251
|
Vu DL, Martinez-Murillo P, Pigny F, Vono M, Meyer B, Eberhardt CS, Lemeille S, Von Dach E, Blanchard-Rohner G, Eckerle I, Huttner A, Siegrist CA, Kaiser L, Didierlaurent AM. Longitudinal Analysis of Inflammatory Response to SARS-CoV-2 in the Upper Respiratory Tract Reveals an Association with Viral Load, Independent of Symptoms. J Clin Immunol 2021; 41:1723-1732. [PMID: 34581925 PMCID: PMC8476983 DOI: 10.1007/s10875-021-01134-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 09/05/2021] [Indexed: 12/23/2022]
Abstract
Background SARS-CoV-2 infection leads to high viral loads in the upper respiratory tract that may be determinant in virus dissemination. The extent of intranasal antiviral response in relation to symptoms is unknown. Understanding how local innate responses control virus is key in the development of therapeutic approaches. Methods SARS-CoV-2-infected patients were enrolled in an observational study conducted at the Geneva University Hospitals, Switzerland, investigating virological and immunological characteristics. Nasal wash and serum specimens from a subset of patients were collected to measure viral load, IgA specific for the S1 domain of the spike protein, and a cytokine panel at different time points after infection; cytokine levels were analyzed in relation to symptoms. Results Samples from 13 SARS-CoV-2-infected patients and six controls were analyzed. We found an increase in CXCL10 and IL-6, whose levels remained elevated for up to 3 weeks after symptom onset. SARS-CoV-2 infection also induced CCL2 and GM-CSF, suggesting local recruitment and activation of myeloid cells. Local cytokine levels correlated with viral load but not with serum cytokine levels, nor with specific symptoms, including anosmia. Some patients had S1-specific IgA in the nasal cavity while almost none had IgG. Conclusion The nasal epithelium is an active site of cytokine response against SARS-CoV-2 that can last more than 2 weeks; in this mild COVID-19 cohort, anosmia was not associated with increases in any locally produced cytokines. Supplementary Information The online version contains supplementary material available at 10.1007/s10875-021-01134-z.
Collapse
Affiliation(s)
- Diem-Lan Vu
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland.
- Laboratory of Virology, Division of Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland.
- University of Geneva Medical School, Geneva, Switzerland.
| | - Paola Martinez-Murillo
- Department of Pathology and Immunology, Faculty of Medicine, Center of Vaccinology, University of Geneva, Geneva, Switzerland
| | - Fiona Pigny
- Laboratory of Virology, Division of Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
- University of Geneva Medical School, Geneva, Switzerland
| | - Maria Vono
- Department of Pathology and Immunology, Faculty of Medicine, Center of Vaccinology, University of Geneva, Geneva, Switzerland
| | - Benjamin Meyer
- Department of Pathology and Immunology, Faculty of Medicine, Center of Vaccinology, University of Geneva, Geneva, Switzerland
| | - Christiane S Eberhardt
- University of Geneva Medical School, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, Center of Vaccinology, University of Geneva, Geneva, Switzerland
| | - Sylvain Lemeille
- Department of Pathology and Immunology, Faculty of Medicine, Center of Vaccinology, University of Geneva, Geneva, Switzerland
| | - Elodie Von Dach
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- University of Geneva Medical School, Geneva, Switzerland
| | - Géraldine Blanchard-Rohner
- Department of Pathology and Immunology, Faculty of Medicine, Center of Vaccinology, University of Geneva, Geneva, Switzerland
- Unit of Immunology and Vaccinology, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Isabella Eckerle
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- Laboratory of Virology, Division of Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Angela Huttner
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- University of Geneva Medical School, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, Center of Vaccinology, University of Geneva, Geneva, Switzerland
| | - Claire-Anne Siegrist
- University of Geneva Medical School, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, Center of Vaccinology, University of Geneva, Geneva, Switzerland
| | - Laurent Kaiser
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- Laboratory of Virology, Division of Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
- University of Geneva Medical School, Geneva, Switzerland
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Arnaud M Didierlaurent
- Department of Pathology and Immunology, Faculty of Medicine, Center of Vaccinology, University of Geneva, Geneva, Switzerland.
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland.
| |
Collapse
|
252
|
Martin G, Wolf J, Lapp T, Agostini HT, Schlunck G, Auw-Hädrich C, Lange CAK. Viral S protein histochemistry reveals few potential SARS-CoV-2 entry sites in human ocular tissues. Sci Rep 2021; 11:19140. [PMID: 34580409 PMCID: PMC8476534 DOI: 10.1038/s41598-021-98709-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/13/2021] [Indexed: 12/17/2022] Open
Abstract
Despite the reported low expression of the primary SARS-CoV-2 receptor ACE2 in distinct ocular tissues, some clinical evidence suggests that SARS-CoV-2 can infect the eye. In this study, we explored potential entry sites for SARS-CoV-2 by viral S protein histochemistry on various ocular tissues and compared the staining patterns with RNA and protein expression of TMPRSS2 and ACE2. Potential viral entry sites were investigated by histochemistry using tagged recombinant viral S protein on 52 ocular tissue samples including specimens of the cornea, conjunctiva, lid margin, lacrimal gland tissue, retina, choroid, and RPE. In addition, ACE2 and TMPRSS2 immunohistochemistry were performed on the same ocular tissue, each with distinct antibodies binding to different epitopes. Lung tissue samples were used as positive controls. Finally, bulk RNA sequencing (RNA-Seq) was used to determine the expression of ACE2 and its auxiliary factors in the tissues mentioned above. S protein histochemistry revealed a positive staining in lung tissue but absent staining in the cornea, the conjunctiva, eye lid samples, the lacrimal glands, the retina and the optic nerve which was supported by hardly any immunoreactivity for ACE2 and TMPRSS2 and scarce ACE2 and TMPRSS2 RNA expression. Negligible staining with antibodies targeting ACE2 or TMPRSS2 was seen in the main and accessory lacrimal glands. In contrast, ocular staining (S protein, ACE2, TMPRSS2) was distinctly present in pigmented cells of the RPE and choroid, as well as in the ciliary body and the iris stroma. S protein histochemistry revealed hardly any SARS-CoV-2 entry sites in all ocular tissues examined. Similarly, no significant ACE2 or TMPRSS2 expression was found in extra- and intraocular tissue. While this study suggest a rather low risk of ocular infection with SARS-CoV-2, it should be noted, that potential viral entry sites may increase in response to inflammation or in certain disease states.
Collapse
Affiliation(s)
- Gottfried Martin
- Eye Center, Medical Center, Medical Faculty, University of Freiburg, Killianstr. 5, 79106, Freiburg, Germany.
| | - Julian Wolf
- Eye Center, Medical Center, Medical Faculty, University of Freiburg, Killianstr. 5, 79106, Freiburg, Germany
| | - Thabo Lapp
- Eye Center, Medical Center, Medical Faculty, University of Freiburg, Killianstr. 5, 79106, Freiburg, Germany
| | - Hansjürgen T Agostini
- Eye Center, Medical Center, Medical Faculty, University of Freiburg, Killianstr. 5, 79106, Freiburg, Germany
| | - Günther Schlunck
- Eye Center, Medical Center, Medical Faculty, University of Freiburg, Killianstr. 5, 79106, Freiburg, Germany
| | - Claudia Auw-Hädrich
- Eye Center, Medical Center, Medical Faculty, University of Freiburg, Killianstr. 5, 79106, Freiburg, Germany
| | - Clemens A K Lange
- Eye Center, Medical Center, Medical Faculty, University of Freiburg, Killianstr. 5, 79106, Freiburg, Germany.
| |
Collapse
|
253
|
The Possible Role of Microbial Proteases in Facilitating SARS-CoV-2 Brain Invasion. BIOLOGY 2021; 10:biology10100966. [PMID: 34681064 PMCID: PMC8533249 DOI: 10.3390/biology10100966] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 01/15/2023]
Abstract
SARS-CoV-2 has been shown to display proclivity towards organs bearing angiotensin-converting enzyme (ACE2) expression cells. Of interest herein is the ability of the virus to exhibit neurotropism. However, there is limited information on how this virus invades the brain. With this contribution, we explore how, in the context of a microbial co-infection using a cryptococcal co-infection as a model, SARS-CoV-2 could reach the brain. We theorise that the secretion of proteases by disseminated fungal cells might also activate the S2 domain of the viral spike glycoprotein for membrane fusion with brain endothelial cells leading to endocytosis. Understanding this potential invasion mechanism could lead to better SARS-CoV-2 intervention measures, which may also be applicable in instances of co-infection, especially with protease-secreting pathogens.
Collapse
|
254
|
Mechanistic Insights into the Inhibition of SARS-CoV-2 Main Protease by Clovamide and Its Derivatives: In Silico Studies. BIOPHYSICA 2021. [DOI: 10.3390/biophysica1040028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The novel coronavirus SARS-CoV-2 Main Protease (Mpro) is an internally encoded enzyme that hydrolyzes the translated polyproteins at designated sites. The protease directly mediates viral replication processes; hence, a promising target for drug design. Plant-based natural products, especially polyphenols and phenolic compounds, provide the scaffold for many effective antiviral medications, and have recently been shown to be able to inhibit Mpro of SARS-CoV-2. Specifically, polyphenolic compounds found in cacao and chocolate products have been shown by recent experimental studies to have strong inhibitory effects against Mpro activities. This work aims to uncover the inhibition processes of Mpro by a natural phenolic compound found in cacao and chocolate products, clovamide. Clovamide (caffeoyl-DOPA) is a naturally occurring caffeoyl conjugate that is found in the phenolic fraction of Theobroma Cacao L. and a potent radical-scavenging antioxidant as suggested by previous studies of our group. Here, we propose inhibitory mechanisms by which clovamide may act as a Mpro inhibitor as it becomes oxidized by scavenging reactive oxygen species (ROS) in the body, or becomes oxidized as a result of enzymatic browning. We use molecular docking, annealing-based molecular dynamics, and Density Functional Theory (DFT) calculations to study the interactions between clovamide with its derivatives and Mpro catalytic and allosteric sites. Our molecular modelling studies provide mechanistic insights of clovamide inhibition of Mpro, and indicate that clovamide may be a promising candidate as a drug lead molecule for COVID-19 treatments.
Collapse
|
255
|
Sharma HN, Latimore COD, Matthews QL. Biology and Pathogenesis of SARS-CoV-2: Understandings for Therapeutic Developments against COVID-19. Pathogens 2021; 10:1218. [PMID: 34578250 PMCID: PMC8470303 DOI: 10.3390/pathogens10091218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 01/18/2023] Open
Abstract
Coronaviruses are positive sense, single-stranded, enveloped, and non-segmented RNA viruses that belong to the Coronaviridae family within the order Nidovirales and suborder Coronavirinae. Two Alphacoronavirus strains: HCoV-229E and HCoV-NL63 and five Betacoronaviruses: HCoV-HKU1, HCoV-OC43, SARS-CoV, MERS-CoV, and SARS-CoV-2 have so far been recognized as Human Coronaviruses (HCoVs). Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 is currently the greatest concern for humanity. Despite the overflow of research on SARS-CoV-2 and other HCoVs published every week, existing knowledge in this area is insufficient for the complete understanding of the viruses and the diseases caused by them. This review is based on the analysis of 210 published works, and it attempts to cover the basic biology of coronaviruses, including the genetic characteristics, life cycle, and host-pathogen interaction, pathogenesis, the antiviral drugs, and vaccines against HCoVs, especially focusing on SARS-CoV-2. Furthermore, we will briefly discuss the potential link between extracellular vesicles (EVs) and SARS-CoV-2/COVID-19 pathophysiology.
Collapse
Affiliation(s)
- Homa Nath Sharma
- Microbiology Program, Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA;
| | | | - Qiana L. Matthews
- Microbiology Program, Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA;
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA;
| |
Collapse
|
256
|
Enisamium Inhibits SARS-CoV-2 RNA Synthesis. Biomedicines 2021; 9:biomedicines9091254. [PMID: 34572438 PMCID: PMC8467925 DOI: 10.3390/biomedicines9091254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 01/18/2023] Open
Abstract
Pandemic SARS-CoV-2 causes a mild to severe respiratory disease called coronavirus disease 2019 (COVID-19). While control of the SARS-CoV-2 spread partly depends on vaccine-induced or naturally acquired protective herd immunity, antiviral strategies are still needed to manage COVID-19. Enisamium is an inhibitor of influenza A and B viruses in cell culture and clinically approved in countries of the Commonwealth of Independent States. In vitro, enisamium acts through metabolite VR17-04 and inhibits the activity of the influenza A virus RNA polymerase. Here we show that enisamium can inhibit coronavirus infections in NHBE and Caco-2 cells, and the activity of the SARS-CoV-2 RNA polymerase in vitro. Docking and molecular dynamics simulations provide insight into the mechanism of action and indicate that enisamium metabolite VR17-04 prevents GTP and UTP incorporation. Overall, these results suggest that enisamium is an inhibitor of SARS-CoV-2 RNA synthesis in vitro.
Collapse
|
257
|
Maharana B, Chakraborty P, Rackimuthu S, Baig R, Kadakia S. Paradoxical role of oxygen in the treatment of patients with COVID-19. Monaldi Arch Chest Dis 2021; 92. [PMID: 34526728 DOI: 10.4081/monaldi.2021.1916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/09/2021] [Indexed: 11/23/2022] Open
Abstract
Dear Editor, Coronavirus disease-2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) was declared a pandemic by WHO on 11 March 2020 and has adversely affected human society and disrupted global health...
