251
|
Kuritz T, Lee I, Owens ET, Humayun M, Greenbaum E. Molecular Photovoltaics and the Photoactivation of Mammalian Cells. IEEE Trans Nanobioscience 2005; 4:196-200. [PMID: 16117027 DOI: 10.1109/tnb.2005.850480] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Photosynthetic reaction centers are integral plant membrane protein complexes and molecular photovoltaic structures. We report here that addition of Photosystem I (PSI)-proteoliposomes to retinoblastoma cells imparts photosensitivity to these mammalian cells, as demonstrated by light-induced movement of calcium ions. Control experiments with liposomes lacking PSI demonstrated no photosensitivity. The data demonstrate that PSI, a nanoscale molecular photovoltaic structure extracted from plants, can impart a photoresponse to mammalian cells in vitro.
Collapse
Affiliation(s)
- Tanya Kuritz
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | | | | | | | |
Collapse
|
252
|
Luca S, Heise H, Lange A, Baldus M. Investigation of Ligand-Receptor Systems by High-Resolution Solid-State NMR: Recent Progress and Perspectives. Arch Pharm (Weinheim) 2005; 338:217-28. [PMID: 15938000 DOI: 10.1002/ardp.200400991] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Solid-state Nuclear Magnetic Resonance (NMR) provides a general method to study molecular structure and dynamics in a non-crystalline and insoluble environment. We discuss the latest methodological progress to construct 3D molecular structures from solid-state NMR data obtained under magic-angle-spinning conditions. As shown for the neurotensin/NTS-1 system, these methods can be readily applied to the investigation of ligand-binding to G-protein coupled receptors.
Collapse
Affiliation(s)
- Sorin Luca
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
253
|
Kneuper H, Janausch IG, Vijayan V, Zweckstetter M, Bock V, Griesinger C, Unden G. The Nature of the Stimulus and of the Fumarate Binding Site of the Fumarate Sensor DcuS of Escherichia coli. J Biol Chem 2005; 280:20596-603. [PMID: 15781452 DOI: 10.1074/jbc.m502015200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DcuS is a membrane-associated sensory histidine kinase of Escherichia coli specific for C(4) -dicarboxylates. The nature of the stimulus and its structural prerequisites were determined by measuring the induction of DcuS-dependent dcuB'-'lacZ gene expression. C(4)-dicarboxylates without or with substitutions at C2/C3 by hydrophilic (hydroxy, amino, or thiolate) groups stimulated gene expression in a similar way. When one carboxylate was replaced by sulfonate, methoxy, or nitro groups, only the latter (3-nitropropionate) was active. Thus, the ligand of DcuS has to carry two carboxylate or carboxylate/nitro groups 3.1-3.8 A apart from each other. The effector concentrations for half-maximal induction of dcuB'-'lacZ expression were 2-3 mm for the C(4)-dicarboxylates and 0.5 mm for 3-nitropropionate or d-tartrate. The periplasmic domain of DcuS contains a conserved cluster of positively charged or polar amino acid residues (Arg(107)-X(2)-His(110)-X(9)-Phe(120)-X(26)-Arg(147)-X-Phe(149)) that were essential for fumarate-dependent transcriptional regulation. The presence of fumarate or d-tartrate caused sharpening of peaks or chemical shift changes in HSQC NMR spectra of the isolated C(4)-dicarboylate binding domain. The amino acid residues responding to fumarate or d-tartrate were in the region comprising residues 89-150 and including the supposed binding site. DcuS(R147A) mutant with an inactivated binding site was isolated and reconstituted in liposomes. The protein showed the same (activation-independent) kinase activity as DcuS, but autophosphorylation of DcuS was no longer stimulated by C(4)-dicarboxylates. Therefore, the R147A mutation affected signal perception and transfer to the kinase but not the kinase activity per se.
Collapse
Affiliation(s)
- Holger Kneuper
- Institut für Mikrobiologie und Weinforschung, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
254
|
Migliaccio CT, Follis KE, Matsuura Y, Nunberg JH. Evidence for a polytopic form of the E1 envelope glycoprotein of Hepatitis C virus. Virus Res 2005; 105:47-57. [PMID: 15325080 DOI: 10.1016/j.virusres.2004.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Revised: 04/07/2004] [Accepted: 04/22/2004] [Indexed: 11/17/2022]
Abstract
The polyprotein precursor of the Hepatitis C virus (HCV) contains multiple membrane-spanning domains that define the membrane topology and subsequent maturation of the viral structural proteins. In order to examine the biogenesis of the E1-E2 heterodimeric complex, we inserted an affinity tag (S-peptide) at specific locations within the envelope glycoproteins. In particular, and based on the prediction that the E1 glycoprotein may be able to assume a polytopic topology containing two membrane-spanning domains, we inserted the affinity tag within a putative cytoplasmic loop of the E1 glycoprotein. The HCV structural polyprotein containing this tag (at amino acids 295/296) was highly expressed and able to form a properly processed and noncovalently associated E1-E2 complex. This complex was bound by murine and conformation-dependent human monoclonal antibodies (MAbs) comparably to the native untagged complex. In addition, MAb recognition was retained upon reconstituting the tagged E1-E2 complex in lipid membrane as topologically constrained proteoliposomes. Our findings are consistent with the model of a topologically flexible E1 glycoprotein that is able to adopt a polytopic form. This form of the E1-E2 complex may be important in the HCV life cycle and in pathogenesis.
Collapse
Affiliation(s)
- Christopher T Migliaccio
- Science Complex Room 221, Montana Biotechnology Center, The University of Montana, Missoula, MT 59812, USA
| | | | | | | |
Collapse
|
255
|
Girard P, Pécréaux J, Lenoir G, Falson P, Rigaud JL, Bassereau P. A new method for the reconstitution of membrane proteins into giant unilamellar vesicles. Biophys J 2005; 87:419-29. [PMID: 15240476 PMCID: PMC1304363 DOI: 10.1529/biophysj.104.040360] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this work, we have investigated a new and general method for the reconstitution of membrane proteins into giant unilamellar vesicles (GUVs). We have analyzed systematically the reconstitution of two radically different membrane proteins, the sarcoplasmic reticulum Ca(2+)-ATPase and the H(+) pump bacteriorhodopsin. In a first step, our method involved a detergent-mediated reconstitution of solubilized membrane proteins into proteoliposomes of 0.1-0.2 microm in size. In a second step, these preformed proteoliposomes were partially dried under controlled humidity followed, in a third step, by electroswelling of the partially dried film to give GUVs. The physical characteristics of GUVs were analyzed in terms of morphology, size, and lamellarity using phase-contrast and differential interference contrast microscopy. The reconstitution process was further characterized by analyzing protein incorporation and biological activity. Both membrane proteins could be homogeneously incorporated into GUVs at lipid/protein ratios ranging from 5 to 40 (w/w). After reconstitution, both proteins retained their biological activity as demonstrated by H(+) or Ca(2+) pumping driven by bacteriorhodopsin or Ca(2+)-ATPase, respectively. This constitutes an efficient new method of reconstitution, leading to the production of large unilamellar membrane protein-containing vesicles of more than 20 microm in diameter, which should prove useful for functional and structural studies through the use of optical microscopy, optical tweezers, microelectrodes, or atomic force microscopy.
Collapse
Affiliation(s)
- Philippe Girard
- Laboratoire [corrected] Physico Chimie Cioue, Unité Mixte de Recherche 168 Centre National de la Recherche Scientifique/Institut Curie, 75231 Paris Cedex 05, France.
| | | | | | | | | | | |
Collapse
|
256
|
Zhou A, Wozniak A, Meyer-Lipp K, Nietschke M, Jung H, Fendler K. Charge translocation during cosubstrate binding in the Na+/proline transporter of E.coli. J Mol Biol 2004; 343:931-42. [PMID: 15476811 DOI: 10.1016/j.jmb.2004.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Revised: 09/02/2004] [Accepted: 09/02/2004] [Indexed: 10/26/2022]
Abstract
Charge translocation associated with the activity of the Na(+)/proline cotransporter PutP of Escherichia coli was analyzed for the first time. Using a rapid solution exchange technique combined with a solid-supported membrane (SSM), it was demonstrated that Na(+)and/or proline individually or together induce a displacement of charge. This was assigned to an electrogenic Na(+)and/or proline binding process at the cytoplasmic face of the enzyme with a rate constant of k>50s(-1) which preceeds the rate-limiting step. Based on the kinetic analysis of our electrical signals, the following characteristics are proposed for substrate binding in PutP. (1) Substrate binding is electrogenic not only for Na(+), but also for the uncharged cosubstrate proline. The charge displacement associated with the binding of both substrates is of comparable size and independent of the presence of the respective cosubstrate. (2) Both substrates can bind individually to the transporter. Under physiological conditions, an ordered binding mechanism prevails, while at sufficiently high concentrations, each substrate can bind in the absence of the other. (3) Both substrate binding sites interact cooperatively with each other by increasing the affinity and/or the speed of binding of the respective cosubstrate. (4) Proline binding proceeds in a two-step process: low affinity (approximately 1mM) electroneutral substrate binding followed by a nearly irreversible electrogenic conformational transition.
