201
|
Dudzińska E, Grabrucker AM, Kwiatkowski P, Sitarz R, Sienkiewicz M. The Importance of Visceral Hypersensitivity in Irritable Bowel Syndrome-Plant Metabolites in IBS Treatment. Pharmaceuticals (Basel) 2023; 16:1405. [PMID: 37895876 PMCID: PMC10609912 DOI: 10.3390/ph16101405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
The visceral stimuli from the digestive tract are transmitted via afferent nerves through the spinal cord to the brain, where they are felt as pain. The overreaction observed in the brain of irritable bowel syndrome (IBS) patients may be due to increased peripheral sensitivity to stimuli from the gastrointestinal tract. Although the exact pathway is uncertain, attenuation of visceral hypersensitivity is still of interest in treating IBS. It has been shown that stress stimulates the sympathetic nervous system while inhibiting the vagus nerve (VN). In addition, stress factors lead to dysbiosis and chronic low-grade inflammation of the intestinal mucosa, which can lead to lower gastrointestinal visceral hypersensitivity. Therefore, an important goal in the treatment of IBS is the normalization of the intestinal microflora. An interesting option seems to be nutraceuticals, including Terminalia chebula, which has antibacterial and antimicrobial activity against various pathogenic Gram-positive and Gram-negative bacteria. Additionally, short-term transcutaneous vagus nerve stimulation can reduce the stress-induced increase in intestinal permeability, thereby reducing inflammation. The conducted studies also indicate a relationship between the stimulation of the vagus nerve (VN) and the activation of neuromodulatory networks in the central nervous system. Therefore, it seems reasonable to conclude that a two-way action through stimulating the VN and using nutraceuticals may become an effective therapy in treating IBS.
Collapse
Affiliation(s)
- Ewa Dudzińska
- Department of Dietetics and Nutrition Education, Medical University of Lublin, 20-093 Lublin, Poland
| | - Andreas M. Grabrucker
- Department of Biological Sciences, University of Limerick, V94 PH61 Limerick, Ireland;
- Bernal Institute, University of Limerick, V94 PH61 Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, V94 PH61 Limerick, Ireland
| | - Paweł Kwiatkowski
- Department of Diagnostic Immunology, Pomeranian Medical University in Szczecin, Al. Powstancow Wlkp. 72, 70-111 Szczecin, Poland;
| | - Robert Sitarz
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland;
- First Department of Surgical Oncology, St. John’s Cancer Center, 20-090 Lublin, Poland
| | - Monika Sienkiewicz
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| |
Collapse
|
202
|
Acero VP, Cribas ES, Browne KD, Rivellini O, Burrell JC, O’Donnell JC, Das S, Cullen DK. Bedside to bench: the outlook for psychedelic research. Front Pharmacol 2023; 14:1240295. [PMID: 37869749 PMCID: PMC10588653 DOI: 10.3389/fphar.2023.1240295] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/30/2023] [Indexed: 10/24/2023] Open
Abstract
There has recently been a resurgence of interest in psychedelic compounds based on studies demonstrating their potential therapeutic applications in treating post-traumatic stress disorder, substance abuse disorders, and treatment-resistant depression. Despite promising efficacy observed in some clinical trials, the full range of biological effects and mechanism(s) of action of these compounds have yet to be fully established. Indeed, most studies to date have focused on assessing the psychological mechanisms of psychedelics, often neglecting the non-psychological modes of action. However, it is important to understand that psychedelics may mediate their therapeutic effects through multi-faceted mechanisms, such as the modulation of brain network activity, neuronal plasticity, neuroendocrine function, glial cell regulation, epigenetic processes, and the gut-brain axis. This review provides a framework supporting the implementation of a multi-faceted approach, incorporating in silico, in vitro and in vivo modeling, to aid in the comprehensive understanding of the physiological effects of psychedelics and their potential for clinical application beyond the treatment of psychiatric disorders. We also provide an overview of the literature supporting the potential utility of psychedelics for the treatment of brain injury (e.g., stroke and traumatic brain injury), neurodegenerative diseases (e.g., Parkinson's and Alzheimer's diseases), and gut-brain axis dysfunction associated with psychiatric disorders (e.g., generalized anxiety disorder and major depressive disorder). To move the field forward, we outline advantageous experimental frameworks to explore these and other novel applications for psychedelics.
Collapse
Affiliation(s)
- Victor P. Acero
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
- Penn Psychedelics Collaborative, University of Pennsylvania, Philadelphia, PA, United States
| | - Emily S. Cribas
- Penn Psychedelics Collaborative, University of Pennsylvania, Philadelphia, PA, United States
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kevin D. Browne
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Olivia Rivellini
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Penn Psychedelics Collaborative, University of Pennsylvania, Philadelphia, PA, United States
| | - Justin C. Burrell
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - John C. O’Donnell
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Penn Psychedelics Collaborative, University of Pennsylvania, Philadelphia, PA, United States
| | - Suradip Das
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - D. Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
203
|
Aruchunan M, Nivethitha L. Yoga may help to reduce gut microbiota dysbiosis in rheumatoid arthritis: A hypothesis. Int J Rheum Dis 2023; 26:1908-1910. [PMID: 36717087 DOI: 10.1111/1756-185x.14589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/12/2022] [Accepted: 01/16/2023] [Indexed: 02/01/2023]
Affiliation(s)
- Mooventhan Aruchunan
- Department of Research, Government Yoga and Naturopathy Medical College, Chennai, India
| | - L Nivethitha
- Department of Naturopathy, Government Yoga and Naturopathy Medical College, Chennai, India
| |
Collapse
|
204
|
Chan KL, Poller WC, Swirski FK, Russo SJ. Central regulation of stress-evoked peripheral immune responses. Nat Rev Neurosci 2023; 24:591-604. [PMID: 37626176 PMCID: PMC10848316 DOI: 10.1038/s41583-023-00729-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 08/27/2023]
Abstract
Stress-linked psychiatric disorders, including anxiety and major depressive disorder, are associated with systemic inflammation. Recent studies have reported stress-induced alterations in haematopoiesis that result in monocytosis, neutrophilia, lymphocytopenia and, consequently, in the upregulation of pro-inflammatory processes in immunologically relevant peripheral tissues. There is now evidence that this peripheral inflammation contributes to the development of psychiatric symptoms as well as to common co-morbidities of psychiatric disorders such as metabolic syndrome and immunosuppression. Here, we review the specific brain and spinal regions, and the neuronal populations within them, that respond to stress and transmit signals to peripheral tissues via the autonomic nervous system or neuroendocrine pathways to influence immunological function. We comprehensively summarize studies that have employed retrograde tracing to define neurocircuits linking the brain to the bone marrow, spleen, gut, adipose tissue and liver. Moreover, we highlight studies that have used chemogenetic or optogenetic manipulation or intracerebroventricular administration of peptide hormones to control somatic immune responses. Collectively, this growing body of literature illustrates potential mechanisms through which stress signals are conveyed from the CNS to immune cells to regulate stress-relevant behaviours and comorbid pathophysiology.
Collapse
Affiliation(s)
- Kenny L Chan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Wolfram C Poller
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Filip K Swirski
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Scott J Russo
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
205
|
Matiș L, Alexandru BA, Ghitea TC. Catecholamine Variations in Pediatric Gastrointestinal Disorders and Their Neuropsychiatric Expression. Biomedicines 2023; 11:2600. [PMID: 37892974 PMCID: PMC10604142 DOI: 10.3390/biomedicines11102600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
The interplay between the central nervous system and the intestinal environment hinges on neural, hormonal, immune, and metabolic reactions. Over decades, significant effort has gone into exploring the link between the digestive system and the brain. The primary objective of this study is to assess catecholamine levels in children with neuropsychiatric disorders. We aim to examine how these levels impact the mental and physical wellbeing of these children, with a specific focus on psychoemotional symptoms and cognitive performance. Our research seeks to identify the significance of modifying neurotransmitter levels in pediatric medical interventions, ultimately striving to reduce mental health risks and enhance children's future development. A total of 135 individuals were chosen to partake, and they engaged in regular monthly consultations according to established study protocols. Clinical evaluations were conducted in a medical environment, encompassing the observation of constipation, diarrhea, and additional gastrointestinal anomalies not confined to constipation or diarrhea. This entailed the assessment of neurotransmitter imbalances, with a specific focus on dopamine, adrenaline, noradrenaline, and the noradrenaline/adrenaline ratio. Gastrointestinal disorders are indicative of imbalances in catecholamines, with lower gastrointestinal problems being correlated with such imbalances. In subjects with psychiatric disorders, a more pronounced dopamine and noradrenaline/adrenaline ratio was observed, while elevated adrenaline levels were associated with psychoanxiety disorders.
Collapse
|
206
|
Landgraaf RG, Bloem MN, Fumagalli M, Benninga MA, de Lorijn F, Nieuwdorp M. Acupuncture as multi-targeted therapy for the multifactorial disease obesity: a complex neuro-endocrine-immune interplay. Front Endocrinol (Lausanne) 2023; 14:1236370. [PMID: 37795371 PMCID: PMC10545882 DOI: 10.3389/fendo.2023.1236370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/29/2023] [Indexed: 10/06/2023] Open
Abstract
The prevalence of obesity has reached pandemic dimensions. It is associated with multiple comorbidities and is becoming a clinical and public health threat. Obesity is a multifactorial disease with a complex pathophysiology and interplay of various systems. A strong interplay exists between the neuro-endocrine system, the immune system with systemic chronic low-grade inflammation, and microbiome dysbiosis that can lead to the development of obesity, which in turn can exacerbate each of these factors, hence creating a vicious cycle. The conventional treatment with lifestyle modifications such as diet, physical exercise, pharmacotherapy, and bariatric surgery does not always result in sufficient weight control thus paving the way for other strategies. As one such strategy, acupuncture is increasingly used worldwide to treat obesity. This narrative review outlines the evidence for this neuro-endocrine-immune interplay in the pathophysiology of obesity. Furthermore, the existing experimental and clinical evidence of acupuncture as a multi-targeted therapy for obesity is explained and future research perspectives are discussed.
Collapse
Affiliation(s)
- Raymond Guy Landgraaf
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands
- Sinomedica Gui Sheng Tang, Scientific Department, Lugano, Switzerland
| | - Michelle Nicté Bloem
- Emma Children’s Hospital, Amsterdam University Medical Center (UMC), Pediatric Gastroenterology, University of Amsterdam, Amsterdam, Netherlands
| | - Massimo Fumagalli
- Sinomedica Gui Sheng Tang, Scientific Department, Lugano, Switzerland
| | - Marc Alexander Benninga
- Emma Children’s Hospital, Amsterdam University Medical Center (UMC), Pediatric Gastroenterology, University of Amsterdam, Amsterdam, Netherlands
| | - Fleur de Lorijn
- Emma Children’s Hospital, Amsterdam University Medical Center (UMC), Pediatric Gastroenterology, University of Amsterdam, Amsterdam, Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
207
|
Boahen A, Hu D, Adams MJ, Nicholls PK, Greene WK, Ma B. Bidirectional crosstalk between the peripheral nervous system and lymphoid tissues/organs. Front Immunol 2023; 14:1254054. [PMID: 37767094 PMCID: PMC10520967 DOI: 10.3389/fimmu.2023.1254054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The central nervous system (CNS) influences the immune system generally by regulating the systemic concentration of humoral substances (e.g., cortisol and epinephrine), whereas the peripheral nervous system (PNS) communicates specifically with the immune system according to local interactions/connections. An imbalance between the components of the PNS might contribute to pathogenesis and the further development of certain diseases. In this review, we have explored the "thread" (hardwiring) of the connections between the immune system (e.g., primary/secondary/tertiary lymphoid tissues/organs) and PNS (e.g., sensory, sympathetic, parasympathetic, and enteric nervous systems (ENS)) in health and disease in vitro and in vivo. Neuroimmune cell units provide an anatomical and physiological basis for bidirectional crosstalk between the PNS and the immune system in peripheral tissues, including lymphoid tissues and organs. These neuroimmune interactions/modulation studies might greatly contribute to a better understanding of the mechanisms through which the PNS possibly affects cellular and humoral-mediated immune responses or vice versa in health and diseases. Physical, chemical, pharmacological, and other manipulations of these neuroimmune interactions should bring about the development of practical therapeutic applications for certain neurological, neuroimmunological, infectious, inflammatory, and immunological disorders/diseases.
