251
|
Continuous Ingestion of Lacticaseibacillus rhamnosus JB-1 during Chronic Stress Ensures Neurometabolic and Behavioural Stability in Rats. Int J Mol Sci 2022; 23:ijms23095173. [PMID: 35563564 PMCID: PMC9106030 DOI: 10.3390/ijms23095173] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022] Open
Abstract
The intestinal microbiome composition and dietary supplementation with psychobiotics can result in neurochemical alterations in the brain, which are possible due to the presence of the brain–gut–microbiome axis. In the present study, magnetic resonance spectroscopy (MRS) and behavioural testing were used to evaluate whether treatment with Lacticaseibacillus rhamnosus JB-1 (JB-1) bacteria alters brain metabolites’ levels and behaviour during continuous exposure to chronic stress. Twenty Wistar rats were subjected to eight weeks of a chronic unpredictable mild stress protocol. Simultaneously, half of them were fed with JB-1 bacteria, and the second half was given a daily placebo. Animals were examined at three-time points: before starting the stress protocol and after five and eight weeks of stress onset. In the elevated plus maze behavioural test the placebo group displayed increased anxiety expressed by almost complete avoidance of exploration, while the JB-1 dietary supplementation mitigated anxiety which resulted in a longer exploration time. Hippocampal MRS measurements demonstrated a significant decrease in glutamine + glutathione concentration in the placebo group compared to the JB-1 bacteria-supplemented group after five weeks of stress. With the progression of stress, the decrease of glutamate, glutathione, taurine, and macromolecular concentrations were observed in the placebo group as compared to baseline. The level of brain metabolites in the JB-1-supplemented rats were stable throughout the experiment, with only the taurine level decreasing between weeks five and eight of stress. These data indicated that the JB-1 bacteria diet might stabilize levels of stress-related neurometabolites in rat brain and could prevent the development of anxiety/depressive-like behaviour.
Collapse
|
252
|
Vicentini FA, Szamosi JC, Rossi L, Griffin L, Nieves K, Bihan D, Lewis IA, Pittman QJ, Swain MG, Surette MG, Hirota SA, Sharkey KA. Colitis-associated microbiota drives changes in behaviour in male mice in the absence of inflammation. Brain Behav Immun 2022; 102:266-278. [PMID: 35259427 DOI: 10.1016/j.bbi.2022.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/10/2022] [Accepted: 03/03/2022] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory conditions of the gastrointestinal tract. IBD are associated with a high prevalence of cognitive, behavioural and emotional comorbidities, including anxiety and depression. The link between IBD and the development of behavioural comorbidities is poorly understood. As the intestinal microbiota profoundly influences host behaviour, we sought to determine whether the altered gut microbiota associated with intestinal inflammation contributes to the development of behavioural abnormalities. Using the dextran sulphate sodium (DSS) model of colitis, we characterized intestinal inflammation, behaviour (elevated plus maze and tail suspension test) and the composition of the microbiota in male mice. Cecal contents from colitic mice were transferred into germ-free (GF) or antibiotic (Abx)-treated mice, and behaviour was characterized in recipient mice. Gene expression was measured using qPCR. DSS colitis was characterized by a significant reduction in body weight and an increase in colonic inflammatory markers. These changes were accompanied by increased anxiety-like behaviour, an altered gut microbiota composition, and increased central Tnf expression. Transfer of the cecal matter from colitic mice induced similar behavioural changes in both GF and Abx-treated recipient mice, with no signs of colonic or neuroinflammation. Upon characterization of the microbiota in donor and recipient mice, specific taxa were found to be associated with behavioural changes, notably members of the Lachnospiraceae family. Behavioural abnormalities associated with intestinal inflammation are transmissible via transfer of cecal matter, suggesting that alterations in the composition of the gut microbiota play a key role in driving behavioural changes in colitis.
Collapse
Affiliation(s)
- Fernando A Vicentini
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Inflammation Research Network, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jake C Szamosi
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Laura Rossi
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Lateece Griffin
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kristoff Nieves
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Inflammation Research Network, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Dominique Bihan
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Ian A Lewis
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Quentin J Pittman
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mark G Swain
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Division of Gastroenterology and Hepatology, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Michael G Surette
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Simon A Hirota
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Inflammation Research Network, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Keith A Sharkey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
253
|
Rode J, Edebol Carlman HMT, König J, Repsilber D, Hutchinson AN, Thunberg P, Andersson P, Persson J, Kiselev A, Lathrop Stern L, Salomon B, Mohammed AA, Labus JS, Brummer RJ. Probiotic Mixture Containing Lactobacillus helveticus, Bifidobacterium longum and Lactiplantibacillus plantarum Affects Brain Responses Toward an Emotional Task in Healthy Subjects: A Randomized Clinical Trial. Front Nutr 2022; 9:827182. [PMID: 35571902 PMCID: PMC9104811 DOI: 10.3389/fnut.2022.827182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/05/2022] [Indexed: 01/04/2023] Open
Abstract
Background Evidence from preclinical studies suggests that probiotics affect brain function via the microbiome-gut-brain axis, but evidence in humans remains limited. Objective The present proof-of-concept study investigated if a probiotic product containing a mixture of Bifidobacterium longum R0175, Lactobacillus helveticus R0052 and Lactiplantibacillus plantarum R1012 (in total 3 × 109 CFU/day) affected functional brain responses in healthy subjects during an emotional attention task. Design In this double-blinded, randomized, placebo-controlled crossover study (Clinicaltrials.gov, NCT03615651), 22 healthy subjects (24.2 ± 3.4 years, 6 males/16 females) were exposed to a probiotic intervention and a placebo for 4 weeks each, separated by a 4-week washout period. Subjects underwent functional magnetic resonance imaging while performing an emotional attention task after each intervention period. Differential brain activity and functional connectivity were assessed. Results Altered brain responses were observed in brain regions implicated in emotional, cognitive and face processing. Increased activation in the orbitofrontal cortex, a region that receives extensive sensory input and in turn projects to regions implicated in emotional processing, was found after probiotic intervention compared to placebo using a cluster-based analysis of functionally defined areas. Significantly reduced task-related functional connectivity was observed after the probiotic intervention compared to placebo. Fecal microbiota composition was not majorly affected by probiotic intervention. Conclusion The probiotic intervention resulted in subtly altered brain activity and functional connectivity in healthy subjects performing an emotional task without major effects on the fecal microbiota composition. This indicates that the probiotic effects occurred via microbe-host interactions on other levels. Further analysis of signaling molecules could give possible insights into the modes of action of the probiotic intervention on the gut-brain axis in general and brain function specifically. The presented findings further support the growing consensus that probiotic supplementation influences brain function and emotional regulation, even in healthy subjects. Future studies including patients with altered emotional processing, such as anxiety or depression symptoms are of great interest. Clinical Trial Registration [http://clinicaltrials.gov/], identifier [NCT03615651].
Collapse
Affiliation(s)
- Julia Rode
- Nutrition-Gut-Brain Interactions Research Center, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
- *Correspondence: Julia Rode,
| | - Hanna M. T. Edebol Carlman
- Nutrition-Gut-Brain Interactions Research Center, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Julia König
- Nutrition-Gut-Brain Interactions Research Center, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Dirk Repsilber
- Nutrition-Gut-Brain Interactions Research Center, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Ashley N. Hutchinson
- Nutrition-Gut-Brain Interactions Research Center, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Per Thunberg
- Department of Radiology and Medical Physics, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Pernilla Andersson
- Center for Lifespan Developmental Research (LEADER), Faculty of Humanities and Social Sciences, School of Law, Psychology and Social Work, Örebro University, Örebro, Sweden
| | - Jonas Persson
- Center for Lifespan Developmental Research (LEADER), Faculty of Humanities and Social Sciences, School of Law, Psychology and Social Work, Örebro University, Örebro, Sweden
| | - Andrey Kiselev
- Center for Applied Autonomous Sensor Systems, Faculty for Business, Science and Engineering, School of Natural Science and Technology, Örebro University, Örebro, Sweden
| | - Lori Lathrop Stern
- Global Medical Innovation, Pfizer Consumer Healthcare, Madison, NJ, United States
| | - Benita Salomon
- Nutrition-Gut-Brain Interactions Research Center, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Ahmed Abdulilah Mohammed
- Department of Radiology and Medical Physics, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Jennifer S. Labus
- Integrative Bioinformatics and Biostatistics Core, Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Robert J. Brummer
- Nutrition-Gut-Brain Interactions Research Center, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
254
|
Zeng C, Qiu Y, Li S, Teng Z, Xiang H, Chen J, Wu X, Cao T, Zhang S, Chen Q, Wu H, Cai H. Effect of Probiotic Supplements on Oxidative Stress Biomarkers in First-Episode Bipolar Disorder Patients: A Randomized, Placebo-Controlled Trial. Front Pharmacol 2022; 13:829815. [PMID: 35559241 PMCID: PMC9086965 DOI: 10.3389/fphar.2022.829815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/04/2022] [Indexed: 11/14/2022] Open
Abstract
Background: Currently no study has examined the effects of probiotic administration on the symptoms of anxiety, depression, and mania, as well as their correlations with the biomarkers of oxidative stress in patients with bipolar disorder (BPD). The aim of this study is to determine the effects of probiotic supplementation on plasma oxidative stress-related biomarkers and different domains of clinical symptom in patients suffering from BPD. Methods: Eighty first-episode drug-naive patients with BPD were recruited. The subjects were randomized to receive psychotropic drugs supplementing with either probiotic or placebo and scheduled to evaluate with follow-ups for clinical symptom improvements and changes in the oxidative stress biomarkers. The Hamilton Depression Rating Scale, Hamilton Anxiety Rating Scale, and Young Mania Rating Scale were used to assess the clinical symptomatology. The panel of plasma oxidative stress biomarkers were determined by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS/MS) at baseline and for 3 months of follow-up, i.e., at post-treatment month 1, 2, and 3. Results: After 3 months of intervention, decreased levels of plasma lysophosphatidylcholines (LPCs) were found in both placebo and probiotic groups. However, six other oxidative stress biomarkers (i.e., creatine, inosine, hypoxanthine, choline, uric acid, allantoic acid) increased in BPD patients after the two types of therapies. In addition, a positive correlation between changes of LPC (18:0) and YMRS scale was found in BPD patients and this association only existed in the probiotic group. Additionally, the mania symptom greatly alleviated (pretreatment-posttreatment, odds ratio = 0.09, 95%CI = 0.01, 0.64, p= 0.016) in patients who received probiotic supplements as compared with the placebo group. Conclusion: The changes in plasma biomarkers of oxidative stress in patients with BPD have a potential to be trait-like markers, and serve as prognostic indexes for bipolar patients. Daily intakes of probiotics have advantageous effects on BPD patients with certain clinical symptoms, especially manic symptoms. The treatment may be a promising adjunctive therapeutic strategy for BPD patients in manic episode.
Collapse
Affiliation(s)
- Cuirong Zeng
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- The Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yan Qiu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Sujuan Li
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ziwei Teng
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Xiang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jindong Chen
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiangxin Wu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- The Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Ting Cao
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- The Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Shuangyang Zhang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- The Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Qian Chen
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- The Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Haishan Wu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - HuaLin Cai
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- The Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
255
|
Horn J, Mayer DE, Chen S, Mayer EA. Role of diet and its effects on the gut microbiome in the pathophysiology of mental disorders. Transl Psychiatry 2022; 12:164. [PMID: 35443740 PMCID: PMC9021202 DOI: 10.1038/s41398-022-01922-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 12/12/2022] Open
Abstract
There is emerging evidence that diet has a major modulatory influence on brain-gut-microbiome (BGM) interactions with important implications for brain health, and for several brain disorders. The BGM system is made up of neuroendocrine, neural, and immune communication channels which establish a network of bidirectional interactions between the brain, the gut and its microbiome. Diet not only plays a crucial role in shaping the gut microbiome, but it can modulate structure and function of the brain through these communication channels. In this review, we summarize the evidence available from preclinical and clinical studies on the influence of dietary habits and interventions on a selected group of psychiatric and neurologic disorders including depression, cognitive decline, Parkinson's disease, autism spectrum disorder and epilepsy. We will particularly address the role of diet-induced microbiome changes which have been implicated in these effects, and some of which are shared between different brain disorders. While the majority of these findings have been demonstrated in preclinical and in cross-sectional, epidemiological studies, to date there is insufficient evidence from mechanistic human studies to make conclusions about causality between a specific diet and microbially mediated brain function. Many of the dietary benefits on microbiome and brain health have been attributed to anti-inflammatory effects mediated by the microbial metabolites of dietary fiber and polyphenols. The new attention given to dietary factors in brain disorders has the potential to improve treatment outcomes with currently available pharmacological and non-pharmacological therapies.
