251
|
Tláskal V, Baldrian P. Deadwood-Inhabiting Bacteria Show Adaptations to Changing Carbon and Nitrogen Availability During Decomposition. Front Microbiol 2021; 12:685303. [PMID: 34220772 PMCID: PMC8247643 DOI: 10.3389/fmicb.2021.685303] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/04/2021] [Indexed: 01/01/2023] Open
Abstract
Deadwood decomposition is responsible for a significant amount of carbon (C) turnover in natural forests. While fresh deadwood contains mainly plant compounds and is extremely low in nitrogen (N), fungal biomass and N content increase during decomposition. Here, we examined 18 genome-sequenced bacterial strains representing the dominant deadwood taxa to assess their adaptations to C and N utilization in deadwood. Diverse gene sets for the efficient decomposition of plant and fungal cell wall biopolymers were found in Acidobacteria, Bacteroidetes, and Actinobacteria. In contrast to these groups, Alphaproteobacteria and Gammaproteobacteria contained fewer carbohydrate-active enzymes and depended either on low-molecular-mass C sources or on mycophagy. This group, however, showed rich gene complements for N2 fixation and nitrate/nitrite reduction—key assimilatory and dissimilatory steps in the deadwood N cycle. We show that N2 fixers can obtain C independently from either plant biopolymers or fungal biomass. The succession of bacteria on decomposing deadwood reflects their ability to cope with the changing quality of C-containing compounds and increasing N content.
Collapse
Affiliation(s)
- Vojtěch Tláskal
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Praha, Czechia
| | - Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Praha, Czechia
| |
Collapse
|
252
|
Li Y, Wang M, Sun ZZ, Xie BB. Comparative Genomic Insights Into the Taxonomic Classification, Diversity, and Secondary Metabolic Potentials of Kitasatospora, a Genus Closely Related to Streptomyces. Front Microbiol 2021; 12:683814. [PMID: 34194415 PMCID: PMC8236941 DOI: 10.3389/fmicb.2021.683814] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/20/2021] [Indexed: 11/25/2022] Open
Abstract
While the genus Streptomyces (family Streptomycetaceae) has been studied as a model for bacterial secondary metabolism and genetics, its close relatives have been less studied. The genus Kitasatospora is the second largest genus in the family Streptomycetaceae. However, its taxonomic position within the family remains under debate and the secondary metabolic potential remains largely unclear. Here, we performed systematic comparative genomic and phylogenomic analyses of Kitasatospora. Firstly, the three genera within the family Streptomycetaceae (Kitasatospora, Streptomyces, and Streptacidiphilus) showed common genomic features, including high G + C contents, high secondary metabolic potentials, and high recombination frequencies. Secondly, phylogenomic and comparative genomic analyses revealed phylogenetic distinctions and genome content differences among these three genera, supporting Kitasatospora as a separate genus within the family. Lastly, the pan-genome analysis revealed extensive genetic diversity within the genus Kitasatospora, while functional annotation and genome content comparison suggested genomic differentiation among lineages. This study provided new insights into genomic characteristics of the genus Kitasatospora, and also uncovered its previously underestimated and complex secondary metabolism.
Collapse
Affiliation(s)
- Yisong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Meng Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Zhong-Zhi Sun
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Bin-Bin Xie
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
253
|
Kim J, Na SI, Kim D, Chun J. UBCG2: Up-to-date bacterial core genes and pipeline for phylogenomic analysis. J Microbiol 2021; 59:609-615. [PMID: 34052993 DOI: 10.1007/s12275-021-1231-4] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 11/29/2022]
Abstract
Phylogenomic tree reconstruction has recently become a routine and critical task to elucidate the evolutionary relationships among bacterial species. The most widely used method utilizes the concatenated core genes, universally present in a single-copy throughout the bacterial domain. In our previous study, a bioinformatics pipeline termed Up-to-date Bacterial Core Genes (UBCG) was developed with a set of bacterial core genes selected from 1,429 species covering 28 phyla. In this study, we revised a new bacterial core gene set, named UBCG2, that was selected from the more extensive genome sequence set belonging to 3,508 species spanning 43 phyla. UBCG2 comprises 81 genes with nine Clusters of Orthologous Groups of proteins (COGs) functional categories. The new gene set and complete pipeline are available at http://leb.snu.ac.kr/ubcg2 .
Collapse
Affiliation(s)
- Jihyeon Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 00826, Republic of Korea
- Institute of Molecular Biology & Genetics, Seoul National University, Seoul, 00826, Republic of Korea
| | - Seong-In Na
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 00826, Republic of Korea
| | - Dongwook Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 00826, Republic of Korea
- Institute of Molecular Biology & Genetics, Seoul National University, Seoul, 00826, Republic of Korea
| | - Jongsik Chun
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 00826, Republic of Korea.
- Institute of Molecular Biology & Genetics, Seoul National University, Seoul, 00826, Republic of Korea.
- School of Biological Sciences, Seoul National University, Seoul, 00826, Republic of Korea.
| |
Collapse
|
254
|
Leung MHY, Tong X, Bøifot KO, Bezdan D, Butler DJ, Danko DC, Gohli J, Green DC, Hernandez MT, Kelly FJ, Levy S, Mason-Buck G, Nieto-Caballero M, Syndercombe-Court D, Udekwu K, Young BG, Mason CE, Dybwad M, Lee PKH. Characterization of the public transit air microbiome and resistome reveals geographical specificity. MICROBIOME 2021; 9:112. [PMID: 34039416 PMCID: PMC8157753 DOI: 10.1186/s40168-021-01044-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/09/2021] [Indexed: 05/21/2023]
Abstract
BACKGROUND The public transit is a built environment with high occupant density across the globe, and identifying factors shaping public transit air microbiomes will help design strategies to minimize the transmission of pathogens. However, the majority of microbiome works dedicated to the public transit air are limited to amplicon sequencing, and our knowledge regarding the functional potentials and the repertoire of resistance genes (i.e. resistome) is limited. Furthermore, current air microbiome investigations on public transit systems are focused on single cities, and a multi-city assessment of the public transit air microbiome will allow a greater understanding of whether and how broad environmental, building, and anthropogenic factors shape the public transit air microbiome in an international scale. Therefore, in this study, the public transit air microbiomes and resistomes of six cities across three continents (Denver, Hong Kong, London, New York City, Oslo, Stockholm) were characterized. RESULTS City was the sole factor associated with public transit air microbiome differences, with diverse taxa identified as drivers for geography-associated functional potentials, concomitant with geographical differences in species- and strain-level inferred growth profiles. Related bacterial strains differed among cities in genes encoding resistance, transposase, and other functions. Sourcetracking estimated that human skin, soil, and wastewater were major presumptive resistome sources of public transit air, and adjacent public transit surfaces may also be considered presumptive sources. Large proportions of detected resistance genes were co-located with mobile genetic elements including plasmids. Biosynthetic gene clusters and city-unique coding sequences were found in the metagenome-assembled genomes. CONCLUSIONS Overall, geographical specificity transcends multiple aspects of the public transit air microbiome, and future efforts on a global scale are warranted to increase our understanding of factors shaping the microbiome of this unique built environment.
Collapse
Affiliation(s)
- M H Y Leung
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - X Tong
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - K O Bøifot
- Comprehensive Defence Division, Norwegian Defence Research Establishment FFI, Kjeller, Norway
- Department of Analytical, Environmental & Forensic Sciences, King's College London, London, UK
| | - D Bezdan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - D J Butler
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - D C Danko
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - J Gohli
- Comprehensive Defence Division, Norwegian Defence Research Establishment FFI, Kjeller, Norway
| | - D C Green
- Department of Analytical, Environmental & Forensic Sciences, King's College London, London, UK
| | - M T Hernandez
- Environmental Engineering Program, College of Engineering and Applied Science, University of Colorado, Boulder, CO, USA
| | - F J Kelly
- Department of Analytical, Environmental & Forensic Sciences, King's College London, London, UK
| | - S Levy
- HudsonAlpha Institute of Biotechnology, Huntsville, AL, USA
| | - G Mason-Buck
- Department of Analytical, Environmental & Forensic Sciences, King's College London, London, UK
| | - M Nieto-Caballero
- Environmental Engineering Program, College of Engineering and Applied Science, University of Colorado, Boulder, CO, USA
| | - D Syndercombe-Court
- Department of Analytical, Environmental & Forensic Sciences, King's College London, London, UK
| | - K Udekwu
- Department of Aquatic Sciences & Assessment, Swedish University of Agriculture, Uppsala, Sweden
| | - B G Young
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - C E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA.
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| | - M Dybwad
- Comprehensive Defence Division, Norwegian Defence Research Establishment FFI, Kjeller, Norway.
- Department of Analytical, Environmental & Forensic Sciences, King's College London, London, UK.
| | - P K H Lee
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
255
|
Makhlouf J, Merhi G, Salloum T, Abboud E, Tokajian S. Molecular characterization of a carbapenem-resistant Enterobacter hormaechei ssp. xiangfangensis co-harbouring bla NDM-1 and a chromosomally encoded phage-linked bla CTX-M-15 genes. INFECTION GENETICS AND EVOLUTION 2021; 93:104924. [PMID: 34004359 DOI: 10.1016/j.meegid.2021.104924] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/22/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
Enterobacter cloacae complex (ECC) members are rapidly emerging as successful nosocomial pathogens, especially, with the emergence of carbapenem-resistant clones. In this study, we performed a comprehensive molecular characterization of a carbapenem-resistant E. hormaechei ssp. xiangfangensis LAU_ENC1. hsp60 and average nucleotide identity (ANI) were used for its identification. The repertoire of resistance genes and phage content were analyzed. Plasmid sequences were extracted and compared to closest references. The isolate LAU_ENC1 was identified as an E. hormaechei ssp. xiangfangensis and belonged to ST-114A sub-cluster. blaNDM-1, blaCTX-M-15, blaOXA-1, and blaACT-16 genes were detected as β-lactam resistance determinants. A chromosomal hybrid intact phage, Enterobacter phage LAU1, with blaCTX-M-15 integrated in its direct vicinity within an ISEcp1 - blaCTX-M-15 - wbuC - ∆Tn2 rare cassette was detected. blaNDM-1 was integrated within a novel IncFII conjugative plasmid, pLAU_ENC1, through an IS3000- ΔISAba125-blaNDM-1-bleMBL-//-Tn5403 cassette. To our knowledge, this is the first report of a multi-drug resistant (MDR) E. hormaechei ssp. xiangfangensis carrying a blaCTX-M-15 integrated within the proximity of a provirus chromosomal region. Treatment options for MDR ECC members are becoming scarce, thus warranting an increased monitoring of the dissemination of these pathogens in clinical settings.
Collapse
Affiliation(s)
- Jana Makhlouf
- Department of Natural Sciences, Lebanese American University, Lebanon
| | - Georgi Merhi
- Department of Natural Sciences, Lebanese American University, Lebanon
| | - Tamara Salloum
- Department of Natural Sciences, Lebanese American University, Lebanon
| | - Edmond Abboud
- Laboratory Department, Middle East Institute of Health University Hospital, Lebanon
| | - Sima Tokajian
- Department of Natural Sciences, Lebanese American University, Lebanon.
| |
Collapse
|
256
|
Rasmussen JA, Villumsen KR, Duchêne DA, Puetz LC, Delmont TO, Sveier H, Jørgensen LVG, Præbel K, Martin MD, Bojesen AM, Gilbert MTP, Kristiansen K, Limborg MT. Genome-resolved metagenomics suggests a mutualistic relationship between Mycoplasma and salmonid hosts. Commun Biol 2021; 4:579. [PMID: 33990699 PMCID: PMC8121932 DOI: 10.1038/s42003-021-02105-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/14/2021] [Indexed: 11/08/2022] Open
Abstract
Salmonids are important sources of protein for a large proportion of the human population. Mycoplasma species are a major constituent of the gut microbiota of salmonids, often representing the majority of microbiota. Despite the frequent reported dominance of salmonid-related Mycoplasma species, little is known about the phylogenomic placement, functions and potential evolutionary relationships with their salmonid hosts. In this study, we utilise 2.9 billion metagenomic reads generated from 12 samples from three different salmonid host species to I) characterise and curate the first metagenome-assembled genomes (MAGs) of Mycoplasma dominating the intestines of three different salmonid species, II) establish the phylogeny of these salmonid candidate Mycoplasma species, III) perform a comprehensive pangenomic analysis of Mycoplasma, IV) decipher the putative functionalities of the salmonid MAGs and reveal specific functions expected to benefit the host. Our data provide a basis for future studies examining the composition and function of the salmonid microbiota.
