. These data show that fully differentiated nonislet-derived cells could be made to transdifferentiate to islet-like cells and that combining epigenetic modulation with TF modulation leads to enhanced insulin expression.
Collapse
Affiliation(s)
- Liora S Katz
- Laboratory of Endocrinology and Receptor Biology, NIDDK, NIH, Bethesda, Maryland 20892-8029, USA
| | | | | |
Collapse
|
242
|
Asahara S, Shibutani Y, Teruyama K, Inoue HY, Kawada Y, Etoh H, Matsuda T, Kimura-Koyanagi M, Hashimoto N, Sakahara M, Fujimoto W, Takahashi H, Ueda S, Hosooka T, Satoh T, Inoue H, Matsumoto M, Aiba A, Kasuga M, Kido Y. Ras-related C3 botulinum toxin substrate 1 (RAC1) regulates glucose-stimulated insulin secretion via modulation of F-actin. Diabetologia 2013; 56:1088-97. [PMID: 23412604 PMCID: PMC3622740 DOI: 10.1007/s00125-013-2849-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 01/17/2013] [Indexed: 11/03/2022]
Abstract
AIMS/HYPOTHESIS The small G-protein ras-related C3 botulinum toxin substrate 1 (RAC1) plays various roles in mammalian cells, such as in the regulation of cytoskeletal organisation, cell adhesion, migration and morphological changes. The present study examines the effects of RAC1 ablation on pancreatic beta cell function. METHODS Isolated islets from pancreatic beta cell-specific Rac1-knockout (betaRac1(-/-)) mice and RAC1 knockdown INS-1 insulinoma cells treated with small interfering RNA were used to investigate insulin secretion and cytoskeletal organisation in pancreatic beta cells. RESULTS BetaRac1(-/-) mice showed decreased glucose-stimulated insulin secretion, while there were no apparent differences in islet morphology. Isolated islets from the mice had blunted insulin secretion in response to high glucose levels. In RAC1 knockdown INS-1 cells, insulin secretion was also decreased in response to high glucose levels, consistent with the phenotype of betaRac1(-/-) mice. Even under high glucose levels, RAC1 knockdown INS-1 cells remained intact with F-actin, which inhibits the recruitment of the insulin granules, resulting in an inhibition of insulin secretion. CONCLUSIONS/INTERPRETATION In RAC1-deficient pancreatic beta cells, F-actin acts as a barrier for insulin granules and reduces glucose-stimulated insulin secretion.
Collapse
Affiliation(s)
- S. Asahara
- Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Y. Shibutani
- Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - K. Teruyama
- Division of Medical Chemistry, Kobe University Graduate School of Health Sciences, Kobe, 654-0142 Japan
| | - H. Y. Inoue
- Division of Medical Chemistry, Kobe University Graduate School of Health Sciences, Kobe, 654-0142 Japan
| | - Y. Kawada
- Division of Medical Chemistry, Kobe University Graduate School of Health Sciences, Kobe, 654-0142 Japan
| | - H. Etoh
- Division of Medical Chemistry, Kobe University Graduate School of Health Sciences, Kobe, 654-0142 Japan
| | - T. Matsuda
- Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - M. Kimura-Koyanagi
- Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - N. Hashimoto
- Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - M. Sakahara
- Cancer Institute, Japanese Foundation of Cancer Research, Tokyo, Japan
| | - W. Fujimoto
- Division of Cellular and Molecular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - H. Takahashi
- Division of Cellular and Molecular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - S. Ueda
- Kobe University Graduate School of Agricultural Science, Kobe, Japan
| | - T. Hosooka
- Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - T. Satoh
- Division of Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - H. Inoue
- Department of Physiology and Metabolism, Brain/Liver Interface Medicine Research Center, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - M. Matsumoto
- Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - A. Aiba
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - M. Kasuga
- Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Y. Kido
- Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Medical Chemistry, Kobe University Graduate School of Health Sciences, Kobe, 654-0142 Japan
| |
Collapse
|
243
|
Allister EM, Robson-Doucette CA, Prentice KJ, Hardy AB, Sultan S, Gaisano HY, Kong D, Gilon P, Herrera PL, Lowell BB, Wheeler MB. UCP2 regulates the glucagon response to fasting and starvation. Diabetes 2013; 62:1623-33. [PMID: 23434936 PMCID: PMC3636632 DOI: 10.2337/db12-0981] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glucagon is important for maintaining euglycemia during fasting/starvation, and abnormal glucagon secretion is associated with type 1 and type 2 diabetes; however, the mechanisms of hypoglycemia-induced glucagon secretion are poorly understood. We previously demonstrated that global deletion of mitochondrial uncoupling protein 2 (UCP2(-/-)) in mice impaired glucagon secretion from isolated islets. Therefore, UCP2 may contribute to the regulation of hypoglycemia-induced glucagon secretion, which is supported by our current finding that UCP2 expression is increased in nutrient-deprived murine and human islets. Further to this, we created α-cell-specific UCP2 knockout (UCP2AKO) mice, which we used to demonstrate that blood glucose recovery in response to hypoglycemia is impaired owing to attenuated glucagon secretion. UCP2-deleted α-cells have higher levels of intracellular reactive oxygen species (ROS) due to enhanced mitochondrial coupling, which translated into defective stimulus/secretion coupling. The effects of UCP2 deletion were mimicked by the UCP2 inhibitor genipin on both murine and human islets and also by application of exogenous ROS, confirming that changes in oxidative status and electrical activity directly reduce glucagon secretion. Therefore, α-cell UCP2 deletion perturbs the fasting/hypoglycemic glucagon response and shows that UCP2 is necessary for normal α-cell glucose sensing and the maintenance of euglycemia.