Collapse
Affiliation(s)
- J Horn
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - D E Mayer
- MayerInterconnected, LLC, Los Angeles, CA, USA
| | - S Chen
- University of California, San Francisco, CA, USA
| | - E A Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
256
|
Shu X, Tong Y, Yang R. Administration of xylo‐oligosaccharides improves depressive‐like behaviour in mice caused by chronic unpredictable mild stress by altering microbiota composition. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xiangling Shu
- School of Food Science and Technology Jiangnan University Wuxi214122 JiangsuChina
| | - Yanjun Tong
- School of Food Science and Technology Jiangnan University Wuxi214122 JiangsuChina
| | - Ruijin Yang
- School of Food Science and Technology Jiangnan University Wuxi214122 JiangsuChina
- State Key Lab Food Science and Technology Jiangnan University Wuxi214122 JiangsuChina
| |
Collapse
|
257
|
Mitrea L, Nemeş SA, Szabo K, Teleky BE, Vodnar DC. Guts Imbalance Imbalances the Brain: A Review of Gut Microbiota Association With Neurological and Psychiatric Disorders. Front Med (Lausanne) 2022; 9:813204. [PMID: 35433746 PMCID: PMC9009523 DOI: 10.3389/fmed.2022.813204] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Over the last 10 years, there has been a growing interest in the relationship between gut microbiota, the brain, and neurologic-associated affections. As multiple preclinical and clinical research studies highlight gut microbiota’s potential to modulate the general state of health state, it goes without saying that gut microbiota plays a significant role in neurogenesis, mental and cognitive development, emotions, and behaviors, and in the progression of neuropsychiatric illnesses. Gut microbiota produces important biologic products that, through the gut-brain axis, are directly connected with the appearance and evolution of neurological and psychiatric disorders such as depression, anxiety, bipolar disorder, autism, schizophrenia, Parkinson’s disease, Alzheimer’s disease, dementia, multiple sclerosis, and epilepsy. This study reviews recent research on the link between gut microbiota and the brain, and microbiome’s role in shaping the development of the most common neurological and psychiatric illnesses. Moreover, special attention is paid to the use of probiotic formulations as a potential non-invasive therapeutic opportunity for prevention and management of neuropsychiatric-associated affections.
Collapse
Affiliation(s)
- Laura Mitrea
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania.,Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Silvia-Amalia Nemeş
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania.,Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Katalin Szabo
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Bernadette-Emőke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Dan-Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania.,Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
258
|
Sonali S, Ray B, Ahmed Tousif H, Rathipriya AG, Sunanda T, Mahalakshmi AM, Rungratanawanich W, Essa MM, Qoronfleh MW, Chidambaram SB, Song BJ. Mechanistic Insights into the Link between Gut Dysbiosis and Major Depression: An Extensive Review. Cells 2022; 11:cells11081362. [PMID: 35456041 PMCID: PMC9030021 DOI: 10.3390/cells11081362] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/11/2022] Open
Abstract
Depression is a highly common mental disorder, which is often multifactorial with sex, genetic, environmental, and/or psychological causes. Recent advancements in biomedical research have demonstrated a clear correlation between gut dysbiosis (GD) or gut microbial dysbiosis and the development of anxiety or depressive behaviors. The gut microbiome communicates with the brain through the neural, immune, and metabolic pathways, either directly (via vagal nerves) or indirectly (via gut- and microbial-derived metabolites as well as gut hormones and endocrine peptides, including peptide YY, pancreatic polypeptide, neuropeptide Y, cholecystokinin, corticotropin-releasing factor, glucagon-like peptide, oxytocin, and ghrelin). Maintaining healthy gut microbiota (GM) is now being recognized as important for brain health through the use of probiotics, prebiotics, synbiotics, fecal microbial transplantation (FMT), etc. A few approaches exert antidepressant effects via restoring GM and hypothalamus–pituitary–adrenal (HPA) axis functions. In this review, we have summarized the etiopathogenic link between gut dysbiosis and depression with preclinical and clinical evidence. In addition, we have collated information on the recent therapies and supplements, such as probiotics, prebiotics, short-chain fatty acids, and vitamin B12, omega-3 fatty acids, etc., which target the gut–brain axis (GBA) for the effective management of depressive behavior and anxiety.
Collapse
Affiliation(s)
- Sharma Sonali
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (S.S.); (B.R.); (H.A.T.); (T.S.); (A.M.M.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (S.S.); (B.R.); (H.A.T.); (T.S.); (A.M.M.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Hediyal Ahmed Tousif
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (S.S.); (B.R.); (H.A.T.); (T.S.); (A.M.M.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | | | - Tuladhar Sunanda
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (S.S.); (B.R.); (H.A.T.); (T.S.); (A.M.M.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Arehally M. Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (S.S.); (B.R.); (H.A.T.); (T.S.); (A.M.M.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20892, USA;
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat 123, Oman;
- Aging and Dementia Research Group, Sultan Qaboos University, Muscat 123, Oman
| | - M. Walid Qoronfleh
- Q3CG Research Institute (QRI), Research and Policy Division, 7227 Rachel Drive, Ypsilant, MI 48917, USA;
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (S.S.); (B.R.); (H.A.T.); (T.S.); (A.M.M.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Correspondence: (S.B.C.); (B.-J.S.)
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20892, USA;
- Correspondence: (S.B.C.); (B.-J.S.)
| |
Collapse
|
259
|
The Influence of Gut Dysbiosis in the Pathogenesis and Management of Ischemic Stroke. Cells 2022; 11:cells11071239. [PMID: 35406804 PMCID: PMC8997586 DOI: 10.3390/cells11071239] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022] Open
Abstract
Recent research on the gut microbiome has revealed the influence of gut microbiota (GM) on ischemic stroke pathogenesis and treatment outcomes. Alterations in the diversity, abundance, and functions of the gut microbiome, termed gut dysbiosis, results in dysregulated gut–brain signaling, which induces intestinal barrier changes, endotoxemia, systemic inflammation, and infection, affecting post-stroke outcomes. Gut–brain interactions are bidirectional, and the signals from the gut to the brain are mediated by microbially derived metabolites, such as trimethylamine N-oxide (TMAO) and short-chain fatty acids (SCFAs); bacterial components, such as lipopolysaccharide (LPS); immune cells, such as T helper cells; and bacterial translocation via hormonal, immune, and neural pathways. Ischemic stroke affects gut microbial composition via neural and hypothalamic–pituitary–adrenal (HPA) pathways, which can contribute to post-stroke outcomes. Experimental and clinical studies have demonstrated that the restoration of the gut microbiome usually improves stroke treatment outcomes by regulating metabolic, immune, and inflammatory responses via the gut–brain axis (GBA). Therefore, restoring healthy microbial ecology in the gut may be a key therapeutic target for the effective management and treatment of ischemic stroke.
Collapse
|
260
|
Ali MA, Kamal MM, Rahman MH, Siddiqui MN, Haque MA, Saha KK, Rahman MA. Functional dairy products as a source of bioactive peptides and probiotics: current trends and future prospectives. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:1263-1279. [PMID: 35250052 PMCID: PMC8882518 DOI: 10.1007/s13197-021-05091-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/23/2021] [Accepted: 04/04/2021] [Indexed: 12/31/2022]
Abstract
Milk is an incredibly healthy food world-wide. However, the 'lactase deficient' individuals cannot digest milk's carbohydrate lactose. A large part of the world population is depriving of highly beneficial milk proteins like casein, lactoalbumin, lactoglobulin, etc. due to lactose intolerance. Production of functional foods and bioactive peptides from milk with natural antioxidants and the addition of probiotics could be the best alternative to extend the use of milk functionalities. Among different probiotics, the lactic acid bacteria (LAB) like Lactobacillus delbrueckii sub sp. bulgaricus, Streptococcus thermophilus and some species of Bifidobacteria and their metabolites (paraprobiotics and postbiotics) have been given more preference to add in milk-derived functional foods. These species are generally considered as heat-tolerant, highly proteolytic, and peptidolytic towards milk proteins and they liberate smaller molecules of bioactive peptides during fermentation and other processes that stimulate the enzyme lactase to help people in digestion of milk carbohydrate lactose. Moreover, the incorporation of natural antioxidants in yoghurt and other dairy products prevents the rancidity of milk fat. The level of bioactive peptides produced in milk-derived functional foods can be determined by capillary zone electrophoresis, mass spectrometry, fractionation, and other modern assessment techniques. Commercial production of functional probiotic products with bioactive peptides could significantly contribute to reduce milk spoilage, enhance health benefits as well as the growth of the agro-processing industry.
Collapse
Affiliation(s)
- Md. Aslam Ali
- Department of Agro-Processing, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706 Bangladesh
| | - Md. Mostafa Kamal
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200 Bangladesh
| | - Md. Hafizur Rahman
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, China
| | - Md. Nurealam Siddiqui
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706 Bangladesh
| | - Md. Azizul Haque
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy
| | - Khokan Kumar Saha
- Department of Agricultural Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706 Bangladesh
| | - Md. Atikur Rahman
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200 Bangladesh
| |
Collapse
|
261
|
Zhu H, Tian P, Zhao J, Zhang H, Wang G, Chen W. A psychobiotic approach to the treatment of depression: A systematic review and meta-analysis. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
262
|
Ong JS, Lew LC, Hor YY, Liong MT. Probiotics: The Next Dietary Strategy against Brain Aging. Prev Nutr Food Sci 2022; 27:1-13. [PMID: 35465109 PMCID: PMC9007707 DOI: 10.3746/pnf.2022.27.1.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 11/06/2022] Open
Abstract
Owing to their long history of safe use, probiotic microorganisms, typically from the genus Lactobacillus, have long been recognized, especially in traditional and fermented food industries. Although conventionally used for dairy, meat, and vegetable fermentation, the use of probiotics in health foods, supplements, and nutraceuticals has gradually increased. Over the past two decades, the importance of probiotics in improving gut health and immunity as well as alleviating metabolic diseases has been recognized. The new concept of a gut-heart-brain axis has led to the development of various innovations and strategies related to the introduction of probiotics in food and diet. Probiotics influence gut microbiota profiles, inflammation, and disorders and directly impact brain neurotransmitter pathways. As brain health often declines with age, the concept of probiotics being beneficial for the aging brain has also gained much momentum and emphasis in both research and product development. In this review, the concept of the aging brain, different in vivo aging models, and various aging-related benefits of probiotics are discussed.