Collapse
Affiliation(s)
- A Zhou
- Max Planck Institut für Biophysik, Marie Curie Strasse 15, D-60439 Frankfurt/Main, Germany
| | | | | | | | | | | |
Collapse
|
257
|
Seddon AM, Curnow P, Booth PJ. Membrane proteins, lipids and detergents: not just a soap opera. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1666:105-17. [PMID: 15519311 DOI: 10.1016/j.bbamem.2004.04.011] [Citation(s) in RCA: 939] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Accepted: 04/29/2004] [Indexed: 11/30/2022]
Abstract
Studying membrane proteins represents a major challenge in protein biochemistry, with one of the major difficulties being the problems encountered when working outside the natural lipid environment. In vitro studies such as crystallization are reliant on the successful solubilization or reconstitution of membrane proteins, which generally involves the careful selection of solubilizing detergents and mixed lipid/detergent systems. This review will concentrate on the methods currently available for efficient reconstitution and solubilization of membrane proteins through the use of detergent micelles, mixed lipid/detergent micelles and bicelles or liposomes. We focus on the relevant molecular properties of the detergents and lipids that aid understanding of these processes. A significant barrier to membrane protein research is retaining the stability and function of the protein during solubilization, reconstitution and crystallization. We highlight some of the lessons learnt from studies of membrane protein folding in vitro and give an overview of the role that lipids can play in stabilizing the proteins.
Collapse
Affiliation(s)
- Annela M Seddon
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | | | | |
Collapse
|
258
|
Lewinson O, Padan E, Bibi E. Alkalitolerance: a biological function for a multidrug transporter in pH homeostasis. Proc Natl Acad Sci U S A 2004; 101:14073-8. [PMID: 15371593 PMCID: PMC521123 DOI: 10.1073/pnas.0405375101] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
MdfA is an Escherichia coli multidrug-resistance transporter. Cells expressing MdfA from a multicopy plasmid exhibit multidrug resistance against a diverse group of toxic compounds. In this article, we show that, in addition to its role in multidrug resistance, MdfA confers extreme alkaline pH resistance and allows the growth of transformed cells under conditions that are close to those used normally by alkaliphiles (up to pH 10) by maintaining a physiological internal pH. MdfA-deleted E. coli cells are sensitive even to mild alkaline conditions, and the wild-type phenotype is restored fully by MdfA expressed from a plasmid. This activity of MdfA requires Na(+) or K(+). Fluorescence studies with inverted membrane vesicles demonstrate that MdfA catalyzes Na(+)- or K(+)-dependent proton transport, and experiments with reconstituted proteoliposomes confirm that MdfA is solely responsible for this phenomenon. Studies with multidrug resistance-defective MdfA mutants and competitive transport assays suggest that these activities of MdfA are related. Together, the results demonstrate that a single protein has an unprecedented capacity to turn E. coli from an obligatory neutrophile into an alkalitolerant bacterium, and they suggest a previously uncharacterized physiological role for MdfA in pH homeostasis.
Collapse
Affiliation(s)
- Oded Lewinson
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
259
|
Percec V, Dulcey AE, Balagurusamy VSK, Miura Y, Smidrkal J, Peterca M, Nummelin S, Edlund U, Hudson SD, Heiney PA, Duan H, Magonov SN, Vinogradov SA. Self-assembly of amphiphilic dendritic dipeptides into helical pores. Nature 2004; 430:764-8. [PMID: 15306805 DOI: 10.1038/nature02770] [Citation(s) in RCA: 502] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Accepted: 06/16/2004] [Indexed: 11/09/2022]
Abstract
Natural pore-forming proteins act as viral helical coats and transmembrane channels, exhibit antibacterial activity and are used in synthetic systems, such as for reversible encapsulation or stochastic sensing. These diverse functions are intimately linked to protein structure. The close link between protein structure and protein function makes the design of synthetic mimics a formidable challenge, given that structure formation needs to be carefully controlled on all hierarchy levels, in solution and in the bulk. In fact, with few exceptions, synthetic pore structures capable of assembling into periodically ordered assemblies that are stable in solution and in the solid state have not yet been realized. In the case of dendrimers, covalent and non-covalent coating and assembly of a range of different structures has only yielded closed columns. Here we describe a library of amphiphilic dendritic dipeptides that self-assemble in solution and in bulk through a complex recognition process into helical pores. We find that the molecular recognition and self-assembly process is sufficiently robust to tolerate a range of modifications to the amphiphile structure, while preliminary proton transport measurements establish that the pores are functional. We expect that this class of self-assembling dendrimers will allow the design of a variety of biologically inspired systems with functional properties arising from their porous structure.
Collapse
Affiliation(s)
- Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
260
|
Daghastanli KRP, Ferreira RB, Thedei G, Maggio B, Ciancaglini P. Lipid composition-dependent incorporation of multiple membrane proteins into liposomes. Colloids Surf B Biointerfaces 2004; 36:127-37. [PMID: 15276628 DOI: 10.1016/j.colsurfb.2004.03.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2003] [Accepted: 03/29/2004] [Indexed: 10/26/2022]
Abstract
Membrane proteins from bacteria Pasteurella multocida were used as a model for studying its incorporation into liposomes. An important step to achieve efficient high yield protein incorporation in proteoliposomes is the study of the more suitable lipid composition. To this end, we compared the amount of total protein, reconstituted by co-solubilization methods, into liposomes of phospholipids with different polar head groups and acyl chain lengths. The liposomes and proteoliposomes were characterised by isopycnic centrifugation in sucrose gradient and by dynamic light scattering. Experimental and theoretical results were compared considering the effects exerted through the hydrocarbon chain length, volume, and optimal cross-sectional area of the phospholipid (combined in the geometrical critical packing parameter, lipid-protein matching), critical spontaneous radius of curvature of the bilayer vesicle, phase transition temperature of the lipid and ratio of lipid-protein molecules present in the vesicles. The highest incorporation of multiple proteins was found with dipalmitoylphosphatidylcholine (DPPC), reaching a yield of 93% compared to the lower relative amounts incorporated in proteoliposomes of the other lipids. The incorporation of multiple proteins induces a proportional enhancement of vesicular dimension, since DPPC-proteoliposomes have an average diameter of 1850A, compared to the 1430A for pure DPPC vesicles.
Collapse
Affiliation(s)
- Katia R P Daghastanli
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto/USP, Avenida Bandeirantes 3900, Ribeirão Preto, SP 14040-901, Brazil
| | | | | | | | | |
Collapse
|
261
|
Pata V, Ahmed F, Discher DE, Dant N. Membrane solubilization by detergent: resistance conferred by thickness. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2004; 20:3888-93. [PMID: 15969375 DOI: 10.1021/la035734e] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The commonly held model for membrane dissolution by detergents/surfactants requires lipid transport from the inner to the outer bilayer leaflet ('flip-flop'). Although applicable to many systems, it fails in cases where cross-bilayer transport of membrane components is suppressed. In this paper we investigate the mechanism for surfactant-induced solubilization of polymeric bilayers. To that end, we examine the dissolution of a series of increasingly thick, polymer-based vesicles (polymersomes) by a nonionic surfactant, Triton X-100, using dynamic light scattering. We find that increasing the bilayer thickness imparts better resistance to dissolution, so that the concentration required for solubilization, after a fixed amount of time, increases nearly linearly with membrane thickness. Combining our experimental data with a theoretical model, we show that the dominant mechanism for the surfactant-induced dissolution of polymeric vesicles, where polymer flip-flop across the membrane is suppressed, is the surfactant transport through the bilayer. This mechanism is different both qualitatively and quantitatively from the mechanisms by which surfactants dissolve pure lipid vesicles.
Collapse
Affiliation(s)
- Veena Pata
- Department of Chemical Engineering, Drexel University, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | |
Collapse
|
262
|
Searls T, Chen X, Allen S, Yudkin MD. Evaluation of the kinetic properties of the sporulation protein SpoIIE of Bacillus subtilis by inclusion in a model membrane. J Bacteriol 2004; 186:3195-201. [PMID: 15126482 PMCID: PMC400609 DOI: 10.1128/jb.186.10.3195-3201.2004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Starvation induces Bacillus subtilis to initiate a developmental process (sporulation) that includes asymmetric cell division to form the prespore and the mother cell. The integral membrane protein SpoIIE is essential for the prespore-specific activation of the transcription factor sigmaF, and it also has a morphogenic activity required for asymmetric division. An increase in the local concentration of SpoIIE at the polar septum of B. subtilis precedes dephosphorylation of the anti-anti-sigma factor SpoIIAA in the prespore. After closure and invagination of the asymmetric septum, phosphatase activity of SpoIIE increases severalfold, but the reason for this dramatic change in activity has not been determined. The central domain of SpoIIE has been seen to self-associate (I. Lucet et al., EMBO J. 19:1467-1475, 2000), suggesting that activation of the C-terminal PP2C-like phosphatase domain might be due to conformational changes brought about by the increased local concentration of SpoIIE in the sporulating septum. Here we report the inclusion of purified SpoIIE protein into a model membrane as a method for studying the effect of local concentration in a lipid bilayer on activity. In vitro assays indicate that the membrane-bound enzyme maintains dephosphorylation rates similar to the highly active micellar state at all molar ratios of protein to lipid. Atomic force microscopy images indicate that increased local concentration does not lead to self-association.