Collapse
Affiliation(s)
- Angela Boahen
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri-Kembangan, Selangor, Malaysia
| | - Dailun Hu
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Murray J. Adams
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Philip K. Nicholls
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Wayne K. Greene
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Bin Ma
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
208
|
Wang J, Chen Y, Li M, Xia S, Zhao K, Fan H, Ni J, Sun W, Jia X, Lai S. The effects of differential feeding on ileum development, digestive ability and health status of newborn calves. Front Vet Sci 2023; 10:1255122. [PMID: 37745216 PMCID: PMC10514501 DOI: 10.3389/fvets.2023.1255122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Pre-weaning is the most important period for the growth and development of calves. Intestinal morphology, microbial community and immunity are initially constructed at this stage, and even have a lifelong impact on calves. Early feeding patterns have a significant impact on gastrointestinal development and microbial communities. This study mainly analyzed the effects of three feeding methods on the gastrointestinal development of calves, and provided a theoretical basis for further improving the feeding mode of calves. it is very important to develop a suitable feeding mode. In this study, we selected nine newborn healthy Holstein bull calves were randomly selected and divided into three groups (n = 3), which were fed with starter + hay + milk (SH group), starter + milk (SF group), total mixed ration + milk (TMR group). After 80 days of feeding Feeding to 80 days of age after, the ileum contents and blood samples were collected, and the differences were compared and analyzed by metagenomic analysis and serum metabolomics analysis. Results show that compared with the other two groups, the intestinal epithelium of the SH group was more complete and the goblet cells developed better. The feeding method of SH group was more conducive to the development of calves, with higher daily gain and no pathological inflammatory reaction. The intestinal microbial community was more conducive to digestion and absorption, and the immunity was stronger. These findings are helpful for us to explore better calf feeding patterns. In the next step, we will set up more biological replicates to study the deep-seated reasons for the differences in the development of pre-weaning calves. At the same time, the new discoveries of neuro microbiology broaden our horizons and are the focus of our future attention.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Songjia Lai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
209
|
Hu Q, Hou S, Xiong B, Wen Y, Wang J, Zeng J, Ma X, Wang F. Therapeutic Effects of Baicalin on Diseases Related to Gut-Brain Axis Dysfunctions. Molecules 2023; 28:6501. [PMID: 37764277 PMCID: PMC10535911 DOI: 10.3390/molecules28186501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/10/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The gut-brain axis is an active area of research. Several representative diseases, including central nervous system disorders (Alzheimer's disease, Parkinson's disease, and depression), metabolic disorders (obesity-related diseases), and intestinal disorders (inflammatory bowel disease and dysbiosis), are associated with the dysfunctional gut-brain axis. Baicalin, a bioactive flavonoid extracted from Scutellaria baicalensis, is reported to exert various pharmacological effects. This narrative review summarizes the molecular mechanisms and potential targets of baicalin in disorders of the gut-brain axis. Baicalin protects the central nervous system through anti-neuroinflammatory and anti-neuronal apoptotic effects, suppresses obesity through anti-inflammatory and antioxidant effects, and alleviates intestinal disorders through regulatory effects on intestinal microorganisms and short-chain fatty acid production. The bioactivities of baicalin are mediated through the gut-brain axis. This review comprehensively summarizes the regulatory role of baicalin in gut-brain axis disorders, laying a foundation for future research, although further confirmatory basic research is required.
Collapse
Affiliation(s)
- Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.H.); (S.H.); (J.W.)
| | - Shuyu Hou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.H.); (S.H.); (J.W.)
| | - Baoyi Xiong
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China;
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
| | - Jundong Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.H.); (S.H.); (J.W.)
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China;
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.H.); (S.H.); (J.W.)
| | - Fang Wang
- Department of Pharmacy, Medical Supplies Center of PLA General of PLA General Hospital, Beijing 100039, China
| |
Collapse
|
210
|
Abdullahi A, Wong TWL, Ng SSM. Putative role of non-invasive vagus nerve stimulation in cancer pathology and immunotherapy: Can this be a hidden treasure, especially for the elderly? Cancer Med 2023; 12:19081-19090. [PMID: 37587897 PMCID: PMC10557911 DOI: 10.1002/cam4.6466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/09/2023] [Accepted: 07/16/2023] [Indexed: 08/18/2023] Open
Abstract
Cancer is globally a disease of significant public health concern owing to its prevalence, and association with morbidity and mortality. Thus, cost-effective treatments for cancer are important to help reduce its significant morbidity and mortality. However, the current therapeutic options for cancer such as chemotherapy, radiotherapy, and surgery may produce serious adverse events such as nausea, vomiting, fatigue, and peripheral neuropathy, especially in the long term. In addition, these therapeutic options may not be well tolerated by the elderly especially those who are frail. The current article is aimed at discussing an alternative therapeutic option, non-invasive vagus nerve stimulation (VNS), and the roles it plays in cancer pathology and immunotherapy. The VNS does this by reducing oxidative stress via silent information regulator 1 (SIRT1); inhibiting inflammation via both hypothalamic-pituitary-axis (HPA) and the release of corticosteroid from the adrenal gland, and cholinergic anti-inflammatory pathway (CAP), and increasing vagal activity which helps in the regulation of cell proliferation, differentiation, apoptosis, and metabolism, and increase chance of survival. Furthermore, it helps with reducing complications due to cancer or its treatments such as postoperative ileus and severity of peripheral neuropathy induced by chemotherapy, and improves cancer-related fatigue, lymphopenia, and quality of life. These suggest that the importance of non-invasive VNS in cancer pathology and immunotherapy cannot be overemphasized. Therefore, considering the safety of non-invasive VNS and its cost-effectiveness, it is a therapeutic option worth trying for these patients, especially in combination with other therapies.
Collapse
Affiliation(s)
- Auwal Abdullahi
- Department of Rehabilitation SciencesThe Hong Kong Polytechnic UniversityKowloonHong Kong Special Administrative RegionChina
| | - Thomson W. L. Wong
- Department of Rehabilitation SciencesThe Hong Kong Polytechnic UniversityKowloonHong Kong Special Administrative RegionChina
| | - Shamay S. M. Ng
- Department of Rehabilitation SciencesThe Hong Kong Polytechnic UniversityKowloonHong Kong Special Administrative RegionChina
| |
Collapse
|
211
|
Thapa M, Kumari A, Chin CY, Choby JE, Jin F, Bogati B, Chopyk DM, Koduri N, Pahnke A, Elrod EJ, Burd EM, Weiss DS, Grakoui A. Translocation of gut commensal bacteria to the brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555630. [PMID: 37693595 PMCID: PMC10491268 DOI: 10.1101/2023.08.30.555630] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The gut-brain axis, a bidirectional signaling network between the intestine and the central nervous system, is crucial to the regulation of host physiology and inflammation. Recent advances suggest a strong correlation between gut dysbiosis and neurological diseases, however, relatively little is known about how gut bacteria impact the brain. Here, we reveal that gut commensal bacteria can translocate directly to the brain when mice are fed an altered diet that causes dysbiosis and intestinal permeability, and that this also occurs without diet alteration in distinct murine models of neurological disease. The bacteria were not found in other systemic sites or the blood, but were detected in the vagus nerve. Unilateral cervical vagotomy significantly reduced the number of bacteria in the brain, implicating the vagus nerve as a conduit for translocation. The presence of bacteria in the brain correlated with microglial activation, a marker of neuroinflammation, and with neural protein aggregation, a hallmark of several neurodegenerative diseases. In at least one model, the presence of bacteria in the brain was reversible as a switch from high-fat to standard diet resulted in amelioration of intestinal permeability, led to a gradual loss of detectable bacteria in the brain, and reduced the number of neural protein aggregates. Further, in murine models of Alzheimer's disease, Parkinson's disease, and autism spectrum disorder, we observed gut dysbiosis, gut leakiness, bacterial translocation to the brain, and microglial activation. These data reveal a commensal bacterial translocation axis to the brain in models of diverse neurological diseases.
Collapse
Affiliation(s)
- Manoj Thapa
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia
| | - Anuradha Kumari
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia
| | - Chui-Yoke Chin
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia
| | - Jacob E. Choby
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia
| | - Fengzhi Jin
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia
| | - Bikash Bogati
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia
| | - Daniel M. Chopyk
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia
| | - Nitya Koduri
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia
| | - Andrew Pahnke
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia
| | - Elizabeth J. Elrod
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia
| | - Eileen M. Burd
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| | - David S. Weiss
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia
| | - Arash Grakoui
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
212
|
Dai Y, Shen Z, Khachatryan LG, Vadiyan DE, Karampoor S, Mirzaei R. Unraveling mechanistic insights into the role of microbiome in neurogenic hypertension: A comprehensive review. Pathol Res Pract 2023; 249:154740. [PMID: 37567034 DOI: 10.1016/j.prp.2023.154740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
Neurogenic hypertension, a complex and multifactorial cardiovascular disorder, is known to be influenced by various genetic, environmental, and lifestyle factors. In recent years, there has been growing interest in the role of the gut microbiome in hypertension pathogenesis. The bidirectional communication between the gut microbiota and the central nervous system, known as the microbiota-gut-brain axis, has emerged as a crucial mechanism through which the gut microbiota exerts its influence on neuroinflammation, immune responses, and blood pressure regulation. Recent studies have shown how the microbiome has a substantial impact on a variety of physiological functions, such as cardiovascular health. The increased sympathetic activity to the gut may cause microbial dysbiosis, increased permeability of the gut, and increased inflammatory reactions by altering a number of intestinal bacteria producing short-chain fatty acids (SCFAs) and the concentrations of lipopolysaccharide (LPS) in the plasma. Collectively, these microbial metabolic and structural compounds stimulate sympathetic stimulation, which may be an important stage in the onset of hypertension. The result is an upsurge in peripheral and central inflammatory response. In addition, it has recently been shown that a link between the immune system and the gut microbiota might play a significant role in hypertension. The therapeutic implications of the gut microbiome including probiotic usage, prebiotics, dietary modifications, and fecal microbiota transplantation in neurogenic hypertension have also been found. A large body of research suggests that probiotic supplementation might help reduce chronic inflammation and hypertension that have an association with dysbiosis in the gut microbiota. Overall, this review sheds light on the intricate interplay between the gut microbiome and neurogenic hypertension, providing valuable insights for both researchers and clinicians. As our knowledge of the microbiome's role in hypertension expands, novel therapeutic strategies and diagnostic biomarkers may pave the way for more effective management and prevention of this prevalent cardiovascular disorder. Exploring the potential of the microbiome in hypertension offers an exciting avenue for future research and offers opportunities for precision medicine and improved patient care.
Collapse
Affiliation(s)
- Yusang Dai
- Physical Examination Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Zheng Shen
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Lusine G Khachatryan
- Department of Pediatric Diseases, N.F. Filatov Clinical Institute of Children's Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Russia
| | - Diana E Vadiyan
- Institute of Dentistry, Department of Pediatric, Preventive Dentistry and Orthodontics, I.M. Sechenov First Moscow State Medical University (Sechenov University), Russia
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
213
|
Masenga SK, Povia JP, Lwiindi PC, Kirabo A. Recent Advances in Microbiota-Associated Metabolites in Heart Failure. Biomedicines 2023; 11:2313. [PMID: 37626809 PMCID: PMC10452327 DOI: 10.3390/biomedicines11082313] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Heart failure is a risk factor for adverse events such as sudden cardiac arrest, liver and kidney failure and death. The gut microbiota and its metabolites are directly linked to the pathogenesis of heart failure. As emerging studies have increased in the literature on the role of specific gut microbiota metabolites in heart failure development, this review highlights and summarizes the current evidence and underlying mechanisms associated with the pathogenesis of heart failure. We found that gut microbiota-derived metabolites such as short chain fatty acids, bile acids, branched-chain amino acids, tryptophan and indole derivatives as well as trimethylamine-derived metabolite, trimethylamine N-oxide, play critical roles in promoting heart failure through various mechanisms. Mainly, they modulate complex signaling pathways such as nuclear factor kappa-light-chain-enhancer of activated B cells, Bcl-2 interacting protein 3, NLR Family Pyrin Domain Containing inflammasome, and Protein kinase RNA-like endoplasmic reticulum kinase. We have also highlighted the beneficial role of other gut metabolites in heart failure and other cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Sepiso K. Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia; (J.P.P.); (P.C.L.)
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-6602, USA
| | - Joreen P. Povia
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia; (J.P.P.); (P.C.L.)
| | - Propheria C. Lwiindi
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia; (J.P.P.); (P.C.L.)
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-6602, USA
| |
Collapse
|
214
|
Wang YF, Kendrick KM, Chen XQ, Sha L. Editorial: Neuroendocrine research in health and disease, volume II. Front Neurosci 2023; 17:1253725. [PMID: 37645369 PMCID: PMC10461568 DOI: 10.3389/fnins.2023.1253725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023] Open
Affiliation(s)
- Yu-Feng Wang
- International Translational Neuroscience Research Institute, Zhejiang Chinese Medical University, Hangzhou, China
| | - Keith Maurice Kendrick
- MOE Key Laboratory for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Xue Qun Chen
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lei Sha
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
215
|
Zhang E, Huang Z, Zang Z, Qiao X, Yan J, Shao X. Identifying circulating biomarkers for major depressive disorder. Front Psychiatry 2023; 14:1230246. [PMID: 37599893 PMCID: PMC10436517 DOI: 10.3389/fpsyt.2023.1230246] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/13/2023] [Indexed: 08/22/2023] Open
Abstract
Objective To date, the current diagnosis of major depressive disorder (MDD) still depends on clinical symptomatologic criteria, misdiagnosis and ineffective treatment are common. The study aimed to explore circulating biomarkers for MDD diagnosis. Methods A high-throughput antibody array technology was utilized to detect 440 circulating cytokines in eight MDD patients and eight age-and gender-matched healthy controls. LASSO regression was conducted for MDD-related characteristic proteins selection. Enzyme-linked immunosorbent assay (ELISA) was used to validate the characteristic proteins in 40 MDD patients and 40 healthy controls. Receiver operating characteristic (ROC) curve was employed to evaluate the diagnostic values of characteristic proteins for discriminating MDD patients from healthy controls. Correlations between the levels of characteristic proteins and depression severity (HAMD-17 scores) were evaluated using linear regression. Results The levels of 59 proteins were found aberrant in MDD patients compared with healthy controls. LASSO regression found six MDD-related characteristic proteins including insulin, CD40L, CD155, Lipocalin-2, HGF and LIGHT. ROC curve analysis showed that the area under curve (AUC) values of six characteristic proteins were more than 0.85 in discriminating patients with MDD from healthy controls. Furthermore, significant relationship was found between the levels of insulin, CD155, Lipocalin-2, HGF, LIGHT and HAMD-17 scores in MDD group. Conclusion These results suggested that six characteristic proteins screened from 59 proteins differential in MDD may hold promise as diagnostic biomarkers in discriminating patients with MDD. Among six characteristic proteins, insulin, CD155, Lipocalin-2, HGF and LIGHT might be useful to estimate the severity of depressive symptoms.