Collapse
Affiliation(s)
| | | | | | - Rusab Baig
- Shadan Institute of Medical Sciences, Telangana.
| | | |
Collapse
|
258
|
Sequences in the cytoplasmic tail of SARS-CoV-2 Spike facilitate expression at the cell surface and syncytia formation. Nat Commun 2021; 12:5333. [PMID: 34504087 PMCID: PMC8429659 DOI: 10.1038/s41467-021-25589-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/11/2021] [Indexed: 02/08/2023] Open
Abstract
The Spike (S) protein of SARS-CoV-2 binds ACE2 to direct fusion with host cells. S comprises a large external domain, a transmembrane domain, and a short cytoplasmic tail. Understanding the intracellular trafficking of S is relevant to SARS-CoV-2 infection, and to vaccines expressing full-length S from mRNA or adenovirus vectors. Here we report a proteomic screen for cellular factors that interact with the cytoplasmic tail of S. We confirm interactions with the COPI and COPII vesicle coats, ERM family actin regulators, and the WIPI3 autophagy component. The COPII binding site promotes exit from the endoplasmic reticulum, and although binding to COPI should retain S in the early Golgi where viral budding occurs, there is a suboptimal histidine residue in the recognition motif. As a result, S leaks to the surface where it accumulates and can direct the formation of multinucleate syncytia. Thus, the trafficking signals in the tail of S indicate that syncytia play a role in the SARS-CoV-2 lifecycle.
Collapse
|
259
|
Rezq S, Huffman AM, Basnet J, Yanes Cardozo LL, Romero DG. Cardiac and Renal SARS-CoV-2 Viral Entry Protein Regulation by Androgens and Diet: Implications for Polycystic Ovary Syndrome and COVID-19. Int J Mol Sci 2021; 22:ijms22189746. [PMID: 34575910 PMCID: PMC8470275 DOI: 10.3390/ijms22189746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/31/2022] Open
Abstract
The susceptibility and the severity of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are associated with hyperandrogenism, obesity, and preexisting pulmonary, metabolic, renal, and cardiac conditions. Polycystic ovary syndrome (PCOS), the most common endocrine disorder in premenopausal women, is associated with obesity, hyperandrogenism, and cardiometabolic dysregulations. We analyzed cardiac, renal, circulatory, and urinary SARS-CoV-2 viral entry proteins (ACE2, TMPRSS2, TMPRSS4, furin, cathepsin L, and ADAM17) and androgen receptor (AR) expression, in a peripubertal androgen exposure model of PCOS. Peripubertal female mice were treated with dihydrotestosterone (DHT) and low (LFD) or high (HFD) fat diet for 90 days. HFD exacerbated DHT-induced increase in body weight, fat mass, and cardiac and renal hypertrophy. In the heart, DHT upregulated AR protein in both LFD and HFD, ACE2 in HFD, and ADAM17 in LFD. In the kidney, AR protein expression was upregulated by both DHT and HFD. Moreover, ACE2 and ADAM17 were upregulated by DHT in both diets. Renal TMPRSS2, furin, and cathepsin L were upregulated by DHT and differentially modulated by the diet. DHT upregulated urinary ACE2 in both diets, while neither treatment modified serum ACE2. Renal AR mRNA expression positively correlated with Ace2, Tmprss2, furin, cathepsin L, and ADAM17. Our findings suggest that women with PCOS could be a population with a high risk of COVID-19-associated cardiac and renal complications. Furthermore, our study suggests that weight loss by lifestyle modifications (i.e., diet) could potentially mitigate COVID-19-associated deleterious cardiorenal outcomes in women with PCOS.
Collapse
Affiliation(s)
- Samar Rezq
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA; (S.R.); (A.M.H.); (J.B.); (L.L.Y.C.)
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA
- Women’s Health Research Center, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA
- Cardio Renal Research Center, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Alexandra M. Huffman
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA; (S.R.); (A.M.H.); (J.B.); (L.L.Y.C.)
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA
- Women’s Health Research Center, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA
- Cardio Renal Research Center, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA
| | - Jelina Basnet
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA; (S.R.); (A.M.H.); (J.B.); (L.L.Y.C.)
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA
- Women’s Health Research Center, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA
- Cardio Renal Research Center, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA
| | - Licy L. Yanes Cardozo
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA; (S.R.); (A.M.H.); (J.B.); (L.L.Y.C.)
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA
- Women’s Health Research Center, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA
- Cardio Renal Research Center, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA
- Department of Medicine, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA
| | - Damian G. Romero
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA; (S.R.); (A.M.H.); (J.B.); (L.L.Y.C.)
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA
- Women’s Health Research Center, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA
- Cardio Renal Research Center, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA
- Correspondence: ; Tel.: +1-601-984-1523; Fax: +1-601-984-1501
| |
Collapse
|
260
|
Zheng X, Sun Z, Yu L, Shi D, Zhu M, Yao H, Li L. Interactome Analysis of the Nucleocapsid Protein of SARS-CoV-2 Virus. Pathogens 2021; 10:1155. [PMID: 34578187 PMCID: PMC8465953 DOI: 10.3390/pathogens10091155] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 12/23/2022] Open
Abstract
SARS-CoV-2 infection has caused a global pandemic that has severely damaged both public health and the economy. The nucleocapsid protein of SARS-CoV-2 is multifunctional and plays an important role in ribonucleocapsid formation and viral genome replication. In order to elucidate its functions, interaction partners of the SARS-CoV-2 N protein in human cells were identified via affinity purification and mass spectrometry. We identified 160 cellular proteins as interaction partners of the SARS-CoV-2 N protein in HEK293T and/or Calu-3 cells. Functional analysis revealed strong enrichment for ribosome biogenesis and RNA-associated processes, including ribonucleoprotein complex biogenesis, ribosomal large and small subunits biogenesis, RNA binding, catalysis, translation and transcription. Proteins related to virus defence responses, including MOV10, EIF2AK2, TRIM25, G3BP1, ZC3HAV1 and ZCCHC3 were also identified in the N protein interactome. This study comprehensively profiled the viral-host interactome of the SARS-CoV-2 N protein in human cells, and the findings provide the basis for further studies on the pathogenesis and antiviral strategies for this emerging infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Hangping Yao
- Correspondence: (H.Y.); (L.L.); Tel.: +86-571-87236580 (H.Y.); +86-571-87236458 (L.L.)
| | - Lanjuan Li
- Correspondence: (H.Y.); (L.L.); Tel.: +86-571-87236580 (H.Y.); +86-571-87236458 (L.L.)
| |
Collapse
|
261
|
Selvaraj C, Dinesh DC, Krafcikova P, Boura E, Aarthy M, Pravin MA, Singh SK. Structural Understanding of SARS-CoV-2 Drug Targets, Active Site Contour Map Analysis and COVID-19 Therapeutics. Curr Mol Pharmacol 2021; 15:418-433. [PMID: 34488601 DOI: 10.2174/1874467214666210906125959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 11/22/2022]
Abstract
The most iconic word of the year 2020 is 'COVID-19', the shortened name for coronavirus disease 2019. The pandemic, caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is responsible for multiple worldwide lockdowns, an economic crisis, and a substantial increase in hospitalizations for viral pneumonia along with respiratory failure and multiorgan dysfunctions. Recently, the first few vaccines were approved by World Health Organization (WHO) and can eventually save millions of lives. Even though, few emergency use drugs like Remdesivir and several other repurposed drugs, still there is no approved drug for COVID-19. The coronaviral encoded proteins involved in host-cell entry, replication, and host-cell invading mechanism are potentially therapeutic targets. This perspective review provides the molecular overview of SARS-CoV-2 life cycle for summarizing potential drug targets, structural insights, active site contour map analyses of those selected SARS-CoV-2 protein targets for drug discovery, immunology, and pathogenesis.
Collapse
Affiliation(s)
- Chandrabose Selvaraj
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi-630004, Tamil Nadu. India
| | | | - Petra Krafcikova
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2, 166 10 Prague 6. Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2, 166 10 Prague 6. Czech Republic
| | - Murali Aarthy
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi-630004, Tamil Nadu. India
| | - Muthuraja Arun Pravin
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi-630004, Tamil Nadu. India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi-630004, Tamil Nadu. India
| |
Collapse
|
262
|
Johnson AM, Barigye R, Saminathan H. Perspectives on the use and risk of adverse events associated with cytokine-storm targeting antibodies and challenges associated with development of novel monoclonal antibodies for the treatment of COVID-19 clinical cases. Hum Vaccin Immunother 2021; 17:2824-2840. [PMID: 33974497 PMCID: PMC8127167 DOI: 10.1080/21645515.2021.1908060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/02/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the novel coronavirus disease 2019 (COVID-19) pandemic that lacks globally accessible effective antivirals or extensively available vaccines. Numerous clinical trials are exploring the applicability of repurposed monoclonal antibodies (mAbs) targeting cytokines that cause adverse COVID-19-related pathologies, and novel mAbs directly targeting SARS-CoV-2. However, comorbidities and the incidence of cytokine storm (CS)-associated pathological complexities in some COVID-19 patients may limit the clinical use of these drugs. Additionally, CS-targeting mAbs have the potential to cause adverse events that restrict their applicability in patients with comorbidities. Novel mAbs targeting SARS-CoV-2 require pharmacological and toxicological characterization before a marketable product becomes available. The affordability of novel mAbs across the global economic spectrum may seriously limit their accessibility. This review presents a perspective on antibody-based research efforts and their limitations for COVID-19.
Collapse
Affiliation(s)
- Aishwarya Mary Johnson
- Department of Veterinary Medicine, College of Food and Agriculture, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Robert Barigye
- Department of Veterinary Medicine, College of Food and Agriculture, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Hariharan Saminathan
- Department of Veterinary Medicine, College of Food and Agriculture, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
263
|
Yan H, Sun J, Wang K, Wang H, Wu S, Bao L, He W, Wang D, Zhu A, Zhang T, Gao R, Dong B, Li J, Yang L, Zhong M, Lv Q, Qin F, Zhuang Z, Huang X, Yang X, Li Y, Che Y, Jiang J. Repurposing carrimycin as an antiviral agent against human coronaviruses, including the currently pandemic SARS-CoV-2. Acta Pharm Sin B 2021; 11:2850-2858. [PMID: 33723501 PMCID: PMC7946546 DOI: 10.1016/j.apsb.2021.02.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 12/23/2022] Open
Abstract
COVID-19 pandemic caused by SARS-CoV-2 infection severely threatens global health and economic development. No effective antiviral drug is currently available to treat COVID-19 and any other human coronavirus infections. We report herein that a macrolide antibiotic, carrimycin, potently inhibited the cytopathic effects (CPE) and reduced the levels of viral protein and RNA in multiple cell types infected by human coronavirus 229E, OC43, and SARS-CoV-2. Time-of-addition and pseudotype virus infection studies indicated that carrimycin inhibited one or multiple post-entry replication events of human coronavirus infection. In support of this notion, metabolic labelling studies showed that carrimycin significantly inhibited the synthesis of viral RNA. Our studies thus strongly suggest that carrimycin is an antiviral agent against a broad-spectrum of human coronaviruses and its therapeutic efficacy to COVID-19 is currently under clinical investigation.
Collapse
|
264
|
Rapozzi V, Juarranz A, Habib A, Ihan A, Strgar R. Is haem the real target of COVID-19? Photodiagnosis Photodyn Ther 2021; 35:102381. [PMID: 34119708 PMCID: PMC8192263 DOI: 10.1016/j.pdpdt.2021.102381] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 02/08/2023]
Abstract
Although a vaccination campaign has been launched in many countries, the COVID-19 pandemic is not under control. The main concern is the emergence of new variants of SARS-CoV-2; therefore, it is important to find approaches to prevent or reduce the virulence and pathogenicity of the virus. Currently, the mechanism of action of SARS-CoV-2 is not fully understood. Considering the clinical effects that occur during the disease, attacking the human respiratory and hematopoietic systems, and the changes in biochemical parameters (including decreases in haemoglobin [Hb] levels and increases in serum ferritin), it is clear that iron metabolism is involved. SARS-CoV-2 induces haemolysis and interacts with Hb molecules via ACE2, CD147, CD26, and other receptors located on erythrocytes and/or blood cell precursors that produce dysfunctional Hb. A molecular docking study has reported a potential link between the virus and the beta chain of haemoglobin and attack on haem. Considering that haem is involved in miRNA processing by binding to the DGCR8-DROSHA complex, we hypothesised that the virus may check this mechanism and thwart the antiviral response.
Collapse
Affiliation(s)
| | - Angeles Juarranz
- Department of Biology, University Autonoma of Madrid, Madrid 28049, Spain
| | - Ahsan Habib
- Department of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - Alojz Ihan
- Institute for Microbiology and Immunology, Medical Faculty of Ljubljana, Slovenia
| | - Rebeka Strgar
- Institution of Applicative Biophotonics, Technological Park Ljubljana, Slovenia
| |
Collapse
|
265
|
Grebennikov D, Kholodareva E, Sazonov I, Karsonova A, Meyerhans A, Bocharov G. Intracellular Life Cycle Kinetics of SARS-CoV-2 Predicted Using Mathematical Modelling. Viruses 2021; 13:1735. [PMID: 34578317 PMCID: PMC8473439 DOI: 10.3390/v13091735] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 infection represents a global threat to human health. Various approaches were employed to reveal the pathogenetic mechanisms of COVID-19. Mathematical and computational modelling is a powerful tool to describe and analyze the infection dynamics in relation to a plethora of processes contributing to the observed disease phenotypes. In our study here, we formulate and calibrate a deterministic model of the SARS-CoV-2 life cycle. It provides a kinetic description of the major replication stages of SARS-CoV-2. Sensitivity analysis of the net viral progeny with respect to model parameters enables the identification of the life cycle stages that have the strongest impact on viral replication. These three most influential parameters are (i) degradation rate of positive sense vRNAs in cytoplasm (negative effect), (ii) threshold number of non-structural proteins enhancing vRNA transcription (negative effect), and (iii) translation rate of non-structural proteins (positive effect). The results of our analysis could be used for guiding the search for antiviral drug targets to combat SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Dmitry Grebennikov
- Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences (INM RAS), 119333 Moscow, Russia;
- Moscow Center for Fundamental and Applied Mathematics at INM RAS, 119333 Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Ekaterina Kholodareva
- Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences (INM RAS), 119333 Moscow, Russia;
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, 141701 Moscow Oblast, Russia
| | - Igor Sazonov
- College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea SA1 8EN, UK;
| | - Antonina Karsonova
- Department of Clinical Immunology and Allergology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Andreas Meyerhans
- Infection Biology Laboratory, Universitat Pompeu Fabra, 08003 Barcelona, Spain;
- ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - Gennady Bocharov
- Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences (INM RAS), 119333 Moscow, Russia;
- Moscow Center for Fundamental and Applied Mathematics at INM RAS, 119333 Moscow, Russia
- Institute of Computer Science and Mathematical Modelling, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
266
|
Frazier MN, Dillard LB, Krahn JM, Perera L, Williams JG, Wilson IM, Stewart ZD, Pillon MC, Deterding LJ, Borgnia MJ, Stanley RE. Characterization of SARS2 Nsp15 nuclease activity reveals it's mad about U. Nucleic Acids Res 2021; 49:10136-10149. [PMID: 34403466 PMCID: PMC8385992 DOI: 10.1093/nar/gkab719] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
Nsp15 is a uridine specific endoribonuclease that coronaviruses employ to cleave viral RNA and evade host immune defense systems. Previous structures of Nsp15 from across Coronaviridae revealed that Nsp15 assembles into a homo-hexamer and has a conserved active site similar to RNase A. Beyond a preference for cleaving RNA 3′ of uridines, it is unknown if Nsp15 has any additional substrate preferences. Here, we used cryo-EM to capture structures of Nsp15 bound to RNA in pre- and post-cleavage states. The structures along with molecular dynamics and biochemical assays revealed critical residues involved in substrate specificity, nuclease activity, and oligomerization. Moreover, we determined how the sequence of the RNA substrate dictates cleavage and found that outside of polyU tracts, Nsp15 has a strong preference for purines 3′ of the cleaved uridine. This work advances our understanding of how Nsp15 recognizes and processes viral RNA, and will aid in the development of new anti-viral therapeutics.
