251
|
Goodsell DS, Zardecki C, Di Costanzo L, Duarte JM, Hudson BP, Persikova I, Segura J, Shao C, Voigt M, Westbrook JD, Young JY, Burley SK. RCSB Protein Data Bank: Enabling biomedical research and drug discovery. Protein Sci 2020; 29:52-65. [PMID: 31531901 PMCID: PMC6933845 DOI: 10.1002/pro.3730] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022]
Abstract
Analyses of publicly available structural data reveal interesting insights into the impact of the three-dimensional (3D) structures of protein targets important for discovery of new drugs (e.g., G-protein-coupled receptors, voltage-gated ion channels, ligand-gated ion channels, transporters, and E3 ubiquitin ligases). The Protein Data Bank (PDB) archive currently holds > 155,000 atomic-level 3D structures of biomolecules experimentally determined using crystallography, nuclear magnetic resonance spectroscopy, and electron microscopy. The PDB was established in 1971 as the first open-access, digital-data resource in biology, and is now managed by the Worldwide PDB partnership (wwPDB; wwPDB.org). US PDB operations are the responsibility of the Research Collaboratory for Structural Bioinformatics PDB (RCSB PDB). The RCSB PDB serves millions of RCSB.org users worldwide by delivering PDB data integrated with ∼40 external biodata resources, providing rich structural views of fundamental biology, biomedicine, and energy sciences. Recently published work showed that the PDB archival holdings facilitated discovery of ∼90% of the 210 new drugs approved by the US Food and Drug Administration 2010-2016. We review user-driven development of RCSB PDB services, examine growth of the PDB archive in terms of size and complexity, and present examples and opportunities for structure-guided drug discovery for challenging targets (e.g., integral membrane proteins).
Collapse
Affiliation(s)
- David S. Goodsell
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, RutgersThe State University of New JerseyPiscatawayNew Jersey
- Institute for Quantitative Biomedicine, RutgersThe State University of New JerseyPiscatawayNew Jersey
- The Scripps Research InstituteLa JollaCalifornia
| | - Christine Zardecki
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, RutgersThe State University of New JerseyPiscatawayNew Jersey
- Institute for Quantitative Biomedicine, RutgersThe State University of New JerseyPiscatawayNew Jersey
| | - Luigi Di Costanzo
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, RutgersThe State University of New JerseyPiscatawayNew Jersey
- Institute for Quantitative Biomedicine, RutgersThe State University of New JerseyPiscatawayNew Jersey
| | - Jose M. Duarte
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer CenterUniversity of CaliforniaSan DiegoCalifornia
| | - Brian P. Hudson
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, RutgersThe State University of New JerseyPiscatawayNew Jersey
- Institute for Quantitative Biomedicine, RutgersThe State University of New JerseyPiscatawayNew Jersey
| | - Irina Persikova
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, RutgersThe State University of New JerseyPiscatawayNew Jersey
- Institute for Quantitative Biomedicine, RutgersThe State University of New JerseyPiscatawayNew Jersey
| | - Joan Segura
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer CenterUniversity of CaliforniaSan DiegoCalifornia
| | - Chenghua Shao
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, RutgersThe State University of New JerseyPiscatawayNew Jersey
- Institute for Quantitative Biomedicine, RutgersThe State University of New JerseyPiscatawayNew Jersey
| | - Maria Voigt
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, RutgersThe State University of New JerseyPiscatawayNew Jersey
- Institute for Quantitative Biomedicine, RutgersThe State University of New JerseyPiscatawayNew Jersey
| | - John D. Westbrook
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, RutgersThe State University of New JerseyPiscatawayNew Jersey
- Institute for Quantitative Biomedicine, RutgersThe State University of New JerseyPiscatawayNew Jersey
| | - Jasmine Y. Young
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, RutgersThe State University of New JerseyPiscatawayNew Jersey
- Institute for Quantitative Biomedicine, RutgersThe State University of New JerseyPiscatawayNew Jersey
| | - Stephen K. Burley
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, RutgersThe State University of New JerseyPiscatawayNew Jersey
- Institute for Quantitative Biomedicine, RutgersThe State University of New JerseyPiscatawayNew Jersey
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer CenterUniversity of CaliforniaSan DiegoCalifornia
- Rutgers Cancer Institute of New Jersey, RutgersThe State University of New JerseyNew BrunswickNew Jersey
| |
Collapse
|
252
|
Schumann T, König J, Henke C, Willmes DM, Bornstein SR, Jordan J, Fromm MF, Birkenfeld AL. Solute Carrier Transporters as Potential Targets for the Treatment of Metabolic Disease. Pharmacol Rev 2020; 72:343-379. [PMID: 31882442 DOI: 10.1124/pr.118.015735] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The solute carrier (SLC) superfamily comprises more than 400 transport proteins mediating the influx and efflux of substances such as ions, nucleotides, and sugars across biological membranes. Over 80 SLC transporters have been linked to human diseases, including obesity and type 2 diabetes (T2D). This observation highlights the importance of SLCs for human (patho)physiology. Yet, only a small number of SLC proteins are validated drug targets. The most recent drug class approved for the treatment of T2D targets sodium-glucose cotransporter 2, product of the SLC5A2 gene. There is great interest in identifying other SLC transporters as potential targets for the treatment of metabolic diseases. Finding better treatments will prove essential in future years, given the enormous personal and socioeconomic burden posed by more than 500 million patients with T2D by 2040 worldwide. In this review, we summarize the evidence for SLC transporters as target structures in metabolic disease. To this end, we identified SLC13A5/sodium-coupled citrate transporter, and recent proof-of-concept studies confirm its therapeutic potential in T2D and nonalcoholic fatty liver disease. Further SLC transporters were linked in multiple genome-wide association studies to T2D or related metabolic disorders. In addition to presenting better-characterized potential therapeutic targets, we discuss the likely unnoticed link between other SLC transporters and metabolic disease. Recognition of their potential may promote research on these proteins for future medical management of human metabolic diseases such as obesity, fatty liver disease, and T2D. SIGNIFICANCE STATEMENT: Given the fact that the prevalence of human metabolic diseases such as obesity and type 2 diabetes has dramatically risen, pharmacological intervention will be a key future approach to managing their burden and reducing mortality. In this review, we present the evidence for solute carrier (SLC) genes associated with human metabolic diseases and discuss the potential of SLC transporters as therapeutic target structures.
Collapse
Affiliation(s)
- Tina Schumann
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Jörg König
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Christine Henke
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Diana M Willmes
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Stefan R Bornstein
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Jens Jordan
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Martin F Fromm
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Andreas L Birkenfeld
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| |
Collapse
|
253
|
Elingaard-Larsen LO, Rolver MG, Sørensen EE, Pedersen SF. How Reciprocal Interactions Between the Tumor Microenvironment and Ion Transport Proteins Drive Cancer Progression. Rev Physiol Biochem Pharmacol 2020; 182:1-38. [PMID: 32737753 DOI: 10.1007/112_2020_23] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Solid tumors comprise two major components: the cancer cells and the tumor stroma. The stroma is a mixture of cellular and acellular components including fibroblasts, mesenchymal and cancer stem cells, endothelial cells, immune cells, extracellular matrix, and tumor interstitial fluid. The insufficient tumor perfusion and the highly proliferative state and dysregulated metabolism of the cancer cells collectively create a physicochemical microenvironment characterized by altered nutrient concentrations and varying degrees of hypoxia and acidosis. Furthermore, both cancer and stromal cells secrete numerous growth factors, cytokines, and extracellular matrix proteins which further shape the tumor microenvironment (TME), favoring cancer progression.Transport proteins expressed by cancer and stromal cells localize at the interface between the cells and the TME and are in a reciprocal relationship with it, as both sensors and modulators of TME properties. It has been amply demonstrated how acid-base and nutrient transporters of cancer cells enable their growth, presumably by contributing both to the extracellular acidosis and the exchange of metabolic substrates and waste products between cells and TME. However, the TME also impacts other transport proteins important for cancer progression, such as multidrug resistance proteins. In this review, we summarize current knowledge of the cellular and acellular components of solid tumors and their interrelationship with key ion transport proteins. We focus in particular on acid-base transport proteins with known or proposed roles in cancer development, and we discuss their relevance for novel therapeutic strategies.
Collapse
Affiliation(s)
- Line O Elingaard-Larsen
- Translational Type 2 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Michala G Rolver
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Ester E Sørensen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Stine F Pedersen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
254
|
Solute carrier transporters: the metabolic gatekeepers of immune cells. Acta Pharm Sin B 2020; 10:61-78. [PMID: 31993307 PMCID: PMC6977534 DOI: 10.1016/j.apsb.2019.12.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/29/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023] Open
Abstract
Solute carrier (SLC) transporters meditate many essential physiological functions, including nutrient uptake, ion influx/efflux, and waste disposal. In its protective role against tumors and infections, the mammalian immune system coordinates complex signals to support the proliferation, differentiation, and effector function of individual cell subsets. Recent research in this area has yielded surprising findings on the roles of solute carrier transporters, which were discovered to regulate lymphocyte signaling and control their differentiation, function, and fate by modulating diverse metabolic pathways and balanced levels of different metabolites. In this review, we present current information mainly on glucose transporters, amino-acid transporters, and metal ion transporters, which are critically important for mediating immune cell homeostasis in many different pathological conditions.
Collapse
Key Words
- 3-PG, 3-phosphoglyceric acid
- ABC, ATP-binding cassette
- AIF, apoptosis-inducing factor
- AP-1, activator protein 1
- ASCT2, alanine serine and cysteine transporter system 2
- ATP, adenosine triphosphate
- BCR, B cell receptor
- BMDMs, bone marrow-derived macrophages
- CD45R, a receptor-type protein tyrosine phosphatase
- CTL, cytotoxic T lymphocytes
- DC, dendritic cells
- EAATs, excitatory amino acid transporters
- ER, endoplasmic reticulum
- ERRα, estrogen related receptor alpha
- FFA, free fatty acids
- G-6-P, glucose 6-phosphate
- GLUT, glucose transporters
- GSH, glutathione
- Glucose
- Glutamine
- HIF-1α, hypoxia-inducible factor 1-alpha
- HIV-1, human immunodeficiency virus type 1
- Hk1, hexokinase-1
- IFNβ, interferon beta
- IFNγ, interferon gamma
- IKK, IκB kinase
- IKKβ, IκB kinase beta subunit
- IL, interleukin
- LDHA, lactate dehydrogenase A
- LPS, lipopolysaccharide
- Lymphocytes
- Lyn, tyrosine-protein kinase
- MAPK, mitogen-activated protein kinase
- MCT, monocarboxylate transporters
- MS, multiple sclerosis
- Metal ion
- NADPH, nicotinamide adenine dinucleotide phosphate
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NO, nitric oxide
- NOD2, nucleotide-binding oligomerization domain containing 2
- PEG2, prostaglandin E2
- PI-3K/AKT, phosphatidylinositol-3-OH kinase/serine–threonine kinase
- PPP, pentose phosphate pathway
- Pfk, phosphofructokinase
- RA, rheumatoid arthritis
- RLR, RIG-I-like receptor
- ROS, reactive oxygen species
- SLC, solute carrier
- SLE, systemic lupus erythematosus
- SNAT, sodium-coupled neutral amino acid transporters
- STAT, signal transducers and activators of transcription
- Solute carrier
- TAMs, tumor-associated macrophages
- TCA, tricarboxylic acid
- TCR, T cell receptor
- TLR, toll-like receptor
- TNF, tumor necrosis factor
- TRPM7, transient receptor potential cation channel subfamily M member 7
- Teffs, effector T cells
- Th1/2/17, type 1/2/17 helper T cells
- Tregs, regulatory T cells
- VEGF, vascular endothelial growth factor
- ZIP, zrt/irt-like proteins
- iNOS, inducible nitric oxide synthase
- iTregs, induced regulatory T cells
- mTORC1, mammalian target of rapamycin complex 1
- α-KG, α-ketoglutaric acid
Collapse
|
255
|
Abstract
The transport of materials across membranes is a vital process for all aspects of cellular function, including growth, metabolism, and communication. Protein transporters are the molecular gates that control this movement and serve as key points of regulation for these processes, thus representing an attractive class of therapeutic targets. With more than 400 members, the solute carrier (SLC) membrane transport proteins are the largest family of transporters, yet, they are pharmacologically underexploited relative to other protein families and many of the available chemical tools possess suboptimal selectivity and efficacy. Fortuitously, there is increased interest in elucidating the physiological roles of SLCs as well as growing recognition of their therapeutic potential. This Perspective provides an overview of the SLC superfamily, including their biochemical and functional features, as well as their roles in various human diseases. In particular, we explore efforts and associated challenges toward drugging SLCs, as well as highlight opportunities for future drug discovery.
