251
|
Castration induced browning in subcutaneous white adipose tissue in male mice. Biochem Biophys Res Commun 2016; 478:1746-50. [PMID: 27608598 DOI: 10.1016/j.bbrc.2016.09.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 09/03/2016] [Indexed: 11/23/2022]
Abstract
We demonstrated that castration enhanced the expression of uncoupling protein 1 (Ucp1), a thermogenic protein, in brown adipose tissue (BAT) and subcutaneous (sc) white adipose tissue (WAT) in male mice. Castration of male mice increased body temperature and reduced body weight gain compared with those of sham-operated mice. BAT Ucp1 mRNA expression in castrated male mice was significantly higher than that in sham-operated mice. Histologically, cells with multilocular fat droplets were observed in the castrated inguinal scWAT. Immunohistochemical staining revealed that these cells positively reacted with the anti-Ucp1 antibody. The Ucp1-positive area near the inguinal lymph node in the castrated WAT was extensive compared with that of the sham-operated WAT. Castration-induced Ucp1 up-regulation in scWAT was suppressed by high-fat diet feeding. These findings suggest that thermogenesis by BAT activation and scWAT browning contribute to castration-induced inhibition of body weight gain. However, considering that the effect of castration was blunted by high-fat diet consumption, thermogenesis stimulation in response to castration is inhibited by chronic over-nutrition.
Collapse
|
252
|
Ghoshal S, Zhu Q, Asteian A, Lin H, Xu H, Ernst G, Barrow JC, Xu B, Cameron MD, Kamenecka TM, Chakraborty A. TNP [N2-(m-Trifluorobenzyl), N6-(p-nitrobenzyl)purine] ameliorates diet induced obesity and insulin resistance via inhibition of the IP6K1 pathway. Mol Metab 2016; 5:903-917. [PMID: 27689003 PMCID: PMC5034689 DOI: 10.1016/j.molmet.2016.08.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/10/2016] [Accepted: 08/15/2016] [Indexed: 12/30/2022] Open
Abstract
Objective Obesity and type 2 diabetes (T2D) lead to various life-threatening diseases such as coronary heart disease, stroke, osteoarthritis, asthma, and neurodegeneration. Therefore, extensive research is ongoing to identify novel pathways that can be targeted in obesity/T2D. Deletion of the inositol pyrophosphate (5-IP7) biosynthetic enzyme, inositol hexakisphosphate kinase-1 (IP6K1), protects mice from high fat diet (HFD) induced obesity (DIO) and insulin resistance. Yet, whether this pathway is a valid pharmacologic target in obesity/T2D is not known. Here, we demonstrate that TNP [N2-(m-Trifluorobenzyl), N6-(p-nitrobenzyl)purine], a pan-IP6K inhibitor, has strong anti-obesity and anti-diabetic effects in DIO mice. Methods Q-NMR, GTT, ITT, food intake, energy expenditure, QRT-PCR, ELISA, histology, and immunoblot studies were conducted in short (2.5-week)- and long (10-week)-term TNP treated DIO C57/BL6 WT and IP6K1-KO mice, under various diet and temperature conditions. Results TNP, when injected at the onset of HFD-feeding, decelerates initiation of DIO and insulin resistance. Moreover, TNP facilitates weight loss and restores metabolic parameters, when given to DIO mice. However, TNP does not reduce weight gain in HFD-fed IP6K1-KO mice. TNP specifically enhances insulin sensitivity in DIO mice via Akt activation. TNP decelerates weight gain primarily by enhancing thermogenic energy expenditure in the adipose tissue. Accordingly, TNP's effect on body weight is partly abolished whereas its impact on glucose homeostasis is preserved at thermoneutral temperature. Conclusion Pharmacologic inhibition of the inositol pyrophosphate pathway has strong therapeutic potential in obesity, T2D, and other metabolic diseases. Pharmacologic inhibition of IP6K by TNP, at the onset of high fat feeding, decelerates initiation of DIO and insulin resistance in mice. TNP, when treated to DIO mice, promotes weight loss and restores metabolic homeostasis. TNP does not reduce high fat diet induced weight gain in IP6K1-KO mice. TNP promotes insulin sensitivity by stimulating Akt activity, whereas it reduces body weight primarily by enhancing thermogenic energy expenditure. Long-term TNP treatment does not display deleterious side effects.