Collapse
Affiliation(s)
- Meredith N Frazier
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Lucas B Dillard
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Juno M Krahn
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Lalith Perera
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Jason G Williams
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Isha M Wilson
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Zachary D Stewart
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Monica C Pillon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Leesa J Deterding
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Mario J Borgnia
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Robin E Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| |
Collapse
|
267
|
Velikova T, Snegarova V, Kukov A, Batselova H, Mihova A, Nakov R. Gastrointestinal mucosal immunity and COVID-19. World J Gastroenterol 2021; 27:5047-5059. [PMID: 34497434 PMCID: PMC8384742 DOI: 10.3748/wjg.v27.i30.5047] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/01/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023] Open
Abstract
As the gastrointestinal tract may also be a crucial entry or interaction site of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the role of the gut mucosal immune system as a first-line physical and immunological defense is critical. Furthermore, gastrointestinal involvement and symptoms in coronavirus disease 2019 (COVID-19) patients have been linked to worse clinical outcomes. This review discusses recent data on the interactions between the virus and the immune cells and molecules in the mucosa during the infection. By carrying out appropriate investigations, the mucosal immune system role in SARS-CoV-2 infection in therapy and prevention can be established. In line with this, COVID-19 vaccines that stimulate mucosal immunity against the virus may have more advantages than the others.
Collapse
Affiliation(s)
- Tsvetelina Velikova
- Department of Clinical Immunology, University Hospital Lozenetz, Medical Faculty, Sofia University, St. Kliment Ohridski, Sofia 1407, Bulgaria
| | - Violeta Snegarova
- Clinic of Internal Diseases, Naval Hospital – Varna, Military Medical Academy, Medical Faculty, Medical University, Varna 9000, Bulgaria
| | - Alexander Kukov
- Department of Clinical Immunology, University Hospital Lozenetz, Medical Faculty, Sofia University, St. Kliment Ohridski, Sofia 1407, Bulgaria
| | - Hristiana Batselova
- Department of Epidemiology and Disaster Medicine, Medical University, Plovdiv, University Hospital "St George", Plovdiv 6000, Bulgaria
| | - Antoaneta Mihova
- Department of Clinical Immunology, University Hospital Lozenetz, Medical Faculty, Sofia University, St. Kliment Ohridski, Sofia 1407, Bulgaria
| | - Radislav Nakov
- Clinic of Gastroenterology, Tsaritsa Joanna University Hospital, Medical University of Sofia, Sofia 1527, Bulgaria
| |
Collapse
|
268
|
Biering SB, Van Dis E, Wehri E, Yamashiro LH, Nguyenla X, Dugast-Darzacq C, Graham TGW, Stroumza JR, Golovkine GR, Roberts AW, Fines DM, Spradlin JN, Ward CC, Bajaj T, Dovala D, Schulze-Gamen U, Bajaj R, Fox DM, Ott M, Murthy N, Nomura DK, Schaletzky J, Stanley SA. Screening a Library of FDA-Approved and Bioactive Compounds for Antiviral Activity against SARS-CoV-2. ACS Infect Dis 2021; 7:2337-2351. [PMID: 34129317 PMCID: PMC8231672 DOI: 10.1021/acsinfecdis.1c00017] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Indexed: 01/18/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has emerged as a major global health threat. The COVID-19 pandemic has resulted in over 168 million cases and 3.4 million deaths to date, while the number of cases continues to rise. With limited therapeutic options, the identification of safe and effective therapeutics is urgently needed. The repurposing of known clinical compounds holds the potential for rapid identification of drugs effective against SARS-CoV-2. Here, we utilized a library of FDA-approved and well-studied preclinical and clinical compounds to screen for antivirals against SARS-CoV-2 in human pulmonary epithelial cells. We identified 13 compounds that exhibit potent antiviral activity across multiple orthogonal assays. Hits include known antivirals, compounds with anti-inflammatory activity, and compounds targeting host pathways such as kinases and proteases critical for SARS-CoV-2 replication. We identified seven compounds not previously reported to have activity against SARS-CoV-2, including B02, a human RAD51 inhibitor. We further demonstrated that B02 exhibits synergy with remdesivir, the only antiviral approved by the FDA to treat COVID-19, highlighting the potential for combination therapy. Taken together, our comparative compound screening strategy highlights the potential of drug repurposing screens to identify novel starting points for development of effective antiviral mono- or combination therapies to treat COVID-19.
Collapse
Affiliation(s)
- Scott B. Biering
- School of Public Health, Division of Infectious
Diseases and Vaccinology, University of California, Berkeley,
Berkeley, California 94720, United States
| | - Erik Van Dis
- Department of Molecular and Cell Biology, Division of
Immunology and Pathogenesis, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Eddie Wehri
- The Henry Wheeler Center for Emerging and
Neglected Diseases, 344 Li Ka Shing, Berkeley, California 94720,
United States
| | - Livia H. Yamashiro
- School of Public Health, Division of Infectious
Diseases and Vaccinology, University of California, Berkeley,
Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, Division of
Immunology and Pathogenesis, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Xammy Nguyenla
- School of Public Health, Division of Infectious
Diseases and Vaccinology, University of California, Berkeley,
Berkeley, California 94720, United States
| | - Claire Dugast-Darzacq
- Department of Molecular and Cell Biology, Division of
Biochemistry, Biophysics and Structural Biology, University of California,
Berkeley, Berkeley, California 94720, United
States
| | - Thomas G. W. Graham
- Department of Molecular and Cell Biology, Division of
Biochemistry, Biophysics and Structural Biology, University of California,
Berkeley, Berkeley, California 94720, United
States
| | - Julien R. Stroumza
- The Henry Wheeler Center for Emerging and
Neglected Diseases, 344 Li Ka Shing, Berkeley, California 94720,
United States
| | - Guillaume R. Golovkine
- Department of Molecular and Cell Biology, Division of
Immunology and Pathogenesis, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Allison W. Roberts
- Department of Molecular and Cell Biology, Division of
Immunology and Pathogenesis, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Daniel M. Fines
- Department of Molecular and Cell Biology, Division of
Immunology and Pathogenesis, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Jessica N. Spradlin
- Departments of Chemistry, Molecular and Cell Biology,
and Nutritional Sciences and Toxicology, University of California,
Berkeley, Berkeley, California 94720, United
States
| | - Carl C. Ward
- Departments of Chemistry, Molecular and Cell Biology,
and Nutritional Sciences and Toxicology, University of California,
Berkeley, Berkeley, California 94720, United
States
| | - Teena Bajaj
- Department of Bioengineering, University of
California, Berkeley, Berkeley, California 94720, United
States
| | - Dustin Dovala
- Novartis Institutes for BioMedical
Research, Emeryville, California 94608, United
States
| | - Ursula Schulze-Gamen
- QBI Coronavirus Research Group Structural Biology
Consortium, University of California, San Francisco, California
94158, United States
| | - Ruchika Bajaj
- Department of Bioengineering and Therapeutic Sciences,
University of California, San Francisco, San Francisco,
California 94158, United States
| | - Douglas M. Fox
- School of Public Health, Division of Infectious
Diseases and Vaccinology, University of California, Berkeley,
Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, Division of
Immunology and Pathogenesis, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Melanie Ott
- Department of Medicine, Medical Scientist Training
Program, Biomedical Sciences Graduate Program, University of California, San
Francisco, San Francisco, California 94143, United
States
- J. David Gladstone
Institutes, San Francisco, California 94158, United
States
| | - Niren Murthy
- Department of Bioengineering, University of
California, Berkeley, Berkeley, California 94720, United
States
- Innovative Genomics Institute
(IGI), 2151 Berkeley Way, Berkeley, California 94704, United
States
| | - Daniel K. Nomura
- Departments of Chemistry, Molecular and Cell Biology,
and Nutritional Sciences and Toxicology, University of California,
Berkeley, Berkeley, California 94720, United
States
| | - Julia Schaletzky
- The Henry Wheeler Center for Emerging and
Neglected Diseases, 344 Li Ka Shing, Berkeley, California 94720,
United States
| | - Sarah A. Stanley
- School of Public Health, Division of Infectious
Diseases and Vaccinology, University of California, Berkeley,
Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, Division of
Immunology and Pathogenesis, University of California,
Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
269
|
Kobayashi J. Lifestyle-mediated nitric oxide boost to prevent SARS-CoV-2 infection: A perspective. Nitric Oxide 2021; 115:55-61. [PMID: 34364972 PMCID: PMC8340570 DOI: 10.1016/j.niox.2021.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 01/08/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide and has seriously threatened public health by causing significant morbidity and mortality. Patients with coronavirus disease (COVID-19) with preexisting endothelial dysfunction caused by aging, diabetes, hypertension, and obesity are at high risk for life-threatening thromboembolic complications. This suggests a possibility that reduced endothelial nitric oxide (NO) production and NO bioavailability could be a common underlying pathology for the progression of COVID-19. Increasingly, evidence from experimental and clinical studies of SARS-CoV-2 infection shows that NO inhibits the pathogenesis of COVID-19, including virus entry into host cells, viral replication, host immune response, and subsequent thromboembolic complications. Restoring NO bioavailability may have the potential to be a preventive or early-treatment option for COVID-19. This review aims to provide in-depth discussion of NO bioavailability to prevent SARS-CoV-2 infection, particularly by focusing on lifestyle factors such as nitrate-rich diets, physical exercise, and nasal breathing, which could be easily performed on a daily basis to boost NO bioavailability.
Collapse
Affiliation(s)
- Jun Kobayashi
- Faculty of Pharmaceutical Science, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan.
| |
Collapse
|
270
|
Perspective of the Relationship between the Susceptibility to Initial SARS-CoV-2 Infectivity and Optimal Nasal Conditioning of Inhaled Air. Int J Mol Sci 2021; 22:ijms22157919. [PMID: 34360686 PMCID: PMC8348706 DOI: 10.3390/ijms22157919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/20/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as with the influenza virus, has been shown to spread more rapidly during winter. Severe coronavirus disease 2019 (COVID-19), which can follow SARS-CoV-2 infection, disproportionately affects older persons and males as well as people living in temperate zone countries with a tropical ancestry. Recent evidence on the importance of adequately warming and humidifying (conditioning) inhaled air in the nasal cavity for reducing SARS-CoV-2 infectivity in the upper respiratory tract (URT) is discussed, with particular reference to: (i) the relevance of air-borne SARS-CoV-2 transmission, (ii) the nasal epithelium as the initial site of SARS-CoV-2 infection, (iii) the roles of type 1 and 3 interferons for preventing viral infection of URT epithelial cells, (iv) weaker innate immune responses to respiratory viral infections in URT epithelial cells at suboptimal temperature and humidity, and (v) early innate immune responses in the URT for limiting and eliminating SARS-CoV-2 infections. The available data are consistent with optimal nasal air conditioning reducing SARS-CoV-2 infectivity of the URT and, as a consequence, severe COVID-19. Further studies on SARS-CoV-2 infection rates and viral loads in the nasal cavity and nasopharynx in relation to inhaled air temperature, humidity, age, gender, and genetic background are needed in this context. Face masks used for reducing air-borne virus transmission can also promote better nasal air conditioning in cold weather. Masks can, thereby, minimise SARS-CoV-2 infectivity and are particularly relevant for protecting more vulnerable persons from severe COVID-19.
Collapse
|
271
|
Brant AC, Tian W, Majerciak V, Yang W, Zheng ZM. SARS-CoV-2: from its discovery to genome structure, transcription, and replication. Cell Biosci 2021; 11:136. [PMID: 34281608 PMCID: PMC8287290 DOI: 10.1186/s13578-021-00643-z] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/30/2021] [Indexed: 02/08/2023] Open
Abstract
SARS-CoV-2 is an extremely contagious respiratory virus causing adult atypical pneumonia COVID-19 with severe acute respiratory syndrome (SARS). SARS-CoV-2 has a single-stranded, positive-sense RNA (+RNA) genome of ~ 29.9 kb and exhibits significant genetic shift from different isolates. After entering the susceptible cells expressing both ACE2 and TMPRSS2, the SARS-CoV-2 genome directly functions as an mRNA to translate two polyproteins from the ORF1a and ORF1b region, which are cleaved by two viral proteases into sixteen non-structural proteins (nsp1-16) to initiate viral genome replication and transcription. The SARS-CoV-2 genome also encodes four structural (S, E, M and N) and up to six accessory (3a, 6, 7a, 7b, 8, and 9b) proteins, but their translation requires newly synthesized individual subgenomic RNAs (sgRNA) in the infected cells. Synthesis of the full-length viral genomic RNA (gRNA) and sgRNAs are conducted inside double-membrane vesicles (DMVs) by the viral replication and transcription complex (RTC), which comprises nsp7, nsp8, nsp9, nsp12, nsp13 and a short RNA primer. To produce sgRNAs, RTC starts RNA synthesis from the highly structured gRNA 3' end and switches template at various transcription regulatory sequence (TRSB) sites along the gRNA body probably mediated by a long-distance RNA-RNA interaction. The TRS motif in the gRNA 5' leader (TRSL) is responsible for the RNA-RNA interaction with the TRSB upstream of each ORF and skipping of the viral genome in between them to produce individual sgRNAs. Abundance of individual sgRNAs and viral gRNA synthesized in the infected cells depend on the location and read-through efficiency of each TRSB. Although more studies are needed, the unprecedented COVID-19 pandemic has taught the world a painful lesson that is to invest and proactively prepare future emergence of other types of coronaviruses and any other possible biological horrors.
