201
|
Lee J, Kong B, Lee SH. Patchouli Alcohol, a Compound from Pogostemon cablin, Inhibits Obesity. J Med Food 2019; 23:326-334. [PMID: 31750759 DOI: 10.1089/jmf.2019.0182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Obesity predisposes people to a variety of chronic metabolic diseases. Identification of natural factors that prevent the development of obesity is likely to be the most successful means of ameliorating the current obesity epidemic. Patchouli alcohol is a sesquiterpene alcohol found in Pogostemon cablin and possesses health benefit activities. This study was designed to examine if patchouli alcohol affects adipogenesis, and investigates the underlying mechanisms whereby patchouli alcohol exerts antiobesity effect. 3T3-L1 adipocytes were differentiated with treatment of different concentrations of patchouli alcohol. An in vivo study was performed to test the effect of patchouli alcohol gavage on a high-fat diet (HFD)-induced obesity. Treatment of patchouli alcohol reduced lipid accumulation in 3T3-L1 adipocytes in a dose-dependent manner without toxicity. Regarding mechanism, treatment of patchouli alcohol reduced expression of peroxisome proliferator-activated receptor-gamma (PPARγ) and CCAAT-enhancer-binding protein-alpha (C/EBPα) and increased expression of total and active β-catenin in 3T3-L1 adipocytes. Oral gavage of patchouli alcohol led to a significant reduction of body weight and fat accumulation in the mice fed with HFD. Transcriptome analysis indicates that smad7 is most highly activated gene in patchouli alcohol-treated 3T3-L1 cells. Patchouli alcohol possesses health benefit effect through inhibiting adipogenesis and fat tissue development.
Collapse
Affiliation(s)
- Jihye Lee
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA
| | - Byungwhi Kong
- Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas, USA
| | - Seong-Ho Lee
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
202
|
Tourki B, Kain V, Pullen AB, Norris PC, Patel N, Arora P, Leroy X, Serhan CN, Halade GV. Lack of resolution sensor drives age-related cardiometabolic and cardiorenal defects and impedes inflammation-resolution in heart failure. Mol Metab 2019; 31:138-149. [PMID: 31918915 PMCID: PMC6920298 DOI: 10.1016/j.molmet.2019.10.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/14/2019] [Accepted: 10/25/2019] [Indexed: 12/20/2022] Open
Abstract
Objective Recently, we observed that the specialized proresolving mediator (SPM) entity resolvin D1 activates lipoxin A4/formyl peptide receptor 2 (ALX/FPR2), which facilitates cardiac healing and persistent inflammation is a hallmark of impaired cardiac repair in aging. Splenic leukocyte-directed SPMs are essential for the safe clearance of inflammation and cardiac repair after injury; however, the target of SPMs remains undefined in cardiac healing and repair. Methods To define the mechanistic basis of ALX/FPR2 as a resolvin D1 target, ALX/FPR2-null mice were examined extensively. The systolic-diastolic heart function was assessed using echocardiography, leukocytes were phenotyped using flow cytometry, and SPMs were quantitated using mass spectrometry. The presence of cardiorenal syndrome was validated using histology and renal markers. Results Lack of ALX/FPR2 led to the development of spontaneous obesity and diastolic dysfunction with reduced survival with aging. After cardiac injury, ALX/FPR2−/− mice showed lower expression of lipoxygenases (−5, −12, −15) and a reduction in SPMs in the infarcted left ventricle and spleen, indicating nonresolving inflammation. Reduced SPM levels in the infarcted heart and spleen are suggestive of impaired cross-talk between the injured heart and splenic leukocytes, which are required for the resolution of inflammation. In contrast, cyclooxygenases (−1 and −2) were over amplified in the infarcted heart. Together, these results suggest interorgan signaling in which the spleen acts as both an SPM biosynthesizer and supplier in acute heart failure. ALX/FPR2 dysfunction magnified obesogenic cardiomyopathy and renal inflammation (↑NGAL, ↑TNF-α, ↑CCL2, ↑IL-1β) with elevated plasma creatinine levels in aging mice. At the cellular level, ALX/FPR2−/− mice showed impairment of macrophage phagocytic function ex-vivo with expansion of neutrophils after myocardial infarction. Conclusions Lack of ALX/FPR2 induced obesity, reduced the life span, amplified leukocyte dysfunction, and facilitated profound interorgan nonresolving inflammation. Our study shows the integrative and indispensable role of ALX/FPR2 in lipid metabolism, cardiac inflammation–resolution processes, obesogenic aging, and renal homeostasis. Lack of resolution sensor (ALX/FPR2) led to spontaneous, age-related obesity. Absence of ALX/FPR2 triggered obesogenic cardiomyopathy and renal inflammation. Deficiency of ALX/FPR2 reduced SPMs in the infarcted heart after cardiac injury. ALX/FPR2 dysfunction impaired macrophage function and amplified inflammation.
Collapse
Affiliation(s)
- Bochra Tourki
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Alabama, 35294, United States
| | - Vasundhara Kain
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Alabama, 35294, United States
| | - Amanda B Pullen
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Alabama, 35294, United States
| | - Paul C Norris
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School Boston, Massachusetts, 02115, United States
| | - Nirav Patel
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Alabama, 35294, United States
| | - Pankaj Arora
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Alabama, 35294, United States
| | - Xavier Leroy
- Domain Therapeutics, Steinsoultz, Alsace, France
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School Boston, Massachusetts, 02115, United States
| | - Ganesh V Halade
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Alabama, 35294, United States.
| |
Collapse
|
203
|
Takai S, Watanabe Y, Sanematsu K, Yoshida R, Margolskee RF, Jiang P, Atsuta I, Koyano K, Ninomiya Y, Shigemura N. Effects of insulin signaling on mouse taste cell proliferation. PLoS One 2019; 14:e0225190. [PMID: 31714935 PMCID: PMC6850543 DOI: 10.1371/journal.pone.0225190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/30/2019] [Indexed: 12/26/2022] Open
Abstract
Expression of insulin and its receptor (IR) in rodent taste cells has been proposed, but exactly which types of taste cells express IR and the function of insulin signaling in taste organ have yet to be determined. In this study, we analyzed expression of IR mRNA and protein in mouse taste bud cells in vivo and explored its function ex vivo in organoids, using RT-PCR, immunohistochemistry, and quantitative PCR. In mouse taste tissue, IR was expressed broadly in taste buds, including in type II and III taste cells. With using 3-D taste bud organoids, we found insulin in the culture medium significantly decreased the number of taste cell and mRNA expression levels of many taste cell genes, including nucleoside triphosphate diphosphohydrolase-2 (NTPDase2), Tas1R3 (T1R3), gustducin, carbonic anhydrase 4 (CA4), glucose transporter-8 (GLUT8), and sodium-glucose cotransporter-1 (SGLT1) in a concentration-dependent manner. Rapamycin, an inhibitor of mechanistic target of rapamycin (mTOR) signaling, diminished insulin's effects and increase taste cell generation. Altogether, circulating insulin might be an important regulator of taste cell growth and/or proliferation via activation of the mTOR pathway.
Collapse
Affiliation(s)
- Shingo Takai
- Section of Oral Neuroscience, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Monell Chemical Senses Center, Philadelphia, PA, United States of America
- * E-mail: (ST); (NS)
| | - Yu Watanabe
- Section of Oral Neuroscience, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Section of Removable Prosthodontics, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Keisuke Sanematsu
- Section of Oral Neuroscience, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Ryusuke Yoshida
- Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | | | - Peihua Jiang
- Monell Chemical Senses Center, Philadelphia, PA, United States of America
| | - Ikiru Atsuta
- Section of Removable Prosthodontics, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Kiyoshi Koyano
- Section of Removable Prosthodontics, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yuzo Ninomiya
- Monell Chemical Senses Center, Philadelphia, PA, United States of America
- Division of Sensory Physiology, Research and Development Center for Five-Sense Devices Taste and Odor Sensing, Kyushu University, Fukuoka, Japan
| | - Noriatsu Shigemura
- Section of Oral Neuroscience, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Division of Sensory Physiology, Research and Development Center for Five-Sense Devices Taste and Odor Sensing, Kyushu University, Fukuoka, Japan
- * E-mail: (ST); (NS)
| |
Collapse
|
204
|
Abstract
Human and animal longevity is directly bound to their health span. While previous studies have provided evidence supporting this connection, therapeutic implementation of this knowledge has been limited. Traditionally, diseases are researched and treated individually, which ignores the interconnectedness of age-related conditions, necessitates multiple treatments with unrelated substances, and increases the accumulative risk of side effects. In this study, we address and overcome this deadlock by creating adeno-associated virus (AAV)-based antiaging gene therapies for simultaneous treatment of several age-related diseases. We demonstrate the modular and extensible nature of combination gene therapy by testing therapeutic AAV cocktails that confront multiple diseases in a single treatment. We observed that 1 treatment comprising 2 AAV gene therapies was efficacious against all 4 diseases. Comorbidity is common as age increases, and currently prescribed treatments often ignore the interconnectedness of the involved age-related diseases. The presence of any one such disease usually increases the risk of having others, and new approaches will be more effective at increasing an individual’s health span by taking this systems-level view into account. In this study, we developed gene therapies based on 3 longevity associated genes (fibroblast growth factor 21 [FGF21], αKlotho, soluble form of mouse transforming growth factor-β receptor 2 [sTGFβR2]) delivered using adeno-associated viruses and explored their ability to mitigate 4 age-related diseases: obesity, type II diabetes, heart failure, and renal failure. Individually and combinatorially, we applied these therapies to disease-specific mouse models and found that this set of diverse pathologies could be effectively treated and in some cases, even reversed with a single dose. We observed a 58% increase in heart function in ascending aortic constriction ensuing heart failure, a 38% reduction in α-smooth muscle actin (αSMA) expression, and a 75% reduction in renal medullary atrophy in mice subjected to unilateral ureteral obstruction and a complete reversal of obesity and diabetes phenotypes in mice fed a constant high-fat diet. Crucially, we discovered that a single formulation combining 2 separate therapies into 1 was able to treat all 4 diseases. These results emphasize the promise of gene therapy for treating diverse age-related ailments and demonstrate the potential of combination gene therapy that may improve health span and longevity by addressing multiple diseases at once.
Collapse
|
205
|
Padin AC, Hébert JR, Woody A, Wilson SJ, Shivappa N, Belury MA, Malarkey WB, Sheridan JF, Kiecolt-Glaser JK. A proinflammatory diet is associated with inflammatory gene expression among healthy, non-obese adults: Can social ties protect against the risks? Brain Behav Immun 2019; 82:36-44. [PMID: 31356923 PMCID: PMC6800628 DOI: 10.1016/j.bbi.2019.07.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/10/2019] [Accepted: 07/25/2019] [Indexed: 01/25/2023] Open
Abstract
The Western diet, characterized by high intake of saturated fat, sugar, and salt, is associated with elevated inflammation and chronic disease risk. Few studies have investigated molecular mechanisms linking diet and inflammation; however, a small number of randomized controlled trials suggest that consuming an anti-inflammatory diet (i.e., a primarily plant-based diet rich in monounsaturated fat and lean protein) decreases proinflammatory gene expression. The current study investigated the association between everyday diet and proinflammatory gene expression, as well as the extent to which central adiposity and social involvement modulate risk. Participants were healthy middle-aged and older adults (N = 105) who completed a food frequency questionnaire and reported how many close social roles they have. Anthropometric measurements and blood samples also were collected; gene expression data were analyzed from LPS-stimulated peripheral blood mononuclear cells for interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α. The inflammatory potential of each participant's diet was calculated using the Dietary Inflammatory Index (DII®). Participants with higher DII® scores, indicating a more proinflammatory diet, had greater IL-6 (b = -0.02, SE = 0.008, p = .01), IL-1β (b = -0.01, SE = 0.006, p = .03), and TNF-α (b = -0.01, SE = 0.005, p = .04) gene expression if they had a smaller sagittal abdominal diameter (SAD); effects were not seen among those with higher SADs. Social involvement served a protective role, such that participants with smaller SADs had greater IL-6 (b = 0.01, SE = 0.004, p = .049) and IL-1β (b = 0.01, SE = 0.003, p = .045) gene expression only if they had less social involvement; there was no effect of diet on gene expression among those who reported greater social participation. Results are the first to demonstrate a link between self-reported diet and proinflammatory gene expression. Importantly, the effect of diet on gene expression depended upon both body fat composition and social participation, both of which have previously been linked directly with proinflammatory gene expression and inflammation.
Collapse
Affiliation(s)
- Avelina C Padin
- Institute for Behavioral Medicine Research, The Ohio State University College of Medicine, United States; Department of Psychology, The Ohio State University, United States.
| | - James R Hébert
- Department of Epidemiology and Biostatistics and Cancer Prevention and Control Program, University of South Carolina, United States; Connecting Health Innovations LLC, United States
| | - Alex Woody
- Institute for Behavioral Medicine Research, The Ohio State University College of Medicine, United States
| | - Stephanie J Wilson
- Institute for Behavioral Medicine Research, The Ohio State University College of Medicine, United States
| | - Nitin Shivappa
- Department of Epidemiology and Biostatistics and Cancer Prevention and Control Program, University of South Carolina, United States; Connecting Health Innovations LLC, United States
| | - Martha A Belury
- Institute for Behavioral Medicine Research, The Ohio State University College of Medicine, United States; Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, United States
| | - William B Malarkey
- Institute for Behavioral Medicine Research, The Ohio State University College of Medicine, United States; Department of Internal Medicine, The Ohio State University College of Medicine, United States
| | - John F Sheridan
- Institute for Behavioral Medicine Research, The Ohio State University College of Medicine, United States; College of Dentistry, The Ohio State University College of Medicine, United States
| | - Janice K Kiecolt-Glaser
- Institute for Behavioral Medicine Research, The Ohio State University College of Medicine, United States; Department of Psychiatry and Behavioral Health, The Ohio State University College of Medicine, United States
| |
Collapse
|
206
|
Dudek M, Ziarniak K, Cateau ML, Dufourny L, Sliwowska JH. Diabetes Type 2 and Kisspeptin: Central and Peripheral Sex-Specific Actions. Trends Endocrinol Metab 2019; 30:833-843. [PMID: 31699240 DOI: 10.1016/j.tem.2019.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 01/23/2023]
Abstract
Kisspeptin (KP) plays a major role in the regulation of reproduction governed by the hypothalamic-pituitary-gonadal (HPG) axis. However, recent findings suggest that the KP system is present not only centrally (at the level of the hypothalamus), but also in the peripheral organs crucial for the control of metabolism. The KP system is sexually differentiated in the hypothalamus, and it is of particular interest to study whether sex-specific responses to type 2 diabetes (DM2) exist centrally and peripherally. As collection of data is limited in humans, animal models of DM2 are useful to understand crosstalk between metabolism and reproduction. Sex-specific variations in the KP system reported in animals suggest a need for the development of gender specific therapeutic strategies to treat DM2.