Collapse
Affiliation(s)
- Tim Searls
- Microbiology Unit, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | | | |
Collapse
|
263
|
Stuart MCA, Koning RI, Oostergetel GT, Brisson A. Mechanism of formation of multilayered 2D crystals of the Enzyme IIC-mannitol transporter. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1663:108-16. [PMID: 15157613 DOI: 10.1016/j.bbamem.2004.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Accepted: 02/27/2004] [Indexed: 11/15/2022]
Abstract
We have recently reported the crystallization by reconstitution into lipid bilayer structures of Enzyme IIC(mtl), the transmembrane C-domain of the mannitol transporter from E. coli. The projected structure was determined to a resolution of 0.5 nm [J. Mol. Biol. 287 5 (1999) 845]. However, further investigation proved that these crystals were multilamellar stacks instead of 2D crystals, and therefore were unsuitable for three-dimensional structural analysis by electron crystallography. Understanding the crystallogenesis of these crystals could reveal the mechanism of formation of multilayers. In the present study, cryo-electron microscopy (cryo-EM) and turbidimetry are used to study the successive steps of reconstitution of Enzyme IIC(mtl) into phospholipid-containing structures and its crystallization under different conditions. Our experimental approach enabled us to distinguish the separate steps of reconstitution and crystallization. The salt concentration especially influenced the nature of the vesicles, either half open unilamellar or aggregated multilamellar, formed during reconstitution of Enzyme IIC(mtl). The presence of DOPE and DOPC and the temperature influenced the type of lipid structures that were formed during the crystallization phase of Enzyme IIC(mtl). Cryo-EM showed that protein crystallization is closely associated with the formation of isotropic lipid (cubic) phases. We believe that DOPE is responsible for the formation of these lipid cubic phases, and that crystallization is driven by exclusion of protein from these phases and its concentration into the lamellar phases. This mechanism is inextricably associated with the formation of multilayers.
Collapse
Affiliation(s)
- Marc C A Stuart
- Department of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| | | | | | | |
Collapse
|
264
|
Stolpe S, Friedrich T. The Escherichia coli NADH:Ubiquinone Oxidoreductase (Complex I) Is a Primary Proton Pump but May Be Capable of Secondary Sodium Antiport. J Biol Chem 2004; 279:18377-83. [PMID: 14970214 DOI: 10.1074/jbc.m311242200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The NADH:ubiquinone oxidoreductase (complex I) couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. Recently, it was demonstrated that complex I from Klebsiella pneumoniae translocates sodium ions instead of protons. Experimental evidence suggested that complex I from the close relative Escherichia coli works as a primary sodium pump as well. However, data obtained with whole cells showed the presence of an NADH-induced electrochemical proton gradient. In addition, Fourier transform IR spectroscopy demonstrated that the redox reaction of the E. coli complex I is coupled to a protonation of amino acids. To resolve this contradiction we measured the properties of isolated E. coli complex I reconstituted in phospholipids. We found that the NADH:ubiquinone oxidoreductase activity did not depend on the sodium concentration. The redox reaction of the complex in proteoliposomes caused a membrane potential due to an electrochemical proton gradient as measured with fluorescent probes. The signals were sensitive to the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP), the inhibitors piericidin A, dicyclohexylcarbodi-imide (DCCD), and amiloride derivatives, but were insensitive to the sodium ionophore ETH-157. Furthermore, monensin acting as a Na(+)/H(+) exchanger prevented the generation of a proton gradient. Thus, our data demonstrated that the E. coli complex I is a primary electrogenic proton pump. However, the magnitude of the pH gradient depended on the sodium concentration. The capability of complex I for secondary Na(+)/H(+) antiport is discussed.
Collapse
Affiliation(s)
- Stefan Stolpe
- Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, D-79104 Freiburg, Germany
| | | |
Collapse
|
265
|
Ruysschaert T, Germain M, Gomes JFPDS, Fournier D, Sukhorukov GB, Meier W, Winterhalter M. Liposome-Based Nanocapsules. IEEE Trans Nanobioscience 2004; 3:49-55. [PMID: 15382644 DOI: 10.1109/tnb.2004.824273] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Here we present three different types of mechanically stable nanometer-sized hollow capsules. The common point of the currently developed systems in our laboratory is that they are liposome based. Biomolecules can be used to functionalize lipid vesicles to create a new type of intelligent material. For example, insertion of membrane channels into the capsule wall can modify the permeability. Covalent binding of antibodies allows targeting of the capsule to specific sites. Liposomes loaded with enzymes may provide an optimal environment for them with respect to the maximal turnover and may stabilize the enzyme. However, the main drawback of liposomes is their instability in biological media as well as their sensitivity to many external parameters such as temperature or osmotic pressure. To increase their stability we follow different strategies: 1) polymerize a two-dimensional network in the hydrophobic core of the membrane; 2) coat the liposome with a polyelectrolyte shell; or 3) add surface active polymers to form mixed vesicular structures.
Collapse
Affiliation(s)
- Tristan Ruysschaert
- Institut Pharmacologie et Biologie Structurale-CNRS UMR5089, Toulouse F-31077, France
| | | | | | | | | | | | | |
Collapse
|
266
|
Grimard V, Li C, Ramjeesingh M, Bear CE, Goormaghtigh E, Ruysschaert JM. Phosphorylation-induced Conformational Changes of Cystic Fibrosis Transmembrane Conductance Regulator Monitored by Attenuated Total Reflection-Fourier Transform IR Spectroscopy and Fluorescence Spectroscopy. J Biol Chem 2004; 279:5528-36. [PMID: 14660584 DOI: 10.1074/jbc.m311014200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is a member of the ABC protein superfamily. Phosphorylation of a regulatory domain of this protein is a prerequisite for activity. We analyzed the effect of protein kinase A (PKA) phosphorylation on the structure of purified and reconstituted CFTR protein. 1H/2H exchange monitored by attenuated total reflection Fourier transform IR spectroscopy demonstrates that CFTR is highly accessible to aqueous medium. Phosphorylation of the regulatory (R) domain by PKA further increases this accessibility. More specifically, fluorescence quenching of cytosolic tryptophan residues revealed that the accessibility of the cytoplasmic part of the protein is modified by phosphorylation. Moreover, the combination of polarized IR spectroscopy with 1H/2H exchange suggested an increase of the accessibility of the transmembrane domains of CFTR. This suggests that CFTR phosphorylation can induce a large conformational change that could correspond either to a displacement of the R domain or to long range conformational changes transmitted from the phosphorylation sites to the nucleotide binding domains and the transmembrane segments. Such structural changes may provide better access for the solutes to the nucleotide binding domains and the ion binding site.
Collapse
Affiliation(s)
- Vinciane Grimard
- Center for Structural Biology and Bioinformatics, Free University of Brussels, Campus Plaine CP206/2, 1050 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
267
|
Peters R. Optical single transporter recording: transport kinetics in microarrays of membrane patches. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2003; 32:47-67. [PMID: 12574067 DOI: 10.1146/annurev.biophys.32.110601.142429] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Optical single transporter recording (OSTR) is an emerging technique for the fluorescence microscopic measurement of transport kinetics in membrane patches. Membranes are attached to transparent microarrays of cylindrical test compartments (TCs) approximately 0.1-100 mum in diameter and approximately 10-100 mum in depth. Transport across membrane patches that may contain single transporters or transporter populations is recorded by confocal microscopy. By these means transport of proteins through single nuclear pore complexes has been recorded at rates of <1 translocation/s. In addition to the high sensitivity in terms of measurable transport rates OSTR features unprecedented spatial selectivity and parallel processing. This article reviews the conceptual basis of OSTR and its realization. Applications to nuclear transport are summarized. The further development of OSTR is discussed and its extension to a diversity of transporters, including translocases and ATP-binding cassette (ABC) pumps, projected.
Collapse
Affiliation(s)
- Reiner Peters
- Institut fur Medizinische Physik und Biophysik, Universitat Munster, Munster, Germany.
| |
Collapse
|
268
|
Kato K, Walde P, Mitsui H, Higashi N. Enzymatic activity and stability ofd-fructose dehydrogenase and sarcosine dehydrogenase immobilizd onto giant vesicles. Biotechnol Bioeng 2003; 84:415-23. [PMID: 14574698 DOI: 10.1002/bit.10784] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Stable vesicles with diameters between about 1 and 10 mum were prepared by a particular emulsification technology that involved the use of the surfactants Span 80 and Tween 80 and the phospholipid lecithin (phosphatidylcholine from soybeans). Two membrane enzymes, d-fructose dehydrogenase from Gluconobacter sp. (FDH) and sarcosine dehydrogenase from Pseudomonas putida (SDH), were for the first time immobilized onto the bilayer membranes of these type of vesicles; and the catalytic activity and enzymatic stability were measured and compared with the enzymes in a vesicle-free solution. The enzyme activity as well as stability considerably increased upon immobilization. In particular, immobilized FDH at 25 degrees C was stable for at least 20 days, while the activity of the free enzyme dropped to about 20% of its initial value during the same period of time. In contrast to FDH and SDH, immobilization of sorbitol dehydrogenase from Gluconobacter suboxydans (SODH) was not successful, as no improved activity or stability could be obtained.
Collapse
Affiliation(s)
- Keiichi Kato
- Department of Applied Chemistry, Faculty of Engineering, Ehime University, Bunkyo chyo 3, Matsuyama, 790 Japan.
| | | | | | | |
Collapse
|
269
|
Rémigy HW, Caujolle-Bert D, Suda K, Schenk A, Chami M, Engel A. Membrane protein reconstitution and crystallization by controlled dilution. FEBS Lett 2003; 555:160-9. [PMID: 14630337 DOI: 10.1016/s0014-5793(03)01105-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Efficient reconstitution of membrane proteins for functional analyses can be achieved by dilution of a ternary mixture containing proteins, lipids and detergents. Once the dilution reaches the point where the free detergent concentration would become lower than the critical micellar concentration, detergent is recruited from the bound detergent pool, and association of proteins and lipids is initiated. Here we show that dilution is also suitable for the assembly of two-dimensional crystals. A device has been designed that allows controlled dilution of a protein-lipid-detergent mixture to induce formation of densely packed or crystalline proteoliposomes. Turbidity is used to monitor the progress of reconstitution on-line, while dilution is achieved by computer-controlled addition of buffer solution in sub-microliter steps. This system has mainly been tested with porin OmpF, a typical beta-barrel protein, and aquaporin-1, a typical alpha-helical protein. The results demonstrate that large, highly ordered two-dimensional crystals can be produced by the dilution method.
