251
|
Abstract
Cardiac muscle cells exhibit two related but distinct modes of growth that are highly regulated during development and disease. Cardiac myocytes rapidly proliferate during fetal life but exit the cell cycle irreversibly soon after birth, following which the predominant form of growth shifts from hyperplastic to hypertrophic. Much research has focused on identifying the candidate mitogens, hypertrophic agonists, and signaling pathways that mediate these processes in isolated cells. What drives the proliferative growth of embryonic myocardium in vivo and the mechanisms by which adult cardiac myocytes hypertrophy in vivo are less clear. Efforts to answer these questions have benefited from rapid progress made in techniques to manipulate the murine genome. Complementary technologies for gain- and loss-of-function now permit a mutational analysis of these growth control pathways in vivo in the intact heart. These studies have confirmed the importance of suspected pathways, have implicated unexpected pathways as well, and have led to new paradigms for the control of cardiac growth.
Collapse
Affiliation(s)
- W R MacLellan
- Department of Medicine, UCLA School of Medicine 90076, USA
| | | |
Collapse
|
252
|
Tanuma N, Nakamura K, Shima H, Kikuchi K. Protein-tyrosine phosphatase PTPepsilon C inhibits Jak-STAT signaling and differentiation induced by interleukin-6 and leukemia inhibitory factor in M1 leukemia cells. J Biol Chem 2000; 275:28216-21. [PMID: 10859312 DOI: 10.1074/jbc.m003661200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We engineered and expressed both a wild-type and mutant cytosolic isoform of PTPepsilon (PTPepsilonC) in murine M1 leukemic cells, which can be induced to growth arrest and monocytic differentiation by interleukin (IL)-6 and leukemia inhibitory factor (LIF). Forced expression of PTPepsilonC inhibited IL-6- and LIF-induced monocytic differentiation and apoptosis in M1 cells, whereas expression of PTPepsilonM, a transmembrane isoform of PTPepsilon, did not. PTPepsilonC expression resulted in lower levels of IL-6-induced tyrosine phosphorylation of Jak1, Tyk2, gp130, and Stat3 compared with parent cells. In M1 transfectants expressing an inactive mutant of PTPepsilonC, both tyrosine phosphorylation and apoptosis induced by IL-6 and LIF were potentiated rather than inhibited. These results suggest an important role for PTPepsilonC in negative regulation of IL-6- and LIF-induced Jak-STAT signaling.
Collapse
Affiliation(s)
- N Tanuma
- Division of Biochemical Oncology and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | | | | | | |
Collapse
|
253
|
Zhang Y, Turkson J, Carter-Su C, Smithgall T, Levitzki A, Kraker A, Krolewski JJ, Medveczky P, Jove R. Activation of Stat3 in v-Src-transformed fibroblasts requires cooperation of Jak1 kinase activity. J Biol Chem 2000; 275:24935-44. [PMID: 10823829 DOI: 10.1074/jbc.m002383200] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Signal transducers and activators of transcription (STATs) are latent cytoplasmic transcription factors that transduce signals from the cell membrane to the nucleus upon activation by tyrosine phosphorylation. Several protein-tyrosine kinases can induce phosphorylation of STATs in cells, including Janus kinase (JAK) and Src family kinases. One STAT family member, Stat3, is constitutively activated in Src-transformed NIH3T3 cells and is required for cell transformation. However, it is not entirely clear whether Src kinase can phosphorylate Stat3 directly or through another pathway, such as JAK family kinases. To address this question, we investigated the phosphorylation of STATs in baculovirus-infected Sf-9 insect cells in the presence of Src. Our results show that Src can tyrosine-phosphorylate Stat1 and Stat3 but not Stat5 in this system. The phosphorylated Stat1 and Stat3 proteins are functionally activated, as measured by their abilities to specifically bind DNA oligonucleotide probes. In addition, the JAK family member Jak1 efficiently phosphorylates Stat1 but not Stat3 in Sf-9 cells. By contrast, we observe that AG490, a JAK family-selective inhibitor, and dominant negative Jak1 protein can significantly inhibit Stat3-induced DNA binding activity as well as Stat3-mediated gene activation in NIH3T3 cells. Furthermore, wild-type or kinase-inactive platelet-derived growth factor receptor enhances Stat3 activation by v-Src, consistent with the receptor serving a scaffolding function for recruitment and activation of Stat3. Our results demonstrate that Src kinase is capable of activating STATs in Sf-9 insect cells without expression of JAK family members; however, Jak1 and platelet-derived growth factor receptor are required for maximal Stat3 activation by Src kinase in mammalian cells. Based on these findings, we propose a model in which Jak1 serves to recruit Stat3 to a receptor complex with Src kinase, which in turn directly phosphorylates and activates Stat3 in Src-transformed fibroblasts.
Collapse
Affiliation(s)
- Y Zhang
- Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
254
|
Sleeman MW, Anderson KD, Lambert PD, Yancopoulos GD, Wiegand SJ. The ciliary neurotrophic factor and its receptor, CNTFR alpha. ACTA ACUST UNITED AC 2000. [PMID: 10812968 DOI: 10.1016/s0165-7208(00)80028-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Ciliary neurotrophic factor (CNTF) is expressed in glial cells within the central and peripheral nervous systems. CNTF stimulates gene expression, cell survival or differentiation in a variety of neuronal cell types such as sensory, sympathetic, ciliary and motor neurons. In addition, effects of CNTF on oligodendrocytes as well as denervated and intact skeletal muscle have been documented. CNTF itself lacks a classical signal peptide sequence of a secreted protein, but is thought to convey its cytoprotective effects after release from adult glial cells by some mechanism induced by injury. Interestingly, mice that are homozygous for an inactivated CNTF gene develop normally and initially thrive. Only later in adulthood do they exhibit a mild loss of motor neurons with resulting muscle weakness, leading to the suggestion that CNTF is not essential for neural development, but instead acts in response to injury or other stresses. The CNTF receptor complex is most closely related to, and shares subunits with the receptor complexes for interleukin-6 and leukemia inhibitory factor. The specificity conferring alpha subunit of the CNTF complex (CNTFR alpha), is extremely well conserved across species, and has a distribution localized predominantly to the nervous system and skeletal muscle. CNTFR alpha lacks a conventional transmembrane domain and is thought to be anchored to the cell membrane by a glycosyl-phosphatidylinositol linkage. Mice lacking CNTFR alpha die perinatally, perhaps indicating the existence of a second developmentally important CNTF-like ligand. Signal transduction by CNTF requires that it bind first to CNTFR alpha, permitting the recruitment of gp130 and LIFR beta, forming a tripartite receptor complex. CNTF-induced heterodimerization of the beta receptor subunits leads to tyrosine phosphorylation (through constitutively associated JAKs), and the activated receptor provides docking sites for SH2-containing signaling molecules, such as STAT proteins. Activated STATs dimerize and translocate to the nucleus to bind specific DNA sequences, resulting in enhanced transcription of responsive genes. The neuroprotective effects of CNTF have been demonstrated in a number of in vitro cell models as well as in vivo in mutant mouse strains which exhibit motor neuron degeneration. Intracerebral administration of CNTF and CNTF analogs has also been shown to protect striatal output neurons in rodent and primate models of Huntington's disease. Treatment of humans and animals with CNTF is also known to induce weight loss characterized by a preferential loss of body fat. When administered systemically, CNTF activates downstream signaling molecules such as STAT-3 in areas of the hypothalamus which regulate food intake. In addition to its neuronal actions, CNTF and analogs have been shown to act on non-neuronal cells such as glia, hepatocytes, skeletal muscle, embryonic stem cells and bone marrow stromal cells.
