201
|
Noda M, Kariura Y, Amano T, Manago Y, Nishikawa K, Aoki S, Wada K. Expression and function of bradykinin receptors in microglia. Life Sci 2003; 72:1573-81. [PMID: 12551746 DOI: 10.1016/s0024-3205(02)02449-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Expression of bradykinin (BK) receptors and their cellular function were investigated in microglia. Microglial cells were isolated from mixed cultures of cerebrocortical cells from postnatal day 3 Wistar rats. Reverse transcription-PCR (RT-PCR) showed that rat primary microglia express mRNAs for the type 2 bradykinin (B(2)) receptor subtype but not the type 1 (B(1)) receptor subtype under our experimental condition. However, the expression of B(1) receptor was greatly up-regulated after the treatment of microglia with BK for 24 hours. The expression of B(2) receptor in microglia was further confirmed by immunocytochemistry. Membrane currents were measured using whole-cell recording under voltage-clamp conditions. In 14% of patched cells (12/85 cells), BK (100-200 nM) induced an outward current at the holding potential of -20 mV, with oscillations in 2 cases. The BK-induced outward current was transient and desensitized rapidly. TEA inhibited the BK-induced outward current in a dose-dependent manner. These results suggest that microglia express B(2) receptors and presumably increase the intracellular Ca(2+) concentration via inositol trisphosphate with the subsequent activation of Ca(2+)-dependent K(+) channels. Our data provide the first evidence that microglia express functional BK receptors and support the idea that microglia play an important role in CNS inflammatory responses.
Collapse
Affiliation(s)
- Mami Noda
- Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, 812-8582, Fukuoka, Japan.
| | | | | | | | | | | | | |
Collapse
|
202
|
Polazzi E, Contestabile A. Reciprocal interactions between microglia and neurons: from survival to neuropathology. Rev Neurosci 2003; 13:221-42. [PMID: 12405226 DOI: 10.1515/revneuro.2002.13.3.221] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Microglia represent a major cellular component of the brain, where they constitute a widely distributed network of immunoprotective cells. During the last decades, it has become clear that the functions traditionally ascribed to microglia, i.e. to dispose of dead cells and debris and to mediate brain inflammatory states, are only a fraction of a much wider repertoire of functions spanning from brain development to aging and neuropathology. The aim of the present survey is to critically discuss some of these functions, focusing in particular on the reciprocal microglia-neuron interactions and on the complex signaling systems subserving them. We consider first some of the functional interactions dealing with invasion, proliferation and migration of microglia as well as with the establishment of the initial blueprint of neural circuits in the developing brain. The signals related to the suppression of immunological properties of microglia by neurons in the healthy brain, and the derangement from this physiological equilibrium in aging and diseases, are then examined. Finally, we make a closer examination of the reciprocal signaling between damaged neurons and microglia and, on these bases, we propose that microglial activation, consequent to neuronal injury, is primarily aimed at neuroprotection. The loss of specific communication between damaged neurons and microglia is viewed as responsible for the turning of microglia to a hyperactivated state, which allows them to escape neuronal control and to give rise to persistent inflammation, resulting in exacerbation of neuropathology. The data surveyed here point at microglial-neuron interactions as the basis of a complex network of signals conveying messages with high information content and regulating the most important aspects of brain function. This network shares similar features with some fundamental principles governing the activity of brain circuits: it is provided with memory and it continuously evolves in relation to the flow of time and information.
Collapse
|
203
|
Noda M, Yasuda S, Okada M, Higashida H, Shimada A, Iwata N, Ozaki N, Nishikawa K, Shirasawa S, Uchida M, Aoki S, Wada K. Recombinant human serotonin 5A receptors stably expressed in C6 glioma cells couple to multiple signal transduction pathways. J Neurochem 2003; 84:222-32. [PMID: 12558985 DOI: 10.1046/j.1471-4159.2003.01518.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Human serotonin 5A (5-HT5A) receptors were stably expressed in undifferentiated C6 glioma. In 5-HT5A receptors-expressing cells, accumulation of cAMP by forskolin was inhibited by 5-HT as reported previously. Pertussis toxin-sensitive inhibition of ADP-ribosyl cyclase was also observed, indicating a decrease of cyclic ADP ribose, a potential intracellular second messenger mediating ryanodine-sensitive Ca2+ mobilization. On the other hand, 5-HT-induced outward currents were observed using the patch-clamp technique in whole-cell configuration. The 5-HT-induced outward current was observed in 84% of the patched 5-HT5A receptor-expressing cells and was concentration-dependent. The 5-HT-induced current was inhibited when intracellular K+ was replaced with Cs+ but was not significantly inhibited by typical K+ channel blockers. The 5-HT-induced current was significantly attenuated by 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) in the patch pipette. Depleting intracellular Ca2+ stores by application of caffeine or thapsigargin also blocked the 5-HT-induced current. Blocking G protein, the inositol triphosphate (IP3) receptor, or pretreatment with pertussis toxin, all inhibited the 5-HT-induced current. IP3 showed a transient increase after application of 5-HT in 5-HT5A receptor-expressing cells. It was concluded that in addition to the inhibition of cAMP accumulation and ADP-ribosyl cyclase activity, 5-HT5A receptors regulate intracellular Ca2+ mobilization which is probably a result of the IP3-sensitive Ca2+ store. These multiple signal transduction systems may induce complex changes in the serotonergic system in brain function.