Collapse
Affiliation(s)
- Jacob A Rasmussen
- Laboratory of Genomics and Molecular Medicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
- Center for Evolutionary Hologenomics, GLOBE institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Kasper R Villumsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Veterinary Clinical Microbiology, Copenhagen, Denmark
| | - David A Duchêne
- Center for Evolutionary Hologenomics, GLOBE institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lara C Puetz
- Center for Evolutionary Hologenomics, GLOBE institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tom O Delmont
- Center for Evolutionary Hologenomics, GLOBE institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | | | - Louise von Gersdorff Jørgensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Parasitology and Aquatic Pathobiology, Copenhagen, Denmark
| | - Kim Præbel
- Norwegian College of Fishery Science, UiT the Arctic University of Norway, Tromsø, Norway
| | - Michael D Martin
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Anders M Bojesen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Veterinary Clinical Microbiology, Copenhagen, Denmark
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, GLOBE institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Medicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Institute of Metagenomics, BGI-Shenzhen, Shenzhen, China
| | - Morten T Limborg
- Laboratory of Genomics and Molecular Medicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
- Center for Evolutionary Hologenomics, GLOBE institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
257
|
Sieradzki ET, Morando M, Fuhrman JA. Metagenomics and Quantitative Stable Isotope Probing Offer Insights into Metabolism of Polycyclic Aromatic Hydrocarbon Degraders in Chronically Polluted Seawater. mSystems 2021; 6:e00245-21. [PMID: 33975968 PMCID: PMC8125074 DOI: 10.1128/msystems.00245-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/12/2021] [Indexed: 11/21/2022] Open
Abstract
Bacterial biodegradation is a significant contributor to remineralization of polycyclic aromatic hydrocarbons (PAHs)-toxic and recalcitrant components of crude oil as well as by-products of partial combustion chronically introduced into seawater via atmospheric deposition. The Deepwater Horizon oil spill demonstrated the speed at which a seed PAH-degrading community maintained by chronic inputs responds to acute pollution. We investigated the diversity and functional potential of a similar seed community in the chronically polluted Port of Los Angeles (POLA), using stable isotope probing with naphthalene, deep-sequenced metagenomes, and carbon incorporation rate measurements at the port and in two sites in the San Pedro Channel. We demonstrate the ability of the community of degraders at the POLA to incorporate carbon from naphthalene, leading to a quick shift in microbial community composition to be dominated by the normally rare Colwellia and Cycloclasticus We show that metagenome-assembled genomes (MAGs) belonged to these naphthalene degraders by matching their 16S-rRNA gene with experimental stable isotope probing data. Surprisingly, we did not find a full PAH degradation pathway in those genomes, even when combining genes from the entire microbial community, leading us to hypothesize that promiscuous dehydrogenases replace canonical naphthalene degradation enzymes in this site. We compared metabolic pathways identified in 29 genomes whose abundance increased in the presence of naphthalene to generate genomic-based recommendations for future optimization of PAH bioremediation at the POLA, e.g., ammonium as opposed to urea, heme or hemoproteins as an iron source, and polar amino acids.IMPORTANCE Oil spills in the marine environment have a devastating effect on marine life and biogeochemical cycles through bioaccumulation of toxic hydrocarbons and oxygen depletion by hydrocarbon-degrading bacteria. Oil-degrading bacteria occur naturally in the ocean, especially where they are supported by chronic inputs of oil or other organic carbon sources, and have a significant role in degradation of oil spills. Polycyclic aromatic hydrocarbons are the most persistent and toxic component of crude oil. Therefore, the bacteria that can break those molecules down are of particular importance. We identified such bacteria at the Port of Los Angeles (POLA), one of the busiest ports worldwide, and characterized their metabolic capabilities. We propose chemical targets based on those analyses to stimulate the activity of these bacteria in case of an oil spill in the Port POLA.
Collapse
Affiliation(s)
- Ella T Sieradzki
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Michael Morando
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Jed A Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
258
|
Unraveling the Metabolic Potential of Asgardarchaeota in a Sediment from the Mediterranean Hydrocarbon-Contaminated Water Basin Mar Piccolo (Taranto, Italy). Microorganisms 2021; 9:microorganisms9040859. [PMID: 33923677 PMCID: PMC8072921 DOI: 10.3390/microorganisms9040859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 12/02/2022] Open
Abstract
Increasing number of metagenome sequencing studies have proposed a central metabolic role of still understudied Archaeal members in natural and artificial ecosystems. However, their role in hydrocarbon cycling, particularly in the anaerobic biodegradation of aliphatic and aromatic hydrocarbons, is still mostly unknown in both marine and terrestrial environments. In this work, we focused our study on the metagenomic characterization of the archaeal community inhabiting the Mar Piccolo (Taranto, Italy, central Mediterranean) sediments heavily contaminated by petroleum hydrocarbons and polychlorinated biphenyls (PCB). Among metagenomic bins reconstructed from Mar Piccolo microbial community, we have identified members of the Asgardarchaeota superphylum that has been recently proposed to play a central role in hydrocarbon cycling in natural ecosystems under anoxic conditions. In particular, we found members affiliated with Thorarchaeota, Heimdallarchaeota, and Lokiarchaeota phyla and analyzed their genomic potential involved in central metabolism and hydrocarbon biodegradation. Metabolic prediction based on metagenomic analysis identified the malonyl-CoA and benzoyl-CoA routes as the pathways involved in aliphatic and aromatic biodegradation in these Asgardarchaeota members. This is the first study to give insight into the archaeal community functionality and connection to hydrocarbon degradation in marine sediment historically contaminated by hydrocarbons.
Collapse
|
259
|
Otaru N, Ye K, Mujezinovic D, Berchtold L, Constancias F, Cornejo FA, Krzystek A, de Wouters T, Braegger C, Lacroix C, Pugin B. GABA Production by Human Intestinal Bacteroides spp.: Prevalence, Regulation, and Role in Acid Stress Tolerance. Front Microbiol 2021; 12:656895. [PMID: 33936013 PMCID: PMC8082179 DOI: 10.3389/fmicb.2021.656895] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
The high neuroactive potential of metabolites produced by gut microbes has gained traction over the last few years, with metagenomic-based studies suggesting an important role of microbiota-derived γ-aminobutyric acid (GABA) in modulating mental health. Emerging evidence has revealed the presence of the glutamate decarboxylase (GAD)-encoding gene, a key enzyme to produce GABA, in the prominent human intestinal genus Bacteroides. Here, we investigated GABA production by Bacteroides in culture and metabolic assays combined with comparative genomics and phylogenetics. A total of 961 Bacteroides genomes were analyzed in silico and 17 metabolically and genetically diverse human intestinal isolates representing 11 species were screened in vitro. Using the model organism Bacteroides thetaiotaomicron DSM 2079, we determined GABA production kinetics, its impact on milieu pH, and we assessed its role in mitigating acid-induced cellular damage. We showed that the GAD-system consists of at least four highly conserved genes encoding a GAD, a glutaminase, a glutamate/GABA antiporter, and a potassium channel. We demonstrated a high prevalence of the GAD-system among Bacteroides with 90% of all Bacteroides genomes (96% in human gut isolates only) harboring all genes of the GAD-system and 16 intestinal Bacteroides strains producing GABA in vitro (ranging from 0.09 to 60.84 mM). We identified glutamate and glutamine as precursors of GABA production, showed that the production is regulated by pH, and that the GAD-system acts as a protective mechanism against acid stress in Bacteroides, mitigating cell death and preserving metabolic activity. Our data also indicate that the GAD-system might represent the only amino acid-dependent acid tolerance system in Bacteroides. Altogether, our results suggest an important contribution of Bacteroides in the regulation of the GABAergic system in the human gut.
Collapse
Affiliation(s)
- Nize Otaru
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.,Nutrition Research Unit, University Children's Hospital Zürich, Zürich, Switzerland
| | - Kun Ye
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Denisa Mujezinovic
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Laura Berchtold
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.,PharmaBiome AG, Zürich, Switzerland
| | - Florentin Constancias
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Fabián A Cornejo
- Max Planck Unit for the Science of Pathogens, Berlin, Germany.,Laboratory of Molecular Microbiology, Faculty of Chemistry and Biology, University of Santiago, Santiago, Chile
| | - Adam Krzystek
- Laboratory of Human Nutrition, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | | | - Christian Braegger
- Nutrition Research Unit, University Children's Hospital Zürich, Zürich, Switzerland
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Benoit Pugin
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
260
|
Cambon-Bonavita MA, Aubé J, Cueff-Gauchard V, Reveillaud J. Niche partitioning in the Rimicaris exoculata holobiont: the case of the first symbiotic Zetaproteobacteria. MICROBIOME 2021; 9:87. [PMID: 33845886 PMCID: PMC8042907 DOI: 10.1186/s40168-021-01045-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Free-living and symbiotic chemosynthetic microbial communities support primary production and higher trophic levels in deep-sea hydrothermal vents. The shrimp Rimicaris exoculata, which dominates animal communities along the Mid-Atlantic Ridge, houses a complex bacterial community in its enlarged cephalothorax. The dominant bacteria present are from the taxonomic groups Campylobacteria, Desulfobulbia (formerly Deltaproteobacteria), Alphaproteobacteria, Gammaproteobacteria, and some recently discovered iron oxyhydroxide-coated Zetaproteobacteria. This epibiotic consortium uses iron, sulfide, methane, and hydrogen as energy sources. Here, we generated shotgun metagenomes from Rimicaris exoculata cephalothoracic epibiotic communities to reconstruct and investigate symbiotic genomes. We collected specimens from three geochemically contrasted vent fields, TAG, Rainbow, and Snake Pit, to unravel the specificity, variability, and adaptation of Rimicaris-microbe associations. RESULTS Our data enabled us to reconstruct 49 metagenome-assembled genomes (MAGs) from the TAG and Rainbow vent fields, including 16 with more than 90% completion and less than 5% contamination based on single copy core genes. These MAGs belonged to the dominant Campylobacteria, Desulfobulbia, Thiotrichaceae, and some novel candidate phyla radiation (CPR) lineages. In addition, most importantly, two MAGs in our collection were affiliated to Zetaproteobacteria and had no close relatives (average nucleotide identity ANI < 77% with the closest relative Ghiorsea bivora isolated from TAG, and 88% with each other), suggesting potential novel species. Genes for Calvin-Benson Bassham (CBB) carbon fixation, iron, and sulfur oxidation, as well as nitrate reduction, occurred in both MAGs. However, genes for hydrogen oxidation and multicopper oxidases occurred in one MAG only, suggesting shared and specific potential functions for these two novel Zetaproteobacteria symbiotic lineages. Overall, we observed highly similar symbionts co-existing in a single shrimp at both the basaltic TAG and ultramafic Rainbow vent sites. Nevertheless, further examination of the seeming functional redundancy among these epibionts revealed important differences. CONCLUSION These data highlight microniche partitioning in the Rimicaris holobiont and support recent studies showing that functional diversity enables multiple symbiont strains to coexist in animals colonizing hydrothermal vents. Video Abstract.