Collapse
Affiliation(s)
- M W Sleeman
- Regeneron Pharmaceuticals, Tarrytown, NY 10591-6707, USA.
| | | | | | | | | |
Collapse
|
255
|
Duval D, Reinhardt B, Kedinger C, Boeuf H. Role of suppressors of cytokine signaling (Socs) in leukemia inhibitory factor (LIF) ‐dependent embryonic stem cell survival. FASEB J 2000. [DOI: 10.1096/fj.99-0810com] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- David Duval
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS/INSERM/ULP)BP 163, F‐67404ILLKIRCH CedexFrance
| | - Béatrice Reinhardt
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS/INSERM/ULP)BP 163, F‐67404ILLKIRCH CedexFrance
| | - Claude Kedinger
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS/INSERM/ULP)BP 163, F‐67404ILLKIRCH CedexFrance
| | - Hélène Boeuf
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS/INSERM/ULP)BP 163, F‐67404ILLKIRCH CedexFrance
| |
Collapse
|
256
|
Tancredi V, D'Antuono M, Cafè C, Giovedì S, Buè MC, D'Arcangelo G, Onofri F, Benfenati F. The inhibitory effects of interleukin-6 on synaptic plasticity in the rat hippocampus are associated with an inhibition of mitogen-activated protein kinase ERK. J Neurochem 2000; 75:634-43. [PMID: 10899938 DOI: 10.1046/j.1471-4159.2000.0750634.x] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several cytokines have short-term effects on synaptic transmission and plasticity that are thought to be mediated by the activation of intracellular protein kinases. We have studied the effects of interleukin-6 (IL-6) on the expression of paired pulse facilitation (PPF), posttetanic potentiation (PTP), and long-term potentiation (LTP) in the CA1 region of the hippocampus as well as on the activation of the signal transducer and activator of transcription-3 (STAT3), the mitogen-activated protein kinase ERK (MAPK/ERK), and the stress-activated protein kinase/c-Jun NH(2)-terminal kinase (SAPK/JNK). IL-6 induced a marked and dose-dependent decrease in the expression of PTP and LTP that could be counteracted by the simultaneous treatment with the tyrosine kinase inhibitor lavendustin A (LavA) but did not significantly affect PPF. The IL-6-induced inhibition of PTP and LTP was accompanied by a simulation of STAT3 tyrosine phosphorylation and an inhibition of MAPK/ERK dual phosphorylation, in the absence of changes in the state of activation of SAPK/JNK. Both effects of IL-6 on STAT3 and MAPK/ERK activation were effectively counteracted by LavA treatment. The results indicate the tyrosine kinases and MAPK/ERK are involved in hippocampal synaptic plasticity and may represent preferential intracellular targets for the actions of IL-6 in the adult nervous system.
Collapse
Affiliation(s)
- V Tancredi
- Department of Neuroscience, University of Roma Tor Vergata, Roma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
257
|
Pandey A, Ozaki K, Baumann H, Levin SD, Puel A, Farr AG, Ziegler SF, Leonard WJ, Lodish HF. Cloning of a receptor subunit required for signaling by thymic stromal lymphopoietin. Nat Immunol 2000; 1:59-64. [PMID: 10881176 DOI: 10.1038/76923] [Citation(s) in RCA: 355] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Signaling by type I cytokines involves the formation of receptor homodimers, heterodimers or higher order receptor oligomers. Here we report the cloning of a type I cytokine receptor subunit that is most closely related to the common cytokine receptor gamma chain (gamma c). Binding and crosslinking experiments demonstrate that this protein is the receptor for a recently described interleukin 7 (IL-7)-like factor, thymic stromal lymphopoietin (TSLP). Binding of TSLP to the thymic stromal lymphopoietin receptor (TSLPR) is increased markedly in the presence of the IL-7 receptor alpha chain (IL-7R alpha). IL-7R alpha-expressing but not parental 32D cells proliferate in the presence of exogenous TSLP. Moreover, a combination of IL-7R alpha and TSLPR is required for TSLP-dependent activation of a STAT5-dependent reporter construct. Thus it is shown that IL-7R alpha is a component of both the IL-7 and TSLP receptors, which helps to explain why deletion of the gene that encodes IL-7R alpha affects the lymphoid system more severely than deletion of the gene encoding IL-7 does. Cloning of TSLPR should facilitate an understanding of TSLP function and its signaling mechanism.
Collapse
Affiliation(s)
- A Pandey
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
258
|
Hirano T, Ishihara K, Hibi M. Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene 2000; 19:2548-56. [PMID: 10851053 DOI: 10.1038/sj.onc.1203551] [Citation(s) in RCA: 931] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Members of the IL-6 cytokine family are involved in a variety of biological responses, including the immune response, inflammation, hematopoiesis, and oncogenesis by regulating cell growth, survival, and differentiation. These cytokines use gp130 as a common receptor subunit. The binding of ligand to gp130 activates the JAK/STAT signal transduction pathway, where STAT3 plays a central role in transmitting the signals from the membrane to the nucleus. STAT3 is essential for gp130-mediated cell survival and G1 to S cell-cycle-transition signals. Both c-myc and pim have been identified as target genes of STAT3 and together can compensate for STAT3 in cell survival and cell-cycle transition. STAT3 is also required for gp130-mediated maintenance of the pluripotential state of proliferating embryonic stem cells and for the gp130-induced macrophage differentiation of M1 cells. Furthermore, STAT3 regulates cell movement, such as leukocyte, epidermal cell, and keratinocyte migration. STAT3 also appears to regulate B cell differentiation into antibody-forming plasma cells. Since the IL-6/gp130/STAT3 signaling pathway is involved in both B cell growth and differentiation into plasma cells it is likely to play a central role in the generation of plasma cell neoplasias. Oncogene (2000).
Collapse
Affiliation(s)
- T Hirano
- Division of Molecular Oncology C-7, Biomedical Research Center, Osaka University Graduate School of Medicine, 2-2 Yamada-oko, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
259
|
Abstract
Since their discovery as key mediators of cytokine signaling, considerable progress has been made in defining the structure-function relationships of Signal Transducers and Activators of Transcription (STATs). In addition to their central roles in normal cell signaling, recent studies have demonstrated that diverse oncoproteins can activate specific STATs (particularly Stat3 and Stat5) and that constitutively-activated STAT signaling directly contributes to oncogenesis. Furthermore, extensive surveys of primary tumors and cell lines derived from tumors indicate that inappropriate activation of specific STATs occurs with surprisingly high frequency in a wide variety of human cancers. Together, these findings provide compelling evidence that aberrant STAT activation associated with oncogenesis is not merely adventitious but instead contributes to the process of malignant transformation. These studies are beginning to reveal the molecular mechanisms leading to STAT activation in the context of oncogenesis, and candidate genes regulated by STATs that may contribute to oncogenesis are being identified. Recent studies suggest that activated STAT signaling participates in oncogenesis by stimulating cell proliferation and preventing apoptosis. This review presents the evidence for critical roles of STATs in oncogenesis and discusses the potential for development of novel cancer therapies based on mechanistic understanding of STAT signaling. Oncogene (2000).
Collapse
Affiliation(s)
- T Bowman
- Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida, FL 33612, USA
| | | | | | | |
Collapse
|
260
|
Abstract
Congestive heart failure is a common clinical problem resulting in significant morbidity and mortality. Although considerable progress has been made in elucidating the pathophysiologic mechanisms that lead to the development of this process, much remains unknown. The techniques of modern molecular biology now allow a detailed and systematic analysis of this disease. Recent data linking cardiac hypertrophy, aberrant signaling, or cytoskeletal abnormalities to the development of heart failure have provided new insights into this process. These studies have confirmed the importance of many classical pathways but also revealed novel pathways. This review will focus on the recent advances that have been made and will highlight the importance they have had in our understanding and treatment of heart failure.
Collapse
Affiliation(s)
- W R MacLellan
- Department of Medicine, UCLA School of Medicine, Los Angeles, California 90076, USA.
| |
Collapse
|
261
|
Itoh M, Yoshida Y, Nishida K, Narimatsu M, Hibi M, Hirano T. Role of Gab1 in heart, placenta, and skin development and growth factor- and cytokine-induced extracellular signal-regulated kinase mitogen-activated protein kinase activation. Mol Cell Biol 2000; 20:3695-704. [PMID: 10779359 PMCID: PMC85666 DOI: 10.1128/mcb.20.10.3695-3704.2000] [Citation(s) in RCA: 223] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gab1 is a member of the Gab/DOS (Daughter of Sevenless) family of adapter molecules, which contain a pleckstrin homology (PH) domain and potential binding sites for SH2 and SH3 domains. Gab1 is tyrosine phosphorylated upon stimulation of various cytokines, growth factors, and antigen receptors in cell lines and interacts with signaling molecules, such as SHP-2 and phosphatidylinositol 3-kinase, although its biological roles have not yet been established. To reveal the functions of Gab1 in vivo, we generated mice lacking Gab1 by gene targeting. Gab1-deficient embryos died in utero and displayed developmental defects in the heart, placenta, and skin, which were similar to phenotypes observed in mice lacking signals of the hepatocyte growth factor/scatter factor, platelet-derived growth factor, and epidermal growth factor pathways. Consistent with these observations, extracellular signal-regulated kinase mitogen-activated protein (ERK MAP) kinases were activated at much lower levels in cells from Gab1-deficient embryos in response to these growth factors or to stimulation of the cytokine receptor gp130. These results indicate that Gab1 is a common player in a broad range of growth factor and cytokine signaling pathways linking ERK MAP kinase activation.