Collapse
Affiliation(s)
- Monika Dudek
- Laboratory of Neurobiology, Institute of Zoology, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625 Poznan, Poland
| | - Kamil Ziarniak
- Laboratory of Neurobiology, Institute of Zoology, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625 Poznan, Poland
| | - Marie-Line Cateau
- UMR Physiologie de la Reproduction et des Comportements, INRA-CNRS-Université de Tours-IFCE, Centre INRA Val de Loire, F-37380 Nouzilly, France
| | - Laurence Dufourny
- UMR Physiologie de la Reproduction et des Comportements, INRA-CNRS-Université de Tours-IFCE, Centre INRA Val de Loire, F-37380 Nouzilly, France
| | - Joanna Helena Sliwowska
- Laboratory of Neurobiology, Institute of Zoology, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625 Poznan, Poland.
| |
Collapse
|
207
|
Huang S, Ma S, Ning M, Yang W, Ye Y, Zhang L, Shen J, Leng Y. TGR5 agonist ameliorates insulin resistance in the skeletal muscles and improves glucose homeostasis in diabetic mice. Metabolism 2019; 99:45-56. [PMID: 31295453 DOI: 10.1016/j.metabol.2019.07.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/25/2019] [Accepted: 07/03/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND PURPOSE TGR5 plays an important role in many physiological processes. However, the functions of TGR5 in the regulation of the glucose metabolism and insulin sensitivity in the skeletal muscles have not been fully elucidated. We synthesized MN6 as a potent and selective TGR5 agonist. Here, the effect of MN6 on insulin resistance in skeletal muscles was evaluated in diet-induced obese (DIO) mice and C2C12 myotubes, and the underlying mechanisms were explored. METHODS The activation of MN6 on human and mouse TGR5 was evaluated by a cAMP assay in HEK293 cell lines stable expressing hTGR5/CRE or mTGR5/CRE cells. GLP-1 secretion was measured in NCI-H716 cells and CD1 mice. The acute and chronic effects of MN6 on regulating metabolic abnormalities were observed in ob/ob and DIO mice. 2-deoxyglucose uptake was examined in isolated skeletal muscles. Akt phosphorylation, glucose uptake and glycogen synthesis were examined to assess the effects of MN6 on palmitate-induced insulin resistance in C2C12 myotubes. RESULTS MN6 potently activated human and mouse TGR5 with EC50 values of 15.9 and 17.9 nmol/L, respectively, and stimulated GLP-1 secretion in NCI-H716 cells and CD1 mice. A single oral dose of MN6 significantly decreased the blood glucose levels in ob/ob mice. Treatment with MN6 for 15 days reduced the fasting blood glucose and HbA1c levels in ob/ob mice. MN6 improved glucose and insulin tolerance and enhanced the insulin-stimulated glucose uptake of skeletal muscles in DIO mice. The palmitate-induced impairment of insulin-stimulated Akt phosphorylation, glucose uptake and glycogen synthesis in C2C12 myotubes could be prevented by MN6. The effect of MN6 on palmitate-impaired insulin-stimulated Akt phosphorylation was abolished by siRNA-mediated knockdown of TGR5 or by the inhibition of adenylate cyclase or protein kinase A, suggesting that this effect is dependent on the activation of TGR5 and the cAMP/PKA pathway. CONCLUSIONS Our study identified that a TGR5 agonist could ameliorate insulin resistance by the cAMP/PKA pathway in skeletal muscles; this uncovered a new effect of the TGR5 agonist on regulating the glucose metabolism and insulin sensitivity in skeletal muscles and further strengthened its potential value for the treatment of type 2 diabetes.
Collapse
MESH Headings
- Animals
- Cyclopropanes/therapeutic use
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diet, High-Fat
- Glucagon-Like Peptide 1/metabolism
- Glucose/metabolism
- HEK293 Cells
- Homeostasis
- Humans
- Hypoglycemic Agents/pharmacology
- Insulin Resistance
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Obese
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Pyridines/therapeutic use
- Quinoxalines/therapeutic use
- Receptors, G-Protein-Coupled/agonists
Collapse
Affiliation(s)
- Suling Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Shanyao Ma
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Mengmeng Ning
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Wenji Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Yangliang Ye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Lina Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Jianhua Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.
| | - Ying Leng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.
| |
Collapse
|
208
|
Singh SP, McClung JA, Thompson E, Glick Y, Greenberg M, Acosta‐Baez G, Edris B, Shapiro JI, Abraham NG. Cardioprotective Heme Oxygenase-1-PGC1α Signaling in Epicardial Fat Attenuates Cardiovascular Risk in Humans as in Obese Mice. Obesity (Silver Spring) 2019; 27:1634-1643. [PMID: 31441604 PMCID: PMC6756945 DOI: 10.1002/oby.22608] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/13/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE This study investigated whether levels of signaling pathways and inflammatory adipokines in epicardial fat regulate cardiovascular risks in humans and mice. METHODS Epicardial fat was obtained from the hearts of patients with heart failure requiring coronary artery bypass surgery, and signaling pathways were compared with visceral fat. The genetic profile of epicardial and visceral fat from humans was also compared with genetic profiles of epicardial and visceral fat in obese mice. Left ventricular (LV) fractional shortening was measured in obese mice before and after treatment with inducers of mitochondrial signaling heme oxygenase 1 (HO-1)-peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α). An RNA array/heat map on 88 genes that regulate adipose tissue function was used to identify a target gene network. RESULTS Human epicardial fat gene profiling showed decreased levels of mitochondrial signaling of HO-1-PGC1α and increased levels of the inflammatory adipokine CCN family member 3. Similar observations were seen in epicardial and visceral fat of obese mice. Improvement in LV function was linked to the increase in mitochondrial signaling in epicardial fat of obese mice. CONCLUSIONS There is a link between cardiac ectopic fat deposition and cardiac function in humans that is similar to that which is described in obese mice. An increase of mitochondrial signaling pathway gene expression in epicardial fat attenuates cardiometabolic dysfunction and LV fractional shortening in obese mice.
Collapse
Affiliation(s)
| | - John A. McClung
- Department of MedicineNew York Medical CollegeValhallaNew YorkUSA
| | - Ellen Thompson
- Department of CardiologyJoan C. Edwards School of Medicine, Marshall UniversityHuntingtonWest VirginiaUSA
| | - Yosef Glick
- Department of PharmacologyNew York Medical CollegeValhallaNew YorkUSA
| | | | - Giancarlo Acosta‐Baez
- Department of CardiologyJoan C. Edwards School of Medicine, Marshall UniversityHuntingtonWest VirginiaUSA
| | - Basel Edris
- Department of CardiologyJoan C. Edwards School of Medicine, Marshall UniversityHuntingtonWest VirginiaUSA
| | - Joseph I. Shapiro
- Department of Internal MedicineJoan C. Edwards School of Medicine, Marshall UniversityHuntingtonWest VirginiaUSA
| | - Nader G. Abraham
- Department of PharmacologyNew York Medical CollegeValhallaNew YorkUSA
- Department of MedicineNew York Medical CollegeValhallaNew YorkUSA
- Department of Internal MedicineJoan C. Edwards School of Medicine, Marshall UniversityHuntingtonWest VirginiaUSA
| |
Collapse
|
209
|
Increased adiposity by feeding growing rats a high-fat diet results in iron decompartmentalisation. Br J Nutr 2019; 123:1094-1108. [PMID: 32172712 DOI: 10.1017/s0007114519002320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The present study reports the effects of a high-fat (HF) diet of over 8 weeks on the Fe status of growing rats. Tissue Fe levels were analysed by atomic absorption spectrophotometry, and whole-body adiposity was measured by dual-energy X-ray absorptiometry. Histopathology and morphometry of adipose tissue were performed. Liver homogenates were used for measuring ferroportin-1 protein levels by immunoblotting, and transcript levels were used for Fe genes measured by real-time PCR. Tissue Fe pools were fit to a compartmental biokinetic model in which Fe was assessed using fourteen compartments and twenty-seven transfer constants (kj,i from tissue 'i' to tissue 'j') adapted from the International Commission on Radiological Protection (ICRP) 69. Ten kj,i were calculated from the experimental data using non-linear regression, and seventeen were estimated by allometry according to the formula ${k_{i,j}} = a \times {M^b}$. Validation of the model was carried out by comparing predicted and analysed Fe pool sizes in erythrocytes, the liver and the spleen. Body adiposity was negatively associated with serum Fe levels and positively associated with liver Fe stores. An inferred increase in Fe transfer from bone marrow to the liver paralleled higher hepatic Fe concentrations and ferritin heavy-chain mRNA levels in the HF diet-fed animals, suggesting that liver Fe accumulation occurred at least in part due to a favoured liver erythrocyte uptake. If this feeding condition was to be prolonged, impaired Fe decompartmentalisation may occur, ultimately resulting in dysmetabolic Fe overload.
Collapse
|
210
|
Peravali R, Gunnels L, Dhanabalan K, Ariganjoye F, Gerling IC, Dokun AO. In experimental peripheral arterial disease, type 2 diabetes alters post-ischemic gene expression. J Clin Transl Endocrinol 2019; 17:100199. [PMID: 31293900 PMCID: PMC6595134 DOI: 10.1016/j.jcte.2019.100199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/30/2019] [Accepted: 05/30/2019] [Indexed: 01/09/2023] Open
Abstract
Peripheral arterial disease is characterized by impaired blood flow to tissues outside the heart due to atherosclerosis and it most frequently occurs in the lower extremities. Type 2 diabetes (T2D) is a well-known risk factor that accelerate the course and contributes to poor clinical outcomes of PAD. While there is some evidence that T2D is associated with altered expression of genes involved in regulating PAD severity, our knowledge about the specific genes and pathways involved remains incomplete. We induced experimental PAD or hind limb ischemia in T2D and non-diabetic mice and subjected the ischemic gastrocnemius muscle tissues to genome-wide mRNA transcriptome analysis. We subsequently performed pathway analysis on the top 500 genes that showed the most significant expression differences between the ischemic diabetic and ischemic non-diabetic muscle tissues. Pathway analysis of the differentially expressed genes identified pathways involved in essential biological processes such as "metabolic pathways," "phagosomes," "lysosomes," and "regulation of actin cytoskeleton". Overall, our data provides the opportunity to test hypotheses on the potential role of the altered genes/molecular pathways in poor PAD outcomes in diabetes.
Collapse
Affiliation(s)
- Rahul Peravali
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Lucas Gunnels
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Memphis Veterans Affairs Medical Center, Memphis, TN, United States
| | - Karthik Dhanabalan
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Folabi Ariganjoye
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Ivan C. Gerling
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Memphis Veterans Affairs Medical Center, Memphis, TN, United States
| | - Ayotunde O. Dokun
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
211
|
Semple E, Shalabi F, Hill JW. Oxytocin Neurons Enable Melanocortin Regulation of Male Sexual Function in Mice. Mol Neurobiol 2019; 56:6310-6323. [PMID: 30756300 PMCID: PMC6684847 DOI: 10.1007/s12035-019-1514-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/28/2019] [Indexed: 12/13/2022]
Abstract
The melanocortin pathway has been implicated in both metabolism and sexual function. When the melanocortin 4 receptor (MC4R) is knocked out globally, male mice display obesity, low sexual desire, and copulatory difficulties; however, it is unclear whether these phenotypes are interdependent. To elucidate the neuronal circuitry involved in sexual dysfunction in MC4R knockouts, we re-expressed the MC4R in these mice exclusively on Sim1 neurons (tbMC4RSim1 mice) or on a subset of Sim1 neurons, namely oxytocin neurons (tbMC4Roxt mice). The groups were matched at young ages to control for the effects of obesity. Interestingly, young MC4R null mice had no deficits in sexual motivation or erectile function. However, MC4R null mice were found to have an increased latency to reach ejaculation compared to control mice, which was restored in both tbMC4RSim1 and tbMC4Roxt mice. These results indicate that melanocortin signaling via the MC4R on oxytocin neurons is important for normal ejaculation independent of the male's metabolic health.
Collapse
Affiliation(s)
- Erin Semple
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Ave., Toledo, OH, 43614, USA
| | - Firas Shalabi
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Ave., Toledo, OH, 43614, USA
| | - Jennifer W Hill
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Ave., Toledo, OH, 43614, USA.
| |
Collapse
|
212
|
Extra virgin olive oil diet intervention improves insulin resistance and islet performance in diet-induced diabetes in mice. Sci Rep 2019; 9:11311. [PMID: 31383924 PMCID: PMC6683141 DOI: 10.1038/s41598-019-47904-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/25/2019] [Indexed: 11/12/2022] Open
Abstract
Dietary composition plays an important role in the pathophysiology of type 2 diabetes. Monounsaturated fatty acid consumption has been positively associated with improved insulin sensitivity and β-cell function. We examined whether an extra virgin olive oil (EVOO) high fat diet (HFD) can improve glucose homeostasis. C57BL/6J mice were fed a standard diet or a lard-based HFD to induce type 2 diabetes. Then, HFD mice were fed with three different based HFD (lard, EVOO and EVOO rich in phenolic compounds) for 24 weeks. HFD-EVOO diets significantly improved glycemia, insulinemia, glucose tolerance, insulin sensitivity and insulin degradation. Moreover, EVOO diets reduced β-cell apoptosis, increased β-cell number and normalized islet glucose metabolism and glucose induced insulin secretion. No additional effects were observed by higher levels of phenolic compounds. Thus, EVOO intake regulated glucose homeostasis by improving insulin sensitivity and pancreatic β-cell function, in a type 2 diabetes HFD animal model.