Collapse
Affiliation(s)
- Mami Noda
- Laboratory of Pathophysiology, Kyushu University Graduate School of Pharmaceutical Sciences, Fukuoka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
204
|
de Sampaio e Spohr TCL, Martinez R, da Silva EF, Neto VM, Gomes FCA. Neuro-glia interaction effects on GFAP gene: a novel role for transforming growth factor-beta1. Eur J Neurosci 2002; 16:2059-69. [PMID: 12473073 DOI: 10.1046/j.1460-9568.2002.02283.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Central nervous system (CNS) development is highly guided by microenvironment cues specially provided by neuron-glia interactions. By using a transgenic mouse bearing part of the gene promoter of the astrocytic maturation marker GFAP (glial fibrillary acidic protein) linked to the beta-galactosidase (beta-Gal) reporter gene, we previously demonstrated that cerebral cortical neurons increase transgenic beta-Gal astrocyte number and activate GFAP gene promoter by secretion of soluble factors in vitro. Here, we identified TGF-beta1 as the major mediator of this event. Identification of TGF-beta1 in neuronal and astrocyte extracts revealed that both cell types might synthesize this factor, however, addition of neurons to astrocyte monolayers greatly increased TGF-beta1 synthesis and secretion by astrocytes. Further, by exploiting the advantages of cell culture system we investigated the influence of neuron and astrocyte developmental stage on such interaction. We demonstrated that younger neurons derived from 14 embryonic days wild-type mice were more efficient in promoting astrocyte differentiation than those derived from 18 embryonic days mice. Similarly, astrocytes also exhibited timed-schedule developed responsiveness to neuronal influence with embryonic astrocytes being more responsive to neurons than newborn and late postnatal astrocytes. RT-PCR assays identified TGF-beta1 transcripts in young but not in old neurons, suggesting that inability to induce astrocyte differentiation is related to TGF-beta1 synthesis and secretion. Our work reveals an important role for neuron-glia interactions in astrocyte development and strongly implicates the involvement of TGF-beta1 in this event.
Collapse
|
205
|
Abstract
Receptor-mediated Ca(2+) signals are a common signal transduction mechanism in all living cells, including microglia. Recent years have brought major advances in our understanding of microglial Ca(2+) signaling. More than 20 receptor/ligand interactions leading to Ca(2+) signals in microglia have been described so far, and it seems that this is just the beginning. The literature has grown rapidly during the past few years, especially in regard to chemokine and ATP/UTP receptor signaling. This article presents a brief overview of the basics of Ca(2+) signaling, reviews the current literature on microglial Ca(2+) signaling, and discusses the current challenges and possible future directions of this emerging field.
Collapse
Affiliation(s)
- Thomas Möller
- Department of Neurology, Box 356465, 1959 NE Pacific St., University of Washington, Seattle, WA 98195
| |
Collapse
|
206
|
Mori K, Ozaki E, Zhang B, Yang L, Yokoyama A, Takeda I, Maeda N, Sakanaka M, Tanaka J. Effects of norepinephrine on rat cultured microglial cells that express alpha1, alpha2, beta1 and beta2 adrenergic receptors. Neuropharmacology 2002; 43:1026-34. [PMID: 12423672 DOI: 10.1016/s0028-3908(02)00211-3] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Microglial cells rapidly become activated in response to even minor damage of neurons, suggestive of the intimate interactions between neurons and microglial cells. Although mediators for microglia-neuron interactions have not been well identified, neurotransmitters are possible candidates transmitting signals from neurons to microglial cells. Among the neurotransmitters, we focused on the effects of norepinephrine and other adrenergic agonists on the functions of rat cultured microglial cells. Reverse transcriptase polymerase chain reaction studies revealed that microglial cells expressed mRNAs encoding alpha1A, alpha2A, beta1 and beta2 receptors. Norepinephrine and a beta2 adrenergic agonist terbutaline elevated intracellular cAMP level of microglial cells. Norepinephrine, an alpha1 agonist phenylephrine, a beta1 agonist dobutamine and terbutaline suppressed the expressions of mRNAs encoding pro-inflammatory cytokines, interleukin-6 and tumor necrosis factor alpha. Release of tumor necrosis factor alpha and nitric oxide was suppressed by norepinephrine, phenylephrine, dobutamine and terbutaline. An alpha2 agonist clonidine and dobutamine upregulated the expression of mRNA encoding catechol-O-methyl transferase, an important enzyme to degrade norepinephrine. Norepinephrine, dobutamine and terbutaline upregulated the expressions of mRNA encoding 3-phospshoglycerate dehydrogenase, an essential enzyme for synthesis of L-serine and glycine, which are amino acids necessary for neuronal survival. Clonidine upregulated the expression of mRNA encoding an anti-apoptotic factor Bcl-xL. These results suggest that norepinephrine participates in the regulation of brain function at least partly by modulating the functions of microglia.