Collapse
Affiliation(s)
- Marie-Anne Cambon-Bonavita
- Univ Brest, CNRS, IFREMER, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France
| | - Johanne Aubé
- Univ Brest, CNRS, IFREMER, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France
| | - Valérie Cueff-Gauchard
- Univ Brest, CNRS, IFREMER, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France
| | - Julie Reveillaud
- Univ Brest, CNRS, IFREMER, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France
- MIVEGEC, Univ. Montpellier, INRAe, CNRS, IRD, Montpellier, France
| |
Collapse
|
261
|
Kröber E, Cunningham MR, Peixoto J, Spurgin L, Wischer D, Kruger R, Kumaresan D. Comparative genomics analyses indicate differential methylated amine utilization trait within members of the genus Gemmobacter. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:195-208. [PMID: 33484104 DOI: 10.1111/1758-2229.12927] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 05/22/2023]
Abstract
Methylated amines are ubiquitous in the environment and play a role in regulating the earth's climate via a set of complex biological and chemical reactions. Microbial degradation of these compounds is thought to be a major sink. Recently we isolated a facultative methylotroph, Gemmobacter sp. LW-1, an isolate from the unique environment Movile Cave, Romania, which is capable of methylated amine utilization as a carbon source. Here, using a comparative genomics approach, we investigate how widespread methylated amine utilization is within members of the bacterial genus Gemmobacter. Seven genomes of different Gemmobacter species isolated from diverse environments, such as activated sludge, fresh water, sulphuric cave waters (Movile Cave) and the marine environment were available from the public repositories and used for the analysis. Our results indicate that methylamine utilization is a distinctive feature of selected members of the genus Gemmobacter, namely G. aquatilis, G. lutimaris, G. sp. HYN0069, G. caeni and G. sp. LW-1 have the genetic potential while others (G. megaterium and G. nectariphilus) have not.
Collapse
Affiliation(s)
- Eileen Kröber
- Department of Symbiosis, Max-Planck Institute for Marine Microbiology, Bremen, Germany
| | - Mark R Cunningham
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Julianna Peixoto
- Department of Cellular Biology, University of Brasília, Brasília, Brazil
| | - Lewis Spurgin
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - Daniela Wischer
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - Ricardo Kruger
- Department of Cellular Biology, University of Brasília, Brasília, Brazil
| | - Deepak Kumaresan
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| |
Collapse
|
262
|
Niche dimensions of a marine bacterium are identified using invasion studies in coastal seawater. Nat Microbiol 2021; 6:524-532. [PMID: 33495621 DOI: 10.1038/s41564-020-00851-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023]
Abstract
Niche theory is a foundational ecological concept that explains the distribution of species in natural environments. Identifying the dimensions of any organism's niche is challenging because numerous environmental factors can affect organism viability. We used serial invasion experiments to introduce Ruegeria pomeroyi DSS-3, a heterotrophic marine bacterium, into a coastal phytoplankton bloom on 14 dates. RNA-sequencing analysis of R. pomeroyi was conducted after 90 min to assess its niche dimensions in this dynamic ecosystem. We identified ~100 external conditions eliciting transcriptional responses, which included substrates, nutrients, metals and biotic interactions such as antagonism, resistance and cofactor synthesis. The peak bloom was characterized by favourable states for most of the substrate dimensions, but low inferred growth rates of R. pomeroyi at this stage indicated that its niche was narrowed by factors other than substrate availability, most probably negative biotic interactions with the bloom dinoflagellate. Our findings indicate chemical and biological features of the ocean environment that can constrain where heterotrophic bacteria survive.
Collapse
|
263
|
Bijlani S, Singh NK, Eedara VVR, Podile AR, Mason CE, Wang CCC, Venkateswaran K. Methylobacterium ajmalii sp. nov., Isolated From the International Space Station. Front Microbiol 2021; 12:639396. [PMID: 33790880 PMCID: PMC8005752 DOI: 10.3389/fmicb.2021.639396] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/22/2021] [Indexed: 11/22/2022] Open
Abstract
Four strains belonging to the family of Methylobacteriaceae were isolated from different locations on the International Space Station (ISS) across two consecutive flights. Of these, three were identified as Gram-negative, rod-shaped, catalase-positive, oxidase-positive, motile bacteria, designated as IF7SW-B2T, IIF1SW-B5, and IIF4SW-B5, whereas the fourth was identified as Methylorubrum rhodesianum. The sequence similarity of these three ISS strains, designated as IF7SW-B2T, IIF1SW-B5, and IIF4SW-B5, was <99.4% for 16S rRNA genes and <97.3% for gyrB gene, with the closest being Methylobacterium indicum SE2.11T. Furthermore, the multi-locus sequence analysis placed these three ISS strains in the same clade of M. indicum. The average nucleotide identity (ANI) values of these three ISS strains were <93% and digital DNA-DNA hybridization (dDDH) values were <46.4% with any described Methylobacterium species. Based on the ANI and dDDH analyses, these three ISS strains were considered as novel species belonging to the genus Methylobacterium. The three ISS strains showed 100% ANI similarity and dDDH values with each other, indicating that these three ISS strains, isolated during various flights and from different locations, belong to the same species. These three ISS strains were found to grow optimally at temperatures from 25 to 30°C, pH 6.0 to 8.0, and NaCl 0 to 1%. Phenotypically, these three ISS strains resemble M. aquaticum and M. terrae since they assimilate similar sugars as sole carbon substrate when compared to other Methylobacterium species. Fatty acid analysis showed that the major fatty acid produced by the ISS strains are C18:1−ω7c and C18:1−ω6c. The predominant quinone was ubiquinone 10, and the major polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, and an unidentified lipid. Therefore, based on genomic, phylogenetic, biochemical, and fatty acid analyses, strains IF7SW-B2T, IIF1SW-B5, and IIF4SW-B5, are assigned to a novel species within the genus Methylobacterium, and the name Methylobacterium ajmalii sp. nov. is proposed. The type strain is IF7SW-B2T (NRRL B-65601T and LMG 32165T).
Collapse
Affiliation(s)
- Swati Bijlani
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Nitin K Singh
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - V V Ramprasad Eedara
- Department of Plant Science, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Appa Rao Podile
- Department of Plant Science, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Christopher E Mason
- WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, United States
| | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Kasthuri Venkateswaran
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
264
|
Ruiz-Perez CA, Bertagnolli AD, Tsementzi D, Woyke T, Stewart FJ, Konstantinidis KT. Description of Candidatus Mesopelagibacter carboxydoxydans and Candidatus Anoxipelagibacter denitrificans: Nitrate-reducing SAR11 genera that dominate mesopelagic and anoxic marine zones. Syst Appl Microbiol 2021; 44:126185. [PMID: 33676264 DOI: 10.1016/j.syapm.2021.126185] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/25/2020] [Accepted: 12/09/2020] [Indexed: 11/29/2022]
Abstract
The diverse and ubiquitous members of the SAR11 lineage (Alphaproteobacteria) represent up to 30-40% of the surface and mesopelagic oceanic microbial communities. However, the molecular and ecological mechanisms that differentiate closely related, yet distinct, SAR11 members that often co-occur under similar environmental conditions remain speculative. Recently, two mesopelagic and oxygen minimum zone (OMZ)-associated subclades of SAR11 (Ic and IIa.A) were described using single-cell amplified genomes (SAGs) linked to nitrate reduction in OMZs. In this current study, the collection of genomes belonging to these two subclades was expanded with thirteen new metagenome-assembled genomes (MAGs), thus providing a more detailed phylogenetic and functional characterization of these subclades. Gene content-based predictions of metabolic functions revealed similarities in central carbon metabolism between subclades Ic and IIa.A and surface SAR11 clades, with small variations in central pathways. These variations included more versatile sulfur assimilation pathways, as well as a previously predicted capacity for nitrate reduction that conferred unique versatility on mesopelagic-adapted clades compared to their surface counterparts. Finally, consistent with previously reported abundances of carbon monoxide (CO) in surface and mesopelagic waters, subclades Ia (surface) and Ic (mesopelagic) have the genetic potential to oxidize carbon monoxide (CO), presumably taking advantage of this abundant compound as an electron donor. Based on genomic analyses, environmental distribution and metabolic reconstruction, we propose two new SAR11 genera, Ca. Mesopelagibacter carboxydoxydans (subclade Ic) and Ca. Anoxipelagibacter denitrificans (subclade IIa.A), which represent members of the mesopelagic and OMZ-adapted SAR11 clades.
Collapse
Affiliation(s)
- Carlos A Ruiz-Perez
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Anthony D Bertagnolli
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Despina Tsementzi
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, One Cyclotron Road, Mail Stop 91R0183, Berkeley, CA 94720, USA
| | - Frank J Stewart
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA; Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332, USA; Department of Microbiology & Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Konstantinos T Konstantinidis
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA; School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Center for Bioinformatics and Computational Genomics, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
265
|
Lee MD, O'Rourke A, Lorenzi H, Bebout BM, Dupont CL, Everroad RC. Reference-guided metagenomics reveals genome-level evidence of potential microbial transmission from the ISS environment to an astronaut's microbiome. iScience 2021; 24:102114. [PMID: 33659879 PMCID: PMC7892915 DOI: 10.1016/j.isci.2021.102114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/22/2020] [Accepted: 01/22/2021] [Indexed: 11/16/2022] Open
Abstract
Monitoring microbial communities aboard the International Space Station (ISS) is essential to maintaining astronaut health and the integrity of life-support systems. Using assembled genomes of ISS-derived microbial isolates as references, recruiting metagenomic reads from an astronaut's nasal microbiome revealed no recruitment to a Staphylococcus aureus isolate from samples before launch, yet systematic recruitment across the genome when sampled after 3 months aboard the ISS, with a median percent identity of 100%. This suggests that either a highly similar S. aureus population colonized the astronaut's nasal microbiome while the astronaut was aboard the ISS or that it may have been below detection before spaceflight, instead supporting a shift in community composition. This work highlights the value in generating genomic libraries of microbes from built-environments such as the ISS and demonstrates one way such data can be integrated with metagenomics to facilitate the tracking and monitoring of astronaut microbiomes and health. Understanding built-environment microbiomes is critical for human space exploration Reference-guided metagenomics is a powerful approach for monitoring microbiomes We show potential microbial colonization of an astronaut microbiome while aboard the ISS
Collapse
Affiliation(s)
- Michael D Lee
- Exobiology Branch, NASA Ames Research Center, Mountain View, CA, USA.,Blue Marble Space Institute of Science, Seattle, WA, USA
| | - Aubrie O'Rourke
- Space Life Sciences, NASA Kennedy Space Center, Merritt Island, FL, USA
| | - Hernan Lorenzi
- Department of Infectious Diseases, J. Craig Venter Institute, Rockville, MD, USA
| | - Brad M Bebout
- Exobiology Branch, NASA Ames Research Center, Mountain View, CA, USA
| | | | - R Craig Everroad
- Exobiology Branch, NASA Ames Research Center, Mountain View, CA, USA
| |
Collapse
|
266
|
Sidhu C, Saini MK, Srinivas Tanuku NR, Pinnaka AK. Arenibacter amylolyticus sp. nov., an amylase-producing bacterium of the family Flavobacteriaceae isolated from marine water in India. Int J Syst Evol Microbiol 2021; 71. [PMID: 33502300 DOI: 10.1099/ijsem.0.004664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-stain-negative, curved rod-shaped, 0.5-0.7 µm wide and 3.0-10.0 µm long, non-motile bacterium, designated strain AK53T, was isolated from a 5 m depth water sample collected from the Bay of Bengal, Visakhapatnam, India. Colonies on marine agar were circular, small, dark orange, shiny, smooth, translucent, flat, with an entire margin. The major fatty acids included iso-C15 : 0, iso-C15 : 0 3OH, anteiso-C15 : 0, iso-C15 : 1 G, iso-C17 : 0 3OH and summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c and/or iso-C15 : 0-2OH). Polar lipids included phosphatidylethanolamine and five unidentified lipids. The DNA G+C content of the strain AK53T was found to be 40.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain AK53T was closely related to Arenibacter latericius KMM 426T and Arenibacter certesii KMM3941T (pair-wise sequence similarity of 99.17 and 98.89 %, respectively), forming a distinct branch within the genus Arenibacter and clustering with A. latericius. Strain AK53T shared average nucleotide identity (ANIb, based on blast) of 78.07 and 77.44 % with A. latericius JCM 13508T and A. certesii JCM 13507T, respectively. Based on the observed phenotypic, chemotaxonomic characteristics and phylogenetic analysis, strain AK53T is described in this study as representing a novel species in the genus Arenibacter, for which the name Arenibacter amylolyticus sp. nov. is proposed. The type strain of Arenibacter amylolyticus is AK53T (=MTCC 12004T= JCM 19206T=KCTC 62553T).