Collapse
Affiliation(s)
- Emma M. Allister
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | | | - Kacey J. Prentice
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Alexandre B. Hardy
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Sobia Sultan
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Herbert Y. Gaisano
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Dong Kong
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Patrick Gilon
- Pôle d’endocrinologie, diabète et nutrition, Institut de recherche expérimentale et clinique, Université catholique de Louvain, Brussels, Belgium
| | - Pedro L. Herrera
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Bradford B. Lowell
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Michael B. Wheeler
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Corresponding author: Michael B. Wheeler,
| |
Collapse
|
244
|
Karaca M, Maechler P. Development of Mice with Brain-Specific Deletion of Floxed Glud1 (Glutamate Dehydrogenase 1) Using Cre Recombinase Driven by the Nestin Promoter. Neurochem Res 2013; 39:456-9. [DOI: 10.1007/s11064-013-1041-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/08/2013] [Accepted: 04/09/2013] [Indexed: 12/20/2022]
|
245
|
Georgia S, Kanji M, Bhushan A. DNMT1 represses p53 to maintain progenitor cell survival during pancreatic organogenesis. Genes Dev 2013; 27:372-7. [PMID: 23431054 DOI: 10.1101/gad.207001.112] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In the developing pancreas, self-renewal of progenitors and patterning of cell fates are coordinated to ensure the correct size and cellular makeup of the organ. How this coordination is achieved, however, is not clear. We report that deletion of DNA methyltransferase 1 (Dnmt1) in pancreatic progenitors results in agenesis of the pancreas due to apoptosis of progenitor cells. We show that DNMT1 is bound to the p53 regulatory region and that loss of Dnmt1 results in derepression of the p53 locus. Haploinsufficiency of p53 rescues progenitor cell survival and cellular makeup of the Dnmt1-deleted pancreas.
Collapse
Affiliation(s)
- Senta Georgia
- Department of Medicine, University of California at Los Angeles, Los Angeles, California 90024, USA.
| | | | | |
Collapse
|
246
|
Wakae-Takada N, Xuan S, Watanabe K, Meda P, Leibel RL. Molecular basis for the regulation of islet beta cell mass in mice: the role of E-cadherin. Diabetologia 2013; 56:856-66. [PMID: 23354125 PMCID: PMC3927460 DOI: 10.1007/s00125-012-2824-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 12/13/2012] [Indexed: 12/21/2022]
Abstract
AIMS/HYPOTHESIS In rodents and humans, the rate of beta cell proliferation declines rapidly after birth; formation of the islets of Langerhans begins perinatally and continues after birth. Here, we tested the hypothesis that increasing levels of E-cadherin during islet formation mediate the decline in beta cell proliferation rate by contributing to a reduction of nuclear β-catenin and D-cyclins. METHODS We examined E-cadherin, nuclear β-catenin, and D-cyclin levels, as well as cell proliferation during in vitro and in vivo formation of islet cell aggregates, using β-TC6 cells and transgenic mice with green fluorescent protein (GFP)-labelled beta cells, respectively. We tested the role of E-cadherin using antisense-mediated reductions of E-cadherin in β-TC6 cells, and mice segregating for a beta cell-specific E-cadherin knockout (Ecad [also known as Cdh1] βKO). RESULTS In vitro, pseudo-islets of β-TC6 cells displayed increased E-cadherin but decreased nuclear β-catenin and cyclin D2, and reduced rates of cell proliferation, compared with monolayers. Antisense knockdown of E-cadherin increased cell proliferation and levels of cyclins D1 and D2. After birth, beta cells showed increased levels of E-cadherin, but decreased levels of D-cyclin, whereas islets of Ecad βKO mice showed increased levels of D-cyclins and nuclear β-catenin, as well as increased beta cell proliferation. These islets were significantly larger than those of control mice and displayed reduced levels of connexin 36. These changes correlated with reduced insulin response to ambient glucose, both in vitro and in vivo. CONCLUSIONS/INTERPRETATION The findings support our hypothesis by indicating an important role of E-cadherin in the control of beta cell mass and function.