Collapse
Affiliation(s)
- En Zhang
- Department of Psychiatry, The Fourth People's Hospital of Wuhu City, Wuhu, China
| | - Zhongfei Huang
- Department of Psychiatry, The Fourth People's Hospital of Wuhu City, Wuhu, China
| | - Zongjun Zang
- Department of Psychiatry, The Fourth People's Hospital of Wuhu City, Wuhu, China
| | - Xin Qiao
- College of Humanities and Management, Wannan Medical College, Wuhu, China
| | - Jiaxin Yan
- College of Humanities and Management, Wannan Medical College, Wuhu, China
| | - Xuefei Shao
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| |
Collapse
|
216
|
Graham AS, Ben-Azu B, Tremblay MÈ, Torre P, Senekal M, Laughton B, van der Kouwe A, Jankiewicz M, Kaba M, Holmes MJ. A review of the auditory-gut-brain axis. Front Neurosci 2023; 17:1183694. [PMID: 37600010 PMCID: PMC10435389 DOI: 10.3389/fnins.2023.1183694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Hearing loss places a substantial burden on medical resources across the world and impacts quality of life for those affected. Further, it can occur peripherally and/or centrally. With many possible causes of hearing loss, there is scope for investigating the underlying mechanisms involved. Various signaling pathways connecting gut microbes and the brain (the gut-brain axis) have been identified and well established in a variety of diseases and disorders. However, the role of these pathways in providing links to other parts of the body has not been explored in much depth. Therefore, the aim of this review is to explore potential underlying mechanisms that connect the auditory system to the gut-brain axis. Using select keywords in PubMed, and additional hand-searching in google scholar, relevant studies were identified. In this review we summarize the key players in the auditory-gut-brain axis under four subheadings: anatomical, extracellular, immune and dietary. Firstly, we identify important anatomical structures in the auditory-gut-brain axis, particularly highlighting a direct connection provided by the vagus nerve. Leading on from this we discuss several extracellular signaling pathways which might connect the ear, gut and brain. A link is established between inflammatory responses in the ear and gut microbiome-altering interventions, highlighting a contribution of the immune system. Finally, we discuss the contribution of diet to the auditory-gut-brain axis. Based on the reviewed literature, we propose numerous possible key players connecting the auditory system to the gut-brain axis. In the future, a more thorough investigation of these key players in animal models and human research may provide insight and assist in developing effective interventions for treating hearing loss.
Collapse
Affiliation(s)
- Amy S. Graham
- Imaging Sciences, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Human Biology, Division of Biomedical Engineering, University of Cape Town, Cape Town, South Africa
| | - Benneth Ben-Azu
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Département de Médecine Moléculaire, Université Laval, Québec City, QC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Quebec City, QC, Canada
- Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - Peter Torre
- School of Speech, Language, and Hearing Sciences, San Diego State University, San Diego, CA, United States
| | - Marjanne Senekal
- Department of Human Biology, Division of Physiological Sciences, University of Cape Town, Cape Town, South Africa
| | - Barbara Laughton
- Family Clinical Research Unit, Department of Pediatrics and Child Health, Stellenbosch University, Cape Town, South Africa
| | - Andre van der Kouwe
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| | - Marcin Jankiewicz
- Imaging Sciences, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Human Biology, Division of Biomedical Engineering, University of Cape Town, Cape Town, South Africa
| | - Mamadou Kaba
- Department of Pathology, Division of Medical Microbiology, University of Cape Town, Cape Town, South Africa
| | - Martha J. Holmes
- Imaging Sciences, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Human Biology, Division of Biomedical Engineering, University of Cape Town, Cape Town, South Africa
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- ImageTech, Simon Fraser University, Surrey, BC, Canada
| |
Collapse
|
217
|
de Silva PN. Immunological perturbations, psychiatric disorders and associated therapeutics: a new era for psychiatry? Br J Hosp Med (Lond) 2023; 84:1-6. [PMID: 37646557 DOI: 10.12968/hmed.2022.0455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The three main theories explaining major mental illness, namely mood disorders, psychoses and dementias, have been partially discredited. Alongside this, there are emerging links between perturbations of the immune system and the onset and phenotypic features of these disorders. This article outlines the alternative pathophysiology and suggests potential treatments which could improve disease burden and avoid the need for psychotropic medication, with their associated side effects and relapse following withdrawal.
Collapse
|
218
|
Tri BD, Shashni B, Matsui H, Nagasaki Y. Designing poly(gamma-aminobutyric acid)-based nanoparticles for the treatment of major depressive disorders. J Control Release 2023; 360:110-121. [PMID: 37336293 DOI: 10.1016/j.jconrel.2023.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/15/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
Major depressive disorder (MDD) is a worldwide concern owing to its negative impact on the quality of life. Gamma-aminobutyric acid (GABA), an essential neurotransmitter in the brain, is important for regulating the enteric nervous system and gut-brain dual communication (gut-brain axis), thus providing gastrointestinal GABA and GABA-related pathways with possible targets for MDD treatment. However, the use of GABA for this disease remains limited due to its poor pharmacokinetic properties, including the low permeability through the blood-brain barrier, and the rapid clearance from the gastrointestinal tract. Since poly(amino acid)s are advantageous for improving the beneficial bioactivities of conventional amino acids, poly(gamma-aminobutyric acid) (poly(GABA)) is a potential candidate for MDD therapy. Nevertheless, the non-water-soluble and non-dispersible characteristics of poly(GABA) render difficulty in administering its conventional forms in vitro/in vivo, thereby hindering its therapeutic applications. Therefore, this study proposes a new design for poly(GABA) in nanoparticle form, which is composed of the amphiphilic diblock copolymers of poly(GABA) and poly(ethylene glycol), providing a suitable formulation for medication applications. Herein, we report on a new orally deliverable poly(GABA)-based nanoparticles (NanoGABA) in aqueous media and their efficacy on mouse depression models. NanoGABA treatment efficiently attenuated depression-like symptoms as evidenced by behavioral tests (forced swimming tests and tail suspension tests) and stress biomarkers (corticosterone). These findings suggest that the newly designed poly(GABA)-based nanoparticles are a promising candidate for the treatment of depression. STATEMENT OF SIGNIFICANCE: This research is the first to report the preparation of poly(GABA)-based nanoparticles in aqueous conditions with beneficial physical properties to open the gate for medical and pharmaceutical applications of poly (GABA). It is also a pioneer in using poly(GABA)-based materials for major depressive disorder therapeutics in vivo. Oral administration of NanoGABA attenuates depressive-like symptoms by targeting the enteric nervous system possibly through modulation of the gut-brain axis pathways with negligible toxicity, suggesting that NanoGABA is a promising therapeutic agent for major depressive disorders.
Collapse
Affiliation(s)
- Bui Duc Tri
- Degree Program in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
| | - Babita Shashni
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
| | - Hirofumi Matsui
- Division of Gastroenterology, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Ibaraki 305-8575, Japan; Master's School of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
| | - Yukio Nagasaki
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; Master's School of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; Center for Research in Radiation and Earth System Science (CRiES), University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; Department of Chemistry, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8654, Japan.
| |
Collapse
|
219
|
Bendriss G, MacDonald R, McVeigh C. Microbial Reprogramming in Obsessive-Compulsive Disorders: A Review of Gut-Brain Communication and Emerging Evidence. Int J Mol Sci 2023; 24:11978. [PMID: 37569349 PMCID: PMC10419219 DOI: 10.3390/ijms241511978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
Obsessive-compulsive disorder (OCD) is a debilitating mental health disorder characterized by intrusive thoughts (obsessions) and repetitive behaviors (compulsions). Dysbiosis, an imbalance in the gut microbial composition, has been associated with various health conditions, including mental health disorders, autism, and inflammatory diseases. While the exact mechanisms underlying OCD remain unclear, this review presents a growing body of evidence suggesting a potential link between dysbiosis and the multifaceted etiology of OCD, interacting with genetic, neurobiological, immunological, and environmental factors. This review highlights the emerging evidence implicating the gut microbiota in the pathophysiology of OCD and its potential as a target for novel therapeutic approaches. We propose a model that positions dysbiosis as the central unifying element in the neurochemical, immunological, genetic, and environmental factors leading to OCD. The potential and challenges of microbial reprogramming strategies, such as probiotics and fecal transplants in OCD therapeutics, are discussed. This review raises awareness of the importance of adopting a holistic approach that considers the interplay between the gut and the brain to develop interventions that account for the multifaceted nature of OCD and contribute to the advancement of more personalized approaches.
Collapse
|
220
|
Nohesara S, Abdolmaleky HM, Thiagalingam S. Epigenetic Aberrations in Major Psychiatric Diseases Related to Diet and Gut Microbiome Alterations. Genes (Basel) 2023; 14:1506. [PMID: 37510410 PMCID: PMC10379841 DOI: 10.3390/genes14071506] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Nutrition and metabolism modify epigenetic signatures like histone acetylation and DNA methylation. Histone acetylation and DNA methylation in the central nervous system (CNS) can be altered by bioactive nutrients and gut microbiome via the gut-brain axis, which in turn modulate neuronal activity and behavior. Notably, the gut microbiome, with more than 1000 bacterial species, collectively contains almost three million functional genes whose products interact with millions of human epigenetic marks and 30,000 genes in a dynamic manner. However, genetic makeup shapes gut microbiome composition, food/nutrient metabolism, and epigenetic landscape, as well. Here, we first discuss the effect of changes in the microbial structure and composition in shaping specific epigenetic alterations in the brain and their role in the onset and progression of major mental disorders. Afterward, potential interactions among maternal diet/environmental factors, nutrition, and gastrointestinal microbiome, and their roles in accelerating or delaying the onset of severe mental illnesses via epigenetic changes will be discussed. We also provide an overview of the association between the gut microbiome, oxidative stress, and inflammation through epigenetic mechanisms. Finally, we present some underlying mechanisms involved in mediating the influence of the gut microbiome and probiotics on mental health via epigenetic modifications.
Collapse
Affiliation(s)
- Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA 02218, USA; (S.N.); (S.T.)
| | - Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA 02218, USA; (S.N.); (S.T.)
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boson, MA 02215, USA
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA 02218, USA; (S.N.); (S.T.)
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, MA 02218, USA
| |
Collapse
|
221
|
Swan AA, Kennedy E, Cooper DB, Amuan ME, Mayo J, Tate DF, Song K, Eapen BC, Van Cott AC, Lopez MR, Pugh MJ. Comorbidity and polypharmacy impact neurobehavioral symptoms and symptom validity failure among post-9/11 veterans with mild traumatic brain injury. Front Neurol 2023; 14:1228377. [PMID: 37538260 PMCID: PMC10395329 DOI: 10.3389/fneur.2023.1228377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/26/2023] [Indexed: 08/05/2023] Open
Abstract
Objective The study aimed to examine the association between post-concussive comorbidity burdens [post-traumatic stress disorder (PTSD), depression, and/or headache] and central nervous system (CNS) polypharmacy (five or more concurrent medications) with reported neurobehavioral symptoms and symptom validity screening among post-9/11 veterans with a history of mild traumatic brain injury (mTBI). Setting Administrative medical record data from the Department of Veterans Affairs (VA) were used in the study. Participants Post-9/11 veterans with mTBI and at least 2 years of VA care between 2001 and 2019 who had completed the comprehensive traumatic brain injury evaluation (CTBIE) were included in the study. Design Retrospective cross-sectional design was used in the study. Main measures Neurobehavioral Symptom Inventory (NSI), International Classification of Diseases, Ninth Revision, and Clinical Modification diagnosis codes were included in the study. Results Of the 92,495 veterans with a history of TBI, 90% had diagnoses of at least one identified comorbidity (PTSD, depression, and/or headache) and 28% had evidence of CNS polypharmacy. Neurobehavioral symptom reporting and symptom validity failure was associated with comorbidity burden and polypharmacy after adjusting for sociodemographic characteristics. Veterans with concurrent diagnoses of PTSD, depression, and headache were more than six times more likely [Adjusted odds ratio = 6.55 (99% CI: 5.41, 7.92)]. to fail the embedded symptom validity measure (Validity-10) in the NSI. Conclusion TBI-related multimorbidity and CNS polypharmacy had the strongest association with neurobehavioral symptom distress, even after accounting for injury and sociodemographic characteristics. Given the regular use of the NSI in clinical and research settings, these findings emphasize the need for comprehensive neuropsychological evaluation for individuals who screen positively for potential symptom overreporting, the importance of multidisciplinary rehabilitation to restore functioning following mTBI, and the conscientious utilization of symptom validity measures in research efforts.