Collapse
Affiliation(s)
- Wesley Wei Wang
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Leandro Gallo
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Appaso Jadhav
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Richard Hawkins
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Christopher G Parker
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States.,Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
256
|
Bakos É, Német O, Patik I, Kucsma N, Várady G, Szakács G, Özvegy‐Laczka C. A novel fluorescence‐based functional assay for human OATP1A2 and OATP1C1 identifies interaction between third‐generation P‐gp inhibitors and OATP1A2. FEBS J 2019; 287:2468-2485. [DOI: 10.1111/febs.15156] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/16/2019] [Accepted: 11/22/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Éva Bakos
- Membrane Protein Research Group Institute of Enzymology Research Centre for Natural Sciences Hungarian Academy of Sciences Budapest Hungary
| | - Orsolya Német
- Membrane Protein Research Group Institute of Enzymology Research Centre for Natural Sciences Hungarian Academy of Sciences Budapest Hungary
| | - Izabel Patik
- Membrane Protein Research Group Institute of Enzymology Research Centre for Natural Sciences Hungarian Academy of Sciences Budapest Hungary
| | - Nóra Kucsma
- Membrane Protein Research Group Institute of Enzymology Research Centre for Natural Sciences Hungarian Academy of Sciences Budapest Hungary
| | - György Várady
- Laboratory of Molecular Cell Biology Institute of Enzymology Research Centre for Natural Sciences Hungarian Academy of Sciences Budapest Hungary
| | - Gergely Szakács
- Membrane Protein Research Group Institute of Enzymology Research Centre for Natural Sciences Hungarian Academy of Sciences Budapest Hungary
- Institute of Cancer Research Medical University Vienna Wien Austria
| | - Csilla Özvegy‐Laczka
- Membrane Protein Research Group Institute of Enzymology Research Centre for Natural Sciences Hungarian Academy of Sciences Budapest Hungary
| |
Collapse
|
257
|
Tripathi R, Hosseini K, Arapi V, Fredriksson R, Bagchi S. SLC38A10 (SNAT10) is Located in ER and Golgi Compartments and Has a Role in Regulating Nascent Protein Synthesis. Int J Mol Sci 2019; 20:ijms20246265. [PMID: 31842320 PMCID: PMC6940841 DOI: 10.3390/ijms20246265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 01/27/2023] Open
Abstract
The solute carrier (SLC) family-38 of transporters has eleven members known to transport amino acids, with glutamine being a common substrate for ten of them, with SLC38A9 being the exception. In this study, we examine the subcellular localization of SNAT10 in several independent immortalized cell lines and stem cell-derived neurons. Co-localization studies confirmed the SNAT10 was specifically localized to secretory organelles. SNAT10 is expressed in both excitatory and inhibitory neurons in the mouse brain, predominantly in the endoplasmic reticulum, and in the Golgi apparatus. Knock-down experiments of SNAT10, using Slc38a10-specific siRNA in PC12 cells reduced nascent protein synthesis by more than 40%, suggesting that SNAT10 might play a role in signaling pathways that regulate protein synthesis, and may act as a transceptor in a similar fashion to what has been shown previously for SLC38A2 (SNAT2) and SNAT9(SLC38A9).
Collapse
|
258
|
Kourkoulou A, Grevias P, Lambrinidis G, Pyle E, Dionysopoulou M, Politis A, Mikros E, Byrne B, Diallinas G. Specific Residues in a Purine Transporter Are Critical for Dimerization, ER Exit, and Function. Genetics 2019; 213:1357-1372. [PMID: 31611232 PMCID: PMC6893392 DOI: 10.1534/genetics.119.302566] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/02/2019] [Indexed: 12/11/2022] Open
Abstract
Transporters are transmembrane proteins that mediate the selective translocation of solutes across biological membranes. Recently, we have shown that specific interactions with plasma membrane phospholipids are essential for the formation and/or stability of functional dimers of the purine transporter UapA, a prototypic eukaryotic member of the ubiquitous nucleobase ascorbate transporter (NAT) family. Here, we provide strong evidence that distinct interactions of UapA with membrane lipids are essential for ab initio formation of functional dimers in the ER, or ER exit and further subcellular trafficking. Through genetic screens, we identify mutations that restore defects in dimer formation and/or trafficking. Suppressors of defective dimerization restore ab initio formation of UapA dimers in the ER. Most of these suppressors are located in the movable core domain, but also in the core-dimerization interface and in residues of the dimerization domain exposed to lipids. Molecular dynamics suggest that the majority of suppressors stabilize interhelical interactions in the core domain and thus assist the formation of functional UapA dimers. Among suppressors restoring dimerization, a specific mutation, T401P, was also isolated independently as a suppressor restoring trafficking, suggesting that stabilization of the core domain restores function by sustaining structural defects caused by the abolishment of essential interactions with specific lipids. Importantly, the introduction of mutations topologically equivalent to T401P into a rat homolog of UapA, namely rSNBT1, permitted the functional expression of a mammalian NAT in Aspergillus nidulans Thus, our results provide a potential route for the functional expression and manipulation of mammalian transporters in the model Aspergillus system.
Collapse
Affiliation(s)
- Anezia Kourkoulou
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784, Greece
| | - Pothos Grevias
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784, Greece
| | - George Lambrinidis
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, 15771, Greece
| | - Euan Pyle
- Department of Life Sciences, Imperial College London, SW7 2AZ, UK
- Department of Chemistry, King's College London, SE1 1DB, UK
| | - Mariangela Dionysopoulou
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784, Greece
| | | | - Emmanuel Mikros
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, 15771, Greece
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, SW7 2AZ, UK
| | - George Diallinas
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784, Greece
| |
Collapse
|
259
|
Choi YK, Kim JJ, Chang YT. Holding-Oriented versus Gating-Oriented Live-Cell Distinction: Highlighting the Role of Transporters in Cell Imaging Probe Development. Acc Chem Res 2019; 52:3097-3107. [PMID: 31265234 DOI: 10.1021/acs.accounts.9b00253] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Small molecule imaging probes are powerful tools to understand complex biological systems. The mainstreams of imaging probe developments have been focused on the target holding of the probes; the holding targets are often cell-type-specific biomarkers. This type of the probe mechanism can be designated as holding-oriented live-cell distinction (HOLD). Our group has worked on the development of cell-type-selective probes using a diversity-oriented fluorescence library approach (DOFLA), where unbiased phenotypic screening is employed using fluorescent library compounds. Through the conventional target identification methods such as an affinity-based analysis, we elucidated that some of the probe mechanisms are HOLD. However, we also realized that sometimes there is no specific holding target for probes or the holding targets are ubiquitous. The observation led us to test an alternative mechanism of cell-type-specific probes as gating-oriented live-cell distinction (GOLD). We started to examine the gating mechanism of probes, which is mainly based on transporters but which does not necessarily require probe holding to cellular targets. Transporters can control the in and out movement of various nutrients and chemicals. Different expression levels of transporters in various cell types could provide the molecular mechanism of differential staining of cells by regulating the intracellular accumulation of a certain specific probe. A number of GOLD probes have been developed by modifying or mimicking endogenous substrates of transporters such as inorganic ions, glucose, amino acids, or neurotransmitters, utilizing broad substrate specificity of transporters. The radiolabeled or fluorophore-conjugated substrate mimetics have been widely used for live cell distinction and various applications such as disease-related cell or tissue imaging. In humans, there are about 400 solute carrier (SLC) transporters and 50 ATP-binding cassette (ABC) transporters. Since some transporters have broad substrate specificity, they can transport not only derivatives of endogenous natural substrates but also totally synthetic diverse imaging probes, such as DOFLA probes. Without preconsidering the structure of endogenous substrates, we recently demonstrated a series of live-cell imaging probes and elucidated their molecular mechanism as a gating one, either by SLC or ABC transporters. Transporter inhibitor panel and CRISPR-based transporter libraries could provide a systematic gating target elucidation platform. Considering the generality of DOFLA and the CRISPR-based genomic tool for transporter systems (>450 in humans), the GOLD approach will offer new insight and promise for unprecedented levels of novel cell imaging probe development.
Collapse
Affiliation(s)
- Yun-Kyu Choi
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jong-Jin Kim
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Young-Tae Chang
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| |
Collapse
|
260
|
The solute carrier transporters and the brain: Physiological and pharmacological implications. Asian J Pharm Sci 2019; 15:131-144. [PMID: 32373195 PMCID: PMC7193445 DOI: 10.1016/j.ajps.2019.09.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/17/2019] [Accepted: 09/27/2019] [Indexed: 02/05/2023] Open
Abstract
Solute carriers (SLCs) are the largest family of transmembrane transporters that determine the exchange of various substances, including nutrients, ions, metabolites, and drugs across biological membranes. To date, the presence of about 287 SLC genes have been identified in the brain, among which mutations or the resultant dysfunctions of 71 SLC genes have been reported to be correlated with human brain disorders. Although increasing interest in SLCs have focused on drug development, SLCs are currently still under-explored as drug targets, especially in the brain. We summarize the main substrates and functions of SLCs that are expressed in the brain, with an emphasis on selected SLCs that are important physiologically, pathologically, and pharmacologically in the blood-brain barrier, astrocytes, and neurons. Evidence suggests that a fraction of SLCs are regulated along with the occurrences of brain disorders, among which epilepsy, neurodegenerative diseases, and autism are representative. Given the review of SLCs involved in the onset and procession of brain disorders, we hope these SLCs will be screened as promising drug targets to improve drug delivery to the brain.
Collapse
|
261
|
The genetic landscape of the human solute carrier (SLC) transporter superfamily. Hum Genet 2019; 138:1359-1377. [PMID: 31679053 PMCID: PMC6874521 DOI: 10.1007/s00439-019-02081-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 10/26/2019] [Indexed: 12/22/2022]
Abstract
The human solute carrier (SLC) superfamily of transporters is comprised of over 400 membrane-bound proteins, and plays essential roles in a multitude of physiological and pharmacological processes. In addition, perturbation of SLC transporter function underlies numerous human diseases, which renders SLC transporters attractive drug targets. Common genetic polymorphisms in SLC genes have been associated with inter-individual differences in drug efficacy and toxicity. However, despite their tremendous clinical relevance, epidemiological data of these variants are mostly derived from heterogeneous cohorts of small sample size and the genetic SLC landscape beyond these common variants has not been comprehensively assessed. In this study, we analyzed Next-Generation Sequencing data from 141,456 individuals from seven major human populations to evaluate genetic variability, its functional consequences, and ethnogeographic patterns across the entire SLC superfamily of transporters. Importantly, of the 204,287 exonic single-nucleotide variants (SNVs) which we identified, 99.8% were present in less than 1% of analyzed alleles. Comprehensive computational analyses using 13 partially orthogonal algorithms that predict the functional impact of genetic variations based on sequence information, evolutionary conservation, structural considerations, and functional genomics data revealed that each individual genome harbors 29.7 variants with putative functional effects, of which rare variants account for 18%. Inter-ethnic variability was found to be extensive, and 83% of deleterious SLC variants were only identified in a single population. Interestingly, population-specific carrier frequencies of loss-of-function variants in SLC genes associated with recessive Mendelian disease recapitulated the ethnogeographic variation of the corresponding disorders, including cystinuria in Jewish individuals, type II citrullinemia in East Asians, and lysinuric protein intolerance in Finns, thus providing a powerful resource for clinical geneticists to inform about population-specific prevalence and allelic composition of Mendelian SLC diseases. In summary, we present the most comprehensive data set of SLC variability published to date, which can provide insights into inter-individual differences in SLC transporter function and guide the optimization of population-specific genotyping strategies in the bourgeoning fields of personalized medicine and precision public health.