Collapse
Affiliation(s)
- H-W Rémigy
- M.E. Müller Institute for Microscopy, Biozentrum, University of Basel, Klingelbergstr. 70, CH-4056 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
270
|
Gonzalez-Gronow M, Kalfa T, Johnson CE, Gawdi G, Pizzo SV. The voltage-dependent anion channel is a receptor for plasminogen kringle 5 on human endothelial cells. J Biol Chem 2003; 278:27312-8. [PMID: 12736244 DOI: 10.1074/jbc.m303172200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human plasminogen contains structural domains that are termed kringles. Proteolytic cleavage of plasminogen yields kringles 1-3 or 4 and kringle 5 (K5), which regulate endothelial cell proliferation. The receptor for kringles 1-3 or 4 has been identified as cell surface-associated ATP synthase; however, the receptor for K5 is not known. Sequence homology exists between the plasminogen activator streptokinase and the human voltage-dependent anion channel (VDAC); however, a functional relationship between these proteins has not been reported. A streptokinase binding site for K5 is located between residues Tyr252-Lys283, which is homologous to the primary sequence of VDAC residues Tyr224-Lys255. Antibodies against these sequences react with VDAC and detect this protein on the plasma membrane of human endothelial cells. K5 binds with high affinity (Kd of 28 nm) to endothelial cells, and binding is inhibited by these antibodies. Purified VDAC binds to K5 but only when reconstituted into liposomes. K5 also interferes with mechanisms controlling the regulation of intracellular Ca2+ via its interaction with VDAC. K5 binding to endothelial cells also induces a decrease in intracellular pH and hyperpolarization of the mitochondrial membrane. These studies suggest that VDAC is a receptor for K5.
Collapse
Affiliation(s)
- Mario Gonzalez-Gronow
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | |
Collapse
|
271
|
Bond PJ, Sansom MSP. Membrane protein dynamics versus environment: simulations of OmpA in a micelle and in a bilayer. J Mol Biol 2003; 329:1035-53. [PMID: 12798692 DOI: 10.1016/s0022-2836(03)00408-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The bacterial outer membrane protein OmpA is one of the few membrane proteins whose structure has been solved both by X-ray crystallography and by NMR. Crystals were obtained in the presence of detergent, and the NMR structure is of the protein in a detergent micelle. We have used 10 ns duration molecular dynamics simulations to compare the behaviour of OmpA in a detergent micelle and in a phospholipid bilayer. The dynamic fluctuations of the protein structure seem to be ca 1.5 times greater in the micelle environment than in the lipid bilayer. There are subtle differences between the nature of OmpA-detergent and OmpA-lipid interactions. As a consequence of the enhanced flexibility of the OmpA protein in the micellar environment, side-chain torsion angle changes are such as to lead to formation of a continuous pore through the centre of the OmpA molecule. This may explain the experimentally observed channel formation by OmpA.
Collapse
Affiliation(s)
- Peter J Bond
- Laboratory of Molecular Biophysics, Department of Biochemistry, The University of Oxford, The Rex Richards Building, South Parks Road, Oxford OX1 3QU, UK
| | | |
Collapse
|
272
|
Lesieur S, Grabielle-Madelmont C, Ménager C, Cabuil V, Dadhi D, Pierrot P, Edwards K. Evidence of surfactant-induced formation of transient pores in lipid bilayers by using magnetic-fluid-loaded liposomes. J Am Chem Soc 2003; 125:5266-7. [PMID: 12720425 DOI: 10.1021/ja021471j] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is often assumed that surfactant-induced permeability of lipid membranes obeys a pore-formation mechanism, but, to date, this has not been totally proven. A novel approach is developed using a magnetic fluid composed of calibrated nanocrystals of maghemite (gamma-Fe2O3) as a permeability marker. It is shown that low amounts of surfactant molecules catalyze the transient opening of unilamellar phospholipid vesicles which permit the passage of 8 nm maghemite nanospheres before closing up.
Collapse
Affiliation(s)
- Sylviane Lesieur
- Equipe Physico-Chimie des Systèmes Polyphasés, CNRS UMR 8612, F-92296 Châtenay-Malabry Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
273
|
Finikova O, Galkin A, Rozhkov V, Cordero M, Hägerhäll C, Vinogradov S. Porphyrin and tetrabenzoporphyrin dendrimers: tunable membrane-impermeable fluorescent pH nanosensors. J Am Chem Soc 2003; 125:4882-93. [PMID: 12696908 DOI: 10.1021/ja0341687] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The pH dependencies of the UV-vis and fluorescent spectra of new water-soluble dendritic porphyrins and tetrabenzoporphyrins were studied. Because of extended pi-conjugation and nonplanar distortion, the absorption and the emission bands of tetraaryltetrabenzoporphyrins (Ar(4)TBP) are red-shifted and do not overlap with those of regular tetraarylporphyrins (Ar(4)P). When encapsulated inside dendrimers with hydrophilic outer layers, Ar(4)Ps and Ar(4)TBPs become water soluble and can serve as pH indicators, with pK's adjustable by the peripheral charges on the dendrimers. Two new dendritic porphyrins, Gen 4 polyglutamic porphyrin dendrimer H(2)P-Glu(4)OH (1) with 64 peripheral carboxylates and Gen 1 poly(ester amide) Newkome-type tetrabenzoporphyrin dendrimer H(2)TBP-Nw(1)OH (2) with 36 peripheral carboxylates, were synthesized and characterized. The pK's of the encapsulated porphyrins (pK(H)()2(P)(-)(Glu)()4(OH) = 6.2 and pK(H)()2(TBP)(-)(Nw)()1(OH) = 6.3) were found to be strongly influenced by the dendrimers, revealing significant electrostatic shielding of the cores by the peripheral charges. The titration curves obtained by differential excitation using the mixtures of the dendrimers were shown to be identical to those determined for the dendrimers individually. Due to their peripheral carboxylates and nanometric molecular size, porphyrin dendrimers cannot penetrate through phospholipid membranes. Dendrimer 1 was captured inside phospholipid liposomes, which were suspended in a solution containing dendrimer 2. No response from 1 was detected upon pH changes in the bulk solution, while the response from 2 was predictably strong. When proton channels were created in the liposome walls, both compounds responded equally to the bulk pH changes. These results suggest that porphyrin dendrimers can be used as fluorescent pH indicators for proton gradient measurements.
Collapse
Affiliation(s)
- Olga Finikova
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
274
|
Stamouli A, Kafi S, Klein DCG, Oosterkamp TH, Frenken JWM, Cogdell RJ, Aartsma TJ. The ring structure and organization of light harvesting 2 complexes in a reconstituted lipid bilayer, resolved by atomic force microscopy. Biophys J 2003; 84:2483-91. [PMID: 12668456 PMCID: PMC1302814 DOI: 10.1016/s0006-3495(03)75053-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2002] [Accepted: 11/25/2002] [Indexed: 10/21/2022] Open
Abstract
The main function of the transmembrane light-harvesting complexes in photosynthetic organisms is the absorption of a light quantum and its subsequent rapid transfer to a reaction center where a charge separation occurs. A combination of freeze-thaw and dialysis methods were used to reconstitute the detergent-solubilized Light Harvesting 2 complex (LH2) of the purple bacterium Rhodopseudomonas acidophila strain 10050 into preformed egg phosphatidylcholine liposomes, without the need for extra chemical agents. The LH2-containing liposomes opened up to a flat bilayer, which were imaged with tapping and contact mode atomic force microscopy under ambient and physiological conditions, respectively. The LH2 complexes were packed in quasicrystalline domains. The endoplasmic and periplasmic sides of the LH2 complexes could be distinguished by the difference in height of the protrusions from the lipid bilayer. The results indicate that the complexes entered in intact liposomes. In addition, it was observed that the most hydrophilic side, the periplasmic, enters first in the membrane. In contact mode the molecular structure of the periplasmic side of the transmembrane pigment-protein complex was observed. Using Föster's theory for describing the distance dependent energy transfer, we estimate the dipole strength for energy transfer between two neighboring LH2s, based on the architecture of the imaged unit cell.
Collapse
Affiliation(s)
- Amalia Stamouli
- Department of Biophysics, Huygens Laboratory, Leiden University, 2300 RA Leiden, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
275
|
Lewinson O, Adler J, Poelarends GJ, Mazurkiewicz P, Driessen AJM, Bibi E. The Escherichia coli multidrug transporter MdfA catalyzes both electrogenic and electroneutral transport reactions. Proc Natl Acad Sci U S A 2003; 100:1667-72. [PMID: 12578981 PMCID: PMC149890 DOI: 10.1073/pnas.0435544100] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The resistance of cells to many drugs simultaneously (multidrug resistance) often involves the expression of membrane transporters (Mdrs); each recognizes and expels a broad spectrum of chemically unrelated drugs from the cell. The Escherichia coli Mdr transporter MdfA is able to transport differentially charged substrates in exchange for protons. This includes neutral compounds, namely chloramphenicol and thiamphenicol, and lipophilic cations such as tetraphenylphosphonium and ethidium. Here we show that the chloramphenicol and thiamphenicol transport reactions are electrogenic, whereas the transport of several monovalent cationic substrates is electroneutral. Therefore, unlike with positively charged substrates, the transmembrane electrical potential (negative inside) constitutes a major part of the driving force for the transport of electroneutral substrates by MdfA. These results demonstrate an unprecedented ability of a single secondary transporter to catalyze discrete transport reactions that differ in their electrogenicity and are governed by different components of the proton motive force.