Collapse
Affiliation(s)
- Jia-Sin Ong
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Lee-Ching Lew
- Probionic Corporation, Jeonbuk Institute for Food-Bioindustry, Jeonbuk 54810, Korea
| | - Yan-Yan Hor
- Department of Biotechnology, Yeungnam University, Gyeongbuk 38541, Korea
| | - Min-Tze Liong
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| |
Collapse
|
263
|
The Therapeutic Role of Exercise and Probiotics in Stressful Brain Conditions. Int J Mol Sci 2022; 23:ijms23073610. [PMID: 35408972 PMCID: PMC8998860 DOI: 10.3390/ijms23073610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Oxidative stress has been recognized as a contributing factor in aging and in the progression of multiple neurological disorders such as Parkinson’s disease, Alzheimer’s dementia, ischemic stroke, and head and spinal cord injury. The increased production of reactive oxygen species (ROS) has been associated with mitochondrial dysfunction, altered metal homeostasis, and compromised brain antioxidant defence. All these changes have been reported to directly affect synaptic activity and neurotransmission in neurons, leading to cognitive dysfunction. In this context two non-invasive strategies could be employed in an attempt to improve the aforementioned stressful brain status. In this regard, it has been shown that exercise could increase the resistance against oxidative stress, thus providing enhanced neuroprotection. Indeed, there is evidence suggesting that regular physical exercise diminishes BBB permeability as it reinforces antioxidative capacity, reduces oxidative stress, and has anti-inflammatory effects. However, the differential effects of different types of exercise (aerobic exhausted exercise, anaerobic exercise, or the combination of both types) and the duration of physical activity will be also addressed in this review as likely determinants of therapeutic efficacy. The second proposed strategy is related to the use of probiotics, which can also reduce some biomarkers of oxidative stress and inflammatory cytokines, although their underlying mechanisms of action remain unclear. Moreover, various probiotics produce neuroactive molecules that directly or indirectly impact signalling in the brain. In this review, we will discuss how physical activity can be incorporated as a component of therapeutic strategies in oxidative stress-based neurological disorders along with the augmentation of probiotics intake.
Collapse
|
264
|
Wang N, Wu X, Yang Q, Wang D, Wu Z, Wei Y, Cui J, Hong L, Xiong L, Qin D. Qinglong Zhidong Decoction Alleviated Tourette Syndrome in Mice via Modulating the Level of Neurotransmitters and the Composition of Gut Microbiota. Front Pharmacol 2022; 13:819872. [PMID: 35392572 PMCID: PMC8981146 DOI: 10.3389/fphar.2022.819872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/07/2022] [Indexed: 02/05/2023] Open
Abstract
Qinglong Zhidong Decoction (QLZDD), a traditional Chinese medicine (TCM) prescription, has been effectively used to alleviate Tourette syndrome (TS) in children. However, the therapeutic mechanism of QLZDD on TS has not been evaluated. The present study aims to elucidate the therapeutic effect and the possible therapeutic mechanism of QLZDD on TS in mouse model. A 3,3-iminodipropionitrile (IDPN, 350 mg/kg)-induced-TS mouse model was established. The mice were randomly divided into the control group, the model group, the haloperidol group (14 mg/kg), the low-, middle-, or high-QLZDD-dose groups (6.83 g/kg, 13.65 g/kg, 27.3 g/kg). QLZDD was administrated orally once a day for 4 weeks. The tic-like behavior was recorded weekly. Then, neurotransmitters and neurotransmitter receptors were analyzed by ELISA, immunohistochemistry (IHC), and quantitative reverse transcription PCR in striatum. Further, the alteration to intestinal flora was monitored by 16s rRNA sequencing, and the role of gut microbiota in the alleviation of TS by QLZDD was investigated. QLZDD ameliorated the tic-like behavior, and decreased the level of excitatory neurotransmitters such as Glu and DA and increased the level of the inhibitory neurotransmitter GABA significantly. Moreover, QLZDD significantly blocked the mRNA expression and the protein expression of D1R and D2R in the striatum, while activated the levels of DAT and GABAR. Interestingly, QLZDD mediated the composition of gut microbiota by increasing the abundance of Lactobacillus and Bacteroides but decreasing the abundance of Alloprevotella and Akkermansia. Taken together, QLZDD ameliorated the tic-like behavior in TS mouse, its mechanism of action may be associated with restoring the balance of gut microbiota and neurotransmitters. The study indicated a promising role of QLZDD in alleviating TS and a therapeutic strategy for fighting TS in clinical settings.
Collapse
Affiliation(s)
- Na Wang
- Yunnan University of Chinese Medicine, Kunming, China
- Huanghe S & T University, Zhengzhou, China
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinchen Wu
- Yunnan University of Chinese Medicine, Kunming, China
| | - Qi Yang
- Yunnan University of Chinese Medicine, Kunming, China
| | - Dingyue Wang
- Yunnan University of Chinese Medicine, Kunming, China
| | - Zhao Wu
- Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanyuan Wei
- Yunnan University of Chinese Medicine, Kunming, China
| | - Jieqiong Cui
- Yunnan University of Chinese Medicine, Kunming, China
| | - Li Hong
- Yunnan University of Chinese Medicine, Kunming, China
| | - Lei Xiong
- Yunnan University of Chinese Medicine, Kunming, China
| | - Dongdong Qin
- Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
265
|
Xu M, Tian P, Zhu H, Zou R, Zhao J, Zhang H, Wang G, Chen W. Lactobacillus paracasei CCFM1229 and Lactobacillus rhamnosus CCFM1228 Alleviated Depression- and Anxiety-Related Symptoms of Chronic Stress-Induced Depression in Mice by Regulating Xanthine Oxidase Activity in the Brain. Nutrients 2022; 14:nu14061294. [PMID: 35334950 PMCID: PMC8953819 DOI: 10.3390/nu14061294] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023] Open
Abstract
Depression is a common mood disorder that affects around 350 million people worldwide. We studied the effect of supplementation with Lactobacillus strains for the treatment of depression. Except for control group (n = 8), C57BL/6J mice were treated with Lactobacillus during six weeks of chronic unpredictable stress (depression group: n = 9, Lactobacillus intervention group: n = 7). L. paracasei CCFM1229 and L. rhamnosus CCFM1228 significantly reduced depressive behaviour in the forced swimming test and tail suspension test, significantly reduced anxiety behaviour in the open field test, and reduced anxiety behaviour in the marble burying test and light/dark box test. L. paracasei CCFM1229 and L. rhamnosus CCFM1228 significantly increased the brain serotonin and brain-derived neurotrophic factor concentrations, and CCFM1229 significantly decreased the serum corticosterone concentration, all of which are closely associated with the relief of depressive symptoms. Furthermore, CCFM1229 and CCFM1228 were shown to regulate purine metabolism in mice, as indicated by decreases in brain xanthine oxidase activity and an increase in liver adenosine deaminase activity. Anxiety- and depression-related indicators were significantly associated with xanthine oxidase activity in the cerebral cortex. The strains CCFM1229 and CCFM1228 reduced anxiety- and depression-related behaviour in a mouse model of chronic stress-induced depression, which may be achieved by regulating the activity of brain xanthine oxidase.
Collapse
Affiliation(s)
- Mengshu Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (M.X.); (P.T.); (H.Z.); (R.Z.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Peijun Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (M.X.); (P.T.); (H.Z.); (R.Z.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Huiyue Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (M.X.); (P.T.); (H.Z.); (R.Z.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Renying Zou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (M.X.); (P.T.); (H.Z.); (R.Z.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (M.X.); (P.T.); (H.Z.); (R.Z.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Yangzhou Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (M.X.); (P.T.); (H.Z.); (R.Z.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Yangzhou Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (M.X.); (P.T.); (H.Z.); (R.Z.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Yangzhou Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
- Correspondence: ; Tel.: +86-510-85912155
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (M.X.); (P.T.); (H.Z.); (R.Z.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
266
|
Dutta M, Weigel KM, Patten KT, Valenzuela AE, Wallis C, Bein KJ, Wexler AS, Lein PJ, Cui JY. Chronic exposure to ambient traffic-related air pollution (TRAP) alters gut microbial abundance and bile acid metabolism in a transgenic rat model of Alzheimer's disease. Toxicol Rep 2022; 9:432-444. [PMID: 35310146 PMCID: PMC8927974 DOI: 10.1016/j.toxrep.2022.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/03/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
Background Traffic-related air pollution (TRAP) is linked to increased risk for age-related dementia, including Alzheimer's disease (AD). The gut microbiome is posited to influence AD risk, and an increase in microbial-derived secondary bile acids (BAs) is observed in AD patients. We recently reported that chronic exposure to ambient TRAP modified AD risk in a sex-dependent manner in the TgF344 AD (TG) rat. Objectives In this study, we used samples from the same cohort to test our hypothesis that TRAP sex-dependently produces gut dysbiosis and increases secondary BAs to a larger extent in the TG rat relative to wildtype (WT) controls. Methods Male and female TG and age-matched WT rats were exposed to either filtered air (FA) or TRAP from 28 days up to 15 months of age (n = 5-6). Tissue samples were collected after 9 or 14months of exposure. Results At 10 months of age, TRAP tended to decrease the alpha diversity as well as the beneficial taxa Lactobacillus and Ruminococcus flavefaciens uniquely in male TG rats as determined by 16 S rDNA sequencing. A basal decrease in Firmicutes/Bacteroidetes (F/B) ratio was also noted in TG rats at 10 months. At 15 months of age, TRAP altered inflammation-related bacteria in the gut of female rats from both genotypes. BAs were more affected by chronic TRAP exposure in females, with a general trend of increase in host-produced unconjugated primary and microbiota-produced secondary BAs. Most of the mRNAs of the hepatic BA-processing genes were not altered by TRAP, except for a down-regulation of the BA-uptake transporter Ntcp in males. Conclusion In conclusion, chronic TRAP exposure produced distinct gut dysbiosis and altered BA homeostasis in a sex and host genotype-specific manner.
Collapse
Affiliation(s)
- Moumita Dutta
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Kris M. Weigel
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Kelley T. Patten
- Department of Molecular Biosciences, University of California Davis (UC Davis) School of Veterinary Medicine, Davis, CA, USA
| | - Anthony E. Valenzuela
- Department of Molecular Biosciences, University of California Davis (UC Davis) School of Veterinary Medicine, Davis, CA, USA
| | | | - Keith J. Bein
- Air Quality Research Center, UC Davis, Davis, CA, USA
- Center for Health and the Environment, UC Davis, Davis, CA, USA
| | - Anthony S. Wexler
- Air Quality Research Center, UC Davis, Davis, CA, USA
- Mechanical and Aerospace Engineering, Civil and Environmental Engineering, and Land, Air and Water Resources, UC Davis, Davis, CA, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California Davis (UC Davis) School of Veterinary Medicine, Davis, CA, USA
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
267
|
González-González F, Delgado S, Ruiz L, Margolles A, Ruas-Madiedo P. Functional bacterial cultures for dairy applications: towards improving safety, quality, nutritional and health benefit aspects. J Appl Microbiol 2022; 133:212-229. [PMID: 35238463 PMCID: PMC9539899 DOI: 10.1111/jam.15510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/12/2022] [Accepted: 02/25/2022] [Indexed: 11/30/2022]
Abstract
Traditionally, fermentation was used to preserve the shelf life of food. Currently, in addition to favouring food preservation, well standardized and controlled industrial processes are also aimed at improving the functional characteristics of the final product. In this regard, starter cultures have become an essential cornerstone of food production. The selection of robust microorganisms, well adapted to the food environment, has been followed by the development of microbial consortia that provide some functional characteristics, beyond their acidifying capacity, achieving safer, high‐quality foods with improved nutritional and health‐promoting properties. In addition to starters, adjunct cultures and probiotics, which normally do not have a relevant role in fermentation, are added to the food in order to provide some beneficial characteristics. This review focuses on highlighting the functional characteristics of food starters, as well as adjunct and probiotic cultures (mainly lactic acid bacteria and bifidobacteria), with a specific focus on the synthesis of metabolites for preservation and safety aspects (e.g. bacteriocins), organoleptic properties (e.g. exopolysaccharides), nutritional (e.g. vitamins) and health improvement (e.g. neuroactive molecules). Literature reporting the application of these functional cultures in the manufacture of foods, mainly those related to dairy production, such as cheeses and fermented milks, has also been updated.
