251
|
de Wit J, Jorritsma T, Makuch M, Remmerswaal EBM, Klaasse Bos H, Souwer Y, Neefjes J, Ten Berge IJM, van Ham SM. Human B cells promote T-cell plasticity to optimize antibody response by inducing coexpression of T(H)1/T(FH) signatures. J Allergy Clin Immunol 2014; 135:1053-1060. [PMID: 25258142 DOI: 10.1016/j.jaci.2014.08.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 07/30/2014] [Accepted: 08/04/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND B cells mediate humoral immunity against pathogens but also direct CD4(+) T-cell responses. Recent plasticity studies in mice have challenged the concept of strict fate commitment during CD4(+) T-cell differentiation into distinct subsets. OBJECTIVE We sought to elucidate the contribution of human antigen-primed B cells in CD4(+) T-cell responses that support humoral immunity. METHODS CD4(+) T-cell differentiation by primary human B cells was investigated in in vitro cocultures by using tetanus toxoid and Salmonella species as antigen models. T-cell differentiation was assessed by using intracellular cytokines and subset-specific transcription factors and markers. IgM and IgG formation was analyzed by means of ELISA. RESULTS Human B cells, but not dendritic cells, induce prominent and stable coexpression of TH1 and follicular helper T (TFH) cell characteristics during priming and on antigen recall. TH1/TFH cells coexpress the TH1 and TFH effector cytokines IFN-γ and IL-21 and the TFH marker CXCR5, demonstrating that the coexpressed TH1 and TFH subset-specifying transcription factors T-box transcription factor (T-bet) and B cell lymphoma 6 are both functionally active. B cell-derived IL-6 and IL-12 controlled respective expression of IL-21 and IFN-γ, with IL-21 being key for humoral immunity. CONCLUSION Human B cells exploit CD4(+) T-cell plasticity to create flexibility in the effector T-cell response. Induction of a T-cell subset coexpressing IL-21 and IFN-γ might combine IL-21-mediated T-cell aid for antibody production while maintaining TH1 cytokine expression to support other cellular immune defenses.
Collapse
Affiliation(s)
- Jelle de Wit
- Department of Immunopathology, Sanquin Blood Supply, Division of Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Tineke Jorritsma
- Department of Immunopathology, Sanquin Blood Supply, Division of Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mateusz Makuch
- Department of Immunopathology, Sanquin Blood Supply, Division of Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ester B M Remmerswaal
- Renal Transplant Unit, Department of Internal Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Hanny Klaasse Bos
- Department of Immunopathology, Sanquin Blood Supply, Division of Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Yuri Souwer
- Department of Immunopathology, Sanquin Blood Supply, Division of Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jacques Neefjes
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ineke J M Ten Berge
- Renal Transplant Unit, Department of Internal Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Blood Supply, Division of Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
252
|
Brenu EW, Ashton KJ, Batovska J, Staines DR, Marshall-Gradisnik SM. High-throughput sequencing of plasma microRNA in chronic fatigue syndrome/myalgic encephalomyelitis. PLoS One 2014; 9:e102783. [PMID: 25238588 PMCID: PMC4169517 DOI: 10.1371/journal.pone.0102783] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/29/2014] [Indexed: 12/17/2022] Open
Abstract
Background MicroRNAs (miRNAs) are known to regulate many biological processes and their dysregulation has been associated with a variety of diseases including Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME). The recent discovery of stable and reproducible miRNA in plasma has raised the possibility that circulating miRNAs may serve as novel diagnostic markers. The objective of this study was to determine the role of plasma miRNA in CFS/ME. Results Using Illumina high-throughput sequencing we identified 19 miRNAs that were differentially expressed in the plasma of CFS/ME patients in comparison to non-fatigued controls. Following RT-qPCR analysis, we were able to confirm the significant up-regulation of three miRNAs (hsa-miR-127-3p, hsa-miR-142-5p and hsa-miR-143-3p) in the CFS/ME patients. Conclusion Our study is the first to identify circulating miRNAs from CFS/ME patients and also to confirm three differentially expressed circulating miRNAs in CFS/ME patients, providing a basis for further study to find useful CFS/ME biomarkers.
Collapse
Affiliation(s)
- Ekua W. Brenu
- School of Medical Science, Griffith Health Centre, Griffith University, Gold Coast, Queensland, Australia
- The National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, Queensland, Australia
- * E-mail:
| | - Kevin J. Ashton
- Faculty of Health Sciences and Medicine, Bond University, Robina, Queensland, Australia
| | - Jana Batovska
- Faculty of Health Sciences and Medicine, Bond University, Robina, Queensland, Australia
| | - Donald R. Staines
- The National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, Queensland, Australia
- Queensland Health, Gold Coast Public Health Unit, Robina, Gold Coast, Queensland, Australia
| | - Sonya M. Marshall-Gradisnik
- School of Medical Science, Griffith Health Centre, Griffith University, Gold Coast, Queensland, Australia
- The National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
253
|
Splenic TFH expansion participates in B-cell differentiation and antiplatelet-antibody production during immune thrombocytopenia. Blood 2014; 124:2858-66. [PMID: 25232056 DOI: 10.1182/blood-2014-03-563445] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Antiplatelet-antibody-producing B cells play a key role in immune thrombocytopenia (ITP) pathogenesis; however, little is known about T-cell dysregulations that support B-cell differentiation. During the past decade, T follicular helper cells (TFHs) have been characterized as the main T-cell subset within secondary lymphoid organs that promotes B-cell differentiation leading to antibody class-switch recombination and secretion. Herein, we characterized TFHs within the spleen of 8 controls and 13 ITP patients. We show that human splenic TFHs are the main producers of interleukin (IL)-21, express CD40 ligand (CD154), and are located within the germinal center of secondary follicles. Compared with controls, splenic TFH frequency is higher in ITP patients and correlates with germinal center and plasma cell percentages that are also increased. In vitro, IL-21 stimulation combined with an anti-CD40 agonist antibody led to the differentiation of splenic B cells into plasma cells and to the secretion of antiplatelet antibodies in ITP patients. Overall, these results point out the involvement of TFH in ITP pathophysiology and the potential interest of IL-21 and CD40 as therapeutic targets in ITP.
Collapse
|
254
|
Baek SY, Lee J, Lee DG, Park MK, Lee J, Kwok SK, Cho ML, Park SH. Ursolic acid ameliorates autoimmune arthritis via suppression of Th17 and B cell differentiation. Acta Pharmacol Sin 2014; 35:1177-87. [PMID: 25087995 PMCID: PMC4155530 DOI: 10.1038/aps.2014.58] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/26/2014] [Indexed: 02/07/2023]
Abstract
AIM Ursolic acid (UA) is a pentacyclic triterpenoid found in most plant species, which has been shown anti-inflammatory and anti-oxidative activities. In this study, we examined the effects of UA on collagen-induced arthritis (CIA) in mice, and to identify the mechanisms underlying the effects. METHODS CIA was induced in mice. Two weeks later, the mice were treated with UA (150 mg/kg, ip, 3 times per week) for 4 weeks. The expression of cytokines and oxidative stress markers in joint tissues was measured with immunohistochemistry. The numbers of CD4+IL-17+, CD4+CD25+Foxp3+ and pSTAT3 cells in spleens were determined using confocal immunostaining or flowcytometric analyses. Serum antibody levels and B cell-associated marker mRNAs were analyzed with ELISAs and qRT-PCR, respectively. CD4+ T cells and CD19+ B cells were purified from mice spleens for in vitro studies. RESULTS UA treatment significantly reduced the incidence and severity of CIA-induced arthritis, accompanied by decreased expression of proinflammatory cytokines (TNF-α, IL-1β, IL-6, IL-21 and IL-17) and oxidative stress markers (nitrotyrosine and iNOS) in arthritic joints. In CIA mice, UA treatment significantly decreased the number of Th17 cells, while increased the number of Treg cells in the spleens, which was consistent with decreased expression of pSTAT3, along with IL-17 and RORγt in the splenocytes. In addition, UA treatment significantly reduced the serum CII-specific IgG levels in CIA mice. The inhibitory effects of UA on Th17 cells were confirmed in an in vitro model of Th17 differentiation. Furthermore, UA dose-dependently suppressed the expression of B cell-associated markers Bcl-6, Blimp1 and AID mRNAs in purified CD19+ B cells pretreated with IL-21 or LPS in vitro. CONCLUSION UA treatment significantly ameliorates CIA in mice via suppression of Th17 and differentiation. By targeting pathogenic Th17 cells and autoantibody production, UA may be useful for the treatment of autoimmune arthritis and other Th17-related diseases.
Collapse
Affiliation(s)
- Seung-ye Baek
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Jaeseon Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Dong-gun Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Mi-kyung Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Jennifer Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
- Divison of Rheumatology, Department of Internal Medicine, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul 137–040, South Korea
| | - Seung-ki Kwok
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
- Divison of Rheumatology, Department of Internal Medicine, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul 137–040, South Korea
| | - Mi-la Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Sung-hwan Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
- Divison of Rheumatology, Department of Internal Medicine, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul 137–040, South Korea
| |
Collapse
|
255
|
Deng XM, Yan SX, Wei W. IL-21 acts as a promising therapeutic target in systemic lupus erythematosus by regulating plasma cell differentiation. Cell Mol Immunol 2014; 12:31-9. [PMID: 25088225 DOI: 10.1038/cmi.2014.58] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 06/13/2014] [Accepted: 06/14/2014] [Indexed: 12/21/2022] Open
Abstract
Plasma cells, which secrete auto-antibodies, are considered to be the arch-criminal of autoimmune diseases such as systemic lupus erythematosus, but there are many cytokines involved in inducing the differentiation of B-cell subsets into plasma cells. Here, we emphasize IL-21, which has emerged as the most potent inducer of plasma cell differentiation. In this review, we focused on the promoting effects of IL-21 on plasma cell differentiation and discuss how these effects contribute to B cell-mediated autoimmune disease.
Collapse
|
256
|
HIV-1 Tat affects the programming and functionality of human CD8⁺ T cells by modulating the expression of T-box transcription factors. AIDS 2014; 28:1729-38. [PMID: 24841128 DOI: 10.1097/qad.0000000000000315] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE HIV infection is characterized by several immune dysfunctions of both CD8⁺ and CD4⁺ T cells as hyperactivation, impairment of functionality and expansion of memory T cells. CD8⁺ T-cell dysfunctions have been associated with increased expression of T-bet, Eomesdermin and pro-inflammatory cytokines, and with down-regulation of CD127. The HIV-1 trans-activator of transcription (Tat) protein, which is released by infected cells and detected in tissues of HIV-positive individuals, is known to contribute to the dysregulation of CD4⁺ T cells; however, its effects on CD8⁺ T cells have not been investigated. Thus, in this study, we sought to address whether Tat may affect CD8⁺ T-cell functionality and programming. METHODS CD8⁺ T cells were activated by T-cell receptor engagement in the presence or absence of Tat. Cytokine production, killing capacity, surface phenotype and expression of transcription factors important for T-cell programming were evaluated. RESULTS Tat favors the secretion of interleukin-2, interferon-γ and granzyme B in CD8⁺ T cells. Behind this functional modulation we observed that Tat increases the expression of T-bet, Eomesdermin, Blimp-1, Bcl-6 and Bcl-2 in activated but not in unstimulated CD8⁺ T lymphocytes. This effect is associated with the down-regulation of CD127 and the up-regulation of CD27. CONCLUSION Tat deeply alters the programming and functionality of CD8⁺ T lymphocytes.