Collapse
Affiliation(s)
- Ayslan Castro Brant
- Tumor Virus RNA Biology Section, HIV DRP, National Cancer Institute, NIH, Frederick, MD, USA
| | - Wei Tian
- Mechanism of DNA Repair, Replication, and Recombination Section, Laboratory of Molecular Biology, NIDDK, Bethesda, MD, USA
| | - Vladimir Majerciak
- Tumor Virus RNA Biology Section, HIV DRP, National Cancer Institute, NIH, Frederick, MD, USA
| | - Wei Yang
- Mechanism of DNA Repair, Replication, and Recombination Section, Laboratory of Molecular Biology, NIDDK, Bethesda, MD, USA.
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV DRP, National Cancer Institute, NIH, Frederick, MD, USA.
| |
Collapse
|
272
|
Zhang H, Zhang H. Entry, egress and vertical transmission of SARS-CoV-2. J Mol Cell Biol 2021; 13:168-174. [PMID: 33677567 PMCID: PMC8108610 DOI: 10.1093/jmcb/mjab013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/06/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
The high infectivity and pathogenicity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have caused the COVID-19 outbreak, one of the most devastating pandemics in more than a century. This pandemic has already left a trail of destruction, including enormous loss of life, a global economic slump, and widespread psychological damage. Despite assiduous world-wide endeavors, an effective cure for COVID-19 is still lacking. Surprisingly, infected neonates and children have relatively mild clinical manifestations and a much lower fatality rate than elderly adults. Recent studies have unambiguously demonstrated the vertical transmission of SARS-CoV-2 from infected pregnant women to fetuses, which creates yet another challenge for disease prevention. In this review, we will summarize the molecular mechanism for entry of SARS-CoV-2 into host cells, the basis for the failure of the lungs and other organs in severe acute cases, and the evidence for congenital transmission.
Collapse
Affiliation(s)
- Hui Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
273
|
Azhar A, Hassan N, Singh M, Al-Hosaini K, Kamal MA. Synopsis on Pharmotechnological Approaches in Diagnostic to Management Strategies in Fighting Against COVID-19. Curr Pharm Des 2021; 27:4086-4099. [PMID: 34269664 DOI: 10.2174/1381612827666210715154004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/31/2021] [Indexed: 02/08/2023]
Abstract
Nanoparticles (NPs) are projected to play a significant role in fighting against coronavirus disease (COVID-19). The various properties of NPs like magnetic and optical can be exploited to build diagnostic test kits. The unembellished morphological and physiochemical resemblances of SARS-CoV-2 with synthetic NPs make them a potent tool for mediation. Nanoparticles can be analytically functionalized with different proteins, polymers, and functional groups to perform specific inhibitory functions while also serving as delivery vehicles . Moreover, NPs can also be employed to prepare broad-spectrum respiratory drugs and vaccines that can guard seasonal flu and prepare the human race for the pandemic in the future. The present review outlines the role of NPs in detection, diagnostic and therapeutic against members of the coronavirus family. We emphasize nanomaterial-based approaches to address coronaviruses in general and SARS-CoV-2 in particular. We discuss NPs based detection systems like graphene (G-FET), biosensors, and plasmonic photothermal associated sensors. Inorganic, organic virus-like & self-assembly protein (VLP), and photodynamic inactivation of SARS-CoV-2 are also presented as therapeutic approaches exploiting NPs.
Collapse
Affiliation(s)
- Asim Azhar
- Aligarh College of Education, Aligarh Uttar Pradesh, India
| | - Nazia Hassan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Manvi Singh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Khaled Al-Hosaini
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Post Box 2457, Riyadh 11451. Saudi Arabia
| | - Mohammad Amjad Kamal
- West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
274
|
Koch J, Uckeley ZM, Doldan P, Stanifer M, Boulant S, Lozach PY. TMPRSS2 expression dictates the entry route used by SARS-CoV-2 to infect host cells. EMBO J 2021; 40:e107821. [PMID: 34159616 PMCID: PMC8365257 DOI: 10.15252/embj.2021107821] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2 is a newly emerged coronavirus that caused the global COVID-19 outbreak in early 2020. COVID-19 is primarily associated with lung injury, but many other clinical symptoms such as loss of smell and taste demonstrated broad tissue tropism of the virus. Early SARS-CoV-2-host cell interactions and entry mechanisms remain poorly understood. Investigating SARS-CoV-2 infection in tissue culture, we found that the protease TMPRSS2 determines the entry pathway used by the virus. In the presence of TMPRSS2, the proteolytic process of SARS-CoV-2 was completed at the plasma membrane, and the virus rapidly entered the cells within 10 min in a pH-independent manner. When target cells lacked TMPRSS2 expression, the virus was endocytosed and sorted into endolysosomes, from which SARS-CoV-2 entered the cytosol via acid-activated cathepsin L protease 40-60 min post-infection. Overexpression of TMPRSS2 in non-TMPRSS2 expressing cells abolished the dependence of infection on the cathepsin L pathway and restored sensitivity to the TMPRSS2 inhibitors. Together, our results indicate that SARS-CoV-2 infects cells through distinct, mutually exclusive entry routes and highlight the importance of TMPRSS2 for SARS-CoV-2 sorting into either pathway.
Collapse
Affiliation(s)
- Jana Koch
- Center for Integrative Infectious Diseases Research (CIID), University Hospital Heidelberg, Heidelberg, Germany.,CellNetworks - Cluster of Excellence, Heidelberg, Germany.,Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Zina M Uckeley
- Center for Integrative Infectious Diseases Research (CIID), University Hospital Heidelberg, Heidelberg, Germany.,CellNetworks - Cluster of Excellence, Heidelberg, Germany.,Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Patricio Doldan
- Center for Integrative Infectious Diseases Research (CIID), University Hospital Heidelberg, Heidelberg, Germany.,Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Megan Stanifer
- Center for Integrative Infectious Diseases Research (CIID), University Hospital Heidelberg, Heidelberg, Germany.,Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Steeve Boulant
- Center for Integrative Infectious Diseases Research (CIID), University Hospital Heidelberg, Heidelberg, Germany.,Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany.,German Cancer Center (DKFZ), Heidelberg, Germany
| | - Pierre-Yves Lozach
- Center for Integrative Infectious Diseases Research (CIID), University Hospital Heidelberg, Heidelberg, Germany.,CellNetworks - Cluster of Excellence, Heidelberg, Germany.,Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany.,INRAE, EPHE, IVPC, University of Lyon, Lyon, France
| |
Collapse
|
275
|
Li X, Zhang L, Chen S, Ouyang H, Ren L. Possible Targets of Pan-Coronavirus Antiviral Strategies for Emerging or Re-Emerging Coronaviruses. Microorganisms 2021; 9:1479. [PMID: 34361915 PMCID: PMC8306356 DOI: 10.3390/microorganisms9071479] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 12/16/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), which caused Coronaviruses Disease 2019 (COVID-19) and a worldwide pandemic, is the seventh human coronavirus that has been cross-transmitted from animals to humans. It can be predicted that with continuous contact between humans and animals, more viruses will spread from animals to humans. Therefore, it is imperative to develop universal coronavirus or pan-coronavirus vaccines or drugs against the next coronavirus pandemic. However, a suitable target is critical for developing pan-coronavirus antivirals against emerging or re-emerging coronaviruses. In this review, we discuss the latest progress of possible targets of pan-coronavirus antiviral strategies for emerging or re-emerging coronaviruses, including targets for pan-coronavirus inhibitors and vaccines, which will provide prospects for the current and future research and treatment of the disease.
Collapse
Affiliation(s)
| | | | | | | | - Linzhu Ren
- Key Laboratory for Zoonoses Research, College of Animal Sciences, Ministry of Education, Jilin University, 5333 Xi’An Road, Changchun 130062, China; (X.L.); (L.Z.); (S.C.); (H.O.)
| |
Collapse
|
276
|
Barth RF, Buja LM, Barth AL, Carpenter DE, Parwani AV. A Comparison of the Clinical, Viral, Pathologic, and Immunologic Features of Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and Coronavirus 2019 (COVID-19) Diseases. Arch Pathol Lab Med 2021; 145:1194-1211. [PMID: 34232978 DOI: 10.5858/arpa.2020-0820-sa] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2021] [Indexed: 11/06/2022]
Abstract
CONTEXT -The purpose of this review is to compare three coronavirus diseases: severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and coronavirus disease 2019 (COVID-19) caused by SARS-CoV, MERS-CoV, and SARS-CoV-2 viruses, respectively. OBJECTIVE -To cover the following topics: clinical considerations, viral characteristics, pathology, immune response, pathogenesis, and the prognosis associated with each coronavirus human disease in humans. DATA SOURCES -Clinically, flu-like symptoms are usual at the time of presentation for all 3 diseases, but these vary from asymptomatic to severe multi-system involvement. The pathology associated with symptomatic SARS and COVID-19 has been well described, the most prominent of which is diffuse alveolar damage (DAD). The immune response to each of these viruses is highly complex and includes both humoral and cellular components that can have a significant impact on prognosis. In severe cases of COVID-19, a dysregulated innate host immune system can initiate a hyperinflammatory syndrome dominated by endothelial dysfunction that can lead to a hypercoagulable state with microthrombi, resulting in a systemic micro- and macro-vascular disease. CONCLUSIONS -The SARS and MERS epidemics have been limited, involving 7,500 and 2,500 individuals, respectively. In contrast, COVID-19 has resulted in a worldwide pandemic with over 177 million cases and 3.9 million deaths as of June 15, 2021, and fatality rates ranging from <0.1% to ~10% depending upon the country. Ending on a positive note, the development of a number of vaccines, at least six of which now are in clinical use, should mitigate and eventually control the devastating COVID-19 pandemic.
Collapse
Affiliation(s)
- Rolf F Barth
- Department of Pathology (RF Barth, Parwani), S.P. Technical Editor (Retired) Departments of Neurosurgery and Radiation Oncology (Carpenter), The Ohio State University Columbus, Ohio
| | - L Maximillian Buja
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas (Buja)
| | - Alison L Barth
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA (AL Barth)
| | - David E Carpenter
- Department of Pathology (RF Barth, Parwani), S.P. Technical Editor (Retired) Departments of Neurosurgery and Radiation Oncology (Carpenter), The Ohio State University Columbus, Ohio
| | - Anil V Parwani
- Department of Pathology (RF Barth, Parwani), S.P. Technical Editor (Retired) Departments of Neurosurgery and Radiation Oncology (Carpenter), The Ohio State University Columbus, Ohio
| |
Collapse
|
277
|
Borges E, Setti AS, Iaconelli A, Braga DPDAF. Current status of the COVID-19 and male reproduction: A review of the literature. Andrology 2021; 9:1066-1075. [PMID: 33998143 PMCID: PMC8222884 DOI: 10.1111/andr.13037] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/09/2021] [Accepted: 05/11/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19), which causes serious respiratory illnesses such as pneumonia and lung failure, was first reported in mid-December 2019 in China and has spread around the world. In addition to causing serious respiratory illnesses such as pneumonia and lung failure, there have been conflicting reports about the presence of SARS-CoV-2 in the semen of patients who were previously diagnosed with COVID-19 and possible implications for the male reproductive tract. OBJECTIVE The goal for the present study was to review the current status of the literature concerning COVID-19 and male reproduction. MATERIAL AND METHODS An electronic literature search was done by using PubMed and Google Scholar databases. Relevant papers, concerning SARS-COV-2 and COVID-19 and male reproduction, published between January 2020 and December 2020 were selected, analyzed and eventually included in the present literature review. RESULTS SARS-CoV-2 may infect any cell type expressing angiotensin-converting enzyme 2 (ACE2), including reproductive cells. Besides the presence of the SARS-CoV-2 receptor, the expression of host proteases, such as transmembrane serine protease 2 (TMPRSS2), is needed to cleave the viral S protein, allowing permanent fusion of the viral and host cell membranes. Here, we aimed to review the current status of the literature concerning COVID-19 and male reproduction. The lack of co-expression of ACE2 and TMPRSS2 in the testis suggests that sperm cells may not be at increased risk of viral entry and spread. However, the presence of orchitis in COVID-19-confirmed patients and compromised sex-related hormonal balance among these patients intrigues reproductive medicine. DISCUSSION SARS-CoV-2 may use alternate receptors to enter certain cell types, or the expression of ACE2 and TMPRSS2 may not be detected in healthy individuals. CONCLUSION COVID-19 challenges all medical areas, including reproductive medicine. It is not yet clear what effects, if any, the COVID-19 pandemic will have on male reproduction. Further research is needed to understand the long-term impact of SARS-CoV-2 on male reproductive function.