Collapse
Affiliation(s)
- F González-González
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain.,Group Functionality and Ecology of Beneficial Microbes, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Oviedo, Asturias, Spain
| | - S Delgado
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain.,Group Functionality and Ecology of Beneficial Microbes, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Oviedo, Asturias, Spain
| | - L Ruiz
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain.,Group Functionality and Ecology of Beneficial Microbes, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Oviedo, Asturias, Spain
| | - A Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain.,Group Functionality and Ecology of Beneficial Microbes, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Oviedo, Asturias, Spain
| | - P Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain.,Group Functionality and Ecology of Beneficial Microbes, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Oviedo, Asturias, Spain
| |
Collapse
|
268
|
Barrio C, Arias-Sánchez S, Martín-Monzón I. The gut microbiota-brain axis, psychobiotics and its influence on brain and behaviour: A systematic review. Psychoneuroendocrinology 2022; 137:105640. [PMID: 34942539 DOI: 10.1016/j.psyneuen.2021.105640] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 12/19/2022]
Abstract
The gut microbiota is the set of microorganisms present in the gut, and it is connected to the central nervous system via the gut-brain axis. Despite there is not a definitive description of the eubiotic microbiota architecture, numerous studies have demonstrated its involvement in human behaviour and its relationship with several pathologies. This is a systematic review about the association between dysbiosis on the gut microbiota and the presence of neurological or neuropsychiatric diseases such as cognitive impairment, Alzheimer's disease, Parkinson's disease, ADHD, and depression. Furthermore, this study analyzes the potential benefits of psychobiotics supplementation for these pathologies. Searches were conducted in the electronic databases PubMed and PsycINFO. 17 articles were included in this review, the majority were published after 2019. The results showed that gut dysbiosis predicts the development of these pathologies and influences their pathogenesis. In addition, it was found that different psychobiotics, mainly dietary fibers and probiotics of the Lactobacillus family, improved different cognitive functions such as cognitive performance and induce a reduced cortisol response. Improvement in different cognitive functions is possible when understanding gut microbiota-brain axis, enteric nervous system, neural-immune system, neuroendocrine system, and central nervous system's relationship.
Collapse
Affiliation(s)
- Carmen Barrio
- Department of Experimental Psychology, Faculty of Psychology, Campus Santiago Ramón y Cajal, University of Seville, Spain.
| | - Samuel Arias-Sánchez
- Department of Experimental Psychology, Faculty of Psychology, Campus Santiago Ramón y Cajal, University of Seville, Spain.
| | - Isabel Martín-Monzón
- Laboratory of Psychobiology, Faculty of Psychology, Campus Santiago Ramón y Cajal, University of Seville, Spain.
| |
Collapse
|
269
|
Magalhães-Guedes KT. Psychobiotic Therapy: Method to Reinforce the Immune System. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2022; 20:17-25. [PMID: 35078945 PMCID: PMC8813313 DOI: 10.9758/cpn.2022.20.1.17] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/15/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022]
Abstract
Psychobiotics are probiotic microorganisms that beneficially affect the central nervous system functions mediated by the gut-brain axis, improving the host’s immune system. Psychobiotic microorganisms can regulate brain pathways and serotonin production (mood controller). The main microbial genera with psychobiotic characteristics are Lactobacillus, Lactococcus and Bifidobacterium. The daily consumption of psychobiotics is called “Psychobiotic Therapy”. Psychobio-tic therapy has proven antidepressant/anxiolytic properties. Psychobiotic therapy can be used to boost the host’s immune balance against pathogens, for example: virus, bacteria and fungus. Thus, psychobiotic therapy can be a promising strategy to improve and/or maintain the quality of life of people who are healthy or who suffer from anxiety/stress disorders, intestinal dysbiosis and even immunosuppressed people. This is such a hot theme it can surely only be a matter of time for psychobiotic therapy offers an “alternative treatment”, but scientific, for people diagnosed with a variety of mental/immunological disorders. Instead of targeting the mind (brain), we could go for the gut. “This new way of looking at mental health linked to gut health is literally looking at health upside down”.
Collapse
Affiliation(s)
- Karina Teixeira Magalhães-Guedes
- Department of Bromatological Analysis, Pharmacy Faculty, Post-Graduate Program in Food Science, Federal University of Bahia (UFBA), Salvador, Brazil
| |
Collapse
|
270
|
Murray ER, Kemp M, Nguyen TT. The Microbiota-Gut-Brain Axis in Alzheimer's Disease: A Review of Taxonomic Alterations and Potential Avenues for Interventions. Arch Clin Neuropsychol 2022; 37:595-607. [PMID: 35202456 PMCID: PMC9035085 DOI: 10.1093/arclin/acac008] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2022] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE The gut microbiome is a complex community of microorganisms that inhabit the gastrointestinal tract. The microbiota-gut-brain axis encompasses a bidirectional communication system that allows the gut to influence the brain via neural, endocrine, immune, and metabolic signaling. Differences in the gut microbiome have been associated with psychiatric and neurological disorders, including Alzheimer's Disease (ad). Understanding these ad-associated alterations may offer novel insight into the pathology and treatment of ad. METHOD We conducted a narrative review of clinical studies investigating the gut microbiome in ad, organizing the results by phyla to understand the biological contributions of the gut microbial community to ad pathology and clinical features. We also reviewed randomized clinical trials of interventions targeting the microbiome to ameliorate ad symptoms and biomarkers. RESULTS Alpha diversity is reduced in patients with ad. Within Firmicutes, taxa that produce beneficial metabolites are reduced in ad, including Clostridiaceae, Lachnospiraceae, Ruminococcus, and Eubacterium. Within Bacteroidetes, findings were mixed, with studies showing either reduced or increased abundance of Bacteroides in mild cognitive impairment or ad patients. Proteobacteria that produce toxins tend to be increased in ad patients, including Escherichia/Shigella. A Mediterranean-ketogenic dietary intervention significantly increased beneficial short-chain fatty acids and taxa that were inversely correlated with changes in ad pathological markers. Probiotic supplementation with Lactobacillus spp. and Bifidobacterium spp. improved cognitive function and reduced inflammatory and metabolic markers in patients with ad. CONCLUSIONS The gut microbiome may provide insight into ad pathology and be a novel target for intervention. Potential therapeutics include probiotics and dietary intervention.
Collapse
Affiliation(s)
- Emily R Murray
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA, USA,Department of Psychiatry, University of California at San Diego, La Jolla, CA, USA
| | - Mylon Kemp
- Department of Psychiatry, University of California at San Diego, La Jolla, CA, USA
| | - Tanya T Nguyen
- Corresponding author at: Associate Professor of Psychiatry, University of California at San Diego, 9500 Gilman Drive #0664, La Jolla, CA 92093, USA. Tel.: +(858)-246-5347; fax: +(858)-543-5475.E-mail address: (T.T. Nguyen)
| |
Collapse
|
271
|
Lai WD, Tung TH, Teng CY, Chang CH, Chen YC, Huang HY, Lee HC, Huang SY. Fish oil ameliorates neuropsychiatric behaviors and gut dysbiosis by elevating selected microbiota-derived metabolites and tissue tight junctions in rats under chronic sleep deprivation. Food Funct 2022; 13:2662-2680. [PMID: 35170619 DOI: 10.1039/d2fo00181k] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neuropsychiatric behaviors caused by sleep deprivation (SD) are severe public health problems in modern society worldwide. This study investigated the effect of fish oil on neuropsychiatric behaviors, barrier injury, microbiota dysbiosis, and microbiota-derived metabolites in SD rats. The rats subjected to SD had significantly elevated blood levels of corticosteroid and lipopolysaccharides and exhibited anxiety-like behavior in the open field test, depression-like behavior in the forced swim test, and cognitive impairment in the Morris water maize test. We observed that the upregulation of proinflammatory cytokines in the SD rats resulted in colonic epithelial barrier injury including a decreased number of goblet cells and increased expression of selected tight junction proteins in the gut and brain. The gut microbiome status revealed a significant decrease in the microbial diversity in the SD rats, especially in probiotics. By contrast, a fish oil-based diet reversed SD-induced behavioral changes and improved the epithelial barrier injury and dysbiosis of the microbiota in the colon. These findings could be attributable to the increase in probiotics and short-chain fatty acid (SCFAs) production, improvement in selected intestinal barrier proteins, increase in SCFA receptor expression, and decrease in blood circulation proinflammatory status due to fish oil supplementation.
Collapse
Affiliation(s)
- Wen-De Lai
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110301, Taiwan.
| | - Te-Hsuan Tung
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110301, Taiwan.
| | - Chu-Yun Teng
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110301, Taiwan.
| | - Chia-Hsuan Chang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110301, Taiwan.
| | - Yang-Ching Chen
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110301, Taiwan. .,Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110301, Taiwan.,Department of Family Medicine, Taipei Medical University Hospital, Taipei 110301, Taiwan.,Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Hui-Yu Huang
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110301, Taiwan.,Nutrition Research Center, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Hsin-Chien Lee
- Department of Psychiatry, Taipei Medical University Hospital, Taipei 110301, Taiwan.,Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Shih-Yi Huang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110301, Taiwan. .,Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110301, Taiwan.,Nutrition Research Center, Taipei Medical University Hospital, Taipei 110301, Taiwan
| |
Collapse
|
272
|
Herrera-Rincon C, Murciano-Brea J, Geuna S. Can we promote neural regeneration through microbiota-targeted strategies? Introducing the new concept of neurobiotics. Neural Regen Res 2022; 17:1965-1966. [PMID: 35142677 PMCID: PMC8848601 DOI: 10.4103/1673-5374.335149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Celia Herrera-Rincon
- Department of Biodiversity, Ecology & Evolution, and Modeling, Data Analysis & Computational Tools for Biology Research Group, Biomathematics Unit, Complutense University of Madrid, Madrid, Spain
| | - Julia Murciano-Brea
- Department of Biodiversity, Ecology & Evolution, and Modeling, Data Analysis & Computational Tools for Biology Research Group, Biomathematics Unit, Complutense University of Madrid, Madrid, Spain
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, and Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Turin, Italy
| |
Collapse
|
273
|
Takeda T, Chiba Y. Evaluation of a natural S-equol supplement in treating premenstrual symptoms and the effect of the gut microbiota: An open-label pilot study. Neuropsychopharmacol Rep 2022; 42:127-134. [PMID: 35128842 PMCID: PMC9216369 DOI: 10.1002/npr2.12234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 12/23/2021] [Accepted: 01/11/2022] [Indexed: 12/17/2022] Open
Abstract
AIM Premenstrual syndrome causes disturbances in many women's daily activities. Isoflavones might cause changes in the estrogen cycle by their selective estrogen receptor modulator-like activities. Equol, which is a metabolite of a soy isoflavone, has greater biological activity than other soy isoflavones. In this preliminary study, we aimed to examine the effect of a natural S-equol supplement (SE5-OH) on premenstrual symptoms. The gut microbiota has recently been suggested to play an important role in brain function in psychiatric disease, such as depression. Therefore, we further aimed to evaluate the relationship of the effect of SE5-OH and the gut microbiota at preintervention. METHODS Twenty women who showed premenstrual symptoms and were nonequol producers were enrolled in an open-label, single-arm, clinical study in which they received oral SE5-OH for two period cycles. The Daily Record of Severity of Problems (DRSP) total score was evaluated during the intervention cycles. Before taking SE5-OH, fecal samples were obtained and subjected to terminal restriction fragment length polymorphism analysis. RESULTS The response rate to treatment (≥50% reduction from baseline in the DRSP total score) was 10.5%. Post hoc analysis showed a significant improvement in the change in the DRSP total score (P = .008) and DRSP scores for four core premenstrual dysphoric disorder symptoms. Multiple regression analysis showed that the percentage improvement of the DRSP total score was positively related to Bifidobacterium and negatively related to Clostridium cluster IV. CONCLUSION SE5-OH supplementation may be an acceptable treatment for premenstrual symptoms. The intestinal microbiota may have an effect on SE5-OH.
