251
|
da Silva Calixto P, de Almeida RN, Stiebbe Salvadori MGS, Dos Santos Maia M, Filho JMB, Scotti MT, Scotti L. In Silico Study Examining New Phenylpropanoids Targets with Antidepressant Activity. Curr Drug Targets 2021; 22:539-554. [PMID: 32881667 DOI: 10.2174/1389450121666200902171838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/09/2020] [Accepted: 05/18/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Natural products, such as phenylpropanoids, which are found in essential oils derived from aromatic plants, have been explored during non-clinical psychopharmacology studies, to discover new molecules with relevant pharmacological activities in the central nervous system, especially antidepressant and anxiolytic activities. Major depressive disorder is a highly debilitating psychiatric disorder and is considered to be a disabling public health problem, worldwide, as a primary factor associated with suicide. Current clinically administered antidepressants have late-onset therapeutic actions, are associated with several side effects, and clinical studies have reported that some patients do not respond well to treatment or reach complete remission. OBJECTIVE To review important new targets for antidepressant activity and to select phenylpropanoids with antidepressant activity, using Molegro Virtual Docker and Ossis Data Warris, and to verify substances with more promising antidepressant activity. RESULTS AND CONCLUSION An in silico molecular modeling study, based on homology, was conducted to determine the three-dimensional structure of the 5-hydroxytryptamine 2A receptor (5- HT2AR), then molecular docking studies were performed and the predisposition for cytotoxicity risk among identified molecules was examined. A model for 5-HT2AR homology, with satisfactory results, was obtained indicating the good stereochemical quality of the model. The phenylpropanoid 4-allyl-2,6-dimethoxyphenol showed the lowest binding energy for 5-HT2AR, with results relevant to the L-arginine/nitric oxide (NO)/cGMP pathway, and showed no toxicity within the parameters of mutagenicity, carcinogenicity, reproductive system toxicity, and skin-tissue irritability, when evaluated in silico; therefore, this molecule can be considered promising for the investigation of antidepressant activity.
Collapse
Affiliation(s)
| | - Reinaldo Nóbrega de Almeida
- Department of Physiology and Pathology, Laboratory of Psychopharmacology, Federal University of Paraiba, Joao Pessoa, Brazil
| | | | | | - José Maria Barbosa Filho
- Department of Pharmaceutical Sciences, Pharmaceutical Technology Laboratory, Federal University of Paraiba, Joao Pessoa, Brazil
| | | | - Luciana Scotti
- Laboratory of Chemoinformatics, Federal University of Paraiba, Joao Pessoa, Brazil
| |
Collapse
|
252
|
Tissues and Tumor Microenvironment (TME) in 3D: Models to Shed Light on Immunosuppression in Cancer. Cells 2021; 10:cells10040831. [PMID: 33917037 PMCID: PMC8067689 DOI: 10.3390/cells10040831] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 12/26/2022] Open
Abstract
Immunosuppression in cancer has emerged as a major hurdle to immunotherapy efforts. Immunosuppression can arise from oncogene-induced signaling within the tumor as well as from tumor-associated immune cells. Understanding various mechanisms by which the tumor can undermine and evade therapy is critical in improving current cancer immunotherapies. While mouse models have allowed for the characterization of key immune cell types and their role in tumor development, extrapolating these mechanisms to patients has been challenging. There is need for better models to unravel the effects of genetic alterations inherent in tumor cells and immune cells isolated from tumors on tumor growth and to investigate the feasibility of immunotherapy. Three-dimensional (3D) organoid model systems have developed rapidly over the past few years and allow for incorporation of components of the tumor microenvironment such as immune cells and the stroma. This bears great promise for derivation of patient-specific models in a dish for understanding and determining the impact on personalized immunotherapy. In this review, we will highlight the significance of current experimental models employed in the study of tumor immunosuppression and evaluate current tumor organoid-immune cell co-culture systems and their potential impact in shedding light on cancer immunosuppression.
Collapse
|
253
|
Pöschel A, Beebe E, Kunz L, Amini P, Guscetti F, Malbon A, Markkanen E. Identification of disease-promoting stromal components by comparative proteomic and transcriptomic profiling of canine mammary tumors using laser-capture microdissected FFPE tissue. Neoplasia 2021; 23:400-412. [PMID: 33794398 PMCID: PMC8042244 DOI: 10.1016/j.neo.2021.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 02/08/2023] Open
Abstract
Cancer-associated stroma (CAS) profoundly influences progression of tumors including mammary carcinoma (mCA). Canine simple mCA represent relevant models of human mCA, notably also with respect to CAS. While transcriptomic changes in CAS of mCA are well described, it remains unclear to what extent these translate to the protein level. Therefore, we sought to gain insight into the proteomic changes in CAS and compare them with transcriptomic changes in the same tissue. To this end, we analyzed CAS and matched normal stroma using laser-capture microdissection (LCM) and LC-MS/MS in a cohort of 14 formalin-fixed paraffin embedded (FFPE) canine mCAs that we had previously characterized using LCM-RNAseq. Our results reveal clear differences in protein abundance between CAS and normal stroma, which are characterized by changes in the extracellular matrix, the cytoskeleton, and cytokines such as TNF. The proteomics- and RNAseq-based analyses of LCM-FFPE show a substantial degree of correlation, especially for the most deregulated targets and a comparable activation of pathways. Finally, we validate transcriptomic upregulation of LTBP2, IGFBP2, COL6A5, POSTN, FN1, COL4A1, COL12A1, PLOD2, COL4A2, and IGFBP7 in CAS on the protein level and demonstrate their adverse prognostic value for human breast cancer. Given the relevance of canine mCA as a model for the human disease, our analysis substantiates these targets as disease-promoting stromal components with implications for breast cancer in both species.
Collapse
Affiliation(s)
- Amiskwia Pöschel
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Erin Beebe
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Laura Kunz
- Functional Genomics Center Zürich, ETH Zürich/University of Zurich, Zurich, Switzerland
| | - Parisa Amini
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Franco Guscetti
- Institute of Veterinary Pathology Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
| | - Alexandra Malbon
- The Royal (Dick) School of Veterinary Studies and The Roslin Institute Easter Bush Campus, Midlothian, Scotland
| | - Enni Markkanen
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
254
|
McSweeney KR, Gadanec LK, Qaradakhi T, Ali BA, Zulli A, Apostolopoulos V. Mechanisms of Cisplatin-Induced Acute Kidney Injury: Pathological Mechanisms, Pharmacological Interventions, and Genetic Mitigations. Cancers (Basel) 2021; 13:1572. [PMID: 33805488 PMCID: PMC8036620 DOI: 10.3390/cancers13071572] [Citation(s) in RCA: 186] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
Administration of the chemotherapeutic agent cisplatin leads to acute kidney injury (AKI). Cisplatin-induced AKI (CIAKI) has a complex pathophysiological map, which has been linked to cellular uptake and efflux, apoptosis, vascular injury, oxidative and endoplasmic reticulum stress, and inflammation. Despite research efforts, pharmaceutical interventions, and clinical trials spanning over several decades, a consistent and stable pharmacological treatment option to reduce AKI in patients receiving cisplatin remains unavailable. This has been predominately linked to the incomplete understanding of CIAKI pathophysiology and molecular mechanisms involved. Herein, we detail the extensively known pathophysiology of cisplatin-induced nephrotoxicity that manifests and the variety of pharmacological and genetic alteration studies that target them.