Collapse
MESH Headings
- Adrenergic alpha-Agonists/pharmacology
- Adrenergic beta-Agonists/pharmacology
- Animals
- Cells, Cultured
- Clonidine/pharmacology
- Cyclic AMP
- Dobutamine/pharmacology
- Dose-Response Relationship, Drug
- Exoribonucleases
- Interleukin-6
- Microglia/drug effects
- Microglia/metabolism
- Nitrites
- Norepinephrine/pharmacology
- Oligonucleotides, Antisense/pharmacology
- Phenylephrine/pharmacology
- RNA, Messenger/analysis
- Rats
- Receptors, Adrenergic, alpha-1/drug effects
- Receptors, Adrenergic, alpha-1/genetics
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, Adrenergic, alpha-2/drug effects
- Receptors, Adrenergic, alpha-2/genetics
- Receptors, Adrenergic, alpha-2/metabolism
- Receptors, Adrenergic, beta-1/drug effects
- Receptors, Adrenergic, beta-1/genetics
- Receptors, Adrenergic, beta-1/metabolism
- Receptors, Adrenergic, beta-2/drug effects
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Terbutaline/pharmacology
- Tumor Necrosis Factor-alpha
Collapse
Affiliation(s)
- Kohji Mori
- Department of Physiology, School of Medicine, Ehime University, Shigenobu, Ehime 791-0295, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Schori H, Yoles E, Wheeler LA, Raveh T, Kimchi A, Schwartz M. Immune-related mechanisms participating in resistance and susceptibility to glutamate toxicity. Eur J Neurosci 2002; 16:557-64. [PMID: 12270031 DOI: 10.1046/j.1460-9568.2002.02134.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glutamate is an essential neurotransmitter in the CNS. However, at abnormally high concentrations it becomes cytotoxic. Recent studies in our laboratory showed that glutamate evokes T cell-mediated protective mechanisms. The aim of the present study was to examine the nature of the glutamate receptors and signalling pathways that participate in immune protection against glutamate toxicity. We show, using the mouse visual system, that glutamate-induced toxicity is strain dependent, not only with respect to the amount of neuronal loss it causes, but also in the pathways it activates. In strains that are genetically endowed with the ability to manifest a T cell-dependent neuroprotective response to glutamate insult, neuronal losses due to glutamate toxicity were relatively small, and treatment with NMDA-receptor antagonist worsened the outcome of exposure to glutamate. In contrast, in mice devoid of T cell-dependent endogenous protection, NMDA receptor antagonist reduced the glutamate-induced neuronal loss. In all strains, blockage of the AMPA/KA receptor was beneficial. Pharmacological (with alpha2-adrenoceptor agonist) or molecular intervention (using either mice overexpressing Bcl-2, or DAP-kinase knockout mice) protected retinal ganglion cells from glutamate toxicity but not from the toxicity of NMDA. The results suggest that glutamate-induced neuronal toxicity involves multiple glutamate receptors, the types and relative contributions of which, vary among strains. We suggest that a multifactorial protection, based on an immune mechanism independent of the specific pathway through which glutamate exerts its toxicity, is likely to be a safer, more comprehensive, and hence more effective strategy for neuroprotection. It might suggest that, because of individual differences, the pharmacological use of NMDA-antagonist for neuroprotective purposes might have an adverse effect, even if the affinity is low.
Collapse
Affiliation(s)
- Hadas Schori
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
208
|
Abstract
Microglia, residential macrophages in the central nervous system, can release a variety of factors including cytokines, chemokines, etc. to regulate the communication among neuronal and other types of glial cells. Microglia play immunological roles in mechanisms underlying the phagocytosis of invading microorganisms and removal of dead or damaged cells. When microglia are hyperactivated due to a certain pathological imbalance, they may cause neuronal degeneration. Pathological activation of microglia has been reported in a wide range of conditions such as cerebral ischemia, Alzheimer's disease, prion diseases, multiple sclerosis, AIDS dementia, and others. Nearly 5000 papers on microglia can be retrieved on the Web site PubMed at present (November 2001) and half of them were published within the past 5 years. Although it is not possible to read each paper in detail, as many factors as possible affecting microglial functions in in vitro culture systems are presented in this review. The factors are separated into "activators" and "inhibitors," although it is difficult to classify many of them. An overview on these factors may help in the development of a new strategy for the treatment of various neurodegenerative diseases.
Collapse
Affiliation(s)
- Yoichi Nakamura
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Prefecture University; Sakai, Japan.
| |
Collapse
|
209
|
Hurtado O, Lizasoain I, Fernández-Tomé P, Alvarez-Barrientos A, Leza JC, Lorenzo P, Moro MA. TACE/ADAM17-TNF-alpha pathway in rat cortical cultures after exposure to oxygen-glucose deprivation or glutamate. J Cereb Blood Flow Metab 2002; 22:576-85. [PMID: 11973430 DOI: 10.1097/00004647-200205000-00009] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The role of the tumor necrosis factor (TNF)-alpha convertase (TACE/ADAM17) in the adult nervous system remains poorly understood. The authors have previously demonstrated that TACE is upregulated in rat forebrain slices exposed to oxygen-glucose deprivation (OGD). They have now used rat mixed cortical cultures exposed to OGD or glutamate to study (1) TACE expression and localization, and (2) the effects of TNF-alpha release on cell viability. OGD-or glutamate-caused TNF-alpha release, an effect that was blocked by the TACE inhibitor BB3103 (BB) (0.1-1 micromol/L; control: 1.67 +/- 0.59; OGD: 6.59 +/- 1.52; glutamate: 3.38 +/- 0.66; OGD +/- BB0.1: 3.23 +/- 0.67; OGD +/- BB1: 1.33 +/- 0.22 pg/mL, n = 6, P < 0.05). Assay of TACE activity as well as Western blot showed that TACE expression is increased in OGD-or glutamate-exposed cells. In control cultures, TACE immunoreactivity was present in some microglial cells, whereas, after OGD or glutamate, TACE immunostaining appeared in most microglial cells and in some astrocytes. Conversely, BB3103 (0.1 micromol/L) caused apoptosis after glutamate exposure as shown by annexin and Hoechst 33342 staining and caspase-3 activity, an effect mimicked by the proteasome inhibitor MG-132 (caspase activity: glutamate: 5.1 +/- 0.1; glutamate + BB: 7.8 +/- 0.8; glutamate + MG: 11.9 +/- 0.5 pmol. min(-1) mg(-1) protein, n = 4, P < 0.05), suggesting that translocation of the transcription factor NF-kappaB mediates TNF-alpha-induced antiapoptotic effect. Taken together, these data demonstrate that, in rat mixed neuronal-glial cortical cultures exposed to OGD or glutamate, (1) TACE/ADAM17 activity accounts for the majority of TNF-alpha shedding, (2) an increase in glial TACE expression contributes to the rise in TNF-alpha, and (3) TNF-alpha release in this setting inhibits apoptosis via activation of the transcription factor NF-kappaB.