Collapse
|
213
|
Subramaniam A, Landstrom M, Hayes KC. Genetic Permissiveness and Dietary Glycemic Load Interact to Predict Type-II Diabetes in the Nile rat ( Arvicanthis niloticus). Nutrients 2019; 11:nu11071538. [PMID: 31284621 PMCID: PMC6683243 DOI: 10.3390/nu11071538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/16/2019] [Accepted: 07/01/2019] [Indexed: 12/31/2022] Open
Abstract
Objective: The Nile rat (Arvicanthis niloticus) is a superior model for Type-II Diabetes Mellitus (T2DM) induced by diets with a high glycemic index (GI) and glycemic load (GLoad). To better define the age and gender attributes of diabetes in early stages of progression, weanling rats were fed a high carbohydrate (hiCHO) diet for between 2 to 10 weeks. Methods: Data from four experiments compared two diabetogenic semipurified diets (Diet 133 (60:20:20, as % energy from CHO, fat, protein with a high glycemic load (GLoad) of 224 per 2000 kcal) versus Diets 73 MBS or 73 MB (70:10:20 with or without sucrose and higher GLoads of 259 or 295, respectively). An epidemiological technique was used to stratify the diabetes into quintiles of blood glucose (Q1 to Q5), after 2–10 weeks of dietary induction in 654 rats. The related metagenetic physiological growth and metabolic outcomes were related to the degree of diabetes based on fasting blood glucose (FBG), random blood glucose (RBG), and oral glucose tolerance test (OGTT) at 30 min and 60 min. Results: Experiment 1 (Diet 73MBS) demonstrated that the diabetes begins aggressively in weanlings during the first 2 weeks of a hiCHO challenge, linking genetic permissiveness to diabetes susceptibility or resistance from an early age. In Experiment 2, ninety male Nile rats fed Diet 133 (60:20:20) for 10 weeks identified two quintiles of resistant rats (Q1,Q2) that lowered their RBG between 6 weeks and 10 weeks on diet, whereas Q3–Q5 became progressively more diabetic, suggesting an ongoing struggle for control over glucose metabolism, which either stabilized or not, depending on genetic permissiveness. Experiment 3 (32 males fed 70:10:20) and Experiment 4 (30 females fed 60:20:20) lasted 8 weeks and 3 weeks respectively, for gender and time comparisons. The most telling link between a quintile rank and diabetes risk was telegraphed by energy intake (kcal/day) that established the cumulative GLoad per rat for the entire trial, which was apparent from the first week of feeding. This genetic permissiveness associated with hyperphagia across quintiles was maintained throughout the study and was mirrored in body weight gain without appreciable differences in feed efficiency. This suggests that appetite and greater growth rate linked to a fiber-free high GLoad diet were the dominant factors driving the diabetes. Male rats fed the highest GLoad diet (Diet 73MB 70:10:20, GLoad 295 per 2000 kcal for 8 weeks in Experiment 3], ate more calories and developed diabetes even more aggressively, again emphasizing the Cumulative GLoad as a primary stressor for expressing the genetic permissiveness underlying the diabetes. Conclusion: Thus, the Nile rat model, unlike other rodents but similar to humans, represents a superior model for high GLoad, low-fiber diets that induce diabetes from an early age in a manner similar to the dietary paradigm underlying T2DM in humans, most likely originating in childhood.
Collapse
Affiliation(s)
| | | | - K C Hayes
- Biology Department, Brandeis University, Waltham, MA, 02453, USA.
| |
Collapse
|
214
|
Cherbuin N, Walsh EI. Sugar in mind: Untangling a sweet and sour relationship beyond type 2 diabetes. Front Neuroendocrinol 2019; 54:100769. [PMID: 31176793 DOI: 10.1016/j.yfrne.2019.100769] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/17/2019] [Accepted: 06/05/2019] [Indexed: 12/17/2022]
Abstract
It is widely recognised that type 2 diabetes (T2D) represents a major disease burden but it is only recently that its role in neurodegeneration has attracted more attention. This research has shown that T2D is associated with impaired cerebral health, cognitive decline and dementia. However, the impact on the brain of progressive metabolic changes associated with the pre-clinical development of the disease is less clear. The aim of this review is to comprehensively summarise how the emergence of risk factors and co-morbid conditions linked to the development of T2D impact cerebral health. Particular attention is directed at characterising how normal but elevated blood glucose levels in individuals without T2D contribute to neurodegenerative processes, and how the main risk factors for T2D including obesity, physical activity and diet modulate these effects. Where available, evidence from the animal and human literature is contrasted, and sex differences in risk and outcomes are highlighted.
Collapse
Affiliation(s)
- Nicolas Cherbuin
- Centre for Research on Ageing, Health and Wellbeing, Australian National University, Canberra, Australia.
| | - Erin I Walsh
- Centre for Research on Ageing, Health and Wellbeing, Australian National University, Canberra, Australia
| |
Collapse
|
215
|
Murata Y, Harada N, Yamane S, Iwasaki K, Ikeguchi E, Kanemaru Y, Harada T, Sankoda A, Shimazu-Kuwahara S, Joo E, Poudyal H, Inagaki N. Medium-chain triglyceride diet stimulates less GIP secretion and suppresses body weight and fat mass gain compared with long-chain triglyceride diet. Am J Physiol Endocrinol Metab 2019; 317:E53-E64. [PMID: 30990747 DOI: 10.1152/ajpendo.00200.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gastric inhibitory polypeptide (GIP) is an incretin secreted from enteroendocrine K cells and potentiates insulin secretion from pancreatic β-cells. GIP also enhances long-chain triglyceride (LCT) diet-induced obesity and insulin resistance. Long-term intake of medium-chain triglyceride (MCT) diet is known to induce less body weight and fat mass gain than that of LCT diet. However, the effect of MCT diet feeding on GIP secretion and the effect of GIP on body weight and fat mass under MCT diet-feeding condition are unknown. In this study, we evaluated the effect of single MCT oil administration on GIP secretion and compared the effect of long-term MCT and LCT diet on body weight and fat mass gain in wild-type (WT) and GIP-knockout (GIP KO) mice. Single administration of LCT oil induced GIP secretion but that of MCT oil did not in WT mice. Long-term intake of LCT diet induced GIP hypersecretion and significant body weight and fat mass gain compared with that of control fat (CF) diet in WT mice. In contrast, MCT diet did not induce GIP hypersecretion, and MCT diet-fed mice showed smaller increase in body weight and fat mass gain compared with CF diet-fed mice. In GIP KO mice, body weight and fat mass were markedly attenuated in LCT diet-fed mice but not in MCT diet-fed mice. Our results suggest that long-term intake of MCT diet stimulates less GIP secretion and suppresses body weight and fat mass gain compared with that of LCT diet.
Collapse
Affiliation(s)
- Yuki Murata
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University , Kyoto , Japan
| | - Norio Harada
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University , Kyoto , Japan
| | - Shunsuke Yamane
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University , Kyoto , Japan
| | - Kanako Iwasaki
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University , Kyoto , Japan
| | - Eri Ikeguchi
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University , Kyoto , Japan
| | - Yoshinori Kanemaru
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University , Kyoto , Japan
| | - Takanari Harada
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University , Kyoto , Japan
| | - Akiko Sankoda
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University , Kyoto , Japan
| | - Satoko Shimazu-Kuwahara
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University , Kyoto , Japan
| | - Erina Joo
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University , Kyoto , Japan
| | - Hemant Poudyal
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University , Kyoto , Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University , Kyoto , Japan
| |
Collapse
|
216
|
Coudriet GM, Stoops J, Orr AV, Bhushan B, Koral K, Lee S, Previte DM, Dong HH, Michalopoulos GK, Mars WM, Piganelli JD. A Noncanonical Role for Plasminogen Activator Inhibitor Type 1 in Obesity-Induced Diabetes. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1413-1422. [PMID: 31054988 DOI: 10.1016/j.ajpath.2019.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 01/07/2023]
Abstract
Obesity is a major risk factor for type 2 diabetes because of chronic hepatic inflammation and resultant insulin resistance. Hepatocyte growth factor (HGF) is responsible for resetting hepatic homeostasis after injury following activation by urokinase-type plasminogen activator (u-PA; encoded by the PLAU gene). Plasminogen activator inhibitor type-1 (PAI-1; encoded by the SERPINE1 gene), a u-PA inhibitor and antifibrinolytic agent, is often elevated in obesity and is linked to cardiovascular events. We hypothesized that, in addition to its role in preventing fibrinolysis, elevated PAI-1 inhibits HGF's activation by u-PA and the resultant anti-inflammatory and hepatoprotective properties. Wild-type and PAI-1 knockout (KO) mice on a high-fat diet both became significantly heavier than lean controls; however, the obese KO mice demonstrated improved glucose metabolism compared with wild-type mice. Obese KO mice also exhibited an increase in conversion of latent single-chain HGF to active two-chain HGF, coinciding with an increase in the phosphorylation of the HGF receptor (HGFR or MET, encoded by the MET gene), as well as dampened inflammation. These results strongly suggest that, in addition to its other functions, PAI-mediated inhibition of HGF activation prohibits the resolution of inflammation in the context of obesity-induced type 2 diabetes.
Collapse
Affiliation(s)
- Gina M Coudriet
- Department of Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - John Stoops
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Anne V Orr
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Bharat Bhushan
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kelly Koral
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sojin Lee
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Dana M Previte
- Department of Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - H Henry Dong
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - George K Michalopoulos
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Wendy M Mars
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Jon D Piganelli
- Department of Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
217
|
Rudman N, Gornik O, Lauc G. Altered N-glycosylation profiles as potential biomarkers and drug targets in diabetes. FEBS Lett 2019; 593:1598-1615. [PMID: 31215021 DOI: 10.1002/1873-3468.13495] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 12/16/2022]
Abstract
N-glycosylation is a ubiquitous protein modification, and N-glycosylation profiles are emerging as both biomarkers and functional effectors in various types of diabetes. Genome-wide association studies identified glycosyltransferase genes as candidate causal genes for type 1 and type 2 diabetes. Studies focused on N-glycosylation changes in type 2 diabetes demonstrated that patients can be distinguished from healthy controls based on N-glycome composition. In addition, individuals at an increased risk of future disease development could be identified based on N-glycome profiles. Moreover, accumulating evidence indicates that N-glycans have a major role in preventing the impairment of glucose-stimulated insulin secretion by maintaining the glucose transporter in proper orientation, indicating that interindividual variation in protein N-glycosylation might be a novel risk factor contributing to diabetes development. Defective N-glycosylation of T cells has been implicated in type 1 diabetes pathogenesis. Furthermore, studies of N-glycan alterations have successfully been used to identify individuals with rare types of diabetes (such as the HNF1A-MODY), and also to evaluate functional significance of novel diabetes-associated mutations. In conclusion, both N-glycans and glycosyltransferases emerge as potential therapeutic targets in diabetes.
Collapse
Affiliation(s)
- Najda Rudman
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Croatia
| | - Olga Gornik
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Croatia.,Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Gordan Lauc
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Croatia.,Genos Glycoscience Research Laboratory, Zagreb, Croatia
| |
Collapse
|
218
|
Syed AU, Reddy GR, Ghosh D, Prada MP, Nystoriak MA, Morotti S, Grandi E, Sirish P, Chiamvimonvat N, Hell JW, Santana LF, Xiang YK, Nieves-Cintrón M, Navedo MF. Adenylyl cyclase 5-generated cAMP controls cerebral vascular reactivity during diabetic hyperglycemia. J Clin Invest 2019; 129:3140-3152. [PMID: 31162142 PMCID: PMC6668679 DOI: 10.1172/jci124705] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 05/14/2019] [Indexed: 12/20/2022] Open
Abstract
Elevated blood glucose (hyperglycemia) is a hallmark metabolic abnormality in diabetes. Hyperglycemia is associated with protein kinase A (PKA)-mediated stimulation of L-type Ca2+ channels in arterial myocytes resulting in increased vasoconstriction. However, the mechanisms by which glucose activates PKA remain unclear. Here, we showed that elevating extracellular glucose stimulates cAMP production in arterial myocytes, and that this was specifically dependent on adenylyl cyclase 5 (AC5) activity. Super-resolution imaging suggested nanometer proximity between subpopulations of AC5 and the L-type Ca2+ channel pore-forming subunit CaV1.2. In vitro, in silico, ex vivo and in vivo experiments revealed that this close association is critical for stimulation of L-type Ca2+ channels in arterial myocytes and increased myogenic tone upon acute hyperglycemia. This pathway supported the increase in L-type Ca2+ channel activity and myogenic tone in two animal models of diabetes. Our collective findings demonstrate a unique role for AC5 in PKA-dependent modulation of L-type Ca2+ channel activity and vascular reactivity during acute hyperglycemia and diabetes.