Collapse
|
255
|
Kim JW, Lee S, Kim HS, Choi YJ, Yoo J, Park KU, Kang SY, Park YH, Jung KH, Ahn JH, Oh HS, Choi IS, Kim HJ, Lee KH, Lee S, Seo JH, Park IH, Lee KE, Kim HY, Park KH. Prognostic effects of cytokine levels on patients treated with taxane and zoledronic acid for metastatic breast cancer in bone (BEAT-ZO) (KCSG BR 10-13). Cytokine 2021; 142:155487. [PMID: 33770643 DOI: 10.1016/j.cyto.2021.155487] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/31/2020] [Accepted: 02/22/2021] [Indexed: 10/21/2022]
Abstract
Advanced breast cancer frequently metastasizes to the skeleton causing major mobility issues and hazards to quality of life. To manage osteolytic bone metastasis, bone-modifying agents and chemotherapy are recommended as the standard of care. Here, we investigated serologic biomarkers that might be associated with prognosis in breast cancer patients treated with zoledronic acid (ZA) and taxane-based chemotherapy. We collected serum samples from breast cancer patients with bone metastasis who received taxane plus ZA as palliative treatment. Fourteen biomarkers of angiogenesis, immunogenicity, and apoptosis were assessed, and the correlation between serum cytokine levels and patient's prognosis was statistically analyzed. Sixty-six patients were enrolled, and samples from 40 patients were analyzed after laboratory quality control. Patients with low baseline PDGF-AA, high IFN-γ, low MCP-2, low TGF-β1, and low TNF-α were significantly associated with longer progression-free survival (PFS). Decreasing VEGF and TNF-α and increasing FGF-2 and PDGF-AA in the early treatment phase indicated longer PFS. In univariate and multivariate analyses, low TGF-β1 and TNF-α and high IFN-γ at baseline were associated with a significantly low hazard ratio for disease progression. Further, we designed a risk score with TGF-β1, TNF-α, and IFN-γ levels, which could prognosticate patients for PFS. In conclusion, serum cytokine level, such as TGF-β1, TNF-α, and IFN-γ, could be a potential prognostic biomarker for breast cancer patients with bone metastasis treated with ZA and taxane-based chemotherapy.
Collapse
Affiliation(s)
- Ju Won Kim
- Korea University Anam Hospital, Seoul, Republic of Korea
| | - Soohyeon Lee
- Korea University Anam Hospital, Seoul, Republic of Korea
| | - Hye Sook Kim
- Inje University Ilsan Paik Hospital, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Yoon Ji Choi
- Korea University Anam Hospital, Seoul, Republic of Korea
| | - Jinho Yoo
- YooJin BioSoft Co., Ltd, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Keon Uk Park
- Keimyung University Dongsan Hospital, Daegu, Republic of Korea
| | - Seok Yun Kang
- Ajou University School of Medicine, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Yeon Hee Park
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyung Hae Jung
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jin-Hee Ahn
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ho-Suk Oh
- Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung-si, Gangwon-do, Republic of Korea
| | - In Sil Choi
- Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hee Jun Kim
- Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Kyung-Hun Lee
- Seoul National University Hospital, Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Suee Lee
- Dong-A University Medical Center, Busan, Republic of Korea
| | - Jae Hong Seo
- Korea University Guro Hospital, Seoul, Republic of Korea
| | - In Hae Park
- National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Kyung Eun Lee
- Ewha Womans University Mokdong Hospital, Seoul, Republic of Korea
| | - Ho Young Kim
- Hallym University Medical Center, Hallym University Sacred Heart Hospital, Anyang-si, Gyeonggi-do, Republic of Korea
| | - Kyong Hwa Park
- Korea University Anam Hospital, Seoul, Republic of Korea
| |
Collapse
|
256
|
Mendonca P, Alghamdi S, Messeha S, Soliman KFA. Pentagalloyl glucose inhibits TNF-α-activated CXCL1/GRO-α expression and induces apoptosis-related genes in triple-negative breast cancer cells. Sci Rep 2021; 11:5649. [PMID: 33707603 PMCID: PMC7952910 DOI: 10.1038/s41598-021-85090-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/24/2021] [Indexed: 12/13/2022] Open
Abstract
In triple-negative breast cancer (TNBC), the tumor microenvironment is associated with increased proliferation, suppressing apoptotic mechanisms, an altered immune response, and drug resistance. The current investigation was designed to examine the natural compound pentagalloyl glucose (PGG) effects on TNF-α activated TNBC cell lines, MDA-MB-231 and MDA-MB-468. The results obtained showed that PGG reduced the expression of the cytokine GRO-α/CXCL1. PGG also inhibited IƙBKE and MAPK1 genes and the protein expression of IƙBKE and MAPK, indicating that GRO-α downregulation is possibly through NFƙB and MAPK signaling pathway. PGG also inhibited cell proliferation in both cell lines. Moreover, PGG induced apoptosis, modulating caspases, and TNF superfamily receptor genes. It also augmented mRNA of receptors DR4 and DR5 expression, which binds to TNF-related apoptosis-induced ligand, a potent and specific stimulator of apoptosis in tumors. Remarkably, PGG induced a 154-fold increase in TNF expression in MDA-MB-468 compared to a 14.6-fold increase in MDA-MB-231 cells. These findings indicate PGG anti-cancer ability in inhibiting tumor cell proliferation and GRO-α release and inducing apoptosis by increasing TNF and TNF family receptors' expression. Thus, PGG use may be recommended as an adjunct therapy for TNBC to increase chemotherapy effectiveness and prevent cancer progression.
Collapse
Affiliation(s)
- Patricia Mendonca
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Room G134 H Pharmacy Building, 1415 ML King Blvd, Tallahassee, FL, 32307, USA
| | - Sumaih Alghamdi
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Room G134 H Pharmacy Building, 1415 ML King Blvd, Tallahassee, FL, 32307, USA
| | - Samia Messeha
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Room G134 H Pharmacy Building, 1415 ML King Blvd, Tallahassee, FL, 32307, USA
| | - Karam F A Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Room G134 H Pharmacy Building, 1415 ML King Blvd, Tallahassee, FL, 32307, USA.
| |
Collapse
|
257
|
Monteleone NJ, Lutz CS. miR-708 Negatively Regulates TNF α/IL-1 β Signaling by Suppressing NF- κB and Arachidonic Acid Pathways. Mediators Inflamm 2021; 2021:5595520. [PMID: 33776573 PMCID: PMC7969122 DOI: 10.1155/2021/5595520] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 01/14/2023] Open
Abstract
Two pathways commonly dysregulated in autoimmune diseases and cancer are tumor necrosis factor alpha (TNFα) and interleukin 1 beta (IL-1β) signaling. Researchers have also shown that both signaling cascades positively regulate arachidonic acid (AA) signaling. More specifically, TNFα/IL-1β promotes expression of the prostaglandin E2- (PGE2-) producing enzymes, cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase-1 (mPGES-1). Exacerbated TNFα, IL-1β, and AA signaling have been associated with many diseases. While some TNFα therapies have significantly improved patients' lives, there is still an urgent need to develop novel therapeutics that more comprehensively treat inflammatory-related diseases. Recently, researchers have begun to use RNA interference (RNAi) to treat various diseases in the clinic. One type of RNAi is microRNA (miRNA), a class of small noncoding RNA found within cells. One miRNA in particular, miR-708, has been shown to target COX-2 and mPGES-1. Previous studies have also suggested that miR-708 may be a negative regulator of TNFα/IL-1β signaling. Therefore, we studied the relationship between miR-708, TNFα/IL-1β, and AA signaling in diseased lung cells. We found that miR-708 negatively regulates TNFα/IL-1β signaling in nondiseased lung cells, which is lost in diseased lung cells. Transient transfection of miR-708 suppressed TNFα/IL-1β-induced changes in COX-2, mPGES-1, and PGE2 levels. Moreover, miR-708 also suppressed TNFα/IL-1β-induced IL-6 independent of AA signaling. Mechanistically, we determined that miR-708 suppressed IL-6 signaling by reducing expression of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activator inhibitor of nuclear factor kappa-B kinase subunit beta (IKKβ). Collectively, our data suggest miR-708 regulates TNFα/IL-1β signaling by inhibiting multiple points of the signaling cascade.