Collapse
|
257
|
Zaunders JJ, Lévy Y, Seddiki N. Exploiting differential expression of the IL-7 receptor on memory T cells to modulate immune responses. Cytokine Growth Factor Rev 2014; 25:391-401. [PMID: 25130296 DOI: 10.1016/j.cytogfr.2014.07.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Interleukin-7 is a non-redundant growth, differentiation and survival factor for human T lymphocytes. Most circulating, mature T cells express the receptor for IL-7, but not all. Importantly, CD4 Tregs express greatly reduced levels of IL-7R compared to conventional CD4 T cells, presenting an opportunity to selectively target the latter cells with either more IL-7 to boost responses, or to block IL-7 signalling to limit responses. This article reviews what is known about regulation of IL-7R expression, and recent progress in therapeutic approaches related to IL-7 and its receptor.
Collapse
Affiliation(s)
- John J Zaunders
- Centre for Applied Medical Research, St. Vincent's Hospital, Australia; Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Yves Lévy
- Inserm, U955, Equipe 16, Créteil, 94000, France; Université Paris Est, Faculté de médecine, Créteil, 94000, France; Vaccine Research Institute (VRI), Créteil, 94000, France; AP-HP, Hôpital H. Mondor-A. Chenevier, Service d'immunologie Clinique et maladies infectieuses, Créteil, 94000, France
| | - Nabila Seddiki
- Inserm, U955, Equipe 16, Créteil, 94000, France; Université Paris Est, Faculté de médecine, Créteil, 94000, France; Vaccine Research Institute (VRI), Créteil, 94000, France.
| |
Collapse
|
258
|
|
259
|
Hu G, Chen J. A genome-wide regulatory network identifies key transcription factors for memory CD8⁺ T-cell development. Nat Commun 2014; 4:2830. [PMID: 24335726 DOI: 10.1038/ncomms3830] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 10/28/2013] [Indexed: 01/02/2023] Open
Abstract
Memory CD8⁺ T-cell development is defined by the expression of a specific set of memory signature genes. Despite recent progress, many components of the transcriptional control of memory CD8⁺ T-cell development are still unknown. To identify transcription factors and their interactions in memory CD8⁺ T-cell development, we construct a genome-wide regulatory network and apply it to identify key transcription factors that regulate memory signature genes. Most of the known transcription factors having a role in memory CD8⁺ T-cell development are rediscovered and about a dozen new ones are also identified. Sox4, Bhlhe40, Bach2 and Runx2 are experimentally verified, and Bach2 is further shown to promote both development and recall proliferation of memory CD8⁺ T cells through Prdm1 and Id3. Gene perturbation study identifies the interactions between the transcription factors, with Sox4 positioned as a hub. The identified transcription factors and insights into their interactions should facilitate further dissection of molecular mechanisms underlying memory CD8⁺ T-cell development.
Collapse
Affiliation(s)
- Guangan Hu
- David H. Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jianzhu Chen
- David H. Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
260
|
Beaulieu AM, Zawislak CL, Nakayama T, Sun JC. The transcription factor Zbtb32 controls the proliferative burst of virus-specific natural killer cells responding to infection. Nat Immunol 2014; 15:546-53. [PMID: 24747678 PMCID: PMC4404304 DOI: 10.1038/ni.2876] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/26/2014] [Indexed: 12/13/2022]
Abstract
Natural killer (NK) cells are innate lymphocytes that exhibit many features of adaptive immunity, including clonal proliferation and long-lived memory. Here we demonstrate that the BTB-ZF transcription factor Zbtb32 (also known as ROG, FAZF, TZFP and PLZP) was essential for the proliferative burst and protective capacity of virus-specific NK cells. Signals from proinflammatory cytokines were both necessary and sufficient to induce high expression of Zbtb32 in NK cells. Zbtb32 facilitated NK cell proliferation during infection by antagonizing the anti-proliferative factor Blimp-1 (Prdm1). Our data support a model in which Zbtb32 acts as a cellular 'hub' through which proinflammatory signals instruct a 'proliferation-permissive' state in NK cells, thereby allowing their prolific expansion in response to viral infection.
Collapse
Affiliation(s)
- Aimee M Beaulieu
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Carolyn L Zawislak
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Joseph C Sun
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
261
|
Baumjohann D, Ansel KM. MicroRNA regulation of the germinal center response. Curr Opin Immunol 2014; 28:6-11. [PMID: 24530656 PMCID: PMC4037353 DOI: 10.1016/j.coi.2014.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 12/18/2013] [Accepted: 01/03/2014] [Indexed: 12/29/2022]
Abstract
The generation of germinal centers (GCs) is a hallmark feature of the adaptive immune response, resulting in the production of high-affinity antibodies that neutralize pathogens and confer protection upon reinfection. The GC response requires interactions between different immune cell types, and the coordination of complex and dynamic gene expression networks within these cells. Here we provide deeper insights into how microRNAs, small endogenously expressed RNAs, regulate the cellular processes involved in the differentiation and function of T follicular helper cells and germinal center B cells, the two main players of the T cell-dependent humoral immune response.
Collapse
Affiliation(s)
- Dirk Baumjohann
- Department of Microbiology & Immunology, Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, CA 94143, USA.
| | - K Mark Ansel
- Department of Microbiology & Immunology, Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
262
|
Kim C, Jay DC, Williams MA. Dynamic functional modulation of CD4+ T cell recall responses is dependent on the inflammatory environment of the secondary stimulus. PLoS Pathog 2014; 10:e1004137. [PMID: 24854337 PMCID: PMC4031222 DOI: 10.1371/journal.ppat.1004137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 04/07/2014] [Indexed: 12/27/2022] Open
Abstract
The parameters that modulate the functional capacity of secondary Th1 effector cells are poorly understood. In this study, we employ a serial adoptive transfer model system to show that the functional differentiation and secondary memory potential of secondary CD4+ effector T cells are dependent on the inflammatory environment of the secondary challenge. Adoptive transfer of TCR transgenic lymphocytic choriomeningitis virus (LCMV) Glycoprotein-specific SMARTA memory cells into LCMV-immune hosts, followed by secondary challenge with Listeria monocytogenes recombinantly expressing a portion of the LCMV Glycoprotein (Lm-gp61), resulted in the rapid emergence of SMARTA secondary effector cells with heightened functional avidity (as measured by their ability to make IFNγ in response to ex vivo restimulation with decreasing concentrations of peptide), limited contraction after pathogen clearance and stable maintenance secondary memory T cell populations. In contrast, transfer of SMARTA memory cells into naïve hosts prior to secondary Lm-gp61 challenge, which resulted in a more extended infectious period, resulted in poor functional avidity, increased death during the contraction phase and poor maintenance of secondary memory T cell populations. The modulation of functional avidity during the secondary Th1 response was independent of differences in antigen load or persistence. Instead, the inflammatory environment strongly influenced the function of the secondary Th1 response, as inhibition of IL-12 or IFN-I activity respectively reduced or increased the functional avidity of secondary SMARTA effector cells following rechallenge in a naïve secondary hosts. Our findings demonstrate that secondary effector T cells exhibit inflammation-dependent differences in functional avidity and memory potential, and have direct bearing on the design of strategies aimed at boosting memory T cell responses.
Collapse
Affiliation(s)
- Chulwoo Kim
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - David C. Jay
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Matthew A. Williams
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
263
|
Liu ZQ, Song JP, Liu X, Jiang J, Chen X, Yang L, Hu T, Zheng PY, Liu ZG, Yang PC. Mast cell-derived serine proteinase regulates T helper 2 polarization. Sci Rep 2014; 4:4649. [PMID: 24721951 PMCID: PMC3983597 DOI: 10.1038/srep04649] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 03/26/2014] [Indexed: 01/10/2023] Open
Abstract
Although mast cells play a critical role in allergic reactions, the cells are also involved in the protective immunity in the body. This study aims to investigate the role of mast cells in immune regulation during aberrant T helper (Th)2 responses. In this study, an adoptive antigen-specific Th2 response model was established with mast cell-deficient mice to test the role of mast cell in the immune regulation. Cell culture was employed to test the role of mast cells in the modulation of the expression of B cell lymphoma 6 protein (Bcl-6) in Th2 cells. The results showed that after adoptive transfer with immune cells, the mast cell-deficient mice showed stronger Th2 pattern responses in the intestine than that in the mast cell-sufficient mice. Mast cell-derived mouse mast cell protease-6 increased the expression of Bcl-6 in Th2 cells. Bcl-6 inhibited the expression of GATA-3 in Th2 cells, subsequently, forkhead box P3 was increased and the Th2 cytokines were reduced in the cells; the cells thus showed the immune regulatory properties similar to regulatory T cells. We conclude that bedsides initiating immune inflammation, mast cells also contribute to the immune regulation on Th2 polarization.
Collapse
Affiliation(s)
- Zhi-Qiang Liu
- 1] ENT Institute of Shenzhen University, State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China [2] Longgang Central Hospital, ENT Hospital, Shenzhen ENT Institute, Shenzhen, China [3]
| | - Jiang-Ping Song
- 1] State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China [2]
| | - Xiaoyu Liu
- 1] ENT Institute of Shenzhen University, State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China [2]
| | - Jing Jiang
- 1] ENT Institute of Shenzhen University, State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China [2] Longgang Central Hospital, ENT Hospital, Shenzhen ENT Institute, Shenzhen, China [3]
| | - Xiao Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Litao Yang
- Longgang Central Hospital, ENT Hospital, Shenzhen ENT Institute, Shenzhen, China
| | - Tianyong Hu
- Longgang Central Hospital, ENT Hospital, Shenzhen ENT Institute, Shenzhen, China
| | - Peng-Yuan Zheng
- Department of Gastroenterology, Zhengzhou University, Zhengzhou, China
| | - Zhi-Gang Liu
- ENT Institute of Shenzhen University, State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Ping-Chang Yang
- ENT Institute of Shenzhen University, State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
264
|
Bergmann-Leitner ES, Leitner WW. Adjuvants in the Driver's Seat: How Magnitude, Type, Fine Specificity and Longevity of Immune Responses Are Driven by Distinct Classes of Immune Potentiators. Vaccines (Basel) 2014; 2:252-96. [PMID: 26344620 PMCID: PMC4494256 DOI: 10.3390/vaccines2020252] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/20/2014] [Accepted: 03/28/2014] [Indexed: 12/16/2022] Open
Abstract
The mechanism by which vaccine adjuvants enhance immune responses has historically been considered to be the creation of an antigen depot. From here, the antigen is slowly released and provided to immune cells over an extended period of time. This "depot" was formed by associating the antigen with substances able to persist at the injection site, such as aluminum salts or emulsions. The identification of Pathogen-Associated Molecular Patterns (PAMPs) has greatly advanced our understanding of how adjuvants work beyond the simple concept of extended antigen release and has accelerated the development of novel adjuvants. This review focuses on the mode of action of different adjuvant classes in regards to the stimulation of specific immune cell subsets, the biasing of immune responses towards cellular or humoral immune response, the ability to mediate epitope spreading and the induction of persistent immunological memory. A better understanding of how particular adjuvants mediate their biological effects will eventually allow them to be selected for specific vaccines in a targeted and rational manner.
Collapse
Affiliation(s)
- Elke S Bergmann-Leitner
- US Military Malaria Research Program, Malaria Vaccine Branch, 503 Robert Grant Ave, 3W65, Silver Spring, MD 20910, USA.
| | - Wolfgang W Leitner
- Division on Allergy, Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 6610 Rockledge Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
265
|
Strutt TM, McKinstry KK, Marshall NB, Vong AM, Dutton RW, Swain SL. Multipronged CD4(+) T-cell effector and memory responses cooperate to provide potent immunity against respiratory virus. Immunol Rev 2014; 255:149-64. [PMID: 23947353 DOI: 10.1111/imr.12088] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the last decade, the known spectrum of CD4(+) T-cell effector subsets has become much broader, and it has become clear that there are multiple dimensions by which subsets with a particular cytokine commitment can be further defined, including their stage of differentiation, their location, and, most importantly, their ability to carry out discrete functions. Here, we focus on our studies that highlight the synergy among discrete subsets, especially those defined by helper and cytotoxic function, in mediating viral protection, and on distinctions between CD4(+) T-cell effectors located in spleen, draining lymph node, and in tissue sites of infection. What emerges is a surprising multiplicity of CD4(+) T-cell functions that indicate a large arsenal of mechanisms by which CD4(+) T cells act to combat viruses.