Collapse
Affiliation(s)
- N. Wakae-Takada
- Department of Pediatrics, Columbia University, New York, NY, USA
- Naomi Berrie Diabetes Center, Russ Berrie Medical Science Pavilion, 1150 St Nicholas Ave, Suite 620, New York, NY 10032, USA
| | - S. Xuan
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - K. Watanabe
- Department of Pediatrics, Columbia University, New York, NY, USA
- Naomi Berrie Diabetes Center, Russ Berrie Medical Science Pavilion, 1150 St Nicholas Ave, Suite 620, New York, NY 10032, USA
| | - P. Meda
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - R. L. Leibel
- Department of Pediatrics, Columbia University, New York, NY, USA
- Naomi Berrie Diabetes Center, Russ Berrie Medical Science Pavilion, 1150 St Nicholas Ave, Suite 620, New York, NY 10032, USA
| |
Collapse
|
247
|
Hunter CS, Dixit S, Cohen T, Ediger B, Wilcox C, Ferreira M, Westphal H, Stein R, May CL. Islet α-, β-, and δ-cell development is controlled by the Ldb1 coregulator, acting primarily with the islet-1 transcription factor. Diabetes 2013; 62. [PMID: 23193182 PMCID: PMC3581213 DOI: 10.2337/db12-0952] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ldb1 and Ldb2 are coregulators that mediate Lin11-Isl1-Mec3 (LIM)-homeodomain (HD) and LIM-only transcription factor-driven gene regulation. Although both Ldb1 and Ldb2 mRNA were produced in the developing and adult pancreas, immunohistochemical analysis illustrated a broad Ldb1 protein expression pattern during early pancreatogenesis, which subsequently became enriched in islet and ductal cells perinatally. The islet-enriched pattern of Ldb1 was similar to pan-endocrine cell-expressed Islet-1 (Isl1), which was demonstrated in this study to be the primary LIM-HD transcription factor in developing and adult islet cells. Endocrine cell-specific removal of Ldb1 during mouse development resulted in a severe reduction of hormone⁺ cell numbers (i.e., α, β, and δ) and overt postnatal hyperglycemia, reminiscent of the phenotype described for the Isl1 conditional mutant. In contrast, neither endocrine cell development nor function was affected in the pancreas of Ldb2(-/-) mice. Gene expression and chromatin immunoprecipitation (ChIP) analyses demonstrated that many important Isl1-activated genes were coregulated by Ldb1, including MafA, Arx, insulin, and Glp1r. However, some genes (i.e., Hb9 and Glut2) only appeared to be impacted by Ldb1 during development. These findings establish Ldb1 as a critical transcriptional coregulator during islet α-, β-, and δ-cell development through Isl1-dependent and potentially Isl1-independent control.
Collapse
Affiliation(s)
- Chad S. Hunter
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville Tennessee
| | - Shilpy Dixit
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville Tennessee
| | - Tsadok Cohen
- Section on Mammalian Molecular Genetics, Program in Genomics of Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Benjamin Ediger
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Crystal Wilcox
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Mark Ferreira
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Heiner Westphal
- Section on Mammalian Molecular Genetics, Program in Genomics of Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville Tennessee
- Corresponding authors: Roland Stein, , and Catherine Lee May,
| | - Catherine Lee May
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
- Corresponding authors: Roland Stein, , and Catherine Lee May,
| |
Collapse
|
248
|
Moss LG. Creating new β cells: cellular transmutation by genomic alchemy. J Clin Invest 2013; 123:1007-10. [PMID: 23434598 DOI: 10.1172/jci68348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
To address insulin insufficiency, diabetes research has long focused on techniques for replacing insulin-producing β cells. Studies in mice have suggested that, under some conditions, α cells possess the capacity to transdifferentiate into β cells, although the mechanisms that drive this conversion are unclear. In this issue, Bramswig et al. analyzed the methylation states of purified human α, β, and acinar cells and found α cells exhibit intrinsic phenotypic plasticity associated with specific histone methylation profiles. In addition to expanding our understanding of this potential source of β cells, this compendium of carefully generated human gene expression and epigenomic data in islet cell subtypes constitutes a truly valuable resource for the field.