Collapse
Affiliation(s)
- Edson Borges
- Fertility Medical GroupSão PauloBrazil
- Instituto Sapientiae – Centro de Estudos e Pesquisa em Reprodução Humana AssistidaSão PauloBrazil
| | - Amanda Souza Setti
- Fertility Medical GroupSão PauloBrazil
- Instituto Sapientiae – Centro de Estudos e Pesquisa em Reprodução Humana AssistidaSão PauloBrazil
| | - Assumpto Iaconelli
- Fertility Medical GroupSão PauloBrazil
- Instituto Sapientiae – Centro de Estudos e Pesquisa em Reprodução Humana AssistidaSão PauloBrazil
| | | |
Collapse
|
278
|
Niesor EJ, Boivin G, Rhéaume E, Shi R, Lavoie V, Goyette N, Picard ME, Perez A, Laghrissi-Thode F, Tardif JC. Inhibition of the 3CL Protease and SARS-CoV-2 Replication by Dalcetrapib. ACS OMEGA 2021; 6:16584-16591. [PMID: 34235330 PMCID: PMC8230949 DOI: 10.1021/acsomega.1c01797] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) 3CL protease is a promising target for inhibition of viral replication by interaction with a cysteine residue (Cys145) at its catalytic site. Dalcetrapib exerts its lipid-modulating effect by binding covalently to cysteine 13 of a cholesteryl ester transfer protein. Because 12 free cysteine residues are present in the 3CL protease, we investigated the potential of dalcetrapib to inhibit 3CL protease activity and SARS-CoV-2 replication. Molecular docking investigations suggested that dalcetrapib-thiol binds to the catalytic site of the 3CL protease with a delta G value of -8.5 kcal/mol. Dalcetrapib inhibited both 3CL protease activity in vitro and viral replication in Vero E6 cells with IC50 values of 14.4 ± 3.3 μM and an EC50 of 17.5 ± 3.5 μM (mean ± SD). Near-complete inhibition of protease activity persisted despite 1000-fold dilution after ultrafiltration with a nominal dalcetrapib-thiol concentration of approximately 100 times below the IC50 of 14.4 μM, suggesting stable protease-drug interaction. The inhibitory effect of dalcetrapib on the SARS-CoV-2 3CL protease and viral replication warrants its clinical evaluation for the treatment of COVID-19.
Collapse
Affiliation(s)
| | - Guy Boivin
- Centre
Hospitalier Universitaire de Québec, Université Laval, Québec
City G1V 0A6, Canada
| | - Eric Rhéaume
- Montreal
Heart Institute, Université de Montréal, Montreal H1T 1C8, Canada
| | - Rong Shi
- Department
of Biochemistry, Microbiology and Bioinformatics, Université Laval, Quebec G1V 0A6, Canada
| | - Véronique Lavoie
- Montreal
Heart Institute, Université de Montréal, Montreal H1T 1C8, Canada
| | - Nathalie Goyette
- Centre
Hospitalier Universitaire de Québec, Université Laval, Québec
City G1V 0A6, Canada
| | - Marie-Eve Picard
- Department
of Biochemistry, Microbiology and Bioinformatics, Université Laval, Quebec G1V 0A6, Canada
| | | | | | - Jean-Claude Tardif
- Montreal
Heart Institute, Université de Montréal, Montreal H1T 1C8, Canada
| |
Collapse
|
279
|
Identification of a High-Frequency Intrahost SARS-CoV-2 Spike Variant with Enhanced Cytopathic and Fusogenic Effects. mBio 2021; 12:e0078821. [PMID: 34182784 PMCID: PMC8262852 DOI: 10.1128/mbio.00788-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a virus that is continuously evolving. Although its RNA-dependent RNA polymerase exhibits some exonuclease proofreading activity, viral sequence diversity can be produced by replication errors and host factors. A diversity of genetic variants can be observed in the intrahost viral population structure of infected individuals. Most mutations will follow a neutral molecular evolution and will not make significant contributions to variations within and between infected hosts. Herein, we profiled the intrasample genetic diversity of SARS-CoV-2 variants, also known as quasispecies, using high-throughput sequencing data sets from 15,289 infected individuals and infected cell lines. Despite high mutational background, we identified recurrent intragenetic variable positions in the samples analyzed, including several positions at the end of the gene encoding the viral spike (S) protein. Strikingly, we observed a high frequency of C→A missense mutations resulting in the S protein lacking the last 20 amino acids (SΔ20). We found that this truncated S protein undergoes increased processing and increased syncytium formation, presumably due to escaping M protein retention in intracellular compartments. Our findings suggest the emergence of a high-frequency viral sublineage that is not horizontally transmitted but potentially involved in intrahost disease cytopathic effects. IMPORTANCE The mutation rate and evolution of RNA viruses correlate with viral adaptation. While most mutations do not make significant contributions to viral molecular evolution, some are naturally selected and produce variants through positive selection. Many SARS-CoV-2 variants have been recently described and show phenotypic selection toward more infectious viruses. Our study describes another type of variant that does not contribute to interhost heterogeneity but rather phenotypic selection toward variants that might have increased cytopathic effects. We identified that a C-terminal truncation of the spike protein removes an important endoplasmic reticulum (ER) retention signal, which consequently results in a spike variant that easily travels through the Golgi complex toward the plasma membrane in a preactivated conformation, leading to increased syncytium formation.
Collapse
|
280
|
Gededzha MP, Mampeule N, Jugwanth S, Zwane N, David A, Burgers WA, Blackburn JM, Grove JS, George JA, Sanne I, Scott L, Stevens W, Mayne ES. Performance of the EUROIMMUN Anti-SARS-CoV-2 ELISA Assay for detection of IgA and IgG antibodies in South Africa. PLoS One 2021; 16:e0252317. [PMID: 34161348 PMCID: PMC8221517 DOI: 10.1371/journal.pone.0252317] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/13/2021] [Indexed: 12/25/2022] Open
Abstract
Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) has been identified as the causative agent for causing the clinical syndrome of COVID -19. Accurate detection of SARS-CoV-2 infection is not only important for management of infected individuals but also to break the chain of transmission. South Africa is the current epicenter of SARS-CoV-2 infection in Africa. To optimize the diagnostic algorithm for SARS-CoV-2 in the South African setting, the study aims to evaluate the diagnostic performance of the EUROIMMUN Anti-SARS-CoV-2 assays. This study reported the performance of EUROIMMUN enzyme-linked immunosorbent assay (ELISA) for semi-quantitative detection of IgA and IgG antibodies in serum and plasma samples targeting the recombinant S1 domain of the SARS-CoV-2 spike protein as antigen. Samples were collected from 391 individuals who had tested positive for SARS-CoV-2 and 139 SARS CoV-2 negative controls. Samples were stratified by number of days' post-PCR diagnosis and symptoms. The sensitivity of EUROIMMUN IgG was 64.1% (95% CI: 59.1-69.0%) and 74.3% (95% CI: 69.6-78.6%) for IgA and the specificity was lower for IgA [84.2% (95% CI: 77-89.2%)] than IgG [95.2% (95% CI: 90.8-98.4%)]. The EUROIMMUN Anti-SARS-CoV-2 ELISA Assay sensitivity was higher for IgA but low for IgG and improved for both assays in symptomatic individuals and at later timepoints post PCR diagnosis.
Collapse
Affiliation(s)
- Maemu P. Gededzha
- Department of Immunology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- National Health Laboratory Services, Johannesburg, South Africa
| | - Nakampe Mampeule
- Department of Immunology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- National Health Laboratory Services, Johannesburg, South Africa
| | - Sarika Jugwanth
- Department of Immunology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- National Health Laboratory Services, Johannesburg, South Africa
| | - Nontobeko Zwane
- Department of Immunology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Anura David
- Department of Molecular Medicine and Haematology, School of Pathology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Wendy A. Burgers
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Jonathan M. Blackburn
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Divisions of Chemical and System Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Jurette S. Grove
- National Health Laboratory Services, Johannesburg, South Africa
- Department of Chemical Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jaya A. George
- National Health Laboratory Services, Johannesburg, South Africa
- Department of Chemical Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ian Sanne
- Clinical HIV Research Unit, Department of Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lesley Scott
- National Health Laboratory Services, Johannesburg, South Africa
- Department of Molecular Medicine and Haematology, School of Pathology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Wendy Stevens
- National Health Laboratory Services, Johannesburg, South Africa
- Department of Molecular Medicine and Haematology, School of Pathology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Elizabeth S. Mayne
- Department of Immunology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- National Health Laboratory Services, Johannesburg, South Africa
| |
Collapse
|
281
|
Giacobbo A, Rodrigues MAS, Zoppas Ferreira J, Bernardes AM, de Pinho MN. A critical review on SARS-CoV-2 infectivity in water and wastewater. What do we know? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145721. [PMID: 33610994 PMCID: PMC7870439 DOI: 10.1016/j.scitotenv.2021.145721] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 04/14/2023]
Abstract
The COVID-19 outbreak circulating the world is far from being controlled, and possible contamination routes are still being studied. There are no confirmed cases yet, but little is known about the infection possibility via contact with sewage or contaminated water as well as with aerosols generated during the pumping and treatment of these aqueous matrices. Therefore, this article presents a literature review on the detection of SARS-CoV-2 in human excreta and its pathways through the sewer system and wastewater treatment plants until it reaches the water bodies, highlighting their occurrence and infectivity in sewage and natural water. Research lines are still indicated, which we believe are important for improving the detection, quantification, and mainly the infectivity analyzes of SARS-CoV-2 and other enveloped viruses in sewage and natural water. In fact, up till now, no case of transmission via contact with sewage or contaminated water has been reported and the few studies conducted with these aqueous matrices have not detected infectious viruses. On the other hand, studies are showing that SARS-CoV-2 can remain viable, i.e., infectious, for up to 4.3 and 6 days in sewage and water, respectively, and that other species of coronavirus may remain viable in these aqueous matrices for more than one year, depending on the sample conditions. These are strong pieces of evidence that the contamination mediated by contact with sewage or contaminated water cannot be ruled out, even because other more resistant and infectious mutations of SARS-CoV-2 may appear.
Collapse
Affiliation(s)
- Alexandre Giacobbo
- Post-Graduation Program in Mining, Metallurgical and Materials Engineering (PPGE3M), Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, n. 9500, Agronomia, Porto Alegre, RS 91509-900, Brazil; Center of Physics and Engineering of Advanced Materials (CeFEMA), Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, n. 1, Lisbon 1049-001, Portugal.
| | - Marco Antônio Siqueira Rodrigues
- Post-Graduation Program in Materials Technology and Industrial Processes, Pure Sciences and Technology Institute, Feevale University, Rodovia RS-239, n. 2755, Vila Nova, Novo Hamburgo, RS 93525-075, Brazil.
| | - Jane Zoppas Ferreira
- Post-Graduation Program in Mining, Metallurgical and Materials Engineering (PPGE3M), Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, n. 9500, Agronomia, Porto Alegre, RS 91509-900, Brazil.
| | - Andréa Moura Bernardes
- Post-Graduation Program in Mining, Metallurgical and Materials Engineering (PPGE3M), Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, n. 9500, Agronomia, Porto Alegre, RS 91509-900, Brazil.
| | - Maria Norberta de Pinho
- Center of Physics and Engineering of Advanced Materials (CeFEMA), Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, n. 1, Lisbon 1049-001, Portugal; Chemical Engineering Department, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, n. 1, Lisbon 1049-001, Portugal.
| |
Collapse
|
282
|
Orlowski S, Mourad JJ, Gallo A, Bruckert E. Coronaviruses, cholesterol and statins: Involvement and application for Covid-19. Biochimie 2021; 189:51-64. [PMID: 34153377 PMCID: PMC8213520 DOI: 10.1016/j.biochi.2021.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/01/2021] [Accepted: 06/14/2021] [Indexed: 12/17/2022]
Abstract
The infectious power of coronaviruses is dependent on cholesterol present in the membranes of their target cells. Indeed, the virus enters the infected cell either by fusion or by endocytosis, in both cases involving cholesterol-enriched membrane microdomains. These membrane domains can be disorganized in-vitro by various cholesterol-altering agents, including statins that inhibit cell cholesterol biosynthesis. As a consequence, numerous cell physiology processes, such as signaling cascades, can be compromised. Also, some examples of anti-bacterial and anti-viral effects of statins have been observed for infectious agents known to be cholesterol dependent. In-vivo, besides their widely-reported hypocholesterolemic effect, statins display various pleiotropic effects mediated, at least partially, by perturbation of membrane microdomains as a consequence of the alteration of endogenous cholesterol synthesis. It should thus be worth considering a high, but clinically well-tolerated, dose of statin to treat Covid-19 patients, in the early phase of infection, to inhibit virus entry into the target cells, in order to control the viral charge and hence avoid severe clinical complications. Based on its efficacy and favorable biodisposition, an option would be considering Atorvastatin, but randomized controlled clinical trials are required to test this hypothesis. This new therapeutic proposal takes benefit from being a drug repurposing, applied to a widely-used drug presenting a high efficiency-to-toxicity ratio. Additionally, this therapeutic strategy avoids any risk of drug resistance by viral mutation since it is host-targeted. Noteworthy, the same pharmacological approach could also be proposed to address different animal coronavirus endemic infections that are responsible for heavy economic losses.
Collapse
Affiliation(s)
- Stéphane Orlowski
- Institute for Integrative Biology of the Cell (I2BC), CNRS UMR 9198, and CEA / DRF / Institut des Sciences du Vivant Frédéric-Joliot / SB2SM, and Université Paris-Saclay, 91191, Gif-sur-Yvette, Cedex, France.
| | - Jean-Jacques Mourad
- Department of Internal Medicine and ESH Excellence Centre, Groupe Hospitalier Paris Saint-Joseph, Paris, France.
| | - Antonio Gallo
- Department of Endocrinology and Prevention of Cardiovascular Diseases, Institute of Cardiometabolism and Nutrition (ICAN), La Pitié-Salpêtrière Hospital, AP-HP, Paris, France.
| | - Eric Bruckert
- Department of Endocrinology and Prevention of Cardiovascular Diseases, Institute of Cardiometabolism and Nutrition (ICAN), La Pitié-Salpêtrière Hospital, AP-HP, Paris, France.
| |
Collapse
|
283
|
Bidram E, Esmaeili Y, Amini A, Sartorius R, Tay FR, Shariati L, Makvandi P. Nanobased Platforms for Diagnosis and Treatment of COVID-19: From Benchtop to Bedside. ACS Biomater Sci Eng 2021; 7:2150-2176. [PMID: 33979143 PMCID: PMC8130531 DOI: 10.1021/acsbiomaterials.1c00318] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
Human respiratory viral infections are the leading cause of morbidity and mortality around the world. Among the various respiratory viruses, coronaviruses (e.g., SARS-CoV-2) have created the greatest challenge and most frightening health threat worldwide. Human coronaviruses typically infect the upper respiratory tract, causing illnesses that range from common cold-like symptoms to severe acute respiratory infections. Several promising vaccine formulations have become available since the beginning of 2021. Nevertheless, achievement of herd immunity is still far from being realized. Social distancing remains the only effective measure against SARS-CoV-2 infection. Nanobiotechnology enables the design of nanobiosensors. These nanomedical diagnostic devices have opened new vistas for early detection of viral infections. The present review outlines recent research on the effectiveness of nanoplatforms as diagnostic and antiviral tools against coronaviruses. The biological properties of coronavirus and infected host organs are discussed. The challenges and limitations encountered in combating SARS-CoV-2 are highlighted. Potential nanodevices such as nanosensors, nanobased vaccines, and smart nanomedicines are subsequently presented for combating current and future mutated versions of coronaviruses.