Collapse
Affiliation(s)
- Tara M Strutt
- University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | |
Collapse
|
266
|
Hu TT, Song XF, Lei Y, Hu HD, Ren H, Hu P. Expansion of circulating TFH cells and their associated molecules: involvement in the immune landscape in patients with chronic HBV infection. Virol J 2014; 11:54. [PMID: 24655429 PMCID: PMC3994480 DOI: 10.1186/1743-422x-11-54] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 03/18/2014] [Indexed: 12/21/2022] Open
Abstract
Background Blood CXCR5+CD4+ T cells are defined as circulating T follicular helper (TFH) cells, which is required for effective humoral immunity. This study aimed to investigate the role of circulating TFH cells in patients with chronic hepatitis B virus (CHB) infection. Methods The frequency and phenotype of circulating TFH cells were monitored by flow cytometry in CHB patients and in healthy controls (HC). The expression of BCL-6, IL-21, IL-4, CXCR5, and IL-6R mRNA was analyzed using real-time PCR. Serum HBsAg, HBeAg, HBeAb, HBV DNA loads, ALT and AST were determined. The potential association of the frequency of TFH cells and their surface markers with clinical parameters was assessed. Results The frequency of CXCR5+CD4+ T cells was increased in CHB patients and positively correlated with ALT and AST but not with HBV DNA loads. Moreover, an expansion of ICOS-, PD-1-, CD40L-, and IL-21R-expressing TFH cells occurred in CHB patients, but failed to correlate with ALT, AST and HBV DNA loads. Interestingly, the frequency of CXCR5+CD4+ T cells and ICOS+CXCR5+CD4+ T cells was significantly higher in HBeAg positive CHB patients than in HC. Additionally, the percentages of CXCR5+CD4+ T cells were positively correlated with AST, and ICOS-expressing CXCR5+CD4+ T cells were negatively correlated with HBV DNA loads. No significant differences in the frequency of CXCR5+CD4+ T cells were observed between inactive carrier (IC) patients and healthy controls. However, ICOS-, PD-1-, CD40L-expressing TFH cells were increased in IC patients and positively correlated with AST. Furthermore, the expression of BCL-6, IL-21, IL-4, CXCR5, and IL-6R mRNA in TFH cells was higher in CHB patients than in HC. Conclusions These data demonstrate that circulating TFH cells may participate in HBV-related immune responses. In addition to the frequency of TFH cells, the phenotype of these cells plays an important role in CHB patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Peng Hu
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Second Affiliated Hospital of Chongqing Medical University, 74# Linjiang Road, Yuzhong District, Chongqing 400010, China.
| |
Collapse
|
267
|
Distinct dendritic cell subsets dictate the fate decision between effector and memory CD8(+) T cell differentiation by a CD24-dependent mechanism. Immunity 2014; 40:400-13. [PMID: 24631155 DOI: 10.1016/j.immuni.2014.02.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 01/14/2014] [Indexed: 11/22/2022]
Abstract
The contribution of different DC subsets to effector and memory CD8(+) T cell generation during infection and the mechanism by which DCs controls these fate decisions is unclear. Here we demonstrated that the CD103(+) and CD11b(hi) migratory respiratory DC (RDC) subsets after influenza virus infection activated naive virus-specific CD8(+) T cells differentially. CD103(+) RDCs supported the generation of CD8(+) T effector (Teff) cells, which migrate from lymph nodes to the infected lungs. In contrast, migrant CD11b(hi) RDCs activated CD8(+) T cells characteristic of central memory CD8(+) T (CD8(+) Tcm) cells including retention within the draining lymph nodes. CD103(+) RDCs expressed CD24 at an elevated level, contributing to the propensity of this DC subpopulation to support CD8(+) Teff cell differentiation. Mechanistically, CD24 was shown to regulate CD8(+) T cell activation through HMGB1-mediated engagement of T cell RAGE. Thus, there is distribution of labor among DC subsets in regulating CD8(+) T cell differentiation.
Collapse
|
268
|
Horn M, Geisen C, Cermak L, Becker B, Nakamura S, Klein C, Pagano M, Antebi A. DRE-1/FBXO11-dependent degradation of BLMP-1/BLIMP-1 governs C. elegans developmental timing and maturation. Dev Cell 2014; 28:697-710. [PMID: 24613396 DOI: 10.1016/j.devcel.2014.01.028] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/22/2014] [Accepted: 01/28/2014] [Indexed: 11/26/2022]
Abstract
Developmental timing genes catalyze stem cell progression and animal maturation programs across taxa. Caenorhabditis elegans DRE-1/FBXO11 functions in an SCF E3-ubiquitin ligase complex to regulate the transition to adult programs, but its cognate proteolytic substrates are unknown. Here, we identify the conserved transcription factor BLMP-1 as a substrate of the SCF(DRE-1/FBXO11) complex. blmp-1 deletion suppressed dre-1 mutant phenotypes and exhibited developmental timing defects opposite to dre-1. blmp-1 also opposed dre-1 for other life history traits, including entry into the dauer diapause and longevity. BLMP-1 protein was strikingly elevated upon dre-1 depletion and dysregulated in a stage- and tissue-specific manner. The role of DRE-1 in regulating BLMP-1 stability is evolutionary conserved, as we observed direct protein interaction and degradation function for worm and human counterparts. Taken together, posttranslational regulation of BLMP-1/BLIMP-1 by DRE-1/FBXO11 coordinates C. elegans developmental timing and other life history traits, suggesting that this two-protein module mediates metazoan maturation processes.
Collapse
Affiliation(s)
- Moritz Horn
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Straße 9b, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, 50674 Cologne, Germany
| | - Christoph Geisen
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Straße 9b, 50931 Cologne, Germany
| | - Lukas Cermak
- Department of Pathology, NYU Cancer Institute, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, NY 10016, USA; Howard Hughes Medical Institute, Department of Pathology, NYU Cancer Institute, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, NY 10016, USA
| | - Ben Becker
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Straße 9b, 50931 Cologne, Germany
| | - Shuhei Nakamura
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Straße 9b, 50931 Cologne, Germany
| | - Corinna Klein
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Straße 9b, 50931 Cologne, Germany
| | - Michele Pagano
- Department of Pathology, NYU Cancer Institute, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, NY 10016, USA; Howard Hughes Medical Institute, Department of Pathology, NYU Cancer Institute, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, NY 10016, USA
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Straße 9b, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, 50674 Cologne, Germany; Department of Molecular and Cellular Biology, Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
269
|
Berezhnoy A, Castro I, Levay A, Malek TR, Gilboa E. Aptamer-targeted inhibition of mTOR in T cells enhances antitumor immunity. J Clin Invest 2014; 124:188-97. [PMID: 24292708 DOI: 10.1172/jci69856] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 09/19/2013] [Indexed: 01/18/2023] Open
Abstract
Recent studies have underscored the importance of memory T cells in mediating protective immunity against pathogens and cancer. Pharmacological inhibition of regulators that mediate T cell differentiation promotes the differentiation of activated CD8(+) T cells into memory cells. Nonetheless, pharmacological agents have broad targets and can induce undesirable immunosuppressive effects. Here, we tested the hypothesis that aptamer-targeted siRNA inhibition of mTOR complex 1 (mTORC1) function in CD8(+) T cells can enhance their differentiation into memory T cells and potentiate antitumor immunity more effectively than the pharmacologic inhibitor rapamycin. To specifically target activated cells, we conjugated an siRNA targeting the mTORC1 component raptor to an aptamer that binds 4-1BB, a costimulatory molecule that is expressed on CD8(+) T cells following TCR stimulation. We found that systemic administration of the 4-1BB aptamer-raptor siRNA to mice downregulated mTORC1 activity in the majority of CD8(+) T cells, leading to the generation of a potent memory response that exhibited cytotoxic effector functions and enhanced vaccine-induced protective immunity in tumor-bearing mice. In contrast, while treatment with the general mTORC1 inhibitor rapamycin also enhanced antigen-activated CD8(+) T cell persistence, the cytotoxic effector functions of the reactivated memory cells were reduced and the alloreactivity of DCs was diminished. Consistent with the immunological findings, mice treated with rapamycin, but not with 4-1BB aptamer-raptor siRNA, failed to reject a subsequent tumor challenge.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Aptamers, Nucleotide/genetics
- CD8-Positive T-Lymphocytes/enzymology
- CD8-Positive T-Lymphocytes/immunology
- Cancer Vaccines/immunology
- Cell Proliferation
- Cells, Cultured
- Cytotoxicity, Immunologic
- Female
- Gene Knockdown Techniques
- Immunologic Memory
- Immunotherapy, Adoptive
- Mechanistic Target of Rapamycin Complex 1
- Melanoma, Experimental/immunology
- Melanoma, Experimental/therapy
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Multiprotein Complexes/genetics
- Multiprotein Complexes/metabolism
- Neoplasm Transplantation
- RNA, Small Interfering/genetics
- Regulatory-Associated Protein of mTOR
- TOR Serine-Threonine Kinases/genetics
- TOR Serine-Threonine Kinases/metabolism
Collapse
|
270
|
Qi H, Liu D, Ma W, Wang Y, Yan H. Bcl-6 controlled TFH polarization and memory: the known unknowns. Curr Opin Immunol 2014; 28:34-41. [PMID: 24583637 DOI: 10.1016/j.coi.2014.01.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 01/25/2014] [Accepted: 01/30/2014] [Indexed: 01/12/2023]
Abstract
Upon antigenic activation in vivo, naïve CD4 T cells can differentiate into one of several helper (Th) subsets under the control of lineage-specifying transcription factors to tailor immune responses against different types of pathogens. Follicular T-helper (TFH) cells are a recently defined subset that is controlled by Bcl-6 and specializes in promoting B cell-mediated humoral immunity. TFH cells exhibit unique spatiotemporal and functional features, but it is not settled as to how Bcl-6 promotes the TFH development, how TFH cells relate to other Th subsets, and how TFH cells relate to memory. Here we review recent advances and crucial gaps in our understanding of Bcl-6-controlled TFH development and function.
Collapse
Affiliation(s)
- Hai Qi
- Tsinghua-Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, School of Life Sciences, Tsinghua University, Beijing 100084, PR China.
| | - Dan Liu
- Tsinghua-Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, School of Life Sciences, Tsinghua University, Beijing 100084, PR China
| | - Weiwei Ma
- Tsinghua-Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, School of Life Sciences, Tsinghua University, Beijing 100084, PR China
| | - Yifeng Wang
- Tsinghua-Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, School of Life Sciences, Tsinghua University, Beijing 100084, PR China
| | - Hu Yan
- Tsinghua-Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, School of Life Sciences, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
271
|
Park HJ, Kim DH, Lim SH, Kim WJ, Youn J, Choi YS, Choi JM. Insights into the role of follicular helper T cells in autoimmunity. Immune Netw 2014; 14:21-9. [PMID: 24605077 PMCID: PMC3942504 DOI: 10.4110/in.2014.14.1.21] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/14/2014] [Accepted: 01/15/2014] [Indexed: 01/12/2023] Open
Abstract
Follicular helper T (TFH) cells are recently highlighted as their crucial role for humoral immunity to infection as well as their abnormal control to induce autoimmune disease. During an infection, naïve T cells are differentiating into TFH cells which mediate memory B cells and long-lived plasma cells in germinal center (GC). TFH cells are characterized by their expression of master regulator, Bcl-6, and chemokine receptor, CXCR5, which are essential for the migration of T cells into the B cell follicle. Within the follicle, crosstalk occurs between B cells and TFH cells, leading to class switch recombination and affinity maturation. Various signaling molecules, including cytokines, surface molecules, and transcription factors are involved in TFH cell differentiation. IL-6 and IL-21 cytokine-mediated STAT signaling pathways, including STAT1 and STAT3, are crucial for inducing Bcl-6 expression and TFH cell differentiation. TFH cells express important surface molecules such as ICOS, PD-1, IL-21, BTLA, SAP and CD40L for mediating the interaction between T and B cells. Recently, two types of microRNA (miRNA) were found to be involved in the regulation of TFH cells. The miR-17-92 cluster induces Bcl-6 and TFH cell differentiation, whereas miR-10a negatively regulates Bcl-6 expression in T cells. In addition, follicular regulatory T (TFR) cells are studied as thymus-derived CXCR5(+)PD-1(+)Foxp3(+) Treg cells that play a significant role in limiting the GC response. Regulation of TFH cell differentiation and the GC reaction via miRNA and TFR cells could be important regulatory mechanisms for maintaining immune tolerance and preventing autoimmune diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Here, we review recent studies on the various factors that affect TFH cell differentiation, and the role of TFH cells in autoimmune diseases.