Collapse
Affiliation(s)
- Oded Lewinson
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
276
|
Wang DN, Safferling M, Lemieux MJ, Griffith H, Chen Y, Li XD. Practical aspects of overexpressing bacterial secondary membrane transporters for structural studies. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1610:23-36. [PMID: 12586376 DOI: 10.1016/s0005-2736(02)00709-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Membrane transporter proteins play critical physiological roles in the cell and constitute 5-10% of prokaryotic and eukaryotic genomes. High-resolution structural information is essential for understanding the functional mechanism of these proteins. A prerequisite for structural study is to overexpress such proteins in large quantities. In the last few years, over 20 bacterial membrane transporters were overexpressed at a level of 1 mg/l of culture or higher, most often in Escherichia coli. In this review, we analyzed those factors that affect the quantity and quality of the protein produced, and summarized recent progress in overexpression of membrane transporters from bacterial inner membrane. Rapid progress in genome sequencing provides opportunities for expressing several homologues and orthologues of the target protein simultaneously, while the availability of various expression vectors allows flexible experimental design. Careful optimization of cell culture conditions can drastically improve the expression level and homogeneity of the target protein. New sample preparation techniques for mass spectrometry of membrane proteins have enabled one to identity the rigid protein core, which can be subsequently overexpressed. Size-exclusion chromatography on HPLC has proven to be an efficient method in screening detergent, pH an other conditions required for maintaining the stability and monodispersity of the protein. Such high-quality preparations of membrane transporter proteins will probably lead to successful crystallization and structure determination of these proteins in the next few years.
Collapse
Affiliation(s)
- Da-Neng Wang
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.
| | | | | | | | | | | |
Collapse
|
277
|
Affiliation(s)
- Jean-Louis Rigaud
- Institut Curie, UMR-CNRS 168 and LRC-CEA 34V, 11 Rue Pierre et Marie Curie, 75231 Paris, France
| | | |
Collapse
|
278
|
Gibrat R, Grignon C. Liposomes with Multiple Fluorophores for Measurement of Ionic Fluxes, Selectivity, and Membrane Potential. Methods Enzymol 2003; 372:166-86. [PMID: 14610813 DOI: 10.1016/s0076-6879(03)72010-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Rémy Gibrat
- Agro-M/CNRS/ONRA/UMII, ENSA-INRA, Montpellier, 34060, France
| | | |
Collapse
|
279
|
|
280
|
Devesa F, Chams V, Dinadayala P, Stella A, Ragas A, Auboiroux H, Stegmann T, Poquet Y. Functional reconstitution of the HIV receptors CCR5 and CD4 in liposomes. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:5163-74. [PMID: 12392548 DOI: 10.1046/j.1432-1033.2002.03213.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Reconstitution of membrane proteins allows their study in a membrane environment that can be manipulated at will. Because membrane proteins have diverse biophysical properties, reconstitution methods have so far been developed for individual proteins on an ad hoc basis. We developed a postinsertion reconstitution method for CCR5, a G protein coupled receptor, with seven transmembrane alpha helices and small ecto- and endodomains. A His6-tagged version of CCR5 was expressed in mammalian cells, purified using the detergent N-dodecyl-beta-d-maltoside (DDM) and reconstituted into preformed liposomal membranes saturated with DDM, removing the detergent with hydrophobic polystyrene beads. We then attempted to incorporate CD4, a protein with a single transmembrane helix and a large hydrophilic ectodomain into liposomal membranes, together with CCR5. Surprisingly, reconstitution of this protein was also achieved by the method. Both proteins were found to be present together in individual liposomes. The reconstituted CCR5 was recognized by several monoclonal antibodies, recognized its natural ligand, and CD4 bound a soluble form of gp120, a subunit of the HIV fusion protein that uses CD4 as a receptor. Moreover, cells expressing the entire fusion protein of HIV bound to the liposomes, indicating that the proteins were intact and that most of them were oriented right side out. Thus, functional coreconstitution of two widely different proteins can be achieved by this method, suggesting that it might be useful for other proteins.
Collapse
Affiliation(s)
- François Devesa
- Institut de Pharmacologie et de Biologie Structurale; CNRS UMR 5089, Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
281
|
Janausch IG, Garcia-Moreno I, Unden G. Function of DcuS from Escherichia coli as a fumarate-stimulated histidine protein kinase in vitro. J Biol Chem 2002; 277:39809-14. [PMID: 12167640 DOI: 10.1074/jbc.m204482200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The two-component regulatory system DcuSR of Escherichia coli controls the expression of genes of C(4)-dicarboxylate metabolism in response to extracellular C(4)- dicarboxylates such as fumarate or succinate. DcuS is a membrane-integral sensor kinase, and the sensory and kinase domains are located on opposite sides of the cytoplasmic membrane. The intact DcuS protein (His(6)-DcuS) was overproduced and isolated in detergent containing buffer. His(6)-DcuS was reconstituted into liposomes made from E. coli phospholipids. Reconstituted His(6)-DcuS catalyzed, in contrast to the detergent-solubilized sensor, autophosphorylation by [gamma-(33)P]ATP with an approximate K(D) of 0.16 mm for ATP. Up to 7% of the reconstituted DcuS was phosphorylated. Phosphorylation was stimulated up to 5.9-fold by C(4)-dicarboxylates, but not by other carboxylates. The phosphoryl group of DcuS was rapidly transferred to the response regulator DcuR. Upon phosphorylation, DcuR bound specifically to dcuB promoter DNA. The reconstituted DcuSR system therefore represents a defined in vitro system, which is capable of the complete transmembrane signal transduction by the DcuSR two-component system from the stimulus (fumarate) to the DNA, including signal transfer across the phospholipid membrane.
Collapse
Affiliation(s)
- Ingo G Janausch
- Institut für Mikrobiologie und Weinforschung, Johannes Gutenberg-Universität Mainz, Becherweg 15, 55099 Mainz, Germany
| | | | | |
Collapse
|
282
|
Jung H, Buchholz M, Clausen J, Nietschke M, Revermann A, Schmid R, Jung K. CaiT of Escherichia coli, a new transporter catalyzing L-carnitine/gamma -butyrobetaine exchange. J Biol Chem 2002; 277:39251-8. [PMID: 12163501 DOI: 10.1074/jbc.m206319200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
l-Carnitine is essential for beta-oxidation of fatty acids in mitochondria. Bacterial metabolic pathways are used for the production of this medically important compound. Here, we report the first detailed functional characterization of the caiT gene product, a putative transport protein whose function is required for l-carnitine conversion in Escherichia coli. The caiT gene was overexpressed in E. coli, and the gene product was purified by affinity chromatography and reconstituted into proteoliposomes. Functional analyses with intact cells and proteoliposomes demonstrated that CaiT is able to catalyze the exchange of l-carnitine for gamma-butyrobetaine, the excreted end product of l-carnitine conversion in E. coli, and related betaines. Electrochemical ion gradients did not significantly stimulate l-carnitine uptake. Analysis of l-carnitine counterflow yielded an apparent external K(m) of 105 microm and a turnover number of 5.5 s(-1). Contrary to related proteins, CaiT activity was not modulated by osmotic stress. l-Carnitine binding to CaiT increased the protein fluorescence and caused a red shift in the emission maximum, an observation explained by ligand-induced conformational alterations. The fluorescence effect was specific for betaine structures, for which the distance between trimethylammonium and carboxyl groups proved to be crucial for affinity. Taken together, the results suggest that CaiT functions as an exchanger (antiporter) for l-carnitine and gamma-butyrobetaine according to the substrate/product antiport principle.
Collapse
Affiliation(s)
- Heinrich Jung
- Fachbereich Biologie/Chemie, Abteilung Mikrobiologie, Universität Osnabrück, Barbarastrasse 11, D-49069 Osnabrück, Germany.
| | | | | | | | | | | | | |
Collapse
|
283
|
Werten PJL, Rémigy HW, de Groot BL, Fotiadis D, Philippsen A, Stahlberg H, Grubmüller H, Engel A. Progress in the analysis of membrane protein structure and function. FEBS Lett 2002; 529:65-72. [PMID: 12354615 DOI: 10.1016/s0014-5793(02)03290-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Structural information on membrane proteins is sparse, yet they represent an important class of proteins that is encoded by about 30% of all genes. Progress has primarily been achieved with bacterial proteins, but efforts to solve the structure of eukaryotic membrane proteins are also increasing. Most of the structures currently available have been obtained by exploiting the power of X-ray crystallography. Recent results, however, have demonstrated the accuracy of electron crystallography and the imaging power of the atomic force microscope. These instruments allow membrane proteins to be studied while embedded in the bi-layer, and thus in a functional state. The low signal-to-noise ratio of cryo-electron microscopy is overcome by crystallizing membrane proteins in a two-dimensional protein-lipid membrane, allowing its atomic structure to be determined. In contrast, the high signal-to-noise ratio of atomic force microscopy allows individual protein surfaces to be imaged at sub-nanometer resolution, and their conformational states to be sampled. This review summarizes the steps in membrane protein structure determination and illuminates recent progress.