Collapse
Affiliation(s)
- M Itoh
- Division of Molecular Oncology, Biomedical Research Center, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
262
|
Induction of apoptosis by extracellular ubiquitin in human hematopoietic cells: possible involvement of STAT3 degradation by proteasome pathway in interleukin 6-dependent hematopoietic cells. Blood 2000. [DOI: 10.1182/blood.v95.8.2577.008k17_2577_2585] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ubiquitin–proteasome pathway is responsible for selective degradation of short-lived cellular proteins and is critical for the regulation of many cellular processes. We previously showed that ubiquitin (Ub) secreted from hairy cell leukemia cells had inhibitory effects on clonogenic growth of normal hematopoietic progenitor cells. In this study, we examined the effects of exogenous Ub on the growth and survival of a series of human hematopoietic cells, including myeloid cell lines (HL-60 and U937), a B-cell line (Daudi), and T-cell lines (KT-3, MT-4, YTC-3, and MOLT-4). Exogenous Ub inhibited the growth of various hematopoietic cell lines tested, especially of KT-3 and HL-60 cells. The growth-suppressive effects of Ub on KT-3 and HL-60 cells were almost completely abrogated by the proteasome inhibitor PSI or MG132, suggesting the involvement of the proteasome pathway in this process. Furthermore, exogenous Ub evoked severe apoptosis of KT-3 and HL-60 cells through the activation of caspase-3. In interleukin-6 (IL-6)-dependent KT-3 cells, STAT3 was found to be conjugated by exogenous biotinylated Ub and to be degraded in a proteasome-dependent manner, whereas expression levels of STAT1, STAT5, or mitogen-activated protein kinase were not affected. Moreover, IL-6-induced the up-regulation of Bcl-2 and c-myc, and JunB was impaired in Ub-treated KT-3 cells, suggesting that the anti-apoptotic and mitogenic effects of IL-6 were disrupted by Ub. These results suggest that extracellular Ub was incorporated into hematopoietic cells and mediated their growth suppression and apoptosis through proteasome-dependent degradation of selective cellular proteins such as STAT3.
Collapse
|
263
|
Induction of apoptosis by extracellular ubiquitin in human hematopoietic cells: possible involvement of STAT3 degradation by proteasome pathway in interleukin 6-dependent hematopoietic cells. Blood 2000. [DOI: 10.1182/blood.v95.8.2577] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe ubiquitin–proteasome pathway is responsible for selective degradation of short-lived cellular proteins and is critical for the regulation of many cellular processes. We previously showed that ubiquitin (Ub) secreted from hairy cell leukemia cells had inhibitory effects on clonogenic growth of normal hematopoietic progenitor cells. In this study, we examined the effects of exogenous Ub on the growth and survival of a series of human hematopoietic cells, including myeloid cell lines (HL-60 and U937), a B-cell line (Daudi), and T-cell lines (KT-3, MT-4, YTC-3, and MOLT-4). Exogenous Ub inhibited the growth of various hematopoietic cell lines tested, especially of KT-3 and HL-60 cells. The growth-suppressive effects of Ub on KT-3 and HL-60 cells were almost completely abrogated by the proteasome inhibitor PSI or MG132, suggesting the involvement of the proteasome pathway in this process. Furthermore, exogenous Ub evoked severe apoptosis of KT-3 and HL-60 cells through the activation of caspase-3. In interleukin-6 (IL-6)-dependent KT-3 cells, STAT3 was found to be conjugated by exogenous biotinylated Ub and to be degraded in a proteasome-dependent manner, whereas expression levels of STAT1, STAT5, or mitogen-activated protein kinase were not affected. Moreover, IL-6-induced the up-regulation of Bcl-2 and c-myc, and JunB was impaired in Ub-treated KT-3 cells, suggesting that the anti-apoptotic and mitogenic effects of IL-6 were disrupted by Ub. These results suggest that extracellular Ub was incorporated into hematopoietic cells and mediated their growth suppression and apoptosis through proteasome-dependent degradation of selective cellular proteins such as STAT3.
Collapse
|
264
|
Baetta R, Soma M, De-Fraja C, Comparato C, Teruzzi C, Magrassi L, Cattaneo E. Upregulation and activation of Stat6 precede vascular smooth muscle cell proliferation in carotid artery injury model. Arterioscler Thromb Vasc Biol 2000; 20:931-9. [PMID: 10764656 DOI: 10.1161/01.atv.20.4.931] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The role of signal transducers and activators of transcription (STAT) proteins in modulating proliferation and differentiation of various cell types in the hematopoietic system and the central nervous system has been well established. In contrast, the pathophysiological role of these proteins in vascular proliferative diseases has remained unproven, despite in vitro observations emphasizing the involvement of the STAT system in mediating vascular smooth muscle cell (VSMC) proliferation. On the basis of our previous observations demonstrating the occurrence of a specific modulation of Stat6 protein during the proliferative, migratory, and differentiation phases of the developing brain, we investigated whether Stat6 protein is present and modulated in arterial tissue challenged by perivascular injury. The time course of expression and localization of Stat6 after arterial injury was analyzed by immunohistochemistry, Western blot analysis, and confocal microscopy. Six hours after injury, the expression of Stat6 was markedly increased. This overexpression preceded the onset of VSMC proliferation and was downregulated starting from 7 days after injury, coincident with the decline of VSMC proliferation. Moreover, early after injury, Stat6 was predominantly localized at the nuclear level, denoting its functional activation. Conversely, Stat6 staining at later time points was largely cytosolic, suggesting silencing effects of this signaling pathway. These data indicate that Stat6 signaling may contribute to the modifications of gene expression underlying VSMC activation in the context of acute vascular proliferative diseases.
Collapse
Affiliation(s)
- R Baetta
- Institute of Pharmacological Sciences, University of Milan, Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
265
|
D'Arcangelo G, Tancredi V, Onofri F, D'Antuono M, Giovedì S, Benfenati F. Interleukin-6 inhibits neurotransmitter release and the spread of excitation in the rat cerebral cortex. Eur J Neurosci 2000; 12:1241-52. [PMID: 10762353 DOI: 10.1046/j.1460-9568.2000.00011.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cytokines are extracellular mediators that have been reported to affect neurotransmitter release and synaptic plasticity phenomena when applied in vitro. Most of these effects occur rapidly after the application of the cytokines and are presumably mediated through the activation of protein phosphorylation processes. While many cytokines have an inflammatory action, interleukin-6 (IL-6) has been found to have a neuroprotective effect against ischaemia lesions and glutamate excitotoxicity, and to increase neuronal survival in a variety of experimental conditions. In this paper, the functional effects of IL-6 on the spread of excitation visualized by dark-field/infrared videomicroscopy in rat cortical slices and on glutamate release from cortical synaptosomes were analysed and correlated with the activation of the STAT3, mitogen-activated protein kinase ERK (MAPK/ERK) and stress-activated protein kinase/cJun NH2-terminal kinase (SAPK/JNK) pathways. We have found that IL-6 depresses the spread of excitation and evoked glutamate release in the cerebral cortex, and that these effects are accompanied by a stimulation of STAT3 tyrosine phosphorylation, an inhibition of MAPK/ERK activity, a decreased phosphorylation of the presynaptic MAPK/ERK substrate synapsin I and no detectable effects on SAPK/JNK. The effects of IL-6 were effectively counteracted by treatment of the cortical slices with the tyrosine kinase inhibitor lavendustin A. The inhibitory effects of IL-6 on glutamate release and on the spread of excitation in the rat cerebral cortex indicate that the protective effect of IL-6 on neuronal survival could be mediated by a downregulation of neuronal activity, release of excitatory neurotransmitters and MAPK/ERK activity.