Collapse
Affiliation(s)
- Nicholas J. Monteleone
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers School of Graduate Studies-RBHS, Newark, NJ 07005, USA
| | - Carol S. Lutz
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers School of Graduate Studies-RBHS, Newark, NJ 07005, USA
| |
Collapse
|
258
|
Ghahartars M, Abtahi S, Zeinali Z, Fattahi MJ, Ghaderi A. Investigation of TNF-α and IL-6 Levels in the Sera of Non-Melanoma Skin Cancer Patients. IRANIAN BIOMEDICAL JOURNAL 2021; 25:88-92. [PMID: 33461943 PMCID: PMC7921522 DOI: 10.29252/ibj.25.2.88] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/10/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND TNF-α and IL-6 are both pleiotropic cytokines playing major roles in cancer-associated cytokine networks. They have previously been investigated for their function in skin malignancies, mostly melanomas, and studies on non-melanoma skin cancer (NMSC) patients are relatively rara. In this study, we aimed to investigate the associations of serum levels of IL-6 and TNF-α with NMSCs and its clinicopathological features. METHODS This cases-control study was carried out to assess the serum levels of TNF-α and IL-6 in 70 NMSC patients, in comparison with 30 healthy individuals, by means of flow cytometric bead-based immuneoassay. RESULTS Serum levels of both TNF-α and IL-6 were significantly higher in NMSC patients (6.470 vs. 4.355 pg/ml; p = 0.0468, respectively), compared to healthy individuals (3.205 vs. 0.000 pg/ml; p = 0.0126, respectively). In the subgroup analysis, squamous cell carcinomas patients had higher serum levels of IL-6 compared to healthy individuals (3.445 vs. 0.000 pg/ml; p = 0.0432). No other significant differences were observed in the serum levels of these two cytokines among different clinicopathological subgroups of the patients. CONCLUSION The increased levels of TNF-α and IL-6 in NMSC patients can be introduced as an epiphenomenon of a complex cancer-induced cytokine cascade.
Collapse
Affiliation(s)
- Mehdi Ghahartars
- Department of Dermatology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shabnam Abtahi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Zeinali
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Javad Fattahi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
259
|
Caramujo-Balseiro S, Faro C, Carvalho L. Metabolic pathways in sporadic colorectal carcinogenesis: A new proposal. Med Hypotheses 2021; 148:110512. [PMID: 33548761 DOI: 10.1016/j.mehy.2021.110512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/09/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023]
Abstract
Given the reports made about geographical differences in Colorectal Cancer (CRC) occurrence, suggesting a link between dietary habits, genes and cancer risk, we hypothesise that there are four fundamental metabolic pathways involved in diet-genes interactions, directly implicated in colorectal carcinogenesis: folate metabolism; lipid metabolism; oxidative stress response; and inflammatory response. Supporting this hypothesis are the evidence given by the significant associations between several diet-genes polymorphisms and CRC, namely: MTHFR, MTR, MTRR and TS (involved in folate metabolism); NPY, APOA1, APOB, APOC3, APOE, CETP, LPL and PON1 (involved in lipid metabolism); MNSOD, SOD3, CAT, GSTP1, GSTT1 and GSTM1 (involved in oxidative stress response); and IL-1, IL-6, TNF-α, and TGF-β (involved in inflammatory response). We also highlight the association between some foods/nutrients/nutraceuticals that are important in CRC prevention or treatment and the four metabolic pathways proposed, and the recent results of genome-wide association studies, both assisting our hypothesis. Finally, we propose a new line of investigation with larger studies, using accurate dietary biomarkers and investigating the four metabolic pathways genes simultaneously. This line of investigation will be essential to understand the full complexity of the association between nature and nurture in CRC and perhaps in other types of cancers. Only with this in-depth knowledge will it be possible to make personalised nutrition recommendations for disease prevention and management.
Collapse
Affiliation(s)
- Sandra Caramujo-Balseiro
- Institute of Anatomical and Molecular Pathology, Faculty of Medicine - University of Coimbra, Coimbra, Portugal; Department of Life Sciences - University of Coimbra, Coimbra, Portugal.
| | - Carlos Faro
- Department of Life Sciences - University of Coimbra, Coimbra, Portugal; UC Biotech, Cantanhede, Portugal
| | - Lina Carvalho
- Institute of Anatomical and Molecular Pathology, Faculty of Medicine - University of Coimbra, Coimbra, Portugal
| |
Collapse
|
260
|
Khan MA, Khan ZA, Charles M, Pratap P, Naeem A, Siddiqui Z, Naqvi N, Srivastava S. Cytokine Storm and Mucus Hypersecretion in COVID-19: Review of Mechanisms. J Inflamm Res 2021; 14:175-189. [PMID: 33519225 PMCID: PMC7838037 DOI: 10.2147/jir.s271292] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/08/2020] [Indexed: 12/18/2022] Open
Abstract
Mucus is an integral part of the respiratory physiology. It protects the respiratory tract by acting as a physical barrier against inhaled particles and microbes. Excessive inflammation in conditions such as COVID-19 can result in over-production of mucus which obstructs the airway. Build-up of mucus can also contribute to recurrent airway infection, causing further obstruction. This article summarizes the current understanding and knowledge of respiratory mucus production and proposes the role of cytokine storm in inducing sudden mucus hypersecretion in COVID-19. Based on these cascades, the active constituents that inhibit or activate several potential targets are outlined for further research. These may be explored for the discovery and design of drugs to combat cytokine storm and its ensuing complications.