Collapse
Affiliation(s)
- Elham Bidram
- Biosensor
Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Hezarjerib Avenue, Isfahan 8174673461, Iran
| | - Yasaman Esmaeili
- Biosensor
Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Hezarjerib Avenue, Isfahan 8174673461, Iran
| | - Abbas Amini
- Centre
for Infrastructure Engineering, Western
Sydney University, Locked
Bag 1797, Penrith 2751, New South Wales, Australia
- Department
of Mechanical Engineering, Australian College
of Kuwait, Al Aqsa Mosque
Street, Mishref, Safat 13015, Kuwait
| | - Rossella Sartorius
- Institute
of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Via Pietro Castellino 111, Naples 80131, Italy
| | - Franklin R. Tay
- The
Graduate
School, Augusta University, 1120 15th Street, Augusta, Georgia 30912, United States
| | - Laleh Shariati
- Applied
Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Hezarjerib Avenue, Isfahan 8174673461, Iran
- Department
of Biomaterials, Nanotechnology and Tissue Engineering, School of
Advanced Technologies in Medicine, Isfahan
University of Medical Sciences, Hezarjerib Avenue, Isfahan 8174673461, Iran
| | - Pooyan Makvandi
- Centre
for Materials Interfaces, Istituto Italiano
di Tecnologia, viale
Rinaldo Piaggio 34, Pontedera 56025, Pisa, Italy
| |
Collapse
|
284
|
Wang J, Han M, Wang H, Möckl L, Zeng L, Moerner WE, Qi LS. Multi-color super-resolution imaging to study human coronavirus RNA during cellular infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34127974 PMCID: PMC8202426 DOI: 10.1101/2021.06.09.447760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the third human coronavirus within 20 years that gave rise to a life-threatening disease and the first to reach pandemic spread. To make therapeutic headway against current and future coronaviruses, the biology of coronavirus RNA during infection must be precisely understood. Here, we present a robust and generalizable framework combining high-throughput confocal and super-resolution microscopy imaging to study coronavirus infection at the nanoscale. Employing the model human coronavirus HCoV-229E, we specifically labeled coronavirus genomic RNA (gRNA) and double-stranded RNA (dsRNA) via multicolor RNA-immunoFISH and visualized their localization patterns within the cell. The exquisite resolution of our approach uncovers a striking spatial organization of gRNA and dsRNA into three distinct structures and enables quantitative characterization of the status of the infection after antiviral drug treatment. Our approach provides a comprehensive framework that supports investigations of coronavirus fundamental biology and therapeutic effects.
Collapse
|
285
|
Ciccosanti F, Di Rienzo M, Romagnoli A, Colavita F, Refolo G, Castilletti C, Agrati C, Brai A, Manetti F, Botta L, Capobianchi MR, Ippolito G, Piacentini M, Fimia GM. Proteomic analysis identifies the RNA helicase DDX3X as a host target against SARS-CoV-2 infection. Antiviral Res 2021; 190:105064. [PMID: 33781803 PMCID: PMC7997689 DOI: 10.1016/j.antiviral.2021.105064] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 12/31/2022]
Abstract
COVID-19 is currently a highly pressing health threat and therapeutic strategies to mitigate the infection impact are urgently needed. Characterization of the SARS-CoV-2 interactome in infected cells may represent a powerful tool to identify cellular proteins hijacked by viruses for their life cycle and develop host-oriented antiviral therapeutics. Here we report the proteomic characterization of host proteins interacting with SARS-CoV-2 Nucleoprotein in infected Vero E6 cells. We identified 24 high-confidence proteins mainly playing a role in RNA metabolism and translation, including RNA helicases and scaffold proteins involved in the formation of stress granules, cytoplasmic aggregates of messenger ribonucleoproteins that accumulate as a result of stress-induced translation arrest. Analysis of stress granules upon SARS-CoV-2 infection showed that these structures are not induced in infected cells, neither eIF2α phosphorylation, an upstream event leading to stress-induced translation inhibition. Notably, we found that G3BP1, a stress granule component that associates with the Nucleoprotein, is required for efficient SARS-CoV-2 replication. Moreover, we showed that the Nucleoprotein-interacting RNA helicase DDX3X colocalizes with viral RNA foci and its inhibition by small molecules or small interfering RNAs significantly reduces viral replication. Altogether, these results indicate that SARS-CoV-2 subverts the stress granule machinery and exploits G3BP1 and DDX3X for its replication cycle, offering groundwork for future development of host-directed therapies.
Collapse
Affiliation(s)
- Fabiola Ciccosanti
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
| | - Martina Di Rienzo
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
| | - Alessandra Romagnoli
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
| | - Francesca Colavita
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
| | - Giulia Refolo
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
| | - Concetta Castilletti
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
| | - Chiara Agrati
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
| | - Annalaura Brai
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Fabrizio Manetti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Lorenzo Botta
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Maria Rosaria Capobianchi
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
| | - Giuseppe Ippolito
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
| | - Mauro Piacentini
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy; Department of Biology, University of Rome 'Tor Vergata', Rome, Italy.
| | - Gian Maria Fimia
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy; Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
286
|
Clinical Management of COVID-19: A Review of Pharmacological Treatment Options. Pharmaceuticals (Basel) 2021; 14:ph14060520. [PMID: 34071185 PMCID: PMC8229327 DOI: 10.3390/ph14060520] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Since the outbreak and subsequent declaration of COVID-19 as a global pandemic in March 2020, concerted efforts have been applied by the scientific community to curtail the spread of the disease and find a cure. While vaccines constitute a vital part of the public health strategy to reduce the burden of COVID-19, the management of this disease will continue to rely heavily on pharmacotherapy. This study aims to provide an updated review of pharmacological agents that have been developed and/or repurposed for the treatment of COVID-19. To this end, a comprehensive literature search was conducted using the PubMed, Google Scholar, and LitCovid databases. Relevant clinical studies on drugs used in the management of COVID-19 were identified and evaluated in terms of evidence of efficacy and safety. To date, the FDA has approved three therapies for the treatment of COVID-19 Emergency Use Authorization: convalescent plasma, remdesivir, and casirivimab/imdevimab (REGN-COV2). Drugs such as lopinavir/ritonavir, umifenovir, favipiravir, anakinra, chloroquine, hydroxychloroquine, tocilizumab, interferons, tissue plasminogen activator, intravenous immunoglobulins, and nafamosat have been used off-label with mixed therapeutic results. Adjunctive administration of corticosteroids is also very common. The clinical experience with these approved and repurposed drugs is limited, and data on efficacy for the new indication are not strong. Overall, the response of the global scientific community to the COVID-19 pandemic has been impressive, as evident from the volume of scientific literature elucidating the molecular biology and pathophysiology of SARS-CoV-2 and the approval of three new drugs for clinical management. Reviewed studies have shown mixed data on efficacy and safety of the currently utilized drugs. The lack of standard treatment for COVID-19 has made it difficult to interpret results from most of the published studies due to the risk of attribution error. The long-term effects of drugs can only be assessed after several years of clinical experience; therefore, the efficacy and safety of current COVID-19 therapeutics should continue to be rigorously monitored as part of post-marketing studies.
Collapse
|
287
|
Zhu QC, Li S, Yuan LX, Chen RA, Liu DX, Fung TS. Induction of the Proinflammatory Chemokine Interleukin-8 Is Regulated by Integrated Stress Response and AP-1 Family Proteins Activated during Coronavirus Infection. Int J Mol Sci 2021; 22:ijms22115646. [PMID: 34073283 PMCID: PMC8198748 DOI: 10.3390/ijms22115646] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/08/2021] [Accepted: 05/20/2021] [Indexed: 01/08/2023] Open
Abstract
Infection induces the production of proinflammatory cytokines and chemokines such as interleukin-8 (IL-8) and IL-6. Although they facilitate local antiviral immunity, their excessive release leads to life-threatening cytokine release syndrome, exemplified by the severe cases of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In this study, we investigated the roles of the integrated stress response (ISR) and activator protein-1 (AP-1) family proteins in regulating coronavirus-induced IL-8 and IL-6 upregulation. The mRNA expression of IL-8 and IL-6 was significantly induced in cells infected with infectious bronchitis virus (IBV), a gammacoronavirus, and porcine epidemic diarrhea virus, an alphacoronavirus. Overexpression of a constitutively active phosphomimetic mutant of eukaryotic translation initiation factor 2α (eIF2α), chemical inhibition of its dephosphorylation, or overexpression of its upstream double-stranded RNA-dependent protein kinase (PKR) significantly enhanced IL-8 mRNA expression in IBV-infected cells. Overexpression of the AP-1 protein cJUN or its upstream kinase also increased the IBV-induced IL-8 mRNA expression, which was synergistically enhanced by overexpression of cFOS. Taken together, this study demonstrated the important regulatory roles of ISR and AP-1 proteins in IL-8 production during coronavirus infection, highlighting the complex interactions between cellular stress pathways and the innate immune response.
Collapse
Affiliation(s)
- Qing Chun Zhu
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Q.C.Z.); (S.L.); (L.X.Y.)
| | - Shumin Li
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Q.C.Z.); (S.L.); (L.X.Y.)
| | - Li Xia Yuan
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Q.C.Z.); (S.L.); (L.X.Y.)
| | - Rui Ai Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China;
- Zhaoqing Branch, Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526000, China
| | - Ding Xiang Liu
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Q.C.Z.); (S.L.); (L.X.Y.)
- Zhaoqing Branch, Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526000, China
- Correspondence: or (D.X.L.); (T.S.F.)
| | - To Sing Fung
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Q.C.Z.); (S.L.); (L.X.Y.)
- Correspondence: or (D.X.L.); (T.S.F.)
| |
Collapse
|
288
|
Lin S, Chen H, Chen Z, Yang F, Ye F, Zheng Y, Yang J, Lin X, Sun H, Wang L, Wen A, Dong H, Xiao Q, Deng D, Cao Y, Lu G. Crystal structure of SARS-CoV-2 nsp10 bound to nsp14-ExoN domain reveals an exoribonuclease with both structural and functional integrity. Nucleic Acids Res 2021; 49:5382-5392. [PMID: 33956156 PMCID: PMC8136770 DOI: 10.1093/nar/gkab320] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/08/2021] [Accepted: 04/21/2021] [Indexed: 02/05/2023] Open
Abstract
The emergence of SARS-CoV-2 infection has posed unprecedented threat to global public health. The virus-encoded non-structural protein 14 (nsp14) is a bi-functional enzyme consisting of an exoribonuclease (ExoN) domain and a methyltransferase (MTase) domain and plays a pivotal role in viral replication. Here, we report the structure of SARS-CoV-2 nsp14-ExoN domain bound to its co-factor nsp10 and show that, compared to the SARS-CoV nsp10/nsp14-full-length complex, SARS-CoV-2 nsp14-ExoN retains an integral exoribonuclease fold and preserves an active configuration in the catalytic center. Analysis of the nsp10/nsp14-ExoN interface reveals a footprint in nsp10 extensively overlapping with that observed in the nsp10/nsp16 structure. A marked difference in the co-factor when engaging nsp14 and nsp16 lies in helix-α1′, which is further experimentally ascertained to be involved in nsp14-binding but not in nsp16-engagement. Finally, we also show that nsp10/nsp14-ExoN is enzymatically active despite the absence of nsp14-MTase domain. These data demonstrate that SARS-CoV-2 nsp10/nsp14-ExoN functions as an exoribonuclease with both structural and functional integrity.
Collapse
Affiliation(s)
- Sheng Lin
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hua Chen
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zimin Chen
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fanli Yang
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fei Ye
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yue Zheng
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jing Yang
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xi Lin
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Honglu Sun
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lingling Wang
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ao Wen
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Haohao Dong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qingjie Xiao
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute (Zhangjiang Laboratory), Chinese Academy of Sciences, Shanghai 201210, China
| | - Dong Deng
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yu Cao
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China.,Disaster Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Guangwen Lu
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China.,WestVac Biopharma Co., Ltd, Chengdu, Sichuan 610000, China
| |
Collapse
|
289
|
Kouhpayeh S, Shariati L, Boshtam M, Rahimmanesh I, Mirian M, Esmaeili Y, Najaflu M, Khanahmad N, Zeinalian M, Trovato M, Tay FR, Khanahmad H, Makvandi P. The Molecular Basis of COVID-19 Pathogenesis, Conventional and Nanomedicine Therapy. Int J Mol Sci 2021; 22:5438. [PMID: 34064039 PMCID: PMC8196740 DOI: 10.3390/ijms22115438] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
In late 2019, a new member of the Coronaviridae family, officially designated as "severe acute respiratory syndrome coronavirus 2" (SARS-CoV-2), emerged and spread rapidly. The Coronavirus Disease-19 (COVID-19) outbreak was accompanied by a high rate of morbidity and mortality worldwide and was declared a pandemic by the World Health Organization in March 2020. Within the Coronaviridae family, SARS-CoV-2 is considered to be the third most highly pathogenic virus that infects humans, following the severe acute respiratory syndrome coronavirus (SARS-CoV) and the Middle East respiratory syndrome coronavirus (MERS-CoV). Four major mechanisms are thought to be involved in COVID-19 pathogenesis, including the activation of the renin-angiotensin system (RAS) signaling pathway, oxidative stress and cell death, cytokine storm, and endothelial dysfunction. Following virus entry and RAS activation, acute respiratory distress syndrome develops with an oxidative/nitrosative burst. The DNA damage induced by oxidative stress activates poly ADP-ribose polymerase-1 (PARP-1), viral macrodomain of non-structural protein 3, poly (ADP-ribose) glycohydrolase (PARG), and transient receptor potential melastatin type 2 (TRPM2) channel in a sequential manner which results in cell apoptosis or necrosis. In this review, blockers of angiotensin II receptor and/or PARP, PARG, and TRPM2, including vitamin D3, trehalose, tannins, flufenamic and mefenamic acid, and losartan, have been investigated for inhibiting RAS activation and quenching oxidative burst. Moreover, the application of organic and inorganic nanoparticles, including liposomes, dendrimers, quantum dots, and iron oxides, as therapeutic agents for SARS-CoV-2 were fully reviewed. In the present review, the clinical manifestations of COVID-19 are explained by focusing on molecular mechanisms. Potential therapeutic targets, including the RAS signaling pathway, PARP, PARG, and TRPM2, are also discussed in depth.