Collapse
Affiliation(s)
- Chandni Sidhu
- Present address: Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359, Bremen, Germany.,MTCC-Microbial Type Culture Collection & Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh 160036, India
| | - Mohit Kumar Saini
- Present address: Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 1920397, Japan.,MTCC-Microbial Type Culture Collection & Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh 160036, India
| | - Naga Radha Srinivas Tanuku
- CSIR-National Institute of Oceanography, Regional Centre, 176, Lawsons Bay Colony, Visakhapatnam 530017, India
| | - Anil Kumar Pinnaka
- MTCC-Microbial Type Culture Collection & Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh 160036, India
| |
Collapse
|
267
|
Rathour R, Medhi K, Gupta J, Thakur IS. Integrated approach of whole-genome analysis, toxicological evaluation and life cycle assessment for pyrene biodegradation by a psychrophilic strain, Shewanella sp. ISTPL2. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116176. [PMID: 33307397 DOI: 10.1016/j.envpol.2020.116176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/18/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) such as pyrene are universal contaminants existing in the environment which have known cancer-causing and mutagenic characteristics. A psychrophilic bacterial strain Shewanella sp. ISTPL2 was isolated from the sediment sample collected from the Pangong lake, Jammu & Kashmir, India. In our previous study, the pyrene degradation potential of the ISTPL2 strain was studied in both mineral salt media as well as in soil artificially spiked with different concentrations of pyrene. Whole-genome sequencing of ISTPL2 strain in the current study highlighted the key genes of pyrene metabolism, including alcohol dehydrogenase and ring hydroxylating dioxygenase alpha-subunit. Pyrene cytotoxicity was evaluated on HepG2, a human hepato-carcinoma cell line. The cytotoxicity of the organic extract decreased with the increasing duration of bacterial treatment. To develop a more sustainable biodegradation approach, the potential impacts were evaluated for human health and ecosystem using life-cycle assessment (LCA) following the ReCiPe methodology for the considered PAH. The results implemented that global warming potential (GWP) had the highest impact, whereas both ecotoxicity and human toxicity had least from this study.
Collapse
Affiliation(s)
- Rashmi Rathour
- School of Environmental Sciences, Jawaharlal Nehru University, Delhi, 110067, India.
| | - Kristina Medhi
- School of Environmental Sciences, Jawaharlal Nehru University, Delhi, 110067, India; Central Pollution Control Board (CPCB), Regional Directorate (North), PICUP Bhawan, Lucknow, Uttar Pradesh, 226010, India.
| | - Juhi Gupta
- School of Environmental Sciences, Jawaharlal Nehru University, Delhi, 110067, India.
| | - Indu Shekhar Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, Delhi, 110067, India.
| |
Collapse
|
268
|
Gomez-Alvarez V, Liu H, Pressman JG, Wahman DG. Metagenomic Profile of Microbial Communities in a Drinking Water Storage Tank Sediment after Sequential Exposure to Monochloramine, Free Chlorine, and Monochloramine. ACS ES&T WATER 2021; 1:1283-1294. [PMID: 34337601 PMCID: PMC8318090 DOI: 10.1021/acsestwater.1c00016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Sediment accumulation in drinking water storage facilities may lead to water quality degradation, including biological growth and disinfectant decay. The current research evaluated the microbiome present in a sediment after sequential exposure to monochloramine, free chlorine, and monochloramine. Chemical profiles within the sediment based on microelectrodes showed evidence of nitrification, and monochloramine slowly penetrated the sediment but was not measurable at lower depths. A metagenomic approach was used to characterize the microbial communities and functional potential of top (0-1 cm) and bottom (1-2 cm) layers in sediment cores. Differential abundance analysis revealed both an enrichment and depletion associated with depth of microbial populations. We assembled 30 metagenome-assembled genomes (MAGs) representing bacterial and archaeal microorganisms. Most metabolic functions were represented in both layers, suggesting the capability of the microbiomes to respond to environmental fluctuations. However, niche-specific abundance differences were identified in biotransformation processes (e.g., nitrogen). Metagenome-level analyses indicated that nitrification and denitrification can potentially occur simultaneously in the sediments, but the exact location of their occurrence within the sediment will depend on the localized physicochemical conditions. Even though monochloramine was maintained in the bulk water there was limited penetration into the sediment, and the microbial community remained functionally diverse and active.
Collapse
Affiliation(s)
- Vicente Gomez-Alvarez
- Center for Environmental Solutions & Emergency Response, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - Hong Liu
- Oak Ridge Institute for Science and Education (ORISE), Post-Doctoral Fellow at U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - Jonathan G Pressman
- Center for Environmental Solutions & Emergency Response, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - David G Wahman
- Center for Environmental Solutions & Emergency Response, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| |
Collapse
|
269
|
Sevillano M, Dai Z, Calus S, Bautista-de Los Santos QM, Eren AM, van der Wielen PWJJ, Ijaz UZ, Pinto AJ. Differential prevalence and host-association of antimicrobial resistance traits in disinfected and non-disinfected drinking water systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141451. [PMID: 32836121 DOI: 10.1016/j.scitotenv.2020.141451] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/10/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
Antimicrobial resistance (AMR) in drinking water has received less attention than its counterparts in the urban water cycle. While culture-based techniques or gene-centric PCR have been used to probe the impact of treatment approaches (e.g., disinfection) on AMR in drinking water, to our knowledge there is no systematic comparison of AMR trait distribution and prevalence between disinfected and disinfectant residual-free drinking water systems. We used metagenomics to assess the associations between disinfectant residuals and AMR prevalence and its host association in full-scale drinking water distribution systems (DWDSs) with and without disinfectant residuals. While the differences in AMR profiles between DWDSs were associated with the presence or absence of disinfectant, they were also associated with overall water chemistry and more importantly with microbial community structure. AMR genes and mechanisms differentially abundant in disinfected systems were primarily associated with nontuberculous mycobacteria (NTM). Finally, evaluation of metagenome assembled genomes (MAGs) also suggests that NTM possessing AMR genes conferring intrinsic resistance to key antibiotics were prevalent in disinfected systems, whereas such NTM genomes were not detected in disinfectant residual free DWDSs. Altogether, our findings provide insights into the drinking water resistome and its association with potential opportunistic pathogens, particularly in systems with disinfectant residual.
Collapse
Affiliation(s)
- Maria Sevillano
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA
| | - Zihan Dai
- Infrastructure and Environmental Research Division, School of Engineering, University of Glasgow, G12 8LT Glasgow, UK
| | - Szymon Calus
- Infrastructure and Environmental Research Division, School of Engineering, University of Glasgow, G12 8LT Glasgow, UK
| | | | - A Murat Eren
- Department of Medicine, University of Chicago, Chicago, IL, USA; Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Paul W J J van der Wielen
- KWR Watercycle Research Institute, Nieuwegein, Netherlands; Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Umer Z Ijaz
- Infrastructure and Environmental Research Division, School of Engineering, University of Glasgow, G12 8LT Glasgow, UK
| | - Ameet J Pinto
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
270
|
Broddrick JT, Szubin R, Norsigian CJ, Monk JM, Palsson BO, Parenteau MN. High-Quality Genome-Scale Models From Error-Prone, Long-Read Assemblies. Front Microbiol 2020; 11:596626. [PMID: 33281796 PMCID: PMC7688782 DOI: 10.3389/fmicb.2020.596626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/19/2020] [Indexed: 11/13/2022] Open
Abstract
Advances in nanopore-based sequencing techniques have enabled rapid characterization of genomes and transcriptomes. An emerging application of this sequencing technology is point-of-care characterization of pathogenic bacteria. However, genome assessments alone are unable to provide a complete understanding of the pathogenic phenotype. Genome-scale metabolic reconstruction and analysis is a bottom-up Systems Biology technique that has elucidated the phenotypic nuances of antimicrobial resistant (AMR) bacteria and other human pathogens. Combining these genome-scale models (GEMs) with point-of-care nanopore sequencing is a promising strategy for combating the emerging health challenge of AMR pathogens. However, the sequencing errors inherent to the nanopore technique may negatively affect the quality, and therefore the utility, of GEMs reconstructed from nanopore assemblies. Here we describe and validate a workflow for rapid construction of GEMs from nanopore (MinION) derived assemblies. Benchmarking the pipeline against a high-quality reference GEM of Escherichia coli K-12 resulted in nanopore-derived models that were >99% complete even at sequencing depths of less than 10× coverage. Applying the pipeline to clinical isolates of pathogenic bacteria resulted in strain-specific GEMs that identified canonical AMR genome content and enabled simulations of strain-specific microbial growth. Additionally, we show that treating the sequencing run as a mock metagenome did not degrade the quality of models derived from metagenome assemblies. Taken together, this study demonstrates that combining nanopore sequencing with GEM construction pipelines enables rapid, in situ characterization of microbial metabolism.
Collapse
Affiliation(s)
- Jared T Broddrick
- Exobiology Branch, Space Science and Astrobiology Division, NASA Ames Research Center, Moffett Field, CA, United States
| | - Richard Szubin
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Charles J Norsigian
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Jonathan M Monk
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Mary N Parenteau
- Exobiology Branch, Space Science and Astrobiology Division, NASA Ames Research Center, Moffett Field, CA, United States
| |
Collapse
|
271
|
Utter DR, He X, Cavanaugh CM, McLean JS, Bor B. The saccharibacterium TM7x elicits differential responses across its host range. THE ISME JOURNAL 2020; 14:3054-3067. [PMID: 32839546 PMCID: PMC7784981 DOI: 10.1038/s41396-020-00736-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 07/01/2020] [Accepted: 08/03/2020] [Indexed: 12/28/2022]
Abstract
Host range is a fundamental component of symbiotic interactions, yet it remains poorly characterized for the prevalent yet enigmatic subcategory of bacteria/bacteria symbioses. The recently characterized obligate bacterial epibiont Candidatus Nanosynbacter lyticus TM7x with its bacterial host Actinomyces odontolyticus XH001 offers an ideal system to study such a novel relationship. In this study, the host range of TM7x was investigated by coculturing TM7x with various related Actinomyces strains and characterizing their growth dynamics from initial infection through subsequent co-passages. Of the twenty-seven tested Actinomyces, thirteen strains, including XH001, could host TM7x, and further classified into "permissive" and "nonpermissive" based on their varying initial responses to TM7x. Ten permissive strains exhibited growth/crash/recovery phases following TM7x infection, with crash timing and extent dependent on initial TM7x dosage. Meanwhile, three nonpermissive strains hosted TM7x without a growth-crash phase despite high TM7x dosage. The physical association of TM7x with all hosts, including nonpermissive strains, was confirmed by microscopy. Comparative genomic analyses revealed distinguishing genomic features between permissive and nonpermissive hosts. Our results expand the concept of host range beyond a binary to a wider spectrum, and the varying susceptibility of Actinomyces strains to TM7x underscores how small genetic differences between hosts can underly divergent selective trajectories.
Collapse
Affiliation(s)
- Daniel R Utter
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Xuesong He
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, 02142, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, 02115, USA
| | - Colleen M Cavanaugh
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Jeffrey S McLean
- Department of Periodontics, University of Washington, Seattle, WA, 98119, USA
| | - Batbileg Bor
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, 02142, USA.