Collapse
MESH Headings
- Adenylyl Cyclases/genetics
- Adenylyl Cyclases/metabolism
- Animals
- Calcium Channels, L-Type/biosynthesis
- Calcium Channels, L-Type/genetics
- Cerebral Arteries/enzymology
- Cerebral Arteries/pathology
- Cyclic AMP/genetics
- Cyclic AMP/metabolism
- Cyclic AMP-Dependent Protein Kinases/genetics
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/pathology
- Hyperglycemia/enzymology
- Hyperglycemia/genetics
- Hyperglycemia/pathology
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
Collapse
Affiliation(s)
- Arsalan U. Syed
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Gopireddy R. Reddy
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Debapriya Ghosh
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Maria Paz Prada
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Matthew A. Nystoriak
- Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Stefano Morotti
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Eleonora Grandi
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Padmini Sirish
- Department of Internal Medicine, University of California, Davis, Davis, California, USA
| | - Nipavan Chiamvimonvat
- Department of Pharmacology, University of California, Davis, Davis, California, USA
- Department of Internal Medicine, University of California, Davis, Davis, California, USA
- VA Northern California Health Care System, Mather, California, USA
| | - Johannes W. Hell
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Luis F. Santana
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, California, USA
| | - Yang K. Xiang
- Department of Pharmacology, University of California, Davis, Davis, California, USA
- VA Northern California Health Care System, Mather, California, USA
| | | | - Manuel F. Navedo
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| |
Collapse
|
219
|
Turchetti G, Paz C. Aristotelia chilensis (Mol.) Stuntz: A Natural Source of Bioactive Compounds. CURRENT TRADITIONAL MEDICINE 2019. [DOI: 10.2174/2215083804666181002095249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aristotelia chilensis (Mol.) Stuntz, commonly called “maqui” is a native tree of
Chile considered sacred for the Mapuche people. The fruits are sweet blackberries with a
high concentration of polyphenols which stain the hands and mouth when eaten. The
Mapuche people use it for creating "chicha" an alcoholic beverage, while leaves are used to
treat infected wounds, inflammation and ulcers. In this review, we will give an overview of
the pharmacology reported for the plant and molecules isolated from leaves and fruits, with
the scope of giving a better understanding of the potential of this tree.
Collapse
Affiliation(s)
- Giovanni Turchetti
- Laboratory of Plant Cytology and Biotechnology, Department for the Innovation in Biological, Agro-food and Forest systems, DIBAF, Tuscia University, Viterbo, Italy
| | - Cristian Paz
- Departamento de Ciencias Quimicas y Recursos Naturales, BIOREN, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
220
|
Sowton AP, Griffin JL, Murray AJ. Metabolic Profiling of the Diabetic Heart: Toward a Richer Picture. Front Physiol 2019; 10:639. [PMID: 31214041 PMCID: PMC6555155 DOI: 10.3389/fphys.2019.00639] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/06/2019] [Indexed: 01/20/2023] Open
Abstract
The increasing global prevalence of diabetes has been accompanied by a rise in diabetes-related conditions. This includes diabetic cardiomyopathy (DbCM), a progressive form of heart disease that occurs with both insulin-dependent (type-1) and insulin-independent (type-2) diabetes and arises in the absence of hypertension or coronary artery disease. Over time, DbCM can develop into overt heart failure. Like other forms of cardiomyopathy, DbCM is accompanied by alterations in metabolism which could lead to further progression of the pathology, with metabolic derangement postulated to precede functional changes in the diabetic heart. Moreover in the case of type-2 diabetes, underlying insulin resistance is likely to prevent the canonical substrate switch of the failing heart away from fatty acid oxidation toward increased use of glycolysis. Analytical chemistry techniques, collectively known as metabolomics, are useful tools for investigating the condition. In this article, we provide a comprehensive review of those studies that have employed metabolomic techniques, namely chromatography, mass spectrometry and nuclear magnetic resonance spectroscopy, to profile metabolic remodeling in the diabetic heart of human patients and animal models. These studies collectively demonstrate that glycolysis and glucose oxidation are suppressed in the diabetic myocardium and highlight a complex picture regarding lipid metabolism. The diabetic heart typically shows an increased reliance on fatty acid oxidation, yet triacylglycerols and other lipids accumulate in the diabetic myocardium indicating probable lipotoxicity. The application of lipidomic techniques to the diabetic heart has identified specific lipid species that become enriched and which may in turn act as plasma-borne biomarkers for the condition. Metabolomics is proving to be a powerful approach, allowing a much richer analysis of the metabolic alterations that occur in the diabetic heart. Careful physiological interpretation of metabolomic results will now be key in order to establish which aspects of the metabolic derangement are causal to the progression of DbCM and might form the basis for novel therapeutic intervention.
Collapse
Affiliation(s)
- Alice P. Sowton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Julian L. Griffin
- Department of Biochemistry and Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Andrew J. Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
221
|
Klee NS, Moreland RS, Kendig DM. Detrusor contractility to parasympathetic mediators is differentially altered in the compensated and decompensated states of diabetic bladder dysfunction. Am J Physiol Renal Physiol 2019; 317:F388-F398. [PMID: 31141399 DOI: 10.1152/ajprenal.00178.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Diabetic bladder dysfunction (DBD) affects up to 50% of all patients with diabetes, characterized by symptoms of both overactive and underactive bladder. Although most diabetic bladder dysfunction studies have been performed using models with type 1 diabetes, few have been performed in models of type 2 diabetes, which accounts for ~90% of all diabetic cases. In a type 2 rat model using a high-fat diet (HFD) and two low doses of streptozotocin (STZ), we examined voiding measurements and functional experiments in urothelium-denuded bladder strips to establish a timeline of disease progression. We hypothesized that overactive bladder symptoms (compensated state) would develop and progress into symptoms characterized by underactive bladder (decompensated state). Our results indicated that this model developed the compensated state at 1 wk after STZ and the decompensated state at 4 mo after STZ administration. Diabetic bladders were hypertrophied compared with control bladders. Increased volume per void and detrusor muscle contractility to exogenous addition of carbachol and ATP confirmed the development of the compensated state. This enhanced contractility to carbachol was not due to increased levels of M3 receptor expression. Decompensation was characterized by increased volume per void, number of voids, and contractility to ATP but not carbachol. Thus, progression from the compensated to decompensated state may involve decreased contractility to muscarinic stimulation. These data suggest that the compensated state of DBD progresses temporally into the decompensated state in the male HFD/STZ model of diabetes; therefore, this male HFD/STZ model can be used to study the progression of DBD.
Collapse
Affiliation(s)
- Nicole S Klee
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Robert S Moreland
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Derek M Kendig
- Department of Biology, Loyola University Maryland, Baltimore, Maryland
| |
Collapse
|
222
|
Emond C, DeVito MJ, Diliberto JJ, Birnbaum LS. The Influence of Obesity on the Pharmacokinetics of Dioxin in Mice: An Assessment Using Classical and PBPK Modeling. Toxicol Sci 2019; 164:218-228. [PMID: 29596651 DOI: 10.1093/toxsci/kfy078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The effects of body fat mass on the elimination of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was examined in mice. When male C57BL/6J mice are fed a high-fat, simple carbohydrate diet (HFD) for 13 weeks, they develop an obese phenotype. In contrast, A/J mice fed an HFD do not become obese. After 13 weeks on a normal diet (ND) or HFD, male C57BL/6J and A/J mice received a single dose by gavage of 0.1 or 5.0 µg of 2,3,7,8-tetrachloro[1,6-3H] dibenzo-p-dioxin per kg body weight. Using classical pharmacokinetics, the blood elimination half-life of TCDD was approximately 10 and 2 times longer in the C57BL/6J on the HFD compared with the mice on the ND at 0.1 and 5.0 μg/kg doses, respectively. The diet did not increase the blood half-life of TCDD in the A/J mice, which did not get obese. Using a physiologically based pharmacokinetic model for TCDD that incorporated experimentally derived percent body fat mass and tissue partition coefficients, as well as data on hepatic sequestration, did not provide accurate predictions to the data and could not explain the increase in half-life of TCDD in the HFD groups. This work demonstrates that obesity influences the half-life of TCDD, but other undetermined factors are involved in its elimination because the increase in body fat mass, decreases in cytochrome P4501A2, and altered partition coefficients could not completely explain the prolonged half-life.
Collapse
Affiliation(s)
- Claude Emond
- BioSimulation Consulting Inc., Newark, DE, USA, 19713.,Department of Environmental and Occupational Health, University of Montreal, Quebec, Canada H3N 1X9
| | - Michael J DeVito
- National Institute of Environmental Health Sciences, National Toxicology Program, Research Triangle Park, NC, USA
| | - Janet J Diliberto
- National Health and Environmental Effects Research Laboratory, U.S. Environmental protection Agency, Research Triangle Park, NC, USA, 27711
| | - Linda S Birnbaum
- National Cancer Institute, Research Triangle Park, NC, USA, 27709
| |
Collapse
|
223
|
Hubbard K, Shome A, Sun B, Pontré B, McGregor A, Mountjoy KG. Chronic High-Fat Diet Exacerbates Sexually Dimorphic Pomctm1/tm1 Mouse Obesity. Endocrinology 2019; 160:1081-1096. [PMID: 30997487 PMCID: PMC6469954 DOI: 10.1210/en.2018-00924] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/04/2019] [Indexed: 01/16/2023]
Abstract
Mice with a targeted mutation in the pro-opiomelanocortin (Pomc) gene (Pomctm1/tm1 mice) are unable to synthesize desacetyl-α-MSH and α-MSH and they develop obesity when fed chow diet. In this study, we hypothesized that a chronic high-fat (HF) diet exacerbates Pomctm1/tm1 mouse obesity. Male and female Pomcwt/wt and Pomctm1/tm1 mice were fed low-fat (LF) (10 kcal percent fat) or HF (45 kcal percent fat) diets from weaning for 23 weeks. We show that Pomctm1/tm1 mouse obesity is sexually dimorphic and exacerbated by an HF diet. Male Pomctm1/tm1 mice develop obesity because they are hyperphagic compared with Pomcwt/wt mice when fed an LF or HF diet. Female Pomctm1/tm1 mice develop obesity when feeding on an LF or HF diet because they exhibit signs of reduced energy expenditure (no change in feed efficiency; body weight gained exceeding energy intake) compared with Pomcwt/wt mice. A chronic HF diet exacerbates male Pomctm1/tm1 and Pomcwt/wt mouse obesity, and the increased energy intake fully accounts for increased weight gain. In contrast, female Pomcwt/wt mice are protected from chronic HF diet-induced obesity because they reduce the amount of HF diet eaten, and they appear to increase their energy expenditure (no change in feed efficiency but energy intake exceeding body weight gained). A chronic HF diet exacerbates female Pomctm1/tm1 mouse obesity due to impaired ability to reduce the amount of HF diet eaten and apparent impaired HF diet-induced adaptive thermogenesis. Our data show that desacetyl-α-MSH and α-MSH are required for sexually dimorphic HF diet-induced C57BL/6J obesity. In conclusion, desacetyl-α-MSH and α-MSH play salutary roles in sexually dimorphic melanocortin obesity and sexually dimorphic HF diet-induced C57BL/6J obesity.
Collapse
Affiliation(s)
- Kristina Hubbard
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Avik Shome
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Bo Sun
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Beau Pontré
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Ailsa McGregor
- Department of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Kathleen G Mountjoy
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
224
|
Oppi S, Lüscher TF, Stein S. Mouse Models for Atherosclerosis Research-Which Is My Line? Front Cardiovasc Med 2019; 6:46. [PMID: 31032262 PMCID: PMC6473202 DOI: 10.3389/fcvm.2019.00046] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/26/2019] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis is one of the primary causes of cardiovascular disease and mortality. This chronic immunometabolic disease evolves during decades in humans and encompasses different organs and immune cell types, as well as local and systemic processes that promote the progression of the disease. The most frequently used animal model to study these atherogenic processes and inter-organ crosstalk in a short time frame are genetically modified mouse models. Some models have been used throughout the last decades, and some others been developed recently. These models have important differences in cholesterol and lipoprotein metabolism, reverse cholesterol transport pathway, obesity and diabetes as well as inflammatory processes. Therefore, the disease develops and progresses differently in the various mouse models. Since atherosclerosis is a multifaceted disease and many processes contribute to its progression, the choice of the right mouse model is important to study specific aspects of the disease. We will describe the different mouse models and provide a roadmap to facilitate current and future atherosclerosis researchers to choose the right model depending on their scientific question.
Collapse
Affiliation(s)
- Sara Oppi
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Thomas F. Lüscher
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
- Heart Division, Royal Brompton & Harefield Hospitals and Imperial College, London, United Kingdom
| | - Sokrates Stein
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
225
|
Silva HM, Báfica A, Rodrigues-Luiz GF, Chi J, Santos PDA, Reis BS, Hoytema van Konijnenburg DP, Crane A, Arifa RDN, Martin P, Mendes DAGB, Mansur DS, Torres VJ, Cadwell K, Cohen P, Mucida D, Lafaille JJ. Vasculature-associated fat macrophages readily adapt to inflammatory and metabolic challenges. J Exp Med 2019; 216:786-806. [PMID: 30862706 PMCID: PMC6446877 DOI: 10.1084/jem.20181049] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 12/10/2018] [Accepted: 02/19/2019] [Indexed: 01/08/2023] Open
Abstract
Silva et al. describe and characterize a population of adipose tissue macrophages (VAMs) that are in close contact with the vasculature and powerfully uptake blood-borne macromolecules. VAMs harbor a repair/detoxifying gene signature and adapt quickly to infections and fasting. Tissue-resident macrophages are the most abundant immune cell population in healthy adipose tissue. Adipose tissue macrophages (ATMs) change during metabolic stress and are thought to contribute to metabolic syndrome. Here, we studied ATM subpopulations in steady state and in response to nutritional and infectious challenges. We found that tissue-resident macrophages from healthy epididymal white adipose tissue (eWAT) tightly associate with blood vessels, displaying very high endocytic capacity. We refer to these cells as vasculature-associated ATMs (VAMs). Chronic high-fat diet (HFD) results in the accumulation of a monocyte-derived CD11c+CD64+ double-positive (DP) macrophage eWAT population with a predominant anti-inflammatory/detoxifying gene profile, but reduced endocytic function. In contrast, fasting rapidly and reversibly leads to VAM depletion, while acute inflammatory stress induced by pathogens transiently depletes VAMs and simultaneously boosts DP macrophage accumulation. Our results indicate that ATM populations dynamically adapt to metabolic stress and inflammation, suggesting an important role for these cells in maintaining tissue homeostasis.