Collapse
Affiliation(s)
- P J L Werten
- M.E. Müller Institute for Microscopy, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
284
|
Jiang QX, Thrower EC, Chester DW, Ehrlich BE, Sigworth FJ. Three-dimensional structure of the type 1 inositol 1,4,5-trisphosphate receptor at 24 A resolution. EMBO J 2002; 21:3575-81. [PMID: 12110570 PMCID: PMC126125 DOI: 10.1093/emboj/cdf380] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We report here the first three-dimensional structure of the type 1 inositol 1,4,5-trisphosphate receptor (IP(3)R). From cryo-electron microscopic images of purified receptors embedded in vitreous ice, a three-dimensional structure was determined by use of standard single particle reconstruction techniques. The structure is strikingly different from that of the ryanodine receptor at similar resolution despite molecular similarities between these two calcium release channels. The 24 A resolution structure of the IP(3)R takes the shape of an uneven dumbbell, and is approximately 170 A tall. Its larger end is bulky, with four arms protruding laterally by approximately 50 A and, in comparison with the receptor topology, probably corresponds to the cytoplasmic domain of the receptor. The lateral dimension at the height of the protruding arms is approximately 155 A. The smaller end, whose lateral dimension is approximately 100 A, has structural features indicative of the membrane-spanning domain. A central opening in this domain, which is occluded on the cytoplasmic half, outlines a pathway for calcium flow in the open state of the channel.
Collapse
Affiliation(s)
- Qiu-Xing Jiang
- Departments of
Cellular and Molecular Physiology and Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA Corresponding author e-mail:
| | - Edwin C. Thrower
- Departments of
Cellular and Molecular Physiology and Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA Corresponding author e-mail:
| | - David W. Chester
- Departments of
Cellular and Molecular Physiology and Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA Corresponding author e-mail:
| | - Barbara E. Ehrlich
- Departments of
Cellular and Molecular Physiology and Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA Corresponding author e-mail:
| | - Fred J. Sigworth
- Departments of
Cellular and Molecular Physiology and Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA Corresponding author e-mail:
| |
Collapse
|
285
|
Rigaud JL. Membrane proteins: functional and structural studies using reconstituted proteoliposomes and 2-D crystals. Braz J Med Biol Res 2002; 35:753-66. [PMID: 12131914 DOI: 10.1590/s0100-879x2002000700001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Reconstitution of membrane proteins into lipid bilayers is a powerful tool to analyze functional as well as structural areas of membrane protein research. First, the proper incorporation of a purified membrane protein into closed lipid vesicles, to produce proteoliposomes, allows the investigation of transport and/or catalytic properties of any membrane protein without interference by other membrane components. Second, the incorporation of a large amount of membrane proteins into lipid bilayers to grow crystals confined to two dimensions has recently opened a new way to solve their structure at high resolution using electron crystallography. However, reconstitution of membrane proteins into functional proteoliposomes or 2-D crystallization has been an empirical domain, which has been viewed for a long time more like "black magic" than science. Nevertheless, in the last ten years, important progress has been made in acquiring knowledge of lipid-protein-detergent interactions and has permitted to build upon a set of basic principles that has limited the empirical approach of reconstitution experiments. Reconstitution strategies have been improved and new strategies have been developed, facilitating the success rate of proteoliposome formation and 2-D crystallization. This review deals with the various strategies available to obtain proteoliposomes and 2-D crystals from detergent-solubilized proteins. It gives an overview of the methods that have been applied, which may be of help for reconstituting more proteins into lipid bilayers in a form suitable for functional studies at the molecular level and for high-resolution structural analysis.
Collapse
Affiliation(s)
- J-L Rigaud
- Institut Curie, UMR-CNRS 168 and LRC-CEA 8, Paris, France.
| |
Collapse
|
286
|
Quick M, Wright EM. Employing Escherichia coli to functionally express, purify, and characterize a human transporter. Proc Natl Acad Sci U S A 2002; 99:8597-601. [PMID: 12077304 PMCID: PMC124325 DOI: 10.1073/pnas.132266599] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2002] [Accepted: 05/03/2002] [Indexed: 11/18/2022] Open
Abstract
Large-scale purification of recombinant human membrane proteins represents a rate-limiting step toward the understanding of their role in health and disease. There are only four mammalian membrane proteins of known structure, and these were isolated from natural sources (see http://www.mpibp-frankfurt.mpg.de/michel/public/memprotstruct.html). In addition, genetic diseases of membrane proteins are frequently caused by trafficking defects, and it is enigmatic whether these mutants are functional. Here, we report the employment of Escherichia coli for the functional expression, purification, and reconstitution of a human membrane protein, the human Na+/glucose cotransporter (hSGLT1). The use of an E. coli mutant defective in the outer membrane protease OmpT, incubation temperatures below 20 degrees C, and transcriptional regulation from the lac promoter/operator are crucial to reduce proteolytic degradation. Purification of a recombinant hSGLT1 through affinity chromatography yields about 1 mg of purified recombinant hSGLT1 per 3 liters of cultured bacterial cells. Kinetic analysis of hSGLT1 in proteoliposomes reveals that a purified recombinant transporter, which is missorted in eukaryotic cells, retains full catalytic activity. These results indicate the power of bacteria to manufacture and isolate human membrane proteins implicated in genetic diseases.
Collapse
Affiliation(s)
- Matthias Quick
- Department of Physiology, School of Medicine, University of California, Los Angeles, CA 90095-1751, USA.
| | | |
Collapse
|
287
|
Lu ML, Huang YW, Lin SX. Purification, reconstitution, and steady-state kinetics of the trans-membrane 17 beta-hydroxysteroid dehydrogenase 2. J Biol Chem 2002; 277:22123-30. [PMID: 11940569 DOI: 10.1074/jbc.m111726200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human membrane 17 beta-hydroxysteroid dehydrogenase 2 is an enzyme essential in the conversion of the highly active 17beta-hydroxysteroids into their inactive keto forms in a variety of tissues. 17 beta-hydroxysteroid dehydrogenase 2 with 6 consecutive histidines at its N terminus was expressed in Sf9 insect cells. This recombinant protein retained its biological activity and facilitated the enzyme purification and provided the most suitable form in our studies. Dodecyl-beta-D-maltoside was found to be the best detergent for the solubilization, purification, and reconstitution of this enzyme. The overexpressed integral membrane protein was purified with a high catalytic activity and a purity of more than 90% by nickel-chelated chromatography. For reconstitution, the purified protein was incorporated into dodecyl-beta-D-maltoside-destabilized liposomes prepared from l-alpha-phosphatidylcholine. The detergent was removed by adsorption onto polystyrene beads. The reconstituted enzyme had much higher stability and catalytic activity (2.6 micromol/min/mg of enzyme protein with estradiol) than the detergent-solubilized and purified protein (0.9 micromol/min/mg of enzyme protein with estradiol). The purified and reconstituted protein (with a 2-kDa His tag) was proved to be a homodimer, and its functional molecular mass was calculated to be 90.4 +/- 1.2 kDa based on glycerol gradient analytical ultracentrifugation and chemical cross-linking study. The kinetic studies demonstrated that 17 beta-hydroxysteroid dehydrogenase 2 was an NAD-preferring dehydrogenase with the K(m) of NAD being 110 +/- 10 microM and that of NADP 9600 +/- 100 microM using estradiol as substrate. The kinetic constants using estradiol, testosterone, dihydrotestosterone, and 20 alpha-dihydroprogesterone as substrates were also determined.
Collapse
Affiliation(s)
- Ming-Liang Lu
- Oncology and Molecular Endocrinology Research Center, Laval University Medical Center (CHUQ) and Laval University, Québec, Québec G1V 4G2, Canada
| | | | | |
Collapse
|
288
|
Diociaiuti M, Molinari A, Ruspantini I, Gaudiano MC, Ippoliti R, Lendaro E, Bordi F, Chistolini P, Arancia G. P-glycoprotein inserted in planar lipid bilayers formed by liposomes opened on amorphous carbon and Langmuir-Blodgett monolayer. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1559:21-31. [PMID: 11825585 DOI: 10.1016/s0005-2736(01)00425-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The insertion of proteins into planar lipid layers is of outstanding interest as the resulting films are suitable for the investigation of protein structure and aggregation in a lipid environment and/or the development of biotechnological applications as biosensors. In this study, purified P-glycoprotein (P-gp), a membrane drug pump, was incorporated in model membranes deposited on solid supports according to the method by Puu and Gustafson, Biochim. Biophys. Acta 1327 (1997) 149-161. The models were formed by a double lipid layer obtained by opening P-gp-containing liposomes onto two hydrophobic supports: amorphous carbon films and Langmuir-Blodgett (L-B) lipid monolayers, which were then observed by transmission electron microscopy and atomic force microscopy, respectively. Before the opening of liposomes, the P-gp structure and functionality were verified by circular dichroism spectroscopy and enzymatic assay. Our micrographs showed that liposomes containing P-gp fuse to the substrates more easily than plain liposomes, which keep their rounded shape. This suggests that the protein plays an essential role in the fusion of liposomes. To localize P-gp, the immunogold labeling of two externally exposed protein epitopes was carried out. Both imaging techniques confirmed that P-gp was successfully incorporated in the model membranes and that the two epitopes preserved the reactivity with specific mAbs, after sample preparation. Model membranes obtained on L-B monolayer incorporated few molecules with respect to those incorporated in the model membrane deposited onto amorphous carbon, probably because of the different mechanism of proteoliposome opening. Finally, all particles appeared as isolated units, suggesting that P-gp molecules were present as monomers.