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, 02115, USA.
| |
Collapse
|
272
|
Hunter ES, Paight C, Lane CE. Metabolic Contributions of an Alphaproteobacterial Endosymbiont in the Apicomplexan Cardiosporidium cionae. Front Microbiol 2020; 11:580719. [PMID: 33335517 PMCID: PMC7737231 DOI: 10.3389/fmicb.2020.580719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/05/2020] [Indexed: 12/27/2022] Open
Abstract
Apicomplexa is a diverse protistan phylum composed almost exclusively of metazoan-infecting parasites, including the causative agents of malaria, cryptosporidiosis, and toxoplasmosis. A single apicomplexan genus, Nephromyces, was described in 2010 as a mutualist partner to its tunicate host. Here we present genomic and transcriptomic data from the parasitic sister species to this mutualist, Cardiosporidium cionae, and its associated bacterial endosymbiont. Cardiosporidium cionae and Nephromyces both infect tunicate hosts, localize to similar organs within these hosts, and maintain bacterial endosymbionts. Though many other protists are known to harbor bacterial endosymbionts, these associations are completely unknown in Apicomplexa outside of the Nephromycidae clade. Our data indicate that a vertically transmitted α-proteobacteria has been retained in each lineage since Nephromyces and Cardiosporidium diverged. This α-proteobacterial endosymbiont has highly reduced metabolic capabilities, but contributes the essential amino acid lysine, and essential cofactor lipoic acid to C. cionae. This partnership likely reduces resource competition with the tunicate host. However, our data indicate that the contribution of the single α-proteobacterial endosymbiont in C. cionae is minimal compared to the three taxa of endosymbionts present in the Nephromyces system, and is a potential explanation for the virulence disparity between these lineages.
Collapse
Affiliation(s)
- Elizabeth Sage Hunter
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States
| | - Christopher Paight
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Christopher E. Lane
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States
| |
Collapse
|
273
|
Complete Genome Sequence of Microbacterium sp. Strain Nx66, Isolated from Waters Contaminated with Petrochemicals in El Saf-Saf Valley, Algeria. Microbiol Resour Announc 2020; 9:9/47/e01130-20. [PMID: 33214306 PMCID: PMC7679099 DOI: 10.1128/mra.01130-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Microbacterium sp. strain Nx66 was isolated from waters contaminated by petrochemical effluents collected in Algeria. Its genome was sequenced using Illumina MiSeq (2 × 150-bp read pairs) and Oxford Nanopore (long reads) technologies and was assembled using Unicycler. It is composed of one chromosome of 3.42 Mb and one plasmid of 34.22 kb. Microbacterium sp. strain Nx66 was isolated from waters contaminated by petrochemical effluents collected in Algeria. Its genome was sequenced using Illumina MiSeq (2 × 150-bp read pairs) and Oxford Nanopore (long reads) technologies and was assembled using Unicycler. It is composed of one chromosome of 3.42 Mb and one plasmid of 34.22 kb.
Collapse
|
274
|
Tsuji JM, Tran N, Schiff SL, Venkiteswaran JJ, Molot LA, Tank M, Hanada S, Neufeld JD. Anoxygenic photosynthesis and iron-sulfur metabolic potential of Chlorobia populations from seasonally anoxic Boreal Shield lakes. THE ISME JOURNAL 2020; 14:2732-2747. [PMID: 32747714 PMCID: PMC7784702 DOI: 10.1038/s41396-020-0725-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/02/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022]
Abstract
Aquatic environments with high levels of dissolved ferrous iron and low levels of sulfate serve as an important systems for exploring biogeochemical processes relevant to the early Earth. Boreal Shield lakes, which number in the tens of millions globally, commonly develop seasonally anoxic waters that become iron rich and sulfate poor, yet the iron-sulfur microbiology of these systems has been poorly examined. Here we use genome-resolved metagenomics and enrichment cultivation to explore the metabolic diversity and ecology of anoxygenic photosynthesis and iron/sulfur cycling in the anoxic water columns of three Boreal Shield lakes. We recovered four high-completeness and low-contamination draft genome bins assigned to the class Chlorobia (formerly phylum Chlorobi) from environmental metagenome data and enriched two novel sulfide-oxidizing species, also from the Chlorobia. The sequenced genomes of both enriched species, including the novel "Candidatus Chlorobium canadense", encoded the cyc2 gene that is associated with photoferrotrophy among cultured Chlorobia members, along with genes for phototrophic sulfide oxidation. One environmental genome bin also encoded cyc2. Despite the presence of cyc2 in the corresponding draft genome, we were unable to induce photoferrotrophy in "Ca. Chlorobium canadense". Genomic potential for phototrophic sulfide oxidation was more commonly detected than cyc2 among environmental genome bins of Chlorobia, and metagenome and cultivation data suggested the potential for cryptic sulfur cycling to fuel sulfide-based growth. Overall, our results provide an important basis for further probing the functional role of cyc2 and indicate that anoxygenic photoautotrophs in Boreal Shield lakes could have underexplored photophysiology pertinent to understanding Earth's early microbial communities.
Collapse
Affiliation(s)
- J M Tsuji
- University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - N Tran
- University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - S L Schiff
- University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - J J Venkiteswaran
- University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, N2L 3C5, Canada
| | - L A Molot
- York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - M Tank
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstrasse 7B, 38124, Braunschweig, Germany
- Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo, 192-0397, Japan
| | - S Hanada
- Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo, 192-0397, Japan
| | - J D Neufeld
- University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
275
|
Alker AT, Delherbe N, Purdy TN, Moore BS, Shikuma NJ. Genetic examination of the marine bacterium Pseudoalteromonas luteoviolacea and effects of its metamorphosis-inducing factors. Environ Microbiol 2020; 22:4689-4701. [PMID: 32840026 PMCID: PMC8214333 DOI: 10.1111/1462-2920.15211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/14/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022]
Abstract
Pseudoalteromonas luteoviolacea is a globally distributed marine bacterium that stimulates the metamorphosis of marine animal larvae, an important bacteria-animal interaction that can promote the recruitment of animals to benthic ecosystems. Recently, different P. luteoviolacea isolates have been shown to produce two stimulatory factors that can induce tubeworm and coral metamorphosis; Metamorphosis-Associated Contractile structures (MACs) and tetrabromopyrrole (TBP) respectively. However, it remains unclear what proportion of P. luteoviolacea isolates possess the genes encoding MACs, and what phenotypic effect MACs and TBP have on other larval species. Here, we show that 9 of 19 sequenced P. luteoviolacea genomes genetically encode both MACs and TBP. While P. luteoviolacea biofilms producing MACs stimulate the metamorphosis of the tubeworm Hydroides elegans, TBP biosynthesis genes had no effect under the conditions tested. Although MACs are lethal to larvae of the cnidarian Hydractinia symbiologicarpus, P. luteoviolacea mutants unable to produce MACs are capable of stimulating metamorphosis. Our findings reveal a hidden complexity of interactions between a single bacterial species, the factors it produces and two species of larvae belonging to different phyla.
Collapse
Affiliation(s)
- Amanda T. Alker
- Department of Biology and Viral Information Institute, San Diego State University, San Diego, CA, 92182
| | - Nathalie Delherbe
- Department of Biology and Viral Information Institute, San Diego State University, San Diego, CA, 92182
| | - Trevor N. Purdy
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093
| | - Bradley S. Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093
| | - Nicholas J. Shikuma
- Department of Biology and Viral Information Institute, San Diego State University, San Diego, CA, 92182
| |
Collapse
|
276
|
Duar RM, Casaburi G, Mitchell RD, Scofield LN, Ortega Ramirez CA, Barile D, Henrick BM, Frese SA. Comparative Genome Analysis of Bifidobacterium longum subsp. infantis Strains Reveals Variation in Human Milk Oligosaccharide Utilization Genes among Commercial Probiotics. Nutrients 2020; 12:nu12113247. [PMID: 33114073 PMCID: PMC7690671 DOI: 10.3390/nu12113247] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/23/2022] Open
Abstract
Dysbiosis is associated with acute and long-term consequences for neonates. Probiotics can be effective in limiting the growth of bacteria associated with dysbiosis and promoting the healthy development of the infant microbiome. Given its adaptation to the infant gut, and promising data from animal and in vitro models, Bifidobacterium longum subsp. infantis is an attractive candidate for use in infant probiotics. However, strain-level differences in the ability of commercialized strains to utilize human milk oligosaccharides (HMOs) may have implications in the performance of strains in the infant gut. In this study, we characterized twelve B. infantis probiotic strains and identified two main variants in one of the HMO utilization gene clusters. Some strains possessed the full repertoire of HMO utilization genes (H5-positive strains), while H5-negative strains lack an ABC-type transporter known to bind core HMO structures. H5-positive strains achieved significantly superior growth on lacto-N-tetraose and lacto-N-neotetraose. In vitro, H5-positive strains had a significant fitness advantage over H5-negative strains, which was also observed in vivo in breastfed infants. This work provides evidence of the functional implications of genetic differences among B. infantis strains and highlights that genotype and HMO utilization phenotype should be considered when selecting a strain for probiotic use in infants.
Collapse
Affiliation(s)
- Rebbeca M. Duar
- Evolve BioSystems, Inc., Davis, CA 95618, USA; (R.M.D.); (G.C.); (R.D.M.); (L.N.C.S.); (C.A.O.R.); (B.M.H.)
| | - Giorgio Casaburi
- Evolve BioSystems, Inc., Davis, CA 95618, USA; (R.M.D.); (G.C.); (R.D.M.); (L.N.C.S.); (C.A.O.R.); (B.M.H.)
| | - Ryan D. Mitchell
- Evolve BioSystems, Inc., Davis, CA 95618, USA; (R.M.D.); (G.C.); (R.D.M.); (L.N.C.S.); (C.A.O.R.); (B.M.H.)
| | - Lindsey N.C. Scofield
- Evolve BioSystems, Inc., Davis, CA 95618, USA; (R.M.D.); (G.C.); (R.D.M.); (L.N.C.S.); (C.A.O.R.); (B.M.H.)
| | - Camila A. Ortega Ramirez
- Evolve BioSystems, Inc., Davis, CA 95618, USA; (R.M.D.); (G.C.); (R.D.M.); (L.N.C.S.); (C.A.O.R.); (B.M.H.)
| | - Daniela Barile
- Foods for Health Institute, University of California at Davis, Davis, CA 95616, USA;
- Department of Food Science and Technology, University of California at Davis, Davis, CA 95616, USA
| | - Bethany M. Henrick
- Evolve BioSystems, Inc., Davis, CA 95618, USA; (R.M.D.); (G.C.); (R.D.M.); (L.N.C.S.); (C.A.O.R.); (B.M.H.)
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE 68588, USA
| | - Steven A. Frese
- Evolve BioSystems, Inc., Davis, CA 95618, USA; (R.M.D.); (G.C.); (R.D.M.); (L.N.C.S.); (C.A.O.R.); (B.M.H.)
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE 68588, USA
- Correspondence: ; Tel.: +1-530-747-2045
| |
Collapse
|
277
|
Tschoeke D, Salazar VW, Vidal L, Campeão M, Swings J, Thompson F, Thompson C. Unlocking the Genomic Taxonomy of the Prochlorococcus Collective. MICROBIAL ECOLOGY 2020; 80:546-558. [PMID: 32468160 DOI: 10.1007/s00248-020-01526-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Prochlorococcus is the most abundant photosynthetic prokaryote on our planet. The extensive ecological literature on the Prochlorococcus collective (PC) is based on the assumption that it comprises one single genus comprising the species Prochlorococcus marinus, containing itself a collective of ecotypes. Ecologists adopt the distributed genome hypothesis of an open pan-genome to explain the observed genomic diversity and evolution patterns of the ecotypes within PC. Novel genomic data for the PC prompted us to revisit this group, applying the current methods used in genomic taxonomy. As a result, we were able to distinguish the five genera: Prochlorococcus, Eurycolium, Prolificoccus, Thaumococcus, and Riococcus. The novel genera have distinct genomic and ecological attributes.