Collapse
Key Words
- 5-IP7, diphosphoinositol pentakisphosphate
- ALT, alanine aminotransferase
- AST, aspartate transaminase
- AUC, area under curve
- Akt
- BAT, brown adipose tissue
- CD, chow-diet
- CPT1a, carnitine palmitoyltransferase I
- Cidea, cell death activator-A
- DIO, diet-induced obesity
- Diabetes
- EE, energy expenditure
- EWAT, epididymal adipose tissue
- Energy expenditure
- GSK3, glycogen synthase kinase
- GTT, glucose tolerance test
- H&E, hematoxylin and eosin
- HFD, high-fat diet
- HPLC, high performance liquid chromatography
- IP6K
- IP6K, Inositol hexakisphosphate kinase
- IP6K1-KO, IP6K1 knockout
- ITT, insulin tolerance test
- IWAT, inguinal adipose tissue
- Inositol pyrophosphate
- Obesity
- PCR, polymerase chain reaction
- PGC1α, PPAR coactivator 1 alpha
- PKA, protein kinase A
- PPARγ, peroxisome proliferator-activated receptor gamma
- PRDM16, PR domain containing 16
- Pro-TNP, TNP treatment for protection against DIO
- Q-NMR, quantitative nuclear magnetic resonance
- QRT-PCR, quantitative reverse transcription polymerase chain reaction
- RER, Respiratory exchange ratio
- RWAT, retroperitoneal adipose tissue
- Rev-TNP, long-term TNP treatment for reversal of DIO
- RevT-TNP, Long-term TNP treatment for reversal of DIO at thermoneutral temperature
- S473, serine 473
- S9, serine 9
- SREV-TNP, short-term TNP treatment for reversal of DIO
- T2D, type-2 diabetes
- T308, threonine 308
- TNP, [N2-(m-Trifluorobenzyl), N6-(p-nitrobenzyl)purine]
- UCP-1/3, uncoupling protein 1/3
- VO2, volume of oxygen consumption
- WAT, white adipose tissue
Collapse
Affiliation(s)
- Sarbani Ghoshal
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Qingzhang Zhu
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Alice Asteian
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Hua Lin
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Haifei Xu
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Glen Ernst
- Drug Discovery Division, Lieber Institute for Brain Development, Baltimore, MD 21205, USA
| | - James C Barrow
- Drug Discovery Division, Lieber Institute for Brain Development, Baltimore, MD 21205, USA
| | - Baoji Xu
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Michael D Cameron
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Theodore M Kamenecka
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Anutosh Chakraborty
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
253
|
Liu Y, Maekawa T, Yoshida K, Furuse T, Kaneda H, Wakana S, Ishii S. ATF7 ablation prevents diet-induced obesity and insulin resistance. Biochem Biophys Res Commun 2016; 478:696-702. [PMID: 27498002 DOI: 10.1016/j.bbrc.2016.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 08/02/2016] [Indexed: 01/18/2023]
Abstract
The activating transcription factor (ATF)2 family of transcription factors regulates a variety of metabolic processes, including adipogenesis and adaptive thermogenesis. ATF7 is a member of the ATF2 family, and mediates epigenetic changes induced by environmental stresses, such as social isolation and pathogen infection. However, the metabolic role of ATF7 remains unknown. The aim of the present study is to examine the role of ATF7 in metabolism using ATF7-dificeint mice. Atf7(-/-) mice exhibited lower body weight and resisted diet-induced obesity. Serum triglycerides, resistin, and adipose tissue mass were all significantly lower in ATF7-deficient mice. Fasting glucose levels and glucose tolerance were unaltered, but systemic insulin sensitivity was increased, by ablation of ATF7. Indirect calorimetry revealed that oxygen consumption by Atf7(-/-) mice was comparable to that of wild-type littermates on a standard chow diet, but increased energy expenditure was observed in Atf7(-/-) mice on a high-fat diet. Hence, ATF7 ablation may impair the development and function of adipose tissue and result in elevated energy expenditure in response to high-fat-feeding obesity and insulin resistance, indicating that ATF7 is a potential therapeutic target for diet-induced obesity and insulin resistance.