Collapse
Affiliation(s)
- Takashi Takeda
- Division of Women's Health, Research Institute of Traditional Asian Medicine, Kindai University, Osaka-Sayama, Japan
| | - Yasutaka Chiba
- Clinical Research Center, Kindai University Hospital, Osaka-Sayama, Japan
| |
Collapse
|
274
|
Varesi A, Pierella E, Romeo M, Piccini GB, Alfano C, Bjørklund G, Oppong A, Ricevuti G, Esposito C, Chirumbolo S, Pascale A. The Potential Role of Gut Microbiota in Alzheimer’s Disease: from Diagnosis to Treatment. Nutrients 2022; 14:nu14030668. [PMID: 35277027 PMCID: PMC8840394 DOI: 10.3390/nu14030668] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 12/04/2022] Open
Abstract
Gut microbiota is emerging as a key regulator of many disease conditions and its dysregulation is implicated in the pathogenesis of several gastrointestinal and extraintestinal disorders. More recently, gut microbiome alterations have been linked to neurodegeneration through the increasingly defined gut microbiota brain axis, opening the possibility for new microbiota-based therapeutic options. Although several studies have been conducted to unravel the possible relationship between Alzheimer’s Disease (AD) pathogenesis and progression, the diagnostic and therapeutic potential of approaches aiming at restoring gut microbiota eubiosis remain to be fully addressed. In this narrative review, we briefly summarize the role of gut microbiota homeostasis in brain health and disease, and we present evidence for its dysregulation in AD patients. Based on these observations, we then discuss how dysbiosis might be exploited as a new diagnostic tool in early and advanced disease stages, and we examine the potential of prebiotics, probiotics, fecal microbiota transplantation, and diets as complementary therapeutic interventions on disease pathogenesis and progression, thus offering new insights into the diagnosis and treatment of this devastating and progressive disease.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy;
- Almo Collegio Borromeo, 27100 Pavia, Italy
- Correspondence: (A.V.); (G.R.)
| | - Elisa Pierella
- School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK; (E.P.); (A.O.)
| | - Marcello Romeo
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy;
| | | | - Claudia Alfano
- Department of Emergency Medicine and Surgery, IRCCS Fondazione Policlinico San Matteo, 27100 Pavia, Italy;
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), 8610 Mo i Rana, Norway;
| | - Abigail Oppong
- School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK; (E.P.); (A.O.)
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
- Correspondence: (A.V.); (G.R.)
| | - Ciro Esposito
- Unit of Nephrology and Dialysis, ICS Maugeri, University of Pavia, 27100 Pavia, Italy;
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37121 Verona, Italy;
| | - Alessia Pascale
- Section of Pharmacology, Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
275
|
Psychobiotics, gut microbiota and fermented foods can help preserving mental health. Food Res Int 2022; 152:110892. [DOI: 10.1016/j.foodres.2021.110892] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/20/2022]
|
276
|
Tian P, Chen Y, Zhu H, Wang L, Qian X, Zou R, Zhao J, Zhang H, Qian L, Wang Q, Wang G, Chen W. Bifidobacterium breve CCFM1025 attenuates major depression disorder via regulating gut microbiome and tryptophan metabolism: A randomized clinical trial. Brain Behav Immun 2022; 100:233-241. [PMID: 34875345 DOI: 10.1016/j.bbi.2021.11.023] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE Psychobiotics, as a novel class of probiotics mainly acting on the gut-brain axis, have shown promising prospects in treating psychiatric disorders. Bifidobacterium breve CCFM1025 was validated to have an antidepressant-like effect in mice. This study aims to assess its psychotropic potential in managing major depression disorder (MDD) and unravel the underlying mechanisms. METHODS Clinical Trial Registration: https://www.chictr.org.cn/index.aspx (identifier: NO. ChiCTR2100046321). Patients (n = 45) diagnosed with MDD were randomly assigned to the Placebo (n = 25) and CCFM1025 (n = 20) groups. The freeze-dried CCFM1025 in a dose of viable bacteria of 1010 CFU was given to MDD patients daily for four weeks, while the placebo group was given maltodextrin. Changes from baseline in psychometric and gastrointestinal symptoms were evaluated using Hamilton Depression Rating scale-24 Items (HDRS-24), Montgomery-Asberg Depression Rating Scale (MADRS), Brief Psychiatric Rating Scale (BPRS), and Gastrointestinal Symptom Rating Scale (GSRS). Serum measures were also determined, i.e., cortisol, TNF-α, and IL-β. Serotonin turnover in the circulation, gut microbiome composition, and tryptophan metabolites were further investigated for clarifying the probiotics' mechanisms of action. RESULTS CCFM1025 showed a better antidepressant-like effect than placebo, based on the HDRS-24 (placebo: M = 6.44, SD = 5.44; CCFM1025: M = 10.40, SD = 6.85; t(43) = 2.163, P = 0.036, d = 0.640) and MADRS (placebo: M = 4.92, SD = 7.15; CCFM1025: M = 9.60, SD = 7.37; t(43) = 2.152, P = 0.037, d = 0.645) evaluation. The factor analysis of BPRS and GSRS suggested that patients' emotional and gastrointestinal problems may be affected by the serotonergic system. Specifically, CCFM1025 could significantly and to a larger extend reduce the serum serotonin turnover compared with the placebo (placebo: M = -0.01, SD = 0.41; CCFM1025: M = 0.27, SD = 0.40; t(43) = 2.267, P = 0.029, d = 0.681). It may be due to changes in gut microbiome and gut tryptophan metabolism under the probiotic treatment, such as changes in alpha diversity, tryptophan, and indoles derivatives. CONCLUSION B. breve CCFM1025 is a promising candidate psychobiotic strain that attenuates depression and associated gastrointestinal disorders. The mechanisms may be relevant to the changes in the gut microbiome and tryptophan metabolism. These findings support the future clinical applications of psychobiotics in the treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Peijun Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ying Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Huiyue Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Luyao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xin Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Renying Zou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, Jiangsu 225004, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, Jiangsu 225004, China; Wuxi Translational Medicine Research Center, Jiangsu Translational Medicine Research Institute, Wuxi, Jiangsu 214122, China
| | - Long Qian
- The Tinghu People's Hospital, Yancheng, Jiangsu 224002, China
| | - Qun Wang
- The Tinghu People's Hospital, Yancheng, Jiangsu 224002, China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, Jiangsu 225004, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
277
|
Mu C, Nikpoor N, Tompkins TA, Rho JM, Scantlebury MH, Shearer J. Probiotics counteract hepatic steatosis caused by ketogenic diet and upregulate AMPK signaling in a model of infantile epilepsy. EBioMedicine 2022; 76:103838. [PMID: 35148983 PMCID: PMC8882998 DOI: 10.1016/j.ebiom.2022.103838] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/12/2021] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Background Infantile spasms syndrome (IS) is a type of epilepsy affecting 1.6 to 4.5 per 10,000 children in the first year of life, often with severe lifelong neurodevelopmental consequences. Only two first-line pharmacological treatments currently exist for IS and many children are refractory to these therapies. In such cases, children are treated with the ketogenic diet (KD). While effective in reducing seizures, the diet can result in dyslipidemia over time. Methods Employing a neonatal Sprague-Dawley rat model of IS, we investigated how the KD affects hepatic steatosis and its modulation by a defined probiotic blend. A combination of multiple readouts, including malondialdehyde, fatty acid profiles, lipid metabolism-related enzyme mRNA expression, mitochondrial function, histone deacetylase activity, cytokines and chemokines were evaluated using liver homogenates. Findings The KD reduced seizures, but resulted in severe hepatic steatosis, characterized by a white liver, triglyceride accumulation, elevated malondialdehyde, polyunsaturated fatty acids and lower acyl-carnitines compared to animals fed a control diet. The KD-induced metabolic phenotype was prevented by the co-administration of a blend of Streptococcus thermophilus HA-110 and Lactococcus lactis subsp. lactis HA-136. This probiotic blend protected the liver by elevating pAMPK-mediated signaling and promoting lipid oxidation. The strains further upregulated the expression of caspase 1 and interleukin 18, which may contribute to their hepatoprotective effect in this model. Interpretation Our results suggest that early intervention with probiotics could be considered as an approach to reduce the risk of hepatic side effects of the KD in children who are on the diet for medically indicated reasons. Funding This study was funded by the Alberta Children's Hospital Research Institute and Mitacs Accelerate Program (IT16942).
Collapse
Affiliation(s)
- Chunlong Mu
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada.
| | - Naghmeh Nikpoor
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions, Montreal, QC H4P 2R2, Canada
| | - Thomas A Tompkins
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions, Montreal, QC H4P 2R2, Canada
| | - Jong M Rho
- Division of Pediatric Neurology, Rady Children's Hospital-San Diego, Department of Neurosciences, University of California, San Diego, CA 92123, USA
| | - Morris H Scantlebury
- Department of Pediatrics, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Jane Shearer
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada; Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
278
|
Chang L, Wei Y, Hashimoto K. Brain Research Bulletin: Special Issue: Brain–body communication in health and diseases, Brain–gut–microbiota axis in depression: A historical overview and future directions. Brain Res Bull 2022; 182:44-56. [DOI: 10.1016/j.brainresbull.2022.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 12/14/2022]
|
279
|
Basso M, Johnstone N, Knytl P, Nauta A, Groeneveld A, Cohen Kadosh K. A Systematic Review of Psychobiotic Interventions in Children and Adolescents to Enhance Cognitive Functioning and Emotional Behavior. Nutrients 2022; 14:614. [PMID: 35276975 PMCID: PMC8840038 DOI: 10.3390/nu14030614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/05/2023] Open
Abstract
This systematic review brings together human psychobiotic interventions in children and adolescents (aged 6-25 years) to evaluate the efficacy of pre- and probiotic supplements on stress, anxiety, and cognitive outcomes. Psychobiotic interventions in animal studies highlighted sensitivity to effects during development and maturation in multiple domains from emotion to cognitive processing. Several translational psychobiotic interventions in humans have been carried out to assess effects on emotion and cognition during childhood and into adulthood. The findings illustrate that there are limited consistent psychobiotic effects in developing human populations, and this is proposed to be due to heterogeneity in the trials conducted. Consequentially, it is recommended that three specific factors are considered in future psychobiotic trials: (1) Specificity of population studied (e.g., patients, developmental age), (2) specificity of intervention, and (3) homogeneity in outcome measures.
Collapse
Affiliation(s)
- Melissa Basso
- Department of Psychological Sciences, School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK; (M.B.); (P.K.)
| | - Nicola Johnstone
- Department of Psychological Sciences, School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK; (M.B.); (P.K.)
| | - Paul Knytl
- Department of Psychological Sciences, School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK; (M.B.); (P.K.)
| | - Arjen Nauta
- FrieslandCampina, 3818 LE Amersfoort, The Netherlands; (A.N.); (A.G.)
| | - Andre Groeneveld
- FrieslandCampina, 3818 LE Amersfoort, The Netherlands; (A.N.); (A.G.)
| | - Kathrin Cohen Kadosh
- Department of Psychological Sciences, School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK; (M.B.); (P.K.)
| |
Collapse
|
280
|
Hua RX, Gao H, Wang BY, Guo YX, Liang C, Gao L, Shang HW, Xu JD. Insights into correlation between intestinal flora-gut-brain axis and blood-brain barrier permeability. Shijie Huaren Xiaohua Zazhi 2022; 30:100-108. [DOI: 10.11569/wcjd.v30.i2.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A wide variety of gut microbes has a non-negligible physiological and pathological impact on the host. Studies show that gut microbes can influence the function of the central nervous system by synthesizing and releasing several key neurotransmitters and neuroregulatory factors. Decreasing the integrity of the blood-brain barrier is related to the disorder of gut microbes, and maintaining the homeostasis of gut microbes is of great significance in preventing and treating neurodegenerative diseases. This review summarizes the possible mechanism of the intestine flora-gut-brain axis as a signaling pathway and presents several ideas and potential directions for regulating gut microbes to achieve the purpose of disease treatment.