Collapse
Affiliation(s)
- Larry G Moss
- Duke University Medical Center, Stedman Research Center, Durham, North Carolina 27710, USA.
| |
Collapse
|
249
|
Bramswig NC, Everett LJ, Schug J, Dorrell C, Liu C, Luo Y, Streeter PR, Naji A, Grompe M, Kaestner KH. Epigenomic plasticity enables human pancreatic α to β cell reprogramming. J Clin Invest 2013; 123:1275-84. [PMID: 23434589 DOI: 10.1172/jci66514] [Citation(s) in RCA: 317] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 12/13/2012] [Indexed: 12/16/2022] Open
Abstract
Insulin-secreting β cells and glucagon-secreting α cells maintain physiological blood glucose levels, and their malfunction drives diabetes development. Using ChIP sequencing and RNA sequencing analysis, we determined the epigenetic and transcriptional landscape of human pancreatic α, β, and exocrine cells. We found that, compared with exocrine and β cells, differentiated α cells exhibited many more genes bivalently marked by the activating H3K4me3 and repressing H3K27me3 histone modifications. This was particularly true for β cell signature genes involved in transcriptional regulation. Remarkably, thousands of these genes were in a monovalent state in β cells, carrying only the activating or repressing mark. Our epigenomic findings suggested that α to β cell reprogramming could be promoted by manipulating the histone methylation signature of human pancreatic islets. Indeed, we show that treatment of cultured pancreatic islets with a histone methyltransferase inhibitor leads to colocalization of both glucagon and insulin and glucagon and insulin promoter factor 1 (PDX1) in human islets and colocalization of both glucagon and insulin in mouse islets. Thus, mammalian pancreatic islet cells display cell-type-specific epigenomic plasticity, suggesting that epigenomic manipulation could provide a path to cell reprogramming and novel cell replacement-based therapies for diabetes.
Collapse
Affiliation(s)
- Nuria C Bramswig
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Regulation of Neurod1 contributes to the lineage potential of Neurogenin3+ endocrine precursor cells in the pancreas. PLoS Genet 2013; 9:e1003278. [PMID: 23408910 PMCID: PMC3567185 DOI: 10.1371/journal.pgen.1003278] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 12/12/2012] [Indexed: 12/12/2022] Open
Abstract
During pancreatic development, transcription factor cascades gradually commit precursor populations to the different endocrine cell fate pathways. Although mutational analyses have defined the functions of many individual pancreatic transcription factors, the integrative transcription factor networks required to regulate lineage specification, as well as their sites of action, are poorly understood. In this study, we investigated where and how the transcription factors Nkx2.2 and Neurod1 genetically interact to differentially regulate endocrine cell specification. In an Nkx2.2 null background, we conditionally deleted Neurod1 in the Pdx1+ pancreatic progenitor cells, the Neurog3+ endocrine progenitor cells, or the glucagon+ alpha cells. These studies determined that, in the absence of Nkx2.2 activity, removal of Neurod1 from the Pdx1+ or Neurog3+ progenitor populations is sufficient to reestablish the specification of the PP and epsilon cell lineages. Alternatively, in the absence of Nkx2.2, removal of Neurod1 from the Pdx1+ pancreatic progenitor population, but not the Neurog3+ endocrine progenitor cells, restores alpha cell specification. Subsequent in vitro reporter assays demonstrated that Nkx2.2 represses Neurod1 in alpha cells. Based on these findings, we conclude that, although Nkx2.2 and Neurod1 are both necessary to promote beta cell differentiation, Nkx2.2 must repress Neurod1 in a Pdx1+ pancreatic progenitor population to appropriately commit a subset of Neurog3+ endocrine progenitor cells to the alpha cell lineage. These results are consistent with the proposed idea that Neurog3+ endocrine progenitor cells represent a heterogeneous population of unipotent cells, each restricted to a particular endocrine lineage. Diabetes mellitus is a family of metabolic diseases that can result from either destruction or dysfunction of the insulin-producing beta cells of the pancreas. Recent studies have provided hope that generating insulin-producing cells from alternative cell sources may be a possible treatment for diabetes; this includes the observation that pancreatic glucagon-expressing alpha cells can be converted into beta cells under certain physiological or genetic conditions. Our study focuses on two essential beta cell regulatory factors, Nkx2.2 and Neurod1, and demonstrates how their genetic interactions can promote the development of other hormone-expressing cell types, including alpha cells. We determined that, while Nkx2.2 is required to activate Neurod1 to promote beta cell formation, Nkx2.2 must prevent expression of Neurod1 to allow alpha cell formation. Furthermore, the inactivation of Neurod1 must occur in the earliest pancreatic progenitors, at a stage in the differentiation process earlier than previously believed. These studies contribute to our understanding of the overlapping gene regulatory networks that specify islet cell types and identify the importance of timing and cellular context for these regulatory interactions. Furthermore, our data have broad implications regarding the manipulation of alpha cells or human pluripotent stem cells to generate insulin-producing beta cells for therapeutic purposes.
Collapse
|