Collapse
Affiliation(s)
- Mohsin Ali Khan
- Reseach & Development Department, Era's Lucknow Medical College & Hospital, Lucknow, Uttar Pradesh, India
| | - Zaw Ali Khan
- Reseach & Development Department, Era's Lucknow Medical College & Hospital, Lucknow, Uttar Pradesh, India
| | - Mark Charles
- Metabolic Research Unit, Era's Lucknow Medical College & Hospital, Lucknow, Uttar Pradesh, India
| | - Pushpendra Pratap
- Metabolic Research Unit, Era's Lucknow Medical College & Hospital, Lucknow, Uttar Pradesh, India
| | - Abdul Naeem
- Metabolic Research Unit, Era's Lucknow Medical College & Hospital, Lucknow, Uttar Pradesh, India
| | - Zainab Siddiqui
- Department of Pathology, Era's Lucknow Medical College & Hospital, Lucknow, Uttar Pradesh, India
| | - Nigar Naqvi
- Department of Nutrition, Era's Lucknow Medical College & Hospital, Lucknow, Uttar Pradesh, India
| | - Shikha Srivastava
- Department of Nutrition, Era's Lucknow Medical College & Hospital, Lucknow, Uttar Pradesh, India
| |
Collapse
|
261
|
Zhu XG, Chudnovskiy A, Baudrier L, Prizer B, Liu Y, Ostendorf BN, Yamaguchi N, Arab A, Tavora B, Timson R, Heissel S, de Stanchina E, Molina H, Victora GD, Goodarzi H, Birsoy K. Functional Genomics In Vivo Reveal Metabolic Dependencies of Pancreatic Cancer Cells. Cell Metab 2021; 33:211-221.e6. [PMID: 33152324 PMCID: PMC7790894 DOI: 10.1016/j.cmet.2020.10.017] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/12/2020] [Accepted: 10/19/2020] [Indexed: 12/20/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) cells require substantial metabolic rewiring to overcome nutrient limitations and immune surveillance. However, the metabolic pathways necessary for pancreatic tumor growth in vivo are poorly understood. To address this, we performed metabolism-focused CRISPR screens in PDAC cells grown in culture or engrafted in immunocompetent mice. While most metabolic gene essentialities are unexpectedly similar under these conditions, a small fraction of metabolic genes are differentially required for tumor progression. Among these, loss of heme synthesis reduces tumor growth due to a limiting role of heme in vivo, an effect independent of tissue origin or immune system. Our screens also identify autophagy as a metabolic requirement for pancreatic tumor immune evasion. Mechanistically, autophagy protects cancer cells from CD8+ T cell killing through TNFα-induced cell death in vitro. Altogether, this resource provides metabolic dependencies arising from microenvironmental limitations and the immune system, nominating potential anti-cancer targets.
Collapse
Affiliation(s)
- Xiphias Ge Zhu
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Aleksey Chudnovskiy
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Lou Baudrier
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Benjamin Prizer
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Yuyang Liu
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Benjamin N Ostendorf
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Norihiro Yamaguchi
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Abolfozl Arab
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA; Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Bernardo Tavora
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Rebecca Timson
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Søren Heissel
- The Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Henrik Molina
- The Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Hani Goodarzi
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA; Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
262
|
Zhao Y, Shin DG. Deep Pathway Analysis V2.0: A Pathway Analysis Framework Incorporating Multi-Dimensional Omics Data. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:373-385. [PMID: 31603796 DOI: 10.1109/tcbb.2019.2945959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pathway analysis is essential in cancer research particularly when scientists attempt to derive interpretation from genome-wide high-throughput experimental data. If pathway information is organized into a network topology, its use in interpreting omics data can become very powerful. In this paper, we propose a topology-based pathway analysis method, called DPA V2.0, which can combine multiple heterogeneous omics data types in its analysis. In this method, each pathway route is encoded as a Bayesian network which is initialized with a sequence of conditional probabilities specifically designed to encode directionality of regulatory relationships defined in the pathway. Unlike other topology-based pathway tools, DPA is capable of identifying pathway routes as representatives of perturbed regulatory signals. We demonstrate the effectiveness of our model by applying it to two well-established TCGA data sets, namely, breast cancer study (BRCA) and ovarian cancer study (OV). The analysis combines mRNA-seq, mutation, copy number variation, and phosphorylation data publicly available for both TCGA data sets. We performed survival analysis and patient subtype analysis and the analysis outcomes revealed the anticipated strengths of our model. We hope that the availability of our model encourages wet lab scientists to generate extra data sets to reap the benefits of using multiple data types in pathway analysis. The majority of pathways distinguished can be confirmed by biological literature. Moreover, the proportion of correctly indentified pathways is 10 percent higher than previous work where only mRNA-seq and mutation data is incorporated for breast cancer patients. Consequently, such an in-depth pathway analysis incorporating more diverse data can give rise to the accuracy of perturbed pathway detection.
Collapse
|
263
|
Ghods A, Ghaderi A, Mehdipour F. Expression of TNFRs by B and T Lymphocytes in Tumor-Draining Lymph Nodes. Methods Mol Biol 2021; 2248:259-269. [PMID: 33185883 DOI: 10.1007/978-1-0716-1130-2_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tumor necrosis factor alpha (TNF-α) has crucial roles in the induction or inhibition of various biological activities in immune and nonimmune cells. This cytokine mainly exerts its effects via two receptors named TNFR1 (CD120a) and TNFR2 (CD120b). Both B and T cells express TNFRs; however, opposing roles have been reported for TNF-α in the adaptive immunity. Lymph nodes (LNs), as the secondary lymphoid organs, are one of the major places for the formation of immune responses against cancer. In this chapter, we explain the procedure as to how to isolate mononuclear cells from tumor-draining lymph nodes. In addition, we describe the process of surface staining with fluorochrome-conjugated antibodies for the assessment of the TNFRs expression by CD3+, CD3+CD4+, CD3+CD8+, and CD19+ lymphocytes by flow cytometry.
Collapse
Affiliation(s)
- Atri Ghods
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fereshteh Mehdipour
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
264
|
Priyanka HP, Nair RS, Kumaraguru S, Saravanaraj K, Ramasamy V. Insights on neuroendocrine regulation of immune mediators in female reproductive aging and cancer. AIMS MOLECULAR SCIENCE 2021. [DOI: 10.3934/molsci.2021010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
265
|
Fahmy UA, Fahmy O, Alhakamy NA. Optimized Icariin Cubosomes Exhibit Augmented Cytotoxicity against SKOV-3 Ovarian Cancer Cells. Pharmaceutics 2020; 13:E20. [PMID: 33374293 PMCID: PMC7823966 DOI: 10.3390/pharmaceutics13010020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Clinical application of icariin (ICA) is limited, despite its activity against cancer growth, because of the low solubility of ICA in an aqueous environment. Therefore, the present study attempted to develop and optimize ICA-loaded cubosome delivery and to explore its efficacy and possible mechanism of action against ovarian cancer. The optimization of the cubosome formulation was performed using the Box‒Behnken statistical design; during the characterization, the particle sizes were in the range of 73 to 183 nm and the entrapment efficiency was 78.3% to 97.3%. Optimized ICA-loaded cubosomes (ICA-Cubs) exhibited enhanced cytotoxicity and apoptotic potential, compared with ICA-raw, against ovarian cancer cell lines (SKOV-3 and Caov 3). The optimized ICA-Cubs showed a relatively non-cytotoxic effect on normal EA.hy926 endothelial cells. Further analysis of cell cycle arrest suggested a potential role in the pre-G1 and G2/M phases for ICA-Cubs in comparison with ICA-raw. ICA-Cubs increased the generation of reactive oxygen species (ROS) and the overexpression of p53 and caspase-3 in the SKOV-3 cell line. In conclusion, the cubosomal delivery of ICA might provide a prospective approach towards the superior control of ovarian cancer cell growth. Its improved efficacy compared with that of the free drug might be due to the improved solubility and cellular permeability of ICA.