Collapse
Affiliation(s)
- Rong-Xuan Hua
- Clinical Medicine "5+3" Program, Capital Medical University, Beijing 100069, China
| | - Han Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Bo-Ya Wang
- Clinical Medicine Program, Peking University Health Science Center, Beijing 100081, China
| | - Yue-Xin Guo
- Oral Medicine "5+3" Program, Capital Medical University, Beijing 100069, China
| | - Chen Liang
- Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Lei Gao
- Department of Biomedical Informatics, School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
| | - Hong-Wei Shang
- Morphological Experiment Center, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jing-Dong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
281
|
One Giant Leap from Mouse to Man: The Microbiota-Gut-Brain Axis in Mood Disorders and Translational Challenges Moving towards Human Clinical Trials. Nutrients 2022; 14:nu14030568. [PMID: 35276927 PMCID: PMC8840472 DOI: 10.3390/nu14030568] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/13/2022] Open
Abstract
The microbiota–gut–brain axis is a bidirectional communication pathway that enables the gut microbiota to communicate with the brain through direct and indirect signaling pathways to influence brain physiology, function, and even behavior. Research has shown that probiotics can improve several aspects of health by changing the environment within the gut, and several lines of evidence now indicate a beneficial effect of probiotics on mental and brain health. Such evidence has prompted the arrival of a new term to the world of biotics research: psychobiotics, defined as any exogenous influence whose effect on mental health is bacterially mediated. Several taxonomic changes in the gut microbiota have been reported in neurodevelopmental disorders, mood disorders such as anxiety and depression, and neurodegenerative disorders such as Alzheimer’s disease. While clinical evidence supporting the role of the gut microbiota in mental and brain health, and indeed demonstrating the beneficial effects of probiotics is rapidly accumulating, most of the evidence to date has emerged from preclinical studies employing different animal models. The purpose of this review is to focus on the role of probiotics and the microbiota–gut–brain axis in relation to mood disorders and to review the current translational challenges from preclinical to clinical research.
Collapse
|
282
|
Donati Zeppa S, Ferrini F, Agostini D, Amatori S, Barbieri E, Piccoli G, Sestili P, Stocchi V. Nutraceuticals and Physical Activity as Antidepressants: The Central Role of the Gut Microbiota. Antioxidants (Basel) 2022; 11:antiox11020236. [PMID: 35204119 PMCID: PMC8868311 DOI: 10.3390/antiox11020236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/15/2022] Open
Abstract
Major depressive disorder (MDD) is a common mental illness. Evidence suggests that the gut microbiota play an essential role in regulating brain functions and the pathogenesis of neuropsychiatric diseases, including MDD. There are numerous mechanisms through which the gut microbiota and brain can exchange information in a continuous, bidirectional communication. Current research emphasizes the interexchange of signals influenced by the gut microbiota that are detected and transduced in information from the gut to the nervous system involving neural, endocrine, and inflammatory mechanisms, suggesting a relationship between oxidative stress and the pathophysiology of MDD via the hyperactivation of inflammatory responses. Potential sources of inflammation in the plasma and hippocampus of depressed individuals could stem from increases in intestinal permeability. Some nutraceuticals, such as specific probiotics, namely psychobiotics, polyphenols, carotenoids, butyrate, and prebiotics, have been demonstrated to exert an antidepressant activity, but most of them need to be metabolized and activated by gut microorganisms. By inducing changes in the gut microbiota composition, physical exercise might also exert a role in alleviating depression-like symptoms. The mutual relationships among nutraceuticals, exercise, and depression will be discussed, and the potential role of the gut microbiota as a therapeutic target to treat depression will be explored.
Collapse
Affiliation(s)
- Sabrina Donati Zeppa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (F.F.); (D.A.); (E.B.); (G.P.); (P.S.)
| | - Fabio Ferrini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (F.F.); (D.A.); (E.B.); (G.P.); (P.S.)
| | - Deborah Agostini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (F.F.); (D.A.); (E.B.); (G.P.); (P.S.)
| | - Stefano Amatori
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (F.F.); (D.A.); (E.B.); (G.P.); (P.S.)
- Correspondence:
| | - Elena Barbieri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (F.F.); (D.A.); (E.B.); (G.P.); (P.S.)
| | - Giovanni Piccoli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (F.F.); (D.A.); (E.B.); (G.P.); (P.S.)
| | - Piero Sestili
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (F.F.); (D.A.); (E.B.); (G.P.); (P.S.)
| | | |
Collapse
|
283
|
Suda K, Matsuda K. How Microbes Affect Depression: Underlying Mechanisms via the Gut-Brain Axis and the Modulating Role of Probiotics. Int J Mol Sci 2022; 23:ijms23031172. [PMID: 35163104 PMCID: PMC8835211 DOI: 10.3390/ijms23031172] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Accumulating evidence suggests that the gut microbiome influences the brain functions and psychological state of its host via the gut-brain axis, and gut dysbiosis has been linked to several mental illnesses, including major depressive disorder (MDD). Animal experiments have shown that a depletion of the gut microbiota leads to behavioral changes, and is associated with pathological changes, including abnormal stress response and impaired adult neurogenesis. Short-chain fatty acids such as butyrate are known to contribute to the up-regulation of brain-derived neurotrophic factor (BDNF), and gut dysbiosis causes decreased levels of BDNF, which could affect neuronal development and synaptic plasticity. Increased gut permeability causes an influx of gut microbial components such as lipopolysaccharides, and the resultant systemic inflammation may lead to neuroinflammation in the central nervous system. In light of the fact that gut microbial factors contribute to the initiation and exacerbation of depressive symptoms, this review summarizes the current understanding of the molecular mechanisms involved in MDD onset, and discusses the therapeutic potential of probiotics, including butyrate-producing bacteria, which can mediate the microbiota-gut-brain axis.
Collapse
|
284
|
Prosperi M, Santocchi E, Guiducci L, Frinzi J, Morales MA, Tancredi R, Muratori F, Calderoni S. Interventions on Microbiota: Where Do We Stand on a Gut-Brain Link in Autism? A Systematic Review. Nutrients 2022; 14:462. [PMID: 35276821 PMCID: PMC8839651 DOI: 10.3390/nu14030462] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023] Open
Abstract
The alteration of the microbiota-gut-brain axis has been recently recognized as a critical modulator of neuropsychiatric health and a possible factor in the etiopathogenesis of autism spectrum disorders (ASD). This systematic review offers practitioners an overview of the potential therapeutic options to modify dysbiosis, GI symptoms, and ASD severity by modulating the microbiota-gut-brain axis in ASD, taking into consideration limits and benefits from current findings. Comprehensive searches of PubMed, Scopus, the Web of Science Core Collection, and EMBASE were performed from 2000 to 2021, crossing terms referred to ASD and treatments acting on the microbiota-gut-brain axis. A total of 1769 publications were identified, of which 19 articles met the inclusion criteria. Data were extracted independently by two reviewers using a preconstructed form. Despite the encouraging findings, considering the variability of the treatments, the samples size, the duration of treatment, and the tools used to evaluate the outcome of the examined trials, these results are still partial. They do not allow to establish a conclusive beneficial effect of probiotics and other interventions on the symptoms of ASD. In particular, the optimal species, subspecies, and dosages have yet to be identified. Considering the heterogeneity of ASD, double-blind, randomized, controlled trials and treatment tailored to ASD characteristics and host-microbiota are recommended.
Collapse
Affiliation(s)
- Margherita Prosperi
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Viale del Tirreno 331, 56128 Calambrone, Italy; (M.P.); (J.F.); (R.T.); (F.M.)
| | - Elisa Santocchi
- UFSMIA Zona Valle del Serchio, Azienda USL Toscana Nord Ovest, 55032 Località Castelnuovo Garfagnana, Italy;
| | - Letizia Guiducci
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (L.G.); (M.A.M.)
| | - Jacopo Frinzi
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Viale del Tirreno 331, 56128 Calambrone, Italy; (M.P.); (J.F.); (R.T.); (F.M.)
| | - Maria Aurora Morales
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (L.G.); (M.A.M.)
| | - Raffaella Tancredi
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Viale del Tirreno 331, 56128 Calambrone, Italy; (M.P.); (J.F.); (R.T.); (F.M.)
| | - Filippo Muratori
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Viale del Tirreno 331, 56128 Calambrone, Italy; (M.P.); (J.F.); (R.T.); (F.M.)
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Sara Calderoni
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Viale del Tirreno 331, 56128 Calambrone, Italy; (M.P.); (J.F.); (R.T.); (F.M.)
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| |
Collapse
|
285
|
Wang J, Childers WS. The Future Potential of Biosensors to Investigate the Gut-Brain Axis. Front Bioeng Biotechnol 2022; 9:826479. [PMID: 35096802 PMCID: PMC8795891 DOI: 10.3389/fbioe.2021.826479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
The multifaceted and heterogeneous nature of depression presents challenges in pinpointing treatments. Among these contributions are the interconnections between the gut microbiome and neurological function termed the gut-brain axis. A diverse range of microbiome-produced metabolites interact with host signaling and metabolic pathways through this gut-brain axis relationship. Therefore, biosensor detection of gut metabolites offers the potential to quantify the microbiome's contributions to depression. Herein we review synthetic biology strategies to detect signals that indicate gut-brain axis dysregulation that may contribute to depression. We also highlight future challenges in developing living diagnostics of microbiome conditions influencing depression.
Collapse
Affiliation(s)
| | - W. Seth Childers
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
286
|
Chen J, Chen X, Ho CL. Recent Development of Probiotic Bifidobacteria for Treating Human Diseases. Front Bioeng Biotechnol 2022; 9:770248. [PMID: 35004640 PMCID: PMC8727868 DOI: 10.3389/fbioe.2021.770248] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Bifidobacterium is a non-spore-forming, Gram-positive, anaerobic probiotic actinobacterium and commonly found in the gut of infants and the uterine region of pregnant mothers. Like all probiotics, Bifidobacteria confer health benefits on the host when administered in adequate amounts, showing multifaceted probiotic effects. Examples include B. bifidum, B. breve, and B. longum, common Bifidobacterium strains employed to prevent and treat gastrointestinal disorders, including intestinal infections and cancers. Herein, we review the latest development in probiotic Bifidobacteria research, including studies on the therapeutic impact of Bifidobacterial species on human health and recent efforts in engineering Bifidobacterium. This review article would provide readers with a wholesome understanding of Bifidobacteria and its potentials to improve human health.
Collapse
Affiliation(s)
- Jun Chen
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Xinyi Chen
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Chun Loong Ho
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| |
Collapse
|
287
|
Gao K, Farzi A, Ke X, Yu Y, Chen C, Chen S, Yu T, Wang H, Li Y. Oral administration of Lactococcus lactis WHH2078 alleviates depressive and anxiety symptoms in mice with induced chronic stress. Food Funct 2022; 13:957-969. [PMID: 35006225 DOI: 10.1039/d1fo03723d] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Depression is a mood disorder with a high prevalence rate globally, which is associated with abnormalities in 5-hydroxytryptamine (5-HT) metabolism. Emerging evidence suggests that certain probiotics that modulate 5-HT metabolism confer beneficial effects on depression. In this study, in vitro enterochromaffin RIN14B cells were used for screening potential antidepressant probiotic Lactococcus lactis strains. The L. lactis strain WHH2078 increased to high levels the 5-HT precursor 5-hydroxytryptophan (5-HTP) and the expression of tryptophan hydroxylase 1 (Tph1), which converts tryptophan to 5-HTP in RIN14B cells. The oral administration of WHH2078 (1 × 109 CFU mL-1) in mice with induced chronic unpredictable mild stress (CUMS) for 5 weeks significantly ameliorated depressive and anxiety-like behaviors in the tail suspension test, forced swim test, sucrose preference test, and open field test. Besides, WHH2078 significantly reduced the serum corticosterone level and restored the central levels of 5-HT, 5-HTP, and brain-derived neurotrophic factor in CUMS-induced mice. Moreover, WHH2078 also reversed the 5-HTP levels in the serum and colon, accompanied by an upregulation in colonic Tph1 gene expression. Using 16S rRNA high-throughput sequencing of feces, WHH2078 was shown to improve the CUMS-induced gut microbial dysbiosis, through restoring alpha diversity and the abundances of Firmicutes and Bacteroidetes. In summary, these results indicate that WHH2078 can alleviate rodent depressive and anxiety-like behaviors in response to CUMS, which is associated with the improvement of 5-HT metabolism and modulation of the gut microbiome composition. Therefore, supplementation of the L. lactis strain WHH2078 with antidepressant properties may serve as a promising therapeutic strategy for chronic stress-induced depression.