Collapse
Affiliation(s)
- G D'Arcangelo
- Department of Neuroscience, University of Roma Tor Vergata, Via di Tor Vergata 135, I-00133 Roma, Italy
| | | | | | | | | | | |
Collapse
|
266
|
Hibi M, Hirano T. Gab-family adapter molecules in signal transduction of cytokine and growth factor receptors, and T and B cell antigen receptors. Leuk Lymphoma 2000; 37:299-307. [PMID: 10752981 DOI: 10.3109/10428190009089430] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Gab1 and Gab2 (Grb2 associated binder 1 and 2) are scaffolding adapter molecules that display sequence similarity with Drosophila DOS (daughter of sevenless), which is a potential substrate for the protein tyrosine phosphatase, Corkscrew, Both Gab1 and Gab2, like DOS, have a pleckstrin homology domain and potential binding sites for SH2 and SH3 domains. Gab1 and Gab2 are phosphorylated on tyrosine upon the stimulation of various cytokines, growth factors, and antigen receptors, and interact with signaling molecules, such as Grb2, SHP-2, and PI-3 kinase. Overexpression of Gab1 or Gab2 mimics or enhances growth factor or cytokine-mediated biological processes and activates ERK MAP kinase. These data imply that Gab1 and Gab2 act downstream of a broad range of cytokine and growth factor receptors, as well as T and B antigen receptors, and link these receptors to ERK MAP kinase and biological actions.
Collapse
Affiliation(s)
- M Hibi
- Division of Molecular Oncology, Biomedical Research Center, Osaka University Graduate School of Medicine, Suita, Japan
| | | |
Collapse
|
267
|
Sleeman MW, Anderson KD, Lambert PD, Yancopoulos GD, Wiegand SJ. The ciliary neurotrophic factor and its receptor, CNTFR alpha. PHARMACEUTICA ACTA HELVETIAE 2000; 74:265-72. [PMID: 10812968 DOI: 10.1016/s0031-6865(99)00050-3] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Ciliary neurotrophic factor (CNTF) is expressed in glial cells within the central and peripheral nervous systems. CNTF stimulates gene expression, cell survival or differentiation in a variety of neuronal cell types such as sensory, sympathetic, ciliary and motor neurons. In addition, effects of CNTF on oligodendrocytes as well as denervated and intact skeletal muscle have been documented. CNTF itself lacks a classical signal peptide sequence of a secreted protein, but is thought to convey its cytoprotective effects after release from adult glial cells by some mechanism induced by injury. Interestingly, mice that are homozygous for an inactivated CNTF gene develop normally and initially thrive. Only later in adulthood do they exhibit a mild loss of motor neurons with resulting muscle weakness, leading to the suggestion that CNTF is not essential for neural development, but instead acts in response to injury or other stresses. The CNTF receptor complex is most closely related to, and shares subunits with the receptor complexes for interleukin-6 and leukemia inhibitory factor. The specificity conferring alpha subunit of the CNTF complex (CNTFR alpha), is extremely well conserved across species, and has a distribution localized predominantly to the nervous system and skeletal muscle. CNTFR alpha lacks a conventional transmembrane domain and is thought to be anchored to the cell membrane by a glycosyl-phosphatidylinositol linkage. Mice lacking CNTFR alpha die perinatally, perhaps indicating the existence of a second developmentally important CNTF-like ligand. Signal transduction by CNTF requires that it bind first to CNTFR alpha, permitting the recruitment of gp130 and LIFR beta, forming a tripartite receptor complex. CNTF-induced heterodimerization of the beta receptor subunits leads to tyrosine phosphorylation (through constitutively associated JAKs), and the activated receptor provides docking sites for SH2-containing signaling molecules, such as STAT proteins. Activated STATs dimerize and translocate to the nucleus to bind specific DNA sequences, resulting in enhanced transcription of responsive genes. The neuroprotective effects of CNTF have been demonstrated in a number of in vitro cell models as well as in vivo in mutant mouse strains which exhibit motor neuron degeneration. Intracerebral administration of CNTF and CNTF analogs has also been shown to protect striatal output neurons in rodent and primate models of Huntington's disease. Treatment of humans and animals with CNTF is also known to induce weight loss characterized by a preferential loss of body fat. When administered systemically, CNTF activates downstream signaling molecules such as STAT-3 in areas of the hypothalamus which regulate food intake. In addition to its neuronal actions, CNTF and analogs have been shown to act on non-neuronal cells such as glia, hepatocytes, skeletal muscle, embryonic stem cells and bone marrow stromal cells.
Collapse
Affiliation(s)
- M W Sleeman
- Regeneron Pharmaceuticals, Tarrytown, NY 10591-6707, USA.
| | | | | | | | | |
Collapse
|
268
|
GATA-1 blocks IL-6-induced macrophage differentiation and apoptosis through the sustained expression of cyclin D1 and Bcl-2 in a murine myeloid cell line M1. Blood 2000. [DOI: 10.1182/blood.v95.4.1264.004k09_1264_1273] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytokines exert pleiotropic effects on target cells in a manner dependent on the cell type or stage of differentiation. To determine how instinctive cell properties affect biological effects of cytokine, we introduced an erythroid/megakaryocyte lineage-specific transcription factor, GATA-1, into a murine myeloid cell line M1, which is known to undergo macrophage differentiation in response to interleukin 6 (IL-6). Overexpression of GATA-1 changed the phenotype of M1 cells from myeloid to megakaryocytic lineage. Furthermore, GATA-1 blocked both IL-6-induced macrophage differentiation and apoptosis of M1 cells. Although STAT3 is essential for IL-6-induced macrophage differentiation of M1 cells, GATA-1 had little or no effect on tyrosine phosphorylation, DNA binding, and transcriptional activities of STAT3 in Western blot analysis, electropholic mobility shift assay (EMSA), and luciferase assays. During IL-6-induced macrophage differentiation of M1 cells, IL-6 down-regulated cyclin D1 expression and induced p19INK4D expression, leading to reduction in cdk4 activities. In contrast, sustained expression of cyclin D1 and a significantly lesser amount of p19INK4D induction were observed in IL-6-treated M1 cells overexpressing GATA-1. Furthermore, although bcl-2 expression was severely reduced by IL-6 in M1 cells, it was sustained in GATA-1-introduced M1 cells during the culture with IL-6. Both IL-6-induced macrophage differentiation and apoptosis were significantly abrogated by coexpression of cyclin D1 and bcl-2, whereas overexpressions of cyclin D1 or bcl-2 inhibited only differentiation or apoptosis, respectively. These results suggested that GATA-1 may not only reprogram the lineage phenotype of M1 cells but also disrupt the biologic effects of IL-6 through the sustained expression of cyclin D1 and bcl-2.
Collapse
|
269
|
Yamauchi-Takihara K, Kishimoto T. Cytokines and their receptors in cardiovascular diseases--role of gp130 signalling pathway in cardiac myocyte growth and maintenance. Int J Exp Pathol 2000; 81:1-16. [PMID: 10718860 PMCID: PMC2517789 DOI: 10.1046/j.1365-2613.2000.00139.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/1999] [Accepted: 12/07/1999] [Indexed: 01/19/2023] Open
Abstract
Interleukin (IL)-6-related cytokines share gp130 as the signal-transducing protein. Cardiac myocytes produce various kinds of cytokines including IL-6 and cardiotrophin-1. Activation of gp130 transduces hypertrophic and cytoprotective signals in cardiac myocytes via JAK/STAT, MAP kinase and PI-3 kinase pathways. Besides various well-established mechanisms by which cardiac growth and myocardial remodeling are regulated, gp130 signalling may be a newly discovered mechanism that regulates these events in association with cytoprotective effect in myocardial diseases.