Collapse
Affiliation(s)
- Hernandez Moura Silva
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY
| | - André Báfica
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY.,Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.,Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY
| | - Gabriela Flavia Rodrigues-Luiz
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Jingyi Chi
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY
| | - Patricia d'Emery Alves Santos
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY
| | - Bernardo S Reis
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY
| | | | - Audrey Crane
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY
| | - Raquel Duque Nascimento Arifa
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY
| | - Patricia Martin
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY
| | - Daniel Augusto G B Mendes
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Daniel Santos Mansur
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, New York, NY
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY.,Department of Microbiology, New York University School of Medicine, New York, NY
| | - Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY
| | - Juan J Lafaille
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY .,Department of Pathology, New York University School of Medicine, New York, NY
| |
Collapse
|
226
|
Li X, Tu P, Umar M, Liu Q, Luo W, Yang X, Zhu J, Kong D, Li M. A study on molecular mechanisms of adiposis induced by long-term treatment of high-fat and high-sucrose in C57BL/6J mice. Physiol Res 2019; 68:75-87. [PMID: 30433796 DOI: 10.33549/physiolres.933830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Adiposis is reputed as a twin disease of type 2 diabetes and greatly harmful to human health. In order to understand the molecular mechanisms of adiposis, the changes of physiological, pathological, epigenetic and correlative gene expression were investigated during the adiposis development of C57BL/6J mice induced by long time (9 months) high-fat and high-sucrose diet (HFSD) sustainably. The results showed that mRNA transcription level of the Leptin, Glut4 and Glut2 genes have been obviously changed, which exhibit a negative correlation with methylation on their promoter DNA. The results also revealed that HFSD induced higher level of DNA methyltransferase 1 (DNMT1) in fat tissue might play important role in regulating the changes of methylation pattern on Glut4 and Leptin genes, and which might be one of the molecular mechanisms for the adiposis development.
Collapse
Affiliation(s)
- X Li
- Life Science College, Nankai University, Nankai District, Tianjin, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Glavas MM, Hui Q, Tudurí E, Erener S, Kasteel NL, Johnson JD, Kieffer TJ. Early overnutrition reduces Pdx1 expression and induces β cell failure in Swiss Webster mice. Sci Rep 2019; 9:3619. [PMID: 30842440 PMCID: PMC6403421 DOI: 10.1038/s41598-019-39177-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/07/2019] [Indexed: 12/25/2022] Open
Abstract
Childhood obesity and early rapid growth increase the risk for type 2 diabetes. Such early overnutrition can be modeled in mice by reducing litter size. We investigated the effects of early overnutrition and increased dietary fat intake on β cell function in Swiss Webster mice. On a moderate-fat diet, early overnutrition accelerated weight gain and induced hyperinsulinemia in pups. Early overnutrition males exhibited higher β cell mass but reduced islet insulin content and Pdx1 expression. Males had a high diabetes incidence that was increased by early overnutrition, characterized by a progressive increase in insulin secretion as well as β cell death, indicated by histological analysis and increased circulating miR-375 levels. Females maintained normoglycemia throughout life. High-fat diet (HFD) increased diabetes incidence in males, whereas low-fat diet was completely protective. This protective effect was abolished in early overnutrition males transiently exposed to HFD in early life. Although Swiss Webster mice are not known to be diabetes-prone, the high diabetes incidence suggests an underlying genetic susceptibility that can be induced by overnutrition and increased dietary fat intake in early life. Thus, the nutritional environment in early life may impact long-term β cell function and increase diabetes risk, particularly in genetically susceptible individuals.
Collapse
Affiliation(s)
- Maria M Glavas
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Queenie Hui
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Eva Tudurí
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada.,Centro de Investigación Biomédica en Red de Diabetes y , Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Suheda Erener
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Naomi L Kasteel
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - James D Johnson
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Timothy J Kieffer
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada. .,Department of Surgery, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
228
|
Shu Z, Gao Y, Zhang G, Zhou Y, Cao J, Wan D, Zhu X, Xiong W. A functional interaction between Hippo-YAP signalling and SREBPs mediates hepatic steatosis in diabetic mice. J Cell Mol Med 2019; 23:3616-3628. [PMID: 30821074 PMCID: PMC6484311 DOI: 10.1111/jcmm.14262] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/21/2019] [Accepted: 02/11/2019] [Indexed: 12/14/2022] Open
Abstract
The Hippo pathway is an evolutionarily conserved regulator of organ size and tumorigenesis that negatively regulates cell growth and survival. Whether the Hippo pathway regulates cell metabolism is unknown. Here, we report that in the nucleus of hepatocytes, Yes‐associated protein(YAP)—the terminal effector of the Hippo pathway—directly interacts with sterol regulatory element binding proteins (SREBP‐1c and SREBP‐2) on the promoters of the fatty acid synthase (FAS) and 30‐hydroxylmethyl glutaryl coenzyme A reductase (HMGCR), thereby stimulating their transcription and promoting hepatocyte lipogenesis and cholesterol synthesis. In diet‐induced diabetic mice, either Lats1 overexpression or YAP knockdown protects against hepatic steatosis and hyperlipidaemia through suppression of the interaction between YAP and SREBP‐1c/SREBP‐2. These results suggest that YAP is a nuclear co‐factor of SREBPs and that the Hippo pathway negatively affects hepatocyte lipogenesis by inhibiting the function of YAP‐SREBP complexes.
Collapse
Affiliation(s)
- Zhiping Shu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Gao
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guopeng Zhang
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Zhou
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Cao
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongyi Wan
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohua Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenqian Xiong
- Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
229
|
In Vivo Rodent Models of Type 2 Diabetes and Their Usefulness for Evaluating Flavonoid Bioactivity. Nutrients 2019; 11:nu11030530. [PMID: 30823474 PMCID: PMC6470730 DOI: 10.3390/nu11030530] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 01/10/2023] Open
Abstract
About 40% of the world’s population is overweight or obese and exist at risk of developing type 2 diabetes mellitus (T2D). Obesity is a leading pathogenic factor for developing insulin resistance (IR). It is well established that IR and a progressive decline in functional β-cell mass are hallmarks of developing T2D. In order to mitigate the global prevalence of T2D, we must carefully select the appropriate animal models to explore the cellular and molecular mechanisms of T2D, and to optimize novel therapeutics for their safe use in humans. Flavonoids, a group of polyphenols, have drawn great interest for their various health benefits, and have been identified in naturally occurring anti-diabetic compounds. Results from many clinical and animal studies demonstrate that dietary intake of flavonoids might prove helpful in preventing T2D. In this review, we discuss the currently available rodent animal models of T2D and analyze the advantages, the limitations of each T2D model, and highlight the potential anti-diabetic effects of flavonoids as well as the mechanisms of their actions.
Collapse
|
230
|
High-Fat Diet Alters Immunogenic Properties of Circulating and Adipose Tissue-Associated Myeloid-Derived CD45 +DDR2 + Cells. Mediators Inflamm 2019; 2019:1648614. [PMID: 31015794 PMCID: PMC6421777 DOI: 10.1155/2019/1648614] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/04/2019] [Accepted: 01/15/2019] [Indexed: 12/26/2022] Open
Abstract
Chronic inflammation is evident in the adipose tissue and periphery of patients with obesity, as well as mouse models of obesity. T cell subsets in obese adipose tissue are skewed towards Th1- and Th17-associated phenotypes and their secreted cytokines contribute to obesity-associated inflammation. Our lab recently identified a novel, myeloid-derived CD45+DDR2+ cell subset that modulates T cell activity. The current study sought to determine how these myeloid-derived CD45+DDR2+ cells are altered in the adipose tissue and peripheral blood of preobese mice and how this population modulates T cell activity. C57BL/6 mice were fed with a diet high in milkfat (60%·kcal, HFD) ad libitum until a 20% increase in total body weight was reached, and myeloid-derived CD45+DDR2+ cells and CD4+ T cells in visceral adipose tissue (VAT), mammary gland-associated adipose tissue (MGAT), and peripheral blood (PB) were phenotypically analyzed. Also analyzed was whether mediators from MGAT-primed myeloid-derived CD45+DDR2+ cells stimulate normal CD4+ T cell cytokine production. A higher percentage of myeloid-derived CD45+DDR2+ cells expressed the activation markers MHC II and CD80 in both VAT and MGAT of preobese mice. CD4+ T cells were preferentially skewed towards Th1- and Th17-associated phenotypes in the adipose tissue and periphery of preobese mice. In vitro, MGAT from HFD-fed mice triggered myeloid-derived CD45+DDR2+ cells to induce CD4+ T cell IFN-γ and TNF-α production. Taken together, this study shows that myeloid-derived CD45+DDR2+ cells express markers of immune activation and suggests that they play an immune modulatory role in the adipose tissue of preobese mice.
Collapse
|
231
|
Studentsova V, Knapp E, Loiselle AE. Insulin Receptor deletion in S100a4-lineage cells accelerates age-related bone loss. Bone Rep 2019; 10:100197. [PMID: 30805422 PMCID: PMC6374520 DOI: 10.1016/j.bonr.2019.100197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/28/2019] [Accepted: 02/01/2019] [Indexed: 11/03/2022] Open
Abstract
Type I and Type II Diabetes dramatically impair skeletal health. Altered Insulin Receptor (IR) signaling is a common feature of both diseases, and insulin has potent bone anabolic functions. Several previous studies have demonstrated that loss of IR in bone cells results in disrupted bone homeostasis during early post-natal growth. Here we have deleted IR in S100a4-lineage cells (IRcKOS100a4) and assessed the effects on bone homeostasis in both young (15 weeks) and older adult (48 weeks) mice. S100a4-Cre has previously been shown to target the perichondrium during bone development, and here we show that S100a4 is expressed by adult trabecular and cortical bone cells, and that S100a4-Cre effectively targets adult bone, resulting in efficient deletion of IRβ. Deletion of IRβ in S100a4-lineage cells does not affect initial bone acquisition or homeostasis with no changes in cortical, trabecular or mechanical properties at 15-weeks of age, relative to wild type (WT) littermates. However, by 48-weeks of age, IRcKOS100a4 mice display substantial declines in trabecular bone volume, bone volume fraction and torsional rigidity, relative to age-matched WT controls. This work establishes the utility of using S100a4-cre to target bone and demonstrates that IRβ in S100a4-lineage cells is required for maintenance of bone homeostasis in adult mice.
Collapse
Affiliation(s)
- Valentina Studentsova
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, United States of America
| | - Emma Knapp
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, United States of America
| | - Alayna E Loiselle
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, United States of America
| |
Collapse
|
232
|
Alim MA, Sikder S, Sathkumara H, Kupz A, Rush CM, Govan BL, Ketheesan N. Dysregulation of key cytokines may contribute to increased susceptibility of diabetic mice to Mycobacterium bovis BCG infection. Tuberculosis (Edinb) 2019; 115:113-120. [PMID: 30948165 DOI: 10.1016/j.tube.2019.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/11/2019] [Accepted: 02/17/2019] [Indexed: 12/24/2022]
Abstract
Diabetes is one of the major co-morbidities contributing to the high global burden of tuberculosis (TB). The increased susceptibility of individuals with type 2 diabetes (T2D) to TB is multifactorial and may influence the efficacy of vaccines. This study was undertaken to determine the early immune responses that occur following infection with Mycobacterium bovis Bacille Calmette-Guérin (BCG) in a diet-induced murine model of T2D. The phagocytic capabilities of alveolar (AM) and resident peritoneal macrophages (RPM) were assessed using ex vivo assays. Compared to macrophages from non-diabetic mice, macrophages from diabetic animals showed decreased BCG uptake and killing and inflammatory cytokine production (TNF-α, MCP-1, IL-6, IL-1β). In vivo susceptibility to BCG was determined following intravenous infection and diabetic mice showed a trend towards increased mortality, higher bacterial burden in the lung, liver and spleen and increased inflammatory lesions compared to controls. Differences between tissue cytokines were observed as early as one day post-infection and by days 14 and 35, lung and liver TNF-α and IFN-γ levels were decreased in diabetic mice compared to controls. These results suggest that early dysregulated immune responses may influence the susceptibility of T2D mice to BCG infection.