Collapse
Affiliation(s)
- Yang Liu
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan; Department of Molecular Genetics and Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Toshio Maekawa
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Keisuke Yoshida
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Tamio Furuse
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN BRC, Tsukuba, Ibaraki, Japan
| | - Hideki Kaneda
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN BRC, Tsukuba, Ibaraki, Japan
| | - Shigeharu Wakana
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN BRC, Tsukuba, Ibaraki, Japan
| | - Shunsuke Ishii
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan; Department of Molecular Genetics and Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
254
|
Microenvironmental Control of Adipocyte Fate and Function. Trends Cell Biol 2016; 26:745-755. [PMID: 27268909 DOI: 10.1016/j.tcb.2016.05.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/09/2016] [Accepted: 05/16/2016] [Indexed: 01/07/2023]
Abstract
The properties of tissue-specific microenvironments vary widely in the human body and demonstrably influence the structure and function of many cell types. Adipocytes are no exception, responding to cues in specialized niches to perform vital metabolic and endocrine functions. The adipose microenvironment is remodeled during tissue expansion to maintain the structural and functional integrity of the tissue and disrupted remodeling in obesity contributes to the progression of metabolic syndrome, breast cancer, and other malignancies. The increasing incidence of these obesity-related diseases and the recent focus on improved in vitro models of human tissue biology underscore growing interest in the regulatory role of adipocyte microenvironments in health and disease.
Collapse
|
255
|
Kusminski CM, Bickel PE, Scherer PE. Targeting adipose tissue in the treatment of obesity-associated diabetes. Nat Rev Drug Discov 2016; 15:639-660. [PMID: 27256476 DOI: 10.1038/nrd.2016.75] [Citation(s) in RCA: 519] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Adipose tissue regulates numerous physiological processes, and its dysfunction in obese humans is associated with disrupted metabolic homeostasis, insulin resistance and type 2 diabetes mellitus (T2DM). Although several US-approved treatments for obesity and T2DM exist, these are limited by adverse effects and a lack of effective long-term glucose control. In this Review, we provide an overview of the role of adipose tissue in metabolic homeostasis and assess emerging novel therapeutic strategies targeting adipose tissue, including adipokine-based strategies, promotion of white adipose tissue beiging as well as reduction of inflammation and fibrosis.
Collapse
Affiliation(s)
- Christine M Kusminski
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center
| | - Perry E Bickel
- Division of Endocrinology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center
| |
Collapse
|
256
|
Luo X, Jia R, Zhang Q, Sun B, Yan J. Cold-Induced Browning Dynamically Alters the Expression Profiles of Inflammatory Adipokines with Tissue Specificity in Mice. Int J Mol Sci 2016; 17:ijms17050795. [PMID: 27223282 PMCID: PMC4881611 DOI: 10.3390/ijms17050795] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/12/2016] [Accepted: 05/18/2016] [Indexed: 12/15/2022] Open
Abstract
Cold exposure or β3-adrenoceptor agonist treatment induces the adipose tissues remodeling, relevant for beige adipogenesis within white adipose tissue (WAT). It remains unclear whether this process influences inflammatory adipokines expression in adipose tissues. We determine the temporal profile of cold or β3-adrenoceptor agonist (CL316,243)-induced changes in the expression of inflammatory adipokines in adipose tissues in mice or primary mice adipocytes. Male C57BL/6J mice at eight weeks old were exposed to 4 °C for 1–5 days. Interscapular brown adipose tissue (iBAT), inguinal subcutaneous WAT (sWAT) and epididymal WAT (eWAT) were harvested for gene and protein expression analysis. In addition, cultured primary mice brown adipocyte (BA) and white adipocyte (WA) treated with or without CL316,243 were harvested for gene expression analysis. The inflammatory adipokines expressed significantly higher in WAT than BAT at baseline. They were rapidly changed in iBAT, while down-regulated in sWAT and up-regulated in eWAT during the cold acclimation. Upon CL316,243 treatment, detected inflammatory adipokines except Leptin were transiently increased in both BA and WA. Our in vivo and in vitro data demonstrate that the browning process alters the inflammatory adipokines expression in adipose tissues, which is acutely responded to in iBAT, dynamically decreased in sWAT whilst increased in eWAT for compensation.
Collapse
Affiliation(s)
- Xiao Luo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an 710061, China.
| | - Ru Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an 710061, China.
- Department of Prosthodontics, Stomatological Hospital, College of Stomatology, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Qiangling Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an 710061, China.
| | - Bo Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an 710061, China.
| | - Jianqun Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an 710061, China.