Collapse
Affiliation(s)
- K Yamauchi-Takihara
- Department of Molecular Medicine, Osaka University Medical School, Osaka, Japan.
| | | |
Collapse
|
270
|
Asao H, Fu XY. Interferon-gamma has dual potentials in inhibiting or promoting cell proliferation. J Biol Chem 2000; 275:867-74. [PMID: 10625620 DOI: 10.1074/jbc.275.2.867] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many cytokines have dual functions of promoting or inhibiting cell proliferation; however, the molecular mechanism of the dual functions of cytokines is not well understood. Under normal conditions, interleukin (IL)-3 is required for Ba/F3 cell proliferation, whereas interferon (IFN)-gamma inhibits Ba/F3 cell proliferation. It is known that Stat1 play a major role in inhibition of cell growth in response to IFN-gamma. We have examined the possibility of whether IFN-gamma can act as a growth-promoting cytokine if the Stat1 function is selectively blocked. We have established variant Ba/F3 cell lines in which Stat1 function is inhibited by a dominant-negative Stat1 mutant. Intriguingly, once Stat1 function is inhibited, IFN-gamma can replace IL-3 acting as an essential growth factor for cell proliferation. To understand the molecular mechanism of regulation of cell proliferation by the cytokines, the signaling pathways and gene induction by IL-3 and IFN-gamma are further studied. Although IL-3 activates mitogenic-activated protein kinase and Akt kinase, IFN-gamma does not. Interestingly, both IL-3 and IFN-gamma induce expression of the c-Myc gene that is not dependent on the Stat1 activity. Expression of a dominant-negative mutant Myc can block IFN-gamma-mediated Ba/F3 cell proliferation, suggesting that c-Myc gene induction is required for IFN-gamma-mediated cell proliferation. These findings suggest that IFN-gamma intrinsically and simultaneously induces specific and conflicting signaling pathways and transcriptional programs that contribute to the potential dual effects of IFN-gamma in promoting or inhibiting cell proliferation.
Collapse
Affiliation(s)
- H Asao
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
271
|
Ohtani T, Ishihara K, Atsumi T, Nishida K, Kaneko Y, Miyata T, Itoh S, Narimatsu M, Maeda H, Fukada T, Itoh M, Okano H, Hibi M, Hirano T. Dissection of signaling cascades through gp130 in vivo: reciprocal roles for STAT3- and SHP2-mediated signals in immune responses. Immunity 2000; 12:95-105. [PMID: 10661409 DOI: 10.1016/s1074-7613(00)80162-4] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We generated a series of knockin mouse lines, in which the cytokine receptor gp130-dependent STAT3 and/or SHP2 signals were disrupted, by replacing the mouse gp130 gene with human gp130 mutant cDNAs. The SHP2 signal-deficient mice (gp130F759/F759 were born normal but displayed splenomegaly and lymphadenopathy and an enhanced acute phase reaction. In contrast, the STAT3 signal-deficient mice (gp130FXQ/FXXQ) died perinatally, like the gp130-deficient mice (gp130D/D). The gp130F759/F759 mice showed prolonged gp130-induced STAT3 activation, indicating a negative regulatory role for SHP2. Th1-type cytokine production and IgG2a and IgG2b production were increased in the gp130F759/F759 mice, while they were decreased in the gp130FXXQ/FXXQ immune system. These results indicate that the balance of positive and negative signals generated through gp130 regulates the immune responses.
Collapse
Affiliation(s)
- T Ohtani
- Division of Molecular Oncology (C7), Biomedical Research Center, Osaka University Graduate School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
272
|
Abstract
Cardiotrophin-1 (CT-1) originally was discovered as a factor that can induce hypertrophy of cardiac myocytes, both in vitro and in vivo. Subsequently, CT-1 has been shown to have a wide variety of different effects on cardiac and noncardiac, cells including the ability to stimulate the survival of both cardiac and neuronal cells. Like other members of the interleukin-6 family of cytokines, CT-1 stimulates both the p42/p44 mitogen-activated protein kinase pathway and the Janus-activated kinase/signal transducers and activators of transcription pathway. Interestingly, whilst activation of the p42/p44 mitogen-activated protein kinase pathway is necessary for the survival-promoting effects of CT-1 in cardiac cells, it is not required for its hypertrophic effect, which is likely to involve activation of the Janus-activated kinase/signal transducer and activator of transcription-3 pathway. CT-1, therefore, may be of use as a novel cardioprotective agent, particularly if its hypertrophic effect can be specifically inhibited.
Collapse
Affiliation(s)
- D S Latchman
- Institute of Child Health, University College London, UK.
| |
Collapse
|
273
|
Abstract
The physiological function of interleukin-6 (IL-6) within the central nervous system (CNS) is complex; IL-6 exerts neurotrophic and neuroprotective effects, and yet can also function as a mediator of inflammation, demyelination, and astrogliosis, depending on the cellular context. In the normal brain, IL-6 levels remain low. However, elevated expression occurs in injury, infection, stroke, and inflammation. Given the diverse biological functions of IL-6 and its expression in numerous CNS conditions, it is critical to understand its regulation in the brain in order to control its expression and ultimately its effects. Accumulating data demonstrate that the predominant CNS source of IL-6 is the activated astrocyte. Furthermore, a wide range of factors have been demonstrated to be involved in IL-6 regulation by astrocytes. In this review, we summarize information concerning IL-6 regulation in astrocytes, focusing on the role of proinflammatory factors, neurotransmitters, and second messengers.
Collapse
Affiliation(s)
- N J Van Wagoner
- Department of Cell Biology, The University of Alabama at Birmingham, 35294-0005, USA
| | | |
Collapse
|
274
|
Shirogane T, Fukada T, Muller JM, Shima DT, Hibi M, Hirano T. Synergistic roles for Pim-1 and c-Myc in STAT3-mediated cell cycle progression and antiapoptosis. Immunity 1999; 11:709-19. [PMID: 10626893 DOI: 10.1016/s1074-7613(00)80145-4] [Citation(s) in RCA: 334] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The activation of STAT3 by the cytokine receptor gp130 is required for both the G1 to S cell cycle transition and antiapoptosis. We found that Pim-1 and Pim-2 are targets for the gp130-mediated STAT3 signal. Expression of a kinase-defective Pim-1 mutant attenuated gp130-mediated cell proliferation. Constitutive expression of Pim-1 together with c-myc, another STAT3 target, fully compensated for loss of the STAT3-mediated cell cycle progression, antiapoptosis, and bcl-2 expression. We also identified valosine-containing protein (VCP) as a target gene for the Pim-1-mediated signal. Expression of a mutant VCP led cells to undergo apoptosis. These results indicate that Pim-family proteins play crucial roles in gp130-mediated cell proliferation and explain the synergy between Pim and c-Myc proteins in cell proliferation and lymphomagenesis.
Collapse
Affiliation(s)
- T Shirogane
- Division of Molecular Oncology, Biomedical Research Center, Osaka University Graduate School of Medicine, Suita, Japan
| | | | | | | | | | | |
Collapse
|
275
|
Catlett-Falcone R, Dalton WS, Jove R. STAT proteins as novel targets for cancer therapy. Signal transducer an activator of transcription. Curr Opin Oncol 1999; 11:490-6. [PMID: 10550013 DOI: 10.1097/00001622-199911000-00010] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although the signal transducer and activator of transcription (STAT) proteins were originally discovered through the study of interferon-induced responses, a large number of cytokines and growth factors have been found to activate STATs. In addition to the fundamental role of STAT pathways in normal cell signaling, accumulating evidence is defining a critical role for STATs in oncogenesis. STAT family members are constitutively activated by various oncoproteins in transformed cells and are found activated in a wide variety of human tumors, including breast cancer and diverse blood malignancies. This review discusses recent progress in understanding how aberrant activation of STAT signaling pathways participates in malignant progression of human cancers. Current evidence indicates that one mechanism by which STATs contribute to oncogenesis involves prevention of programmed cell death, or apoptosis, thereby conferring a survival advantage and, potentially, resistance to chemotherapy. These advances identify STATs as novel molecular targets for development of promising therapeutics against human cancers that harbor activated STAT proteins.
Collapse
Affiliation(s)
- R Catlett-Falcone
- Lee Moffitt Cancer Center and Research Institute, Department of Pathology, University of South Florida College of Medicine, Tampa 33612, USA
| | | | | |
Collapse
|
276
|
März P, Otten U, Rose-John S. Neural activities of IL-6-type cytokines often depend on soluble cytokine receptors. Eur J Neurosci 1999; 11:2995-3004. [PMID: 10510164 DOI: 10.1046/j.1460-9568.1999.00755.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cytokines of the interleukin-6 (IL-6) family participate in regulatory and inflammatory processes within the nervous system. IL-6, ciliary neurotrophic factor (CNTF) and IL-11 act via specific membrane receptors which, together with their ligands, associate with signal-transducing receptor subunits thereby initiating cytoplasmic signalling. Cells which only express signal-transducing receptor subunits but no ligand binding subunits for IL-6, CNTF and IL-11 are refractory to these cytokines. An unusual feature of the IL-6 cytokine family is that the soluble forms of the ligand binding receptor subunits generated by one cell type in complex with their ligands can directly stimulate the signal-transducing receptor subunits on different cell types which lack ligand binding receptor subunits. This process has been named transsignalling. This article focuses on the importance of transsignalling events in neuronal differentiation and survival responses.