Collapse
Affiliation(s)
- Marco Diociaiuti
- Laboratorio di Ultrastrutture, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
289
|
Jung K, Hamann K, Revermann A. K+ stimulates specifically the autokinase activity of purified and reconstituted EnvZ of Escherichia coli. J Biol Chem 2001; 276:40896-902. [PMID: 11533042 DOI: 10.1074/jbc.m107871200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The histidine kinase/response regulator system EnvZ/OmpR of Escherichia coli regulates transcription of the genes ompF and ompC, encoding two porins of the outer membrane. Although the total amount of OmpF and OmpC remains constant, the relative levels of the two proteins fluctuate in a reciprocal manner depending on medium osmolality. The membrane-anchored sensor EnvZ somehow monitors changes in environmental osmolality. To characterize the nature of the stimulus perceived by EnvZ, this protein was overproduced, purified, and reconstituted into proteoliposomes. Autokinase activity of purified and reconstituted EnvZ was stimulated by an increase of the K(+) concentration. Rb(+), Na(+), and NH4(+) also stimulated the activity but to a smaller extent, whereas an osmotic upshift imposed by various sugars or increasing concentrations of glycine betaine, proline, or Tris/MES were without influence. Neither the transfer of the phosphoryl group from EnvZ approximately P to OmpR nor the EnvZ-mediated OmpR approximately P dephosphorylation were affected by one of the tested solutes. Experiments with the reconstructed signal transduction cascade including DNA fragments demonstrated a substantial increase of the amount of phosphorylated OmpR in the presence of K(+) and to a lower extent in the presence of Na(+), Rb(+), and NH4(+). Various K(+) salts were tested indicating that the determined effects were K(+)-specific and not dependent on the anion. In a further in vitro test system, which utilizes right-side-out membrane vesicles, the K(+)-specific activation of EnvZ autokinase from the luminal side was confirmed. These results clearly indicate a regulation of EnvZ autokinase activity by monovalent ions, specifically K(+). Whether K(+) accumulation, which is one of the first responses of E. coli after an osmotic upshift, is related to the stimulation of the EnvZ autokinase activity in vivo is discussed.
Collapse
Affiliation(s)
- K Jung
- Universität Osnabrück, Fachbereich Biologie/Chemie, Abteilung Mikrobiologie, D-49069 Osnabrück, Germany.
| | | | | |
Collapse
|
290
|
A comparative study of sugar-based surfactants for the solubilization of phosphatidylcholine vesicles. Colloids Surf B Biointerfaces 2001. [DOI: 10.1016/s0927-7765(01)00162-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
291
|
Walde P, Ichikawa S. Enzymes inside lipid vesicles: preparation, reactivity and applications. BIOMOLECULAR ENGINEERING 2001; 18:143-77. [PMID: 11576871 DOI: 10.1016/s1389-0344(01)00088-0] [Citation(s) in RCA: 441] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
There are a number of methods that can be used for the preparation of enzyme-containing lipid vesicles (liposomes) which are lipid dispersions that contain water-soluble enzymes in the trapped aqueous space. This has been shown by many investigations carried out with a variety of enzymes. A review of these studies is given and some of the main results are summarized. With respect to the vesicle-forming amphiphiles used, most preparations are based on phosphatidylcholine, either the natural mixtures obtained from soybean or egg yolk, or chemically defined compounds, such as DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) or POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine). Charged enzyme-containing lipid vesicles are often prepared by adding a certain amount of a negatively charged amphiphile (typically dicetylphosphate) or a positively charged lipid (usually stearylamine). The presence of charges in the vesicle membrane may lead to an adsorption of the enzyme onto the interior or exterior site of the vesicle bilayers. If (i) the high enzyme encapsulation efficiencies; (ii) avoidance of the use of organic solvents during the entrapment procedure; (iii) relatively monodisperse spherical vesicles of about 100 nm diameter; and (iv) a high degree of unilamellarity are required, then the use of the so-called 'dehydration-rehydration method', followed by the 'extrusion technique' has shown to be superior over other procedures. In addition to many investigations in the field of cheese production--there are several studies on the (potential) medical and biomedical applications of enzyme-containing lipid vesicles (e.g. in the enzyme-replacement therapy or for immunoassays)--including a few in vivo studies. In many cases, the enzyme molecules are expected to be released from the vesicles at the target site, and the vesicles in these cases serve as the carrier system. For (potential) medical applications as enzyme carriers in the blood circulation, the preparation of sterically stabilized lipid vesicles has proven to be advantageous. Regarding the use of enzyme-containing vesicles as submicrometer-sized nanoreactors, substrates are added to the bulk phase. Upon permeation across the vesicle bilayer(s), the trapped enzymes inside the vesicles catalyze the conversion of the substrate molecules into products. Using physical (e.g. microwave irradiation) or chemical methods (e.g. addition of micelle-forming amphiphiles at sublytic concentration), the bilayer permeability can be controlled to a certain extent. A detailed molecular understanding of these (usually) submicrometer-sized bioreactor systems is still not there. There are only a few approaches towards a deeper understanding and modeling of the catalytic activity of the entrapped enzyme molecules upon externally added substrates. Using micrometer-sized vesicles (so-called 'giant vesicles') as simple models for the lipidic matrix of biological cells, enzyme molecules can be microinjected inside individual target vesicles, and the corresponding enzymatic reaction can be monitored by fluorescence microscopy using appropriate fluorogenic substrate molecules.
Collapse
Affiliation(s)
- P Walde
- Institut für Polymere, ETH-Zentrum, Universitätstrasse 6, CH-8092, Zürich, Switzerland.
| | | |
Collapse
|
292
|
Heuberger EH, Smits E, Poolman B. Xyloside transport by XylP, a member of the galactoside-pentoside-hexuronide family. J Biol Chem 2001; 276:34465-72. [PMID: 11408491 DOI: 10.1074/jbc.m105460200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This paper describes the functional characterization of the xyloside transporter, XylP, of Lactobacillus pentosus with the aid of a spectroscopy-based assay system. In order to monitor the transport reaction, the natural xyloside isoprimeverose, a building block of hemicellulose, and the analogue methyl-isoprimeverose were chemically synthesized by a new and efficient procedure. The XylP protein was purified by metal affinity chromatography, following high level expression in Lactococcus lactis from the nisin-inducible promoter. The purified XylP protein was incorporated into liposomes, in which the glucose dehydrogenase from Acinetobacter calcoaceticus (sGDH) was entrapped. sGDH can oxidize aldose sugars in the presence of dichlorophenol-indophenol as electron acceptor. The coupled assay thus involves XylP-mediated isoprimeverose uptake followed by internal oxidation of the sugar by sGDH, which can be monitored from the reduction of 2,6-dichlorophenol-indophenol at 600 nm. The uptake of isoprimeverose was stimulated by the presence of the non-oxidizable methyl-isoprimeverose on the trans-side of the membrane, indicating that exchange transport is faster than unidirectional downhill uptake. Unlike other members of the galactoside-pentoside-hexuronide family, XylP does not transport monosaccharides (xylose) but requires a glycosidic linkage at the anomeric carbon position. Consistent with a proton motive force-driven mechanism, the uptake was stimulated by a membrane potential (inside negative relative to outside) and inhibited by a pH gradient (inside acidic relative to outside). The advantages of the here-described transport assay for studies of carbohydrate transport are discussed.
Collapse
Affiliation(s)
- E H Heuberger
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | |
Collapse
|
293
|
Abstract
Detergents are invaluable tools for studying membrane proteins. However, these deceptively simple, amphipathic molecules exhibit complex behavior when they self-associate and interact with other molecules. The phase behavior and assembled structures of detergents are markedly influenced not only by their unique chemical and physical properties but also by concentration, ionic conditions, and the presence of other lipids and proteins. In this minireview, we discuss the various aggregate forms detergents assume and some misconceptions about their structure. The distinction between detergents and the membrane lipids that they may (or may not) replace is emphasized in the most recent high resolution structures of membrane proteins. Detergents are clearly friends and foes, but with the knowledge of how they work, we can use the increasing variety of detergents to our advantage.
Collapse
Affiliation(s)
- R M Garavito
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA.
| | | |
Collapse
|
294
|
Levy D, Chami M, Rigaud JL. Two-dimensional crystallization of membrane proteins: the lipid layer strategy. FEBS Lett 2001; 504:187-93. [PMID: 11532452 DOI: 10.1016/s0014-5793(01)02748-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Due to the difficulty to crystallize membrane proteins, there is a considerable interest to intensify research topics aimed at developing new methods of crystallization. In this context, the lipid layer crystallization at the air/water interface, used so far for soluble proteins, has been recently adapted successfully to produce two-dimensional (2D) crystals of membrane proteins, amenable to structural analysis by electron crystallography. Besides to represent a new alternative strategy, this approach gains the advantage to decrease significantly the amount of material needed in incubation trials, thus opening the field of crystallization to those membrane proteins difficult to surexpress and/or purify. The systematic studies that have been performed on different classes of membrane proteins are reviewed and the physico-chemical processes that lead to the production of 2D crystals are addressed. The different drawbacks, advantages and perspectives of this new strategy for providing structural information on membrane proteins are discussed.