| |
Collapse
|
257
|
Sassmann-Schweda A, Singh P, Tang C, Wietelmann A, Wettschureck N, Offermanns S. Increased apoptosis and browning of TAK1-deficient adipocytes protects against obesity. JCI Insight 2016; 1:e81175. [PMID: 27699262 DOI: 10.1172/jci.insight.81175] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Obesity is an increasing health problem worldwide, and nonsurgical strategies to treat obesity have remained rather inefficient. We here show that acute loss of TGF-β-activated kinase 1 (TAK1) in adipocytes results in an increased rate of apoptotic adipocyte death and increased numbers of M2 macrophages in white adipose tissue. Mice with adipocyte-specific TAK1 deficiency have reduced adipocyte numbers and are resistant to obesity induced by a high-fat diet or leptin deficiency. In addition, adipocyte-specific TAK1-deficient mice under a high-fat diet showed increased energy expenditure, which was accompanied by enhanced expression of the uncoupling protein UCP1. Interestingly, acute induction of adipocyte-specific TAK1 deficiency in mice already under a high-fat diet was able to stop further weight gain and improved glucose tolerance. Thus, loss of TAK1 in adipocytes reduces the total number of adipocytes, increases browning of white adipose tissue, and may be an attractive strategy to treat obesity, obesity-dependent diabetes, and other associated complications.
Collapse
Affiliation(s)
| | | | | | - Astrid Wietelmann
- Scientific Service Group Nuclear Magnetic Resonance Imaging, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Nina Wettschureck
- Department of Pharmacology and.,Medical Faculty, Goethe-University Frankfurt, Frankfurt, Germany
| | - Stefan Offermanns
- Department of Pharmacology and.,Medical Faculty, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
258
|
Ruan H, Liu F. Regulation of energy metabolism and maintenance of metabolic homeostasis: the adiponectin story after 20 years. J Mol Cell Biol 2016; 8:91-2. [PMID: 27188408 DOI: 10.1093/jmcb/mjw017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Feng Liu
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA Institute of Metabolism and Endocrinology, Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South University, Changsha 410011, ChinaE-mail:
| |
Collapse
|
259
|
Abstract
Inflammation originating from the adipose tissue is considered to be one of the main driving forces for the development of insulin resistance and type 2 diabetes in obese individuals. Although a plethora of different immune cells shapes adipose tissue inflammation, this review is specifically focused on the contribution of macrophages that reside in adipose tissue in lean and obese conditions. Both conventional and tissue-specific functions of adipose tissue macrophages (ATMs) in lean and obese adipose tissue are discussed and linked with metabolic and inflammatory changes that occur during the development of obesity. Furthermore, we will address various circulating and adipose tissue-derived triggers that may be involved in shaping the ATM phenotype and underlie ATM function in lean and obese conditions. Finally, we will highlight how these changes affect adipose tissue inflammation and may be targeted for therapeutic interventions to improve insulin sensitivity in obese individuals.
Collapse
Affiliation(s)
- Lily Boutens
- Department of Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Nutrition, Metabolism and Genomics Group, Wageningen University, Bomenweg 2, 6703 HD, Wageningen, the Netherlands
| | - Rinke Stienstra
- Department of Medicine, Radboud University Medical Center, Nijmegen, the Netherlands.
- Nutrition, Metabolism and Genomics Group, Wageningen University, Bomenweg 2, 6703 HD, Wageningen, the Netherlands.
| |
Collapse
|
260
|
Ruan H, Dong LQ. Adiponectin signaling and function in insulin target tissues. J Mol Cell Biol 2016; 8:101-9. [PMID: 26993044 PMCID: PMC4816150 DOI: 10.1093/jmcb/mjw014] [Citation(s) in RCA: 285] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 01/08/2016] [Indexed: 12/13/2022] Open
Abstract
Obesity-linked type 2 diabetes is one of the paramount causes of morbidity and mortality worldwide, posing a major threat on human health, productivity, and quality of life. Despite great progress made towards a better understanding of the molecular basis of diabetes, the available clinical counter-measures against insulin resistance, a defect that is central to obesity-linked type 2 diabetes, remain inadequate. Adiponectin, an abundant adipocyte-secreted factor with a wide-range of biological activities, improves insulin sensitivity in major insulin target tissues, modulates inflammatory responses, and plays a crucial role in the regulation of energy metabolism. However, adiponectin as a promising therapeutic approach has not been thoroughly explored in the context of pharmacological intervention, and extensive efforts are being devoted to gain mechanistic understanding of adiponectin signaling and its regulation, and reveal therapeutic targets. Here, we discuss tissue- and cell-specific functions of adiponectin, with an emphasis on the regulation of adiponectin signaling pathways, and the potential crosstalk between the adiponectin and other signaling pathways involved in metabolic regulation. Understanding better just why and how adiponectin and its downstream effector molecules work will be essential, together with empirical trials, to guide us to therapies that target the root cause(s) of type 2 diabetes and insulin resistance.