Collapse
Affiliation(s)
- Shirin Kouhpayeh
- Erythron Genetics and Pathobiology Laboratory, Department of Immunology, Isfahan 8164776351, Iran;
| | - Laleh Shariati
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran;
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran;
| | - Maryam Boshtam
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran;
| | - Ilnaz Rahimmanesh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran;
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran;
| | - Yasaman Esmaeili
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran;
| | - Malihe Najaflu
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran; (M.N.); (M.Z.)
| | - Negar Khanahmad
- School of Medicine, Isfahan University of Medical Sciences, Isfahan 817467346, Iran;
| | - Mehrdad Zeinalian
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran; (M.N.); (M.Z.)
| | - Maria Trovato
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131 Naples, Italy;
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA 30912, USA;
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran; (M.N.); (M.Z.)
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interface, viale Rinaldo Piaggio 34, 56025 Pisa, Italy
| |
Collapse
|
290
|
Does Genetic Predisposition Contribute to the Exacerbation of COVID-19 Symptoms in Individuals with Comorbidities and Explain the Huge Mortality Disparity between the East and the West? Int J Mol Sci 2021; 22:ijms22095000. [PMID: 34066804 PMCID: PMC8125927 DOI: 10.3390/ijms22095000] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/25/2021] [Accepted: 05/06/2021] [Indexed: 12/15/2022] Open
Abstract
The elderly and patients with several comorbidities experience more severe cases of coronavirus disease 2019 (COVID-19) than healthy patients without underlying medical conditions. However, it is unclear why these people are prone to developing alveolar pneumonia, rapid exacerbations, and death. Therefore, we hypothesized that people with comorbidities may have a genetic predisposition that makes them more vulnerable to various factors; for example, they are likely to become more severely ill when infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To test this hypothesis, we searched the literature extensively. Polymorphisms of genes, such as those that encode angiotensin-converting enzyme 1 (ACE1), have been associated with numerous comorbidities, such as cardiovascular disease, hypertension, diabetes, chronic kidney disease, and obesity, and there are potential mechanisms to explain these associations (e.g., DD-type carriers have greater ACE1 activity, and patients with a genetic alpha-1 anti-trypsin (AAT) deficiency lack control over inflammatory mediators). Since comorbidities are associated with chronic inflammation and are closely related to the renin–angiotensin–aldosterone system (RAAS), these individuals may already have a mild ACE1/ACE2 imbalance before viral infection, which increases their risk for developing severe cases of COVID-19. However, there is still much debate about the association between ACE1 D/I polymorphism and comorbidities. The best explanation for this discrepancy could be that the D allele and DD subtypes are associated with comorbidities, but the DD genotype alone does not have an exceptionally large effect. This is also expected since the ACE1 D/I polymorphism is only an intron marker. We also discuss how polymorphisms of AAT and other genes are involved in comorbidities and the severity of SARS-CoV-2 infection. Presumably, a combination of multiple genes and non-genetic factors is involved in the establishment of comorbidities and aggravation of COVID-19.
Collapse
|
291
|
Alshamrani F, Alnajashi H, AlJumah M, Almuaigel M, Almalik Y, Makkawi S, Alsalman S, Almejally M, Qureshi S, Aljarallah S, AlKhawajah N, Kedah H, Alotaibi H, Saeedi J, Alamri A. Registry of patients with multiple sclerosis and COVID-19 infection in Saudi Arabia. Mult Scler Relat Disord 2021; 52:103004. [PMID: 34049217 PMCID: PMC8103739 DOI: 10.1016/j.msard.2021.103004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/13/2021] [Accepted: 04/29/2021] [Indexed: 01/15/2023]
Abstract
Background The outbreak of coronavirus disease 2019 (COVID-19) has rapidly spread and developed as a pandemic threatening global health. Patients with multiple sclerosis (MS)–an autoimmune demyelinating inflammatory disease of the central nervous system (CNS)–are predominantly treated with immunomodulatory/immunosuppressive disease-modifying therapies (DMTs), which can increase the risk of infection. Therefore, there is concern that these patients may have a higher risk of COVID-19. In response to growing concerns of neurologists and patients, this study aimed to determine the prevalence, severity, and possible complications of COVID-19 infection in patients with MS in Saudi Arabia (SA). Methods In this prospective cohort study, demographic and clinical data were obtained from patients residing in SA with MS who had a positive result for COVID-19 per reverse transcription-polymerase chain reaction test or viral gene sequencing, using respiratory or plasma samples. Comparison of COVID-19 severity groups was performed using one-way ANOVA or Kruskal-Wallis test for numerical variables and Chi-squared test for categorical variables. Results Seventy patients with MS and COVID-19 (71% female) were included in this analysis. Of the 53 (75.7%) patients receiving a DMT at the time of COVID-19 infection, the most frequently used DMTs were fingolimod (25%) and interferon-beta (25%). Nine (13%) patients had MS relapse and were treated with intravenous methylprednisolone in the four weeks before COVID-19 infection. The most common symptoms at the peak of COVID-19 infection were fever (46%), fatigue (37%), and headache (36%). Symptoms lasted for a mean duration of 8.7 days; all symptomatic patients recovered and no deaths were reported. COVID-19 severity was categorized in three groups: asymptomatic (n = 12), mild–not requiring hospitalization (n = 48), and requiring hospitalization (n = 10; two of whom were admitted to the intensive care unit [ICU]). Between the three groups, comparison of age, body mass index , Expanded Disability Severity Score , MS disease duration, and DMT use at the time of infection showed no significant differences. A higher percentage of patients who were admitted to hospital or the ICU (40%; p = 0.026) presented with an MS relapse within the prior four weeks compared with those who were asymptomatic or had a mild infection (both 8.3%). Conclusion These findings present a reassuring picture regarding COVID-19 infection in patients with MS. However, patients with MS who have had a relapse in the preceding four weeks (requiring glucocorticoid treatment) may have an increased risk of severe COVID-19.
Collapse
Affiliation(s)
- Foziah Alshamrani
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
| | | | | | - Mohammad Almuaigel
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Yaser Almalik
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Seraj Makkawi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | | | | | | | | | | | | | | | - Jameelah Saeedi
- King Abdullah Abdulla Bin Abdulaziz University Hospital, Riyadh, Saudi Arabia
| | - Abdulla Alamri
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
292
|
Kasuga Y, Zhu B, Jang KJ, Yoo JS. Innate immune sensing of coronavirus and viral evasion strategies. Exp Mol Med 2021; 53:723-736. [PMID: 33953325 PMCID: PMC8099713 DOI: 10.1038/s12276-021-00602-1] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/01/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
The innate immune system is the first line of the host defense program against pathogens and harmful substances. Antiviral innate immune responses can be triggered by multiple cellular receptors sensing viral components. The activated innate immune system produces interferons (IFNs) and cytokines that perform antiviral functions to eliminate invading viruses. Coronaviruses are single-stranded, positive-sense RNA viruses that have a broad range of animal hosts. Coronaviruses have evolved multiple means to evade host antiviral immune responses. Successful immune evasion by coronaviruses may enable the viruses to adapt to multiple species of host organisms. Coronavirus transmission from zoonotic hosts to humans has caused serious illnesses, such as severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and coronavirus disease-2019 (COVID-19), resulting in global health and economic crises. In this review, we summarize the current knowledge of the mechanisms underlying host sensing of and innate immune responses against coronavirus invasion, as well as host immune evasion strategies of coronaviruses. Understanding how the innate immune system senses coronaviruses and how coronaviruses can escape detection could provide novel approaches to tackle infections. Coronaviruses, including SARS-CoV-2, constantly evolve to manipulate, obstruct and evade host immune responses. A team led by Ji-Seung Yoo, Hokkaido University, Sapporo, Japan, reviewed understanding of innate immune responses to coronaviruses and viral evasion strategies. Two major receptor families recognise RNA viruses upon infection, but how they respond to SARS-CoV-2 is unclear. One receptor, TLR7, plays a critical role in sensing coronavirus infections, and mutations in the TLR7 gene are associated with severe illness and mortality in young Covid-19 patients. Activating host TLR pathways may prove a useful therapeutic approach. Further in-depth investigations are needed into specific coronavirus proteins and viral mechanisms that suppress host immunity.
Collapse
Affiliation(s)
- Yusuke Kasuga
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Baohui Zhu
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Kyoung-Jin Jang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju, 27478, Republic of Korea.
| | - Ji-Seung Yoo
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan.
| |
Collapse
|
293
|
Ryder SP, Morgan BR, Coskun P, Antkowiak K, Massi F. Analysis of Emerging Variants in Structured Regions of the SARS-CoV-2 Genome. Evol Bioinform Online 2021; 17:11769343211014167. [PMID: 34017166 PMCID: PMC8114311 DOI: 10.1177/11769343211014167] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/29/2021] [Indexed: 01/11/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has motivated a widespread effort to understand its epidemiology and pathogenic mechanisms. Modern high-throughput sequencing technology has led to the deposition of vast numbers of SARS-CoV-2 genome sequences in curated repositories, which have been useful in mapping the spread of the virus around the globe. They also provide a unique opportunity to observe virus evolution in real time. Here, we evaluate two sets of SARS-CoV-2 genomic sequences to identify emerging variants within structured cis-regulatory elements of the SARS-CoV-2 genome. Overall, 20 variants are present at a minor allele frequency of at least 0.5%. Several enhance the stability of Stem Loop 1 in the 5' untranslated region (UTR), including a group of co-occurring variants that extend its length. One appears to modulate the stability of the frameshifting pseudoknot between ORF1a and ORF1b, and another perturbs a bi-ss molecular switch in the 3'UTR. Finally, 5 variants destabilize structured elements within the 3'UTR hypervariable region, including the S2M (stem loop 2 m) selfish genetic element, raising questions as to the functional relevance of these structures in viral replication. Two of the most abundant variants appear to be caused by RNA editing, suggesting host-viral defense contributes to SARS-CoV-2 genome heterogeneity. Our analysis has implications for the development of therapeutics that target viral cis-regulatory RNA structures or sequences.
Collapse
Affiliation(s)
- Sean P Ryder
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Brittany R Morgan
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Peren Coskun
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Katianna Antkowiak
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Francesca Massi
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
294
|
Shapira T, Monreal IA, Dion SP, Jager M, Désilets A, Olmstead AD, Vandal T, Buchholz DW, Imbiakha B, Gao G, Chin A, Rees WD, Steiner T, Nabi IR, Marsault E, Sahler J, August A, Van de Walle G, Whittaker GR, Boudreault PL, Aguilar HC, Leduc R, Jean F. A novel highly potent inhibitor of TMPRSS2-like proteases blocks SARS-CoV-2 variants of concern and is broadly protective against infection and mortality in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.05.03.442520. [PMID: 33972944 PMCID: PMC8109206 DOI: 10.1101/2021.05.03.442520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2023]
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 virus remains a global public health crisis. Although widespread vaccination campaigns are underway, their efficacy is reduced against emerging variants of concern (VOCs) 1,2 . Development of host-directed therapeutics and prophylactics could limit such resistance and offer urgently needed protection against VOCs 3,4 . Attractive pharmacological targets to impede viral entry include type-II transmembrane serine proteases (TTSPs), such as TMPRSS2, whose essential role in the virus lifecycle is responsible for the cleavage and priming of the viral spike protein 5-7 . Here, we identify and characterize a small-molecule compound, N-0385, as the most potent inhibitor of TMPRSS2 reported to date. N-0385 exhibited low nanomolar potency and a selectivity index of >10 6 at inhibiting SARS-CoV-2 infection in human lung cells and in donor-derived colonoids 8 . Importantly, N-0385 acted as a broad-spectrum coronavirus inhibitor of two SARS-CoV-2 VOCs, B.1.1.7 and B.1.351. Strikingly, single daily intranasal administration of N-0385 early in infection significantly improved weight loss and clinical outcomes, and yielded 100% survival in the severe K18-human ACE2 transgenic mouse model of SARS-CoV-2 disease. This demonstrates that TTSP-mediated proteolytic maturation of spike is critical for SARS-CoV-2 infection in vivo and suggests that N-0385 provides a novel effective early treatment option against COVID-19 and emerging SARS-CoV-2 VOCs.