Collapse
Affiliation(s)
- Diogo Tschoeke
- Laboratory of Microbiology, SAGE-COPPE and Institute of Biology, Federal University of Rio de Janeiro, Av. Carlos Chagas Fo 373, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Vinicius W Salazar
- Laboratory of Microbiology, SAGE-COPPE and Institute of Biology, Federal University of Rio de Janeiro, Av. Carlos Chagas Fo 373, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Livia Vidal
- Laboratory of Microbiology, SAGE-COPPE and Institute of Biology, Federal University of Rio de Janeiro, Av. Carlos Chagas Fo 373, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Mariana Campeão
- Laboratory of Microbiology, SAGE-COPPE and Institute of Biology, Federal University of Rio de Janeiro, Av. Carlos Chagas Fo 373, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Jean Swings
- Laboratory of Microbiology, SAGE-COPPE and Institute of Biology, Federal University of Rio de Janeiro, Av. Carlos Chagas Fo 373, Rio de Janeiro, RJ, 21941-902, Brazil
- Laboratory of Microbiology, Ghent University, Gent, Belgium
| | - Fabiano Thompson
- Laboratory of Microbiology, SAGE-COPPE and Institute of Biology, Federal University of Rio de Janeiro, Av. Carlos Chagas Fo 373, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Cristiane Thompson
- Laboratory of Microbiology, SAGE-COPPE and Institute of Biology, Federal University of Rio de Janeiro, Av. Carlos Chagas Fo 373, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
278
|
Intra-species variation within Lactobacillus rhamnosus correlates to beneficial or harmful outcomes: lessons from the oral cavity. BMC Genomics 2020; 21:661. [PMID: 32972358 PMCID: PMC7513527 DOI: 10.1186/s12864-020-07062-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/10/2020] [Indexed: 11/11/2022] Open
Abstract
Background The origin of most of the Lactobacillus rhamnosus genome sequences lodged in NCBI can be traced to food and faecal isolates followed by blood and tissue sites but with minimal representation from oral and vaginal isolates. However, on the L. rhamnosus phylogenetic tree no apparent clade is linked to the origin of isolation or to the relevant clinical source, except for a distinct clade exclusively shared by L. rhamnosus isolates from early stages of dental pulp infection (LRHMDP2 and LRHMDP3) and from bronchoalveolar lavage (699_LRHA and 708_LRHA) from a critical care patient. These L. rhamnosus strains, LRHMDP2, LRHMDP3, 699_LRHA and 708_LRHA isolated from different continents, display closest genome neighbour gapped identity of 99.95%. The aim of this study was to define a potentially unique complement of genes of clinical relevance shared between these L. rhamnosus clinical isolates in comparison to probiotic L. rhamnosus strains. Results In this analysis we used orthologous protein identification tools such as ProteinOrtho followed by tblastn alignments to identify a novel tyrosine protein phosphatase (wzb)-tyrosine-protein kinase modulator EpsC (wzd)- synteny exopolysaccharide (EPS) cluster. This EPS cluster was specifically conserved in a clade of 5 clinical isolates containing the four L. rhamnosus clinical isolates noted above and Lactobacillus spp. HMSC077C11, a clinical isolate from a neck abscess. The EPS cluster was shared with only two other strains, L. rhamnosus BPL5 and BPL15, which formed a distant clade on the L. rhamnosus phylogenetic tree, with a closest genome neighbour gapped identity of 97.51% with L. rhamnosus LRHMDP2 and LRHMDP3. Exclusivity of this EPS cluster (from those identified before) was defined by five EPS genes, which were specifically conserved between the clade of 5 clinical isolates and L. rhamnosus BPL5 and BPL15 when compared to the remaining L. rhamnosus strains. Comparative genome analysis between the clade of 5 clinical isolates and L. rhamnosus BPL5 and BPL15 showed a set of 58 potentially unique genes characteristic of the clade of 5. Conclusion The potentially unique functional protein orthologs associated with the clade of 5 clinical isolates may provide understanding of fitness under selective pressure.
Collapse
|
279
|
Benchmarking microbial growth rate predictions from metagenomes. ISME JOURNAL 2020; 15:183-195. [PMID: 32939027 PMCID: PMC7852909 DOI: 10.1038/s41396-020-00773-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 08/19/2020] [Accepted: 09/04/2020] [Indexed: 11/18/2022]
Abstract
Growth rates are central to understanding microbial interactions and community dynamics. Metagenomic growth estimators have been developed, specifically codon usage bias (CUB) for maximum growth rates and “peak-to-trough ratio” (PTR) for in situ rates. Both were originally tested with pure cultures, but natural populations are more heterogeneous, especially in individual cell histories pertinent to PTR. To test these methods, we compared predictors with observed growth rates of freshly collected marine prokaryotes in unamended seawater. We prefiltered and diluted samples to remove grazers and greatly reduce virus infection, so net growth approximated gross growth. We sampled over 44 h for abundances and metagenomes, generating 101 metagenome-assembled genomes (MAGs), including Actinobacteria, Verrucomicrobia, SAR406, MGII archaea, etc. We tracked each MAG population by cell-abundance-normalized read recruitment, finding growth rates of 0 to 5.99 per day, the first reported rates for several groups, and used these rates as benchmarks. PTR, calculated by three methods, rarely correlated to growth (r ~−0.26–0.08), except for rapidly growing γ-Proteobacteria (r ~0.63–0.92), while CUB correlated moderately well to observed maximum growth rates (r = 0.57). This suggests that current PTR approaches poorly predict actual growth of most marine bacterial populations, but maximum growth rates can be approximated from genomic characteristics.
Collapse
|
280
|
Dirksen P, Assié A, Zimmermann J, Zhang F, Tietje AM, Marsh SA, Félix MA, Shapira M, Kaleta C, Schulenburg H, Samuel BS. CeMbio - The Caenorhabditis elegans Microbiome Resource. G3 (BETHESDA, MD.) 2020; 10:3025-3039. [PMID: 32669368 PMCID: PMC7466993 DOI: 10.1534/g3.120.401309] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/07/2020] [Indexed: 12/23/2022]
Abstract
The study of microbiomes by sequencing has revealed a plethora of correlations between microbial community composition and various life-history characteristics of the corresponding host species. However, inferring causation from correlation is often hampered by the sheer compositional complexity of microbiomes, even in simple organisms. Synthetic communities offer an effective approach to infer cause-effect relationships in host-microbiome systems. Yet the available communities suffer from several drawbacks, such as artificial (thus non-natural) choice of microbes, microbe-host mismatch (e.g., human microbes in gnotobiotic mice), or hosts lacking genetic tractability. Here we introduce CeMbio, a simplified natural Caenorhabditis elegans microbiota derived from our previous meta-analysis of the natural microbiome of this nematode. The CeMbio resource is amenable to all strengths of the C. elegans model system, strains included are readily culturable, they all colonize the worm gut individually, and comprise a robust community that distinctly affects nematode life-history. Several tools have additionally been developed for the CeMbio strains, including diagnostic PCR primers, completely sequenced genomes, and metabolic network models. With CeMbio, we provide a versatile resource and toolbox for the in-depth dissection of naturally relevant host-microbiome interactions in C. elegans.
Collapse
Affiliation(s)
- Philipp Dirksen
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts University, Kiel, Germany
| | - Adrien Assié
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston TX
| | - Johannes Zimmermann
- Medical Systems Biology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Fan Zhang
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston TX
| | - Adina-Malin Tietje
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts University, Kiel, Germany
| | | | - Marie-Anne Félix
- Institute of Biology of the Ecole Normale Supérieure, Paris, France
| | - Michael Shapira
- Department of Integrative Biology, University of California, Berkeley CA
| | - Christoph Kaleta
- Medical Systems Biology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts University, Kiel, Germany
| | - Buck S Samuel
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston TX
| |
Collapse
|
281
|
Salazar VW, Tschoeke DA, Swings J, Cosenza CA, Mattoso M, Thompson CC, Thompson FL. A new genomic taxonomy system for the Synechococcus collective. Environ Microbiol 2020; 22:4557-4570. [PMID: 32700350 DOI: 10.1111/1462-2920.15173] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022]
Abstract
Cyanobacteria of the genus Synechococcus are major contributors to global primary productivity and are found in a wide range of aquatic ecosystems. This Synechococcus collective (SC) is metabolically diverse, with some lineages thriving in polar and nutrient-rich locations and others in tropical or riverine waters. Although many studies have discussed the ecology and evolution of the SC, there is a paucity of knowledge on its taxonomic structure. Thus, we present a new taxonomic classification framework for the SC based on recent advances in microbial genomic taxonomy. Phylogenomic analyses of 1085 cyanobacterial genomes demonstrate that organisms classified as Synechococcus are polyphyletic at the order rank. The SC is classified into 15 genera, which are placed into five distinct orders within the phylum Cyanobacteria: (i) Synechococcales (Cyanobium, Inmanicoccus, Lacustricoccus gen. Nov., Parasynechococcus, Pseudosynechococcus, Regnicoccus, Synechospongium gen. nov., Synechococcus and Vulcanococcus); (ii) Cyanobacteriales (Limnothrix); (iii) Leptococcales (Brevicoccus and Leptococcus); (iv) Thermosynechococcales (Stenotopis and Thermosynechococcus) and (v) Neosynechococcales (Neosynechococcus). The newly proposed classification is consistent with habitat distribution patterns (seawater, freshwater, brackish and thermal environments) and reflects the ecological and evolutionary relationships of the SC.
Collapse
Affiliation(s)
- Vinícius W Salazar
- Center of Technology-CT2, SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.,Department of Systems and Computer Engineering, COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Diogo A Tschoeke
- Department of Biomedical Engineering, COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Jean Swings
- Laboratory of Microbiology, Ghent University, Ghent, Belgium
| | - Carlos A Cosenza
- Center of Technology-CT2, SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Marta Mattoso
- Department of Systems and Computer Engineering, COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Cristiane C Thompson
- Center of Technology-CT2, SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.,Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Fabiano L Thompson
- Center of Technology-CT2, SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.,Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
282
|
Becket E, Johnson KO, Burke CJ, Clark JJ, Cohen MJS, Coil DA, Eggleston CA, Farmer TL, Farr TR, Hernandez SM, Jaureguy JP, Jospin G, Khan A, Lee MD, McKee LN, O'Brien EM, Read BA, Saisho R, Seuylemezian A, Serrato-Arroyo SS, Steinecke D, Vaishampayan P. Draft Genome Sequences of Bacillus glennii V44-8, Bacillus saganii V47-23a, Bacillus sp. Strain V59.32b, Bacillus sp. Strain MER_TA_151, and Paenibacillus sp. Strain MER_111, Isolated from Cleanrooms Where the Viking and Mars Exploration Rover Spacecraft Were Assembled. Microbiol Resour Announc 2020; 9:e00354-20. [PMID: 32586854 PMCID: PMC7317094 DOI: 10.1128/mra.00354-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/07/2020] [Indexed: 11/20/2022] Open
Abstract
We report the draft genome sequences of Bacillus glennii V44-8, Bacillus saganii V47-23a, and Bacillus sp. strain V59.32b, isolated from the Viking spacecraft assembly cleanroom, and Bacillus sp. strain MER_TA_151 and Paenibacillus sp. strain MER_111, isolated from the Mars Exploration Rover (MER) assembly cleanroom.