Collapse
Affiliation(s)
- Hong Ruan
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Lily Q Dong
- Department of Cell and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| |
Collapse
|
261
|
Forest C, Joffin N, Jaubert AM, Noirez P. What induces watts in WAT? Adipocyte 2016; 5:136-52. [PMID: 27386158 PMCID: PMC4916896 DOI: 10.1080/21623945.2016.1187345] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 01/05/2023] Open
Abstract
Excess calories stored in white adipose tissue (WAT) could be reduced either through the activation of brown adipose tissue (BAT) or the development of brown-like cells ("beige" or "brite") in WAT, a process named "browning." Calorie dissipation in brown and beige adipocytes might rely on the induction of uncoupling protein 1 (UCP1), which is absent in white fat cells. Any increase in UCP1 is commonly considered as the trademark of energy expenditure. The intracellular events involved in the recruitment process of beige precursors were extensively studied lately, as were the effectors, hormones, cytokines, nutrients and drugs able to modulate the route of browning and theoretically affect fat mass in rodents and in humans. The aim of this review is to update the characterization of the extracellular effectors that induce UCP1 in WAT and potentially provoke calorie dissipation. The potential influence of metabolic cycling in energy expenditure is also questioned.
Collapse
Affiliation(s)
- Claude Forest
- Institut National de la Santé et de la Recherche Médicale UMR-S 1124, Faculté des Sciences Fondamentales et Biomédicales, Pharmacologie Toxicologie et Signalisation Cellulaire, Université Paris Descartes, Paris, France
- Institut de Recherche Biomédicale et d'Epidémiologie du Sport, Université Paris Descartes, Paris, France
| | - Nolwenn Joffin
- Institut National de la Santé et de la Recherche Médicale UMR-S 1124, Faculté des Sciences Fondamentales et Biomédicales, Pharmacologie Toxicologie et Signalisation Cellulaire, Université Paris Descartes, Paris, France
- Institut de Recherche Biomédicale et d'Epidémiologie du Sport, Université Paris Descartes, Paris, France
| | - Anne-Marie Jaubert
- Institut National de la Santé et de la Recherche Médicale UMR-S 1124, Faculté des Sciences Fondamentales et Biomédicales, Pharmacologie Toxicologie et Signalisation Cellulaire, Université Paris Descartes, Paris, France
| | - Philippe Noirez
- Institut de Recherche Biomédicale et d'Epidémiologie du Sport, Université Paris Descartes, Paris, France
- Faculté des Sciences et Techniques des Activités Physiques et Sportives, Université Paris Descartes, Paris, France
| |
Collapse
|
262
|
Bai Y, Shang Q, Zhao H, Pan Z, Guo C, Zhang L, Wang Q. Pdcd4 restrains the self-renewal and white-to-beige transdifferentiation of adipose-derived stem cells. Cell Death Dis 2016; 7:e2169. [PMID: 27031966 PMCID: PMC4823969 DOI: 10.1038/cddis.2016.75] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 02/23/2016] [Accepted: 03/03/2016] [Indexed: 12/31/2022]
Abstract
The stemness maintenance of adipose-derived stem cells (ADSCs) is important for adipose homeostasis and energy balance. Programmed cell death 4 (Pdcd4) has been demonstrated to be involved in the development of obesity, but its possible roles in ADSC function and adipogenic capacity remain unclear. In this study, we demonstrate that Pdcd4 is a key controller that limits the self-renewal and white-to-beige transdifferentiation of ADSCs. Pdcd4 deficiency in mice caused stemness enhancement of ADSCs as evidenced by increased expression of CD105, CD90, Nanog and Oct4 on ADSCs, together with enhanced in situ proliferation in adipose tissues. Pdcd4 deficiency promoted proliferation, colony formation of ADSCs and drove more ADSCs entering the S phase accompanied by AKT activation and cyclinD1 upregulation. Blockade of AKT signaling in Pdcd4-deficient ADSCs led to a marked decline in cyclinD1, S-phase entry and cell proliferation, revealing AKT as a target for repressing ADSC self-renewal by Pdcd4. Intriguingly, depletion of Pdcd4 promoted the transdifferentiation of ADSCs into beige adipocytes. A reduction in lipid contents and expression levels of white adipocyte markers including C/EBPα, PPAR-γ, adiponectin and αP2 was detected in Pdcd4-deficient ADSCs during white adipogenic differentiation, substituted by typical beige adipocyte characteristics including small, multilocular lipid droplets and UCP1 expression. More lactate produced by Pdcd4-deficient ADSCs might be an important contributor to the expression of UCP1 and white-to-beige transdifferentiation. In addition, an elevation of UCP1 expression was confirmed in white adipose tissues from Pdcd4-deficient mice upon high-fat diet, which displayed increased energy expenditure and resistance to obesity as compared with wild-type obese mice. These findings provide evidences that Pdcd4 produces unfavorable influences on ADSC stemness, which contribute to adipose dysfunction, obesity and metabolic syndromes, thereby proposing Pdcd4 as a potential intervening target for regulating ADSC function.