Collapse
|
262
|
Huttunen J, Gynther M, Vellonen KS, Huttunen KM. L-Type amino acid transporter 1 (LAT1)-utilizing prodrugs are carrier-selective despite having low affinity for organic anion transporting polypeptides (OATPs). Int J Pharm 2019; 571:118714. [DOI: 10.1016/j.ijpharm.2019.118714] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/22/2019] [Accepted: 09/16/2019] [Indexed: 12/16/2022]
|
263
|
Chen L, Chen XW, Huang X, Song BL, Wang Y, Wang Y. Regulation of glucose and lipid metabolism in health and disease. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1420-1458. [PMID: 31686320 DOI: 10.1007/s11427-019-1563-3] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/15/2019] [Indexed: 02/08/2023]
Abstract
Glucose and fatty acids are the major sources of energy for human body. Cholesterol, the most abundant sterol in mammals, is a key component of cell membranes although it does not generate ATP. The metabolisms of glucose, fatty acids and cholesterol are often intertwined and regulated. For example, glucose can be converted to fatty acids and cholesterol through de novo lipid biosynthesis pathways. Excessive lipids are secreted in lipoproteins or stored in lipid droplets. The metabolites of glucose and lipids are dynamically transported intercellularly and intracellularly, and then converted to other molecules in specific compartments. The disorders of glucose and lipid metabolism result in severe diseases including cardiovascular disease, diabetes and fatty liver. This review summarizes the major metabolic aspects of glucose and lipid, and their regulations in the context of physiology and diseases.
Collapse
Affiliation(s)
- Ligong Chen
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China.
| | - Xiao-Wei Chen
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Yan Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Yiguo Wang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
264
|
Scalise M, Pochini L, Cosco J, Aloe E, Mazza T, Console L, Esposito A, Indiveri C. Interaction of Cholesterol With the Human SLC1A5 (ASCT2): Insights Into Structure/Function Relationships. Front Mol Biosci 2019; 6:110. [PMID: 31709262 PMCID: PMC6819821 DOI: 10.3389/fmolb.2019.00110] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/07/2019] [Indexed: 01/01/2023] Open
Abstract
The human SLC1A5 commonly known as ASCT2 is a sodium-dependent neutral amino acid antiporter involved in transmembrane traffic of glutamine that is exchanged through the cell membrane with smaller amino acids such as serine or threonine. Due to the strong overexpression in human cancers, ASCT2 is widely studied for its relevance to human health. Of special interest are the aspects related to the regulation of its function. The role of cholesterol as a modulator of the transport activity has been studied using a combined strategy of computational and experimental approaches. The effect of cholesterol on theNa ex + -[3H]glutamineex/glutaminein antiport in proteoliposomes has been evaluated by adding cholesteryl hemisuccinate. A strong stimulation of transport activity was observed in the presence of 75 μg cholesteryl hemisuccinate per mg total lipids. The presence of cholesterol did not influence the proteoliposome volume, in a wide range of tested concentration, excluding that the stimulation could be due to effects on the vesicles. cholesteryl hemisuccinate, indeed, improved the incorporation of the protein into the phospholipid bilayer to some extent and increased about three times the Vmax of transport without affecting the Km for glutamine. Docking of cholesterol into the hASCT2 trimer was performed. Six poses were obtained some of which overlapped the hypothetical cholesterol molecules observed in the available 3D structures. Additional poses were docked close to CARC/CRAC motifs (Cholesterol Recognition/interaction Amino acid Consensus sequence). To test the direct binding of cholesterol to the protein, a strategy based on the specific targeting of tryptophan and cysteine residues located in the neighborhood of cholesterol poses was employed. On the one hand, cholesterol binding was impaired by modification of tryptophan residues by the Koshland's reagent. On the other hand, the presence of cholesterol impaired the interaction of thiol reagents with the protein. Altogether, these results confirmed that cholesterol molecules interacted with the protein in correspondence of the poses predicted by the docking analysis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Cesare Indiveri
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Cosenza, Italy
| |
Collapse
|
265
|
Brosseau N, Ramotar D. The human organic cation transporter OCT1 and its role as a target for drug responses. Drug Metab Rev 2019; 51:389-407. [PMID: 31564168 DOI: 10.1080/03602532.2019.1670204] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The human organic cation uptake transporter OCT1, encoded by the SLC22A1 gene, is highly expressed in the liver and reported to possess a broad substrate specificity. OCT1 operates by facilitated diffusion and allows the entry of nutrients into cells. Recent findings revealed that OCT1 can mediate the uptake of drugs for treating various diseases such as cancers. The levels of OCT1 expression correlate with the responses towards many drugs and functionally defective OCT1 lead to drug resistance. It has been recently proposed that OCT1 should be amongst the crucial drug targets used for pharmacogenomic analyses. Several single nucleotide polymorphisms exist and are distributed across the entire OCT1 gene. While there are differences in the OCT1 gene polymorphisms between populations, there are at least five variants that warrant consideration in any genetic screen. To date, and despite two decades of research into OCT1 functional role, it still remains uncertain what are the define substrates for this uptake transporter, although studies from mice revealed that one of the substrates is vitamin B1. It is also unclear how OCT1 recognizes a broad array of ligands and whether this involves specific modifications and interactions with other proteins. In this review, we highlight the current findings related to OCT1 with the aim of propelling further studies on this key uptake transporter.
Collapse
Affiliation(s)
- Nicolas Brosseau
- Department of Medicine, Maisonneuve-Rosemont Hospital, Research Center, Université de Montréal, Montréal, Québec, Canada
| | - Dindial Ramotar
- Department of Medicine, Maisonneuve-Rosemont Hospital, Research Center, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
266
|
Vlachodimou A, IJzerman AP, Heitman LH. Label-free detection of transporter activity via GPCR signalling in living cells: A case for SLC29A1, the equilibrative nucleoside transporter 1. Sci Rep 2019; 9:13802. [PMID: 31551431 PMCID: PMC6760145 DOI: 10.1038/s41598-019-48829-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/06/2019] [Indexed: 12/31/2022] Open
Abstract
Transporters are important therapeutic but yet understudied targets due to lack of available assays. Here we describe a novel label-free, whole-cell method for the functional assessment of Solute Carrier (SLC) inhibitors. As many SLC substrates are also ligands for G protein-coupled receptors (GPCRs), transporter inhibition may affect GPCR signalling due to a change in extracellular concentration of the substrate/ligand, which can be monitored by an impedance-based label-free assay. For this study, a prototypical SLC/GPCR pair was selected, i.e. the equilibrative nucleoside transporter-1 (SLC29A1/ENT1) and an adenosine receptor (AR), for which adenosine is the substrate/ligand. ENT1 inhibition with three reference compounds was monitored sensitively via AR activation on human osteosarcoma cells. Firstly, the inhibitor addition resulted in an increased apparent potency of adenosine. Secondly, all inhibitors concentration-dependently increased the extracellular adenosine concentration, resulting in an indirect quantitative assessment of their potencies. Additionally, AR activation was abolished by AR antagonists, confirming that the monitored impedance was AR-mediated. In summary, we developed a novel assay as an in vitro model system that reliably assessed the potency of SLC29A1 inhibitors via AR signalling. As such, the method may be applied broadly as it has the potential to study a multitude of SLCs via concomitant GPCR signalling.
Collapse
Affiliation(s)
- Anna Vlachodimou
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Adriaan P IJzerman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Laura H Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands.
| |
Collapse
|
267
|
Abstract
Amino acids perform a variety of functions in cells and organisms, particularly in the synthesis of proteins, as energy metabolites, neurotransmitters, and precursors for many other molecules. Amino acid transport plays a key role in all these functions. Inhibition of amino acid transport is pursued as a therapeutic strategy in several areas, such as diabetes and related metabolic disorders, neurological disorders, cancer, and stem cell biology. The role of amino acid transporters in these disorders and processes is well established, but the implementation of amino acid transporters as drug targets is still in its infancy. This is at least in part due to the underdeveloped pharmacology of this group of membrane proteins. Recent advances in structural biology, membrane protein expression, and inhibitor screening methodology will see an increased number of improved and selective inhibitors of amino acid transporters that can serve as tool compounds for further studies.
Collapse
Affiliation(s)
- Stefan Bröer
- 1 Research School of Biology, College of Science, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
268
|
Garibsingh RAA, Schlessinger A. Advances and Challenges in Rational Drug Design for SLCs. Trends Pharmacol Sci 2019; 40:790-800. [PMID: 31519459 DOI: 10.1016/j.tips.2019.08.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 01/25/2023]
Abstract
There are over 420 human solute carrier (SLC) transporters from 65 families that are expressed ubiquitously in the body. The SLCs mediate the movement of ions, drugs, and metabolites across membranes and their dysfunction has been associated with a variety of diseases, such as diabetes, cancer, and central nervous system (CNS) disorders. Thus, SLCs are emerging as important targets for therapeutic intervention. Recent technological advances in experimental and computational biology allow better characterization of SLC pharmacology. Here we describe recent approaches to modulate SLC transporter function, with an emphasis on the use of computational approaches and computer-aided drug design (CADD) to study nutrient transporters. Finally, we discuss future perspectives in the rational design of SLC drugs.
Collapse
Affiliation(s)
- Rachel-Ann A Garibsingh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
269
|
Yee SW, Stecula A, Chien HC, Zou L, Feofanova EV, van Borselen M, Cheung KWK, Yousri NA, Suhre K, Kinchen JM, Boerwinkle E, Irannejad R, Yu B, Giacomini KM. Unraveling the functional role of the orphan solute carrier, SLC22A24 in the transport of steroid conjugates through metabolomic and genome-wide association studies. PLoS Genet 2019; 15:e1008208. [PMID: 31553721 PMCID: PMC6760779 DOI: 10.1371/journal.pgen.1008208] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022] Open
Abstract
Variation in steroid hormone levels has wide implications for health and disease. The genes encoding the proteins involved in steroid disposition represent key determinants of interindividual variation in steroid levels and ultimately, their effects. Beginning with metabolomic data from genome-wide association studies (GWAS), we observed that genetic variants in the orphan transporter, SLC22A24 were significantly associated with levels of androsterone glucuronide and etiocholanolone glucuronide (sentinel SNPs p-value <1x10-30). In cells over-expressing human or various mammalian orthologs of SLC22A24, we showed that steroid conjugates and bile acids were substrates of the transporter. Phylogenetic, genomic, and transcriptomic analyses suggested that SLC22A24 has a specialized role in the kidney and appears to function in the reabsorption of organic anions, and in particular, anionic steroids. Phenome-wide analysis showed that functional variants of SLC22A24 are associated with human disease such as cardiovascular diseases and acne, which have been linked to dysregulated steroid metabolism. Collectively, these functional genomic studies reveal a previously uncharacterized protein involved in steroid homeostasis, opening up new possibilities for SLC22A24 as a pharmacological target for regulating steroid levels.