Collapse
Affiliation(s)
- Hong-Jai Park
- Department of Life Science, Hanyang University, Seoul 133-791, Korea. ; Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea
| | - Do-Hyun Kim
- Department of Life Science, Hanyang University, Seoul 133-791, Korea. ; Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea
| | - Sang-Ho Lim
- Department of Life Science, Hanyang University, Seoul 133-791, Korea. ; Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea
| | - Won-Ju Kim
- Department of Life Science, Hanyang University, Seoul 133-791, Korea. ; Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea
| | - Jeehee Youn
- Department of Anatomy & Cell Biology, College of Medicine, Hanyang University, Seoul 133-791, Korea
| | - Youn-Soo Choi
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Je-Min Choi
- Department of Life Science, Hanyang University, Seoul 133-791, Korea. ; Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea
| |
Collapse
|
272
|
Vendrame E, Hussain SK, Breen EC, Magpantay L, Widney DP, Jacobson LP, Variakojis D, Knowlton ER, Bream JH, Ambinder RF, Detels R, Martínez-Maza O. Serum levels of cytokines and biomarkers for inflammation and immune activation, and HIV-associated non-Hodgkin B-cell lymphoma risk. Cancer Epidemiol Biomarkers Prev 2014; 23:343-9. [PMID: 24220912 PMCID: PMC3948172 DOI: 10.1158/1055-9965.epi-13-0714] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND HIV infection is associated with a marked increase in risk for non-Hodgkin lymphoma (AIDS-NHL). However, the mechanisms that promote the development of AIDS-NHL are not fully understood. METHODS In this study, serum levels of several cytokines and other molecules associated with immune activation were measured in specimens collected longitudinally during 1 to 5 years preceding AIDS-NHL diagnosis, in 176 AIDS-NHL cases and 176 HIV(+) controls from the Multicenter AIDS Cohort Study (MACS). RESULTS Multivariate analyses revealed that serum levels of immunoglobulin free light chains (FLC), interleukin (IL)-6, IL-10, IP-10/CXCL10, neopterin, and TNF-α were elevated in those HIV(+) individuals who went on to develop AIDS-NHL. In addition, the fraction of specimens with detectable IL-2 was increased and the fraction with detectable IL-4 was decreased in these subjects. CONCLUSIONS These results suggest that long-term, chronic immune activation, possibly driven by macrophage-produced cytokines, precedes development of NHL in HIV(+) individuals. IMPACT FLC, IL-6, IL-10, IP-10/CXCL10, neopterin, and TNF-α may serve as biomarkers for AIDS-NHL. .
Collapse
Affiliation(s)
- Elena Vendrame
- UCLA AIDS Institute, UCLA School of Public Health, Los Angeles, CA
- Jonsson Comprehensive Cancer Center at UCLA, UCLA School of Public Health, Los Angeles, CA
- Department of Obstetrics & Gynecology, UCLA School of Public Health, Los Angeles, CAy
| | - Shehnaz K. Hussain
- UCLA AIDS Institute, UCLA School of Public Health, Los Angeles, CA
- Jonsson Comprehensive Cancer Center at UCLA, UCLA School of Public Health, Los Angeles, CA
- Department of Epidemiology, UCLA School of Public Health, Los Angeles, CA
| | - Elizabeth Crabb Breen
- UCLA AIDS Institute, UCLA School of Public Health, Los Angeles, CA
- Jonsson Comprehensive Cancer Center at UCLA, UCLA School of Public Health, Los Angeles, CA
- Department of Psychiatry & Biobehavioral Sciences, UCLA School of Public Health, Los Angeles, CA
| | - Larry Magpantay
- UCLA AIDS Institute, UCLA School of Public Health, Los Angeles, CA
- Jonsson Comprehensive Cancer Center at UCLA, UCLA School of Public Health, Los Angeles, CA
- Department of Obstetrics & Gynecology, UCLA School of Public Health, Los Angeles, CAy
| | - Daniel P. Widney
- UCLA AIDS Institute, UCLA School of Public Health, Los Angeles, CA
- Jonsson Comprehensive Cancer Center at UCLA, UCLA School of Public Health, Los Angeles, CA
- Department of Obstetrics & Gynecology, UCLA School of Public Health, Los Angeles, CAy
| | - Lisa P. Jacobson
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Daina Variakojis
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Emilee R. Knowlton
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA
| | - Jay H. Bream
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | | | - Roger Detels
- UCLA AIDS Institute, UCLA School of Public Health, Los Angeles, CA
- Jonsson Comprehensive Cancer Center at UCLA, UCLA School of Public Health, Los Angeles, CA
- Department of Epidemiology, UCLA School of Public Health, Los Angeles, CA
| | - Otoniel Martínez-Maza
- UCLA AIDS Institute, UCLA School of Public Health, Los Angeles, CA
- Jonsson Comprehensive Cancer Center at UCLA, UCLA School of Public Health, Los Angeles, CA
- Department of Obstetrics & Gynecology, UCLA School of Public Health, Los Angeles, CAy
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine at UCLA, UCLA School of Public Health, Los Angeles, CA
- Department of Epidemiology, UCLA School of Public Health, Los Angeles, CA
| |
Collapse
|
273
|
Opata MM, Stephens R. Early Decision: Effector and Effector Memory T Cell Differentiation in Chronic Infection. ACTA ACUST UNITED AC 2014; 9:190-206. [PMID: 24790593 PMCID: PMC4000274 DOI: 10.2174/1573395509666131126231209] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/08/2013] [Accepted: 11/19/2013] [Indexed: 11/22/2022]
Abstract
As effector memory T cells (Tem) are the predominant population elicited by chronic parasitic infections,
increasing our knowledge of their function, survival and derivation, as phenotypically and functionally distinct from
central memory and effector T cells will be critical to vaccine development for these diseases. In some infections, memory
T cells maintain increased effector functions, however; this may require the presence of continued antigen, which can also
lead to T cell exhaustion. Alternatively, in the absence of antigen, only the increase in the number of memory cells
remains, without enhanced functionality as central memory. In order to understand the requirement for antigen and the
potential for longevity or protection, the derivation of each type of memory must be understood. A thorough review of the
data establishes the existence of both memory (Tmem) precursors and effector T cells (Teff) from the first hours of an
immune response. This suggests a new paradigm of Tmem differentiation distinct from the proposition that Tmem only
appear after the contraction of Teff. Several signals have been shown to be important in the generation of memory T cells,
such as the integrated strength of “signals 1-3” of antigen presentation (antigen receptor, co-stimulation, cytokines) as
perceived by each T cell clone. Given that these signals integrated at antigen presentation cells have been shown to
determine the outcome of Teff and Tmem phenotypes and numbers, this decision must be made at a very early stage. It
would appear that the overwhelming expansion of effector T cells and the inability to phenotypically distinguish memory
T cells at early time points has masked this important decision point. This does not rule out an effect of repeated
stimulation or chronic inflammatory milieu on populations generated in these early stages. Recent studies suggest that
Tmem are derived from early Teff, and we suggest that this includes Tem as well as Tcm. Therefore, we propose a
testable model for the pathway of differentiation from naïve to memory that suggests that Tem are not fully differentiated
effector cells, but derived from central memory T cells as originally suggested by Sallusto et al. in 1999, but much
debated since.
Collapse
Affiliation(s)
- Michael M Opata
- University of Texas Medical Branch, Department of Internal Medicine, Division of Infectious Disease, 300 University Avenue, Galveston, TX 77555-0435, USA
| | - Robin Stephens
- University of Texas Medical Branch, Department of Internal Medicine, Division of Infectious Disease, 300 University Avenue, Galveston, TX 77555-0435, USA
| |
Collapse
|
274
|
Abstract
The development of specialized helper T cells has garnered much attention because of their critical role in coordinating the immune response to invading pathogens. Recent research emphasizing novel functions for specialized helper T cells in a variety of infectious disease settings, as well as autoimmune states, has reshaped our view on the capabilities of helper T cells. Notably, one previously underappreciated aspect of the lifespan of helper T cells is that they often retain the capacity to respond to changes in the environment by altering the composition of helper T cell lineage-specifying transcription factors they express, which, in turn, changes their phenotype. This emerging realization is changing our views on the stability versus flexibility of specialized helper T cell subtypes. Now, there is a new concerted effort to define the mechanistic events that contribute to the potential for flexibility in specialized helper T cell gene expression programs in the different environmental circumstances that allow for the re-expression of helper T cell lineage-specifying transcription factors. In addition, we are also now beginning to appreciate that "helper T cell" lineage-specifying transcription factors are expressed in diverse types of innate and adaptive immune cells and this may allow them to play roles in coordinating aspects of the immune response. Our current challenges include defining the conserved mechanisms that are utilized by these lineage-specifying transcription factors to coordinate gene expression programs in different settings as well as the mechanistic events that contribute to the differential downstream consequences that these factors mediate in unique cellular environments. In this review, we will explore our evolving views on these topics, often times using the Th1-lineage-specifying transcription factor T-bet as an example.
Collapse
|
275
|
Tfh Cell Differentiation and Their Function in Promoting B-Cell Responses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 841:153-80. [DOI: 10.1007/978-94-017-9487-9_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
276
|
Watchmaker PB, Lahl K, Lee M, Baumjohann D, Morton J, Kim SJ, Zeng R, Dent A, Ansel KM, Diamond B, Hadeiba H, Butcher EC. Comparative transcriptional and functional profiling defines conserved programs of intestinal DC differentiation in humans and mice. Nat Immunol 2014; 15:98-108. [PMID: 24292363 PMCID: PMC3942165 DOI: 10.1038/ni.2768] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/18/2013] [Indexed: 12/12/2022]
Abstract
Dendritic cells (DCs) that orchestrate mucosal immunity have been studied in mice. Here we characterized human gut DC populations and defined their relationship to previously studied human and mouse DCs. CD103(+)Sirpα(-) DCs were related to human blood CD141(+) DCs and to mouse intestinal CD103(+)CD11b(-) DCs and expressed markers of cross-presenting DCs. CD103(+)Sirpα(+) DCs aligned with human blood CD1c(+) DCs and mouse intestinal CD103(+)CD11b(+) DCs and supported the induction of regulatory T cells. Both CD103(+) DC subsets induced the TH17 subset of helper T cells, while CD103(-)Sirpα(+) DCs induced the TH1 subset of helper T cells. Comparative analysis of transcriptomes revealed conserved transcriptional programs among CD103(+) DC subsets and identified a selective role for the transcriptional repressors Bcl-6 and Blimp-1 in the specification of CD103(+)CD11b(-) DCs and intestinal CD103(+)CD11b(+) DCs, respectively. Our results highlight evolutionarily conserved and divergent programming of intestinal DCs.