Collapse
Affiliation(s)
- Y Bai
- Department of Immunology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Q Shang
- Department of Immunology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - H Zhao
- Department of Immunology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Z Pan
- Department of Immunology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - C Guo
- Department of Immunology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - L Zhang
- Department of Immunology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Q Wang
- Department of Immunology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| |
Collapse
|
263
|
Hui X, Feng T, Liu Q, Gao Y, Xu A. The FGF21-adiponectin axis in controlling energy and vascular homeostasis. J Mol Cell Biol 2016; 8:110-9. [PMID: 26993043 DOI: 10.1093/jmcb/mjw013] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 01/04/2016] [Indexed: 12/15/2022] Open
Abstract
Whole-body energy metabolism and cardiovascular homeostasis are tightly controlled processes that involve highly coordinated crosstalk among distal organs. This is mainly achieved by a large number of hormones released from each organ. Among them, fibroblast growth factor 21 (FGF21) and adiponectin have recently gained considerable attention, since both of them possess multiple profound protective effects against a myriad of cardio-metabolic disorders. Despite their distinct structures and production sites, these two hormones share striking functional similarity. This dichotomy is recently reconciled by the demonstration of the FGF21-adiponectin axis. In adipocytes, both transcription and secretion of adiponectin are strongly induced by FGF21, which is partially dependent on PPARγ activity. Furthermore, the glucose-lowering, lipid-clearing, and anti-atherosclerotic functions of FGF21 are diminished in adiponectin-null mice, suggesting that adiponectin serves as an obligatory mediator of FGF21-elicited metabolic and vascular benefits. However, in both animals and human subjects with obesity, circulating FGF21 levels are increased whereas plasma adiponectin concentrations are reduced, perhaps due to FGF21 resistance, suggesting that dysfunctional FGF21-adiponectin axis is an important contributor to the pathogenesis of obesity-related cardio-metabolic syndrome. The FGF21-adiponectin axis protects against a cluster of cardio-metabolic disorders via mediating multi-organ communications, and is a promising target for therapeutic interventions of these chronic diseases.
Collapse
Affiliation(s)
- Xiaoyan Hui
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tianshi Feng
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China Department of Pharmacy and Pharmacology, The University of Hong Kong, Hong Kong, China
| | - Qing Liu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yuan Gao
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China Department of Medicine, The University of Hong Kong, Hong Kong, China Department of Pharmacy and Pharmacology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
264
|
Luo Y, Liu M. Adiponectin: a versatile player of innate immunity. J Mol Cell Biol 2016; 8:120-8. [PMID: 26993045 DOI: 10.1093/jmcb/mjw012] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 01/04/2016] [Indexed: 02/06/2023] Open
Abstract
Adiponectin acts as a key regulator of the innate immune system and plays a major role in the progression of inflammation and metabolic disorders. Macrophages and monocytes are representative components of the innate immune system, and their proliferation, plasticity, and polarization are a key component of metabolic adaption. Innate-like lymphocytes such as group 2 innate lymphoid cells (ILC2s), natural killer T (NKT) cells, and gamma delta T (γδ T) cells are also members of the innate immune system and play important roles in the development of obesity and its related diseases. Adiponectin senses metabolic stress and modulates metabolic adaption by targeting the innate immune system under physiological and pathological conditions. Defining the mechanisms underlying the role of adiponectin in regulating innate immunity is crucial to adiponectin-based therapeutic intervention.