Collapse
Affiliation(s)
- Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, California, United States of America
| | - Adrian Stecula
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, California, United States of America
| | - Huan-Chieh Chien
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, California, United States of America
| | - Ling Zou
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, California, United States of America
| | - Elena V. Feofanova
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Marjolein van Borselen
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, California, United States of America
| | - Kit Wun Kathy Cheung
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, California, United States of America
| | - Noha A. Yousri
- Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
- Computer and Systems Engineering, Alexandria University, Alexandria, Egypt
| | - Karsten Suhre
- Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha, Qatar
| | | | - Eric Boerwinkle
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Roshanak Irannejad
- The Cardiovascular Research Institute, University of California, San Francisco, California, United States of America
| | - Bing Yu
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Kathleen M. Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, California, United States of America
| |
Collapse
|
270
|
Li Q, Luo T, Lu W, Yi X, Zhao Z, Liu J. Proteomic analysis of human periodontal ligament cells under hypoxia. Proteome Sci 2019; 17:3. [PMID: 31496921 PMCID: PMC6717648 DOI: 10.1186/s12953-019-0151-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 08/20/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The periodontal ligament is essential for homeostasis of periodontal tissue. A hypoxic milieu of the periodontal tissue is generated under periodontitis or during orthodontic treatment, which affects the periodontal and bone remodelling process. Here, we provide a comprehensive proteomic characterization of periodontal ligament cells under hypoxic conditions, aiming to reveal previously unappreciated biological changes and to help advance hypoxia-based therapeutic strategies for periodontal diseases. METHODS Human periodontal ligament cells (hPDLCs) were characterized using immunohistochemistry (IHC) and flow cytometry (FACS). Successful hypoxia treatment of hPDLCs with 1% O2 was confirmed by qRT-PCR. Proliferation was evaluated using an MTT assay. The proteomic expression profile under hypoxia was studied with the isobaric tags for relative and absolute quantification (iTRAQ) approach followed by protein identification and bioinformatic analysis, and western blot verification was performed. RESULTS The hPDLCs were positive for vimentin, CD73 and CD105 and negative for keratin, CD34 and CD45. After hypoxia treatment, the mRNA expression of hypoxia-inducible factor 1a (HIF1a) was upregulated. The proliferation rate was elevated during the first 6 h but decreased from 6 h to 72 h. A total of 220 differentially expressed proteins were quantified in hPDLCs under hypoxia (1% O2, 24 h), including 153 upregulated and 67 downregulated proteins, five of which were verified by western blot analysis. The Gene Ontology enriched terms included the energy metabolic process, membrane-bound organelle and vesicle, and protein binding terms. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated several involved pathways, including glycolysis/gluconeogenesis, biosynthesis of amino acids, the HIF-1 signalling pathway, and focal adhesion. A protein-protein interaction (PPI) network demonstrated the dominant role of autophagy over apoptosis under hypoxia. CONCLUSION The proteomic profile of hPDLCs under hypoxia was mainly related to energy metabolism, autophagy, and responses to stimuli such as adhesion and inflammation. Previously unrecognized proteins including solute carrier family proteins, heat shock proteins, ubiquitination-related enzymes, collagen and S100 family proteins are involved in adaptive response to hypoxia in hPDLCs and are thus of great research interest in future work.
Collapse
Affiliation(s)
- Qiwen Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section, South Renmin Road, Chengdu, 610041 China
| | - Tao Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section, South Renmin Road, Chengdu, 610041 China
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenxin Lu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section, South Renmin Road, Chengdu, 610041 China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoxiao Yi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section, South Renmin Road, Chengdu, 610041 China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section, South Renmin Road, Chengdu, 610041 China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section, South Renmin Road, Chengdu, 610041 China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
271
|
Jindal S, Yang L, Day PJ, Kell DB. Involvement of multiple influx and efflux transporters in the accumulation of cationic fluorescent dyes by Escherichia coli. BMC Microbiol 2019; 19:195. [PMID: 31438868 PMCID: PMC6704527 DOI: 10.1186/s12866-019-1561-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022] Open
Abstract
Background It is widely believed that most xenobiotics cross biomembranes by diffusing through the phospholipid bilayer, and that the use of protein transporters is an occasional adjunct. According to an alternative view, phospholipid bilayer transport is negligible, and several different transporters may be involved in the uptake of an individual molecular type. We recognise here that the availability of gene knockout collections allows one to assess the contributions of all potential transporters, and flow cytometry based on fluorescence provides a convenient high-throughput assay for xenobiotic uptake in individual cells. Results We used high-throughput flow cytometry to assess the ability of individual gene knockout strains of E coli to take up two membrane-permeable, cationic fluorescent dyes, namely the carbocyanine diS-C3(5) and the DNA dye SYBR Green. Individual strains showed a large range of distributions of uptake. The range of modal steady-state uptakes for the carbocyanine between the different strains was 36-fold. Knockouts of the ATP synthase α- and β-subunits greatly inhibited uptake, implying that most uptake was ATP-driven rather than being driven by a membrane potential. Dozens of transporters changed the steady-state uptake of the dye by more than 50% with respect to that of the wild type, in either direction (increased or decreased); knockouts of known influx and efflux transporters behaved as expected, giving credence to the general strategy. Many of the knockouts with the most reduced uptake were transporter genes of unknown function (‘y-genes’). Similarly, several overexpression variants in the ‘ASKA’ collection had the anticipated, opposite effects. Similar results were obtained with SYBR Green (the range being approximately 69-fold). Although it too contains a benzothiazole motif there was negligible correlation between its uptake and that of the carbocyanine when compared across the various strains (although the membrane potential is presumably the same in each case). Conclusions Overall, we conclude that the uptake of these dyes may be catalysed by a great many transporters of putatively broad and presently unknown specificity, and that the very large range between the ‘lowest’ and the ‘highest’ levels of uptake, even in knockouts of just single genes, implies strongly that phospholipid bilayer transport is indeed negligible. This work also casts serious doubt upon the use of such dyes as quantitative stains for representing either bioenergetic parameters or the amount of cellular DNA in unfixed cells (in vivo). By contrast, it opens up their potential use as transporter assay substrates in high-throughput screening. Electronic supplementary material The online version of this article (10.1186/s12866-019-1561-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Srijan Jindal
- Department of Chemistry, The University of Manchester, 131 Princess St, Manchester, M1 7DN, UK.,Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester, M1 7DN, UK.,Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Lei Yang
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs, Lyngby, Denmark
| | - Philip J Day
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester, M1 7DN, UK.,Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Douglas B Kell
- Department of Chemistry, The University of Manchester, 131 Princess St, Manchester, M1 7DN, UK. .,Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester, M1 7DN, UK. .,Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs, Lyngby, Denmark. .,Department of Biochemistry, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool, L69 7ZB, UK.
| |
Collapse
|
272
|
Visualizing Alzheimer's Disease Mouse Brain with Multispectral Optoacoustic Tomography using a Fluorescent probe, CDnir7. Sci Rep 2019; 9:12052. [PMID: 31427599 PMCID: PMC6700105 DOI: 10.1038/s41598-019-48329-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/30/2019] [Indexed: 01/03/2023] Open
Abstract
Alzheimer’s disease (AD) is now clinically considered as a chronic inflammation-based neurodegenerative disease. The CDnir7 probe was previously developed as an optical imaging probe to target macrophages in order to image mouse inflammation using in vivo optical imaging modalities such as In Vivo imaging system (IVIS) and fluorescent molecular tomography (FMT). Here, we demonstrate the application of CDnir7 in AD mouse brain imaging via multispectral optoacoustic tomography (MSOT). Longitudinal MSOT imaging of CDnir7 showed higher CDnir7 localization in AD mouse cerebral cortex compared to that of normal mice. MSOT signals of CDnir7 localization in mouse brain were verified by ex vivo near-infrared (NIR) imaging and immunohistochemistry. Histological evaluation showed strong CDnir7 staining in AD cerebral cortex, hippocampus, basal ganglia and thalamus area. Based on the supporting evidence, CDnir7 has great potential as a molecular imaging probe for AD brain imaging.
Collapse
|
273
|
Rosenthal SB, Bush KT, Nigam SK. A Network of SLC and ABC Transporter and DME Genes Involved in Remote Sensing and Signaling in the Gut-Liver-Kidney Axis. Sci Rep 2019; 9:11879. [PMID: 31417100 PMCID: PMC6695406 DOI: 10.1038/s41598-019-47798-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023] Open
Abstract
Genes central to drug absorption, distribution, metabolism and elimination (ADME) also regulate numerous endogenous molecules. The Remote Sensing and Signaling Hypothesis argues that an ADME gene-centered network-including SLC and ABC "drug" transporters, "drug" metabolizing enzymes (DMEs), and regulatory genes-is essential for inter-organ communication via metabolites, signaling molecules, antioxidants, gut microbiome products, uremic solutes, and uremic toxins. By cross-tissue co-expression network analysis, the gut, liver, and kidney (GLK) formed highly connected tissue-specific clusters of SLC transporters, ABC transporters, and DMEs. SLC22, SLC25 and SLC35 families were network hubs, having more inter-organ and intra-organ connections than other families. Analysis of the GLK network revealed key physiological pathways (e.g., involving bile acids and uric acid). A search for additional genes interacting with the network identified HNF4α, HNF1α, and PXR. Knockout gene expression data confirmed ~60-70% of predictions of ADME gene regulation by these transcription factors. Using the GLK network and known ADME genes, we built a tentative gut-liver-kidney "remote sensing and signaling network" consisting of SLC and ABC transporters, as well as DMEs and regulatory proteins. Together with protein-protein interactions to prioritize likely functional connections, this network suggests how multi-specificity combines with oligo-specificity and mono-specificity to regulate homeostasis of numerous endogenous small molecules.
Collapse
Affiliation(s)
- Sara Brin Rosenthal
- Center for Computational Biology and Bioinformatics, University of California at San Diego, La Jolla, CA, 92093-0693, USA
| | - Kevin T Bush
- Departments of Pediatrics, University of California at San Diego, La Jolla, CA, 92093-0693, USA
| | - Sanjay K Nigam
- Departments of Pediatrics, University of California at San Diego, La Jolla, CA, 92093-0693, USA.
- Departments of Medicine, University of California at San Diego, La Jolla, CA, 92093-0693, USA.
| |
Collapse
|
274
|
Mallik S, Zhao Z. Multi-Objective Optimized Fuzzy Clustering for Detecting Cell Clusters from Single-Cell Expression Profiles. Genes (Basel) 2019; 10:E611. [PMID: 31412637 PMCID: PMC6723724 DOI: 10.3390/genes10080611] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
Rapid advance in single-cell RNA sequencing (scRNA-seq) allows measurement of the expression of genes at single-cell resolution in complex disease or tissue. While many methods have been developed to detect cell clusters from the scRNA-seq data, this task currently remains a main challenge. We proposed a multi-objective optimization-based fuzzy clustering approach for detecting cell clusters from scRNA-seq data. First, we conducted initial filtering and SCnorm normalization. We considered various case studies by selecting different cluster numbers ( c l = 2 to a user-defined number), and applied fuzzy c-means clustering algorithm individually. From each case, we evaluated the scores of four cluster validity index measures, Partition Entropy ( P E ), Partition Coefficient ( P C ), Modified Partition Coefficient ( M P C ), and Fuzzy Silhouette Index ( F S I ). Next, we set the first measure as minimization objective (↓) and the remaining three as maximization objectives (↑), and then applied a multi-objective decision-making technique, TOPSIS, to identify the best optimal solution. The best optimal solution (case study) that had the highest TOPSIS score was selected as the final optimal clustering. Finally, we obtained differentially expressed genes (DEGs) using Limma through the comparison of expression of the samples between each resultant cluster and the remaining clusters. We applied our approach to a scRNA-seq dataset for the rare intestinal cell type in mice [GEO ID: GSE62270, 23,630 features (genes) and 288 cells]. The optimal cluster result (TOPSIS optimal score= 0.858) comprised two clusters, one with 115 cells and the other 91 cells. The evaluated scores of the four cluster validity indices, F S I , P E , P C , and M P C for the optimized fuzzy clustering were 0.482, 0.578, 0.607, and 0.215, respectively. The Limma analysis identified 1240 DEGs (cluster 1 vs. cluster 2). The top ten gene markers were Rps21, Slc5a1, Crip1, Rpl15, Rpl3, Rpl27a, Khk, Rps3a1, Aldob and Rps17. In this list, Khk (encoding ketohexokinase) is a novel marker for the rare intestinal cell type. In summary, this method is useful to detect cell clusters from scRNA-seq data.
Collapse
Affiliation(s)
- Saurav Mallik
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37203, USA.
| |
Collapse
|
275
|
Generation of a Small Library of Natural Products Designed to Cover Chemical Space Inexpensively. PHARMACEUTICAL FRONTIERS 2019; 1:e190005. [PMID: 31485581 PMCID: PMC6726486 DOI: 10.20900/pf20190005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Natural products space includes at least 200,000 compounds and the structures of most of these compounds are available in digital format. Previous analyses showed (i) that although they were capable of taking up synthetic pharmaceutical drugs, such exogenous molecules were likely the chief ‘natural’ substrates in the evolution of the transporters used to gain cellular entry by pharmaceutical drugs, and (ii) that a relatively simple but rapid clustering algorithm could produce clusters from which individual elements might serve to form a representative library covering natural products space. This exploited the fact that the larger clusters were likely to be formed early in evolution (and hence to have been accompanied by suitable transporters), so that very small clusters, including singletons, could be ignored. In the latter work, we assumed that the molecule chosen might be that in the middle of the cluster. However, this ignored two other criteria, namely the commercial availability and the financial cost of the individual elements of these clusters. We here develop a small representative library in which we to seek to satisfy the somewhat competing criteria of coverage (‘representativeness’), availability and cost. It is intended that the library chosen might serve as a testbed of molecules that may or may not be substrates for known or orphan drug transporters. A supplementary spreadsheet provides details, and their availability via a particular supplier.