Collapse
Affiliation(s)
- Alicia A. Swan
- Polytrauma Rehabilitation Center, South Texas Veterans Health Care System, San Antonio, TX, United States
- Department of Psychology, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Eamonn Kennedy
- Veterans Affairs Salt Lake City Health Care System, Informatics Decision Enhancement and Analytic Sciences Center of Innovation, Salt Lake City, UT, United States
- Division of Epidemiology, University of Utah School of Medicine Department of Internal Medicine, Salt Lake City, UT, United States
- University of Utah School of Medicine Department of Neurology, Salt Lake City, UT, United States
| | - Douglas B. Cooper
- Polytrauma Rehabilitation Center, South Texas Veterans Health Care System, San Antonio, TX, United States
- Departments of Rehabilitation Medicine and Psychiatry, The University of Texas Health San Antonio, San Antonio, TX, United States
| | - Megan E. Amuan
- Veterans Affairs Salt Lake City Health Care System, Informatics Decision Enhancement and Analytic Sciences Center of Innovation, Salt Lake City, UT, United States
- Division of Epidemiology, University of Utah School of Medicine Department of Internal Medicine, Salt Lake City, UT, United States
| | - Jamie Mayo
- Veterans Affairs Salt Lake City Health Care System, Informatics Decision Enhancement and Analytic Sciences Center of Innovation, Salt Lake City, UT, United States
- Division of Epidemiology, University of Utah School of Medicine Department of Internal Medicine, Salt Lake City, UT, United States
| | - David F. Tate
- Veterans Affairs Salt Lake City Health Care System, Informatics Decision Enhancement and Analytic Sciences Center of Innovation, Salt Lake City, UT, United States
- University of Utah School of Medicine Department of Neurology, Salt Lake City, UT, United States
| | - Kangwon Song
- Augusta University Medical Center, Augusta University, Augusta, GA, United States
| | - Blessen C. Eapen
- Department of Physical Medicine and Rehabilitation, VA Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Division of Physical Medicine and Rehabilitation, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Anne C. Van Cott
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Veterans Affairs, Pittsburgh Healthcare System, Pittsburgh, PA, United States
| | - Maria R. Lopez
- Bruce Carter Hospital, Miami Veterans Health Administration, Miami, FL, United States
- Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Mary Jo Pugh
- Veterans Affairs Salt Lake City Health Care System, Informatics Decision Enhancement and Analytic Sciences Center of Innovation, Salt Lake City, UT, United States
- Division of Epidemiology, University of Utah School of Medicine Department of Internal Medicine, Salt Lake City, UT, United States
| |
Collapse
|
222
|
Wu Z, Liao J, Liu Q, Zhou S, Chen M. Chronic vagus nerve stimulation in patients with heart failure: challenge or failed translation? Front Cardiovasc Med 2023; 10:1052471. [PMID: 37534273 PMCID: PMC10390725 DOI: 10.3389/fcvm.2023.1052471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 05/31/2023] [Indexed: 08/04/2023] Open
Abstract
Autonomic imbalance between the sympathetic and parasympathetic nervous systems contributes to the progression of chronic heart failure (HF). Preclinical studies have demonstrated that various neuromodulation strategies may exert beneficial cardioprotective effects in preclinical models of HF. Based on these encouraging experimental data, vagus nerve stimulation (VNS) has been assessed in patients with HF with a reduced ejection fraction. Nevertheless, the main trials conducted thus far have yielded conflicting findings, questioning the clinical efficacy of VNS in this context. This review will therefore focus on the role of the autonomic nervous system in HF pathophysiology and VNS therapy, highlighting the potential reasons behind the discrepancy between preclinical and clinical studies.
Collapse
Affiliation(s)
- Zhihong Wu
- Department of Cardiovascular, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jiaying Liao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qiming Liu
- Department of Cardiovascular, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shenghua Zhou
- Department of Cardiovascular, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Mingxian Chen
- Department of Cardiovascular, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
223
|
Boehme M, Rémond-Derbez N, Lerond C, Lavalle L, Keddani S, Steinmann M, Rytz A, Dalile B, Verbeke K, Van Oudenhove L, Steiner P, Berger B, Vicario M, Bergonzelli G, Colombo Mottaz S, Hudry J. Bifidobacterium longum subsp. longum Reduces Perceived Psychological Stress in Healthy Adults: An Exploratory Clinical Trial. Nutrients 2023; 15:3122. [PMID: 37513541 PMCID: PMC10383821 DOI: 10.3390/nu15143122] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Emerging science shows that probiotic intake may impact stress and mental health. We investigated the effect of a 6-week intervention with Bifidobacterium longum (BL) NCC3001 (1 × 1010 CFU/daily) on stress-related psychological and physiological parameters in 45 healthy adults with mild-to-moderate stress using a randomized, placebo-controlled, two-arm, parallel, double-blind design. The main results showed that supplementation with the probiotic significantly reduced the perceived stress and improved the subjective sleep quality score compared to placebo. Comparing the two groups, momentary subjective assessments concomitant to the Maastricht Acute Stress Test revealed a lower amount of pain experience in the probiotic group and a higher amount of relief at the end of the procedure in the placebo group, reflected by higher scores in the positive affect state. The awakening of the salivary cortisol response was not affected by the intervention, yet the reduction observed in the salivary cortisol stress response post-intervention was higher in the placebo group than the probiotic group. Multivariate analysis further indicated that a reduction in perceived stress correlated with a reduction in anxiety, in depression, and in the cortisol awakening response after the 6-week intervention. This exploratory trial provides promising insights into BL NCC3001 to reduce perceived stress in a healthy population and supports the potential of nutritional solutions including probiotics to improve mental health.
Collapse
Affiliation(s)
- Marcus Boehme
- Nestlé Institute of Health Sciences, Société des Produits Nestlé S.A., 1000 Lausanne 26, Switzerland; (N.R.-D.); (S.K.); (M.S.); (P.S.); (B.B.); (M.V.); (J.H.)
| | - Noëla Rémond-Derbez
- Nestlé Institute of Health Sciences, Société des Produits Nestlé S.A., 1000 Lausanne 26, Switzerland; (N.R.-D.); (S.K.); (M.S.); (P.S.); (B.B.); (M.V.); (J.H.)
| | - Clara Lerond
- Nestlé Institute of Health Sciences, Société des Produits Nestlé S.A., 1000 Lausanne 26, Switzerland; (N.R.-D.); (S.K.); (M.S.); (P.S.); (B.B.); (M.V.); (J.H.)
| | - Luca Lavalle
- Clinical Research Unit, Société des Produits Nestlé S.A., 1000 Lausanne 26, Switzerland; (L.L.); (A.R.); (S.C.M.)
| | - Sonia Keddani
- Nestlé Institute of Health Sciences, Société des Produits Nestlé S.A., 1000 Lausanne 26, Switzerland; (N.R.-D.); (S.K.); (M.S.); (P.S.); (B.B.); (M.V.); (J.H.)
| | - Myriam Steinmann
- Nestlé Institute of Health Sciences, Société des Produits Nestlé S.A., 1000 Lausanne 26, Switzerland; (N.R.-D.); (S.K.); (M.S.); (P.S.); (B.B.); (M.V.); (J.H.)
| | - Andreas Rytz
- Clinical Research Unit, Société des Produits Nestlé S.A., 1000 Lausanne 26, Switzerland; (L.L.); (A.R.); (S.C.M.)
| | - Boushra Dalile
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium; (B.D.); (K.V.); (L.V.O.)
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Kristin Verbeke
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium; (B.D.); (K.V.); (L.V.O.)
| | - Lukas Van Oudenhove
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium; (B.D.); (K.V.); (L.V.O.)
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Pascal Steiner
- Nestlé Institute of Health Sciences, Société des Produits Nestlé S.A., 1000 Lausanne 26, Switzerland; (N.R.-D.); (S.K.); (M.S.); (P.S.); (B.B.); (M.V.); (J.H.)
| | - Bernard Berger
- Nestlé Institute of Health Sciences, Société des Produits Nestlé S.A., 1000 Lausanne 26, Switzerland; (N.R.-D.); (S.K.); (M.S.); (P.S.); (B.B.); (M.V.); (J.H.)
| | - Maria Vicario
- Nestlé Institute of Health Sciences, Société des Produits Nestlé S.A., 1000 Lausanne 26, Switzerland; (N.R.-D.); (S.K.); (M.S.); (P.S.); (B.B.); (M.V.); (J.H.)
| | - Gabriela Bergonzelli
- Nestlé Institute of Health Sciences, Société des Produits Nestlé S.A., 1000 Lausanne 26, Switzerland; (N.R.-D.); (S.K.); (M.S.); (P.S.); (B.B.); (M.V.); (J.H.)
| | - Sara Colombo Mottaz
- Clinical Research Unit, Société des Produits Nestlé S.A., 1000 Lausanne 26, Switzerland; (L.L.); (A.R.); (S.C.M.)
| | - Julie Hudry
- Nestlé Institute of Health Sciences, Société des Produits Nestlé S.A., 1000 Lausanne 26, Switzerland; (N.R.-D.); (S.K.); (M.S.); (P.S.); (B.B.); (M.V.); (J.H.)
| |
Collapse
|
224
|
Rivera-Castro ME, Pastelín CF, Bravo-Benítez J, Morán C. Organization of the Subdiaphragmatic Vagus Nerve and Its Connection with the Celiac Plexus and the Ovaries in the Female Rat. Brain Sci 2023; 13:1032. [PMID: 37508964 PMCID: PMC10377505 DOI: 10.3390/brainsci13071032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Communication between the ovaries and the central nervous system occurs by peripheral innervation through the celiac plexus, superior ovarian nerve, and ovarian plexus nerve. The vagus nerve is involved in regulating the ovaries, but the neuroanatomical pathway that links them is not clear. Adult female rats were used for gross anatomy, acetylcholinesterase histochemistry, and the immunofluorescence analysis of tyrosine hydroxylase (TH), choline acetyltransferase (ChAT), and tryptophan hydroxylase 2 (TPH). The results obtained indicate that the right vagus nerve (RVN) travels parallel and caudal to the esophagus, where three nerve branches were identified. Also, a right vagal plexus (RVP) formed by microganglia was described, establishing communication with the celiac plexus, and was mainly reactive to tyrosine hydroxylase (TH); some serotoninergic and cholinergic neurons were also found. The left vagus nerve (LVN) travels over the esophagus, bifurcates before its insertion into the stomach and enters the RCG. This neuroanatomical and biochemical description of the RVN and LVN in the rat suggests the RVP is formed by presynaptic catecholaminergic terminals and cholinergic neurons. This information could support detailed studies of communication between the vagus nerve and the ovaries and identify the type of neural signaling involved in abdominal control of the vagus nerve.
Collapse
Affiliation(s)
- María E Rivera-Castro
- Doctorado en Investigaciones Cerebrales, Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Veracruz 91190, Mexico
- Centro de Investigación en Fisicoquímica de Materiales, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Puebla 72960, Mexico
| | - César F Pastelín
- Facultad de Medicina Veterinaria y Zootecnia, Benemérita Universidad Autónoma de Puebla, Tecamachalco, Puebla 75460, Mexico
| | - Juan Bravo-Benítez
- Centro de Investigación en Fisicoquímica de Materiales, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Puebla 72960, Mexico
| | - Carolina Morán
- Centro de Investigación en Fisicoquímica de Materiales, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Puebla 72960, Mexico
| |
Collapse
|
225
|
Fang YT, Lin YT, Tseng WL, Tseng P, Hua GL, Chao YJ, Wu YJ. Neuroimmunomodulation of vagus nerve stimulation and the therapeutic implications. Front Aging Neurosci 2023; 15:1173987. [PMID: 37484689 PMCID: PMC10358778 DOI: 10.3389/fnagi.2023.1173987] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
Vagus nerve stimulation (VNS) is a technology that provides electrical stimulation to the cervical vagus nerve and can be applied in the treatment of a wide variety of neuropsychiatric and systemic diseases. VNS exerts its effect by stimulating vagal afferent and efferent fibers, which project upward to the brainstem nuclei and the relayed circuits and downward to the internal organs to influence the autonomic, neuroendocrine, and neuroimmunology systems. The neuroimmunomodulation effect of VNS is mediated through the cholinergic anti-inflammatory pathway that regulates immune cells and decreases pro-inflammatory cytokines. Traditional and non-invasive VNS have Food and Drug Administration (FDA)-approved indications for patients with drug-refractory epilepsy, treatment-refractory major depressive disorders, and headaches. The number of clinical trials and translational studies that explore the therapeutic potentials and mechanisms of VNS is increasing. In this review, we first introduced the anatomical and physiological bases of the vagus nerve and the immunomodulating functions of VNS. We covered studies that investigated the mechanisms of VNS and its therapeutic implications for a spectrum of brain disorders and systemic diseases in the context of neuroimmunomodulation.
Collapse
Affiliation(s)
- Yi-Ting Fang
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ye-Ting Lin
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wu-Lung Tseng
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Philip Tseng
- Cross College Elite Program, National Cheng Kung University, Tainan, Taiwan
- Research Center for Mind, Brain and Learning, National Chengchi University, Taipei, Taiwan
| | - Gia-Linh Hua
- School of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ying-Jui Chao
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Jen Wu
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
226
|
Kroll KW, Woolley G, Terry K, Premeaux TA, Shikuma CM, Corley MJ, Bowler S, Ndhlovu LC, Reeves RK. Multiplex Analysis of Cytokines and Chemokines in Persons Aging With or Without HIV. AIDS Res Hum Retroviruses 2023; 39:367-380. [PMID: 37097212 PMCID: PMC11074629 DOI: 10.1089/aid.2022.0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
People with HIV (PWH) on combination antiretroviral therapy (cART) are living longer lives due to modern cART advances and increased routine medical care. The full landscape of aging with HIV is unclear; given that HIV emerged relatively recently in human history and initially had a high mortality rate, there has not been a substantially aged population to evaluate. In this study, we set out to perform high-throughput plasma analyte profiling by multiplex analysis, focusing on various T helper (Th)-related cytokines, chemokines, and proinflammatory and anti-inflammatory cytokines. The primary goals being to provide reference ranges of these analytes for aging PWH cohorts, as well as testing the utility of high-throughput multiplex plasma assays. The cohort used in this study comprised age-matched healthy donors (32.6-73.5 years of age), PWH on cART (26.7-60.2 years of age), and viremic PWH (27.5-59.4 years of age). The patients in each group were then stratified across the age span to examine age-related impacts of these plasma biomarkers. Our results largely indicate feasibility of plasma analyte monitoring by multiplex and demonstrate a high degree of person-to-person variability regardless of age and HIV status. Nonetheless, we find multiple associations with age, duration of known infection, and viral load, all of which appear to be driven by either prolonged HIV disease progression or long-term use of cART.