Collapse
MESH Headings
- Animals
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, CD1/immunology
- Antigens, CD1/metabolism
- CD11b Antigen/immunology
- CD11b Antigen/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cells, Cultured
- Cluster Analysis
- Cross-Priming/genetics
- Cross-Priming/immunology
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Flow Cytometry
- Glycoproteins/immunology
- Glycoproteins/metabolism
- Humans
- Integrin alpha Chains/immunology
- Integrin alpha Chains/metabolism
- Integrins/genetics
- Integrins/immunology
- Intestinal Mucosa/immunology
- Mice
- Mice, Knockout
- Mice, Transgenic
- Microscopy, Confocal
- Oligonucleotide Array Sequence Analysis
- Receptors, Chemokine/genetics
- Receptors, Chemokine/immunology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Transcriptome/genetics
- Transcriptome/immunology
Collapse
Affiliation(s)
- Payal B Watchmaker
- 1] Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, California, USA. [2] The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA. [3]
| | - Katharina Lahl
- 1] Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, California, USA. [2] The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA. [3]
| | - Mike Lee
- 1] Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, California, USA. [2] The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Dirk Baumjohann
- Department of Microbiology and Immunology, Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, California, USA
| | - John Morton
- Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Sun Jung Kim
- Center for Autoimmune and Musculoskeletal Diseases, the Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Ruizhu Zeng
- 1] Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, California, USA. [2] The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Alexander Dent
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - K Mark Ansel
- Department of Microbiology and Immunology, Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, California, USA
| | - Betty Diamond
- Center for Autoimmune and Musculoskeletal Diseases, the Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Husein Hadeiba
- 1] The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA. [2] Palo Alto Institute for Research & Education, Palo Alto, California, USA
| | - Eugene C Butcher
- 1] Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, California, USA. [2] The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA. [3] Palo Alto Institute for Research & Education, Palo Alto, California, USA
| |
Collapse
|
277
|
Zhang Y, Zhang Y, Gu W, Sun B. TH1/TH2 cell differentiation and molecular signals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 841:15-44. [PMID: 25261203 DOI: 10.1007/978-94-017-9487-9_2] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The distinctive differentiated states of the CD4+ T helper cells are determined by the set of transcription factors and the genes transcribed by the transcription factors. In vitro induction models, the major determinants of the cytokines present during the T-cell receptor (TCR)-mediated activation process. IL-12 and IFN-γ make Naive CD4+ T cells highly express T-bet and STAT4 and differentiate to TH1 cells, while IL-4 make Naive CD4+ T cells highly express STAT6 and GATA3 and differentiated to TH2 cells. Even through T-bet and GATA3 are master regulators for TH1/TH2 cells differentiation. There are many other transcription factors, such as RUNX family proteins, IRF4, Dec2, Gfi1, Hlx, and JunB that can impair TH1/TH2 cells differentiation. In recent years, noncoding RNAs (microRNA and long noncoding RNA) join in the crowd. The leukocytes should migrate to the right place to show their impact. There are some successful strategies, which are revealed to targeting chemokines and their receptors, that have been developed to treat human immune-related diseases.
Collapse
Affiliation(s)
- Yuan Zhang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | | | | | | |
Collapse
|
278
|
Abstract
Influenza virus infection induces a potent initial innate immune response, which serves to limit the extent of viral replication and virus spread. However, efficient (and eventual) viral clearance within the respiratory tract requires the subsequent activation, rapid proliferation, recruitment, and expression of effector activities by the adaptive immune system, consisting of antibody producing B cells and influenza-specific T lymphocytes with diverse functions. The ensuing effector activities of these T lymphocytes ultimately determine (along with antibodies) the capacity of the host to eliminate the viruses and the extent of tissue damage. In this review, we describe this effector T cell response to influenza virus infection. Based on information largely obtained in experimental settings (i.e., murine models), we will illustrate the factors regulating the induction of adaptive immune T cell responses to influenza, the effector activities displayed by these activated T cells, the mechanisms underlying the expression of these effector mechanisms, and the control of the activation/differentiation of these T cells, in situ, in the infected lungs.
Collapse
|
279
|
Renand A, Milpied P, Rossignol J, Bruneau J, Lemonnier F, Dussiot M, Coulon S, Hermine O. Neuropilin-1 expression characterizes T follicular helper (Tfh) cells activated during B cell differentiation in human secondary lymphoid organs. PLoS One 2013; 8:e85589. [PMID: 24386482 PMCID: PMC3875584 DOI: 10.1371/journal.pone.0085589] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 11/29/2013] [Indexed: 11/19/2022] Open
Abstract
T follicular helper (Tfh) cells play an essential role in the development of antigen-specific B cell immunity. Tfh cells regulate the differentiation and survival of activated B cells outside and inside germinal centers (GC) of secondary lymphoid organs. They act through cognate contacts with antigen-presenting B cells, but there is no current marker to specifically identify those Tfh cells which productively interact with B cells. Here we show that neuropilin 1 (Nrp1), a cell surface receptor, is selectively expressed by a subset of Tfh cells in human secondary lymphoid organs. Nrp1 expression on Tfh cells correlates with B cell differentiation in vivo and in vitro, is transient, and can be induced upon co-culture with autologous memory B cells in a cell contact-dependent manner. Comparative analysis of ex vivo Nrp1(+) and Nrp1(-) Tfh cells reveals gene expression modulation during activation. Finally, Nrp1 is expressed by malignant Tfh-like cells in a severe case of angioimmunoblastic T-cell lymphoma (AITL) associated with elevated terminal B cell differentiation. Thus, Nrp1 is a specific marker of Tfh cells cognate activation in humans, which may prove useful as a prognostic factor and a therapeutic target in neoplastic diseases associated with Tfh cells activity.
Collapse
Affiliation(s)
- Amédée Renand
- CNRS, UMR 8147, Hôpital Necker, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Pierre Milpied
- CNRS, UMR 8147, Hôpital Necker, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Julien Rossignol
- CNRS, UMR 8147, Hôpital Necker, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Institut Imagine and Université Sorbonne Paris cité, Paris, France
| | - Julie Bruneau
- CNRS, UMR 8147, Hôpital Necker, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Service d’anatomo-pathologie, APHP, Hôpital Necker, Paris, France
- Institut Imagine and Université Sorbonne Paris cité, Paris, France
| | | | - Michael Dussiot
- CNRS, UMR 8147, Hôpital Necker, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Institut Imagine and Université Sorbonne Paris cité, Paris, France
| | - Séverine Coulon
- CNRS, UMR 8147, Hôpital Necker, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Institut Imagine and Université Sorbonne Paris cité, Paris, France
| | - Olivier Hermine
- CNRS, UMR 8147, Hôpital Necker, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Service d’Hématologie Adulte, APHP, Hôpital Necker, Paris, France
- Institut Imagine and Université Sorbonne Paris cité, Paris, France
- *
| |
Collapse
|
280
|
Bach MP, Hug E, Werner M, Holch J, Sprissler C, Pechloff K, Zirlik K, Zeiser R, Dierks C, Ruland J, Jumaa H. Premature terminal differentiation protects from deregulated lymphocyte activation by ITK-Syk. THE JOURNAL OF IMMUNOLOGY 2013; 192:1024-33. [PMID: 24376268 DOI: 10.4049/jimmunol.1300420] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The development of hematopoietic neoplasms is often associated with mutations, altered gene expression or chromosomal translocations. Recently, the t(5, 9)(q33;q22) translocation was found in a subset of peripheral T cell lymphomas and was shown to result in an IL-2-inducible kinase-spleen tyrosine kinase (ITK-Syk) fusion transcript. In this study, we show that T cell-specific expression of the ITK-Syk oncogene in mice leads to an early onset and aggressive polyclonal T cell lymphoproliferation with concomitant B cell expansion and systemic inflammation by 7-9 wk of age. Because this phenotype is strikingly different from previous work showing that ITK-Syk expression causes clonal T cell lymphoma by 20-27 wk of age, we investigated the underlying molecular mechanism in more detail. We show that the reason for the severe phenotype is the lack of B-lymphocyte-induced maturation protein-1 (Blimp-1) induction by low ITK-Syk expression. In contrast, high ITK-Syk oncogene expression induces terminal T cell differentiation in the thymus by activating Blimp-1, thereby leading to elimination of oncogene-expressing cells early in development. Our data suggest that terminal differentiation is an important mechanism to prevent oncogene-expressing cells from malignant transformation, as high ITK-Syk oncogene activity induces cell elimination. Accordingly, for transformation, a specific amount of oncogene is required, or alternatively, the induction of terminal differentiation is defective.
Collapse
Affiliation(s)
- Martina P Bach
- Institute of Immunology, University Clinics Ulm, 89081 Ulm, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
281
|
Tooze RM. A replicative self-renewal model for long-lived plasma cells: questioning irreversible cell cycle exit. Front Immunol 2013; 4:460. [PMID: 24385976 PMCID: PMC3866514 DOI: 10.3389/fimmu.2013.00460] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/02/2013] [Indexed: 12/23/2022] Open
Abstract
Plasma cells are heterogenous in terms of their origins, secretory products, and lifespan. A current paradigm is that cell cycle exit in plasma cell differentiation is irreversible, following a pattern familiar in short-lived effector populations in other hemopoietic lineages. This paradigm no doubt holds true for many plasma cells whose lifespan can be measured in days following the completion of differentiation. Whether this holds true for long-lived bone marrow plasma cells that are potentially maintained for the lifespan of the organism is less apparent. Added to this the mechanisms that establish and maintain cell cycle quiescence in plasma cells are incompletely defined. Gene expression profiling indicates that in the transition of human plasmablasts to long-lived plasma cells a range of cell cycle regulators are induced in a pattern that suggests a quiescence program with potential for cell cycle re-entry. Here a model of relative quiescence with the potential for replicative self-renewal amongst long-lived plasma cells is explored. The implications of such a mechanism would be diverse, and the argument is made here that current evidence is not sufficiently strong that the possibility should be disregarded.
Collapse
Affiliation(s)
- Reuben M Tooze
- Section of Experimental Haematology, Leeds Institute of Cancer and Pathology, University of Leeds , Leeds , UK ; Haematological Malignancy Diagnostic Service, Leeds Teaching Hospitals NHS Trust , Leeds , UK
| |
Collapse
|
282
|
Xin N, Fu L, Shao Z, Guo M, Zhang X, Zhang Y, Dou C, Zheng S, Shen X, Yao Y, Wang J, Wang J, Cui G, Liu Y, Geng D, Xiao C, Zhang Z, Dong R. RNA interference targeting Bcl-6 ameliorates experimental autoimmune myasthenia gravis in mice. Mol Cell Neurosci 2013; 58:85-94. [PMID: 24361642 DOI: 10.1016/j.mcn.2013.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 11/14/2013] [Accepted: 12/09/2013] [Indexed: 12/24/2022] Open
Abstract
Follicular helper T (Tfh) cells are dedicated to providing help to B cells and are strongly associated with antibody-mediated autoimmune disease. B cell lymphoma 6 (Bcl-6) is a key transcription factor of Tfh cells, and IL-21 is known to be a critical cytokine produced by Tfh cells. We silenced Bcl-6 gene expression using RNA interference (RNAi) delivered by a lentiviral vector, to evaluate the therapeutic role of Bcl-6 short hairpin RNAs (shRNAs) in experimental autoimmune myasthenia gravis (EAMG). Our data demonstrate that CD4(+)CXCR5(+)PD-1(+) Tfh cells, Bcl-6 and IL-21 were significantly increased in EAMG mice, compared with controls. In addition, we found that frequencies of Tfh cells were positively correlated with the levels of serum anti-AChR Ab. In-vivo transduction of lenti-siRNA-Bcl6 ameliorates the severity of ongoing EAMG with decreased Tfh cells, Bcl-6 and IL-21 expression, and leads to decreased anti-AChR antibody levels. Furthermore, we found that siRNA knockdown of Bcl-6 expression increases the expression of Th1(IFN-γ, T-bet) and Th2 markers (IL-4 and GATA3), but failed to alter the expression of Th17-related markers (RORγt, IL-17) and Treg markers (FoxP3). Our study suggests that Tfh cells contribute to the antibody production and could be one of the most important T cell subsets responsible for development and progression of EAMG or MG. Bcl-6 provides a promising therapeutic target for immunotherapy not only for MG, but also for other antibody-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Ning Xin
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Linlin Fu
- Department of Pathogenic Biology and Lab of Infection and Immunology, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Zhen Shao
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Mingfeng Guo
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Xiuying Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Yong Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China.