Collapse
Affiliation(s)
- Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Omar Fahmy
- Department of Urology, University Putra Malaysia (UPM), Selangor 43400, Malaysia;
- Department of Urology, University Hospital of Tübingen, Eberhard-Karls University, 72076 Tübingen, Germany
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
266
|
Abstract
Obesity is associated with high-grade and advanced prostate cancer. While this association may be multi-factorial, studies suggest that obesity-induced inflammation may play a role in the progression of advanced prostate cancer. The microenvironment associated with obesity increases growth factors and pro-inflammatory cytokines which have been implicated mechanistically to promote invasion, metastasis, and androgen-independent growth. This review summarizes recent findings related to obesity-induced inflammation which may be the link to advanced prostate cancer. In addition, this review while introduce novel targets to mitigate prostate cancer metastasis to the bone. Specific emphasis will be placed on the role of the pro-inflammatory cytokines interleukin (IL)-6, tumor necrosis factor (TNF)α, and IL-1β.
Collapse
Affiliation(s)
- Armando Olivas
- Nutrition and Foods, Texas State University, San Marcos, Texas, USA
| | | |
Collapse
|
267
|
Anaya-Eugenio GD, Eggers NA, Ren Y, Rivera-ChÁvez J, Kinghorn AD, Carcache DE Blanco EJ. Apoptosis Induced by (+)-Betulin Through NF-κB Inhibition in MDA-MB-231 Breast Cancer Cells. Anticancer Res 2020; 40:6637-6647. [PMID: 33288558 DOI: 10.21873/anticanres.14688] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND/AIM This study aimed to uncover the effects of (+)-betulin on the NF-κB-apoptotic pathway in MDA-MB-231 cells, and determine its toxicity and protein expression in vivo. MATERIALS AND METHODS Cell cytotoxicity and toxicity were determined using the SRB assay and a zebrafish model, respectively. Western blot, mitochondrial transmembrane potential (MTP), and computational modeling analysis were performed. RESULTS (+)-betulin inhibited the growth of MDA-MB-231 cells, but did not induce toxicity in zebrafish. (+)-Betulin inhibited the activity of NF-κB p65 in silico and in vitro. In cells, (+)-betulin down-regulated NF-κB p50 and 65, IKKα and β, ICAM-1 and bcl-2 expressions. Cell co-treatment with (+)-betulin and TNFα increased the (+)-betulin cytotoxic potential. Moreover, (+)-betulin induced the loss of MTP. Furthermore, (+)-betulin, in zebrafish, down-regulated the expression of NF-κB p65, IKKα, ΙΚΚβ and procaspase-3. CONCLUSION The results contribute to the understanding of the mode of action on apoptosis induction by inhibiting NF-κB pathway in MDA-MB-231 cells.
Collapse
Affiliation(s)
- Gerardo D Anaya-Eugenio
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, U.S.A
| | - Nicole A Eggers
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, U.S.A
| | - Yulin Ren
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, U.S.A
| | - JosÉ Rivera-ChÁvez
- Departamento de Productos Naturales, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico
| | - A Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, U.S.A
| | | |
Collapse
|
268
|
Sahin O, Meiyazhagan A, Ajayan PM, Krishnan S. Immunogenicity of Externally Activated Nanoparticles for Cancer Therapy. Cancers (Basel) 2020; 12:cancers12123559. [PMID: 33260534 PMCID: PMC7760497 DOI: 10.3390/cancers12123559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Recent advances in treating cancer via stimulating an anti-tumor immune system response have resulted in extraordinary results for lymphomas and leukemias; however these therapies have not performed well in solid tumors. External beam therapies, such as radiotherapy, hyperthermia, and photodynamic therapy, that are clinically used for solid tumors are now being explored in combination with nanoparticle systems to stimulate a long-term anti-tumor immune system response. In this review, we detail the novel nanoparticle complexes that are being researched to activate an anti-tumor immune response in combination with external beam therapy in both the preclinical and clinical settings. Abstract Nanoparticles activated by external beams, such as ionizing radiation, laser light, or magnetic fields, have attracted significant research interest as a possible modality for treating solid tumors. From producing hyperthermic conditions to generating reactive oxygen species, a wide range of externally activated mechanisms have been explored for producing cytotoxicity within tumors with high spatiotemporal control. To further improve tumoricidal effects, recent trends in the literature have focused on stimulating the immune system through externally activated treatment strategies that result in immunogenic cell death. By releasing inflammatory compounds known to initiate an immune response, treatment methods can take advantage of immune system pathways for a durable and robust systemic anti-tumor response. In this review, we discuss recent advancements in radiosensitizing and hyperthermic nanoparticles that have been tuned for promoting immunogenic cell death. Our review covers both preclinical and clinical results, as well as an overview of possible future work.
Collapse
Affiliation(s)
- Onur Sahin
- Department of Materials Science & NanoEngineering, Rice University, Houston, TX 77005, USA; (O.S.); (P.M.A.)
| | - Ashokkumar Meiyazhagan
- Department of Materials Science & NanoEngineering, Rice University, Houston, TX 77005, USA; (O.S.); (P.M.A.)
- Correspondence: (A.M.); (S.K.)
| | - Pulickel M. Ajayan
- Department of Materials Science & NanoEngineering, Rice University, Houston, TX 77005, USA; (O.S.); (P.M.A.)
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic Florida, 4500 San Pablo Road S, Mayo 1N, Jacksonville, FL 32224, USA
- Correspondence: (A.M.); (S.K.)
| |
Collapse
|
269
|
Lee ALZ, Yang C, Gao S, Wang Y, Hedrick JL, Yang YY. Biodegradable Cationic Polycarbonates as Vaccine Adjuvants. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52285-52297. [PMID: 33179910 DOI: 10.1021/acsami.0c09649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, biodegradable cationic polycarbonate and polylactide block copolymers were synthesized and successfully used as novel vaccine adjuvants to provide enhanced anticancer immunity. The polymers formed nanoparticles with the model vaccine, ovalbumin (OVA), and the immunostimulant toll-like receptor 3 agonist poly(I:C) (a synthetic analog of the double-stranded RNA). Higher uptake of poly(I:C) by the bone marrow-derived dendritic cells and macrophages and OVA by dendritic cells was observed when delivered using the polymer adjuvant. In vivo experiments showed that these nanoparticles remained longer in the subcutaneous injection site as compared to OVA alone and led to higher production of anti-OVA specific antibodies with prolonged immunostimulation. When OVA was combined with poly(I:C) that was either co-entrapped in the same particles or as separate particles, a comparable level of anti-OVA IgG1 antibodies and interleukin-6 (IL-6) was produced in mouse blood plasma, and a similar level of cytotoxic T lymphocyte (CTL) response in mice was stimulated as compared to OVA/Alum particles. Furthermore, tumor rejection in the mice that were vaccinated for 9 months with the formulations containing the polymer adjuvant was stronger than the other treatment groups without the polymer. Notably, the cationic polycarbonates were not associated with any adverse in vivo effects. Thus, these biodegradable polymers may be promising substitutes for aluminum-based adjuvants in vaccine formulations.