Collapse
Affiliation(s)
- Olivia Hurtado
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
210
|
McGowan JE, Zanelli SA, Haynes-Laing AG, Mishra OP, Delivoria-Papadopoulos M. Modification of glutamate binding sites in newborn brain during hypoglycemia. Brain Res 2002; 927:80-6. [PMID: 11814434 DOI: 10.1016/s0006-8993(01)03333-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have shown that acute insulin-induced hypoglycemia leads to specific changes in the cerebral NMDA receptor-associated ion channel in the newborn piglet. The present study tests the hypothesis that exposure to acute hypoglycemia in the newborn will alter the glutamate binding site of both NMDA and kainate receptors. Studies were performed in 3-6 days-old piglets randomized to control (n=6) or hypoglycemic (n=6) groups. Hypoglycemia was maintained for 120 min using insulin infusion. Saturation binding assays were performed in cerebral cell membranes using (3)H-glutamate or (3)H-kainate to determine the characteristics of the glutamate binding sites of the NMDA and kainate receptors, respectively. The concentration of glucose in cerebral cortex was 10-fold less in hypoglycemic piglets than in controls (P<0.05). Brain ATP was not significantly decreased during hypoglycemia, but phosphocreatine decreased from control of 6.6 +/- 1.3 micromoles/g brain to 3.2 +/- 1.9 micromoles/g brain in hypoglycemic piglets. The B(max) for NMDA-displaceable (3)H-glutamate binding was 992 +/- 64 fmol/mg protein in hypoglycemic animals, significantly higher than the control value of 746 +/- 42 fmol/mg protein. However, the dissociation constant for glutamate was unchanged during hypoglycemia. The (3)H-kainate binding studies demonstrated no change in B(max) of high-affinity kainate receptors during hypoglycemia. In contrast, the affinity of the kainate receptor glutamate binding site significantly increased compared to control. Thus, acute hypoglycemia in the newborn piglet had specific effects on the glutamate binding sites of the NMDA and kainate receptors that could be due to alterations in cell membrane lipids or modification of receptor proteins.
Collapse
Affiliation(s)
- Jane E McGowan
- Department of Pediatrics, St. Christopher's Hospital for Children and MCP Hahnemann University School of Medicine, Philadelphia, PA, USA.
| | | | | | | | | |
Collapse
|
211
|
Mennicken F, Chabot JG, Quirion R. Systemic administration of kainic acid in adult rat stimulates expression of the chemokine receptor CCR5 in the forebrain. Glia 2002; 37:124-38. [PMID: 11754211 DOI: 10.1002/glia.10021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
As chemokines and their receptors are primarily expressed by glial cells in brain parenchyma, a model of glial cell proliferation may be useful to study the regulation of their expression in the brain. The well-established kainic acid seizure model was used in this study, focusing on the expression of the CCR5 chemokine receptor. Adult Sprague-Dawley rats were injected intraperitoneally with kainic acid (12 mg/kg), and in situ hybridization of CCR5 mRNA was performed at 12 h, 1, 3, or 7 days, posttreatment. Autoradiographic films and wet photographic emulsions demonstrated the very low expression of CCR5 mRNA in normal brain parenchyma, as well as in the microvasculature and ventricular/choroid plexus systems. After kainic acid treatment, brain CCR5 mRNA expression increased progressively from 12 h to 7 days, especially in the olfactory system, amygdaloid complex, thalamus, hippocampal formation, septum, and neocortex. This increase paralleled that of activated microglial cells as shown, using the microglial marker, OX-42. Moreover, CCR5 mRNA ISH combined with neuron-specific enolase immunocytochemistry showed that, in addition to its glial expression, CCR5 mRNA is expressed in neurons in the normal brain and, to a lesser extent, after kainate treatment due to neuronal losses. Finally, CCR5 protein is detected by immunocytochemistry in neurodegenerative areas in numerous glial cells, as well as in neurons, as clearly shown in the hippocampal formation. In summary, the chemokine receptor CCR5 is expressed by neuronal and non-neuronal cell types in the normal brain and is upregulated in both cell types after an insult.
Collapse
Affiliation(s)
- Françoise Mennicken
- Department of Psychiatry, Douglas Hospital Research Centre, McGill University, LaSalle-Verdun, Québec, Canada
| | | | | |
Collapse
|
212
|
Li J, Pelletier MR, Perez Velazquez JL, Carlen PL. Reduced cortical synaptic plasticity and GluR1 expression associated with fragile X mental retardation protein deficiency. Mol Cell Neurosci 2002; 19:138-51. [PMID: 11860268 DOI: 10.1006/mcne.2001.1085] [Citation(s) in RCA: 210] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lack of expression of the fragile X mental retardation protein (FMRP), due to silencing of the FMR1 gene, causes the Fragile X syndrome. Although FMRP was characterized previously to be an RNA binding protein, little is known about its function or the mechanisms underlying the Fragile X syndrome. Here we report that the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor subunit, GluR1, was decreased in the cortical synapses, but not in the hippocampus or cerebellum, of FMR1 gene knockout mice. Reduced long-term potentiation (LTP) was also found in the cortex but not in the hippocampus. Another RNA binding protein, FXR; the N-methyl-D-aspartate receptor subunit, NR2; and other learning-related proteins including c-fos, synapsin, myelin proteolipid protein, and cAMP response element binding protein were not different between FMR1 gene knockout and wild-type mice. These findings suggest that the depressed cortical GluR1 expression and LTP associated with FMRP deficiency could contribute to the Fragile X phenotype.