Collapse
|
276
|
Harwood MD, Zhang M, Pathak SM, Neuhoff S. The Regional-Specific Relative and Absolute Expression of Gut Transporters in Adult Caucasians: A Meta-Analysis. Drug Metab Dispos 2019; 47:854-864. [PMID: 31076413 DOI: 10.1124/dmd.119.086959] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/30/2019] [Indexed: 02/13/2025] Open
Abstract
The aim of this study was to derive region-specific transporter expression data suitable for in vitro-to-in vivo extrapolation (IVIVE) within a physiologically based pharmacokinetic (PBPK) modeling framework. A meta-analysis was performed whereby literary sources reporting region-specific transporter expression obtained via absolute and relative quantification approaches were considered in healthy adult Caucasian individuals. Furthermore, intestinal total membrane protein yield was calculated to enable mechanistic IVIVE via absolute transporter abundances. Where required, authors were contacted for additional information. A refined database was constructed where samples were excluded based on quantification in, non-Caucasian subjects, disease tissue, subjects <18 years old, duplicated samples, non-total membrane matrix, pooled matrices, or cDNA. Demographic data were collected where available. The weighted and geometric mean, coefficient of variation, and between-study homogeneity was calculated in each of eight gut segments (duodenum, two jejunum, four ileum, and colon) for 16 transporters. Expression data were normalized to that in the proximal jejunum. From a total of 47 articles, the final database consisted of 2238 measurements for 16 transporters. The solute carrier peptide transporter 1 (PepT1) showed the highest jejunal abundance, while multidrug resistance-associated protein (MRP) 2 was the highest abundance ATP-binding cassette transporter. Transporters displaying significant region-specific expression included the ileal bile acid transporter, which showed 18-fold greater terminal ileum expression compared with the proximal jejunum, while MRP3, organic cation transporter type 1 (OCTN1), and OCT1 showed >2-fold higher expression in other regions compared with the proximal jejunum. This is the first systematic analysis incorporating absolute quantification methodology to determine region-specific intestinal transporter expression. It is expected to be beneficial for mechanistic transporter IVIVE in healthy adult Caucasians. SIGNIFICANCE STATEMENT: Given the burgeoning reports of absolute transporter abundances in the human intestine, the incorporation of such information into mechanistic IVIVE-PBPK models could offer a distinct advantage in facilitating the robust assessment of the impact of gut transporters on drug disposition. The systematic and formal assessment via a literature meta-analysis described herein, enables assignment of the regional-specific expression, absolute transporter abundances, interindividual variability, and other associated scaling factors to healthy Caucasian populations within PBPK models. The resulting values are available to incorporate into PBPK models, and offer a verifiable account describing intestinal transporter expression within PBPK models for persons wishing to utilize them. Furthermore, these data facilitate the development of appropriate IVIVE scaling strategies using absolute transporter abundances.
Collapse
Affiliation(s)
| | - Mian Zhang
- Certara UK Ltd., Simcyp Division, Sheffield, United Kingdom
| | | | | |
Collapse
|
277
|
Moskovskich A, Goldmann U, Kartnig F, Lindinger S, Konecka J, Fiume G, Girardi E, Superti-Furga G. The transporters SLC35A1 and SLC30A1 play opposite roles in cell survival upon VSV virus infection. Sci Rep 2019; 9:10471. [PMID: 31320712 PMCID: PMC6639343 DOI: 10.1038/s41598-019-46952-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 07/04/2019] [Indexed: 12/19/2022] Open
Abstract
Host factor requirements for different classes of viruses have not been fully unraveled. Replication of the viral genome and synthesis of viral proteins within the human host cell are associated with an increased demand for nutrients and specific metabolites. With more than 400 acknowledged members to date in humans, solute carriers (SLCs) represent the largest family of transmembrane proteins dedicated to the transport of ions and small molecules such as amino acids, sugars and nucleotides. Consistent with their impact on cellular metabolism, several SLCs have been implicated as host factors affecting the viral life cycle and the cellular response to infection. In this study, we aimed at characterizing the role of host SLCs in cell survival upon viral infection by performing unbiased genetic screens using a focused CRISPR knockout library. Genetic screens with the cytolytic vesicular stomatitis virus (VSV) showed that the loss of two SLCs genes, encoding the sialic acid transporter SLC35A1/CST and the zinc transporter SLC30A1/ZnT1, affected cell survival upon infection. Further characterization of these genes suggests a role for both of these transporters in the apoptotic response induced by VSV, offering new insights into the cellular response to oncolytic virus infections.
Collapse
Affiliation(s)
- Anna Moskovskich
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Ulrich Goldmann
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Felix Kartnig
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Sabrina Lindinger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Justyna Konecka
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Giuseppe Fiume
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Enrico Girardi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria.
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria.
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
278
|
Huang MS, Lin WC, Chang JH, Cheng CH, Wang HY, Mou KY. The cysteine-free single mutant C32S of APEX2 is a highly expressed and active fusion tag for proximity labeling applications. Protein Sci 2019; 28:1703-1712. [PMID: 31306516 DOI: 10.1002/pro.3685] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/09/2019] [Accepted: 07/09/2019] [Indexed: 12/21/2022]
Abstract
APEX2, an engineered ascorbate peroxidase for high activity, is a powerful tool for proximity labeling applications. Owing to its lack of disulfides and the calcium-independent activity, APEX2 can be applied intracellularly for targeted electron microscopy imaging or interactome mapping when fusing to a protein of interest. However, APEX2 fusion is often deleterious to the protein expression, which seriously hampers its wide utility. This problem is especially compelling when APEX2 is fused to structurally delicate proteins, such as multi-pass membrane proteins. In this study, we found that a cysteine-free single mutant C32S of APEX2 dramatically improved the expression of fusion proteins in mammalian cells without compromising the enzyme activity. We fused APEX2 and APEX2C32S to four multi-transmembrane solute carriers (SLCs), SLC1A5, SLC6A5, SLC6A14, and SLC7A1, and compared their expressions in stable HEK293T cell lines. Except the SLC6A5 fusions expressing at decent levels for both APEX2 (70%) and APEX2C32S (73%), other three SLC proteins showed significantly better expression when fusing to APEX2C32S (69 ± 13%) than APEX2 (29 ± 15%). Immunofluorescence and western blot experiments showed correct plasma membrane localization and strong proximity labeling efficiency in all four SLC-APEX2C32S cells. Enzyme kinetic experiments revealed that APEX2 and APEX2C32S have comparable activities in terms of oxidizing guaiacol. Overall, we believe APEX2C32S is a superior fusion tag to APEX2 for proximity labeling applications, especially when mismatched disulfide bonding or poor expression is a concern.
Collapse
Affiliation(s)
- Meng-Sen Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Ching Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jen-Hsuan Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Cheng-Hung Cheng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Han Ying Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Kurt Yun Mou
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
279
|
Doukas A, Karena E, Botou M, Papakostas K, Papadaki A, Tziouvara O, Xingi E, Frillingos S, Boleti H. Heterologous expression of the mammalian sodium-nucleobase transporter rSNBT1 in Leishmania tarentolae. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1546-1557. [PMID: 31283918 DOI: 10.1016/j.bbamem.2019.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 12/13/2022]
Abstract
Recombinant expression systems for mammalian membrane transport proteins are often limited by insufficient yields to support structural studies, inadequate post-translational processing and problems related with improper membrane targeting or cytotoxicity. Use of alternative expression systems and optimization of expression/purification protocols are constantly needed. In this work, we explore the applicability of the laboratory strain LEXSY of the ancient eukaryotic microorganism Leishmania tarentolae as a new expression system for mammalian nucleobase permeases of the NAT/NCS2 (Nucleobase-Ascorbate Transporter/Nucleobase-Cation Symporter-2) family. We achieved the heterologous expression of the purine-pyrimidine permease rSNBT1 from Rattus norvegicus (tagged at C-terminus with a red fluorescent protein), as confirmed by confocal microscopy and biochemical analysis of the subcellular fractions enriched in membrane proteins. The cDNA of rSNBT1 has been subcloned in a pLEXSY-sat-mrfp1vector and used to generate transgenic L. tarentolae-rsnbt1-mrfp1 strains carrying the pLEXSY-sat-rsnbt1-mrfp1 plasmid either episomally or integrated in the chromosomal DNA. The chimeric transporter rSNBT1-mRFP1 is targeted to the ER and the plasma membrane of the L. tarentolae promastigotes. The transgenic strains are capable of transporting nucleobases that are substrates of rSNBT1 but also of the endogenous L. tarentolae nucleoside/nucleobase transporters. A dipyridamole-resistant Na+-dependent fraction of uptake is attributed to the exogenously expressed rSNBT1.
Collapse
Affiliation(s)
- Anargyros Doukas
- Intracellular Parasitism Group, Microbiology Department, Hellenic Pasteur Institute, Vas. Sofias 127, Athens 11521, Greece
| | - Ekaterini Karena
- Laboratory of Biological Chemistry, Department of Medicine, University of Ioannina, Greece
| | - Maria Botou
- Laboratory of Biological Chemistry, Department of Medicine, University of Ioannina, Greece
| | | | - Amalia Papadaki
- Intracellular Parasitism Group, Microbiology Department, Hellenic Pasteur Institute, Vas. Sofias 127, Athens 11521, Greece
| | - Olympia Tziouvara
- Intracellular Parasitism Group, Microbiology Department, Hellenic Pasteur Institute, Vas. Sofias 127, Athens 11521, Greece
| | - Evaggelia Xingi
- Light Microscopy Unit, Hellenic Pasteur Institute, Vas. Sofias 127, Athens 11521, Greece
| | - Stathis Frillingos
- Laboratory of Biological Chemistry, Department of Medicine, University of Ioannina, Greece.
| | - Haralabia Boleti
- Intracellular Parasitism Group, Microbiology Department, Hellenic Pasteur Institute, Vas. Sofias 127, Athens 11521, Greece; Light Microscopy Unit, Hellenic Pasteur Institute, Vas. Sofias 127, Athens 11521, Greece.
| |
Collapse
|
280
|
Chiduza GN, Johnson RM, Wright GSA, Antonyuk SV, Muench SP, Hasnain SS. LAT1 (SLC7A5) and CD98hc (SLC3A2) complex dynamics revealed by single-particle cryo-EM. Acta Crystallogr D Struct Biol 2019; 75:660-669. [PMID: 31282475 PMCID: PMC7285653 DOI: 10.1107/s2059798319009094] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022] Open
Abstract
Solute carriers are a large class of transporters that play key roles in normal and disease physiology. Among the solute carriers, heteromeric amino-acid transporters (HATs) are unique in their quaternary structure. LAT1-CD98hc, a HAT, transports essential amino acids and drugs across the blood-brain barrier and into cancer cells. It is therefore an important target both biologically and therapeutically. During the course of this work, cryo-EM structures of LAT1-CD98hc in the inward-facing conformation and in either the substrate-bound or apo states were reported to 3.3-3.5 Å resolution [Yan et al. (2019), Nature (London), 568, 127-130]. Here, these structures are analyzed together with our lower resolution cryo-EM structure, and multibody 3D auto-refinement against single-particle cryo-EM data was used to characterize the dynamics of the interaction of CD98hc and LAT1. It is shown that the CD98hc ectodomain and the LAT1 extracellular surface share no substantial interface. This allows the CD98hc ectodomain to have a high degree of movement within the extracellular space. The functional implications of these aspects are discussed together with the structure determination.