Collapse
Affiliation(s)
- Ashlynn L Z Lee
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Chuan Yang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Shujun Gao
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
- NanoBio Lab, 31 Biopolis Way, #09-01 The Nanos, Singapore 138669, Singapore
| | - Yanming Wang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - James L Hedrick
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120 United States
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| |
Collapse
|
270
|
Hosseini SS, Khalili S, Baradaran B, Bidar N, Shahbazi MA, Mosafer J, Hashemzaei M, Mokhtarzadeh A, Hamblin MR. Bispecific monoclonal antibodies for targeted immunotherapy of solid tumors: Recent advances and clinical trials. Int J Biol Macromol 2020; 167:1030-1047. [PMID: 33197478 DOI: 10.1016/j.ijbiomac.2020.11.058] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
Abstract
Bispecific antibodie (BsAbs) combine two or more epitope-recognizing sequences into a single protein molecule. The first therapeutic applications of BsAbs were focused on cancer therapy. However, these antibodies have grown to cover a wider disease spectrum, including imaging, diagnosis, prophylaxis, and therapy of inflammatory and autoimmune diseases. BsAbs can be categorized into IgG-like formats and non-IgG-like formats. Different technologies have been used for the construction of BsAbs including "CrossMAb", "Quadroma", "knobs-into-holes" and molecular cloning. The mechanism of action for BsAbs includes the induction of CDC, ADCC, ADCP, apoptosis, and recruitment of cell surface receptors, as well as activation or inhibition of signaling pathways. The first clinical trials included mainly leukemia and lymphoma, but solid tumors are now being investigated. The BsAbs bind to a tumor-specific antigen using one epitope, while the second epitope binds to immune cell receptors such as CD3, CD16, CD64, and CD89, with the goal of stimulating the immune response against cancer cells. Currently, over 20 different commercial methods have been developed for the construction of BsAbs. Three BsAbs are currently clinically approved and marketed, and more than 85 clinical trials are in progress. In the present review, we discuss recent trends in the design, engineering, clinical applications, and clinical trials of BsAbs in solid tumors.
Collapse
Affiliation(s)
- Seyed Samad Hosseini
- Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Faculty of Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negar Bidar
- Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Jafar Mosafer
- Nanotechnology Research center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology, School of Paramedical Science, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mahmoud Hashemzaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA; Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| |
Collapse
|
271
|
Exploring the extensive crosstalk between the antagonistic cytokines- TGF-β and TNF-α in regulating cancer pathogenesis. Cytokine 2020; 138:155348. [PMID: 33153895 DOI: 10.1016/j.cyto.2020.155348] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/29/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022]
Abstract
A plethora of cytokines are produced in the tumor microenvironment (TME) those play a vital role in cancer prognosis. Though it is completely contextual, cytokines produced from an inflammatory micro-environment can either modulate cancer progression at early stages of tumor development or in later stages cytokine derived cues can in turn control tumor cell invasion and metastasis. Therefore, understanding the crosstalk between the key cytokines regulating cancer prognosis is critical for the development of an effective therapy. In this regard, the role of transforming growth factor-beta (TGF-β) in cancer is controversially discussed in general inhibition of TGF-β promotes de novo tumorigenesis whereas paradoxically, TGF-β can promote malignancy in already established tumors. Another important cytokine, TNF-α have intense crosstalk with TGF-β from the fact that in a non-cancer context, TGF-β promotes fibrosis whereas TNF-α has anti-fibrotic activity. We have recently reported that TGF-β-induced differentiation of epithelial cells to mesenchymal type is suppressed by TNF-α through regulation of cellular homeostatic machinery- autophagy. Moreover, there are also rare reports of synergy between these two cytokines as well. The crosstalk between TGF-β and TNF-α is not only limited to regulating cancer cell differentiation and proliferation but also includes involvement in cell death. In this review, we hence summarize the molecular mechanisms by which these two important cytokines, TGF-β and TNF-α control cancer prognosis.
Collapse
|
272
|
Abstract
Tumors represent a hostile environment for the effector cells of cancer immunosurveillance. Immunosuppressive receptors and soluble or membrane-bound ligands are abundantly exposed and released by malignant entities and their stromal accomplices. As a consequence, executioners of antitumor immunity inefficiently navigate across cancer tissues and fail to eliminate malignant targets. By inducing immunogenic cancer cell death, oncolytic viruses profoundly reshape the tumor microenvironment. They trigger the local spread of danger signals and tumor-associated (as well as viral) antigens, thus attracting antigen-presenting cells, promoting the activation and expansion of lymphocytic populations, facilitating their infiltration in the tumor bed, and reinvigorating cytotoxic immune activity. The present review recapitulates key chemokines, growth factors and other cytokines that orchestrate this ballet of antitumoral leukocytes upon oncolytic virotherapy.
Collapse
Affiliation(s)
- Jonathan G Pol
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, Paris, France; Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, Villejuif, France.
| | - Samuel T Workenhe
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Prathyusha Konda
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Shashi Gujar
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada; Department of Pathology, Dalhousie University, Halifax, NS, Canada; Department of Biology, Dalhousie University, Halifax, NS, Canada; Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, Paris, France; Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
273
|
Jakopovic B, Oršolić N, Kraljević Pavelić S. Antitumor, Immunomodulatory and Antiangiogenic Efficacy of Medicinal Mushroom Extract Mixtures in Advanced Colorectal Cancer Animal Model. Molecules 2020; 25:molecules25215005. [PMID: 33126765 PMCID: PMC7663060 DOI: 10.3390/molecules25215005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/14/2020] [Accepted: 10/27/2020] [Indexed: 12/22/2022] Open
Abstract
Due to frequent drug resistance and/or unwanted side-effects during conventional and targeted cancer treatments, development of multi-target therapies is an important research field. Medicinal mushrooms’ isolated specific compounds and mushroom extracts have been already proven as non-toxic multi-target inhibitors of specific oncogenic pathways, as well as potent immunomodulators. However, research on antitumor effects of multiple-species extract mixtures was limited so far. The aim of this study was therefore, a study of medicinal mushroom preparations AGARIKON.1 and AGARIKON PLUS on colorectal cell lines in vitro and colorectal mice model in vivo. We found a significant antiproliferative and pro-apoptotic effect of tested medicinal mushroom preparations on colorectal (HCT-116, SW620) tumor cell lines, while the effect on human fibroblast cell line (WI-38) was proliferative emphasizing a specificity towards tumor cell lines. We further investigated the effect of the medicinal mushroom preparations AGARIKON.1 and AGARIKON PLUS in various combinations with conventional cytostatic drug 5-fluorouracil in the advanced metastatic colorectal cancer mouse model CT26.WT. AGARIKON.1 and AGARIKON PLUS exhibited immunostimulatory and antiangiogenic properties in vivo which resulted in significantly increased survival and reduction in tumor volume. The antitumor effects of AGARIKON.1 and AGARIKON PLUS, with or without 5-fluorouracil, are based on M1 macrophage polarization enhancement, inhibition of M2 and tumor-associated macrophage (TAM) polarization, effects on T helper cell Th1/Th2/Th17 cytokine profiles, direct inhibition of CT26.WT tumor growth, inhibition of vascular endothelial growth factors (VEGF) and metalloproteinases 2 and 9 (MMP-2 and MMP-9) modulation. The administration of AGARIKON.1 and AGARIKON PLUS did not show genotoxic effect. This data provides good basis for an expanded translational study.