Collapse
Affiliation(s)
- Jianxue Li
- Division of Cellular and Molecular Biology, Toronto Western Research Institute, University of Toronto, Toronto, Ontario M5T 2S8, Canada
| | | | | | | |
Collapse
|
213
|
Akbar MT, Wells DJ, Latchman DS, de Belleroche J. Heat shock protein 27 shows a distinctive widespread spatial and temporal pattern of induction in CNS glial and neuronal cells compared to heat shock protein 70 and caspase 3 following kainate administration. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 93:148-63. [PMID: 11589992 DOI: 10.1016/s0169-328x(01)00199-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Kainate-induced status epilepticus is associated with both apoptotic and necrotic cell death and induction of heat shock proteins (HSPs) in hippocampal and cortical regions of the rodent brain. In the present study we have examined the temporal, spatial and cellular expression patterns of mRNAs for the highly inducible HSPs, HSP70 and HSP27, together with the apoptotic marker, caspase 3 (CPP32) in rat brain after systemic administration of kainate. HSP70 mRNA was transiently induced in the forebrain by kainate, principally in the CA1, CA3 and hilar cells of the hippocampal formation, in piriform cortex and discrete thalamic nuclei. Maximal expression was seen at 8 h after kainate which then declined to background levels by 7 days. Labelling was predominantly neuronal. In contrast, HSP27 mRNA expression was more widespread. Intense labelling was observed in CA1, CA3 and the hilar region at 8 h after kainate but the expression profile for HSP27 mRNA expanded considerably with intense signals seen in corpus callosum, cortex and thalamus at 24 h post kainate. Emulsion autoradiographs indicated a predominantly glial localisation for HSP27 mRNA. In the hilus, a distinct subpopulation of interneurones were found to express HSP27 mRNA. CPP32 mRNA was upregulated in CA1, CA3 and hilus of the hippocampal formation and in piriform cortex. CPP32 mRNA expression was more restricted and similar in distribution to HSP70 mRNA being localised to neurones. The present study demonstrates the unique early expression of HSP27 mRNA by glial cells and distinct populations of neurones which extends beyond those in which HSP70 and CPP32 induction occurs with subsequent cell loss.
Collapse
Affiliation(s)
- M T Akbar
- Department of Neuromuscular Diseases, Division of Neuroscience and Psychological Medicine, Imperial College of Science, Technology and Medicine, Charing Cross Hospital, Fulham Palace Road, W6 8RF, London, UK
| | | | | | | |
Collapse
|
214
|
Hermann GE, Rogers RC, Bresnahan JC, Beattie MS. Tumor necrosis factor-alpha induces cFOS and strongly potentiates glutamate-mediated cell death in the rat spinal cord. Neurobiol Dis 2001; 8:590-9. [PMID: 11493024 DOI: 10.1006/nbdi.2001.0414] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Excitotoxic cell death due to glutamate release is important in the secondary injury following CNS trauma or ischemia. Proinflammatory cytokines also play a role. Both glutamate and tumor necrosis factor-alpha (TNF(alpha)) are released immediately after spinal cord injury. Neurophysiological studies show that TNF(alpha) can potentiate the effects of glutamatergic afferent input to produce hyperactivation of brain-stem sensory neurons. Therefore, we hypothesized that TNF(alpha) might act cooperatively with glutamate to affect cell death in the spinal cord as well. Nanoinjections of either TNF(alpha) (60 pg) or kainate (KA; 32 ng) alone into the thoracic gray resulted in almost no tissue damage or cell death 90 min after injection. However, the combination of TNF(alpha) plus KA at these same doses produced a large area of tissue necrosis and neuronal cell death, an effect which was blocked by the AMPA receptor antagonist CNQX (17 ng). These results suggest that secondary injury may involve potentiation of AMPA receptor-mediated excitatory cell death by TNF(alpha).
Collapse
Affiliation(s)
- G E Hermann
- Laboratory of Autonomic Neuroscience, Department of Neuroscience, The Ohio State University Medical Center, 333 W. 10th Avenue, Columbus, Ohio 43210, USA.
| | | | | | | |
Collapse
|
215
|
Abrahám H, Losonczy A, Czéh G, Lázár G. Rapid activation of microglial cells by hypoxia, kainic acid, and potassium ions in slice preparations of the rat hippocampus. Brain Res 2001; 906:115-26. [PMID: 11430868 DOI: 10.1016/s0006-8993(01)02569-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Microglial activation induced by hypoxia, kainic acid and elevated potassium concentration, all of which alter neuronal function, was studied in hippocampal slices. The activation of microglia was detected by immunostaining with a monoclonal antibody (OX-42) raised against a type 3 complement receptor (CD11b). During activation the phenotype of microglia changes and the intensity of staining of individual cells increases. Oxygen deprivation depressed the focal responses of CA1 neurons to stratum radiatum volleys. Microglial activation was time dependent. Ten minute hypoxia caused mild activation, and after 20 min, a strong microglial reaction could be observed. Although neuronal function returned during reoxygenation, the morphological signs of microglial activation remained. Epileptiform activity of hippocampal neurons, followed by depression, was induced by application of 0.5 mM kainic acid, in a time and dose dependent manner. Washing out kainic acid did not alter microglial reaction. Elevated concentrations of potassium ions induced microglial changes similar to those induced by hypoxia and kainic acid. It is therefore suggested that an elevated extracellular potassium ion concentration may be the common factor in microglial activation observed in these experiments since this is raised both in hypoxia and under the effect of excitotoxins.