Collapse
Affiliation(s)
- George N. Chiduza
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, England
| | - Rachel M. Johnson
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, England
| | - Gareth S. A. Wright
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, England
| | - Svetlana V. Antonyuk
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, England
| | - Stephen P. Muench
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, England
| | - S. Samar Hasnain
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, England
| |
Collapse
|
281
|
Scalise M, Console L, Galluccio M, Pochini L, Tonazzi A, Giangregorio N, Indiveri C. Exploiting Cysteine Residues of SLC Membrane Transporters as Targets for Drugs. SLAS DISCOVERY 2019; 24:867-881. [PMID: 31251685 DOI: 10.1177/2472555219856601] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The observation that cysteine is the top gainer amino acid during evolution attracted the attention of scientists dealing with protein chemistry. The thiol group of cysteine, indeed, is a potential site for several types of reactions with variable specificity and strength. This feature proved to be promising also in the field of membrane transporters that represent boundary proteins fundamental for cell homeostasis. These proteins are classified, according to the driving force for transport, in primary or secondary active transporters. Another frequently used classification is nowadays based on phylogenesis. Two major groups are identified that take into account both criteria: the ABC and the SLC transporters, the second being much more numerous. The cellular localization of the transporters makes them very attractive for drug design. Moreover, the presence of at least one cysteine residue in all the annotated SLC transporters, so far, highlights the possibility of using the thiol (SH) residue for covalent drug targeting. Even if a delay exists in this research field due to the scarce knowledge of structure/function relationships, the setup of novel experimental tools for studying SLC proteins of plasma and organelle membranes opens an important perspective in pharmacology.
Collapse
Affiliation(s)
- Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia e Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Lara Console
- Department DiBEST (Biologia, Ecologia e Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Michele Galluccio
- Department DiBEST (Biologia, Ecologia e Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Lorena Pochini
- Department DiBEST (Biologia, Ecologia e Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Annamaria Tonazzi
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), Bari, Italy
| | - Nicola Giangregorio
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), Bari, Italy
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia e Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| |
Collapse
|
282
|
Nigam SK. The SLC22 Transporter Family: A Paradigm for the Impact of Drug Transporters on Metabolic Pathways, Signaling, and Disease. Annu Rev Pharmacol Toxicol 2019; 58:663-687. [PMID: 29309257 DOI: 10.1146/annurev-pharmtox-010617-052713] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The SLC22 transporter family consists of more than two dozen members, which are expressed in the kidney, the liver, and other tissues. Evolutionary analysis indicates that SLC22 transporters fall into at least six subfamilies: OAT (organic anion transporter), OAT-like, OAT-related, OCT (organic cation transporter), OCTN (organic cation/carnitine transporter), and OCT/OCTN-related. Some-including OAT1 [SLC22A6 or NKT (novel kidney transporter)] and OAT3 (SLC22A8), as well as OCT1 (SLC22A1) and OCT2 (SLC22A2)-are widely studied drug transporters. Nevertheless, analyses of knockout mice and other data indicate that SLC22 transporters regulate key metabolic pathways and levels of signaling molecules (e.g., gut microbiome products, bile acids, tricarboxylic acid cycle intermediates, dietary flavonoids and other nutrients, prostaglandins, vitamins, short-chain fatty acids, urate, and ergothioneine), as well as uremic toxins associated with chronic kidney disease. Certain SLC22 transporters-such as URAT1 (SLC22A12) and OCTN2 (SLC22A5)-are mutated in inherited metabolic diseases. A new systems biology view of transporters is emerging. As proposed in the remote sensing and signaling hypothesis, SLC22 transporters, together with other SLC and ABC transporters, have key roles in interorgan and interorganism small-molecule communication and, together with the neuroendocrine, growth factor-cytokine, and other homeostatic systems, regulate local and whole-body homeostasis.
Collapse
Affiliation(s)
- Sanjay K Nigam
- Departments of Pediatrics and Medicine, University of California, San Diego, La Jolla, California 92093, USA;
| |
Collapse
|
283
|
Fauster A, Rebsamen M, Willmann KL, César-Razquin A, Girardi E, Bigenzahn JW, Schischlik F, Scorzoni S, Bruckner M, Konecka J, Hörmann K, Heinz LX, Boztug K, Superti-Furga G. Systematic genetic mapping of necroptosis identifies SLC39A7 as modulator of death receptor trafficking. Cell Death Differ 2019; 26:1138-1155. [PMID: 30237509 PMCID: PMC6748104 DOI: 10.1038/s41418-018-0192-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/04/2018] [Accepted: 07/22/2018] [Indexed: 12/13/2022] Open
Abstract
Regulation of cell and tissue homeostasis by programmed cell death is a fundamental process with wide physiological and pathological implications. The advent of scalable somatic cell genetic technologies creates the opportunity to functionally map such essential pathways, thereby identifying potential disease-relevant components. We investigated the genetic basis underlying necroptotic cell death by performing a complementary set of loss-of-function and gain-of-function genetic screens. To this end, we established FADD-deficient haploid human KBM7 cells, which specifically and efficiently undergo necroptosis after a single treatment with either TNFα or the SMAC mimetic compound birinapant. A series of unbiased gene-trap screens identified key signaling mediators, such as TNFR1, RIPK1, RIPK3, and MLKL. Among the novel components, we focused on the zinc transporter SLC39A7, whose knock-out led to necroptosis resistance by affecting TNF receptor surface levels. Orthogonal, solute carrier (SLC)-focused CRISPR/Cas9-based genetic screens revealed the exquisite specificity of SLC39A7, among ~400 SLC genes, for TNFR1-mediated and FAS-mediated but not TRAIL-R1-mediated responses. Mechanistically, we demonstrate that loss of SLC39A7 resulted in augmented ER stress and impaired receptor trafficking, thereby globally affecting downstream signaling. The newly established cellular model also allowed genome-wide gain-of-function screening for genes conferring resistance to necroptosis via the CRISPR/Cas9-based synergistic activation mediator approach. Among these, we found cIAP1 and cIAP2, and characterized the role of TNIP1, which prevented pathway activation in a ubiquitin-binding dependent manner. Altogether, the gain-of-function and loss-of-function screens described here provide a global genetic chart of the molecular factors involved in necroptosis and death receptor signaling, prompting further investigation of their individual contribution and potential role in pathological conditions.
Collapse
Affiliation(s)
- Astrid Fauster
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Manuele Rebsamen
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria.
| | - Katharina L Willmann
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, 1090, Vienna, Austria
| | - Adrian César-Razquin
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Enrico Girardi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Johannes W Bigenzahn
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Fiorella Schischlik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Stefania Scorzoni
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Manuela Bruckner
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Justyna Konecka
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Katrin Hörmann
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Leonhard X Heinz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Kaan Boztug
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, 1090, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090, Vienna, Austria
- Department of Pediatrics, St. Anna Kinderspital and Children's Cancer Research Institute, Medical University of Vienna, 1090, Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria.
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
284
|
Sullivan MR, Vander Heiden MG. Determinants of nutrient limitation in cancer. Crit Rev Biochem Mol Biol 2019; 54:193-207. [PMID: 31162937 PMCID: PMC6715536 DOI: 10.1080/10409238.2019.1611733] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/12/2022]
Abstract
Proliferation requires that cells accumulate sufficient biomass to grow and divide. Cancer cells within tumors must acquire a variety of nutrients, and tumor growth slows or stops if necessary metabolites are not obtained in sufficient quantities. Importantly, the metabolic demands of cancer cells can be different from those of untransformed cells, and nutrient accessibility in tumors is different than in many normal tissues. Thus, cancer cell survival and proliferation may be limited by different metabolic factors than those that are necessary to maintain noncancerous cells. Understanding the variables that dictate which nutrients are critical to sustain tumor growth may identify vulnerabilities that could be used to treat cancer. This review examines the various cell-autonomous, local, and systemic factors that determine which nutrients are limiting for tumor growth.
Collapse
Affiliation(s)
- Mark R Sullivan
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology , Cambridge , MA , USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology , Cambridge , MA , USA
- Dana-Farber Cancer Institute , Boston , MA , USA
| |
Collapse
|
285
|
Hernández-Juárez J, Vargas-Sierra O, Herrera LA, De León DC, Fernández-Retana J, Pérez-Plasencia C, López-Camarillo C, Gariglio P, Díaz-Chávez J. Sodium-coupled monocarboxylate transporter is a target of epigenetic repression in cervical cancer. Int J Oncol 2019; 54:1613-1624. [PMID: 30896789 PMCID: PMC6438420 DOI: 10.3892/ijo.2019.4749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/11/2019] [Indexed: 12/30/2022] Open
Abstract
The SLC5A8 gene encodes Na monocarboxylate transporter 1, which is epigenetically inactivated in various tumour types. This has been attributed to the fact that it prevents the entry of histone deacetylase (HDAC) inhibitors and favours the metabolic reprogramming of neoplastic cells. Nevertheless, its expression and regulation in cervical cancer (CC) have not been elucidated to date. The aim of the present study was to investigate whether SLC5A8 expression is silenced in CC and if epigenetic mechanisms are involved in its regulation. Using RNA and DNA from human CC cell lines and tumour tissues from patients with CC, the expression of SLC5A8 was analysed by reverse transcription polymerase chain reaction and the methylation status of its CpG island (CGI) by bisulphite‑modified sequencing. Additionally, SLC5A8 reactivation was examined in the CC cell lines following treatment with DNA methylation (5‑aza‑2'‑deoxycytidine) and HDAC inhibitors (trichostatin A and pyruvate). All the CC cell lines and a range of tumour tissues (65.5%) exhibited complete or partial loss of SLC5A8 transcription. The bisulphite‑sequencing revealed that hypermethylation of the CGI within SLC5A8 first exon was associated with its downregulation in the majority of cases. The transporter expression was restored in the CC cell lines following exposure to 5‑aza‑2'‑deoxycytidine alone, or in combination with trichostatin A or pyruvate, suggesting that DNA methylation and histone deacetylation contribute to its inhibition in a cell line‑dependent manner. Together, the results of the present study demonstrate the key role of DNA hypermethylation in the repression of SLC5A8 in CC, as well as the involvement of histone deacetylation, at least partially. This allows for research focused on the potential function of SLC5A8 as a tumour suppressor in CC, and as a biomarker or therapeutic target in this malignancy.
Collapse
Affiliation(s)
- Jennifer Hernández-Juárez
- Department of Genetics and Molecular Biology, Centre for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07360
| | - Orlando Vargas-Sierra
- Department of Genetics and Molecular Biology, Centre for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07360
| | - Luis A. Herrera
- Biomedical Unit for Cancer Research, Carcinogenesis Laboratory, Department of Basic Research, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cancerologia (INCan)
| | | | - Jorge Fernández-Retana
- Biomedical Unit for Cancer Research, Carcinogenesis Laboratory, Department of Basic Research, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cancerologia (INCan)
| | | | - César López-Camarillo
- Genomic Sciences Graduate Program, Autonomous University of Mexico City, Mexico City 03100, Mexico
| | - Patricio Gariglio
- Department of Genetics and Molecular Biology, Centre for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07360
| | - José Díaz-Chávez
- Biomedical Unit for Cancer Research, Carcinogenesis Laboratory, Department of Basic Research, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cancerologia (INCan)
| |
Collapse
|
286
|
Identification and functional characterization of solute carrier family 6 genes in Ciona savignyi. Gene 2019; 705:142-148. [PMID: 31026570 DOI: 10.1016/j.gene.2019.04.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/10/2019] [Accepted: 04/19/2019] [Indexed: 12/12/2022]
Abstract
The solute carrier 6 (SLC6) gene family, functioning as neurotransmitter transporters, plays the crucial roles in neurotransmission, cellular and organismal homeostasis. In this study, we found an expansion of SLC6 family gene in the genome of chordate invertebrate Ciona savignyi. A total of 40 candidate genes including 29 complete and 11 putative genes were identified as SLC6 family gene homologs. Phylogenetic analysis revealed that most of these Ciona SLC6 genes were highly conserved with the vertebrate ones, although gene duplication and gene losses did exist. Four genes were selected from SLC6 subfamilies to be further investigated for their functional characteristics on cell growth and migration through overexpression approach in cultured cell lines. The results showed both SLC6A7 and SLC6A17 from amino acid transporters AA1 and AA2 sub-families, respectively, significantly suppressed the cell proliferation and migration. While SLC6A1 and SLC6A4, which were classified into GABA and monoamine transporters, respectively, did not affect the cell proliferation and migration in HEK293T, HeLa, and MCF7 cells. The whole set of C. savignyi SLC6 genes identified in this study provides an important genomic resource for future biochemical, physiological, and phylogenetic studies on SLC6 gene family. Our experimental data demonstrated that Ciona amino acid transporters, such as SLC6A7 and SLC6A17, were essential for cell physiology and behaviors, indicating their crucially potential roles in the control of cell proliferation and migration during ascidian embryogenesis.