| | - Changxin Dou
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Shuangshuang Zheng
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Xia Shen
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China.
| | - Yuanhu Yao
- Department of Radiation Therapy, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Jiao Wang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Jinhua Wang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Guiyun Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Yonghai Liu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Deqin Geng
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Chenghua Xiao
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Zunsheng Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Ruiguo Dong
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| |
Collapse
|
283
|
Pennock ND, White JT, Cross EW, Cheney EE, Tamburini BA, Kedl RM. T cell responses: naive to memory and everything in between. ADVANCES IN PHYSIOLOGY EDUCATION 2013; 37:273-83. [PMID: 24292902 PMCID: PMC4089090 DOI: 10.1152/advan.00066.2013] [Citation(s) in RCA: 310] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/31/2013] [Indexed: 05/08/2023]
Affiliation(s)
- Nathan D Pennock
- Integrated Department of Immunology, University of Colorado Denver, Denver, Colorado
| | | | | | | | | | | |
Collapse
|
284
|
Tellier J, Nutt SL. The unique features of follicular T cell subsets. Cell Mol Life Sci 2013; 70:4771-84. [PMID: 23852544 PMCID: PMC11113495 DOI: 10.1007/s00018-013-1420-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/25/2013] [Accepted: 06/28/2013] [Indexed: 12/18/2022]
Abstract
The germinal center (GC) reaction is critical for humoral immunity, but also contributes adversely to a variety of autoimmune diseases. While the major protective function of GCs is mediated by plasma cells and memory B cells, follicular helper T (TFH) cells represent a specialized T cell subset that provides essential help to the antigen-specific B cells in the form of membrane-bound ligands and secreted factors such as IL-21. Recent studies have revealed that TFH cells are capable of considerable functional diversity as well as possessing the ability to form memory cells. The molecular basis of this plasticity and heterogeneity is only now emerging. It has also become apparent that several other populations of follicular T cells exist, including natural killer T cells and regulatory T cells. In this review we will discuss the function of follicular T cells and interaction of these populations within the GC response.
Collapse
Affiliation(s)
- Julie Tellier
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia,
| | | |
Collapse
|
285
|
Kim C, Wilson T, Fischer KF, Williams MA. Sustained interactions between T cell receptors and antigens promote the differentiation of CD4⁺ memory T cells. Immunity 2013; 39:508-20. [PMID: 24054329 DOI: 10.1016/j.immuni.2013.08.033] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/09/2013] [Indexed: 02/05/2023]
Abstract
During CD4⁺ T cell activation, T cell receptor (TCR) signals impact T cell fate, including recruitment, expansion, differentiation, trafficking, and survival. To determine the impact of TCR signals on the fate decision of activated CD4⁺ T cells to become end-stage effector or long-lived memory T helper 1 (Th1) cells, we devised a deep-sequencing-based approach that allowed us to track the evolution of TCR repertoires after acute infection. The transition of effector Th1 cells into the memory pool was associated with a significant decrease in repertoire diversity, and the major histocompatibility complex (MHC) class II tetramer off rate, but not tetramer avidity, was a key predictive factor in the representation of individual clonal T cell populations at the memory stage. We conclude that stable and sustained interactions with antigens during the development of Th1 responses to acute infection are a determinative factor in promoting the differentiation of Th1 memory cells.
Collapse
Affiliation(s)
- Chulwoo Kim
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84121, USA
| | | | | | | |
Collapse
|
286
|
|
287
|
Kaczmarek K, Morales A, Henderson AJ. T Cell Transcription Factors and Their Impact on HIV Expression. Virology (Auckl) 2013; 2013:41-47. [PMID: 24436634 PMCID: PMC3891646 DOI: 10.4137/vrt.s12147] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
By targeting CD4+ effector T cells, HIV has a dramatic impact on the depletion, expansion and function of the different polarized T cell subsets. The maturation of T cell lineages is in part driven by intrinsic transcription factors that potentially influence how efficiently HIV replicates. In this review, we explore whether transcription factors that are required for polarizing T cells influence HIV replication. In particular, we examine provirus transcription as well as the establishment and maintenance of HIV latency. Furthermore, it is suggested these factors may provide novel cell-specific therapeutic strategies for targeting the HIV latent reservoir.
Collapse
Affiliation(s)
- Katarzyna Kaczmarek
- Graduate Program in Molecular and Translational Medicine, Boston University School of Medicine, Boston, MA
| | - Ayana Morales
- Section of Infectious Diseases and Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Andrew J Henderson
- Graduate Program in Molecular and Translational Medicine, Boston University School of Medicine, Boston, MA. ; Section of Infectious Diseases and Department of Medicine, Boston University School of Medicine, Boston, MA
| |
Collapse
|
288
|
Grange M, Verdeil G, Arnoux F, Griffon A, Spicuglia S, Maurizio J, Buferne M, Schmitt-Verhulst AM, Auphan-Anezin N. Active STAT5 regulates T-bet and eomesodermin expression in CD8 T cells and imprints a T-bet-dependent Tc1 program with repressed IL-6/TGF-β1 signaling. THE JOURNAL OF IMMUNOLOGY 2013; 191:3712-24. [PMID: 24006458 DOI: 10.4049/jimmunol.1300319] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In adoptive therapy, CD8 T cells expressing active STAT5 (STAT5CA) transcription factors were found to be superior to unmanipulated counterparts in long-term persistence, capacity to infiltrate autochthonous mouse melanomas, thrive in their microenvironment, and induce their regression. However, the molecular mechanisms sustaining these properties were undefined. In this study, we report that STAT5CA induced sustained expression of genes controlling tissue homing, cytolytic granule composition, type 1 CD8 cytotoxic T cell-associated effector molecules granzyme B(+), IFN-γ(+), TNF-α(+), and CCL3(+), but not IL-2, and transcription factors T-bet and eomesodermin (Eomes). Chromatin immunoprecipitation sequencing analyses identified the genes possessing regulatory regions to which STAT5 bound in long-term in vivo maintained STAT5CA-expressing CD8 T cells. This analysis identified 34% of the genes differentially expressed between STAT5CA-expressing and nonexpressing effector T cells as direct STAT5CA target genes, including those encoding T-bet, Eomes, and granzyme B. Additionally, genes encoding the IL-6R and TGFbRII subunits were stably repressed, resulting in dampened IL-17-producing CD8 T cell polarization in response to IL-6 and TGF-β1. The absence of T-bet did not affect STAT5CA-driven accumulation of the T cells in tissue or their granzyme B expression but restored IL-2 secretion and IL-6R and TGFbRII expression and signaling, as illustrated by IL-17 induction. Therefore, concerted STAT5/T-bet/Eomes regulation controls homing, long-term maintenance, recall responses, and resistance to polarization towards IL-17-producing CD8 T cells while maintaining expression of an efficient type 1 CD8 cytotoxic T cell program (granzyme B(+), IFN-γ(+)).
Collapse
Affiliation(s)
- Magali Grange
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille 13288, France
| | | | | | | | | | | | | | | | | |
Collapse
|
289
|
|
290
|
Hollister K, Kusam S, Wu H, Clegg N, Mondal A, Sawant DV, Dent AL. Insights into the role of Bcl6 in follicular Th cells using a new conditional mutant mouse model. THE JOURNAL OF IMMUNOLOGY 2013; 191:3705-11. [PMID: 23980208 DOI: 10.4049/jimmunol.1300378] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The transcriptional repressor Bcl6 controls development of the follicular Th cell (T(FH)) lineage, but the precise mechanisms by which Bcl6 regulates this process are unclear. A model has been proposed whereby Bcl6 represses the differentiation of T cells into alternative effector lineages, thus favoring T(FH) cell differentiation. Analysis of T cell differentiation using Bcl6-deficient mice has been complicated by the strong proinflammatory phenotype of Bcl6-deficient myeloid cells. In this study, we report data from a novel mouse model where Bcl6 is conditionally deleted in T cells (Bcl6(fl/fl)Cre(CD4) mice). After immunization, programmed death -1 (PD-1)(high) T(FH) cells in Bcl6(fl/fl)Cre(CD4) mice are decreased >90% compared with control mice, and Ag-specific IgG is sharply reduced. Residual PD-1(high)CXCR5(+) T(FH) cells in Bcl6(fl/fl)Cre(CD4) mice show a significantly higher rate of apoptosis than do PD-1(high)CXCR5(+) T(FH) cells in control mice. Immunization of Bcl6(fl/fl)Cre(CD4) mice did not reveal enhanced differentiation into Th1, Th2, or Th17 lineages, although IL-10 expression by CD4 T cells was markedly elevated. Thus, T cell-extrinsic factors appear to promote the increased Th1, Th2, and Th17 responses in germline Bcl6-deficient mice. Furthermore, IL-10 may be a key target gene for Bcl6 in CD4 T cells, which enables Bcl6 to promote the T(FH) cell phenotype. Finally, our data reveal a novel mechanism for the role of Bcl6 in promoting T(FH) cell survival.
Collapse
Affiliation(s)
- Kristin Hollister
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | | | | | | | | | | | | |
Collapse
|
291
|
The transcription factor Interferon Regulatory Factor 4 is required for the generation of protective effector CD8+ T cells. Proc Natl Acad Sci U S A 2013; 110:15019-24. [PMID: 23980171 DOI: 10.1073/pnas.1309378110] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Robust cytotoxic CD8(+) T-cell response is important for immunity to intracellular pathogens. Here, we show that the transcription factor IFN Regulatory Factor 4 (IRF4) is crucial for the protective CD8(+) T-cell response to the intracellular bacterium Listeria monocytogenes. IRF4-deficient (Irf4(-/-)) mice could not clear L. monocytogenes infection and generated decreased numbers of L. monocytogenes-specific CD8(+) T cells with impaired effector phenotype and function. Transfer of wild-type CD8(+) T cells into Irf4(-/-) mice improved bacterial clearance, suggesting an intrinsic defect of CD8(+) T cells in Irf4(-/-) mice. Following transfer into wild-type recipients, Irf4(-/-) CD8(+) T cells became activated and showed initial proliferation upon L. monocytogenes infection. However, these cells could not sustain proliferation, produced reduced amounts of IFN-γ and TNF-α, and failed to acquire cytotoxic function. Forced IRF4 expression in Irf4(-/-) CD8(+) T cells rescued the defect. During acute infection, Irf4(-/-) CD8(+) T cells demonstrated diminished expression of B lymphocyte-induced maturation protein-1 (Blimp-1), inhibitor of DNA binding (Id)2, and T-box expressed in T cells (T-bet), transcription factors programming effector-cell generation. IRF4 was essential for expression of Blimp-1, suggesting that altered regulation of Blimp-1 contributes to the defects of Irf4(-/-) CD8(+) T cells. Despite increased levels of B-cell lymphoma 6 (BCL-6), Eomesodermin, and Id3, Irf4(-/-) CD8(+) T cells showed impaired memory-cell formation, indicating additional functions for IRF4 in this process. As IRF4 governs B-cell and CD4(+) T-cell differentiation, the identification of its decisive role in peripheral CD8(+) T-cell differentiation, suggests a common regulatory function for IRF4 in adaptive lymphocytes fate decision.