Collapse
Affiliation(s)
- P März
- Department of Medicine, Mainz University, Germany
| | | | | |
Collapse
|
277
|
Abstract
The JAK -STAT (Janus kinase-signal transducer and activator of transcription) signalling pathway that is stimulated by cytokines has been much investigated in haematopoietic cells, but recent data indicate that this pathway is also present and active during neuronal and glial differentiation. Furthermore, it is now clear that growth factors other than the classical cytokines can act through this pathway and that physiological inhibitors of this signalling cascade exist. Thus, the JAKs, the STATs and their specific inhibitors could be molecules with important roles in the CNS.
Collapse
Affiliation(s)
- E Cattaneo
- Elena Cattaneo, Luciano Conti and Claudio De-Fraja are at the Institute of Pharmacological Sciences, University of Milano, 20133 Milano, Italy
| | | | | |
Collapse
|
278
|
Kim H, Baumann H. Dual signaling role of the protein tyrosine phosphatase SHP-2 in regulating expression of acute-phase plasma proteins by interleukin-6 cytokine receptors in hepatic cells. Mol Cell Biol 1999; 19:5326-38. [PMID: 10409724 PMCID: PMC84376 DOI: 10.1128/mcb.19.8.5326] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
One of the major actions of interleukin-6 (IL-6) is the transcriptional activation of acute-phase plasma proteins (APP) genes in liver cells. Signaling by the IL-6 receptor is mediated through the signal transducing subunit gp130 and involves the activation of Janus-associated kinases (JAKs), signal transducer and activator of transcription 3 (STAT3), and mitogen-activated protein (MAP) kinase. Functional analysis of gp130 in rat hepatoma cells by using transduced chimeric G-CSFR-gp130 receptor constructs demonstrates that SHP-2, the Src homology 2 (SH2) domain-containing protein tyrosine phosphatase, acts as a negative regulator of the JAK/STAT signaling in part by downregulating JAK activity, thereby indirectly moderating the induction of STAT3-dependent APP genes. This study shows that in hepatoma cells, the recruitment and tyrosine phosphorylation of SHP-2, but not SHC, is the primary signaling event associated with the activation of MAP kinases (ERK1/2) by gp130. Overexpression of truncated SHP-2 that lacks Grb2-interacting sites, but not the full-length catalytically inactive SHP-2, reduces ERK activation by IL-6, confirming the signal-mediating role of SHP-2. Activation of ERK1/2 is correlated with induction of the immediate-early response genes. Stimulation of the c-fos, c-jun, and egr-1 genes is essentially absent in cells expressing gp130 with a Y759F mutation, which is unable to recruit SHP-2. Interestingly, both JAK/STAT and SHP-2 pathways regulate the induction of the junB gene. Moreover, disengagement of SHP-2 from gp130 signaling not only enhances APP gene induction but also further reduces cell proliferation, in part correlated with the attenuated expression of immediate-early response genes. These results suggest that IL-6 regulation of APP genes is affected by SHP-2 in two ways: SHP-2 acts as a phosphatase on the JAK/STAT pathway and serves as linker to the MAP kinase pathway, which in turn moderates APP production.
Collapse
MESH Headings
- Acute-Phase Proteins/biosynthesis
- Acute-Phase Proteins/genetics
- Acute-Phase Reaction/genetics
- Adaptor Proteins, Signal Transducing
- Animals
- Antigens, CD/physiology
- Calcium-Calmodulin-Dependent Protein Kinases/physiology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cytokine Receptor gp130
- DNA-Binding Proteins/physiology
- Enzyme Activation
- GRB2 Adaptor Protein
- Gene Expression Regulation
- Gene Expression Regulation, Neoplastic
- Humans
- Interleukin-6/physiology
- Intracellular Signaling Peptides and Proteins
- Janus Kinase 1
- Liver/drug effects
- Liver/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/pathology
- Membrane Glycoproteins/physiology
- Mitogen-Activated Protein Kinase 1
- Mitogen-Activated Protein Kinase 3
- Mitogen-Activated Protein Kinases
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Phosphorylation
- Protein Processing, Post-Translational
- Protein Tyrosine Phosphatase, Non-Receptor Type 11
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/physiology
- Protein-Tyrosine Kinases/physiology
- Proteins/metabolism
- Rats
- Receptors, Interleukin-6/drug effects
- Receptors, Interleukin-6/physiology
- Recombinant Fusion Proteins/physiology
- SH2 Domain-Containing Protein Tyrosine Phosphatases
- STAT3 Transcription Factor
- Signal Transduction/physiology
- Trans-Activators/physiology
- Transcription, Genetic
- Transcriptional Activation
- Transfection
Collapse
Affiliation(s)
- H Kim
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | |
Collapse
|
279
|
Abstract
Cardiotrophin-1 (CT-1) is a member of the IL-6 family of cytokines which was originally discovered as a factor which can induce hypertrophy of cardiac myocytes both in vitro and in vivo. Subsequently, CT-1 has been shown to have a wide variety of different effects on cardiac and non cardiac cells including the ability to stimulate the survival of both cardiac and neuronal cells. Interestingly, whilst activation of the p42/p44 MAP kinase pathway is necessary for the survival promoting effects of CT-1 in cardiac cells, it is not required for its hypertrophic effect which is likely to involve activation of the Jak/STAT-3 pathway. CT-1 may therefore be of use as a novel cardio-protective agent, particularly if its hypertrophic effect can be specifically inhibited.
Collapse
Affiliation(s)
- D S Latchman
- Department of Molecular Pathology, Windeyer Institute of Medical Sciences, University College London, London, UK
| |
Collapse
|
280
|
Hirano T. Molecular basis underlying functional pleiotropy of cytokines and growth factors. Biochem Biophys Res Commun 1999; 260:303-8. [PMID: 10403765 DOI: 10.1006/bbrc.1999.0609] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytokines and growth factors play pivotal roles in cell growth, differentiation, and cell survival. Ligand binding to the receptors induces dimerization or oligomerization of the receptors, resulting in the activation of a variety of signal transduction pathways. The interplay among these multiple signals is critically involved in the biological activities of cytokines and growth factors. In this minireview, I discuss two models. One is the "receptor conversion model": The complex of cytokine and its soluble form of receptor acts like a cytokine with novel target specificity. The other is the "orchestrating model": Cytokines can simultaneously generate contradictory signals in the same target cells and the balance of each contradictory signal may determine the final output of cytokine signals to express unified biological activity. These mechanisms are part of the molecular basis underlying functional pleiotropy of cytokines and growth factors.