Collapse
|
287
|
Amino acid transporters in the regulation of insulin secretion and signalling. Biochem Soc Trans 2019; 47:571-590. [PMID: 30936244 DOI: 10.1042/bst20180250] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/24/2019] [Accepted: 02/25/2019] [Indexed: 01/02/2023]
Abstract
Amino acids are increasingly recognised as modulators of nutrient disposal, including their role in regulating blood glucose through interactions with insulin signalling. More recently, cellular membrane transporters of amino acids have been shown to form a pivotal part of this regulation as they are primarily responsible for controlling cellular and circulating amino acid concentrations. The availability of amino acids regulated by transporters can amplify insulin secretion and modulate insulin signalling in various tissues. In addition, insulin itself can regulate the expression of numerous amino acid transporters. This review focuses on amino acid transporters linked to the regulation of insulin secretion and signalling with a focus on those of the small intestine, pancreatic β-islet cells and insulin-responsive tissues, liver and skeletal muscle. We summarise the role of the amino acid transporter B0AT1 (SLC6A19) and peptide transporter PEPT1 (SLC15A1) in the modulation of global insulin signalling via the liver-secreted hormone fibroblast growth factor 21 (FGF21). The role of vesicular vGLUT (SLC17) and mitochondrial SLC25 transporters in providing glutamate for the potentiation of insulin secretion is covered. We also survey the roles SNAT (SLC38) family and LAT1 (SLC7A5) amino acid transporters play in the regulation of and by insulin in numerous affective tissues. We hypothesise the small intestine amino acid transporter B0AT1 represents a crucial nexus between insulin, FGF21 and incretin hormone signalling pathways. The aim is to give an integrated overview of the important role amino acid transporters have been found to play in insulin-regulated nutrient signalling.
Collapse
|
288
|
Windt T, Tóth S, Patik I, Sessler J, Kucsma N, Szepesi Á, Zdrazil B, Özvegy-Laczka C, Szakács G. Identification of anticancer OATP2B1 substrates by an in vitro triple-fluorescence-based cytotoxicity screen. Arch Toxicol 2019; 93:953-964. [PMID: 30863990 PMCID: PMC6510822 DOI: 10.1007/s00204-019-02417-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/13/2018] [Indexed: 12/21/2022]
Abstract
Membrane transporters play an important role in the absorption, distribution, metabolism and excretion of drugs. The cellular accumulation of many drugs is the result of the net function of efflux and influx transporters. Efflux transporters such as P-glycoprotein/ABCB1 have been shown to confer multidrug resistance in cancer. Although expression of uptake transporters has been confirmed in cancer cells, their role in chemotherapy response has not been systematically investigated. In the present study we have adapted a fluorescence-based cytotoxic assay to characterize the influence of key drug-transporters on the toxicity of approved anticancer drugs. Co-cultures of fluorescently labeled parental and transporter-expressing cells (expressing ABCB1, ABCG2 or OATP2B1) were screened against 101 FDA-approved anticancer drugs, using a novel, automated, triple fluorescence-based cytotoxicity assay. By measuring the survival of parental and transporter-expressing cells in co-cultures, we identify those FDA-approved anticancer drugs, whose toxicity is influenced by ABCB1, ABCG2 or OATP2B1. In addition to confirming known substrates of ABCB1 and ABCG2, the fluorescence-based cytotoxicity assays identified anticancer agents whose toxicity was increased in OATP2B1 expressing cells. Interaction of these compounds with OATP2B1 was verified in dedicated transport assays using cell-impermeant fluorescent substrates. Understanding drug-transporter interactions is needed to increase the efficacy of chemotherapeutic agents. Our results highlight the potential of the fluorescence-based HT screening system for identifying transporter substrates, opening the way for the design of therapeutic approaches based on the inhibition or even the exploitation of transporters in cancer cells.
Collapse
Affiliation(s)
- Tímea Windt
- Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest, 1117, Hungary
| | - Szilárd Tóth
- Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest, 1117, Hungary.
| | - Izabel Patik
- Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest, 1117, Hungary
| | - Judit Sessler
- Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest, 1117, Hungary
| | - Nóra Kucsma
- Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest, 1117, Hungary
| | - Áron Szepesi
- Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest, 1117, Hungary
| | - Barbara Zdrazil
- Department of Pharmaceutical Chemistry, Division of Drug Design and Medicinal Chemistry, University of Vienna, Vienna, Austria
| | - Csilla Özvegy-Laczka
- Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest, 1117, Hungary
| | - Gergely Szakács
- Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest, 1117, Hungary.
- Institute of Cancer Research, Medical University Vienna, Vienna, Austria.
| |
Collapse
|
289
|
Seidler U, Nikolovska K. Slc26 Family of Anion Transporters in the Gastrointestinal Tract: Expression, Function, Regulation, and Role in Disease. Compr Physiol 2019; 9:839-872. [DOI: 10.1002/cphy.c180027] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
290
|
Imaging inflammation using an activated macrophage probe with Slc18b1 as the activation-selective gating target. Nat Commun 2019; 10:1111. [PMID: 30846702 PMCID: PMC6405920 DOI: 10.1038/s41467-019-08990-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 02/12/2019] [Indexed: 12/18/2022] Open
Abstract
Activated macrophages have the potential to be ideal targets for imaging inflammation. However, probe selectivity over non-activated macrophages and probe delivery to target tissue have been challenging. Here, we report a small molecule probe specific for activated macrophages, called CDg16, and demonstrate its application to visualizing inflammatory atherosclerotic plaques in vivo. Through a systematic transporter screen using a CRISPR activation library, we identify the orphan transporter Slc18b1/SLC18B1 as the gating target of CDg16. Attempts to image activated macrophages in vivo have been hampered by selectivity and delivery problems. Here the authors develop a small molecule fluorescent probe specific to activated M1 and M2 macrophages, identify the orphan receptor Slc18b1/SLC18B1 as the mechanism of uptake, and use it to image atherosclerosis in mice.
Collapse
|
291
|
Shen H, Scialis RJ, Lehman-McKeeman L. Xenobiotic Transporters in the Kidney: Function and Role in Toxicity. Semin Nephrol 2019; 39:159-175. [DOI: 10.1016/j.semnephrol.2018.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
292
|
Hagos FT, Adams SM, Poloyac SM, Kochanek PM, Horvat CM, Clark RSB, Empey PE. Membrane transporters in traumatic brain injury: Pathological, pharmacotherapeutic, and developmental implications. Exp Neurol 2019; 317:10-21. [PMID: 30797827 DOI: 10.1016/j.expneurol.2019.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/12/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022]
Abstract
Membrane transporters regulate the trafficking of endogenous and exogenous molecules across biological barriers and within the neurovascular unit. In traumatic brain injury (TBI), they moderate the dynamic movement of therapeutic drugs and injury mediators among neurons, endothelial cells and glial cells, thereby becoming important determinants of pathogenesis and effective pharmacotherapy after TBI. There are three ways transporters may impact outcomes in TBI. First, transporters likely play a key role in the clearance of injury mediators. Second, genetic association studies suggest transporters may be important in the transition of TBI from acute brain injury to a chronic neurological disease. Third, transporters dynamically control the brain penetration and efflux of many drugs and their distribution within and elimination from the brain, contributing to pharmacoresistance and possibly in some cases pharmacosensitivity. Understanding the nature of drugs or candidate drugs in development with respect to whether they are a transporter substrate or inhibitor is relevant to understand whether they distribute to their target in sufficient concentrations. Emerging data provide evidence of altered expression and function of transporters in humans after TBI. Genetic variability in expression and/or function of key transporters adds an additional dynamic, as shown in recent clinical studies. In this review, evidence supporting the role of individual membrane transporters in TBI are discussed as well as novel strategies for their modulation as possible therapeutic targets. Since data specifically targeting pediatric TBI are sparse, this review relies mainly on experimental studies using adult animals and clinical studies in adult patients.
Collapse
Affiliation(s)
- Fanuel T Hagos
- Center for Clinical Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA, United States of America
| | - Solomon M Adams
- Center for Clinical Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA, United States of America
| | - Samuel M Poloyac
- Center for Clinical Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA, United States of America; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America; UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States of America
| | - Christopher M Horvat
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America; UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States of America
| | - Robert S B Clark
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America; UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States of America.
| | - Philip E Empey
- Center for Clinical Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA, United States of America; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America.
| |
Collapse
|
293
|
Ogunbona OB, Claypool SM. Emerging Roles in the Biogenesis of Cytochrome c Oxidase for Members of the Mitochondrial Carrier Family. Front Cell Dev Biol 2019; 7:3. [PMID: 30766870 PMCID: PMC6365663 DOI: 10.3389/fcell.2019.00003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/10/2019] [Indexed: 12/11/2022] Open
Abstract
The mitochondrial carrier family (MCF) is a group of transport proteins that are mostly localized to the inner mitochondrial membrane where they facilitate the movement of various solutes across the membrane. Although these carriers represent potential targets for therapeutic application and are repeatedly associated with human disease, research on the MCF has not progressed commensurate to their physiologic and pathophysiologic importance. Many of the 53 MCF members in humans are orphans and lack known transport substrates. Even for the relatively well-studied members of this family, such as the ADP/ATP carrier and the uncoupling protein, there exist fundamental gaps in our understanding of their biological roles including a clear rationale for the existence of multiple isoforms. Here, we briefly review this important family of mitochondrial carriers, provide a few salient examples of their diverse metabolic roles and disease associations, and then focus on an emerging link between several distinct MCF members, including the ADP/ATP carrier, and cytochrome c oxidase biogenesis. As the ADP/ATP carrier is regarded as the paradigm of the entire MCF, its newly established role in regulating translation of the mitochondrial genome highlights that we still have a lot to learn about these metabolite transporters.
Collapse
Affiliation(s)
- Oluwaseun B. Ogunbona
- Department of Physiology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
- Department of Pathology & Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Steven M. Claypool
- Department of Physiology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
294
|
Danthi SJ, Liang B, Smicker O, Coupland B, Gregory J, Gefteas E, Tietz D, Klodnitsky H, Randall K, Belanger A, Kuntzweiler TA. Identification and Characterization of Inhibitors of a Neutral Amino Acid Transporter, SLC6A19, Using Two Functional Cell-Based Assays. SLAS DISCOVERY 2018; 24:111-120. [PMID: 30589598 DOI: 10.1177/2472555218794627] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SLC6A19 (B0AT1) is a neutral amino acid transporter, the loss of function of which results in Hartnup disease. SLC6A19 is also believed to have an important role in amino acid homeostasis, diabetes, and weight control. A small-molecule inhibitor of human SLC6A19 (hSLC6A19) was identified using two functional cell-based assays: a fluorescence imaging plate reader (FLIPR) membrane potential (FMP) assay and a stable isotope-labeled neutral amino acid uptake assay. A diverse collection of 3440 pharmacologically active compounds from the Microsource Spectrum and Tocriscreen collections were tested at 10 µM in both assays using MDCK cells stably expressing hSLC6A19 and its obligatory subunit, TMEM27. Compounds that inhibited SLC6A19 activity in both assays were further confirmed for activity and selectivity and characterized for potency in functional assays against hSLC6A19 and related transporters. A single compound, cinromide, was found to robustly, selectively, and reproducibly inhibit SLC6A19 in all functional assays. Structurally related analogs of cinromide were tested to demonstrate structure-activity relationship (SAR). The assays described here are suitable for carrying out high-throughput screening campaigns to identify modulators of SLC6A19.