Collapse
Affiliation(s)
- Elinne Becket
- College of Science, Technology, Engineering, and Mathematics, California State University San Marcos, San Marcos, California, USA
| | - Keneshia O Johnson
- College of Engineering, Technology, and Physical Sciences, Alabama Agricultural and Mechanical University, Normal, Alabama, USA
| | - Camille J Burke
- Genome Center, University of California, Davis, Davis, California, USA
| | - Jasmin J Clark
- College of Agricultural, Life, and Natural Sciences, Alabama Agricultural and Mechanical University, Normal, Alabama, USA
| | - Marcus J S Cohen
- Genome Center, University of California, Davis, Davis, California, USA
| | - David A Coil
- Genome Center, University of California, Davis, Davis, California, USA
| | - Courtney A Eggleston
- College of Engineering, Technology, and Physical Sciences, Alabama Agricultural and Mechanical University, Normal, Alabama, USA
| | - Tyesha L Farmer
- College of Agricultural, Life, and Natural Sciences, Alabama Agricultural and Mechanical University, Normal, Alabama, USA
| | - Tiffany R Farr
- College of Science, Technology, Engineering, and Mathematics, California State University San Marcos, San Marcos, California, USA
| | - Sophia M Hernandez
- College of Science, Technology, Engineering, and Mathematics, California State University San Marcos, San Marcos, California, USA
| | - Jeff P Jaureguy
- College of Science, Technology, Engineering, and Mathematics, California State University San Marcos, San Marcos, California, USA
| | - Guillaume Jospin
- Genome Center, University of California, Davis, Davis, California, USA
| | - Afshin Khan
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Michael D Lee
- Exobiology Branch, NASA Ames Research Center, Mountain View, California, USA
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Lauren N McKee
- College of Agricultural, Life, and Natural Sciences, Alabama Agricultural and Mechanical University, Normal, Alabama, USA
| | - Erin M O'Brien
- College of Science, Technology, Engineering, and Mathematics, California State University San Marcos, San Marcos, California, USA
| | - Betsy A Read
- College of Science, Technology, Engineering, and Mathematics, California State University San Marcos, San Marcos, California, USA
| | - Roxane Saisho
- College of Science, Technology, Engineering, and Mathematics, California State University San Marcos, San Marcos, California, USA
| | - Arman Seuylemezian
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Sergio S Serrato-Arroyo
- College of Science, Technology, Engineering, and Mathematics, California State University San Marcos, San Marcos, California, USA
| | - Dylan Steinecke
- College of Science, Technology, Engineering, and Mathematics, California State University San Marcos, San Marcos, California, USA
| | - Parag Vaishampayan
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
283
|
Merino N, Kawai M, Boyd ES, Colman DR, McGlynn SE, Nealson KH, Kurokawa K, Hongoh Y. Single-Cell Genomics of Novel Actinobacteria With the Wood-Ljungdahl Pathway Discovered in a Serpentinizing System. Front Microbiol 2020; 11:1031. [PMID: 32655506 PMCID: PMC7325909 DOI: 10.3389/fmicb.2020.01031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/27/2020] [Indexed: 01/04/2023] Open
Abstract
Serpentinite-hosted systems represent modern-day analogs of early Earth environments. In these systems, water-rock interactions generate highly alkaline and reducing fluids that can contain hydrogen, methane, and low-molecular-weight hydrocarbons-potent reductants capable of fueling microbial metabolism. In this study, we investigated the microbiota of Hakuba Happo hot springs (∼50°C; pH∼10.5-11), located in Nagano (Japan), which are impacted by the serpentinization process. Analysis of the 16S rRNA gene amplicon sequences revealed that the bacterial community comprises Nitrospirae (47%), "Parcubacteria" (19%), Deinococcus-Thermus (16%), and Actinobacteria (9%), among others. Notably, only 57 amplicon sequence variants (ASV) were detected, and fifteen of these accounted for 90% of the amplicons. Among the abundant ASVs, an early-branching, uncultivated actinobacterial clade identified as RBG-16-55-12 in the SILVA database was detected. Ten single-cell genomes (average pairwise nucleotide identity: 0.98-1.00; estimated completeness: 33-93%; estimated genome size: ∼2.3 Mb) that affiliated with this clade were obtained. Taxonomic classification using single copy genes indicates that the genomes belong to the actinobacterial class-level clade UBA1414 in the Genome Taxonomy Database. Based on metabolic pathway predictions, these actinobacteria are anaerobes, capable of glycolysis, dissimilatory nitrate reduction and CO2 fixation via the Wood-Ljungdahl (WL) pathway. Several other genomes within UBA1414 and two related class-level clades also encode the WL pathway, which has not yet been reported for the Actinobacteria phylum. For the Hakuba actinobacterium, the energy metabolism related to the WL pathway is likely supported by a combination of the Rnf complex, group 3b and 3d [NiFe]-hydrogenases, [FeFe]-hydrogenases, and V-type (H+/Na+ pump) ATPase. The genomes also harbor a form IV ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) complex, also known as a RubisCO-like protein, and contain signatures of interactions with viruses, including clustered regularly interspaced short palindromic repeat (CRISPR) regions and several phage integrases. This is the first report and detailed genome analysis of a bacterium within the Actinobacteria phylum capable of utilizing the WL pathway. The Hakuba actinobacterium is a member of the clade UBA1414/RBG-16-55-12, formerly within the group "OPB41." We propose to name this bacterium 'Candidatus Hakubanella thermoalkaliphilus.'
Collapse
Affiliation(s)
- Nancy Merino
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.,Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States.,Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Mikihiko Kawai
- School of Life Sciences and Technology, Tokyo Institute of Technology, Tokyo, Japan.,Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Eric S Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Daniel R Colman
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Shawn E McGlynn
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.,Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource Science, Saitama, Japan.,Blue Marble Space Institute of Science, Seattle, WA, United States
| | - Kenneth H Nealson
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Ken Kurokawa
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.,Department of Informatics, National Institute of Genetics, Shizuoka, Japan
| | - Yuichi Hongoh
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.,School of Life Sciences and Technology, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
284
|
Asnicar F, Thomas AM, Beghini F, Mengoni C, Manara S, Manghi P, Zhu Q, Bolzan M, Cumbo F, May U, Sanders JG, Zolfo M, Kopylova E, Pasolli E, Knight R, Mirarab S, Huttenhower C, Segata N. Precise phylogenetic analysis of microbial isolates and genomes from metagenomes using PhyloPhlAn 3.0. Nat Commun 2020; 11:2500. [PMID: 32427907 PMCID: PMC7237447 DOI: 10.1038/s41467-020-16366-7] [Citation(s) in RCA: 432] [Impact Index Per Article: 86.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 04/27/2020] [Indexed: 01/10/2023] Open
Abstract
Microbial genomes are available at an ever-increasing pace, as cultivation and sequencing become cheaper and obtaining metagenome-assembled genomes (MAGs) becomes more effective. Phylogenetic placement methods to contextualize hundreds of thousands of genomes must thus be efficiently scalable and sensitive from closely related strains to divergent phyla. We present PhyloPhlAn 3.0, an accurate, rapid, and easy-to-use method for large-scale microbial genome characterization and phylogenetic analysis at multiple levels of resolution. PhyloPhlAn 3.0 can assign genomes from isolate sequencing or MAGs to species-level genome bins built from >230,000 publically available sequences. For individual clades of interest, it reconstructs strain-level phylogenies from among the closest species using clade-specific maximally informative markers. At the other extreme of resolution, it scales to large phylogenies comprising >17,000 microbial species. Examples including Staphylococcus aureus isolates, gut metagenomes, and meta-analyses demonstrate the ability of PhyloPhlAn 3.0 to support genomic and metagenomic analyses.
Collapse
Affiliation(s)
| | | | | | | | - Serena Manara
- Department CIBIO, University of Trento, Trento, Italy
| | - Paolo Manghi
- Department CIBIO, University of Trento, Trento, Italy
| | - Qiyun Zhu
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Mattia Bolzan
- Department CIBIO, University of Trento, Trento, Italy
- PreBiomics s.r.l, Trento, Italy
| | - Fabio Cumbo
- Department CIBIO, University of Trento, Trento, Italy
| | - Uyen May
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Jon G Sanders
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Cornell Institute for Host-Microbe Interaction and Disease, Cornell University, Ithaca, NY, USA
| | - Moreno Zolfo
- Department CIBIO, University of Trento, Trento, Italy
| | - Evguenia Kopylova
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Clarity Genomics BVBA, Sint-Michielskaai 34, 2000, Antwerpen, Belgium
| | - Edoardo Pasolli
- Department CIBIO, University of Trento, Trento, Italy
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Siavash Mirarab
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy.
| |
Collapse
|
285
|
Honey-bee-associated prokaryotic viral communities reveal wide viral diversity and a profound metabolic coding potential. Proc Natl Acad Sci U S A 2020; 117:10511-10519. [PMID: 32341166 PMCID: PMC7229680 DOI: 10.1073/pnas.1921859117] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This study uses viral-like particle purification and subsequent unbiased genome sequencing to identify prokaryotic viruses associated with Apis mellifera. Interestingly, bacteriophages found in honey bees show a high diversity and span different viral taxa. This diversity sharply contrasts with the state-of-the-art knowledge on the relatively simple bee bacterial microbiome. The identification of multiple auxiliary metabolic genes suggests that these bacteriophages possess the coding potential to intervene in essential microbial pathways related to health and possibly also to disease. This study sheds light on a neglected part of the bee microbiota and opens avenues of in vivo research on the interaction of bacteriophages with their bacterial host, which likely has strongly underappreciated consequences on bee health. Honey bees (Apis mellifera) produce an enormous economic value through their pollination activities and play a central role in the biodiversity of entire ecosystems. Recent efforts have revealed the substantial influence that the gut microbiota exert on bee development, food digestion, and homeostasis in general. In this study, deep sequencing was used to characterize prokaryotic viral communities associated with honey bees, which was a blind spot in research up until now. The vast majority of the prokaryotic viral populations are novel at the genus level, and most of the encoded proteins comprise unknown functions. Nevertheless, genomes of bacteriophages were predicted to infect nearly every major bee-gut bacterium, and functional annotation and auxiliary metabolic gene discovery imply the potential to influence microbial metabolism. Furthermore, undiscovered genes involved in the synthesis of secondary metabolic biosynthetic gene clusters reflect a wealth of previously untapped enzymatic resources hidden in the bee bacteriophage community.
Collapse
|
286
|
Parallel Evolution in the Integration of a Co-obligate Aphid Symbiosis. Curr Biol 2020; 30:1949-1957.e6. [PMID: 32243856 DOI: 10.1016/j.cub.2020.03.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/18/2020] [Accepted: 03/03/2020] [Indexed: 01/21/2023]
Abstract
Insects evolve dependence-often extreme-on microbes for nutrition. This includes cases in which insects harbor multiple endosymbionts that function collectively as a metabolic unit [1-5]. How do these dependences originate [6], and is there a predictable sequence of events leading to the integration of new symbionts? While co-obligate symbioses, in which hosts rely on multiple nutrient-provisioning symbionts, have evolved numerous times across sap-feeding insects, there is only one known case in aphids, involving Buchnera aphidicola and Serratia symbiotica in the Lachninae subfamily [7-9]. Here, we identify three additional independent transitions to the same co-obligate symbiosis in different aphids. Comparing recent and ancient associations allow us to investigate intermediate stages of metabolic and anatomical integration of Serratia. We find that these uniquely replicated evolutionary events support the idea that co-obligate associations initiate in a predictable manner-through parallel evolutionary processes. Specifically, we show how the repeated losses of the riboflavin and peptidoglycan pathways in Buchnera lead to dependence on Serratia. We then provide evidence of a stepwise process of symbiont integration, whereby dependence evolves first. Then, essential amino acid pathways are lost (at ∼30-60 mya), which coincides with the increased anatomical integration of the companion symbiont. Finally, we demonstrate that dependence can evolve ahead of specialized structures (e.g., bacteriocytes), and in one case with no direct nutritional basis. More generally, our results suggest the energetic costs of synthesizing nutrients may provide a unified explanation for the sequence of gene losses that occur during the evolution of co-obligate symbiosis.
Collapse
|
287
|
Whole Genome Sequencing and Comparative Genomics of Two Nematicidal Bacillus Strains Reveals a Wide Range of Possible Virulence Factors. G3-GENES GENOMES GENETICS 2020; 10:881-890. [PMID: 31919110 PMCID: PMC7056983 DOI: 10.1534/g3.119.400716] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bacillus firmus nematicidal bacterial strains are used to control plant parasitic nematode infestation of crops in agricultural production. Proteases are presumed to be the primary nematode virulence factors in nematicidal B. firmus degrading the nematode cuticle and other organs. We determined and compared the whole genome sequences of two nematicidal strains. Comparative genomics with a particular focus on possible virulence determinants revealed a wider range of possible virulence factors in a B. firmus isolate from a commercial bionematicide and a wild type Bacillus sp. isolate with nematicidal activity. The resulting 4.6 Mb B. firmus I-1582 and 5.3 Mb Bacillus sp. ZZV12-4809 genome assemblies contain respectively 18 and 19 homologs to nematode-virulent proteases, two nematode-virulent chitinase homologs in ZZV12-4809 and 28 and 36 secondary metabolite biosynthetic clusters, projected to encode antibiotics, small peptides, toxins and siderophores. The results of this study point to the genetic capability of B. firmus and related species for nematode virulence through a range of direct and indirect mechanisms.