Collapse
Affiliation(s)
- Md Abdul Alim
- College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia.
| | - Suchandan Sikder
- College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia.
| | - Harindra Sathkumara
- College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia.
| | - Andreas Kupz
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia.
| | - Catherine M Rush
- College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia.
| | - Brenda L Govan
- College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia.
| | - Natkunam Ketheesan
- School of Science & Technology, University of New England, New South Wales, Australia.
| |
Collapse
|
233
|
Hu Q, Chen H, Zuo Y, He Q, He X, Simpson S, Huang W, Yang H, Zhang H, Lin R. Role of PCK1 gene on oil tea-induced glucose homeostasis and type 2 diabetes: an animal experiment and a case-control study. Nutr Metab (Lond) 2019; 16:12. [PMID: 30805021 PMCID: PMC6373102 DOI: 10.1186/s12986-019-0337-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/24/2019] [Indexed: 12/18/2022] Open
Abstract
Background Oil tea is a type of traditional tea beverage used for treating various ailments in minority population in Guangxi, China. Our previous study showed oil tea improved glucose and lipid levels in type 2 diabetic mice. Yet, the underling molecular mechanisms are still not understood. This study aimed at assessing the effect of oil tea on glucose homeostasis and elucidating the molecular mechanisms underlying the oil tea-induced antidiabetic effects. Methods Twenty seven db/db mice were gavaged with saline, metformin and oil tea for 8 weeks with measurement of biochemical profiles. A real-time2 (RT2) profiler polymerase chain reaction (PCR) array comprising 84 genes involved in glucose metabolism was measured and validated by quantitative PCR (qPCR). The association between the candidate genes and type 2 diabetes were further analyzed in a case-control study in the Chinese minority population. Results Oil tea treatment facilitated glucose homeostasis by decreasing fasting blood glucose and total cholesterol, and improving glucose tolerance. Suppressing phosphoenolpyruvate carboxykinase 1 (PCK1) expression was observed in the oil tea treatment group and the expression was significantly correlated with fasting blood glucose levels. Target prediction and functional annotation by WEB-based GEne SeT AnaLysis Toolkit (WebGestalt) revealed that PCK1 mainly involved in the glycolysis/gluconeogenesis pathway among the top Kyoto Encyclopedia of Genes and Genomes (KEGG) database pathways. Both rs707555 and rs2071023 in PCK1 were significantly associated with type 2 diabetes in the minority population of Guangxi. Conclusion Our findings indicated oil tea improved glucose homeostasis via down-regulation of PCK1 and PCK1 may be a genetic marker for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Qiantu Hu
- 1Center for Genomic and Personalized Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021 Guangxi China
| | - Huafeng Chen
- 2Guangxi Center for Disease Prevention and Control, Nanning, China
| | - Yanli Zuo
- 3General Practice School, Guangxi Medical University, Nanning, China
| | - Qin He
- 2Guangxi Center for Disease Prevention and Control, Nanning, China
| | - Xuan He
- 2Guangxi Center for Disease Prevention and Control, Nanning, China
| | - Steve Simpson
- 4Melbourne School of Population & Global Health, University of Melbourne, Carlton, Australia.,5Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Wei Huang
- 2Guangxi Center for Disease Prevention and Control, Nanning, China
| | - Hui Yang
- 2Guangxi Center for Disease Prevention and Control, Nanning, China
| | - Haiying Zhang
- 1Center for Genomic and Personalized Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021 Guangxi China.,6Public Health School, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021 Guangxi China
| | - Rui Lin
- 1Center for Genomic and Personalized Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021 Guangxi China.,2Guangxi Center for Disease Prevention and Control, Nanning, China.,6Public Health School, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021 Guangxi China
| |
Collapse
|
234
|
|
235
|
Campbell CL, Yu R, Li F, Zhou Q, Chen D, Qi C, Yin Y, Sun J. Modulation of fat metabolism and gut microbiota by resveratrol on high-fat diet-induced obese mice. Diabetes Metab Syndr Obes 2019; 12:97-107. [PMID: 30655683 PMCID: PMC6324607 DOI: 10.2147/dmso.s192228] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE The antioxidant resveratrol (RSV) has low bioavailability and can reach the colon to access the gut microbial ecosystem. RSV administration together with high-fat diet prevented abnormal changes of intestinal microbiota. However, whether or not RSV can reshape the intestinal microbiota of obese mice and alleviate obesity-related diseases remains to be studied. This study aimed to explore the role of RSV in alleviating high-fat-induced obesity and its relationship with oxidative stress and gut microbiota. METHODS Male C57BL/6 mice were divided into five groups and administered for 16 weeks with: standard diet (CON), high-fat diet (60% energy for lard, HFD), and HFD with low, medium, and high dose of RSV, 50, 75, and 100 mg/kg body weight administered daily via drinking water, respectively. RESULTS Medium and high RSV treatment significantly prevented body weight gain, decreased relative weight of liver and adipose tissue compared with HFD (P<0.05). All doses significantly prevented HFD-induced increase of serum triglyceride, low density lipoprotein cholesterol, glucose, and endotoxemia (P<0.05). Medium and high dose also prevented chronic inflammation by decreasing serum interleukin-1 and tumor necrosis factor-alpha (P<0.05), and oxidative stress in liver and brain indicated by increase in superoxide dismutase, catalase, glutathione peroxidase activity (P<0.05). Formation of malondialdehyde was prevented by all doses compared with HFD (P<0.05). Both medium and high doses of RES increased alpha diversity of gut microbiota according to the Chao1 and Shannon indices (P<0.05). Medium dose induced obvious shift in gut microbiota composition according to principal component analysis. High dose of RSV effectively prevented HFD-induced increase of Coriobacteriaceae and Desulfovi-brionaceae (P<0.05), which show a significant correlation with body weight (r>0.8 P<0.00). CONCLUSION RSV prevented HFD-induced endotoxemia, oxidative stress, and gut microbiota change.
Collapse
Affiliation(s)
- C Linda Campbell
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Renqiang Yu
- Department of Neonatology, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China,
- Department of Central Lab, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China, ,
| | - Fengzhi Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qin Zhou
- Department of Neonatology, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China,
| | - Daozhen Chen
- Department of Central Lab, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China, ,
| | - Ce Qi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yongxiang Yin
- Department of Pathology, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Jin Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
236
|
Young TL, Zychowski KE, Denson JL, Campen MJ. Blood-brain barrier at the interface of air pollution-associated neurotoxicity and neuroinflammation. ROLE OF INFLAMMATION IN ENVIRONMENTAL NEUROTOXICITY 2019. [DOI: 10.1016/bs.ant.2018.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
237
|
Chicken Protein Hydrolysates Have Anti-Inflammatory Effects on High-Fat Diet Induced Obesity in Mice. MEDICINES 2018; 6:medicines6010005. [PMID: 30597839 PMCID: PMC6473722 DOI: 10.3390/medicines6010005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 11/30/2022]
Abstract
Background: Studies have shown that dietary source of protein and peptides can affect energy metabolism and influence obesity-associated diseases. This study aimed to investigate the impact of different chicken protein hydrolysates (CPHs) generated from chicken rest raw materials in a mouse obesity model. Methods: Male C57BL/6 mice were fed a high-fat, high-sucrose diet with casein or CPHs generated using Papain + Bromelain, Alcalase, Corolase PP, or Protamex for 12 weeks (n = 12). Body weight, feed intake, and intraperitoneal glucose tolerance was determined, and plasma and liver and adipose tissues were collected at sacrifice. Results: The average feed intake and body weight did not differ between the groups and white adipose tissue depots were unchanged, except for a reduction in the subcutaneous depot in mice fed the Protamex CPH diet. Moreover, the CPH diets did not prevent increased fasting glucose and insulin levels. Interestingly, the hepatic mitochondrial fatty acid β-oxidation was increased in mice fed Alcalase and Corolase PP CPHs. All CPH diets reduced plasma interleukine (IL)-1β, interferon-γ, tumor necrosis factor α, and monocyte chemotactic protein 1 compared to control, indicating anti-inflammatory effects. In addition, Corolase PP and Protamex CPHs significantly reduced plasma levels of IL-1α, IL-2, IL-6, IL-10, and granulocyte macrophage colony-stimulating factor. Conclusions: CPH diets were not able to counteract obesity and glucose intolerance in a mouse obesity model, but strongly reduced inflammatory parameters associated with obesity. Alcalase and Corolase PP CPHs also stimulated mitochondrial fatty acid β-oxidation. The possibility that hydrolysates from chicken rest raw materials could alleviate obesity-associated metabolic disease should be investigated further.
Collapse
|
238
|
Burhans MS, Hagman DK, Kuzma JN, Schmidt KA, Kratz M. Contribution of Adipose Tissue Inflammation to the Development of Type 2 Diabetes Mellitus. Compr Physiol 2018; 9:1-58. [PMID: 30549014 DOI: 10.1002/cphy.c170040] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The objective of this comprehensive review is to summarize and discuss the available evidence of how adipose tissue inflammation affects insulin sensitivity and glucose tolerance. Low-grade, chronic adipose tissue inflammation is characterized by infiltration of macrophages and other immune cell populations into adipose tissue, and a shift toward more proinflammatory subtypes of leukocytes. The infiltration of proinflammatory cells in adipose tissue is associated with an increased production of key chemokines such as C-C motif chemokine ligand 2, proinflammatory cytokines including tumor necrosis factor α and interleukins 1β and 6 as well as reduced expression of the key insulin-sensitizing adipokine, adiponectin. In both rodent models and humans, adipose tissue inflammation is consistently associated with excess fat mass and insulin resistance. In humans, associations with insulin resistance are stronger and more consistent for inflammation in visceral as opposed to subcutaneous fat. Further, genetic alterations in mouse models of obesity that reduce adipose tissue inflammation are-almost without exception-associated with improved insulin sensitivity. However, a dissociation between adipose tissue inflammation and insulin resistance can be observed in very few rodent models of obesity as well as in humans following bariatric surgery- or low-calorie-diet-induced weight loss, illustrating that the etiology of insulin resistance is multifactorial. Taken together, adipose tissue inflammation is a key factor in the development of insulin resistance and type 2 diabetes in obesity, along with other factors that likely include inflammation and fat accumulation in other metabolically active tissues. © 2019 American Physiological Society. Compr Physiol 9:1-58, 2019.
Collapse
Affiliation(s)
- Maggie S Burhans
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Derek K Hagman
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jessica N Kuzma
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Kelsey A Schmidt
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Mario Kratz
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Epidemiology, University of Washington, Seattle, Washington, USA.,Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
239
|
De Leon ER, Brinkman JA, Fenske RJ, Gregg T, Schmidt BA, Sherman DS, Cummings NE, Peter DC, Kimple ME, Lamming DW, Merrins MJ. Age-Dependent Protection of Insulin Secretion in Diet Induced Obese Mice. Sci Rep 2018; 8:17814. [PMID: 30546031 PMCID: PMC6292902 DOI: 10.1038/s41598-018-36289-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/12/2018] [Indexed: 01/26/2023] Open
Abstract
Type 2 diabetes is an age-and-obesity associated disease driven by impairments in glucose homeostasis that ultimately result in defective insulin secretion from pancreatic β-cells. To deconvolve the effects of age and obesity in an experimental model of prediabetes, we fed young and aged mice either chow or a short-term high-fat/high-sucrose Western diet (WD) and examined how weight, glucose tolerance, and β-cell function were affected. Although WD induced a similar degree of weight gain in young and aged mice, a high degree of heterogeneity was found exclusively in aged mice. Weight gain in WD-fed aged mice was well-correlated with glucose intolerance, fasting insulin, and in vivo glucose-stimulated insulin secretion, relationships that were not observed in young animals. Although β-cell mass expansion in the WD-fed aged mice was only three-quarters of that observed in young mice, the islets from aged mice were resistant to the sharp WD-induced decline in ex vivo insulin secretion observed in young mice. Our findings demonstrate that age is associated with the protection of islet function in diet-induced obese mice, and furthermore, that WD challenge exposes variability in the resilience of the insulin secretory pathway in aged mice.
Collapse
Affiliation(s)
- Elizabeth R. De Leon
- 0000 0001 2167 3675grid.14003.36Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, and the William S. Middleton Memorial Veterans Hospital, Madison, WI USA
| | - Jacqueline A. Brinkman
- 0000 0001 2167 3675grid.14003.36Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, and the William S. Middleton Memorial Veterans Hospital, Madison, WI USA
| | - Rachel J. Fenske
- 0000 0001 2167 3675grid.14003.36Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, and the William S. Middleton Memorial Veterans Hospital, Madison, WI USA
| | - Trillian Gregg
- 0000 0001 2167 3675grid.14003.36Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, and the William S. Middleton Memorial Veterans Hospital, Madison, WI USA
| | - Brian A. Schmidt
- 0000 0001 2167 3675grid.14003.36Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, and the William S. Middleton Memorial Veterans Hospital, Madison, WI USA
| | - Dawn S. Sherman
- 0000 0001 2167 3675grid.14003.36Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, and the William S. Middleton Memorial Veterans Hospital, Madison, WI USA
| | - Nicole E. Cummings
- 0000 0001 2167 3675grid.14003.36Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, and the William S. Middleton Memorial Veterans Hospital, Madison, WI USA
| | - Darby C. Peter
- 0000 0001 2167 3675grid.14003.36Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, and the William S. Middleton Memorial Veterans Hospital, Madison, WI USA
| | - Michelle E. Kimple
- 0000 0001 2167 3675grid.14003.36Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, and the William S. Middleton Memorial Veterans Hospital, Madison, WI USA
| | - Dudley W. Lamming
- 0000 0001 2167 3675grid.14003.36Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, and the William S. Middleton Memorial Veterans Hospital, Madison, WI USA
| | - Matthew J. Merrins
- 0000 0001 2167 3675grid.14003.36Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, and the William S. Middleton Memorial Veterans Hospital, Madison, WI USA
| |
Collapse
|
240
|
Porcu C, Sideri S, Martini M, Cocomazzi A, Galli A, Tarantino G, Balsano C. Oleuropein Induces AMPK-Dependent Autophagy in NAFLD Mice, Regardless of the Gender. Int J Mol Sci 2018; 19:3948. [PMID: 30544824 PMCID: PMC6321282 DOI: 10.3390/ijms19123948] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/30/2018] [Accepted: 12/07/2018] [Indexed: 12/12/2022] Open
Abstract
Oleuropein (Ole) is one of the most plentiful phenolic compounds with antioxidant, anti-inflammatory, anti-atherogenic, hypoglycemic and hypolipidemic effects. The aim of our study was to establish whether the positive Ole-related effects on liver steatosis could be associated with autophagy. Female and male C57BL/6J mice were fed normal diet (ND) or high-fat diet (HFD) for eight weeks, and Ole was added or not for the following eight weeks. The autophagy-related proteins Akt, mTOR, AMPK, ULK1, Beclin-1, LC3B and p62/Sqstm1 were analyzed. Interestingly, Ole induced a different regulation of the Akt/mTOR pathway in female compared to male mice, but was able to activate the autophagic process in ND and HFD mice through AMPK-dependent phosphorylation of ULK1 at Ser555, regardless of the gender. Our work reveals the ability of Ole to induce, in liver of ND and HFD mice, autophagy independently by gender-specific mTOR activation. We highlight Ole as a novel therapeutic approach to counteract unhealthy diet-related liver steatosis by targeting autophagy.
Collapse
Affiliation(s)
- Cristiana Porcu
- F. Balsano Foundation, Via Giovanni Battista Martini 6, 00198 Rome, Italy.