Collapse
|
292
|
Parlato S, Bruni R, Fragapane P, Salerno D, Marcantonio C, Borghi P, Tataseo P, Ciccaglione AR, Presutti C, Romagnoli G, Bozzoni I, Belardelli F, Gabriele L. IFN-α regulates Blimp-1 expression via miR-23a and miR-125b in both monocytes-derived DC and pDC. PLoS One 2013; 8:e72833. [PMID: 23977359 PMCID: PMC3745402 DOI: 10.1371/journal.pone.0072833] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 07/15/2013] [Indexed: 01/04/2023] Open
Abstract
Type I interferon (IFN-I) have emerged as crucial mediators of cellular signals controlling DC differentiation and function. Human DC differentiated from monocytes in the presence of IFN-α (IFN-α DC) show a partially mature phenotype and a special capability of stimulating CD4+ T cell and cross-priming CD8+ T cells. Likewise, plasmacytoid DC (pDC) are blood DC highly specialized in the production of IFN-α in response to viruses and other danger signals, whose functional features may be shaped by IFN-I. Here, we investigated the molecular mechanisms stimulated by IFN-α in driving human monocyte-derived DC differentiation and performed parallel studies on peripheral unstimulated and IFN-α-treated pDC. A specific miRNA signature was induced in IFN-α DC and selected miRNAs, among which miR-23a and miR-125b, proved to be negatively associated with up-modulation of Blimp-1 occurring during IFN-α-driven DC differentiation. Of note, monocyte-derived IFN-α DC and in vitro IFN-α-treated pDC shared a restricted pattern of miRNAs regulating Blimp-1 expression as well as some similar phenotypic, molecular and functional hallmarks, supporting the existence of a potential relationship between these DC populations. On the whole, these data uncover a new role of Blimp-1 in human DC differentiation driven by IFN-α and identify Blimp-1 as an IFN-α-mediated key regulator potentially accounting for shared functional features between IFN-α DC and pDC.
Collapse
Affiliation(s)
- Stefania Parlato
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Roberto Bruni
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Fragapane
- Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Debora Salerno
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Cinzia Marcantonio
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Borghi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Tataseo
- Transfusional Medicine and Molecular Biology Laboratory, ASL, Avezzano-Sulmona, Sulmona, Italy
| | - Anna Rita Ciccaglione
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Carlo Presutti
- Department of Genetics and Molecular Biology, Sapienza University, Rome, Italy
| | - Giulia Romagnoli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Irene Bozzoni
- Department of Genetics and Molecular Biology, Sapienza University, Rome, Italy
| | - Filippo Belardelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Lucia Gabriele
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
- * E-mail:
| |
Collapse
|
293
|
Knudson KM, Goplen NP, Cunningham CA, Daniels MA, Teixeiro E. Low-affinity T cells are programmed to maintain normal primary responses but are impaired in their recall to low-affinity ligands. Cell Rep 2013; 4:554-65. [PMID: 23933258 DOI: 10.1016/j.celrep.2013.07.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/18/2013] [Accepted: 07/08/2013] [Indexed: 12/13/2022] Open
Abstract
T cell responses to low-affinity T cell receptor (TCR) ligands occur in the context of infection, tumors, and autoimmunity despite diminished TCR signal strength. The processes that enable such responses remain unclear. We show that distinct mechanisms drive effector/memory development in high- and low-affinity T cells. Low-affinity cells preferentially differentiate into memory precursors of a central memory phenotype that are interleukin (IL)-12R(lo), IL-7R(hi), and Eomes(hi). Strikingly, in contrast to naive cells, low-affinity memory cells were impaired in the response to low- but not high-affinity ligands, indicating that low-affinity cells are programmed to generate diverse immune responses while avoiding autoreactivity. Affinity and antigen dose directly correlated with IL-12R signal input and T-bet but not with Eomes expression because low- affinity signals were more potent inducers of Eomes at a high antigen dose. Our studies explain how weak antigenic signals induce complete primary immune responses and provide a framework for therapeutic intervention.
Collapse
Affiliation(s)
- Karin M Knudson
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | | | | | | | | |
Collapse
|
294
|
Auderset F, Schuster S, Fasnacht N, Coutaz M, Charmoy M, Koch U, Favre S, Wilson A, Trottein F, Alexander J, Luther SA, MacDonald HR, Radtke F, Tacchini-Cottier F. Notch Signaling Regulates Follicular Helper T Cell Differentiation. THE JOURNAL OF IMMUNOLOGY 2013; 191:2344-50. [DOI: 10.4049/jimmunol.1300643] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
295
|
Ellinghaus D, Zhang H, Zeissig S, Lipinski S, Till A, Jiang T, Stade B, Bromberg Y, Ellinghaus E, Keller A, Rivas MA, Skieceviciene J, Doncheva NT, Liu X, Liu Q, Jiang F, Forster M, Mayr G, Albrecht M, Häsler R, Boehm BO, Goodall J, Berzuini CR, Lee J, Andersen V, Vogel U, Kupcinskas L, Kayser M, Krawczak M, Nikolaus S, Weersma RK, Ponsioen CY, Sans M, Wijmenga C, Strachan DP, McArdle WL, Vermeire S, Rutgeerts P, Sanderson JD, Mathew CG, Vatn MH, Wang J, Nöthen MM, Duerr RH, Büning C, Brand S, Glas J, Winkelmann J, Illig T, Latiano A, Annese V, Halfvarson J, D’Amato M, Daly MJ, Nothnagel M, Karlsen TH, Subramani S, Rosenstiel P, Schreiber S, Parkes M, Franke A. Association between variants of PRDM1 and NDP52 and Crohn's disease, based on exome sequencing and functional studies. Gastroenterology 2013; 145:339-47. [PMID: 23624108 PMCID: PMC3753067 DOI: 10.1053/j.gastro.2013.04.040] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 03/26/2013] [Accepted: 04/17/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Genome-wide association studies (GWAS) have identified 140 Crohn's disease (CD) susceptibility loci. For most loci, the variants that cause disease are not known and the genes affected by these variants have not been identified. We aimed to identify variants that cause CD through detailed sequencing, genetic association, expression, and functional studies. METHODS We sequenced whole exomes of 42 unrelated subjects with CD and 5 healthy subjects (controls) and then filtered single nucleotide variants by incorporating association results from meta-analyses of CD GWAS and in silico mutation effect prediction algorithms. We then genotyped 9348 subjects with CD, 2868 subjects with ulcerative colitis, and 14,567 control subjects and associated variants analyzed in functional studies using materials from subjects and controls and in vitro model systems. RESULTS We identified rare missense mutations in PR domain-containing 1 (PRDM1) and associated these with CD. These mutations increased proliferation of T cells and secretion of cytokines on activation and increased expression of the adhesion molecule L-selectin. A common CD risk allele, identified in GWAS, correlated with reduced expression of PRDM1 in ileal biopsy specimens and peripheral blood mononuclear cells (combined P = 1.6 × 10(-8)). We identified an association between CD and a common missense variant, Val248Ala, in nuclear domain 10 protein 52 (NDP52) (P = 4.83 × 10(-9)). We found that this variant impairs the regulatory functions of NDP52 to inhibit nuclear factor κB activation of genes that regulate inflammation and affect the stability of proteins in Toll-like receptor pathways. CONCLUSIONS We have extended the results of GWAS and provide evidence that variants in PRDM1 and NDP52 determine susceptibility to CD. PRDM1 maps adjacent to a CD interval identified in GWAS and encodes a transcription factor expressed by T and B cells. NDP52 is an adaptor protein that functions in selective autophagy of intracellular bacteria and signaling molecules, supporting the role of autophagy in the pathogenesis of CD.
Collapse
Affiliation(s)
- David Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Hu Zhang
- Addenbrooke’s Hospital, University of Cambridge, Gastroenterology Research Unit, Cambridge, UK
- Department of Gastroenterology & State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Sebastian Zeissig
- Department of Internal Medicine, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Simone Lipinski
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Andreas Till
- Section of Molecular Biology, University of California San Diego & San Diego Center for Systems Biology (SDCSB), La Jolla, California, USA
| | | | - Björn Stade
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Yana Bromberg
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New York, USA
| | - Eva Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Andreas Keller
- Department of Human Genetics, Saarland University, Homburg, Germany
| | - Manuel A Rivas
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Jurgita Skieceviciene
- Institute for Digestive Research, Lithuanian University of Health Sciences, Department of Gastroenterology, Kaunas University of Medicine, Kaunas, Lithuania
| | | | | | | | | | - Michael Forster
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Gabriele Mayr
- Max-Planck Institute for Informatics, Saarbrücken, Germany
| | - Mario Albrecht
- Max-Planck Institute for Informatics, Saarbrücken, Germany
- Department of Bioinformatics, Institute of Biometrics and Medical Informatics, University Medicine Greifswald, Germany
| | - Robert Häsler
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Bernhard O Boehm
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Medical Center Ulm and Center of Excellence “Metabolic Disorders” Baden-Württemberg, Ulm, Germany
| | - Jane Goodall
- Department of Medicine, University of Cambridge, UK
| | - Carlo R Berzuini
- Statistical Laboratory, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK
| | - James Lee
- Addenbrooke’s Hospital, University of Cambridge, Gastroenterology Research Unit, Cambridge, UK
| | - Vibeke Andersen
- Viborg Regional Hospital, Medical Department, Viborg, Denmark
- Aabenraa SHS, Medical Department, Aabenraa, Denmark
| | - Ulla Vogel
- National Research Centre for Working Environment, Copenhagen, Denmark
| | - Limas Kupcinskas
- Institute for Digestive Research, Lithuanian University of Health Sciences, Department of Gastroenterology, Kaunas University of Medicine, Kaunas, Lithuania
| | - Manfred Kayser
- Department of Forensic Molecular Biology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Michael Krawczak
- Institute of Medical Informatics and Statistics, Christian-Albrechts University of Kiel, Kiel, Germany
- PopGen Biobank, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Susanna Nikolaus
- Department of Internal Medicine, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Rinse K Weersma
- University Medical Center Groningen, Department of Gastroenterology, Groningen, The Netherlands
| | - Cyriel Y Ponsioen
- Department of Gastroenterology and Hepatology, Amsterdam Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Miquel Sans
- Service of Digestive Diseases, Centro Médico Teknon, Barcelona, Spain
| | - Cisca Wijmenga
- University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - David P Strachan
- Division of Population Health Sciences and Education, St George’s, University of London, London, UK
| | - Wendy L McArdle
- Avon Longitudinal Study of Parents and Children (ALSPAC) Laboratory, Department of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Séverine Vermeire
- University Hospital Gasthuisberg, Division of Gastroenterology, Leuven, Belgium
| | - Paul Rutgeerts
- University Hospital Gasthuisberg, Division of Gastroenterology, Leuven, Belgium
| | - Jeremy D Sanderson
- Department of Gastroenterology, Guy’s & St. Thomas’ National Health Service Foundation Trust, London, UK
| | | | - Morten H Vatn
- Rikshospitalet University Hospital, Medical Department, Oslo, Norway
| | | | - Markus M Nöthen
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Richard H Duerr
- University of Pittsburgh School of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh Graduate School of Public Health, Department of Human Genetics, Pittsburgh, Pennsylvania, USA
| | - Carsten Büning
- Department of Gastroenterology, Hepatology and Endocrinology, Charité, Campus Mitte, Berlin, Germany
| | - Stephan Brand
- Department of Medicine II - Grosshadern, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Jürgen Glas
- Department of Medicine II - Grosshadern, Ludwig-Maximilians-University (LMU), Munich, Germany
- Department of Preventive Dentistry and Periodontology, LMU, Munich, Germany
- Department of Human Genetics, Rheinisch-Westfälische Technische Hochschule (RWTH), Aachen, Germany
| | - Juliane Winkelmann
- Institute of Human Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Human Genetics, MRI, Technische Universität München, Munich, Germany
- Departement of Neurology, MRI, Technische Universität München, Munich, Germany
| | - Thomas Illig
- Research Unit of Molecular Epidemiology, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Anna Latiano
- Division of Gastroenterology, Istituto di Ricovero e Cura a Carattere Scientifico-Casa Sollievo della Sofferenza (IRCCS-CSS) Hospital, San Giovanni Rotondo, Italy
| | - Vito Annese
- Division of Gastroenterology, Istituto di Ricovero e Cura a Carattere Scientifico-Casa Sollievo della Sofferenza (IRCCS-CSS) Hospital, San Giovanni Rotondo, Italy