Collapse
Affiliation(s)
- H Abrahám
- Central Electron Microscopic Laboratory, Pécs University, Medical Faculty, H-7643, Pécs, Hungary
| | | | | | | |
Collapse
|
216
|
Bezzi P, Domercq M, Brambilla L, Galli R, Schols D, De Clercq E, Vescovi A, Bagetta G, Kollias G, Meldolesi J, Volterra A. CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci 2001; 4:702-10. [PMID: 11426226 DOI: 10.1038/89490] [Citation(s) in RCA: 847] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Astrocytes actively participate in synaptic integration by releasing transmitter (glutamate) via a calcium-regulated, exocytosis-like process. Here we show that this process follows activation of the receptor CXCR4 by the chemokine stromal cell-derived factor 1 (SDF-1). An extraordinary feature of the ensuing signaling cascade is the rapid extracellular release of tumor necrosis factor-alpha (TNFalpha). Autocrine/paracrine TNFalpha-dependent signaling leading to prostaglandin (PG) formation not only controls glutamate release and astrocyte communication, but also causes their derangement when activated microglia cooperate to dramatically enhance release of the cytokine in response to CXCR4 stimulation. We demonstrate that altered glial communication has direct neuropathological consequences and that agents interfering with CXCR4-dependent astrocyte-microglia signaling prevent neuronal apoptosis induced by the HIV-1 coat glycoprotein, gp120IIIB. Our results identify a new pathway for glia-glia and glia-neuron communication that is relevant to both normal brain function and neurodegenerative diseases.
Collapse
Affiliation(s)
- P Bezzi
- Department of Pharmacological Sciences, Center for Excellence on Neurodegenerative Diseases, University of Milan, Via Balzaretti, 9, 20133 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Appel SH, Simpson EP. Activated microglia: the silent executioner in neurodegenerative disease? Curr Neurol Neurosci Rep 2001; 1:303-5. [PMID: 11898534 DOI: 10.1007/s11910-001-0081-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- S H Appel
- Department of Neurology, Baylor College of Medicine, 6501 Fannin Street, NB302, Houston, TX 77030, USA.
| | | |
Collapse
|
218
|
Abstract
Inward and, depending on activation state, outward potassium currents are the dominant ion channels in microglial cells in culture. During transition between resting and activated phases, there is also an upregulated expression of stretch/swelling-activated chloride currents. Pharmacological blockade of the specific potassium channels does not prevent the transition, whereas blockade of chloride channels does, suggesting that this current may be involved in phase changes. Interestingly, this chloride current is far less studied than the potassium currents with regard to the different microglial phases. One puzzling finding when studying microglial state is that despite changes in current densities and membrane oscillations during transition, there is no evidence of an accompanying change in membrane potential. In other cells of the immune system, membrane oscillations and alterations in membrane potential are correlated with transitions in cellular phases. This discrepancy in microglia may be a result of the fact that almost all ion channel and membrane potential studies in culture are undertaken with concomitant dialysis of cytoplasm with pipette solution. Further complicating matters is that the few studies that use microglia in situ, find fundamental differences in ion channel current patterns of "resting" microglia as well as different temporal changes to pathological events or stimuli.
Collapse
Affiliation(s)
- W Walz
- Department of Physiology, University of Saskatchewan, Saskatoon, Canada.
| | | |
Collapse
|
219
|
Tikka TM, Koistinaho JE. Minocycline provides neuroprotection against N-methyl-D-aspartate neurotoxicity by inhibiting microglia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:7527-33. [PMID: 11390507 DOI: 10.4049/jimmunol.166.12.7527] [Citation(s) in RCA: 429] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Glutamate excitotoxicity to a large extent is mediated through activation of the N-methyl-D-aspartate (NMDA)-gated ion channels in several neurodegenerative diseases and ischemic stroke. Minocycline, a tetracycline derivative with antiinflammatory effects, inhibits IL-1beta-converting enzyme and inducible nitric oxide synthase up-regulation in animal models of ischemic stroke and Huntington's disease and is therapeutic in these disease animal models. Here we report that nanomolar concentrations of minocycline protect neurons in mixed spinal cord cultures against NMDA excitotoxicity. NMDA treatment alone induced microglial proliferation, which preceded neuronal death, and administration of extra microglial cells on top of these cultures enhanced the NMDA neurotoxicity. Minocycline inhibited all these responses to NMDA. Minocycline also prevented the NMDA-induced proliferation of microglial cells and the increased release of IL-1beta and nitric oxide in pure microglia cultures. Finally, minocycline inhibited the NMDA-induced activation of p38 mitogen-activated protein kinase (MAPK) in microglial cells, and a specific p38 MAPK inhibitor, but not a p44/42 MAPK inhibitor, reduced the NMDA toxicity. Together, these results suggest that microglial activation contributes to NMDA excitotoxicity and that minocycline, a tetracycline derivative, represents a potential therapeutic agent for brain diseases.
Collapse
Affiliation(s)
- T M Tikka
- A. I. Virtanen Institute for Molecular Sciences, University of Kuopio, Kuopio, Finland
| | | |
Collapse
|
220
|
Gomes FC, Spohr TC, Martinez R, Moura Neto V. Cross-talk between neurons and glia: highlights on soluble factors. Braz J Med Biol Res 2001; 34:611-20. [PMID: 11323747 DOI: 10.1590/s0100-879x2001000500008] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The development of the nervous system is guided by a balanced action between intrinsic factors represented by the genetic program and epigenetic factors characterized by cell-cell interactions which neural cells might perform throughout nervous system morphogenesis. Highly relevant among them are neuron-glia interactions. Several soluble factors secreted by either glial or neuronal cells have been implicated in the mutual influence these cells exert on each other. In this review, we will focus our attention on recent advances in the understanding of the role of glial and neuronal trophic factors in nervous system development. We will argue that the functional architecture of the brain depends on an intimate neuron-glia partnership.