Collapse
|
288
|
O’Rourke A, Lee MD, Nierman WC, Everroad RC, Dupont CL. Genomic and phenotypic characterization of Burkholderia isolates from the potable water system of the International Space Station. PLoS One 2020; 15:e0227152. [PMID: 32074104 PMCID: PMC7029842 DOI: 10.1371/journal.pone.0227152] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/11/2019] [Indexed: 12/27/2022] Open
Abstract
The opportunistic pathogens Burkholderia cepacia and Burkholderia contaminans, both genomovars of the Burkholderia cepacia complex (BCC), are frequently cultured from the potable water dispenser (PWD) of the International Space Station (ISS). Here, we sequenced the genomes and conducted phenotypic assays to characterize these Burkholderia isolates. All recovered isolates of the two species fall within monophyletic clades based on phylogenomic trees of conserved single-copy core genes. Within species, the ISS-derived isolates all demonstrate greater than 99% average nucleotide identity (with 95-99% of genomes aligning) and share around 90% of the identified gene clusters from a pangenomic analysis-suggesting that the two groups are each composed of highly similar genomic lineages and their members may have all stemmed from the same two founding populations. The differences that can be observed between the recovered isolates at the pangenomic level are primarily located within putative plasmids. Phenotypically, macrophage intracellularization and lysis occurred at generally similar rates between all ISS-derived isolates, as well as with their respective type-terrestrial strain references. All ISS-derived isolates exhibited antibiotic sensitivity similar to that of the terrestrial reference strains, and minimal differences between isolates were observed. With a few exceptions, biofilm formation rates were generally consistent across each species. And lastly, though isolation date does not necessarily provide any insight into how long a given isolate had been aboard the ISS, none of the assayed physiology correlated with either date of isolation or distances based on nucleotide variation. Overall, we find that while the populations of Burkholderia present in the ISS PWS each maintain virulence, they are likely are not more virulent than those that might be encountered on planet and remain susceptible to clinically used antibiotics.
Collapse
Affiliation(s)
- Aubrie O’Rourke
- J. Craig Venter Institute, San Diego, CA, United States of America
| | - Michael D. Lee
- Exobiology Branch, NASA Ames Research Center, Mountain View, CA, United States of America
- Blue Marble Space Institute of Science, Seattle, WA, United States of America
| | | | - R. Craig Everroad
- Exobiology Branch, NASA Ames Research Center, Mountain View, CA, United States of America
| | - Chris L. Dupont
- J. Craig Venter Institute, San Diego, CA, United States of America
| |
Collapse
|
289
|
Draft Genome Sequence of Cyclobacterium marinum Strain Atlantic-IS, Isolated from the Atlantic Slope off the Coast of Virginia, USA. Microbiol Resour Announc 2019; 8:8/50/e01089-19. [PMID: 31831609 PMCID: PMC6908794 DOI: 10.1128/mra.01089-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we report a draft genome sequence for Cyclobacterium marinum strain Atlantic-IS, isolated from the Atlantic slope off the coast of Virginia. The whole-genome sequence will help us understand its adaptive metabolic responses to diverse C sources in low-nutrient environments.
Collapse
|
290
|
Isolation and Characterization of Akhmeta Virus from Wild-Caught Rodents ( Apodemus spp.) in Georgia. J Virol 2019; 93:JVI.00966-19. [PMID: 31554682 PMCID: PMC6880181 DOI: 10.1128/jvi.00966-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/10/2019] [Indexed: 12/31/2022] Open
Abstract
Akhmeta virus is a unique Orthopoxvirus that was described in 2013 from the country of Georgia. This paper presents the first isolation of this virus from small mammal (Rodentia; Apodemus spp.) samples and the molecular characterization of those isolates. The identification of the virus in small mammals is an essential component to understanding the natural history of this virus and its transmission to human populations and could guide public health interventions in Georgia. Akhmeta virus genomes harbor evidence suggestive of recombination with a variety of other orthopoxviruses; this has implications for the evolution of orthopoxviruses, their ability to infect mammalian hosts, and their ability to adapt to novel host species. In 2013, a novel orthopoxvirus was detected in skin lesions of two cattle herders from the Kakheti region of Georgia (country); this virus was named Akhmeta virus. Subsequent investigation of these cases revealed that small mammals in the area had serological evidence of orthopoxvirus infections, suggesting their involvement in the maintenance of these viruses in nature. In October 2015, we began a longitudinal study assessing the natural history of orthopoxviruses in Georgia. As part of this effort, we trapped small mammals near Akhmeta (n = 176) and Gudauri (n = 110). Here, we describe the isolation and molecular characterization of Akhmeta virus from lesion material and pooled heart and lung samples collected from five wood mice (Apodemus uralensis and Apodemus flavicollis) in these two locations. The genomes of Akhmeta virus obtained from rodents group into 2 clades: one clade represented by viruses isolated from A. uralensis samples, and one clade represented by viruses isolated from A. flavicollis samples. These genomes also display several presumptive recombination events for which gene truncation and identity have been examined. IMPORTANCE Akhmeta virus is a unique Orthopoxvirus that was described in 2013 from the country of Georgia. This paper presents the first isolation of this virus from small mammal (Rodentia; Apodemus spp.) samples and the molecular characterization of those isolates. The identification of the virus in small mammals is an essential component to understanding the natural history of this virus and its transmission to human populations and could guide public health interventions in Georgia. Akhmeta virus genomes harbor evidence suggestive of recombination with a variety of other orthopoxviruses; this has implications for the evolution of orthopoxviruses, their ability to infect mammalian hosts, and their ability to adapt to novel host species.
Collapse
|
291
|
Draft Genome Sequences of Five Proteobacteria Isolated from Lechuguilla Cave, New Mexico, USA, and Insights into Taxonomy and Quorum Sensing. Microbiol Resour Announc 2019; 8:8/40/e00913-19. [PMID: 31582457 PMCID: PMC6776774 DOI: 10.1128/mra.00913-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Genomic resources remain scarce for bacteria isolated from oligotrophic caves. We sequenced the genomes of five Proteobacteria isolated from Lechuguilla Cave in New Mexico. Genome-based phylogeny indicates that each strain belongs to a distinct genus. Two Rhizobiaceae isolates possess genomic potential for the biosynthesis of acyl-homoserine lactone. Genomic resources remain scarce for bacteria isolated from oligotrophic caves. We sequenced the genomes of five Proteobacteria isolated from Lechuguilla Cave in New Mexico. Genome-based phylogeny indicates that each strain belongs to a distinct genus. Two Rhizobiaceae isolates possess genomic potential for the biosynthesis of acyl-homoserine lactone.
Collapse
|
292
|
Gan HM. Commentary: Complete Genome Sequence of 3-Chlorobenzoate-Degrading Bacterium Cupriavidus necator NH9 and Reclassification of the Strains of the Genera Cupriavidus and Ralstonia Based on Phylogenetic and Whole-Genome Sequence Analyses. Front Microbiol 2019; 10:2011. [PMID: 31555242 PMCID: PMC6724576 DOI: 10.3389/fmicb.2019.02011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/16/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Han Ming Gan
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia.,Deakin Genomics Centre, Deakin University, Geelong, VIC, Australia.,School of Science, Monash University Malaysia, Petaling Jaya, Malaysia
| |
Collapse
|
293
|
Lee MD. Applications and Considerations of GToTree: A User-Friendly Workflow for Phylogenomics. Evol Bioinform Online 2019; 15:1176934319862245. [PMID: 31384124 PMCID: PMC6659180 DOI: 10.1177/1176934319862245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 06/13/2019] [Indexed: 11/17/2022] Open
Abstract
Phylogenomics is the practice of attempting to infer evolutionary relationships at a genome-level. This is becoming a standard step in the characterization of newly recovered genomes and to direct/constrain further research; yet the process from start to finish of building a de novo phylogenomic tree that is specific to the organisms of interest can still be computationally intractable for many biologists. GToTree is a recently published user-friendly workflow for phylogenomics intended to give more researchers the capability to generate phylogenomic trees to help guide their work. This commentary describes two common applications where GToTree can be helpful and then discusses some things to consider when using the program.
Collapse
Affiliation(s)
- Michael D Lee
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, USA
| |
Collapse
|
294
|
Dahl JL, Gatlin III W, Tran PM, Sheik CS. Mycolicibacterium nivoides sp. nov isolated from a peat bog. Int J Syst Evol Microbiol 2019; 71:004438. [PMID: 33646934 PMCID: PMC8375421 DOI: 10.1099/ijsem.0.004438] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 08/13/2020] [Indexed: 11/25/2022] Open
Abstract
A fast-growing, non-chromogenic, acid-fast-staining bacterium (DL90T) was isolated from a peat bog in northern Minnesota. On the basis of 16S rRNA gene sequence similarity (99.8 % identity with Mycolicibacterium septicum and 98 % with Mycolicibacterium peregrinum) and chemotaxonomic data (fatty acid content), strain DL90T represents a member of the genus Mycolicibacterium. Physiological tests (growth curves, biofilm formation, antibiotic sensitivity, colony morphologies and heat tolerance) and biochemical analysis (arylsulfatase activity and fatty acid profiles) distinguish DL90T from its closest relative M. septicum. Phylogenomic reconstruction of the 'Fortuitium-Vaccae' clade, digital DNA-DNA hybridization (DDH) values of 61 %, and average nucleotide identity (ANI) values of approximately 95 % indicate that DL90T is likely to be diverged from M. septicum. Thus, we propose that DL90T represents a novel species, given the name Mycolicibacterium nivoides with the type strain being isolate DL90T (=JCM 32796T=NCCB 100660T).
Collapse
Affiliation(s)
- John L. Dahl
- Department of Biology, University of Minnesota Duluth, Duluth, MN 55812, USA
| | - Wayne Gatlin III
- Department of Biology, University of Minnesota Duluth, Duluth, MN 55812, USA
| | - Phuong M. Tran
- Department of Biology, University of Minnesota Duluth, Duluth, MN 55812, USA
| | - Cody S. Sheik
- Department of Biology, University of Minnesota Duluth, Duluth, MN 55812, USA
- Large Lakes Observatory, University of Minnesota Duluth, Duluth, MN 55812, USA
| |
Collapse
|
295
|
Shidore T, Zeng Q, Triplett LR. Survey of Toxin⁻Antitoxin Systems in Erwinia amylovora Reveals Insights into Diversity and Functional Specificity. Toxins (Basel) 2019; 11:toxins11040206. [PMID: 30959879 PMCID: PMC6521040 DOI: 10.3390/toxins11040206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 03/29/2019] [Accepted: 04/04/2019] [Indexed: 11/16/2022] Open
Abstract
Toxin–antitoxin (TA) systems are diverse genetic modules with demonstrated roles in plasmid stability, stress management, biofilm formation and antibiotic persistence. However, relatively little is known about their functional significance in plant pathogens. In this study we characterize type II and IV TA systems in the economically important plant pathogen Erwinia amylovora. Hidden Markov Model (HMM) and BLAST-based programs were used to predict the identity and distribution of putative TA systems among sequenced genomes of E. amylovora and other plant-associated Erwinia spp. Of six conserved TA systems tested for function from E. amylovora, three (CbtA/CbeA, ParE/RHH and Doc/PhD) were validated as functional. CbtA was toxic to E. amylovora, but not to Escherichia coli. While the E. coli homolog of CbtA elicits the formation of lemon-shaped cells upon overexpression and targets cytoskeletal proteins FtsZ and MreB, E. amylovora CbtA led to cell elongation and did not interact with these cytoskeletal proteins. Phylogenetic analysis revealed that E. amylovora CbtA belongs to a distinct clade from the CbtA of pathogenic E. coli. This study expands the repertoire of experimentally validated TA systems in plant pathogenic bacteria, and suggests that the E. amylovora homolog of CbtA is functionally distinct from that of E. coli.
Collapse
Affiliation(s)
- Teja Shidore
- Department of Plant Pathology and Ecology, the Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA.
| | - Quan Zeng
- Department of Plant Pathology and Ecology, the Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA.
| | - Lindsay R Triplett
- Department of Plant Pathology and Ecology, the Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA.
| |
Collapse
|