- Azienda Ospedaliero Universitaria (AOU) Careggi, Unit of Gastroenterology SOD2, Florence, Italy
| | - Jonas Halfvarson
- Division of Gastroenterology, Örebro University Hospital and School of Health and Medical Sciences, Örebro University, Örebro, Sweden
| | - Mauro D’Amato
- Karolinska Institute, Department of Biosciences and Nutrition, Stockholm, Sweden
| | - Mark J Daly
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Michael Nothnagel
- Institute of Medical Informatics and Statistics, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Tom H Karlsen
- Norwegian PSC Research Center, Division of Cancer, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Medicine, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - Suresh Subramani
- Section of Molecular Biology, University of California San Diego & San Diego Center for Systems Biology (SDCSB), La Jolla, California, USA
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
- Department of Internal Medicine, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Miles Parkes
- Addenbrooke’s Hospital, University of Cambridge, Gastroenterology Research Unit, Cambridge, UK
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
296
|
Turkel N, Sahota VK, Bolden JE, Goulding KR, Doggett K, Willoughby LF, Blanco E, Martin-Blanco E, Corominas M, Ellul J, Aigaki T, Richardson HE, Brumby AM. The BTB-zinc finger transcription factor abrupt acts as an epithelial oncogene in Drosophila melanogaster through maintaining a progenitor-like cell state. PLoS Genet 2013; 9:e1003627. [PMID: 23874226 PMCID: PMC3715428 DOI: 10.1371/journal.pgen.1003627] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 05/30/2013] [Indexed: 01/07/2023] Open
Abstract
The capacity of tumour cells to maintain continual overgrowth potential has been linked to the commandeering of normal self-renewal pathways. Using an epithelial cancer model in Drosophila melanogaster, we carried out an overexpression screen for oncogenes capable of cooperating with the loss of the epithelial apico-basal cell polarity regulator, scribbled (scrib), and identified the cell fate regulator, Abrupt, a BTB-zinc finger protein. Abrupt overexpression alone is insufficient to transform cells, but in cooperation with scrib loss of function, Abrupt promotes the formation of massive tumours in the eye/antennal disc. The steroid hormone receptor coactivator, Taiman (a homologue of SRC3/AIB1), is known to associate with Abrupt, and Taiman overexpression also drives tumour formation in cooperation with the loss of Scrib. Expression arrays and ChIP-Seq indicates that Abrupt overexpression represses a large number of genes, including steroid hormone-response genes and multiple cell fate regulators, thereby maintaining cells within an epithelial progenitor-like state. The progenitor-like state is characterised by the failure to express the conserved Eyes absent/Dachshund regulatory complex in the eye disc, and in the antennal disc by the failure to express cell fate regulators that define the temporal elaboration of the appendage along the proximo-distal axis downstream of Distalless. Loss of scrib promotes cooperation with Abrupt through impaired Hippo signalling, which is required and sufficient for cooperative overgrowth with Abrupt, and JNK (Jun kinase) signalling, which is required for tumour cell migration/invasion but not overgrowth. These results thus identify a novel cooperating oncogene, identify mammalian family members of which are also known oncogenes, and demonstrate that epithelial tumours in Drosophila can be characterised by the maintenance of a progenitor-like state. Cancer is a multigenic process, involving cooperative interactions between oncogenes or tumour suppressors. In this study, in a genetic screen in the vinegar fly, Drosophila melanogaster, for genes that cooperate with a mutation in the cell polarity (shape) regulator, scribbled (scrib), we identify a novel cooperative oncogene, abrupt. Expression of abrupt in scrib mutant tissue in the developing eye/antennal epithelium results in overgrown invasive tumours. abrupt encodes a BTB-zinc finger transcription factor, which has homology to several cancer-causing proteins in humans, such as BCL6. Analysis of the Abrupt targets and misexpressed genes in abrupt expressing-tissue and abrupt-expressing scrib mutant tumours, revealed cell fate regulators as a major class of targets. Thus, our results reveal that deregulation of multiple cell fate factors by Abrupt expression in the context of polarity disruption is associated with a progenitor-like cell state and the formation of overgrown invasive tumours. Our findings suggest that defective polarity may also be a critical factor in BTB-zinc finger-driven human cancers, and warrants further investigation into this issue.
Collapse
Affiliation(s)
- Nezaket Turkel
- Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Department of Anatomy and Cell Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Virender K. Sahota
- Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Jessica E. Bolden
- Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Karen R. Goulding
- Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Karen Doggett
- Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Lee F. Willoughby
- Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Enrique Blanco
- Departament de Genètica i Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Enrique Martin-Blanco
- Instituto de Biología Molecular de Barcelona (CSIC), Parc Cientific de Barcelona, Barcelona, Spain
| | - Montserrat Corominas
- Departament de Genètica i Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Jason Ellul
- Bioinformatics Core Facility, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Toshiro Aigaki
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Helena E. Richardson
- Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Department of Anatomy and Cell Biology, The University of Melbourne, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia
- * E-mail:
| | - Anthony M. Brumby
- Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Department of Anatomy and Cell Biology, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Genetics, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
297
|
Abstract
While the need for CD4 T cells in the generation of CD8 T cell memory has been well documented, the mechanism underlying their requirement remains unknown. Here, we detail an immunization method capable of generating CD8 memory T cells that are indifferent to CD4 T cell help. Using a subunit vaccination that combines polyIC and an agonistic CD40 antibody, we program protective CD4-independent CD8 T cell memory. When cells generated by combined polyIC/CD40 immunization are compared to cells produced following a CD4-dependent vaccination, Listeria monocytogenes, they display dramatic differences, both phenotypically and functionally. The memory cells generated in a CD4-deficient host by polyIC/CD40 immunization provide protection against secondary infectious challenge, whereas cells generated by LM immunization in the same environment do not. Interestingly, combined polyIC/CD40 immunization generates long-term memory cells with low Blimp-1 and elevated Eomes expression despite high expression of Blimp-1 during the primary response. The potency of combined polyIC/CD40 to elicit CD8+ T cell memory in the absence of CD4 T cells suggests that it could be considered as a vaccine adjuvant in clinical situations where CD4 responses/numbers are compromised.
Collapse
|
298
|
Bach2 maintains T cells in a naive state by suppressing effector memory-related genes. Proc Natl Acad Sci U S A 2013; 110:10735-40. [PMID: 23754397 DOI: 10.1073/pnas.1306691110] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transcriptional repressor BTB and CNC homology 2 (Bach2) is thought to be mainly expressed in B cells with specific functions such as class switch recombination and somatic hypermutation, but its function in T cells is not known. We found equal Bach2 expression in T cells and analyzed its function using Bach2-deficient (-/-) mice. Although T-cell development was normal, numbers of peripheral naive T cells were decreased, which rapidly produced Th2 cytokines after TCR stimulation. Bach2(-/-) naive T cells highly expressed genes related to effector-memory T cells such as CCR4, ST-2 and Blimp-1. Enhanced expression of these genes induced Bach2(-/-) naive T cells to migrate toward CCR4-ligand and respond to IL33. Forced expression of Bach2 restored the expression of these genes. Using Chromatin Immunoprecipitation (ChIP)-seq analysis, we identified S100 calcium binding protein a, Heme oxigenase 1, and prolyl hydroxylase 3 as Bach2 direct target genes, which are highly expressed in effector-memory T cells. These findings indicate that Bach2 suppresses effector memory-related genes to maintain the naive T-cell state and regulates generation of effector-memory T cells.
Collapse
|
299
|
Khanolkar A, Williams MA, Harty JT. Antigen experience shapes phenotype and function of memory Th1 cells. PLoS One 2013; 8:e65234. [PMID: 23762323 PMCID: PMC3676405 DOI: 10.1371/journal.pone.0065234] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/23/2013] [Indexed: 12/22/2022] Open
Abstract
Primary and secondary (boosted) memory CD8 T cells exhibit differences in gene expression, phenotype and function. The impact of repeated antigen stimulations on memory CD4 T cells is largely unknown. To address this issue, we utilized LCMV and Listeria monocytogenes infection of mice to characterize primary and secondary antigen (Ag)-specific Th1 CD4 T cell responses. Ag-specific primary memory CD4 T cells display a CD62LloCCR7hi CD27hi CD127hi phenotype and are polyfunctional (most produce IFNγ, TNFα and IL-2). Following homologous prime-boost immunization we observed pathogen-specific differences in the rate of CD62L and CCR7 upregulation on memory CD4 T cells as well as in IL-2+IFNγco-production by secondary effectors. Phenotypic and functional plasticity of memory Th1 cells was observed following heterologous prime-boost immunization, wherein secondary memory CD4 T cells acquired phenotypic and functional characteristics dictated by the boosting agent rather than the primary immunizing agent. Our data also demonstrate that secondary memory Th1 cells accelerated neutralizing Ab formation in response to LCMV infection, suggesting enhanced capacity of this population to provide quality help for antibody production. Collectively these data have important implications for prime-boost vaccination strategies that seek to enhance protective immune responses mediated by Th1 CD4 T cell responses.
Collapse
Affiliation(s)
- Aaruni Khanolkar
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Matthew A. Williams
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail: (JTH); (MAW)
| | - John T. Harty
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail: (JTH); (MAW)
| |
Collapse
|
300
|
Roychoudhuri R, Hirahara K, Mousavi K, Clever D, Klebanoff CA, Bonelli M, Sciumè G, Zare H, Vahedi G, Dema B, Yu Z, Liu H, Takahashi H, Rao M, Muranski P, Crompton JG, Punkosdy G, Bedognetti D, Wang E, Hoffmann V, Rivera J, Marincola FM, Nakamura A, Sartorelli V, Kanno Y, Gattinoni L, Muto A, Igarashi K, O'Shea JJ, Restifo NP. BACH2 represses effector programs to stabilize T(reg)-mediated immune homeostasis. Nature 2013; 498:506-10. [PMID: 23728300 PMCID: PMC3710737 DOI: 10.1038/nature12199] [Citation(s) in RCA: 319] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 04/17/2013] [Indexed: 12/13/2022]
Abstract
Through their functional diversification, distinct lineages of CD4+ T cells play key roles in either driving or constraining immune-mediated pathology. Transcription factors are critical in the generation of cellular diversity, and negative regulators antagonistic to alternate fates often act in conjunction with positive regulators to stabilize lineage commitment1. Genetic polymorphisms within a single locus encoding the transcription factor BACH2 are associated with numerous autoimmune and allergic diseases including asthma2, Crohn’s disease3–4, coeliac disease5, vitiligo6, multiple sclerosis7 and type 1 diabetes8. While these associations point to a shared mechanism underlying susceptibility to diverse immune-mediated diseases, a function for Bach2 in the maintenance of immune homeostasis has not been established. Here, we define Bach2 as a broad regulator of immune activation that stabilizes immunoregulatory capacity while repressing the differentiation programmes of multiple effector lineages in CD4+ T cells. Bach2 was required for efficient formation of regulatory (Treg) cells and consequently for suppression of lethal inflammation in a manner that was Treg cell dependent. Assessment of the genome-wide function of Bach2, however, revealed that it represses genes associated with effector cell differentiation. Consequently, its absence during Treg polarization resulted in inappropriate diversion to effector lineages. In addition, Bach2 constrained full effector differentiation within Th1, Th2 and Th17 cell lineages. These findings identify Bach2 as a key regulator of CD4+ T-cell differentiation that prevents inflammatory disease by controlling the balance between tolerance and immunity.
Collapse
Affiliation(s)
- Rahul Roychoudhuri
- Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|