Collapse
Affiliation(s)
- D Levy
- Institut Curie, Section de Recherche, UMR-CNRS 168 and LRC-CEA 8, 11 Rue Pierre et Marie Curie, 75231 Cedex 05, Paris, France
| | | | | |
Collapse
|
295
|
Berman MC. Slippage and uncoupling in P-type cation pumps; implications for energy transduction mechanisms and regulation of metabolism. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1513:95-121. [PMID: 11470083 DOI: 10.1016/s0005-2736(01)00356-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
P-type ATPases couple scalar and vectorial events under optimized states. A number of procedures and conditions lead to uncoupling or slippage. A key branching point in the catalytic cycle is at the cation-bound form of E(1)-P, where isomerization to E(2)-P leads to coupled transport, and hydrolysis leads to uncoupled release of cations to the cis membrane surface. The phenomenon of slippage supports a channel model for active transport. Ability to occlude cations within the channel is essential for coupling. Uncoupling and slippage appear to be inherent properties of P-type cation pumps, and are significant contributors to standard metabolic rate. Heat production is favored in the uncoupled state. A number of disease conditions, include ageing, ischemia and cardiac failure, result in uncoupling of either the Ca(2+)-ATPase or Na(+)/K(+)-ATPase.
Collapse
Affiliation(s)
- M C Berman
- Division of Chemical Pathology, Health Sciences Faculty, University of Cape Town, Observatory 7925, Cape Town, South Africa.
| |
Collapse
|
296
|
|
297
|
Ruspantini I, Diociaiuti M, Ippoliti R, Lendaro E, Gaudiano MC, Cianfriglia M, Chistolini P, Arancia G, Molinari A. Immunogold localisation of P-glycoprotein in supported lipid bilayers by transmission electron microscopy and atomic force microscopy. THE HISTOCHEMICAL JOURNAL 2001; 33:305-9. [PMID: 11563544 DOI: 10.1023/a:1017933225226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this study, purified P-glycoprotein molecules, a membrane drug pump responsible for the multidrug resistance phenomenon, were incorporated in model membranes deposited onto solid supports, according to the method described by Puu and Gustafson (1997). The insertion of proteins into planar supported model membranes is of interest, as the films are fundamental in biosensor applications and for the investigation of how proteins conform and aggregate in a lipid environment. In our investigation, two model membranes were prepared by transferring liposomes containing P-glycoprotein to different hydrophobic supports: (a) thin amorphous carbon films; (b) Langmuir-Blodgett lipid monolayers on mica. After the labelling of P-glycoprotein with two well-characterised monoclonal antibodies, MM4.17 and MRK-16, samples (a) were observed by transmission electron microscopy (TEM) and samples (b) by atomic force microscopy (AFM). The comparative analysis performed by TEM and AFM allowed us to demonstrate the successful insertion of P-glycoprotein in the model membranes and their stability under different environmental conditions (vacuum, air and water). P-glycoprotein appeared to maintain, after purification and insertion in lipid bilayers, a good part of its conformational features as shown by the P-glycoprotein segments bearing the specific monoclonal antibody epitopes.
Collapse
Affiliation(s)
- I Ruspantini
- Laboratorio di Ingegneria Biomedica, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
298
|
Kashani-Poor N, Kerscher S, Zickermann V, Brandt U. Efficient large scale purification of his-tagged proton translocating NADH:ubiquinone oxidoreductase (complex I) from the strictly aerobic yeast Yarrowia lipolytica. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1504:363-70. [PMID: 11245800 DOI: 10.1016/s0005-2728(00)00266-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Proton translocating NADH:ubiquinone oxidoreductase (complex I) is the largest membrane bound multiprotein complex of the respiratory chain and the only one for which no molecular structure is available so far. Thus, information on the mechanism of this central enzyme of aerobic energy metabolism is still very limited. As a new approach to analyze complex I, we have recently established the strictly aerobic yeast Yarrowia lipolytica as a model system that offers a complete set of convenient genetic tools and contains a complex I that is stable after isolation. For crystallization of complex I and to obtain its molecular structure it is a prerequisite to prepare large amounts of highly pure enzyme. Here we present the construction of his-tagged complex I that for the first time allows efficient affinity purification. Our protocol recovers almost 40% of complex I present in Yarrowia mitochondrial membranes. Overall, 40-80 mg highly pure and homogeneous complex I can be obtained from 10 l of an overnight Y. lipolytica culture. After reconstitution into asolectin proteoliposomes, the purified enzyme exhibits full NADH:ubiquinone oxidoreductase activity, is fully sensitive to inhibition by quinone analogue inhibitors and capable of generating a proton-motive force.
Collapse
Affiliation(s)
- N Kashani-Poor
- Universitätsklinikum Frankfurt, Institut für Biochemie I, ZBC, Theodor-Stern-Kai 7, Haus 25B, D-60590, Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
299
|
Chomiki N, Voss JC, Warden CH. Structure-function relationships in UCP1, UCP2 and chimeras: EPR analysis and retinoic acid activation of UCP2. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:903-13. [PMID: 11179956 DOI: 10.1046/j.1432-1327.2001.01946.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Uncoupling proteins (UCPs) are composed of three repeated domains of approximately 100 amino acids each. We have used chimeras of UCP1 and UCP2, and electron paramagnetic resonance (EPR), to investigate domain specific properties of these UCPs. Questions include: are the effects of nucleotide binding on proton transport solely mediated by amino acids in the third C-terminal domain, and are the amino acids in the first two domains involved in retinoic or fatty acid activation? We first confirmed that our reconstitution system produced UCP1 that exhibited known properties, such as activation by fatty acids and inhibition of proton transport by purine nucleotides. Our results confirm the observations reported for recombinant yeast that retinoic acid, but not fatty acids known to activate UCP1, activates proton transport by UCP2 and that this activation is insensitive to nucleotide inhibition. We constructed chimeras in which the last domains of UCP1 or UCP2 were switched and tested for activation by fatty acids or retinoic acid and inhibition by nucleotides. U1U2 is composed of mUCP1 (amino acids 1-198) and hUCP2 (amino acids 211-309). Fatty acids activated proton transport of U1U2 and GTP mediated inhibition. In the other chimeric construct U2U1, hUCP2 (amino acids 1-210) and mUCP1 (amino acids 199-307), retinoic acid still acted as an activator, but no inhibition was observed with GTP. Using EPR, a method well suited to the analysis of the structure of membrane proteins such as UCPs, we confirmed that UCP2 binds nucleotides. The EPR data show large structural changes in UCP1 and UCP2 on exposure to ATP, implying that a putative nucleotide-binding site is present on UCP2. EPR analysis also demonstrated changes in conformation of UCP1/UCP2 chimeras following exposure to purine nucleotides. These data demonstrate that a nucleotide-binding site is present in the C-terminal domain of UCP2. This domain was able to inhibit proton transport only when fused to the N-terminal part of UCP1 (chimera U1U2). Thus, residues involved in nucleotide inhibition of proton transport are located in the two first carrier motifs of UCP1. While these results are consistent with previously reported effects of the C-terminal domain on nucleotide binding, they also demonstrate that interactions with the N-terminal domains are necessary to inhibit proton transport. Finally, the results suggest that proteins such as UCP2 may transport protons even though they are not responsible for basal or cold-induced thermogenesis.
Collapse
Affiliation(s)
- N Chomiki
- Departments of Pediatrics, Section of Neurobiology Physiology and Behavior, Rowe Program in Human Genetics, and Department of Biological Chemistry, School of Medicine, University of California, Davis, USA
| | | | | |
Collapse
|
300
|
Chami M, Pehau-Arnaudet G, Lambert O, Ranck JL, Lèvy D, Rigaud JL. Use of Octyl β-Thioglucopyranoside in Two-Dimensional Crystallization of Membrane Proteins. J Struct Biol 2001; 133:64-74. [PMID: 11356065 DOI: 10.1006/jsbi.2001.4344] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A great interest exists in producing and/or improving two-dimensional (2D) crystals of membrane proteins amenable to structural analysis by electron crystallography. Here we report on the use of the detergent n-octyl beta-d-thioglucopyranoside in 2D crystallization trials of membrane proteins with radically different structures including FhuA from the outer membrane of Escherichia coli, light-harvesting complex II from Rubrivivax gelatinosus, and Photosystem I from cyanobacterium Synechococcus sp. We have analyzed by electron microscopy the structures reconstituted after detergent removal from lipid-detergent or lipid-protein-detergent micellar solutions containing either only n-octyl beta-d-thioglucopyranoside or n-octyl beta-d-thioglucopyranoside in combination with other detergents commonly used in membrane protein biochemistry. This allowed the definition of experimental conditions in which the use of n-octyl beta-d-thioglucopyranoside could induce a considerable increase in the size of reconstituted membrane structures, up to several micrometers. An other important feature was that, in addition to reconstitution of membrane proteins into large bilayered structures, this thioglycosylated detergent also was revealed to be efficient in crystallization trials, allowing the proteins to be analyzed in large coherent two-dimensional arrays. Thus, inclusion of n-octyl beta-d-thioglucopyranoside in 2D crystallization trials appears to be a promising method for the production of large and coherent 2D crystals that will be valuable for structural analysis by electron crystallography and atomic force microscopy.
Collapse
Affiliation(s)
- M Chami
- Section de Recherche, Institut Curie, UMR-CNRS 168 et LRC-CEA 8, 11 rue Pierre et Marie Curie, 75231 Paris, France
| | | | | | | | | | | |
Collapse
|