Collapse
|
295
|
Luo R, Delaunay‐Moisan A, Timmis K, Danchin A. SARS-CoV-2 biology and variants: anticipation of viral evolution and what needs to be done. Environ Microbiol 2021; 23:2339-2363. [PMID: 33769683 PMCID: PMC8251359 DOI: 10.1111/1462-2920.15487] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022]
Abstract
The global propagation of SARS-CoV-2 and the detection of a large number of variants, some of which have replaced the original clade to become dominant, underscores the fact that the virus is actively exploring its evolutionary space. The longer high levels of viral multiplication occur - permitted by high levels of transmission -, the more the virus can adapt to the human host and find ways to success. The third wave of the COVID-19 pandemic is starting in different parts of the world, emphasizing that transmission containment measures that are being imposed are not adequate. Part of the consideration in determining containment measures is the rationale that vaccination will soon stop transmission and allow a return to normality. However, vaccines themselves represent a selection pressure for evolution of vaccine-resistant variants, so the coupling of a policy of permitting high levels of transmission/virus multiplication during vaccine roll-out with the expectation that vaccines will deal with the pandemic, is unrealistic. In the absence of effective antivirals, it is not improbable that SARS-CoV-2 infection prophylaxis will involve an annual vaccination campaign against 'dominant' viral variants, similar to influenza prophylaxis. Living with COVID-19 will be an issue of SARS-CoV-2 variants and evolution. It is therefore crucial to understand how SARS-CoV-2 evolves and what constrains its evolution, in order to anticipate the variants that will emerge. Thus far, the focus has been on the receptor-binding spike protein, but the virus is complex, encoding 26 proteins which interact with a large number of host factors, so the possibilities for evolution are manifold and not predictable a priori. However, if we are to mount the best defence against COVID-19, we must mount it against the variants, and to do this, we must have knowledge about the evolutionary possibilities of the virus. In addition to the generic cellular interactions of the virus, there are extensive polymorphisms in humans (e.g. Lewis, HLA, etc.), some distributed within most or all populations, some restricted to specific ethnic populations and these variations pose additional opportunities for/constraints on viral evolution. We now have the wherewithal - viral genome sequencing, protein structure determination/modelling, protein interaction analysis - to functionally characterize viral variants, but access to comprehensive genome data is extremely uneven. Yet, to develop an understanding of the impacts of such evolution on transmission and disease, we must link it to transmission (viral epidemiology) and disease data (patient clinical data), and the population granularities of these. In this editorial, we explore key facets of viral biology and the influence of relevant aspects of human polymorphisms, human behaviour, geography and climate and, based on this, derive a series of recommendations to monitor viral evolution and predict the types of variants that are likely to arise.
Collapse
Affiliation(s)
- Ruibang Luo
- Department of Computer ScienceThe University of Hong KongBonham RoadPokfulamHong Kong
| | - Agnès Delaunay‐Moisan
- Université Paris‐Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC)Gif‐sur‐Yvette91198France
| | - Kenneth Timmis
- Institute of MicrobiologyTechnical University of BraunschweigBraunschweigGermany
| | - Antoine Danchin
- Kodikos Labs, Institut Cochin, 24 rue du Faubourg Saint‐JacquesParis75014France
- School of Biomedical Sciences, Li Kashing Faculty of MedicineUniversity of Hong Kong21 Sassoon RoadHong Kong
| |
Collapse
|
296
|
Lozahic C, Maddock H, Sandhu H. Anti-cancer Therapy Leads to Increased Cardiovascular Susceptibility to COVID-19. Front Cardiovasc Med 2021; 8:634291. [PMID: 33969006 PMCID: PMC8102732 DOI: 10.3389/fcvm.2021.634291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/09/2021] [Indexed: 12/15/2022] Open
Abstract
Anti-cancer treatment regimens can lead to both acute- and long-term myocardial injury due to off-target effects. Besides, cancer patients and survivors are severely immunocompromised due to the harsh effect of anti-cancer therapy targeting the bone marrow cells. Cancer patients and survivors can therefore be potentially extremely clinically vulnerable and at risk from infectious diseases. The recent global outbreak of the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its infection called coronavirus disease 2019 (COVID-19) has rapidly become a worldwide health emergency, and on March 11, 2020, COVID-19 was declared a global pandemic by the World Health Organization (WHO). A high fatality rate has been reported in COVID-19 patients suffering from underlying cardiovascular diseases. This highlights the critical and crucial aspect of monitoring cancer patients and survivors for potential cardiovascular complications during this unprecedented health crisis involving the progressive worldwide spread of COVID-19. COVID-19 is primarily a respiratory disease; however, COVID-19 has shown cardiac injury symptoms similar to the cardiotoxicity associated with anti-cancer therapy, including arrhythmia, myocardial injury and infarction, and heart failure. Due to the significant prevalence of micro- and macro-emboli and damaged vessels, clinicians worldwide have begun to consider whether COVID-19 may in fact be as much a vascular disease as a respiratory disease. However, the underlying mechanisms and pathways facilitating the COVID-19-induced cardiac injury in cancer and non-cancer patients remain unclear. Investigations into whether COVID-19 cardiac injury and anti-cancer drug-induced cardiac injury in cancer patients and survivors might synergistically increase the cardiovascular complications and comorbidity risk through a “two-hit” model are needed. Identification of cardiac injury mechanisms and pathways associated with COVID-19 development overlapping with anti-cancer therapy could help clinicians to allow a more optimized prognosis and treatment of cancer survivors suffering from COVID-19. The following review will focus on summarizing the harmful cardiovascular risk of COVID-19 in cancer patients and survivors treated with an anti-cancer drug. This review will improve the knowledge of COVID-19 impact in the field of cardio-oncology and potentially improve the outcome of patients.
Collapse
Affiliation(s)
- Caroline Lozahic
- Faculty Research Centre for Sport, Exercise and Life Sciences, Faculty of Health and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Helen Maddock
- Faculty Research Centre for Sport, Exercise and Life Sciences, Faculty of Health and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Hardip Sandhu
- Faculty Research Centre for Sport, Exercise and Life Sciences, Faculty of Health and Life Sciences, Coventry University, Coventry, United Kingdom
| |
Collapse
|
297
|
Ning L, Abagna HB, Jiang Q, Liu S, Huang J. Development and application of therapeutic antibodies against COVID-19. Int J Biol Sci 2021; 17:1486-1496. [PMID: 33907512 PMCID: PMC8071770 DOI: 10.7150/ijbs.59149] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/12/2021] [Indexed: 01/18/2023] Open
Abstract
The pandemic of Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome 2 coronavirus (SARS-CoV-2) continues to be a global health crisis. Fundamental studies at genome, transcriptome, proteome, and interactome levels have revealed many viral and host targets for therapeutic interventions. Hundreds of antibodies for treating COVID-19 have been developed at preclinical and clinical stages in the format of polyclonal antibodies, monoclonal antibodies, and cocktail antibodies. Four products, i.e., convalescent plasma, bamlanivimab, REGN-Cov2, and the cocktail of bamlanivimab and etesevimab have been authorized by the U.S. Food and Drug Administration (FDA) for emergency use. Hundreds of relevant clinical trials are ongoing worldwide. Therapeutic antibody therapies have been a very active and crucial part of COVID-19 treatment. In this review, we focus on the progress of therapeutic COVID-19 antibody development and application, discuss corresponding problems and challenges, suggesting new strategies and solutions.
Collapse
Affiliation(s)
- Lin Ning
- School of Healthcare Technology, Chengdu Neusoft University, Sichuan, China
| | - Hamza B. Abagna
- School of Life Science and Technology, University of Electronic Science and Technology of China, Sichuan, China
- Center for Informational Biology, University of Electronic Science and Technology of China, Sichuan, China
| | - Qianhu Jiang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Sichuan, China
- Center for Informational Biology, University of Electronic Science and Technology of China, Sichuan, China
| | - Siqi Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Sichuan, China
- Center for Informational Biology, University of Electronic Science and Technology of China, Sichuan, China
| | - Jian Huang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Sichuan, China
- Center for Informational Biology, University of Electronic Science and Technology of China, Sichuan, China
| |
Collapse
|
298
|
Mast FD, Fridy PC, Ketaren NE, Wang J, Jacobs EY, Olivier JP, Sanyal T, Molloy KR, Schmidt F, Rutkowska M, Weisblum Y, Rich LM, Vanderwall ER, Dambrauskas N, Vigdorovich V, Keegan S, Jiler JB, Stein ME, Olinares PDB, Hatziioannou T, Sather DN, Debley JS, Fenyö D, Sali A, Bieniasz PD, Aitchison JD, Chait BT, Rout MP. Nanobody Repertoires for Exposing Vulnerabilities of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.04.08.438911. [PMID: 33851164 PMCID: PMC8043454 DOI: 10.1101/2021.04.08.438911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite the great promise of vaccines, the COVID-19 pandemic is ongoing and future serious outbreaks are highly likely, so that multi-pronged containment strategies will be required for many years. Nanobodies are the smallest naturally occurring single domain antigen binding proteins identified to date, possessing numerous properties advantageous to their production and use. We present a large repertoire of high affinity nanobodies against SARS-CoV-2 Spike protein with excellent kinetic and viral neutralization properties, which can be strongly enhanced with oligomerization. This repertoire samples the epitope landscape of the Spike ectodomain inside and outside the receptor binding domain, recognizing a multitude of distinct epitopes and revealing multiple neutralization targets of pseudoviruses and authentic SARS-CoV-2, including in primary human airway epithelial cells. Combinatorial nanobody mixtures show highly synergistic activities, and are resistant to mutational escape and emerging viral variants of concern. These nanobodies establish an exceptional resource for superior COVID-19 prophylactics and therapeutics.
Collapse
Affiliation(s)
- Fred D Mast
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Peter C Fridy
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065, USA
| | - Natalia E Ketaren
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065, USA
| | - Junjie Wang
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York 10065, USA
| | - Erica Y Jacobs
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York 10065, USA
| | - Jean Paul Olivier
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Tanmoy Sanyal
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, Byers Hall, 1700 4th Street, Suite 503B, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kelly R Molloy
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York 10065, USA
| | - Fabian Schmidt
- Laboratory of Retrovirology, The Rockefeller University, New York, New York 10065, USA
| | - Magda Rutkowska
- Laboratory of Retrovirology, The Rockefeller University, New York, New York 10065, USA
| | - Yiska Weisblum
- Laboratory of Retrovirology, The Rockefeller University, New York, New York 10065, USA
| | - Lucille M Rich
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Elizabeth R Vanderwall
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Nicolas Dambrauskas
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Vladimir Vigdorovich
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Sarah Keegan
- Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, NY, USA
| | - Jacob B Jiler
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065, USA
| | - Milana E Stein
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065, USA
| | - Paul Dominic B Olinares
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York 10065, USA
| | - Theodora Hatziioannou
- Laboratory of Retrovirology, The Rockefeller University, New York, New York 10065, USA
| | - D Noah Sather
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Jason S Debley
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Division of Pulmonary and Sleep Medicine, Seattle Children's Hospital, Seattle, Washington, USA
| | - David Fenyö
- Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, NY, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, Byers Hall, 1700 4th Street, Suite 503B, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, New York 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - John D Aitchison
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York 10065, USA
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
299
|
Korkmaz E, Balmert SC, Sumpter TL, Carey CD, Erdos G, Falo LD. Microarray patches enable the development of skin-targeted vaccines against COVID-19. Adv Drug Deliv Rev 2021; 171:164-186. [PMID: 33539853 PMCID: PMC8060128 DOI: 10.1016/j.addr.2021.01.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/10/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022]
Abstract
The COVID-19 pandemic is a serious threat to global health and the global economy. The ongoing race to develop a safe and efficacious vaccine to prevent infection by SARS-CoV-2, the causative agent for COVID-19, highlights the importance of vaccination to combat infectious pathogens. The highly accessible cutaneous microenvironment is an ideal target for vaccination since the skin harbors a high density of antigen-presenting cells and immune accessory cells with broad innate immune functions. Microarray patches (MAPs) are an attractive intracutaneous biocargo delivery system that enables safe, reproducible, and controlled administration of vaccine components (antigens, with or without adjuvants) to defined skin microenvironments. This review describes the structure of the SARS-CoV-2 virus and relevant antigenic targets for vaccination, summarizes key concepts of skin immunobiology in the context of prophylactic immunization, and presents an overview of MAP-mediated cutaneous vaccine delivery. Concluding remarks on MAP-based skin immunization are provided to contribute to the rational development of safe and effective MAP-delivered vaccines against emerging infectious diseases, including COVID-19.
Collapse
Affiliation(s)
- Emrullah Korkmaz
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Stephen C Balmert
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Tina L Sumpter
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Cara Donahue Carey
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Geza Erdos
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Louis D Falo
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
300
|
Hum C, Loiselle J, Ahmed N, Shaw TA, Toudic C, Pezacki JP. MicroRNA Mimics or Inhibitors as Antiviral Therapeutic Approaches Against COVID-19. Drugs 2021; 81:517-531. [PMID: 33638807 PMCID: PMC7910799 DOI: 10.1007/s40265-021-01474-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2021] [Indexed: 12/12/2022]
Abstract
Coronaviruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) responsible for the coronavirus disease 2019 (COVID-19) pandemic, present a significant threat to human health by inflicting a wide variety of health complications and even death. While conventional therapeutics often involve administering small molecules to fight viral infections, small non-coding RNA sequences, known as microRNAs (miRNAs/miR-), may present a novel antiviral strategy. We can take advantage of their ability to modulate host-virus interactions through mediating RNA degradation or translational inhibition. Investigations into miRNA and SARS-CoV-2 interactions can reveal novel therapeutic approaches against this virus. The viral genomes of SARS-CoV-2, severe acute respiratory syndrome coronavirus (SARS-CoV), and Middle East respiratory syndrome coronavirus (MERS-CoV) were searched using the Nucleotide Basic Local Alignment Search Tool (BLASTn) for highly similar sequences, to identify potential binding sites for miRNAs hypothesized to play a role in SARS-CoV-2 infection. miRNAs that target angiotensin-converting enzyme 2 (ACE2), the receptor used by SARS-CoV-2 and SARS-CoV for host cell entry, were also predicted. Several relevant miRNAs were identified, and their potential roles in regulating SARS-CoV-2 infections were further assessed. Current treatment options for SARS-CoV-2 are limited and have not generated sufficient evidence on safety and efficacy for treating COVID-19. Therefore, by investigating the interactions between miRNAs and SARS-CoV-2, miRNA-based antiviral therapies, including miRNA mimics and inhibitors, may be developed as an alternative strategy to fight COVID-19.
Collapse
Affiliation(s)
- Christine Hum
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Julia Loiselle
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Nadine Ahmed
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Tyler A Shaw
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Caroline Toudic
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|