Collapse
Affiliation(s)
- F C Gomes
- Instituto de Ciências Biomédicas, Departamento de Anatomia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil.
| | | | | | | |
Collapse
|
221
|
König N, Poluch S, Estabel J, Durand M, Drian MJ, Exbrayat JM. Synaptic and non-synaptic AMPA receptors permeable to calcium. JAPANESE JOURNAL OF PHARMACOLOGY 2001; 86:1-17. [PMID: 11430460 DOI: 10.1254/jjp.86.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
For a long time, alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA) receptors permeable to calcium have been considered to be either non-existent or as "atypical". There is now ample evidence that these receptors exist in numerous regions of the nervous system and in many neuronal as well as non-neuronal cell populations. This evidence has been accumulated by several methods, including electrophysiological recording, calcium imaging and cobalt-loading. Functional AMPA receptors permeable to calcium are already expressed at very early stages of embryonic development, well before the onset of synaptogenesis. They are probably involved in the paracrine signaling necessary for construction of the nervous system before becoming involved in synaptic transmission. In immature cells, cyclothiazide strongly increases the steady-state level of responses not only to AMPA, but also to kainate. Ingestion, during pregnancy, of food or drug substances that can cross the placental barrier and act upon the embryonic receptors may constitute a risk for normal development. In the adult nervous system, synaptic as well as non-synaptic (paracrine) AMPA receptors permeable to calcium are probably widely expressed in both glial and neuronal cells. They may also participate in controlling some aspects related to adult neurogenesis, in particular the migration of newly formed neurons.
Collapse
Affiliation(s)
- N König
- EPHE Quantitative Cell Biology and INSERM U 336, Montpellier, France.
| | | | | | | | | | | |
Collapse
|
222
|
Tikka T, Fiebich BL, Goldsteins G, Keinanen R, Koistinaho J. Minocycline, a tetracycline derivative, is neuroprotective against excitotoxicity by inhibiting activation and proliferation of microglia. J Neurosci 2001; 21:2580-8. [PMID: 11306611 PMCID: PMC6762519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Minocycline, a semisynthetic tetracycline derivative, protects brain against global and focal ischemia in rodents. We examined whether minocycline reduces excitotoxicity in primary neuronal cultures. Minocycline (0.02 microm) significantly increased neuronal survival in mixed spinal cord (SC) cultures treated with 500 microm glutamate or 100 microm kainate for 24 hr. Treatment with these excitotoxins induced a dose-dependent proliferation of microglia that was associated with increased release of interleukin-1beta (IL-1beta) and was followed by increased lactate dehydrogenase (LDH) release. The excitotoxicity was enhanced when microglial cells were cultured on top of SC cultures. Minocycline prevented excitotoxin-induced microglial proliferation and the increased release of nitric oxide (NO) metabolites and IL-1beta. Excitotoxins induced microglial proliferation and increased the release of NO metabolites and IL-1beta also in pure microglia cultures, and these responses were inhibited by minocycline. In both SC and pure microglia cultures, excitotoxins activated p38 mitogen-activated protein kinase (p38 MAPK) exclusively in microglia. Minocycline inhibited p38 MAPK activation in SC cultures, and treatment with SB203580, a p38 MAPK inhibitor, but not with PD98059, a p44/42 MAPK inhibitor, increased neuronal survival. In pure microglia cultures, glutamate induced transient activation of p38 MAPK, and this was inhibited by minocycline. These findings indicate that the proliferation and activation of microglia contributes to excitotoxicity, which is inhibited by minocycline, an antibiotic used in severe human infections.
Collapse
Affiliation(s)
- T Tikka
- A. I. Virtanen Institute for Molecular Sciences, University of Kuopio, FIN-70211 Kuopio, Finland
| | | | | | | | | |
Collapse
|
223
|
Hirayama M, Kuriyama M. MK-801 is cytotoxic to microglia in vitro and its cytotoxicity is attenuated by glutamate, other excitotoxic agents and atropine. Possible presence of glutamate receptor and muscarinic receptor on microglia. Brain Res 2001; 897:204-6. [PMID: 11282378 DOI: 10.1016/s0006-8993(01)02114-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We examined the cytotoxicity of MK-801 on cultured microglia and demonstrated its cytotoxicity. Cytotoxicity of MK-801 was reduced by the addition of L-glutamate, kainate and NMDA. The action of MK-801 was due to the direct action of microglia. It suggested the existence of glutamate receptor in microglia. Cytotoxicity of MK-801 was reduced by the addition of atropine sulfate which suggested the presence of muscarinic receptor in microglia.
Collapse
Affiliation(s)
- M Hirayama
- Department of Neurology, Kasugai Municipal Hospital, Takaki-cho 1-1-1, Aichi Prefecture 486-8510, Kasugai City, Japan.
| | | |
Collapse
|
224
|
Matute C, Alberdi E, Domercq M, Pérez-Cerdá F, Pérez-Samartín A, Sánchez-Gómez MV. The link between excitotoxic oligodendroglial death and demyelinating diseases. Trends Neurosci 2001; 24:224-30. [PMID: 11250007 DOI: 10.1016/s0166-2236(00)01746-x] [Citation(s) in RCA: 247] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oligodendrocytes, the myelinating cells of CNS axons, are highly vulnerable to excitotoxic signals mediated by glutamate receptors of the AMPA and kainate classes. Receptors in these cells are commonly activated by glutamate that is released from axons and glial cells. In addition, oligodendrocytes contribute to the control of extracellular glutamate levels by means of their own transporters. However, acute and chronic alterations in glutamate homeostasis can result in overactivation of AMPA and kainate receptors and subsequent excitotoxic oligodendroglial death. Furthermore, demyelinating lesions caused by excitotoxins can be similar to those observed in multiple sclerosis. This, together with the effect of AMPA and kainate receptor antagonists in ameliorating the neurological score of animals with experimental autoimmune encephalomyelitis (an animal model of multiple sclerosis), indicates that oligodendrocyte excitotoxicity could be involved in the pathogenesis of demyelinating disorders.