- MESVA Department, University of L'Aquila, Piazza S. Salvatore Tommasi 1, 67100 Coppito, L'Aquila, Italy and F. Balsano Foundation, Via Giovanni Battista Martini 6, 00198 Rome, Italy.
| | - Silvia Sideri
- MESVA Department, University of L'Aquila, Piazza S. Salvatore Tommasi 1, 67100 Coppito, L'Aquila, Italy and F. Balsano Foundation, Via Giovanni Battista Martini 6, 00198 Rome, Italy.
| | - Maurizio Martini
- Fondazione Policlinico A. Gemelli, IRCCS, Università Cattolica del Sacro Cuore Rome, Italy.
| | - Alessandra Cocomazzi
- Fondazione Policlinico A. Gemelli, IRCCS, Università Cattolica del Sacro Cuore Rome, Italy.
| | - Andrea Galli
- Gastroenterology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50139 Florence, Italy.
| | - Giovanni Tarantino
- Department of Clinical Medicine and Surgery, Federico II University Medical School of Naples, 80131 Naples, Italy.
| | - Clara Balsano
- F. Balsano Foundation, Via Giovanni Battista Martini 6, 00198 Rome, Italy.
- MESVA Department, University of L'Aquila, Piazza S. Salvatore Tommasi 1, 67100 Coppito, L'Aquila, Italy and F. Balsano Foundation, Via Giovanni Battista Martini 6, 00198 Rome, Italy.
| |
Collapse
|
241
|
Chen SH, Chen HC, Hsieh CL, Chao PM. Electric stimulation of ears accelerates body weight loss mediated by high-fat to low-fat diet switch accompanied by increased white adipose tissue browning in C57BL/6 J mice. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:323. [PMID: 30518367 PMCID: PMC6282328 DOI: 10.1186/s12906-018-2388-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 11/27/2018] [Indexed: 01/09/2023]
Abstract
Background Weight reduction frequently occurs in patients receiving vagus nerve stimulation (VNS) therapy. Therefore, we hypothesized that during dietary intervention for weight loss, auricular electric stimulation (AES), an alternative of VNS, accelerates weight loss by increasing white adipose tissue (WAT) browning and increases energy expenditure. Methods C57BL/6J male mice were fed a high-fat diet for 5 wk. to induce obesity, then switched to a low-fat diet for 5 wk. and allocated into 3 groups to receive 2 Hz electric stimulation on ears, electrode clamps only, or nothing (AES, Sham and Ctrl, respectively). Results Switching to a low-fat diet reduced body weight progressively in all 3 groups, with the greatest reduction in the AES group. In accordance with a mild decrease in feed intake, hypothalamus mRNA levels of Npy, AgRP tended to be reduced, while Pomc tended to be increased by AES. Mice in the AES group had the highest concentrations of norepinephrine in serum and inguinal WAT, and expression levels of uncoupling protein-1 (UCP-1) and tyrosine hydroxylase in inguinal WAT. Furthermore, their subcutaneous adipocytes had multilocular and UCP-1+ characteristics, along with a smaller cell size. Conclusion AES, by increasing WAT browning, could be used in conjunction with a low-fat diet to augment weight loss in addition to suppressing appetite.
Collapse
|
242
|
Banskota S, Yousefpour P, Kirmani N, Li X, Chilkoti A. Long circulating genetically encoded intrinsically disordered zwitterionic polypeptides for drug delivery. Biomaterials 2018; 192:475-485. [PMID: 30504081 DOI: 10.1016/j.biomaterials.2018.11.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 01/01/2023]
Abstract
The clinical utility of many peptide and protein drugs is limited by their short in-vivo half-life. To address this limitation, we report a new class of polypeptide-based materials that have a long plasma circulation time. The design of these polypeptides is motivated by the hypothesis that incorporating a zwitterionic sequence, within an intrinsically disordered polypeptide motif, would impart "stealth" behavior to the polypeptide and increase its plasma residence time, a behavior akin to that of synthetic stealth polymers. We designed these zwitterionic polypeptides (ZIPPs) with a repetitive (VPX1X2G)n motif, where X1 and X2 are cationic and anionic amino acids, respectively, and n is the number of repeats. To test this hypothesis, we synthesized a set of ZIPPs with different pairs of cationic and anionic residues with varied chain length. We show that a combination of lysine and glutamic acid in the ZIPP confer superior pharmacokinetics, for both intravenous and subcutaneous administration, compared to uncharged control polypeptides. Finally, to demonstrate their clinical utility, we fused the best performing ZIPP sequence to glucagon-like peptide-1 (GLP1), a peptide drug used for treatment of type-2 diabetes and show that the ZIPP-GLP1 fusion outperforms an uncharged polypeptide of the same molecular weight in a mouse model of type-2 diabetes.
Collapse
Affiliation(s)
- Samagya Banskota
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Parisa Yousefpour
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Nadia Kirmani
- Department of Biology, Trinity College of Arts and Sciences, Duke University, Durham, NC 27708, USA
| | - Xinghai Li
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
243
|
Alves-Pereira JL, Frantz EDC, Pires LAS, Babinski MA, da Fonte Ramos C. Effects of a high energy density diet in the "corpus cavernosum" of mice. Int J Impot Res 2018; 31:126-131. [PMID: 30327570 DOI: 10.1038/s41443-018-0089-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/03/2018] [Accepted: 09/24/2018] [Indexed: 12/26/2022]
Abstract
Erectile dysfunction is a common condition that affects men over age 40. It is highly related to obesity. The corpus cavernosum is the most important structure involved in erection. The aim of this study was to evaluate the structure of the corpus cavernosum of mice fed with a high energy density diet (HED). At 3 months of age, male C57BL/6 mice were fed with a HED diet (50% lipids) or standard chow (SC) diet (10% lipids) for 14 weeks. Afterwards, the animals were euthanized and the corpus cavernosum was analyzed through stereology. Statistical significance was calculated by the student's t-test (p < 0.05). The group fed with HED diet showed higher values of body weight, blood pressure and higher rates of cholesterol, triglycerides, and glucose from the second week to the end of the experiment. The HED group showed a significant increase in the connective tissue (15%) and a decrease in smooth muscle fibers (41%). The testosterone concentration in the HED group was 63% lower than in SC animals. Animals fed with a HED presented reduced testosterone serum levels and morphological changes on the corpus cavernosum, which may be related to erectile dysfunction.
Collapse
Affiliation(s)
- Jorge L Alves-Pereira
- Department of Anatomy, Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Escola de Ciências da Saúde e Meio Ambiente, Universidade Castelo Branco, Rio de Janeiro, Brazil
| | - Eliete Dalla Corte Frantz
- Department of Anatomy, Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Marcio Antonio Babinski
- Medical Sciences Post Graduation Program, Fluminense Federal University, Rio de Janeiro, Brazil.
| | - Cristiane da Fonte Ramos
- Department of Anatomy, Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
244
|
Elhaik Goldman S, Goez D, Last D, Naor S, Liraz Zaltsman S, Sharvit-Ginon I, Atrakchi-Baranes D, Shemesh C, Twitto-Greenberg R, Tsach S, Lotan R, Leikin-Frenkel A, Shish A, Mardor Y, Schnaider Beeri M, Cooper I. High-fat diet protects the blood-brain barrier in an Alzheimer's disease mouse model. Aging Cell 2018; 17:e12818. [PMID: 30079520 PMCID: PMC6156545 DOI: 10.1111/acel.12818] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 06/12/2018] [Accepted: 06/24/2018] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes (T2D) is associated with increased risk of Alzheimer's disease (AD). There is evidence for impaired blood-brain barrier (BBB) in both diseases, but its role in the interplay between them is not clear. Here, we investigated the effects of high-fat diet (HFD), a model for T2D, on the Tg2576 mouse model of AD, in regard to BBB function. We showed that HFD mice had higher weight, more insulin resistance, and higher serum HDL cholesterol levels, primarily in Tg2576 mice, which also had higher brain lipids content. In terms of behavior, Tg2576 HFD mice were less active and more anxious, but had better learning in the Morris Water Maze compared to Tg2576 on regular diet. HFD had no effect on the level of amyloid beta 1-42 in the cortex of Tg2576 mice, but increased the transcription level of insulin receptor in the hippocampus. Tg2576 mice on regular diet demonstrated more BBB disruption at 8 and 12 months accompanied by larger lateral ventricles volume in contrast to Tg2576 HFD mice, whose BBB leakage and ventricular volume were similar to wild-type (WT) mice. Our results suggest that in AD, HFD may promote better cognitive function through improvements of BBB function and of brain atrophy but not of amyloid beta levels. Lipid metabolism in the CNS and peripheral tissues and brain insulin signaling may underlie this protection.
Collapse
Affiliation(s)
- Shirin Elhaik Goldman
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
- Gonda Brain Research Center; Bar Ilan University; Ramat-Gan Israel
| | - David Goez
- The Advanced Technology Center, Sheba Medical Center; Tel-Hashomer; Ramat-Gan Israel
| | - David Last
- The Advanced Technology Center, Sheba Medical Center; Tel-Hashomer; Ramat-Gan Israel
| | - Sharone Naor
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
| | - Sigal Liraz Zaltsman
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
- Pharmacology Division, Faculty of Medicine, The Institute for Drug Research, School of Pharmacy; Hebrew University of Jerusalem; Jerusalem Israel
| | - Inbal Sharvit-Ginon
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
- Department of Psychology; Bar Ilan University; Ramat-Gan Israel
| | - Dana Atrakchi-Baranes
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
| | - Chen Shemesh
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
| | - Rachel Twitto-Greenberg
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
- The Bert W. Strassburger Lipid Center, Sheba Medical Center; Tel-Hashomer; Ramat-Gan Israel
| | - Shoval Tsach
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
| | - Roni Lotan
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
| | - Alicia Leikin-Frenkel
- The Bert W. Strassburger Lipid Center, Sheba Medical Center; Tel-Hashomer; Ramat-Gan Israel
- Sackler Faculty of Medicine; Tel-Aviv University; Tel-Aviv Israel
| | - Aviv Shish
- The Bert W. Strassburger Lipid Center, Sheba Medical Center; Tel-Hashomer; Ramat-Gan Israel
| | - Yael Mardor
- The Advanced Technology Center, Sheba Medical Center; Tel-Hashomer; Ramat-Gan Israel
- Sackler Faculty of Medicine; Tel-Aviv University; Tel-Aviv Israel
| | - Michal Schnaider Beeri
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
- Department of Psychiatry; The Icahn School of Medicine at Mount Sinai; New York New York
- The Interdisciplinary Center; Herzliya Israel
| | - Itzik Cooper
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
- The Interdisciplinary Center; Herzliya Israel
| |
Collapse
|
245
|
Abdelazez A, Abdelmotaal H, Evivie SE, Melak S, Jia FF, Khoso MH, Zhu ZT, Zhang LJ, Sami R, Meng XC. Screening Potential Probiotic Characteristics of Lactobacillus brevis Strains In Vitro and Intervention Effect on Type I Diabetes In Vivo. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7356173. [PMID: 30327780 PMCID: PMC6169223 DOI: 10.1155/2018/7356173] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/21/2018] [Accepted: 08/08/2018] [Indexed: 12/30/2022]
Abstract
Diabetes has become the third most serious threat to human health, after cancer and cardiovascular disease. Notably, Lactobacillus brevis is the most common species of LAB that produces γ-aminobutyric acid (GABA). The aim of this study is to clarify the effect of time, strain types, antibiotic concentrations, different levels of pH, and intestinal juices in aerobic or anaerobic conditions and the effect of interactions between these factors on the potential properties of KLDS 1.0727 and KLDS 1.0373, furthermore, antagonistic activity against foodborne pathogens. Moreover, another aim is to study the capability of KLDS 1.0727 and KLDS 1.0373 strains as gad gene carriers to express GABA that reduce the risk of type 1 diabetes in C57BL/6 mice as diabetic models. The obtained results exhibited the surprising tolerance of Lactobacillus brevis strains in vitro digestion models mimicking the conditions of the gastrointestinal tract, further, large antagonistic activity against foodborne pathogeneses. In vivo results displayed the significant effect on glucose level reduction, blood plasma, and histological assays of mice organs. As recommended, the use of Lactobacillus brevis strains should be widely shared in the market as a natural source of GABA in pharmaceutical and food applications.