Collapse
Affiliation(s)
- Kan Gao
- Key Laboratory of Food And Biological Engineering of Zhejiang Province, Hangzhou 310018, P.R. China. .,Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou 310018, P.R. China. .,College of Animal Science, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, P.R. China
| | - Aitak Farzi
- Division of Pharmacology, Otto Loewi Research Center (for Vascular Biology, Immunology and Inflammation), Medical University of Graz, 8010 Graz, Austria
| | - Xueqin Ke
- Key Laboratory of Food And Biological Engineering of Zhejiang Province, Hangzhou 310018, P.R. China. .,Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou 310018, P.R. China.
| | - Yunxia Yu
- Key Laboratory of Food And Biological Engineering of Zhejiang Province, Hangzhou 310018, P.R. China. .,Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou 310018, P.R. China.
| | - Cailin Chen
- Key Laboratory of Food And Biological Engineering of Zhejiang Province, Hangzhou 310018, P.R. China. .,Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou 310018, P.R. China.
| | - Su Chen
- Key Laboratory of Food And Biological Engineering of Zhejiang Province, Hangzhou 310018, P.R. China. .,Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou 310018, P.R. China.
| | - Tengfei Yu
- Key Laboratory of Food And Biological Engineering of Zhejiang Province, Hangzhou 310018, P.R. China. .,Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou 310018, P.R. China.
| | - Haifeng Wang
- College of Animal Science, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, P.R. China
| | - Yanjun Li
- Key Laboratory of Food And Biological Engineering of Zhejiang Province, Hangzhou 310018, P.R. China. .,Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou 310018, P.R. China. .,College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, P.R. China
| |
Collapse
|
288
|
OUP accepted manuscript. Nutr Rev 2022; 80:2002-2016. [DOI: 10.1093/nutrit/nuac019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
289
|
Dobielska M, Bartosik NK, Zyzik KA, Kowalczyk E, Karbownik MS. Mechanisms of Cognitive Impairment in Depression. May Probiotics Help? Front Psychiatry 2022; 13:904426. [PMID: 35757204 PMCID: PMC9218185 DOI: 10.3389/fpsyt.2022.904426] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/16/2022] [Indexed: 12/02/2022] Open
Abstract
Depression is the major cause of disability globally. Apart from lowered mood and accompanying symptoms, it leads to cognitive impairment that altogether predicts disadvantaged social functioning. Reduced cognitive function in depression appears a bit neglected in the field of clinical and molecular psychiatry, while it is estimated to occur in two-thirds of depressed patients and persist in at least one third of remitted patients. This problem, therefore, requires elucidation at the biomolecular and system levels and calls for improvement in therapeutic approach. In this review study, we address the above-mentioned issues by discussing putative mechanisms of cognitive decline in depression: (1) increased oxidative stress and (2) inflammation, (3) disturbed hypothalamus-pituitary-adrenals axis, and (4) reduced monoamines functionality. Moreover, we acknowledge additional underpinnings of cognitive impairment in depressed elderly: (5) vascular-originated brain ischemia and (6) amyloid-beta plaque accumulation. Additionally, by reviewing molecular, pre-clinical and clinical evidence, we propose gut microbiota-targeted strategies as potential adjuvant therapeutics. The study provides a consolidated source of knowledge regarding mechanisms of cognitive impairment in depression and may path the way toward improved treatment options.
Collapse
Affiliation(s)
- Maria Dobielska
- Students' Research Club, Department of Pharmacology and Toxicology, Medical University of Łódź, Łódź, Poland
| | - Natalia Karina Bartosik
- Students' Research Club, Department of Pharmacology and Toxicology, Medical University of Łódź, Łódź, Poland
| | - Kamil A Zyzik
- Institute of Sociology, Jagiellonian University, Kraków, Poland
| | - Edward Kowalczyk
- Department of Pharmacology and Toxicology, Medical University of Łódź, Łódź, Poland
| | | |
Collapse
|
290
|
Vaccariello ED, Nguyen TT. Microbes and geriatric mental health: past, present, and future. Int Psychogeriatr 2022; 34:3-5. [PMID: 33926593 PMCID: PMC8556388 DOI: 10.1017/s104161022100065x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Tanya T. Nguyen
- Department of Psychiatry, University of California San Diego, California
- Sam and Rose Stein Institute for Research on Aging, University of California San Diego, California
- Veterans Affairs San Diego Healthcare System, California
| |
Collapse
|
291
|
Requena T, Pérez Martínez G. Probiotics, Prebiotics, Synbiotics, Postbiotics and Other Biotics. What's Next? COMPREHENSIVE GUT MICROBIOTA 2022:197-210. [DOI: 10.1016/b978-0-12-819265-8.00094-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
292
|
What do experimental animal models of mood disorders tell clinicians about influence of probiotics on the gut-brain axis? POSTEP HIG MED DOSW 2022. [DOI: 10.2478/ahem-2022-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
It is commonly pointed out that enteric microbiota have a significant impact on the behavioral and neurophysiological parameters relevant to brain-gut axis disorders. Accordingly, many data have demonstrated that probiotics can alter the central nervous system function via this gut-brain axis and commensal bacteria consumption can ameliorate stress-related neuropsychiatric disorders. Thus, modulating the enteric microbiota is increasingly considered a new therapeutic approach for these disorders, although so far there is a lack of reliable pre-clinical and clinical data confirming the usefulness of probiotics in the treatment of affective disorders. In this review, we discuss various mechanisms linking specific probiotic bacteria with behaviors related to anhedonia and the exact mechanisms of their action, including data provided by using animal models and tests. Finally, we point to potential clinical impact resulting from future studies investigating the gut-brain axis activity with respect to the efficacy of probiotic treatment of mental disorders.
Collapse
|
293
|
Huang L, Lv X, Ze X, Ma Z, Zhang X, He R, Fan J, Zhang M, Sun B, Wang F, Liu H. Combined probiotics attenuate chronic unpredictable mild stress-induced depressive-like and anxiety-like behaviors in rats. Front Psychiatry 2022; 13:990465. [PMID: 36159940 PMCID: PMC9490273 DOI: 10.3389/fpsyt.2022.990465] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
Increasing evidence indicated that probiotics can be effective in improving behaviors similar to depression and anxiety disorders. However, the underlying mechanisms remain unclear, as is the effects of single vs. combined probiotics on depression and anxiety. This study aimed to determine whether combined probiotics could attenuate depressive-like and anxiety-like behavior induced by chronic unpredictable mild stress (CUMS) and its potential mechanisms. Rats underwent CUMS treatment and then administered Lactobacillus rhamnosus HN001 (HN001) or Bifidobacterium animalis subsp. lactis HN019 (HN019), alone or in combination. Levels of neurotransmitters, inflammatory factors, and the gut microbiota were measured. HN001 and (or) HN019 treatment improved depressive-like and anxiety-like behavior in rats, including increased moving distance and exploratory behavior (p < 0.05). In addition, altered gut microbiota structure induced by CUMS was amended by HN001 and/or HN019 (p < 0.05). HN001 and/or HN019 intervention also remarkably normalized levels of 5-HT, DA, NE, HVA, DOPAC, HIAA, TNF-α, IL-6, IL-18 and IL-1β in CUMS rats (p < 0.05). Furthermore, the effects of combined probiotics on decreasing inflammation and improved gut microbiota (Chao1 index and ACE index, p < 0.05) were superior to the single probiotics. Moreover, spearman analysis showed a certain correlation between the different microbiota, such as Firmicutes, Bacteroidetes, Verrucomicrobias, Proteobacterias and Actinobacterias, and inflammation and neurotransmitters. These findings suggested that CUMS induced depressive and anxiety-like behaviors can be alleviated by the combination of probiotics, which was possibly associated with the alterations in the gut microbiota composition and increased neurotransmitters and decreased inflammatory factors.
Collapse
Affiliation(s)
- Li Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, China
| | - Xia Lv
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, China
| | - Xiaolei Ze
- BYHEALTH Institute of Nutrition & Health, Guangzhou, China
| | - Zewei Ma
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, China
| | - Xuguang Zhang
- BYHEALTH Institute of Nutrition & Health, Guangzhou, China
| | - Ruikun He
- BYHEALTH Institute of Nutrition & Health, Guangzhou, China
| | - Junting Fan
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, China
| | - Meilin Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, China
| | - Boran Sun
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, China.,Department of Epidemiology and Statistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Fang Wang
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Huan Liu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, China
| |
Collapse
|
294
|
Alonazi M, Ben Bacha A, Al Suhaibani A, Almnaizel AT, Aloudah HS, El-Ansary A. Psychobiotics improve propionic acid-induced neuroinflammation in juvenile rats, rodent model of autism. Transl Neurosci 2022; 13:292-300. [PMID: 36133749 PMCID: PMC9462542 DOI: 10.1515/tnsci-2022-0226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/02/2022] [Accepted: 06/02/2022] [Indexed: 11/15/2022] Open
Abstract
This study aimed to evaluate the protective and therapeutic potency of bee pollen and probiotic mixture on brain intoxication caused by propionic acid (PPA) in juvenile rats. Five groups of six animals each, were used: the control group only receiving phosphate-buffered saline; the bee pollen and probiotic-treated group receiving a combination of an equal quantity of bee pollen and probiotic (0.2 kg/kg body weight); the PPA group being treated for 3 days with an oral neurotoxic dose of PPA (0.25 kg/kg body weight); the protective and therapeutic groups receiving bee pollen and probiotic mixture treatment right before and after the neurotoxic dose of PPA, respectively. The levels of interleukin (IL)-1ß, IL-6, IL-8, IL-10, IL-12, tumor necrosis factor α, and interferon γ (IFN-γ) were investigated to evaluate the neuroinflammatory responses in brain tissues from different animal groups. The much higher IL-1β, IL-8, and IFN-γ, as pro-inflammatory cytokines (P < 0.001), together with much lower IL-10, as anti-inflammatory cytokine (P < 0.001) compared to controls clearly demonstrated the neurotoxic effects of PPA. Interestingly, the mixture of bee pollen and probiotics was effective in alleviating PPA neurotoxic effects in both therapeutic and protective groups demonstrating highly significant changes in IL-1β, IL-8, IL-10, and IFN-γ levels together with non-significant reduction in IL-6 levels compared to PPA-treated rats. Overall, our findings demonstrated a new approach to the beneficial use of psychobiotics presenting as bee pollen and probiotic combination in neuroinflammation through cytokine changes as a possible role of glial cells in gut–brain axis.