Collapse
Affiliation(s)
- Boris Jakopovic
- Dr Myko San—Health from Mushrooms Co., Miramarska cesta 109, HR-10000 Zagreb, Croatia;
| | - Nada Oršolić
- Divison of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10000 Zagreb, Croatia
- Correspondence: or ; Tel.: +385-1-4877-747; Fax: +385-1-4826-260
| | - Sandra Kraljević Pavelić
- Faculty of Health Studies, University of Rijeka, Ulica Viktora cara Emina 5, HR-51000 Rijeka, Croatia;
| |
Collapse
|
274
|
Aljohani OS. Phytochemical evaluation of Cucumis prophetarum: protective effects against carrageenan-induced prostatitis in rats. Drug Chem Toxicol 2020; 45:1461-1469. [PMID: 33092416 DOI: 10.1080/01480545.2020.1838538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Phytochemical study of the MeOH extract of Cucumis prophetarum fruits (family Cucurbitaceae) by using different chromatographic techniques led to the isolation of three metabolites; spinasterol (1), cucurbitacin B (2), and 2-O-β-D-glucopyranosylcucurbitacin E (3). Their chemical structures were created on the basis of physical, chemical, spectroscopic data 1D (1H and 13C NMR), and 2D NMR (HSQC and HMBC), as well as similarity with literature data. Cucurbitacin B (Cu-B) (2) was found to be the major constituent. Potential protective activities of MeOH extract, CHCl3, and EtOAc fractions and Cu-B were evaluated against carrageenan-induced prostatic inflammation in rats. Acute toxicity was assessed by evaluating LD50. Pretreatment with CHCl3 fraction and Cu-B ameliorated the rise in the prostate index and obviously protected against histopathological changes. Further, MeOH, extract, CHCl3, and EtOAc fractions as well as Cu-B significantly protected against oxidative stress in prostatic tissues. The anti-inflammatory activities of the extract, fractions and Cu-B were confirmed by ameliorating the rise in prostatic content of the inflammatory mediators TNF-α, IL-1β, COX-2, and iNOS induced by carrageenan. In addition, the rise in the chemotactic factors were myeloperoxidase (MPO), F4-80, and monocyte chemoattractant protein-1 (MCP-1) was significantly hampered. In conclusion, three known compounds (1-3) were isolated from Cucumis prophetarum fruits. Cu-B (2) was the major identified compound. Particularly, CHCl3 fraction and isolated Cu-B exhibited potent anti-inflammatory activity against carrageenan-induced prostatitis. The anti-inflammatory activity can be attributed, at least partly, to inhibition of neutrophil and macrophage infiltration into prostatic tissues.
Collapse
Affiliation(s)
- Omar Saad Aljohani
- Faculty of Pharmacy, Department of Natural Products and Alternative Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
275
|
Nguyen TTD, Le NQK, Ho QT, Phan DV, Ou YY. TNFPred: identifying tumor necrosis factors using hybrid features based on word embeddings. BMC Med Genomics 2020; 13:155. [PMID: 33087125 PMCID: PMC7579990 DOI: 10.1186/s12920-020-00779-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background Cytokines are a class of small proteins that act as chemical messengers and play a significant role in essential cellular processes including immunity regulation, hematopoiesis, and inflammation. As one important family of cytokines, tumor necrosis factors have association with the regulation of a various biological processes such as proliferation and differentiation of cells, apoptosis, lipid metabolism, and coagulation. The implication of these cytokines can also be seen in various diseases such as insulin resistance, autoimmune diseases, and cancer. Considering the interdependence between this kind of cytokine and others, classifying tumor necrosis factors from other cytokines is a challenge for biological scientists. Methods In this research, we employed a word embedding technique to create hybrid features which was proved to efficiently identify tumor necrosis factors given cytokine sequences. We segmented each protein sequence into protein words and created corresponding word embedding for each word. Then, word embedding-based vector for each sequence was created and input into machine learning classification models. When extracting feature sets, we not only diversified segmentation sizes of protein sequence but also conducted different combinations among split grams to find the best features which generated the optimal prediction. Furthermore, our methodology follows a well-defined procedure to build a reliable classification tool. Results With our proposed hybrid features, prediction models obtain more promising performance compared to seven prominent sequenced-based feature kinds. Results from 10 independent runs on the surveyed dataset show that on an average, our optimal models obtain an area under the curve of 0.984 and 0.998 on 5-fold cross-validation and independent test, respectively. Conclusions These results show that biologists can use our model to identify tumor necrosis factors from other cytokines efficiently. Moreover, this study proves that natural language processing techniques can be applied reasonably to help biologists solve bioinformatics problems efficiently.
Collapse
Affiliation(s)
| | - Nguyen-Quoc-Khanh Le
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei City, 106, Taiwan.,Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei City, 106, Taiwan
| | - Quang-Thai Ho
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan, 32003, Taiwan
| | - Dinh-Van Phan
- University of Economics, The University of Danang, Danang, 550000, Vietnam
| | - Yu-Yen Ou
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan, 32003, Taiwan.
| |
Collapse
|
276
|
Tezcan G, Garanina EE, Zhuravleva MN, Hamza S, Rizvanov AA, Khaiboullina SF. Rab GTPase Mediating Regulation of NALP3 in Colorectal Cancer. Molecules 2020; 25:molecules25204834. [PMID: 33092247 PMCID: PMC7587934 DOI: 10.3390/molecules25204834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023] Open
Abstract
The NALP3 inflammasome signaling contributes to inflammation within tumor tissues. This inflammation may be promoted by the vesicle trafficking of inflammasome components and cytokines. Rab5, Rab7 and Rab11 regulate vesicle trafficking. However, the role of these proteins in the regulation of inflammasomes remains largely unknown. To elucidate the role of these Rab proteins in inflammasome regulation, HCT-116, a colorectal cancer (CRC) cell line expressing pDsRed-Rab5 wild type (WT), pDsRed-Rab5 dominant-negative (DN), pDsRed-Rab7 WT, pDsRed-Rab7 DN, pDsRed-Rab11 WT and pDsRed-Rab11 DN were treated with lipopolysaccharide (LPS)/nigericin. Inflammasome activation was analyzed by measuring the mRNA expression of NLRP3, Pro-CASP1, RAB39A and Pro-IL-1β, conducting immunofluorescence imaging and western blotting of caspase-1 and analysing the secretion levels of IL-1β using enzyme-linked immunosorbent assay (ELISA). The effects of Rabs on cytokine release were evaluated using MILLIPLEX MAP Human Cytokine/Chemokine Magnetic Bead Panel-Premixed 41 Plex. The findings showed that LPS/nigericin-treated cells expressing Rab5-WT indicated increased NALP3 expression and secretion of the IL-1β as compared to Rab5-DN cells. Caspase-1 was localized in the nucleus and cytosol of Rab5-WT cells but was localized in the cytosol in Rab5-DN cells. There were no any effects of Rab7 and Rab11 expression on the regulation of inflammasomes. Our results suggest that Rab5 may be a potential target for the regulation of NALP3 in the treatment of the CRC inflammation.
Collapse
Affiliation(s)
- Gülçin Tezcan
- Institution of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (G.T.); (E.E.G.); (M.N.Z.); (S.H.); (A.A.R.)