Collapse
Affiliation(s)
- Amro Abdelazez
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- Department of Dairy Microbiology, Animal Production Research Institute, Agriculture Research Centre, Dokki, Giza 12618, Egypt
| | - Heba Abdelmotaal
- Department of Microbiology, Soil, Water, Environment, and Microbiology Research Institute, Agriculture Research Center, Giza 12619, Egypt
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Smith Etareri Evivie
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- Department of Animal Science, Faculty of Agricultural, University of Benin, 1154, Benin City, Edo State, Nigeria
| | - Sherif Melak
- Department of Animal Science and Biotechnology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Department of Sheep and Goat, Animal Production Research Institute, Agriculture Research Centre, Dokki, Giza 12618, Egypt
| | - Fang-Fang Jia
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Mir Hassan Khoso
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Zong-Tao Zhu
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Lu-Ji Zhang
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Rokayya Sami
- Department of Food Science and Nutrition, Taif University, Taif, Al-huwayah 888, Saudi Arabia
| | - Xiang-Chen Meng
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
246
|
Kandhare AD, Bandyopadhyay D, Thakurdesai PA. Low molecular weight galactomannans-based standardized fenugreek seed extract ameliorates high-fat diet-induced obesity in mice via modulation of FASn, IL-6, leptin, and TRIP-Br2. RSC Adv 2018; 8:32401-32416. [PMID: 35547667 PMCID: PMC9086199 DOI: 10.1039/c8ra05204b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 09/04/2018] [Indexed: 12/11/2022] Open
Abstract
Background: Obesity is a complex, chronic metabolic disorder and its prevalence is increasing throughout most of the world. Low molecular weight galactomannans-based standardized fenugreek seed extract (LMWGAL-TF) has previously shown anti-diabetic and anti-hyperlipidemic potential. Aim: To evaluate the efficacy and mechanism of action of LMWGAL-TF in treating high fat diet (HFD)-induced obesity and hyperlipidemia in mice. Materials and methods: Male C57BL/6 mice were fed the HFD for 12 weeks and were co-administered with LMWGAL-TF (10, 30 and 100 mg kg-1, p.o.). Variables measured were behavioral, biochemical, molecular and histopathological. In a separate in vitro experiment, copper-ascorbate (Cu-As)-induced mitochondrial oxidative damage was evaluated. Results: The HFD-induced increase (p < 0.001) in body weight, fat mass, lean mass, adipose tissue (brown, mesenteric, epididymal and retroperitoneal) and liver weight was significantly attenuated (p < 0.001) by LMWGAL-TF (30 and 100 mg kg-1). The HFD-induced elevated levels of serum lipid, interleukins (ILs)-6 and leptin were significantly decreased (p < 0.001) by LMWGAL-TF (30 and 100 mg kg-1). Elevated fatty acid synthase (FASn), IL-6, leptin and transcriptional regulator interacting with the PHD-bromodomain 2 (TRIP-Br2) mRNA expression in brown adipose tissue (BAT), liver, and epididymal fat were significantly down-regulated (p < 0.001) by LMWGAL-TF (30 and 100 mg kg-1). Additionally, HFD-induced histological alterations in skeletal muscle, liver, white adipose tissue (WAT) and BAT were also reduced by LMWGAL-TF. Furthermore, the Cu-As-induced alteration in mitochondria oxidative stress (lipid peroxidation, protein carbonylation, glutathione, glutathione reductase, glutathione peroxidase, isocitrate dehydrogenase and α-ketoglutarate dehydrogenase) in skeletal muscle and BAT was significantly (p < 0.001) ameliorated by LMWGAL-TF (2, 4 and 6 mg mL-1) treatment. It also reduced the Cu-As-induced mitochondrial swelling. Conclusion: LMWGAL-TF showed its beneficial effect in reducing HFD-induced obesity via down-regulation of FASn, IL-6, leptin, and TRIP-Br2 in mice.
Collapse
Affiliation(s)
- Amit D Kandhare
- Department of Scientific Affairs, Indus Biotech Private Limited 1, Rahul Residency, Off Salunke Vihar Road, Kondhwa Pune 411048 Maharashtra India +91-9226164041
| | - Debasish Bandyopadhyay
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, University College of Science and Technology Kolkata 700 009 India
| | - Prasad A Thakurdesai
- Department of Scientific Affairs, Indus Biotech Private Limited 1, Rahul Residency, Off Salunke Vihar Road, Kondhwa Pune 411048 Maharashtra India +91-9226164041
| |
Collapse
|
247
|
Wang Y, Wen L, Zhou S, Zhang Y, Wang XH, He YY, Davie A, Broadbent S. Effects of four weeks intermittent hypoxia intervention on glucose homeostasis, insulin sensitivity, GLUT4 translocation, insulin receptor phosphorylation, and Akt activity in skeletal muscle of obese mice with type 2 diabetes. PLoS One 2018; 13:e0203551. [PMID: 30199540 PMCID: PMC6130870 DOI: 10.1371/journal.pone.0203551] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/22/2018] [Indexed: 01/03/2023] Open
Abstract
AIMS The aims of this study were to determine the effects of four weeks of intermittent exposure to a moderate hypoxia environment (15% oxygen), and compare with the effects of exercise in normoxia or hypoxia, on glucose homeostasis, insulin sensitivity, GLUT4 translocation, insulin receptor phosphorylation, Akt-dependent GSK3 phosphorylation and Akt activity in skeletal muscle of obese mice with type 2 diabetes. METHODS C57BL/6J mice that developed type 2 diabetes with a high-fat-diet (55% fat) (fasting blood glucose, FBG = 13.9 ± 0.69 (SD) mmol/L) were randomly allocated into diabetic control (DC), rest in hypoxia (DH), exercise in normoxia (DE), and exercise in hypoxia (DHE) groups (n = 7, each), together with a normal-diet (4% fat) control group (NC, FBG = 9.1 ± 1.11 (SD) mmol/L). The exercise groups ran on a treadmill at intensities of 75-90% VO2max. The interventions were applied one hour per day, six days per week for four weeks. Venous blood samples were analysed for FBG, insulin (FBI) and insulin sensitivity (QUICKI) pre and post the intervention period. The quadriceps muscle samples were collected 72 hours post the last intervention session for analysis of GLUT4 translocation, insulin receptor phosphorylation, Akt expression and phosphorylated GSK3 fusion protein by western blot. Akt activity was determined by the ratio of the phosphorylated GSK3 fusion protein to the total Akt protein. RESULTS The FBG of the DH, DE and DHE groups returned to normal level (FBG = 9.4 ± 1.50, 8.86 ± 0.94 and 9.0 ± 1.13 (SD) mmol/L for DH, DE and DHE respectively, P < 0.05), with improved insulin sensitivity compared to DC (P < 0.05), after the four weeks treatment, while the NC and DC showed no significant changes, as analysed by general linear model with repeated measures. All three interventions resulted in a significant increase of GLUT4 translocation to cell membrane compared to the DC group (P < 0.05). The DE and DH showed a similar level of insulin receptor phosphorylation compared with NC that was significantly lower than the DC (P < 0.05) post intervention. The DH and DHE groups showed a significantly higher Akt activity compared to the DE, DC and NC (P < 0.05) post intervention, as analysed by one-way ANOVA. CONCLUSIONS This study produced new evidence that intermittent exposure to mild hypoxia (0.15 FiO2) for four weeks resulted in normalisation of FBG, improvement in whole body insulin sensitivity, and a significant increase of GLUT4 translocation in the skeletal muscle, that were similar to the effects of exercise intervention during the same time period, in mice with diet-induced type 2 diabetes. However, exercise in hypoxia for four weeks did not have additive effects on these responses. The outcomes of the research may contribute to the development of effective, alternative and complementary interventions for management of hyperglycaemia and type 2 diabetes, particularly for individuals with limitations in participation of physical activity.
Collapse
Affiliation(s)
- Yun Wang
- School of Health and Human Sciences, Southern Cross University, Lismore, Australia
| | - Li Wen
- Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, China
| | - Shi Zhou
- School of Health and Human Sciences, Southern Cross University, Lismore, Australia
| | - Yong Zhang
- Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, China
| | - Xin-Hao Wang
- Department of Health and Exercise Science, Tianjin University of Sport, Tianjin, China
| | - You-Yu He
- Department of Health and Exercise Science, Tianjin University of Sport, Tianjin, China
| | - Allan Davie
- School of Health and Human Sciences, Southern Cross University, Lismore, Australia
| | - Suzanne Broadbent
- School of Health and Human Sciences, Southern Cross University, Lismore, Australia
| |
Collapse
|
248
|
Ciric D, Martinovic T, Petricevic S, Trajkovic V, Bumbasirevic V, Kravic-Stevovic T. Metformin exacerbates and simvastatin attenuates myelin damage in high fat diet-fed C57BL/6 J mice. Neuropathology 2018; 38:468-474. [DOI: 10.1111/neup.12507] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/19/2018] [Accepted: 07/16/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Darko Ciric
- Institute of Histology and Embryology, School of Medicine; University of Belgrade; Belgrade Serbia
| | - Tamara Martinovic
- Institute of Histology and Embryology, School of Medicine; University of Belgrade; Belgrade Serbia
| | | | - Vladimir Trajkovic
- Institute of Microbiology and Immunology, School of Medicine; University of Belgrade; Belgrade Serbia
| | - Vladimir Bumbasirevic
- Institute of Histology and Embryology, School of Medicine; University of Belgrade; Belgrade Serbia
| | - Tamara Kravic-Stevovic
- Institute of Histology and Embryology, School of Medicine; University of Belgrade; Belgrade Serbia
| |
Collapse
|
249
|
He H, Holl K, DeBehnke S, Yeo CT, Hansen P, Gebre AK, Leone-Kabler S, Ruas M, Parks JS, Parrington J, Solberg Woods LC. Tpcn2 knockout mice have improved insulin sensitivity and are protected against high-fat diet-induced weight gain. Physiol Genomics 2018; 50:605-614. [PMID: 29750602 DOI: 10.1152/physiolgenomics.00135.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Type 2 diabetes is a complex disorder affected by multiple genes and the environment. Our laboratory has shown that in response to a glucose challenge, two-pore channel 2 ( Tpcn2) knockout mice exhibit a decreased insulin response but normal glucose clearance, suggesting they have improved insulin sensitivity compared with wild-type mice. We tested the hypothesis that improved insulin sensitivity in Tpcn2 knockout mice would protect against the negative effects of a high fat diet. Male and female Tpcn2 knockout (KO), heterozygous (Het), and wild-type (WT) mice were fed a low-fat (LF) or high-fat (HF) diet for 24 wk. HF diet significantly increases body weight in WT mice relative to those on the LF diet; this HF diet-induced increase in body weight is blunted in the Het and KO mice. Despite the protection against diet-induced weight gain, however, Tpcn2 KO mice are not protected against HF-diet-induced changes in glucose or insulin area under the curve during glucose tolerance tests in female mice, while HF diet has no significant effect on glucose tolerance in the male mice, regardless of genotype. Glucose disappearance during an insulin tolerance test is augmented in male KO mice, consistent with our previous findings suggesting enhanced insulin sensitivity in these mice. Male KO mice exhibit increased fasting plasma total cholesterol and triglyceride concentrations relative to WT mice on the LF diet, but this difference disappears in HF diet-fed mice where there is increased cholesterol and triglycerides across all genotypes. These data demonstrate that knockout of Tpcn2 may increase insulin action in male, but not female, mice. In addition, both male and female KO mice are protected against diet-induced weight gain, but this protection is likely independent from glucose tolerance, insulin sensitivity, and plasma lipid levels.
Collapse
Affiliation(s)
- Hong He
- Department of Pediatrics, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Katie Holl
- Department of Pediatrics, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Sarah DeBehnke
- Department of Pediatrics, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Chay Teng Yeo
- Department of Pediatrics, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Polly Hansen
- Department of Pediatrics, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Abraham K Gebre
- Department of Internal Medicine-Section on Molecular Medicine, Wake Forest School of Medicine , Winston Salem, North Carolina
| | - Sandra Leone-Kabler
- Department of Internal Medicine-Section on Molecular Medicine, Wake Forest School of Medicine , Winston Salem, North Carolina
| | - Margarida Ruas
- Department of Pharmacology, University of Oxford , Oxford , United Kingdom
| | - John S Parks
- Department of Internal Medicine-Section on Molecular Medicine, Wake Forest School of Medicine , Winston Salem, North Carolina
| | - John Parrington
- Department of Pharmacology, University of Oxford , Oxford , United Kingdom
| | - Leah C Solberg Woods
- Department of Internal Medicine-Section on Molecular Medicine, Wake Forest School of Medicine , Winston Salem, North Carolina
| |
Collapse
|
250
|
Harrison LM, Gaines DW, Babu US, Balan KV, Reimschuessel R, Do AB, Pereira MR, Bigley EC, Ferguson M, Mehta A, Williams KM. Diet-induced obesity precipitates kidney dysfunction and alters inflammatory mediators in mice treated with Shiga Toxin 2. Microb Pathog 2018; 123:250-258. [PMID: 30016681 DOI: 10.1016/j.micpath.2018.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 11/26/2022]
Abstract
Shiga Toxin (Stx)-producing E. coli (STEC) continue to be a prominent cause of foodborne outbreaks of hemorrhagic colitis worldwide, and can result in life-threatening diseases, including hemolytic uremic syndrome (HUS), in susceptible individuals. Obesity-associated immune dysfunction has been shown to be a risk factor for infectious diseases, although few studies have addressed the role of obesity in foodborne diseases. We hypothesized that obesity may affect the development of HUS through an alteration of immune responses and kidney function. We combined diet-induced obese (DIO) and HUS mouse models to look for differences in disease outcome between DIO and wild-type (WT) male and female C57 B l/6 mice. Following multiple intraperitoneal injections with endotoxin-free saline or sublethal doses of purified Stx2, we examined DIO and WT mice for signs of HUS development. DIO mice receiving Stx2 injections lost more body weight, and had significantly higher (p < 0.001) BUN, serum creatinine, and neutrophil counts compared to WT mice or DIO mice receiving saline injections. Lymphocyte counts were significantly (p < 0.05) lower in Stx2-treated obese mice compared to WT mice or saline-treated DIO mice. In addition to increased Stx2-induced kidney dysfunction, DIO mouse kidneys also had significantly increased expression of IL-1α, IL-1β, IL-6, TNF-α, MCP-1, and KC RNA compared to saline controls (p < 0.05). Serum cytokine levels of IL-6 and KC were also significantly higher in Stx2-treated mice compared to saline controls, but there were no significant differences between the WT and DIO mice. WT and DIO mice treated with Stx2 exhibited significantly higher degrees of kidney tubular dilation and necrosis as well as some signs of tissue repair/regeneration, but did not appear to progress to the full pathology typically associated with human HUS. Although the combined obesity/HUS mouse model did not manifest into HUS symptoms and pathogenesis, these data demonstrate that obesity alters kidney function, inflammatory cells and cytokine production in response to Stx2, and may play a role in HUS severity in a susceptible model of infection.
Collapse
Affiliation(s)
- Lisa M Harrison
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD, 20708, USA.
| | - Dennis W Gaines
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD, 20708, USA
| | - Uma S Babu
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD, 20708, USA
| | - Kannan V Balan
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD, 20708, USA
| | - Renate Reimschuessel
- Office of Research, Center for Veterinary Medicine, Food and Drug Administration, 8401 Muirkirk Road, Laurel, MD, 20708, USA
| | - Andrew B Do
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD, 20708, USA
| | - Marion R Pereira
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD, 20708, USA
| | - Elmer C Bigley
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD, 20708, USA
| | - Martine Ferguson
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD, 20708, USA
| | - Akshita Mehta
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD, 20708, USA
| | - Kristina M Williams
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD, 20708, USA
| |
Collapse
|