Collapse
Affiliation(s)
- Yan Luo
- Institute of Metabolism and Endocrinology, Metabolic Syndrome Research Center, the Second Xiangya Hospital, Central South University, Changsha 410011, China Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Meilian Liu
- Institute of Metabolism and Endocrinology, Metabolic Syndrome Research Center, the Second Xiangya Hospital, Central South University, Changsha 410011, China Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
265
|
Heterogeneity of white adipose tissue: molecular basis and clinical implications. Exp Mol Med 2016; 48:e215. [PMID: 26964831 PMCID: PMC4892883 DOI: 10.1038/emm.2016.5] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 11/29/2015] [Indexed: 02/08/2023] Open
Abstract
Adipose tissue is a highly heterogeneous endocrine organ. The heterogeneity among different anatomical depots stems from their intrinsic differences in cellular and physiological properties, including developmental origin, adipogenic and proliferative capacity, glucose and lipid metabolism, insulin sensitivity, hormonal control, thermogenic ability and vascularization. Additional factors that influence adipose tissue heterogeneity are genetic predisposition, environment, gender and age. Under obese condition, these depot-specific differences translate into specific fat distribution patterns, which are closely associated with differential cardiometabolic risks. For instance, individuals with central obesity are more susceptible to developing diabetes and cardiovascular complications, whereas those with peripheral obesity are more metabolically healthy. This review summarizes the clinical and mechanistic evidence for the depot-specific differences that give rise to different metabolic consequences, and provides therapeutic insights for targeted treatment of obesity.
Collapse
|
266
|
Abstract
The adipose tissue (AT) is multifunctional, acting as an endocrine tissue and participating in the regulation of the organism's homeostasis. Metabolic, endocrine and inflammatory mechanisms are tightly intertwined within the AT, regulating its function. Disruption of the equilibrium among these mechanisms leads to pathologies, the most common being obesity-related insulin resistance. Two types of AT exist, the white and the brown AT. Traditionally the white AT (WAT) was thought to store energy in the form of lipids, while the brown AT (BAT) was known to mediate heat generation. Recently, the 'brite' or 'beige' AT was identified, which is localized predominantly in subcutaneous WAT, but shares functional features with the BAT and is capable of heat production. The major stimulus triggering beige and brown adipogenesis is cold exposure and catecholamine signalling. However, several further signals and mechanisms exist, which can orchestrate and fine-tune beige and brown AT function. Immune cells and inflammation have emerged as regulators of beige and brown AT function. The present review will focus on the recently identified crosstalk between innate immunity and the regulation of beige and brown adipogenesis.
Collapse
Affiliation(s)
- Vasileia Ismini Alexaki
- Department of Clinical Pathobiochemistry, Medical Faculty, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| | - Triantafyllos Chavakis
- Department of Clinical Pathobiochemistry, Medical Faculty, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| |
Collapse
|
267
|
Lee JTH, Huang Z, Pan K, Zhang HJ, Woo CW, Xu A, Wong CM. Adipose-derived lipocalin 14 alleviates hyperglycaemia by suppressing both adipocyte glycerol efflux and hepatic gluconeogenesis in mice. Diabetologia 2016; 59:604-13. [PMID: 26592241 DOI: 10.1007/s00125-015-3813-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/23/2015] [Indexed: 12/21/2022]
Abstract
AIMS/HYPOTHESIS Growing evidence supports that dysregulation of adipose tissue-derived factors contributes to the pathogenesis of diabetes and its complications. Since our global gene profiling analysis has identified lipocalin-14 (LCN14)-a secretory protein with lipid-binding properties-as a potential adipokine highly expressed in white adipose tissue (WAT), this study aims to explore the metabolic roles of LCN14 in obese mice, and to investigate the functional mechanisms involved. METHODS Immunoassays and western blotting were performed to determine the circulating level and tissue distribution of LCN14, respectively. Recombinant adeno-associated virus (rAAV)-mediated gene delivery was used to overexpress LCN14 in diet-induced obese (DIO) mice and the effects on glucose and lipid metabolism were examined. RESULTS LCN14 is expressed predominantly in WAT. Both circulating levels of LCN14 and its expression in adipose tissues are repressed in DIO and genetically inherited diabetic (db/db) mice. Overexpression of LCN14 by rAAV-mediated gene delivery in DIO mice significantly increased insulin sensitivity in major metabolic tissues and ameliorated hyperglycaemia by inhibiting hepatic gluconeogenesis. The reduced hepatic glucose production is attributed to the suppressive effects of LCN14 on the expression of gluconeogenic genes and on glycerol efflux in adipocytes, possibly by reducing the expression of aquaporin-7. CONCLUSIONS/INTERPRETATION Reduced LCN14 expression is involved in the pathogenesis of obesity-related metabolic dysregulation. LCN14 exerts its beneficial effects on glucose homeostasis and insulin sensitivity via its actions in both adipocytes and hepatocytes.
Collapse
Affiliation(s)
- Jimmy Tsz Hang Lee
- State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Zhe Huang
- State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Kewu Pan
- State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Herbert Jialiang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Connie Waihong Woo
- State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- Research Centre of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- Research Centre of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Chi-Ming Wong
- State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.