Collapse
Affiliation(s)
- T Hirano
- Division of Molecular Oncology, Department of Oncology, Biomedical Research Center, Osaka University Graduate School of Medicine (C7), 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
281
|
Chen YH, Lavelle D, DeSimone J, Uddin S, Platanias LC, Hankewych M. Growth inhibition of a human myeloma cell line by all-trans retinoic acid is not mediated through downregulation of interleukin-6 receptors but through upregulation of p21(WAF1). Blood 1999; 94:251-259. [PMID: 10381520 DOI: 10.1182/blood.v94.1.251.413k42_251_259] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All-trans retinoic acid (ATRA) has previously been shown to inhibit the growth of OPM-2 human myeloma cells. The growth inhibition was postulated to result from a transcriptional downregulation of interleukin-6 receptor alpha (IL-6Ralpha) with IL-6Rbeta (gp130) unaffected. To formally test this hypothesis, an expression vector designed for constitutive IL-6Ralpha expression was constructed and used for transfection of OPM-2 cells. Six stable transfectants were cloned. The expression of IL-6Ralpha was shown by immunofluorescence with anti-IL-6Ralpha antibody and 125I-IL-6 binding. In five of six transfectant clones, cellular IL-6Ralpha was 1.5- to 6-fold higher than the parental cells, with the ligand binding affinity unchanged. While ATRA reduced IL-6Ralpha expression in the parental OPM-2 cells, it enhanced its expression in these five transfectants. The clonogenic growth of these transfectants, however, remained strongly inhibited by ATRA. Further analysis, comparing the parental OPM-2 cells and a representative transfectant, clone C5, showed that IL-6 caused rapid tyrosine phosphorylation of gp130 in both OPM-2 and C5 clones. Pretreatment with ATRA greatly reduced IL-6-induced gp130 phosphorylation in OPM-2 cells, reflecting a reduction in cellular IL-6Ralpha. In contrast, IL-6-induced gp130 phosphorylation was not reduced by ATRA pretreatment in C5 cells, indicating that the expressed IL-6Ralpha was functional. Similar to OPM-2 cells, C5 cells were sensitive to growth inhibition by dexamethasone, which was entirely reversed by exogenous IL-6, suggesting that the IL-6 postreceptor signal transduction remained intact. ATRA was further shown to upregulate p21(WAF1) expression and cause dephosphorylation of the retinoblastoma protein (pRB) in both OPM-2 and C5 cells. Exogenous IL-6 also failed to reverse these effects of ATRA. Thus, the growth inhibitory activity of ATRA is not mediated through cellular IL-6Ralpha downregulation and is likely to result from a direct upregulation of p21(WAF1) and consequent dephosphorylation of pRB.
Collapse
Affiliation(s)
- Y H Chen
- Department of Medicine, University of Illinois College of Medicine and VA West Side Medical Center, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
282
|
Abstract
Interleukin-6 (IL-6) is a multifunctional cytokine mediating inflammatory or immune reactions. Here we investigated the possible role of IL-6 in the intact or lesioned peripheral nervous system using adult IL-6 gene knockout (IL-6(-/-)) mice. Various sensory functions were tested by applying electrophysiological, morphological, biochemical, and behavioral methods. There was a 60% reduction of the compound action potential of the sensory branch of IL-6(-/-) mice as compared with the motor branch in the intact sciatic nerve. Cross sections of L5 DRG of IL-6(-/-) mice showed a shift in the relative size distribution of the neurons. The temperature sensitivity of IL-6(-/-) mice was also significantly reduced. After crush lesion of the sciatic nerve, its functional recovery was delayed in IL-6(-/-) mice as analyzed from a behavioral footprint assay. Measurements of compound action potentials 20 d after crush lesion showed that there was a very low level of recovery of the sensory but not of the motor branch of IL-6(-/-) mice. Similar results of sensory impairments were obtained with mice showing slow Wallerian degeneration (Wlds) and a delayed lesion-induced recruitment of macrophages. However, in contrast to WldS mice, in IL-6(-/-) mice we observed the characteristic lesion-induced invasion of macrophages and the upregulation of low-affinity neurotrophin receptor p75 (p75LNTR) mRNA levels identical to those of IL-6(+/+) mice. Thus, the mechanisms leading to the common sensory deficiencies were different between IL-6(-/-) and WldS mice. Altogether, the results suggest that interleukin-6 is essential to modulate sensory functions in vivo.
Collapse
|
283
|
Pulido EJ, Shames BD, Pennica D, O'leary RM, Bensard DD, Cain BS, McIntyre RC. Cardiotrophin-1 attenuates endotoxin-induced acute lung injury. J Surg Res 1999; 84:240-6. [PMID: 10357926 DOI: 10.1006/jsre.1999.5655] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiotrophin-1 (CT-1) is a recently discovered member of the gp130 cytokine family, which includes IL-6, IL-11, leukemia inhibitory factor, ciliary neurotrophic factor, and oncostatin M. Recent evidence suggests that, like other members of this family, CT-1 may possess anti-inflammatory properties. We hypothesized that in vivo CT-1 administration would attenuate endotoxin (ETX)-induced acute lung injury. We studied the effects of CT-1 (100 microgram/kg ip, 10 min prior to ETX) in a rat model of ETX-induced acute lung injury (Salmonella typhimurium lipopolysaccharide, 20 mg/kg ip). Six hours after ETX, lungs were harvested for determination of neutrophil accumulation (myeloperoxidase, MPO, assay) and lung edema (wet-to-dry weight ratio). Mechanisms of pulmonary vasorelaxation were examined in isolated pulmonary artery rings at 6 h by interrogating endothelium-dependent (response to acetylcholine) and endothelium-independent (response to sodium nitroprusside) relaxation following alpha-adrenergic (phenylephrine)-stimulated preconstriction. CT-1 abrogated the endotoxin-induced lung neutrophil accumulation: 2.3 +/- 0.2 units MPO/g wet lung (gwl) vs 6. 3 +/- 0.3 units MPO/gwl in the ETX group (P < 0.05 vs ETX, P > 0.05 vs control). Similarly, CT-1 prevented ETX-induced lung edema: wet-to-dry-weight ratio, 4.473 +/- 0.039 vs 4.747 +/- 0.039 in the ETX group (P < 0.05 vs ETX, P > 0.05 vs control). Endotoxin caused significant impairment of both endothelium-dependent and -independent pulmonary vasorelaxation, and CT-1 attenuated this injury. Thus, cardiotrophin-1 possesses significant anti-inflammatory properties in a model of endotoxin-induced acute lung injury.
Collapse
Affiliation(s)
- E J Pulido
- Department of Surgery, University of Colorado Health Sciences Center, Denver, Colorado, 80262, USA
| | | | | | | | | | | | | |
Collapse
|
284
|
Auernhammer CJ, Bousquet C, Melmed S. Autoregulation of pituitary corticotroph SOCS-3 expression: characterization of the murine SOCS-3 promoter. Proc Natl Acad Sci U S A 1999; 96:6964-9. [PMID: 10359822 PMCID: PMC22025 DOI: 10.1073/pnas.96.12.6964] [Citation(s) in RCA: 232] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pituitary corticotroph SOCS-3 is a novel intracellular regulator of leukemia inhibitory factor (LIF)-mediated proopiomelanocortin gene expression and adrenocorticotropic hormone (ACTH) secretion, inhibiting LIF-activated Janus kinase-signal transducers and activators of transcription (STAT) signaling in a negative autoregulatory loop. We now demonstrate in corticotroph AtT-20 cells that LIF-stimulated endogenous SOCS-3 mRNA expression is blocked in stable transfectants of SOCS-3 wild type or in dominant negative STAT-3 mutants, respectively. We characterized approximately 3.8-kb genomic 5' sequence of murine SOCS-3, including approximately 2.9-kb sequence upstream of the transcription start site (+1), which was determined by 5' rapid amplification of cDNA ends and RNase protection assay. Different 5' constructs were cloned into the pGL3Basic vector, and luciferase activity was assayed in transiently transfected ACTH-secreting corticotroph AtT-20 cells. A STAT-1/STAT-3 binding element, located at nucleotides -72 to -64, was essential for LIF stimulation of SOCS-3 promoter activity. LIF induced 10-fold increased luciferase activity in a wild-type construct spanning -2757 to +929 bases. However, deletion or point mutation of the STAT-1/STAT-3 binding element abrogated LIF action (2- to 3-fold). Electrophoretic mobility-shift assay analysis confirmed specific binding of STAT-1 and STAT-3 to this region. These results characterize the genomic 5' region of murine SOCS-3 and identify an important STAT-1/STAT-3 binding element therein. Thus, LIF-stimulated SOCS-3 gene expression is at least in part mediated by STAT-3 and STAT-1. The cytokine inhibitor SOCS-3 acts in a negative loop to autoregulate its own gene expression, thus limiting its accumulation in the corticotroph cell. These results demonstrate a mechanism for corticotroph plasticity with rapid "on" and "off" ACTH induction in response to neuro-immuno-endocrine stimuli, such as LIF.