Collapse
Affiliation(s)
- Kyle W. Kroll
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University, School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, School of Medicine, Durham, North Carolina, USA
| | - Griffin Woolley
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University, School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, School of Medicine, Durham, North Carolina, USA
| | - Karen Terry
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University, School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, School of Medicine, Durham, North Carolina, USA
| | - Thomas A. Premeaux
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | | | - Michael J. Corley
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Scott Bowler
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Lishomwa C. Ndhlovu
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - R. Keith Reeves
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University, School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
227
|
Rusch JA, Layden BT, Dugas LR. Signalling cognition: the gut microbiota and hypothalamic-pituitary-adrenal axis. Front Endocrinol (Lausanne) 2023; 14:1130689. [PMID: 37404311 PMCID: PMC10316519 DOI: 10.3389/fendo.2023.1130689] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/25/2023] [Indexed: 07/06/2023] Open
Abstract
Cognitive function in humans depends on the complex and interplay between multiple body systems, including the hypothalamic-pituitary-adrenal (HPA) axis. The gut microbiota, which vastly outnumbers human cells and has a genetic potential that exceeds that of the human genome, plays a crucial role in this interplay. The microbiota-gut-brain (MGB) axis is a bidirectional signalling pathway that operates through neural, endocrine, immune, and metabolic pathways. One of the major neuroendocrine systems responding to stress is the HPA axis which produces glucocorticoids such as cortisol in humans and corticosterone in rodents. Appropriate concentrations of cortisol are essential for normal neurodevelopment and function, as well as cognitive processes such as learning and memory, and studies have shown that microbes modulate the HPA axis throughout life. Stress can significantly impact the MGB axis via the HPA axis and other pathways. Animal research has advanced our understanding of these mechanisms and pathways, leading to a paradigm shift in conceptual thinking about the influence of the microbiota on human health and disease. Preclinical and human trials are currently underway to determine how these animal models translate to humans. In this review article, we summarize the current knowledge of the relationship between the gut microbiota, HPA axis, and cognition, and provide an overview of the main findings and conclusions in this broad field.
Collapse
Affiliation(s)
- Jody A. Rusch
- Division of Chemical Pathology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- C17 Chemical Pathology Laboratory, Groote Schuur Hospital, National Health Laboratory Service, Cape Town, South Africa
| | - Brian T. Layden
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| | - Lara R. Dugas
- Division of Epidemiology and Biostatistics, School of Public Health, University of Cape Town, Cape Town, South Africa
- Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
228
|
Li J, Li D, Chen Y, Chen W, Xu J, Gao L. Gut Microbiota and Aging: Traditional Chinese Medicine and Modern Medicine. Clin Interv Aging 2023; 18:963-986. [PMID: 37351381 PMCID: PMC10284159 DOI: 10.2147/cia.s414714] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/08/2023] [Indexed: 06/24/2023] Open
Abstract
The changing composition of gut microbiota, much like aging, accompanies people throughout their lives, and the inextricable relationship between both has recently attracted extensive attention as well. Modern medical research has revealed that a series of changes in gut microbiota are involved in the aging process of organisms, which may be because gut microbiota modulates aging-related changes related to innate immunity and cognitive function. At present, there is no definite and effective method to delay aging. However, Nobel laureate Tu Youyou's research on artemisinin has inspired researchers to study the importance of Traditional Chinese Medicine (TCM). TCM, as an ancient alternative medicine, has unique advantages in preventive health care and in treating diseases as it already has formed an independent understanding of the aging system. TCM practitioners believe that the mechanism of aging is mainly deficiency, and pathological states such as blood stasis, qi stagnation and phlegm coagulation can exacerbate the process of aging, which involves a series of organs, including the brain, kidney, heart, liver and spleen. Our current understanding of aging has led us to realise that TCM can indeed make some beneficial changes, such as the improvement of cognitive impairment. However, due to the multi-component and multi-target nature of TCM, the exploration of its mechanism of action has become extremely complex. While analysing the relationship between gut microbiota and aging, this review explores the similarities and differences in treatment methods and mechanisms between TCM and Modern Medicine, in order to explore a new approach that combines TCM and Modern Medicine to regulate gut microbiota, improve immunity and delay aging.
Collapse
Affiliation(s)
- Jinfan Li
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250000, People’s Republic of China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Dong Li
- Department of Diabetes, Licheng District Hospital of Traditional Chinese Medicine, Jinan, Shandong, 250100, People’s Republic of China
| | - Yajie Chen
- Department of Rehabilitation and Health Care, Jinan Vocational College of Nursing, Jinan, Shandong, 250100, People’s Republic of China
| | - Wenbin Chen
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, People’s Republic of China
| | - Jin Xu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, People’s Republic of China
| | - Ling Gao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, People’s Republic of China
| |
Collapse
|
229
|
Joo MK, Kim DH. Vagus nerve-dependent effects of fluoxetine on anxiety- and depression-like behaviors in mice. Eur J Pharmacol 2023:175862. [PMID: 37331682 DOI: 10.1016/j.ejphar.2023.175862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
The vagus nerve is a major pathway in the body that is responsible for regulating the activity of the parasympathetic nervous system, which plays an important role in mood disorders including anxiety and depression. Fluoxetine, also known as Prozac, is widely used to treat depression. Nevertheless, there are few studies on the vagus nerve-mediated action of fluoxetine. In this study, we aimed to investigate the vagus nerve-dependent actions of fluoxetine in mice with restraint stress-induced or antibiotics-induced anxiety- and depression-like behaviors. Compared to sham operation, vagotomy alone did not exhibit significant effects on behavioral changes and serotonin-related biomarkers in mice not exposed to stress, antibiotics, or fluoxetine. Oral administration of fluoxetine significantly alleviated anxiety- and depression-like behaviors. However, celiac vagotomy significantly attenuated the anti-depressive effects of fluoxetine. The vagotomy also inhibited the effect of fluoxetine to attenuate restraint stress- or cefaclor-induced reduction in serotonin levels and Htr1a mRNA expression in the hippocampus. These findings suggest that the vagus nerve may regulate the efficacy of fluoxetine for depression.
Collapse
Affiliation(s)
- Min-Kyung Joo
- Neurobiota Research Center and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, 02447, South Korea.
| | - Dong-Hyun Kim
- Neurobiota Research Center and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, 02447, South Korea.
| |
Collapse
|
230
|
Bleibel L, Dziomba S, Waleron KF, Kowalczyk E, Karbownik MS. Deciphering psychobiotics' mechanism of action: bacterial extracellular vesicles in the spotlight. Front Microbiol 2023; 14:1211447. [PMID: 37396391 PMCID: PMC10309211 DOI: 10.3389/fmicb.2023.1211447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/29/2023] [Indexed: 07/04/2023] Open
Abstract
The intake of psychobiotic bacteria appears to be a promising adjunct to neuropsychiatric treatment, and their consumption may even be beneficial for healthy people in terms of mental functioning. The psychobiotics' mechanism of action is largely outlined by the gut-brain axis; however, it is not fully understood. Based on very recent studies, we provide compelling evidence to suggest a novel understanding of this mechanism: bacterial extracellular vesicles appear to mediate many known effects that psychobiotic bacteria exert on the brain. In this mini-review paper, we characterize the extracellular vesicles derived from psychobiotic bacteria to demonstrate that they can be absorbed from the gastrointestinal tract, penetrate to the brain, and carry the intracellular content to exert beneficial multidirectional action. Specifically, by regulating epigenetic factors, extracellular vesicles from psychobiotics appear to enhance expression of neurotrophic molecules, improve serotonergic neurotransmission, and likely supply astrocytes with glycolytic enzymes to favor neuroprotective mechanisms. As a result, some data suggest an antidepressant action of extracellular vesicles that originate even from taxonomically remote psychobiotic bacteria. As such, these extracellular vesicles may be regarded as postbiotics of potentially therapeutic application. The mini-review is enriched with illustrations to better introduce the complex nature of brain signaling mediated by bacterial extracellular vesicles and indicates knowledge gaps that require scientific exploration before further progress is made. In conclusion, bacterial extracellular vesicles appear to represent the missing piece of the puzzle in the mechanism of action of psychobiotics.
Collapse
Affiliation(s)
- Layla Bleibel
- Department of Pharmacology and Toxicology, Medical University of Lodz, Łódź, Poland
| | - Szymon Dziomba
- Department of Toxicology, Medical University of Gdansk, Gdańsk, Poland
| | | | - Edward Kowalczyk
- Department of Pharmacology and Toxicology, Medical University of Lodz, Łódź, Poland
| | | |
Collapse
|
231
|
Mairinger M, Maget A, Wagner-Skacel J, Mörkl S, Dalkner N, Hellinger T, Birner A, Fellendorf FT, Platzer M, Kreuzer K, Queissner R, Reininghaus B, Lenger M, Fabisch K, Fitz W, Kohlhammer-Dohr A, Krammer A, Holl AK, Painold A, Häussl A, Stross TM, Schmiedhofer F, Tmava-Berisha A, Pahsini K, Marinschek S, Wenninger J, Hamm C, Pilz R, Lehofer M, Amouzadeh-Ghadikolai O, Horvath A, Kainz G, Gallé B, Dinan TG, Butler MI, Reininghaus E, Bengesser S. Gut Microbiome Composition and Its Association with Sleep in Major Psychiatric Disorders. Neuropsychobiology 2023; 82:220-233. [PMID: 37321188 DOI: 10.1159/000530386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/14/2023] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Sleep disturbances are highly prevalent across most major psychiatric disorders. Alterations in the hypothalamic-pituitary-adrenal axis, neuroimmune mechanisms, and circadian rhythm disturbances partially explain this connection. The gut microbiome is also suspected to play a role in sleep regulation, and recent studies suggest that certain probiotics, prebiotics, synbiotics, and fecal microbiome transplantation can improve sleep quality. METHODS We aimed to assess the relationship between gut-microbiota composition, psychiatric disorders, and sleep quality in this cross-sectional, cross-disorder study. We recruited 103 participants, 63 patients with psychiatric disorders (major depressive disorder [n = 31], bipolar disorder [n = 13], psychotic disorder [n = 19]) along with 40 healthy controls. Sleep quality was assessed with the Pittsburgh Sleep Quality Index (PSQI). The fecal microbiome was analyzed using 16S rRNA sequencing, and groups were compared based on alpha and beta diversity metrics, as well as differentially abundant species and genera. RESULTS A transdiagnostic decrease in alpha diversity and differences in beta diversity indices were observed in psychiatric patients, compared to controls. Correlation analysis of diversity metrics and PSQI score showed no significance in the patient and control groups. However, three species, Ellagibacter isourolithinifaciens, Senegalimassilia faecalis, and uncultured Blautia sp., and two genera, Senegalimassilia and uncultured Muribaculaceae genus, were differentially abundant in psychiatric patients with good sleep quality (PSQI >8), compared to poor-sleep quality patients (PSQI ≤8). CONCLUSION In conclusion, this study raises important questions about the interconnection of the gut microbiome and sleep disturbances.
Collapse
Affiliation(s)
- Marco Mairinger
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria,
| | - Alexander Maget
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Jolana Wagner-Skacel
- Department of Medical Psychology, Psychosomatics and Psychotherapy, Medical University of Graz, Graz, Austria
| | - Sabrina Mörkl
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Nina Dalkner
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Teresa Hellinger
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Armin Birner
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Frederike T Fellendorf
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Martina Platzer
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Kathrin Kreuzer
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Robert Queissner
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Bernd Reininghaus
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Melanie Lenger
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Karin Fabisch
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Werner Fitz
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | | | - Alexandra Krammer
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Anna Katharina Holl
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Annamaria Painold
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Alfred Häussl
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Tatjana Maria Stross
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Franziska Schmiedhofer
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Adelina Tmava-Berisha
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Karoline Pahsini
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Sabine Marinschek
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Julian Wenninger
- Department of Psychiatry, Psychiatric Hospital LKH Graz 2, Graz, Austria
| | - Carlo Hamm
- Department of Psychiatry, Psychiatric Hospital LKH Graz 2, Graz, Austria
| | - René Pilz
- Department of Psychiatry, Psychiatric Hospital LKH Graz 2, Graz, Austria
| | - Michael Lehofer
- Department of Psychiatry, Psychiatric Hospital LKH Graz 2, Graz, Austria
| | | | - Angela Horvath
- Center for Biomarker Research in Medicine, Graz, Austria
- Department of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
| | - Gudrun Kainz
- Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Birgit Gallé
- Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Timothy G Dinan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - Mary I Butler
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - Eva Reininghaus
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Susanne Bengesser
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
232
|
Irum N, Afzal T, Faraz MH, Aslam Z, Rasheed F. The role of gut microbiota in depression: an analysis of the gut-brain axis. Front Behav Neurosci 2023; 17:1185522. [PMID: 37333479 PMCID: PMC10272349 DOI: 10.3389/fnbeh.2023.1185522] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
The gut-brain axis is a communication pathway that allows a two-way exchange of information between the microbiota of the gastrointestinal tract and the nervous system of humans. The vagus nerve, which is responsible for facilitating communication, provides support for this axis. The gut-brain axis is currently the subject of research, but studies into the diversity and stratification of the gut microbiota are just getting started. Researchers have discovered several positive trends by analyzing numerous studies examining the gut microbiota's impact on the effectiveness of SSRIs. It is common knowledge that a specific group of measurable, microbial markers has been recognized as being present in the feces of individuals suffering from depression. Specific bacterial species are a common denominator among therapeutic bacteria used to treat depression. It can also play a role in determining the severity of disease progression. Evidence that selective serotonin reuptake inhibitors (SSRIs) rely on the vagus nerve to exert their therapeutic effects has provided further support for the importance of the vagus nerve in the gut-brain axis, which is necessary for beneficial changes in the gut microbiota. This review will analyze the research linking gut microbiota to depression.