- Research Centre of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.
| |
Collapse
|
268
|
Burcelin R, Pomié C. Gut Microbiota Cool-Down Burning Fat! The Immune Hypothesis. Trends Endocrinol Metab 2016; 27:67-68. [PMID: 26747615 DOI: 10.1016/j.tem.2015.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
Abstract
Obesity is characterized by gut microbiota dysbiosis and reduced thermogenic activity of brown adipose tissue. A recent study reveals that gut microbiota hampers the emergence of thermogenic brown fat cells named beige cells within white fat depots via a mechanism that involves the control of macrophages and eosinophil infiltration.
Collapse
Affiliation(s)
- Remy Burcelin
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France; Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Team 2 : 'Intestinal Risk Factors, Diabetes, Dyslipidemia' F-31432 Toulouse Cedex 4, France.
| | - Céline Pomié
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France; Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Team 2 : 'Intestinal Risk Factors, Diabetes, Dyslipidemia' F-31432 Toulouse Cedex 4, France
| |
Collapse
|
269
|
Abstract
Low-grade tissue inflammation induced by obesity can result in insulin resistance, which in turn is a key cause of type 2 diabetes mellitus. Cells of the innate immune system produce cytokines and other factors that impair insulin signalling, which contributes to the connection between obesity and the onset of type 2 diabetes mellitus. Here, we review the innate immune cells involved in secreting inflammatory factors in the obese state. In the adipose tissue, these cells include proinflammatory adipose tissue macrophages and natural killer cells. We also discuss the role of innate immune cells, such as anti-inflammatory adipose tissue macrophages, eosinophils, group 2 innate lymphoid cells and invariant natural killer T cells, in maintaining an anti-inflammatory and insulin-sensitive environment in the lean state. In the liver, both Kupffer cells and recruited hepatic macrophages can contribute to decreased hepatic insulin sensitivity. Proinflammatory macrophages might also adversely affect insulin sensitivity in the skeletal muscle and pancreatic β-cell function. Finally, this Review provides an overview of the mechanisms for regulating proinflammatory immune responses that could lead to future therapeutic opportunities to improve insulin sensitivity.
Collapse
Affiliation(s)
- Denise E Lackey
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0673, USA
| | - Jerrold M Olefsky
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0673, USA
| |
Collapse
|
270
|
Hiramatsu-Ito M, Shibata R, Ohashi K, Uemura Y, Kanemura N, Kambara T, Enomoto T, Yuasa D, Matsuo K, Ito M, Hayakawa S, Ogawa H, Otaka N, Kihara S, Murohara T, Ouchi N. Omentin attenuates atherosclerotic lesion formation in apolipoprotein E-deficient mice. Cardiovasc Res 2015; 110:107-17. [DOI: 10.1093/cvr/cvv282] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 12/24/2015] [Indexed: 12/25/2022] Open
|
271
|
Divergent responses to thermogenic stimuli in BAT and subcutaneous adipose tissue from interleukin 18 and interleukin 18 receptor 1-deficient mice. Sci Rep 2015; 5:17977. [PMID: 26656097 PMCID: PMC4674707 DOI: 10.1038/srep17977] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/10/2015] [Indexed: 01/15/2023] Open
Abstract
Brown and beige adipocytes recruitment in brown (BAT) or white adipose tissue, mainly in the inguinal fat pad (iWAT), meet the need for temperature adaptation in cold-exposure conditions and protect against obesity in face of hypercaloric diets. Using interleukin18 (Il18) and Il18 receptor 1- knockout (Il18r1-KO) mice, this study aimed to investigate the role of IL18 signaling in BAT and iWAT activation and thermogenesis under both stimuli. Il18-KO, extremely dietary obesity-prone as previously described, failed to develop diet-induced thermogenesis as assessed by BAT and iWAT Ucp1 mRNA levels. Overweight when fed standard chow but not HFD, HFD-fed Il18r1-KO mice exhibited increased iWAT Ucp1 gene expression. Energy expenditure was reduced in pre-obese Il18r1-KO mice and restored upon HFD-challenge. Cold exposure lead to similar results; Il18r1-KO mice were protected against acute body temperature drop, displaying a more brown-like structure, alternative macrophage activation and thermogenic gene expression in iWAT than WT controls. Opposite effects were observed in Il18-KO mice. Thus, Il18 and Il18r1 genetic ablation disparate effects on energy homeostasis are likely mediated by divergent BAT responses to thermogenic stimuli as well as iWAT browning. These results suggest that a more complex receptor-signaling system mediates the IL18 adipose-tissue specific effects in energy expenditure.
Collapse
|