Collapse
Affiliation(s)
- Sanjay J Danthi
- 1 In Vitro Biology, Integrated Drug Discovery, Sanofi-Genzyme, Waltham, MA, USA
| | - Beirong Liang
- 1 In Vitro Biology, Integrated Drug Discovery, Sanofi-Genzyme, Waltham, MA, USA
| | - Oanh Smicker
- 1 In Vitro Biology, Integrated Drug Discovery, Sanofi-Genzyme, Waltham, MA, USA
| | - Benjamin Coupland
- 1 In Vitro Biology, Integrated Drug Discovery, Sanofi-Genzyme, Waltham, MA, USA
| | - Jill Gregory
- 1 In Vitro Biology, Integrated Drug Discovery, Sanofi-Genzyme, Waltham, MA, USA
| | - Estelle Gefteas
- 2 Rare Muscle and Metabolic Diseases, Sanofi-Genzyme, Framingham, MA, USA
| | - Drew Tietz
- 3 Pre-Development Sciences Analytical R&D, Sanofi-Genzyme, Waltham, MA, USA
| | - Helen Klodnitsky
- 3 Pre-Development Sciences Analytical R&D, Sanofi-Genzyme, Waltham, MA, USA
| | - Kristen Randall
- 3 Pre-Development Sciences Analytical R&D, Sanofi-Genzyme, Waltham, MA, USA
| | - Adam Belanger
- 2 Rare Muscle and Metabolic Diseases, Sanofi-Genzyme, Framingham, MA, USA
| | | |
Collapse
|
295
|
Structural biology and structure–function relationships of membrane proteins. Biochem Soc Trans 2018; 47:47-61. [DOI: 10.1042/bst20180269] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 01/02/2023]
Abstract
Abstract
The study of structure–function relationships of membrane proteins (MPs) has been one of the major goals in the field of structural biology. Many Noble Prizes regarding remarkable accomplishments in MP structure determination and biochemistry have been awarded over the last few decades. Mutations or improper folding of these proteins are associated with numerous serious illnesses. Therefore, as important drug targets, the study of their primary sequence and three-dimensional fold, combined with cell-based assays, provides vital information about their structure–function relationships. Today, this information is vital to drug discovery and medicine. In the last two decades, many have been the technical advances and breakthroughs in the field of MP structural biology that have contributed to an exponential growth in the number of unique MP structures in the Protein Data Bank. Nevertheless, given the medical importance and many unanswered questions, it will never be an excess of MP structures, regardless of the method used. Owing to the extension of the field, in this brief review, we will only focus on structure–function relationships of the three most significant pharmaceutical classes: G protein-coupled receptors, ion channels and transporters.
Collapse
|
296
|
Chaliotis A, Vlastaridis P, Ntountoumi C, Botou M, Yalelis V, Lazou P, Tatsaki E, Mossialos D, Frillingos S, Amoutzias GD. NAT/NCS2-hound: a webserver for the detection and evolutionary classification of prokaryotic and eukaryotic nucleobase-cation symporters of the NAT/NCS2 family. Gigascience 2018; 7:5168872. [PMID: 30418564 PMCID: PMC6308229 DOI: 10.1093/gigascience/giy133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/17/2018] [Indexed: 01/16/2023] Open
Abstract
Nucleobase transporters are important for supplying the cell with purines and/or pyrimidines, for controlling the intracellular pool of nucleotides, and for obtaining exogenous nitrogen/carbon sources for metabolism. Nucleobase transporters are also evaluated as potential targets for antimicrobial therapies, since several pathogenic microorganisms rely on purine/pyrimidine salvage from their hosts. The majority of known nucleobase transporters belong to the evolutionarily conserved and ubiquitous nucleobase-ascorbate transporter/nucleobase-cation symporter-2 (NAT/NCS2) protein family. Based on a large-scale phylogenetic analysis that we performed on thousands of prokaryotic proteomes, we developed a webserver that can detect and distinguish this family of transporters from other homologous families that recognize different substrates. We can further categorize these transporters to certain evolutionary groups with distinct substrate preferences. The webserver scans whole proteomes and graphically displays which proteins are identified as NAT/NCS2, to which evolutionary groups and subgroups they belong to, and which conserved motifs they have. For key subgroups and motifs, the server displays annotated information from published crystal-structures and mutational studies pointing to key functional amino acids that may help experts assess the transport capability of the target sequences. The server is 100% accurate in detecting NAT/NCS2 family members. We also used the server to analyze 9,109 prokaryotic proteomes and identified Clostridia, Bacilli, β- and γ-Proteobacteria, Actinobacteria, and Fusobacteria as the taxa with the largest number of NAT/NCS2 transporters per proteome. An analysis of 120 representative eukaryotic proteomes also demonstrates the server's capability of correctly analyzing this major lineage, with plants emerging as the group with the highest number of NAT/NCS2 members per proteome.
Collapse
Affiliation(s)
- A Chaliotis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, Larisa, 41500, Greece
| | - P Vlastaridis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, Larisa, 41500, Greece
| | - C Ntountoumi
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, Larisa, 41500, Greece
| | - M Botou
- Laboratory of Biological Chemistry, Department of Medicine, University of Ioannina, Ioannina, 45110, Greece
| | - V Yalelis
- Laboratory of Biological Chemistry, Department of Medicine, University of Ioannina, Ioannina, 45110, Greece
| | - P Lazou
- Laboratory of Biological Chemistry, Department of Medicine, University of Ioannina, Ioannina, 45110, Greece
| | - E Tatsaki
- Laboratory of Biological Chemistry, Department of Medicine, University of Ioannina, Ioannina, 45110, Greece
| | - D Mossialos
- Molecular Bacteriology Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, Larisa, 41500, Greece
| | - S Frillingos
- Laboratory of Biological Chemistry, Department of Medicine, University of Ioannina, Ioannina, 45110, Greece
| | - G D Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, Larisa, 41500, Greece
| |
Collapse
|
297
|
Giangregorio N, Tonazzi A, Console L, Galluccio M, Porcelli V, Indiveri C. Structure/function relationships of the human mitochondrial ornithine/citrulline carrier by Cys site-directed mutagenesis. Relevance to mercury toxicity. Int J Biol Macromol 2018; 120:93-99. [DOI: 10.1016/j.ijbiomac.2018.08.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 08/12/2018] [Accepted: 08/14/2018] [Indexed: 12/19/2022]
|
298
|
Rapp CL, Li J, Badior KE, Williams DB, Casey JR, Reithmeier RAF. Role of N-glycosylation in the expression of human SLC26A2 and A3 anion transport membrane glycoproteins 1. Biochem Cell Biol 2018; 97:290-306. [PMID: 30462520 DOI: 10.1139/bcb-2018-0139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The human solute carrier 26 (SLC26) gene family of anion transporters consists of 10 members (SLC26A1-A11, A10 being a pseudogene) that encode membrane glycoproteins with 14 transmembrane segments and a C-terminal cytoplasmic sulfate transporter anti-sigma antagonist domain. Thus far, mutations in eight members of the SLC26 family (A1-A6, A8, and A9) have been linked to diseases in humans. Our goal is to characterize the role of N-glycosylation and the effect of mutations in SLC26A2 and A3 proteins on their functional expression in transfected HEK-293 cells. We found that certain mutants were retained in the endoplamic reticulum via an interaction with the lectin chaperone calnexin. Some could escape protein quality control and traffic to the cell surface upon removal of the N-glycosylation sites. Furthermore, we found that loss of N-glycosylation reduced expression of SLC26A2 at the cell surface. Loss of N-glycosylation had no effect on the stability of SLC26A3, yet resulted in a profound decrease in transport activity. Thus, N-glycosylation plays three roles in the functional expression of SLC26 proteins: (1) to retain misfolded proteins in the endoplamic reticulum, (2) to stabilize the protein at the cell surface, and (3) to maintain the transport protein in a functional state.
Collapse
Affiliation(s)
- Chloe L Rapp
- a Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jing Li
- a Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Katherine E Badior
- b Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - David B Williams
- a Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Joseph R Casey
- b Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | | |
Collapse
|
299
|
Efferocytosis induces a novel SLC program to promote glucose uptake and lactate release. Nature 2018; 563:714-718. [PMID: 30464343 PMCID: PMC6331005 DOI: 10.1038/s41586-018-0735-5] [Citation(s) in RCA: 244] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 09/25/2018] [Indexed: 11/08/2022]
Abstract
We turnover billions of apoptotic cells daily, and these are removed by professional and non-professional phagocytes via efferocytosis1. Characterizing the transcriptional program of phagocytes, we discovered a novel solute carrier family (SLC) gene signature (involving 33 SLC members) that is specifically modified during efferocytosis, but not antibody-mediated phagocytosis. Assessing the functional relevance of these SLCs, we noted a robust induction of an aerobic glycolysis program in efferocytic phagocytes, initiated by SLC2A1-mediated glucose uptake, with concurrent suppression of oxidative phosphorylation program. Interestingly, the different steps of phagocytosis2, i.e. smell (‘find-me’ signals/ sensing factors released by apoptotic cells), taste (phagocyte-apoptotic cell contact), and ingestion (corpse internalization), activated different SLCs and other molecules to promote glycolysis. Further, lactate, a natural by-product of aerobic glycolysis3, was released via another SLC (SLC16A1) that was upregulated after corpse uptake. While glycolysis within phagocytes contributed to actin polymerization and the continued uptake of corpses, the lactate released via SLC16A1 influenced the establishment of an anti-inflammatory tissue environment. Collectively, these data reveal a novel SLC program activated during efferocytosis, identify a previously unknown reliance on aerobic glycolysis during apoptotic cell uptake, and that glycolytic byproducts of efferocytosis can also influence other cells in the microenvironment.
Collapse
|
300
|
Karlgren M, Simoff I, Keiser M, Oswald S, Artursson P. CRISPR-Cas9: A New Addition to the Drug Metabolism and Disposition Tool Box. Drug Metab Dispos 2018; 46:1776-1786. [PMID: 30126863 DOI: 10.1124/dmd.118.082842] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/03/2018] [Indexed: 02/06/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein 9 (Cas9), i.e., CRISPR-Cas9, has been extensively used as a gene-editing technology during recent years. Unlike earlier technologies for gene editing or gene knockdown, such as zinc finger nucleases and RNA interference, CRISPR-Cas9 is comparably easy to use, affordable, and versatile. Recently, CRISPR-Cas9 has been applied in studies of drug absorption, distribution, metabolism, and excretion (ADME) and for ADME model generation. To date, about 50 papers have been published describing in vitro or in vivo CRISPR-Cas9 gene editing of ADME and ADME-related genes. Twenty of these papers describe gene editing of clinically relevant genes, such as ATP-binding cassette drug transporters and cytochrome P450 drug-metabolizing enzymes. With CRISPR-Cas9, the ADME tool box has been substantially expanded. This new technology allows us to develop better and more predictive in vitro and in vivo ADME models and map previously underexplored ADME genes and gene families. In this mini-review, we give an overview of the CRISPR-Cas9 technology and summarize recent applications of CRISPR-Cas9 within the ADME field. We also speculate about future applications of CRISPR-Cas9 in ADME research.
Collapse
Affiliation(s)
- M Karlgren
- Department of Pharmacy (M.Ka., P.A.), Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Department of Pharmacy (I.S.), and Science for Life Laboratory (P.A.), Uppsala University, Uppsala, Sweden; and Department of Clinical Pharmacology, Center of Drug Absorption and Transport, University Medicine of Greifswald, Germany (M.Ke., S.O.)
| | - I Simoff
- Department of Pharmacy (M.Ka., P.A.), Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Department of Pharmacy (I.S.), and Science for Life Laboratory (P.A.), Uppsala University, Uppsala, Sweden; and Department of Clinical Pharmacology, Center of Drug Absorption and Transport, University Medicine of Greifswald, Germany (M.Ke., S.O.)
| | - M Keiser
- Department of Pharmacy (M.Ka., P.A.), Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Department of Pharmacy (I.S.), and Science for Life Laboratory (P.A.), Uppsala University, Uppsala, Sweden; and Department of Clinical Pharmacology, Center of Drug Absorption and Transport, University Medicine of Greifswald, Germany (M.Ke., S.O.)
| | - S Oswald
- Department of Pharmacy (M.Ka., P.A.), Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Department of Pharmacy (I.S.), and Science for Life Laboratory (P.A.), Uppsala University, Uppsala, Sweden; and Department of Clinical Pharmacology, Center of Drug Absorption and Transport, University Medicine of Greifswald, Germany (M.Ke., S.O.)
| | - P Artursson
- Department of Pharmacy (M.Ka., P.A.), Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Department of Pharmacy (I.S.), and Science for Life Laboratory (P.A.), Uppsala University, Uppsala, Sweden; and Department of Clinical Pharmacology, Center of Drug Absorption and Transport, University Medicine of Greifswald, Germany (M.Ke., S.O.)
| |
Collapse
|