Collapse
Affiliation(s)
- Natasha Irum
- Medical Unit 02, Nishtar Medical University, Multan, Pakistan
| | - Tayyeba Afzal
- Services Institute of Medical Sciences, Lahore, Pakistan
| | | | - Zeeshan Aslam
- Medical Unit 02, Nishtar Medical University, Multan, Pakistan
- Nishtar Institute of Dentistry, Nishtar Medical University, Multan, Pakistan
| | - Faisal Rasheed
- Medical Unit 02, Nishtar Medical University, Multan, Pakistan
| |
Collapse
|
233
|
Akyuz E, Doğanyiğit Z, Okan A, Yılmaz S, Uçar S, Akın AT. Immunoreactivity of Kir3.1, muscarinic receptors 2 and 3 on the brainstem, vagus nerve and heart tissue under experimental demyelination. Brain Res Bull 2023; 197:13-30. [PMID: 36967090 DOI: 10.1016/j.brainresbull.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/12/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
AIMS Demyelination affects the propogation of neuronal action potential by slowing down the progression. This process results in a neuro-impairment like Multiple Sclerosis (MS). Evidence show that MS also contributes to involvement of the autonomic system. In the molecular approach to this involvement, we aimed to observe muscarinic ACh receptor 2-3 (mAChR2-3), and inwardly rectifying potassium channel 3.1 (Kir3.1) immunoreactivities on the brainstem, vagus nerve, and heart under cuprizone model. MAIN METHODS Wistar albino rats were randomly divided into 8 groups; duplicating 4 groups as male and female: control groups (n = 3 +3), Cuprizone groups (n = 12 +12), sham groups (n = 4 +4), and carboxy-methyl-cellulose groups (n = 3 +3). Cuprizone-fed rats underwent demyelination via Luxol fast blue (LFB) staining of the hippocampus (Gyrus dentatus and Cornu Ammonis) and cortex. Immunohistochemistry analysis followed to the pathologic measurement of the brainstem, vagus nerve, and heart for mAChR2, mAChR3 and Kir3.1 proteins KEY FINDINGS: A significant demyelination was observed in the hippocampus and cortex tissues of rats in the female and male cuprizone groups. Myelin basic protein immunoreactivity demonstrated that cuprizone groups, in both males and females, had down-regulation in the hippocampus and cortex areas. The weights of the cuprizone-fed rats significantly decreased over six weeks. Dilated blood vessels and neuronal degeneration were severe in the hippocampus and cortex of the cuprizone groups. In the female cuprizone group, expression of mAChR2 and mAChR2 was significantly increased in the brainstem, atrium/ventricle of heart, and left/right sections of vagus nerve. Kir3.1 channels were also up-regulated in the left vagus nerve and heart sections of the female cuprizone group SIGNIFICANCE: Especially in our data where female-based significant results were obtained reveal that demyelination may lead to significant mAChR2, mAChR3 and Kir3.1 changes in brainstem, vagus nerve, and heart. A high immunoreactive response to demyelination at cholinergic centers may be a new target.
Collapse
|
234
|
Mohamed AZ, Andersen T, Radovic S, Del Fante P, Kwiatek R, Calhoun V, Bhuta S, Hermens DF, Lagopoulos J, Shan ZY. Objective sleep measures in chronic fatigue syndrome patients: A systematic review and meta-analysis. Sleep Med Rev 2023; 69:101771. [PMID: 36948138 PMCID: PMC10281648 DOI: 10.1016/j.smrv.2023.101771] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023]
Abstract
Patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) often report disrupted and unrefreshing sleep in association with worsened fatigue symptoms. However, the nature and magnitude of sleep architecture alteration in ME/CFS is not known, with studies using objective sleep measures in ME/CFS generating contradictory results. The current manuscript aimed to review and meta-analyse of case-control studies with objective sleep measures in ME/CSF. A search was conducted in PubMed, Scopus, Medline, Google Scholar, and Psychoinfo databases. After review, 24 studies were included in the meta-analysis, including 20 studies with 801 adults (ME/CFS = 426; controls = 375), and 4 studies with 477 adolescents (ME/CFS = 242; controls = 235), who underwent objective measurement of sleep. Adult ME/CFS patients spend longer time in bed, longer sleep onset latency, longer awake time after sleep onset, reduced sleep efficiency, decreased stage 2 sleep, more Stage 3, and longer rapid eye movement sleep latency. However, adolescent ME/CFS patients had longer time in bed, longer total sleep time, longer sleep onset latency, and reduced sleep efficiency. The meta-analysis results demonstrate that sleep is altered in ME/CFS, with changes seeming to differ between adolescent and adults, and suggesting sympathetic and parasympathetic nervous system alterations in ME/CFS.
Collapse
Affiliation(s)
- Abdalla Z Mohamed
- Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, QLD, 4575, Australia.
| | - Thu Andersen
- Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, QLD, 4575, Australia
| | - Sanja Radovic
- Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, QLD, 4575, Australia
| | - Peter Del Fante
- Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, QLD, 4575, Australia
| | - Richard Kwiatek
- Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, QLD, 4575, Australia
| | - Vince Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, 55 Park Pl NE, 18th Floor, Atlanta, GA, 30303, USA
| | - Sandeep Bhuta
- Medical Imaging Department, Gold Coast University Hospital, Parklands, QLD, 4215, Australia
| | - Daniel F Hermens
- Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, QLD, 4575, Australia
| | - Jim Lagopoulos
- Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, QLD, 4575, Australia
| | - Zack Y Shan
- Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, QLD, 4575, Australia
| |
Collapse
|
235
|
Sree Kumar H, Wisner AS, Refsnider JM, Martyniuk CJ, Zubcevic J. Small fish, big discoveries: zebrafish shed light on microbial biomarkers for neuro-immune-cardiovascular health. Front Physiol 2023; 14:1186645. [PMID: 37324381 PMCID: PMC10267477 DOI: 10.3389/fphys.2023.1186645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Zebrafish (Danio rerio) have emerged as a powerful model to study the gut microbiome in the context of human conditions, including hypertension, cardiovascular disease, neurological disorders, and immune dysfunction. Here, we highlight zebrafish as a tool to bridge the gap in knowledge in linking the gut microbiome and physiological homeostasis of cardiovascular, neural, and immune systems, both independently and as an integrated axis. Drawing on zebrafish studies to date, we discuss challenges in microbiota transplant techniques and gnotobiotic husbandry practices. We present advantages and current limitations in zebrafish microbiome research and discuss the use of zebrafish in identification of microbial enterotypes in health and disease. We also highlight the versatility of zebrafish studies to further explore the function of human conditions relevant to gut dysbiosis and reveal novel therapeutic targets.
Collapse
Affiliation(s)
- Hemaa Sree Kumar
- Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, United States
- Department of Neuroscience and Neurological Disorders, University of Toledo, Toledo, OH, United States
| | - Alexander S. Wisner
- Department of Medicinal and Biological Chemistry, University of Toledo, Toledo, OH, United States
- Center for Drug Design and Development, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States
| | - Jeanine M. Refsnider
- Department of Environmental Sciences, University of Toledo, Toledo, OH, United States
| | - Christopher J. Martyniuk
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, OH, United States
| | - Jasenka Zubcevic
- Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, United States
| |
Collapse
|
236
|
Scriven M, McSweeney A, O'Carroll T, Morkl S, Butler MI. The Muscle-Gut-Brain Axis and Psychiatric Illness. Adv Biol (Weinh) 2023; 7:e2200214. [PMID: 37080945 DOI: 10.1002/adbi.202200214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/07/2023] [Indexed: 04/22/2023]
Abstract
The microbiota-gut-brain axis (MGBA) has been the subject of much research over the past decade, offering an exciting new paradigm for the treatment of psychiatric disorders. In this review, the MGBA is extended to include skeletal muscle and the potential role of an expanded "muscle-gut-brain axis" (MuGBA) in conditions such as anxiety and depression is discussed. There is evidence, from both preclinical and human studies, of bidirectional links between the gut microbiome and skeletal muscle function and structure. The therapeutic role of exercise in reducing depressive and anxiety symptoms is widely recognised, and the potential role of the gut microbiota-skeletal muscle link is discussed within this context. Potential pathways of communication involved in the MuGBA including the tryptophan-kynurenine pathway, intestinal permeability, immune modulation, and bacterial metabolites such as short-chain-fatty-acids are explored.
Collapse
Affiliation(s)
- Mary Scriven
- St Loman's Psychiatric Hospital, Delvin Road, Mullingar, County Westmeath, N91T3PR, Ireland
| | - Angela McSweeney
- Department of Psychiatry, Cork University Hospital, Wilton Road, Cork, T12DC4A, Ireland
| | | | - Sabrina Morkl
- Medical University of Graz, Department of Psychiatry and Psychotherapeutic Medicine, Graz, 8010, Austria
| | - Mary I Butler
- Department of Psychiatry, Cork University Hospital, Wilton Road, Cork, T12DC4A, Ireland
| |
Collapse
|
237
|
Montanari M, Imbriani P, Bonsi P, Martella G, Peppe A. Beyond the Microbiota: Understanding the Role of the Enteric Nervous System in Parkinson's Disease from Mice to Human. Biomedicines 2023; 11:1560. [PMID: 37371655 DOI: 10.3390/biomedicines11061560] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
The enteric nervous system (ENS) is a nerve network composed of neurons and glial cells that regulates the motor and secretory functions of the gastrointestinal (GI) tract. There is abundant evidence of mutual communication between the brain and the GI tract. Dysfunction of these connections appears to be involved in the pathophysiology of Parkinson's disease (PD). Alterations in the ENS have been shown to occur very early in PD, even before central nervous system (CNS) involvement. Post-mortem studies of PD patients have shown aggregation of α-synuclein (αS) in specific subtypes of neurons in the ENS. Subsequently, αS spreads retrogradely in the CNS through preganglionic vagal fibers to this nerve's dorsal motor nucleus (DMV) and other central nervous structures. Here, we highlight the role of the ENS in PD pathogenesis based on evidence observed in animal models and using a translational perspective. While acknowledging the putative role of the microbiome in the gut-brain axis (GBA), this review provides a comprehensive view of the ENS not only as a "second brain", but also as a window into the "first brain", a potentially crucial element in the search for new therapeutic approaches that can delay and even cure the disease.
Collapse
Affiliation(s)
- Martina Montanari
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Department of Systems Neuroscience, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Paola Imbriani
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Clinical Neuroscience, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Antonella Peppe
- Clinical Neuroscience, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| |
Collapse
|
238
|
Pargin E, Roach MJ, Skye A, Papudeshi B, Inglis LK, Mallawaarachchi V, Grigson SR, Harker C, Edwards RA, Giles SK. The human gut virome: composition, colonization, interactions, and impacts on human health. Front Microbiol 2023; 14:963173. [PMID: 37293229 PMCID: PMC10244655 DOI: 10.3389/fmicb.2023.963173] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
The gut virome is an incredibly complex part of the gut ecosystem. Gut viruses play a role in many disease states, but it is unknown to what extent the gut virome impacts everyday human health. New experimental and bioinformatic approaches are required to address this knowledge gap. Gut virome colonization begins at birth and is considered unique and stable in adulthood. The stable virome is highly specific to each individual and is modulated by varying factors such as age, diet, disease state, and use of antibiotics. The gut virome primarily comprises bacteriophages, predominantly order Crassvirales, also referred to as crAss-like phages, in industrialized populations and other Caudoviricetes (formerly Caudovirales). The stability of the virome's regular constituents is disrupted by disease. Transferring the fecal microbiome, including its viruses, from a healthy individual can restore the functionality of the gut. It can alleviate symptoms of chronic illnesses such as colitis caused by Clostridiodes difficile. Investigation of the virome is a relatively novel field, with new genetic sequences being published at an increasing rate. A large percentage of unknown sequences, termed 'viral dark matter', is one of the significant challenges facing virologists and bioinformaticians. To address this challenge, strategies include mining publicly available viral datasets, untargeted metagenomic approaches, and utilizing cutting-edge bioinformatic tools to quantify and classify viral species. Here, we review the literature surrounding the gut virome, its establishment, its impact on human health, the methods used to investigate it, and the viral dark matter veiling our understanding of the gut virome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sarah K. Giles
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
239
|
Buyukcelik ON, Lapierre-Landry M, Kolluru C, Upadhye AR, Marshall DP, Pelot NA, Ludwig KA, Gustafson KJ, Wilson DL, Jenkins MW, Shoffstall AJ. Deep-learning segmentation of fascicles from microCT of the human vagus nerve. Front Neurosci 2023; 17:1169187. [PMID: 37332862 PMCID: PMC10275336 DOI: 10.3389/fnins.2023.1169187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/12/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction MicroCT of the three-dimensional fascicular organization of the human vagus nerve provides essential data to inform basic anatomy as well as the development and optimization of neuromodulation therapies. To process the images into usable formats for subsequent analysis and computational modeling, the fascicles must be segmented. Prior segmentations were completed manually due to the complex nature of the images, including variable contrast between tissue types and staining artifacts. Methods Here, we developed a U-Net convolutional neural network (CNN) to automate segmentation of fascicles in microCT of human vagus nerve. Results The U-Net segmentation of ~500 images spanning one cervical vagus nerve was completed in 24 s, versus ~40 h for manual segmentation, i.e., nearly four orders of magnitude faster. The automated segmentations had a Dice coefficient of 0.87, a measure of pixel-wise accuracy, thus suggesting a rapid and accurate segmentation. While Dice coefficients are a commonly used metric to assess segmentation performance, we also adapted a metric to assess fascicle-wise detection accuracy, which showed that our network accurately detects the majority of fascicles, but may under-detect smaller fascicles. Discussion This network and the associated performance metrics set a benchmark, using a standard U-Net CNN, for the application of deep-learning algorithms to segment fascicles from microCT images. The process may be further optimized by refining tissue staining methods, modifying network architecture, and expanding the ground-truth training data. The resulting three-dimensional segmentations of the human vagus nerve will provide unprecedented accuracy to define nerve morphology in computational models for the analysis and design of neuromodulation therapies.