Collapse
MESH Headings
- Animals
- Autoimmunity/drug effects
- Autoimmunity/physiology
- Cell Death/drug effects
- Cell Death/physiology
- Demyelinating Diseases/drug therapy
- Demyelinating Diseases/metabolism
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Glutamic Acid/metabolism
- Humans
- Multiple Sclerosis/drug therapy
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/pathology
- Neurotoxins/antagonists & inhibitors
- Neurotoxins/metabolism
- Oligodendroglia/drug effects
- Oligodendroglia/metabolism
- Optic Nerve/drug effects
- Optic Nerve/pathology
- Receptors, AMPA/antagonists & inhibitors
- Receptors, AMPA/metabolism
- Receptors, Kainic Acid/antagonists & inhibitors
- Receptors, Kainic Acid/metabolism
- GluK2 Kainate Receptor
Collapse
Affiliation(s)
- C Matute
- Departamento de Neurociencias, Universidad del País Vasco, 48940 Leioa, Spain.
| | | | | | | | | | | |
Collapse
|
225
|
Eriksson C, Zou LP, Ahlenius S, Winblad B, Schultzberg M. Inhibition of kainic acid induced expression of interleukin-1 beta and interleukin-1 receptor antagonist mRNA in the rat brain by NMDA receptor antagonists. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 85:103-13. [PMID: 11146112 DOI: 10.1016/s0169-328x(00)00251-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cytokines interleukin-1 beta (IL-1 beta) and IL-1 receptor antagonist (IL-1ra) are rapidly induced in response to excitotoxic and ischemic brain damage. The aim of the present study was to investigate the influence of a non-competitive (dizocilpine maleate, MK-801) and a competitive ((R)-CPP) NMDA receptor antagonist on the transient cytokine expression in the rat brain induced by systemic kainic acid administration. Peripheral administration of kainic acid (10 mg/kg, i.p.) results in a transient expression of IL-1 beta and IL-1ra mRNA, mainly in microglia, in regions showing neurodegeneration such as the hippocampus, thalamus, amygdala, and certain cortical regions. In addition, a few neurons expressing IL-1ra mRNA were observed in the piriform cortex and amygdala following kainic acid injection. Administration of MK-801 (i.p.) 1 h prior to kainic acid injection reduced cytokine expression in all of these regions. MK-801 at 3.0 mg/kg decreased the IL-1 beta mRNA expression, blocked or decreased the IL-1ra mRNA expression, depending on the brain region. MK-801 at 5.0 mg/kg abolished IL-1ra mRNA expression in all of the regions, whereas the IL-1 beta mRNA expression was decreased or blocked, depending on the brain region, or the time point investigated. Peripheral administration of (R)-CPP (15 mg/kg, i.p.) 15 min prior to the kainic acid injection abolished the IL-1 beta mRNA expression. The IL-1ra mRNA expression was abolished in all regions except for a few neurons in the piriform cortex. The finding that NMDA receptor antagonists inhibit the IL-1 beta and IL-1ra mRNA synthesis induced by kainic acid suggests that NMDA receptor activation may be involved in triggering cytokine synthesis following excitotoxic brain damage.
Collapse
Affiliation(s)
- C Eriksson
- Division of Geriatric Medicine, NEUROTEC, Karolinska Institute, Huddinge Hospital, Novum, S-141 86 Huddinge, Sweden
| | | | | | | | | |
Collapse
|
226
|
Nishioku T, Takai N, Miyamoto K, Murao K, Hara C, Yamamoto K, Nakanishi H. Involvement of caspase 3-like protease in methylmercury-induced apoptosis of primary cultured rat cerebral microglia. Brain Res 2000; 871:160-4. [PMID: 10882796 DOI: 10.1016/s0006-8993(00)02436-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Methylmercury (MeHg) has been implicated to induce massive neurodegeneration by disruption of neuron-glia interactions besides a direct potent neurotoxicity. In the present study, we examined potential cytotoxic effects of MeHg on primary cultured rat microglia. Following treatment with a relatively low concentration (0.5 microM) of MeHg, microglia had induced cell death accompanied by DNA fragmentation and an activation of caspase-3-like protease. MeHg-induced microglial death was significantly suppressed by the caspase-3-like protease inhibitor benzyloxycarbonyl-Try-Val-Ala-Asp-fluoromethyl-ketone indicating the occurrence of caspase-3-like protease-executed apoptosis. The aspartic protease inhibitor pepstatin A had a partial but significant inhibitory effect on MeHg-induced microglial apoptosis. These results indicate that a relatively low concentration of MeHg predominantly induces caspase-3-like protease-executed apoptosis of microglia, while the endosomal/lysosomal system is also partially involved in the cell death pathway.
Collapse
Affiliation(s)
- T Nishioku
- Department of Pharmacology, Faculty of Dentistry, Kyushu University, 812-8582, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
227
|
Abstract
Functional glutamate receptors are expressed on the majority of glial cell types in the developing and mature brain. Although glutamate receptors on glia are activated by glutamate released from neurons, their physiological role remains largely unknown. Potential roles for these receptors in glia include regulation of proliferation and differentiation, and modulation of synaptic efficacy. Recent anatomical and functional evidence indicates that glutamate receptors on immature glia are activated through direct synaptic inputs. Therefore, glutamate and its receptors appear to be involved in a continuous crosstalk between neurons and glia during development and also in the mature brain.
Collapse
Affiliation(s)
- V Gallo
- Laboratory of Cellular and Molecular Neurophysiology, National Institute of Child Health and Human Development, NIH, Building 49, Room 5A-78, 49 Convent Drive, Bethesda, MD 20892-4495, USA.
| | | |
Collapse
|