Collapse
Affiliation(s)
- Mona Alonazi
- Biochemistry Department, Science College, King Saud University, Riyadh 11495, Saudi Arabia
| | - Abir Ben Bacha
- Biochemistry Department, Science College, King Saud University, P.O Box 22452, Riyadh 11495, Saudi Arabia.,Laboratory of Plant Biotechnology Applied to Crop Improvement, Faculty of Science of Sfax, University of Sfax, Sfax, Tunisia
| | - Anwar Al Suhaibani
- Biochemistry Department, Science College, King Saud University, Riyadh 11495, Saudi Arabia
| | - Ahmad T Almnaizel
- Experimental Surgery and Animal Laboratory, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Hisham S Aloudah
- Experimental Surgery and Animal Laboratory, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Afaf El-Ansary
- Central Laboratory, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
295
|
Sharma P, Singh N, Singh S, Khare SK, Nain PKS, Nain L. Potent γ-amino butyric acid producing psychobiotic Lactococcus lactis LP-68 from non-rhizospheric soil of Syzygium cumini (Black plum). Arch Microbiol 2021; 204:82. [PMID: 34958412 DOI: 10.1007/s00203-021-02629-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 11/24/2022]
Abstract
Gamma amino butyric acid (GABA) is a chemical messenger that plays a significant role in muscle relaxation and brain health. Certain lactic acid bacteria (LAB) produce significant levels of GABA and thus act as potential psychobiotic cultures. In the present study, LAB were isolated from non-rhizospheric soil sample of Syzygium cumini (Black plum). A total of 57 LAB were isolated on the basis of their morphological and acid producing characteristic on de Man Rogosa Sharpe (MRS) agar. Only seven isolates were found to produce GABA (0.09-1.13 gL-1) in MRS broth and were identified as Lactococcus. However, L. lactis LP-68 produced highest amount of GABA and was selected for further optimization of culture conditions (pH, temperature and MSG) by response surface methodology (RSM). The optimization resulted in approximately four-fold increase in GABA production (4.11 gL-1). The results indicate that the L. lactis LP-68 can be used as starter culture for production of GABA-enriched functional foods.
Collapse
Affiliation(s)
- Pushpendra Sharma
- Division of Microbiology, ICAR-Indian Agriculture Research Institute, New Delhi, 110012, India
| | - Neera Singh
- Division of Agricultural Chemicals, ICAR-Indian Agriculture Research Institute, New Delhi, India
| | - Surender Singh
- Department of Microbiology, Central University of Haryana, Mahendergarh, 123031, India
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Pawan Kumar Singh Nain
- Design and Mechatronic Division, School of Civil and Mechanical Engineering, Galgotias University, Greater Noida, Gautam Budh Nagar, Uttar Pradesh, 201310, India
| | - Lata Nain
- Division of Microbiology, ICAR-Indian Agriculture Research Institute, New Delhi, 110012, India.
| |
Collapse
|
296
|
Komanduri M, Savage K, Lea A, McPhee G, Nolidin K, Deleuil S, Stough C, Gondalia S. The Relationship between Gut Microbiome and Cognition in Older Australians. Nutrients 2021; 14:nu14010064. [PMID: 35010939 PMCID: PMC8746300 DOI: 10.3390/nu14010064] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/20/2022] Open
Abstract
Ageing is associated with changes in biological processes, including reductions in cognitive functions and gut microbiome diversity. However, not much is known about the relationship between cognition and the microbiome with increasing age. Therefore, we examined the relationship between the gut microbiome and cognition in 69 healthy participants aged 60–75 years. The gut microbiome was analysed with the 16S rRNA sequencing method. The cognitive assessment included the Cognitive Drug Research computerised assessment battery, which produced five cognitive factors corresponding to ‘Quality of Episodic Secondary Memory’, ‘Quality of Working Memory’, ‘Continuity of Attention, ‘Speed of Memory’ and ‘Power of Concentration’. Multiple linear regression showed that the bacterial family Carnobacteriaceae explained 9% of the variance in predicting Quality of Episodic Secondary Memory. Alcaligenaceae and Clostridiaceae explained 15% of the variance in predicting Quality of Working Memory; Bacteroidaceae, Barnesiellaceae, Rikenellaceae and Gemellaceae explained 11% of the variance in Power of Concentration. The present study provides specific evidence of a relationship between specific families of bacteria and different domains of cognition.
Collapse
Affiliation(s)
- Mrudhula Komanduri
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (K.S.); (A.L.); (G.M.); (K.N.); (S.D.); (C.S.); (S.G.)
- Correspondence:
| | - Karen Savage
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (K.S.); (A.L.); (G.M.); (K.N.); (S.D.); (C.S.); (S.G.)
| | - Ana Lea
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (K.S.); (A.L.); (G.M.); (K.N.); (S.D.); (C.S.); (S.G.)
| | - Grace McPhee
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (K.S.); (A.L.); (G.M.); (K.N.); (S.D.); (C.S.); (S.G.)
| | - Karen Nolidin
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (K.S.); (A.L.); (G.M.); (K.N.); (S.D.); (C.S.); (S.G.)
| | - Saurenne Deleuil
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (K.S.); (A.L.); (G.M.); (K.N.); (S.D.); (C.S.); (S.G.)
| | - Con Stough
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (K.S.); (A.L.); (G.M.); (K.N.); (S.D.); (C.S.); (S.G.)
| | - Shakuntla Gondalia
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (K.S.); (A.L.); (G.M.); (K.N.); (S.D.); (C.S.); (S.G.)
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organization, Adelaide, SA 5000, Australia
- Precision Health Future Science Platform, Commonwealth Scientific and Industrial Research Organisation, Adelaide, SA 5000, Australia
| |
Collapse
|
297
|
Sharma H, Bajwa J. Approach of probiotics in mental health as a psychobiotics. Arch Microbiol 2021; 204:30. [PMID: 34923592 DOI: 10.1007/s00203-021-02622-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/26/2022]
Abstract
Probiotics are those beneficial microbes that confer various health benefits to humans when integrated in diet in adequate amount. They possess vital metabolites having nutritional and therapeutic properties which provide countless health benefits. Scientific discoveries demonstrated that these living microbial consortiums may exert impact on anxiety, depression, cognitive functions, stress responses and behaviours. Those probiotics that controls the functioning or actions of central nervous system (CNS) conciliated by the gut brain axis (GBA) through neural, humoral and metabolic pathways to ameliorate the gastrointestinal activity as well as anti-depressant and anxiolytic capacity are known as psychobiotics. Few evidences have confirmed the remedial effects of psychobiotics against neurological conditions or disorders. So, therapeutic approach of psychobiotics leads to the future possibilities in the development field for researchers. This review article describes the potential role and mechanism of action of psychobiotics.
Collapse
Affiliation(s)
- Heenu Sharma
- Department of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Jasveen Bajwa
- Department of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India.
| |
Collapse
|
298
|
Gut Bacteria and Neuropsychiatric Disorders. Microorganisms 2021; 9:microorganisms9122583. [PMID: 34946184 PMCID: PMC8708963 DOI: 10.3390/microorganisms9122583] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 12/11/2022] Open
Abstract
Bacteria in the gut microbiome plays an intrinsic part in immune activation, intestinal permeability, enteric reflex, and entero-endocrine signaling. Apart from physiological and structural changes brought about by gut bacteria on entero-epithelial cells and mucus layers, a vast number of signals generated in the gastro-intestinal tract (GIT) reaches the brain via the vagus nerve. Research on the gut–brain axis (GBA) has mostly been devoted to digestive functions and satiety. Less papers have been published on the role gut microbiota play in mood, cognitive behavior and neuropsychiatric disorders such as autism, depression and schizophrenia. Whether we will be able to fully decipher the connection between gut microbiota and mental health is debatable, especially since the gut microbiome is diverse, everchanging and highly responsive to external stimuli. Nevertheless, the more we discover about the gut microbiome and the more we learn about the GBA, the greater the chance of developing novel therapeutics, probiotics and psychobiotics to treat gastro-intestinal disorders such as inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS), but also improve cognitive functions and prevent or treat mental disorders. In this review we focus on the influence gut bacteria and their metabolites have on neuropsychiatric disorders.
Collapse
|
299
|
An In Vitro Approach to Studying the Microbial Community and Impact of Pre and Probiotics under Anorexia Nervosa Related Dietary Restrictions. Nutrients 2021; 13:nu13124447. [PMID: 34959997 PMCID: PMC8703691 DOI: 10.3390/nu13124447] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 12/21/2022] Open
Abstract
Individuals with anorexia nervosa (AN) often suffer psychological and gastrointestinal problems consistent with a dysregulated gut microbial community. Psychobiotics have been postulated to modify microbiota and improve mental well-being and gut symptoms, but there is currently a lack of evidence for such approaches in AN. The aim of this study was to use an in vitro colonic model to evaluate the impact of dietary restrictions associated with AN on the intestinal ecosystem and to assess the impact of pre and probiotic intervention. Bacteriology was quantified using flow cytometry combined with fluorescence in situ hybridisation and metabolic end products (including neurotransmitters) by gas chromatography and liquid chromatography mass spectrometry Consistent with previous research, the nutritional changes significantly reduced total microbiota and metabolites compared with healthy conditions. Pre and probiotic supplementation on restricted conditions enhanced the microbial community and modulated metabolic activity to resemble that of a healthy diet. The model system indicates that nutritional changes associated with AN can impact the microbial community, and that these changes can, at least in part, be restored through the use of pre and probiotic interventions.
Collapse
|
300
|
Rodríguez-González A, Vitali F, Moya M, De Filippo C, Passani MB, Orio L. Effects of Alcohol Binge Drinking and Oleoylethanolamide Pretreatment in the Gut Microbiota. Front Cell Infect Microbiol 2021; 11:731910. [PMID: 34888256 PMCID: PMC8651011 DOI: 10.3389/fcimb.2021.731910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/26/2021] [Indexed: 01/27/2023] Open
Abstract
Introduction Chronic alcohol consumption is known to cause gut dysbiosis (changes in microbiota composition and/or function, disruptive of the normal host–microbiota interactions). However, little is known about the changes that alcohol binge drinking induces in the gut microbiota. Here, we have tested the hypothesis that a protocol of alcohol binge drinking, known to induce neuroinflammation in previous studies, also promotes intestinal dysbiosis, and we explored how oleoylethanolamide (OEA, an acylethanolamide proven to counteract alcohol binge drinking-induced neuroinflammation) pretreatment modulates alcohol-induced dysbiosis. Methods Alcohol binges were forced by gavage three times per day during 4 consecutive days; OEA pretreatment (intraperitoneal or intragastric) was administered before each alcohol gavage. Stool microbiota composition was assessed by next-generation 16S rRNA gene sequencing, prior and after the 4-day alcohol binge protocol. Results Alcohol binge drinking reduced the richness of the gut microbiota and changed the microbial community, reducing Lactobacillus among other genera. Pretreatment with OEA in the alcohol-administered rats decreased the richness, evenness, and Shannon indices to a greater extent with respect to alcohol alone, also changing the community structure. Microbial interactions in the association network were further decreased following OEA administration in the alcohol group, with respect to the water administration. The synergistic interaction between alcohol binge and OEA was affected by the route of administration of OEA, since oral and i.p. administrations differently changed the community structure. Conclusion Results suggest that alcohol binge drinking produces a clear dysbiosis in animals; we observed that the well-known protective actions of OEA in the context of alcohol abuse might not be related to OEA-induced changes in alcohol-induced dysbiosis. These are observational results, and thus, further research will be needed for a complete understanding of the biological significance of the observed changes.
Collapse
Affiliation(s)
- Alicia Rodríguez-González
- Laboratory of Psychobiology, Department of Psychobiology and Methods in Behavioral Science, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain
| | - Francesco Vitali
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Pisa, Italy
| | - Marta Moya
- Laboratory of Psychobiology, Department of Psychobiology and Methods in Behavioral Science, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain
| | - Carlotta De Filippo
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Pisa, Italy
| | | | - Laura Orio
- Laboratory of Psychobiology, Department of Psychobiology and Methods in Behavioral Science, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain.,Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|