Collapse
Affiliation(s)
- Ozge N. Buyukcelik
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technologies Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
| | - Maryse Lapierre-Landry
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Chaitanya Kolluru
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Aniruddha R. Upadhye
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technologies Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
| | - Daniel P. Marshall
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Nicole A. Pelot
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Kip A. Ludwig
- Department of Biomedical Engineering, University of Wisconsin Madison, Madison, WI, United States
- Department of Neurological Surgery, University of Wisconsin Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering, Madison, WI, United States
| | - Kenneth J. Gustafson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Functional Electrical Stimulation Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
| | - David L. Wilson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Michael W. Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Andrew J. Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technologies Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
| |
Collapse
|
240
|
Jing W, Bi C, Fang Z, Qian C, Chen J, Yu J, Tian G, Ye M, Liu Z. Neuropsychiatric sequelae after liver transplantation and their possible mechanism via the microbiota-gut-liver-brain axis. Biomed Pharmacother 2023; 163:114855. [PMID: 37163780 DOI: 10.1016/j.biopha.2023.114855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023] Open
Abstract
Patients after liver transplantation are often impacted by mental and even neuropsychiatric disorders, including depression, sleep disorders, anxiety, and post-traumatic stress disorder. Neuropsychiatric sequelae have an adverse impact on rehabilitation and can even incapacitate people, reducing their quality of life. Despite screening tools and effective treatments, neuropsychiatric sequelae after liver transplantation (NSALT) have not been fully diagnosed and treated. Current research suggests that NSALT may be partly related to intestinal microbial variation, but the detailed mechanism remains unclear. In this review, we describe the clinical and diagnostic features, prevalence, prediction, clinical course and outcome, management, and treatment of NSALT; we also summarize their mechanisms through the microbiota-gut-liver-brain axis. Finally, we propose to improve NSALT on the basis of adjusting the gastrointestinal flora, immune inflammation or vagus nerve (VN), providing a novel strategy for clinical prevention and treatment.
Collapse
Affiliation(s)
- Wenhao Jing
- Department of Psychiatry, Shaoxing seventh people's hospital, Mental Health Center, School of Medicine, Shaoxing University, Shaoxing 312000, Zhejiang, China; Department of Pharmacology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, China; Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Chenchen Bi
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Zhou Fang
- Department of General Practice, Lizhu Branch, Shaoxing Second Hospital, Shaoxing 312000, Zhejiang, China
| | - Chao Qian
- Department of Psychiatry, Shaoxing seventh people's hospital, Mental Health Center, School of Medicine, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Jiaqi Chen
- Department of Pharmacology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, China; Department of Emergency Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, China
| | - Jingru Yu
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Guoqiang Tian
- Department of Psychiatry, Shaoxing seventh people's hospital, Mental Health Center, School of Medicine, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Mengfei Ye
- Department of Psychiatry, Shaoxing seventh people's hospital, Mental Health Center, School of Medicine, Shaoxing University, Shaoxing 312000, Zhejiang, China.
| | - Zheng Liu
- Department of Pharmacology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, China.
| |
Collapse
|
241
|
Jiang J, Yang M, Tian M, Chen Z, Xiao L, Gong Y. Intertwined associations between oxytocin, immune system and major depressive disorder. Biomed Pharmacother 2023; 163:114852. [PMID: 37163778 PMCID: PMC10165244 DOI: 10.1016/j.biopha.2023.114852] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023] Open
Abstract
Major depressive disorder (MDD) is a prominent psychiatric disorder with a high prevalence rate. The recent COVID-19 pandemic has exacerbated the already high prevalence of MDD. Unfortunately, a significant proportion of patients are unresponsive to conventional treatments, necessitating the exploration of novel therapeutic strategies. Oxytocin, an endogenous neuropeptide, has emerged as a promising candidate with anxiolytic and antidepressant properties. Oxytocin has been shown to alleviate emotional disorders by modulating the hypothalamic-pituitary-adrenal (HPA) axis and the central immune system. The dysfunction of the immune system has been strongly linked to the onset and progression of depression. The central immune system is believed to be a key target of oxytocin in ameliorating emotional disorders. In this review, we examine the evidence regarding the interactions between oxytocin, the immune system, and depressive disorder. Moreover, we summarize and speculate on the potential roles of the intertwined association between oxytocin and the central immune system in treating emotional disorders.
Collapse
Affiliation(s)
- Junliang Jiang
- Department of Orthopedics and Traumatology, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China; Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Miaoxian Yang
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Mi Tian
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhong Chen
- Department of Orthopedics and Traumatology, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China.
| | - Lei Xiao
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| | - Ye Gong
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
242
|
Su W, Zhao L, Bao S, Qin R, Cao J, Tian J, Han Y, Zhang T, Chen C, Shi Q, Guo Q, Shao F, Tian L. Alterations in gray matter morphology and functional connectivity in adult patients with newly diagnosed, untreated hypothyroidism. Thyroid 2023. [PMID: 37130043 DOI: 10.1089/thy.2022.0476] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND Untreated adult hypothyroidism may be associated with cognitive and emotional impairment, but the precise underlying neuropathological mechanism is unknown. We investigated the brain morphological and functional abnormalities associated with cognition and emotion in hypothyroidism. METHODS This is a cross-sectional observational study. Forty-four newly diagnosed adult hypothyroid patients and 54 well-matched healthy controls (HC) were enrolled. All participants underwent 3D T1WI and resting-state functional brain MRI. Morphological and seed-based functional connectivity (FC) analyses were performed to compare the inter-group differences. Neuropsychological tests, including the Montreal Cognitive Assessment Scale (MoCA), 24-item Hamilton Depression Rating Scale (HAMD-24), and Hamilton Anxiety Rating Scale (HAMA) were administered. Thyroid function test and blood lipid levels were measured. Correlations were computed between neuropsychological and biochemical measures with neuroimaging indices. Sensitive morphological or functional neuroimaging indicators were identified using ROC analysis. RESULTS Compared with HC, hypothyroid patients demonstrated lower total and subdomain scores on the MoCA and higher HAMD-24 and HAMA scores. Morphological analysis revealed the hypothyroid patients had significantly reduced gray matter (GM) volumes in the right superior frontal gyrus, superior temporal gyrus, left dorsolateral superior frontal gyrus, middle frontal gyrus, and supplementary motor area as well as significantly increased GM volumes in the bilateral cerebellar CrusⅠand left precentral gyrus. Furthermore, MRIs of hypothyroid patients showed increased FC between the right cerebellar CrusⅠand left precentral gyrus, triangular part of the inferior frontal gyrus, and angular gyrus of the inferior parietal lobe. The language scores of the MoCA were positively correlated with Jacobian values of the left supplementary motor area (r = 0.391, P = 0.046) and precentral gyrus (r = 0.401, P = 0.039). ROC analysis revealed FC value between cerebellar CrusⅠand angular gyrus could differentiate groups with relatively high accuracy (sensitivity: 75%, specificity: 77.8%, AUC: 0.794, 95% CI: 0.701-0.888, P < 0.001). CONCLUSION Untreated adult-onset hypothyroidism may be associated with impaired cognition and anxiety or depression. GM morphological alterations and FC of the cerebellum with subregions of the frontal and parietal lobes may represent key neuropathological mechanisms underlying the cognitive deterioration and mood dysregulation observed in hypothyroid adults.
Collapse
Affiliation(s)
- Wenxiu Su
- Gansu Provincial Hospital, 91589, Department of Endocrinology, Lanzhou, Gansu, China
- Gansu Province, 118136, Gansu Clinical Research Center for Metabolic Diseases, Lanzhou, Gansu, China
- Ningxia Medical University, 105002, School of Clinical Medicine, Yinchuan, Ningxia, China;
| | - Lianping Zhao
- Gansu Provincial Hospital, 91589, Department of Radiology, Lanzhou, Gansu, China;
| | - Shisan Bao
- The University of Sydney, 4334, School of Medical Sciences, Sydney, New South Wales, Australia;
| | - Rui Qin
- Gansu Provincial Hospital, 91589, Department of Endocrinology, Lanzhou, Gansu, China
- Gansu Province, 118136, Gansu Clinical Research Center for Metabolic Diseases, Lanzhou, Gansu, China;
| | - Jiancang Cao
- Gansu Provincial Hospital, 91589, Department of Radiology, Lanzhou, Gansu, China;
| | - Jing Tian
- Gansu Provincial Hospital, 91589, Department of Radiology, Lanzhou, Gansu, China;
| | - Yalan Han
- Gansu Provincial Hospital, 91589, Department of Radiology, Lanzhou, Gansu, China;
| | - Taotao Zhang
- Gansu Provincial Hospital, 91589, Department of Endocrinology, Lanzhou, Gansu, China
- Gansu Province, 118136, Gansu Clinical Research Center for Metabolic Diseases, Lanzhou, Gansu, China;
| | - Chen Chen
- Gansu Provincial Hospital, 91589, Department of Radiology, Lanzhou, Gansu, China;
| | - Qian Shi
- Gansu Provincial Hospital, 91589, Department of Radiology, Lanzhou, Gansu, China;
| | - Qian Guo
- Gansu Provincial Hospital, 91589, Department of Endocrinology, Lanzhou, Gansu, China
- Gansu Province, 118136, Gansu Clinical Research Center for Metabolic Diseases, Lanzhou, Gansu, China;
| | - Feifei Shao
- Gansu Provincial Hospital, 91589, Department of Endocrinology, Lanzhou, Gansu, China
- Gansu Province, 118136, Gansu Clinical Research Center for Metabolic Diseases, Lanzhou, Gansu, China;
| | - Limin Tian
- Gansu Provincial Hospital, 91589, Department of Endocrinology, Lanzhou, China
- Gansu Province, 118136, Gansu Clinical Research Center for Metabolic Diseases, Lanzhou, Gansu, China;
| |
Collapse
|
243
|
Telles S, Sharma SK, Kumar A, Gandharva K, Balkrishna A. Breath Phase Durations, Affect, and Attention: A Pilot Randomized Crossover Trial. Int J Yoga 2023; 16:143-147. [PMID: 38204777 PMCID: PMC10775847 DOI: 10.4103/ijoy.ijoy_53_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 01/12/2024] Open
Abstract
Objectives Previously, yoga volitional breathing with low inspiration to expiration ratios (i/e) (as in bhramari pranayama) improved cognition and reduced state anxiety. This study compared the effects of low, high and equal i/e ratio breathing on affect and attention. Material and Methods Affect, vigor and attention were assessed in forty healthy participants (group mean age± SD; 22.58±3.83; M:F= 2.33:1) while breathing with three different i/e regulated by a visual metronome on separate days viz., (i) low i/e (28:72), (ii) equal i/e (50:50), (iii) high i/e (72:28) compared to control, without conscious breath modification. Assessments were: (i) brief mood introspection scale (BMIS), (ii) global vigor and affect scale (GVAS), (iii) Spielberger's state trait anxiety inventory-state (STAI-S) and a six letter cancellation test to assess sustained attention. Data were analyzed with repeated measures analysis of variance with Bonferroni adjusted post-hoc tests. Results Pleasant feelings increased after low and equal i/e. Low i/e also increased positive feelings whereas equal i/e decreased scores in the cancellation test for sustained attention. All three breathing practices and the control session decreased state anxiety and increased vigor. High i/e breathing alone did not decrease negative feelings. For all the breath ratios the breath frequency cue was set at twelve breaths per minute. Conclusion In summary, varying breath phase ratios influenced positive and pleasant feelings but did not influence state anxiety or vigor. Understanding the mechanisms underlying the findings would be improved with concurrent physiological assessments.
Collapse
Affiliation(s)
- Shirley Telles
- Division of Yoga and Clinical Neurophysiology, Patanjali Research Foundation, Haridwar, Uttarakhand, India
| | - Sachin Kumar Sharma
- Division of Yoga and Clinical Neurophysiology, Patanjali Research Foundation, Haridwar, Uttarakhand, India
| | - Ankur Kumar
- Division of Yoga and Clinical Neurophysiology, Patanjali Research Foundation, Haridwar, Uttarakhand, India
| | - Kumar Gandharva
- Division of Yoga and Clinical Neurophysiology, Patanjali Research Foundation, Haridwar, Uttarakhand, India
- Department of Yoga, University of Patanjali, Haridwar, Uttarakhand, India
| | - Acharya Balkrishna
- Division of Yoga and Clinical Neurophysiology, Patanjali Research Foundation, Haridwar, Uttarakhand, India
- Department of Yoga, University of Patanjali, Haridwar, Uttarakhand, India
| |
Collapse
|
244
|
How gut hormones shape reward: A systematic review of the role of ghrelin and GLP-1 in human fMRI. Physiol Behav 2023; 263:114111. [PMID: 36740132 DOI: 10.1016/j.physbeh.2023.114111] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
The gastrointestinal hormones ghrelin and glucagon-like peptide-1 (GLP-1) have opposite secretion patterns, as well as opposite effects on metabolism and food intake. Beyond their role in energy homeostasis, gastrointestinal hormones have also been suggested to modulate the reward system. However, the potential of ghrelin and GLP-1 to modulate reward responses in humans has not been systematically reviewed before. To evaluate the convergence of published results, we first conduct a multi-level kernel density meta-analysis of studies reporting a positive association of ghrelin (Ncomb = 353, 18 contrasts) and a negative association of GLP-1 (Ncomb = 258, 12 contrasts) and reward responses measured using task functional magnetic resonance imaging (fMRI). Second, we complement the meta-analysis using a systematic literature review, focusing on distinct reward phases and applications in clinical populations that may account for variability across studies. In line with preclinical research, we find that ghrelin increases reward responses across studies in key nodes of the motivational circuit, such as the nucleus accumbens, pallidum, putamen, substantia nigra, ventral tegmental area, and the dorsal mid insula. In contrast, for GLP-1, we did not find sufficient convergence in support of reduced reward responses. Instead, our systematic review identifies potential differences of GLP-1 on anticipatory versus consummatory reward responses. Based on a systematic synthesis of available findings, we conclude that there is considerable support for the neuromodulatory potential of gut-based circulating peptides on reward responses. To unlock their potential for clinical applications, it may be useful for future studies to move beyond anticipated rewards to cover other reward facets.