Collapse
Affiliation(s)
- C J Auernhammer
- Department of Medicine, Cedars-Sinai Research Institute, University of California School of Medicine, Los Angeles, CA 90048, USA
| | | | | |
Collapse
|
285
|
Raz R, Lee CK, Cannizzaro LA, d'Eustachio P, Levy DE. Essential role of STAT3 for embryonic stem cell pluripotency. Proc Natl Acad Sci U S A 1999; 96:2846-51. [PMID: 10077599 PMCID: PMC15857 DOI: 10.1073/pnas.96.6.2846] [Citation(s) in RCA: 303] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Propagation of mouse embryonic stem (ES) cells in vitro requires exogenous leukemia inhibitory factor (LIF) or related cytokines. Potential downstream effectors of the LIF signal in ES cells include kinases of the Src, Jak, and mitogen-activated protein families and the signal transducer and transcriptional activator STAT3. Activation of nuclear STAT3 and the ability of ES cells to grow as undifferentiated clones were monitored during LIF withdrawal. A correlation was found between levels of STAT3 activity and maintenance of an undifferentiated phenotype at clonal density. In contrast, variation in STAT3 activity did not affect cell proliferation. The requirement for STAT3 was analyzed by targeted mutagenesis in ES cell lines exhibiting different degrees of LIF dependency. An insertional mutation was devised that abrogated Stat3 gene expression but could be reversed by Cre recombination-mediated excision. ES cells heterozygous for the Stat3 mutation could be isolated only from E14 cells, the line least dependent on LIF for self-renewal. Targeted clones isolated from other ES cell lines were invariably trisomic for chromosome 11, which carries the Stat3 locus, and retained normal levels of activated STAT3. Cre-regulated reduction of Stat3 gene copy number in targeted, euploid E14 clones resulted in dose-dependent losses of STAT3 activity and the efficiency of self-renewal without commensurate changes in cell cycle progression. These results demonstrate an essential role for a critical amount of STAT3 in the maintenance of an undifferentiated ES cell phenotype.
Collapse
Affiliation(s)
- R Raz
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
286
|
Gab-Family Adapter Proteins Act Downstream of Cytokine and Growth Factor Receptors and T- and B-Cell Antigen Receptors. Blood 1999. [DOI: 10.1182/blood.v93.6.1809.406k35_1809_1816] [Citation(s) in RCA: 198] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously found that the adapter protein Gab1 (110 kD) is tyrosine-phosphorylated and forms a complex with SHP-2 and PI-3 kinase upon stimulation through either the interleukin-3 receptor (IL-3R) or gp130, the common receptor subunit of IL-6–family cytokines. In this report, we identified another adapter molecule (100 kD) interacting with SHP-2 and PI-3 kinase in response to various stimuli. The molecule displays striking homology to Gab1 at the amino acid level; thus, we named it Gab2. It contains a PH domain, proline-rich sequences, and tyrosine residues that bind to SH2 domains when they are phosphorylated. Gab1 is phosphorylated on tyrosine upon stimulation through the thrombopoietin receptor (TPOR), stem cell factor receptor (SCFR), and T-cell and B-cell antigen receptors (TCR and BCR, respectively), in addition to IL-3R and gp130. Tyrosine phosphorylation of Gab2 was induced by stimulation through gp130, IL-2R, IL-3R, TPOR, SCFR, and TCR. Gab1 and Gab2 were shown to be substrates for SHP-2 in vitro. Overexpression of Gab2 enhanced the gp130 or Src-related kinases–mediated ERK2 activation as that of Gab1 did. These data indicate that Gab-family molecules act as adapters for transmitting various signals.
Collapse
|
287
|
Kiuchi N, Nakajima K, Ichiba M, Fukada T, Narimatsu M, Mizuno K, Hibi M, Hirano T. STAT3 is required for the gp130-mediated full activation of the c-myc gene. J Exp Med 1999; 189:63-73. [PMID: 9874564 PMCID: PMC1887683 DOI: 10.1084/jem.189.1.63] [Citation(s) in RCA: 332] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The signal transducers and activators of transcription (STAT) family members have been implicated in regulating the growth, differentiation, and death of normal and transformed cells in response to either extracellular stimuli, including cytokines and growth factors, or intracellular tyrosine kinases. c-myc expression is coordinately regulated by multiple signals in these diverse cellular responses. We show that STAT3 mostly mediates the rapid activation of the c-myc gene upon stimulation of the interleukin (IL)-6 receptor or gp130, a signal transducing subunit of the receptor complexes for the IL-6 cytokine family. STAT3 does so most likely by binding to cis-regulatory region(s) of the c-myc gene. We show that STAT3 binds to a region overlapping with the E2F site in the c-myc promoter and this site is critical for the c-myc gene promoter- driven transcriptional activation by IL-6 or gp130 signals. This is the first identification of the linkage between a member of the STAT family and the c-myc gene activation, and also explains how the IL-6 family of cytokines is capable of inducing the expression of the c-myc gene.
Collapse
Affiliation(s)
- N Kiuchi
- Division of Molecular Oncology, Biomedical Research Center, Osaka University Medical School, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
288
|
Orban PC, Chapman PF, Brambilla R. Is the Ras-MAPK signalling pathway necessary for long-term memory formation? Trends Neurosci 1999; 22:38-44. [PMID: 10088998 DOI: 10.1016/s0166-2236(98)01306-x] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Genetic and pharmacological experiments have recently implicated several protein kinase cascades in LTP and memory formation. The small GTPases of the Ras subfamily are activated by multiple extracellular stimuli and, via a complex array of downstream effectors, they control a variety of cellular events that culminate in gene transcription. In the well-characterized Aplysia gill-withdrawal reflex, activation of the Ras-dependent mitogen-activated protein kinase (MAPK) cascade is essential for the long-term, but not the short-term, facilitation process. In addition, in the rodent hippocampus, specific inhibition of the MAPK pathway significantly impairs the induction of LTP, which implicates this signalling cascade in hippocampal-dependent behaviour. Mice that lack the neuronal-specific Ras regulator, Ras-GRF (guanine-releasing factor), have severely impaired LTP in the amygdala and a corresponding deficit in long-term memory for aversive events. The results obtained from these different systems demonstrate the involvement of Ras-dependent signalling in neuronal plasticity and behaviour and raise a number of intriguing questions.
Collapse
Affiliation(s)
- P C Orban
- San Raffaele Scientific Institute, Milano, Italy
| | | | | |
Collapse
|
289
|
Robbins SM, Hollenberg MD. Chapter 11 Plasma Membrane-Localized Signal Transduction. CURRENT TOPICS IN MEMBRANES 1999. [DOI: 10.1016/s0070-2161(08)61049-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
290
|
Fukada T, Yoshida Y, Nishida K, Ohtani T, Shirogane T, Hibi M, Hirano T. Signaling through Gp130: toward a general scenario of cytokine action. Growth Factors 1999; 17:81-91. [PMID: 10595309 DOI: 10.3109/08977199909103518] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cytokines play roles in a wide range of responses such as immune response, hematopoiesis and inflammation. A large volume of studies revealed that cytokines show functional pleiotropy and redundancy. Gp130 is a receptor subunit shared by the interleukin-6 family of cytokines. We describe and discuss signaling through gp130 in relation to a general scenario for cytokine signaling regulating cell growth, differentiation and survival.
Collapse
Affiliation(s)
- T Fukada
- Division of Molecular Oncology (C7), Osaka University Graduate School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
291
|
Fukada T, Ohtani T, Yoshida Y, Shirogane T, Nishida K, Nakajima K, Hibi M, Hirano T. STAT3 orchestrates contradictory signals in cytokine-induced G1 to S cell-cycle transition. EMBO J 1998; 17:6670-7. [PMID: 9822610 PMCID: PMC1171012 DOI: 10.1093/emboj/17.22.6670] [Citation(s) in RCA: 201] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The signal transducer and activator of transcription molecules (STATs) play key roles in cytokine-induced signal transduction. However, their role in cell growth has not been clear. In the present study, we show that STAT3 plays a key role in the G1 to S phase cell-cycle transition induced by the cytokine receptor subunit gp130, through the upregulation of cyclins D2, D3 and A, and cdc25A, and the concomitant downregulation of p21 and p27. Furthermore, unexpectedly, we found that gp130 could induce the expression of p21 when STAT3 activation was suppressed. Such contradictory signals regulating cell-cycle progression could be simultaneously delivered from distinct cytoplasmic regions of gp130. We propose an 'orchestrating model' for cytokine and growth factor action in which contradictory signals are orchestrated to produce a specific effect in a target cell.
Collapse
Affiliation(s)
- T Fukada
- Division of Molecular Oncology, Biomedical Research Center, Osaka University Medical School, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|