Collapse
|
245
|
Besag FMC, Vasey MJ, Chin RFM. Current and emerging pharmacotherapy for the treatment of Lennox-Gastaut syndrome. Expert Opin Pharmacother 2023; 24:1249-1268. [PMID: 37212330 DOI: 10.1080/14656566.2023.2215924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
INTRODUCTION Lennox-Gastaut syndrome (LGS) is a severe childhood-onset epileptic encephalopathy, characterized by multiple seizure types, generalized slow spike-and-wave complexes in the EEG, and cognitive impairment. Seizures in LGS are typically resistant to treatment with antiseizure medications (ASMs). Tonic/atonic ('drop') seizures are of particular concern, due to their liability to cause physical injury. AREAS COVERED We summarize evidence for current and emerging ASMs for the treatment of seizures in LGS. The review focuses on findings from randomized, double-blind, placebo-controlled trials (RDBCTs). For ASMs for which no double-blind trials were identified, lower quality evidence was considered. Novel pharmacological agents currently undergoing investigation for the treatment of LGS are also briefly discussed. EXPERT OPINION Evidence from RDBCTs supports the use of cannabidiol, clobazam, felbamate, fenfluramine, lamotrigine, rufinamide, and topiramate as adjunct treatments for drop seizures. Percentage decreases in drop seizure frequency ranged from 68.3% with high-dose clobazam to 14.8% with topiramate. Valproate continues to be considered the first-line treatment, despite the absence of RDBCTs specifically in LGS. Most individuals with LGS will require treatment with multiple ASMs. Treatment decisions should be individualized and take into account adverse effects, comorbidities, general quality of life, and drug interactions, as well as individual efficacy.
Collapse
Affiliation(s)
- Frank M C Besag
- East London NHS Foundation Trust, Bedford, UK
- School of Pharmacy, University College London, London, UK
- Department of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | | - Richard F M Chin
- Muir Maxwell Epilepsy Centre, The University of Edinburgh, Edinburgh, UK
- Department of Paediatric Neurosciences, Royal Hospital for Children and Young People, Edinburgh, UK
| |
Collapse
|
246
|
Govindappa PK, Begom M, Gupta Y, Elfar JC, Rawat M, Elfar W. A critical role for erythropoietin on vagus nerve Schwann cells in intestinal motility. BMC Biotechnol 2023; 23:12. [PMID: 37127673 PMCID: PMC10152589 DOI: 10.1186/s12896-023-00781-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/30/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND Dysmotility and postoperative ileus (POI) are frequent major clinical problems post-abdominal surgery. Erythropoietin (EPO) is a multifunctional tissue-protective cytokine that promotes recovery of the intestine in various injury models. While EPO receptors (EPOR) are present in vagal Schwann cells, the role of EPOR in POI recovery is unknown because of the lack of EPOR antagonists or Schwann-cell specific EPOR knockout animals. This study was designed to explore the effect of EPO via EPOR in vagal nerve Schwann cells in a mouse model of POI. RESULTS The structural features of EPOR and its activation by EPO-mediated dimerization were understood using structural analysis. Later, using the Cre-loxP system, we developed a myelin protein zero (Mpz) promoter-driven knockout mouse model of Schwann cell EPOR (MpzCre-EPORflox/flox / Mpz-EPOR-KO) confirmed using PCR and qRT-PCR techniques. We then measured the intestinal transit time (ITT) at baseline and after induction of POI with and without EPO treatment. Although we have previously shown that EPO accelerates functional recovery in POI in wild type mice, EPO treatment did not improve functional recovery of ITT in POI of Mpz-EPOR-KO mice. CONCLUSIONS To the best of our knowledge, this is the first pre-clinical study to demonstrate a novel mouse model of EPOR specific knock out on Schwan cells with an effect in the gut. We also showed novel beneficial effects of EPO through vagus nerve Schwann cell-EPOR in intestinal dysmotility. Our findings suggest that EPO-EPOR signaling in the vagus nerve after POI is important for the functional recovery of ITT.
Collapse
Affiliation(s)
- Prem Kumar Govindappa
- Department of Orthopaedics and Sports Medicine, University of Arizona College of Medicine, Tucson, AZ, 85724, USA
| | - Mosammat Begom
- Department of Medicine, The Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Yash Gupta
- Department of Medicine, The Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - John C Elfar
- Department of Orthopaedics and Sports Medicine, University of Arizona College of Medicine, Tucson, AZ, 85724, USA
| | - Manmeet Rawat
- Department of Medicine, The Penn State University College of Medicine, Hershey, PA, 17033, USA.
| | - Walaa Elfar
- Department of Pediatrics, University of Arizona College of Medicine, Tucson, AZ, 85724, USA.
| |
Collapse
|
247
|
de Vries LM, Amelynck S, Nyström P, van Esch L, Van Lierde T, Warreyn P, Roeyers H, Noens I, Naulaers G, Boets B, Steyaert J. Investigating the development of the autonomic nervous system in infancy through pupillometry. J Neural Transm (Vienna) 2023; 130:723-734. [PMID: 36906867 PMCID: PMC10008146 DOI: 10.1007/s00702-023-02616-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/27/2023] [Indexed: 03/13/2023]
Abstract
We aim to investigate early developmental trajectories of the autonomic nervous system (ANS) as indexed by the pupillary light reflex (PLR) in infants with (i.e. preterm birth, feeding difficulties, or siblings of children with autism spectrum disorder) and without (controls) increased likelihood for atypical ANS development. We used eye-tracking to capture the PLR in 216 infants in a longitudinal follow-up study spanning 5 to 24 months of age, and linear mixed models to investigate effects of age and group on three PLR parameters: baseline pupil diameter, latency to constriction and relative constriction amplitude. An increase with age was found in baseline pupil diameter (F(3,273.21) = 13.15, p < 0.001, [Formula: see text] = 0.13), latency to constriction (F(3,326.41) = 3.84, p = 0.010, [Formula: see text] = 0.03) and relative constriction amplitude(F(3,282.53) = 3.70, p = 0.012, [Formula: see text] = 0.04). Group differences were found for baseline pupil diameter (F(3,235.91) = 9.40, p < 0.001, [Formula: see text] = 0.11), with larger diameter in preterms and siblings than in controls, and for latency to constriction (F(3,237.10) = 3.48, p = 0.017, [Formula: see text] = 0.04), with preterms having a longer latency than controls. The results align with previous evidence, with development over time that could be explained by ANS maturation. To better understand the cause of the group differences, further research in a larger sample is necessary, combining pupillometry with other measures to further validate its value.
Collapse
Affiliation(s)
- Lyssa M de Vries
- Center for Developmental Psychiatry, Department of Neurosciences, KU Leuven, Herestraat 49 Box 1029, 3000, Louvain, Belgium.
- University Hospital Leuven, Louvain, Belgium.
- Leuven Autism Research (LAuRes), KU Leuven, Louvain, Belgium.
| | - Steffie Amelynck
- Center for Developmental Psychiatry, Department of Neurosciences, KU Leuven, Herestraat 49 Box 1029, 3000, Louvain, Belgium
- Leuven Autism Research (LAuRes), KU Leuven, Louvain, Belgium
| | - Pär Nyström
- Developmental Psychology, Department of Psychology, Uppsala University, Uppsala, Sweden
| | - Lotte van Esch
- Leuven Autism Research (LAuRes), KU Leuven, Louvain, Belgium
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, Louvain, Belgium
| | - Thijs Van Lierde
- RIDDL Lab, Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Petra Warreyn
- RIDDL Lab, Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Herbert Roeyers
- RIDDL Lab, Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Ilse Noens
- Leuven Autism Research (LAuRes), KU Leuven, Louvain, Belgium
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, Louvain, Belgium
| | - Gunnar Naulaers
- University Hospital Leuven, Louvain, Belgium
- Woman and Child, Department of Development and Regeneration, KU Leuven, Louvain, Belgium
| | - Bart Boets
- Center for Developmental Psychiatry, Department of Neurosciences, KU Leuven, Herestraat 49 Box 1029, 3000, Louvain, Belgium
- Leuven Autism Research (LAuRes), KU Leuven, Louvain, Belgium
| | - Jean Steyaert
- Center for Developmental Psychiatry, Department of Neurosciences, KU Leuven, Herestraat 49 Box 1029, 3000, Louvain, Belgium
- University Hospital Leuven, Louvain, Belgium
- Leuven Autism Research (LAuRes), KU Leuven, Louvain, Belgium
| |
Collapse
|
248
|
Kumar A, Pramanik J, Goyal N, Chauhan D, Sivamaruthi BS, Prajapati BG, Chaiyasut C. Gut Microbiota in Anxiety and Depression: Unveiling the Relationships and Management Options. Pharmaceuticals (Basel) 2023; 16:ph16040565. [PMID: 37111321 PMCID: PMC10146621 DOI: 10.3390/ph16040565] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The gut microbiota is critical for maintaining human health and the immunological system. Several neuroscientific studies have shown the significance of microbiota in developing brain systems. The gut microbiota and the brain are interconnected in a bidirectional relationship, as research on the microbiome-gut-brain axis shows. Significant evidence links anxiety and depression disorders to the community of microbes that live in the gastrointestinal system. Modified diet, fish and omega-3 fatty acid intake, macro- and micro-nutrient intake, prebiotics, probiotics, synbiotics, postbiotics, fecal microbiota transplantation, and 5-HTP regulation may all be utilized to alter the gut microbiota as a treatment approach. There are few preclinical and clinical research studies on the effectiveness and reliability of various therapeutic approaches for depression and anxiety. This article highlights relevant research on the association of gut microbiota with depression and anxiety and the different therapeutic possibilities of gut microbiota modification.
Collapse
Affiliation(s)
- Akash Kumar
- Department of Food Technology, SRM University, Sonipat 131029, India
| | - Jhilam Pramanik
- Department of Food Technology, ITM University, Gwalior 474001, India
| | - Nandani Goyal
- Department of Skill Agriculture, Shri Vishwakarma Skill University, Gurugram 122003, India
| | - Dimple Chauhan
- School of Bio-Engineering and Food Technology, Shoolini University, Solan 173229, India
| | - Bhagavathi Sundaram Sivamaruthi
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Bhupendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, India
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
249
|
Murthy PM, Ca J, Kandi V, Reddy MK, Harikrishna GV, Reddy K, Jp R, Reddy AN, Narang J. Connecting the Dots: The Interplay Between Stroke and the Gut-Brain Axis. Cureus 2023; 15:e37324. [PMID: 37182027 PMCID: PMC10168015 DOI: 10.7759/cureus.37324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2023] [Indexed: 05/16/2023] Open
Abstract
This article discusses the interplay between the gut-brain axis and stroke, a multifaceted neurological disorder that affects millions of people worldwide. The gut-brain axis is a bidirectional communication network linking the central nervous system (CNS) to the gastrointestinal tract (GIT), including the enteric nervous system (ENS), vagus nerve, and gut microbiota. Dysbiosis in the gut microbiota, alterations in the ENS and vagus nerve, and gut motility changes have been linked to increased inflammation and oxidative stress, which are contributing factors in the development and progression of stroke. Research on animals has shown that modifying the gut microbiota can impact the results of a stroke. Germ-free mice displayed improved neurological function and decreased infarct volumes, indicating a positive effect. Furthermore, studies in stroke patients have shown alterations in the gut microbiota composition, indicating that targeting dysbiosis could be a potential therapeutic strategy for stroke. The review suggests that targeting the gut-brain axis may represent a potential therapeutic approach to reduce the morbidity and mortality associated with stroke.
Collapse
Affiliation(s)
- Pooja M Murthy
- Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Jayashankar Ca
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Venkataramana Kandi
- Clinical Microbiology, Prathima Institute of Medical Sciences, Karimnagar, IND
| | - Mithun K Reddy
- Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | | | - Kavitha Reddy
- General Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Ramya Jp
- General Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Ankush N Reddy
- General Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Jigya Narang
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| |
Collapse
|
250
|
Karbownik MS, Sokołowska P, Kowalczyk E. Gut Microbiota Metabolites Differentially Release Gliotransmitters from the Cultured Human Astrocytes: A Preliminary Report. Int J Mol Sci 2023; 24:ijms24076617. [PMID: 37047602 PMCID: PMC10095279 DOI: 10.3390/ijms24076617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/16/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Butyrate and indole-3-propionic acid represent the CNS-available gut microbiota metabolites exhibiting potentially beneficial effects on human brain function and being tested as antidepressants. Astrocytes represent one of the putative targets for the gut metabolites; however, the mechanism of action of butyrate and indole-3-propionic acid is not well understood. In order to test this mechanism, a human astrocyte cell-line culture was treated with the compounds or without them, and the supernatants were collected for the analysis of ATP and glutamate gliotransmitter release with the use of luminescent and fluorescent methods, respectively. A 10-min incubation of astrocytes with 1–5 mM butyrate increased the ATP gliotransmitter release by 78% (95%CI: 45–119%), p < 0.001. The effect was found to be mediated by the cytosolic Ca2+ mobilization. Both 10-min and 24-h treatments with indole-3-propionic acid produced no significant effects on the release of gliotransmitters. The results for glutamate release were inconclusive due to a specific glutamate release pattern discovered in the tested model. This preliminary report of butyrate-induced ATP gliotransmitter release appears to provide a novel mechanistic explanation for the beneficial effect of this gut microbiota metabolite on brain function; however, the results require further evaluation in more composed models.
Collapse
Affiliation(s)
- Michał Seweryn Karbownik
- Department of Pharmacology and Toxicology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
| | - Paulina Sokołowska
- Department of Pharmacology and Toxicology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
| | - Edward Kowalczyk
- Department of Pharmacology and Toxicology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
| |
Collapse
|