- Faculty of Dentistry, Department of Fundamental Sciences, Bursa Uludag University, Bursa 16240, Turkey
| | - Ekaterina E. Garanina
- Institution of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (G.T.); (E.E.G.); (M.N.Z.); (S.H.); (A.A.R.)
| | - Margarita N. Zhuravleva
- Institution of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (G.T.); (E.E.G.); (M.N.Z.); (S.H.); (A.A.R.)
| | - Shaimaa Hamza
- Institution of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (G.T.); (E.E.G.); (M.N.Z.); (S.H.); (A.A.R.)
| | - Albert A. Rizvanov
- Institution of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (G.T.); (E.E.G.); (M.N.Z.); (S.H.); (A.A.R.)
| | - Svetlana F. Khaiboullina
- Institution of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (G.T.); (E.E.G.); (M.N.Z.); (S.H.); (A.A.R.)
- Department of Microbiology and Immunology, University of Nevada, Reno, NV 89557, USA
- Correspondence: ; Fax: +1-775682-8258
| |
Collapse
|
277
|
Wong CC, Baum J, Silvestro A, Beste MT, Bharani-Dharan B, Xu S, Wang YA, Wang X, Prescott MF, Krajkovich L, Dugan M, Ridker PM, Martin AM, Svensson EC. Inhibition of IL1β by Canakinumab May Be Effective against Diverse Molecular Subtypes of Lung Cancer: An Exploratory Analysis of the CANTOS Trial. Cancer Res 2020; 80:5597-5605. [DOI: 10.1158/0008-5472.can-19-3176] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 08/18/2020] [Accepted: 09/21/2020] [Indexed: 11/16/2022]
|
278
|
Hanley TM, Vankayala R, Mac JT, Lo DD, Anvari B. Acute Immune Response of Micro- and Nanosized Erythrocyte-Derived Optical Particles in Healthy Mice. Mol Pharm 2020; 17:3900-3914. [PMID: 32820927 PMCID: PMC9844151 DOI: 10.1021/acs.molpharmaceut.0c00641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Erythrocyte-derived particles activated by near-infrared (NIR) light present a platform for various phototheranostic applications. We have engineered such a platform with indocyanine green as the NIR-activated agent. A particular feature of these particles is that their diameters can be tuned from micro- to nanoscale, providing a potential capability for broad clinical utility ranging from vascular to cancer-related applications. An important issue related to clinical translation of these particles is their immunogenic effects. Herein, we have evaluated the early-induced innate immune response of these particles in healthy Swiss Webster mice following tail vein injection by measurements of specific cytokines in blood serum, the liver, and the spleen following euthanasia. In particular, we have investigated the effects of particle size and relative dose, time-dependent cytokine response for up to 6 h postinjection, functionalization of the nanosized particles with folate or Herceptin, and dual injections of the particles 1 week apart. Mean concentrations of interleukin (IL)-6, IL-10, tumor necrosis factor (TNF)-α, and monocyte chemoattractant protein (MCP)-1 in response to injection of microsized particles at the investigated relative doses were significantly lower than the corresponding mean concentrations induced by lipopolysaccharide (positive control) at 2 h. All investigated doses of the nanosized particles induced significantly higher concentrations of MCP-1 in the liver and the spleen as compared to phosphate buffer saline (PBS) (negative control) at 2 h. In response to micro- and nanosized particles at the highest investigated dose, there were significantly higher levels of TNF-α in blood serum at 2 and 6 h postinjection as compared to the levels associated with PBS treatment at these times. Whereas the mean concentration of TNF-α in the liver significantly increased between 2 and 6 h postinjection in response to the injection of the microsized particles, it was significantly reduced during this time interval in response to the injection of the nanosized particles. In general, functionalization of the nanosized particles was associated with a reduction of IL-6 and MCP-1 in blood serum, the liver, and the spleen, and TNF-α in blood serum. With the exception of IL-10 in the spleen in response to nanosized particles, the second injection of micro- or nanosized particles did not lead to significantly higher concentrations of other cytokines at the investigated dose as compared to a single injection.
Collapse
Affiliation(s)
- Taylor M. Hanley
- Department of Bioengineering, University of California, Riverside, Riverside, California 92521, United States
| | - Raviraj Vankayala
- Department of Bioengineering, University of California, Riverside, Riverside, California 92521, United States
| | - Jenny T. Mac
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - David D. Lo
- Department of Biomedical Sciences, University of California, Riverside, Riverside, California 92521, United States
| | - Bahman Anvari
- Department of Bioengineering, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
279
|
Shen YW, Shih YH, Fuh LJ, Shieh TM. Oral Submucous Fibrosis: A Review on Biomarkers, Pathogenic Mechanisms, and Treatments. Int J Mol Sci 2020; 21:ijms21197231. [PMID: 33008091 PMCID: PMC7582467 DOI: 10.3390/ijms21197231] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 02/07/2023] Open
Abstract
Oral submucous fibrosis (OSF) is a collagen deposition disorder that affects a patient’s oral function and quality of life. It may also potentially transform into malignancy. This review summarizes the risk factors, pathogenic mechanisms, and treatments of OSF based on clinical and bio-molecular evidence. Betel nut chewing is a major risk factor that causes OSF in Asia. However, no direct evidence of arecoline-induced carcinogenesis has been found in animal models. Despite identification of numerous biomarkers of OSF lesions and conducting trials with different drug combinations, clinicians still adopt conservative treatments that primarily focus on relieving the symptoms of OSF. Treatments focus on reducing inflammation and improving mouth opening to improve a patient’s quality of life. In conclusion, high-quality clinical studies are needed to aid clinicians in developing and applying molecular biomarkers as well as standard treatment guidelines.
Collapse
Affiliation(s)
- Yen-Wen Shen
- School of Dentistry, China Medical University, Taichung 40402, Taiwan;
- Department of Dentistry, China Medical University Hospital, Taichung City 404332, Taiwan
| | - Yin-Hwa Shih
- Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan;
| | - Lih-Jyh Fuh
- School of Dentistry, China Medical University, Taichung 40402, Taiwan;
- Department of Dentistry, China Medical University Hospital, Taichung City 404332, Taiwan
- Correspondence: (L.-J.F.); (T.-M.S.); Tel.: +88-642-205-3366 (ext. 2312) (L.-J.F.); +88-642-205-3366 (ext. 7707) (T.-M.S.)
| | - Tzong-Ming Shieh
- School of Dentistry, China Medical University, Taichung 40402, Taiwan;
- Department of Dental Hygiene, China Medical University, Taichung 40402, Taiwan
- Correspondence: (L.-J.F.); (T.-M.S.); Tel.: +88-642-205-3366 (ext. 2312) (L.-J.F.); +88-642-205-3366 (ext. 7707) (T.-M.S.)
| |
Collapse
|
280
|
Bhattacharyya S, Ghosh SS. Unfolding transmembrane TNFα dynamics in cancer therapeutics. Cytokine 2020; 137:155303. [PMID: 33002738 DOI: 10.1016/j.cyto.2020.155303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/01/2020] [Accepted: 09/15/2020] [Indexed: 11/17/2022]
Abstract
Cytokines are a group of glycoprotein signaling mediators, which play essential roles in maintaining several complex physiological functions of our body. TNFα is such a pleiotropic cytokine, which involves maintaining a plethora of immune responses. Initially, TNFα is synthesized as a 26 kDa full-length transmembrane form, which is enzymatically cleaved to produce the soluble circulating 17 kDa TNFα. Although the anti-cancer potential of soluble TNFα was discovered more than a century back, its dual ability to promote tumor, posed a major hindrance in finding its acceptance as a proper anti-cancer molecule. In contrast, the membrane-tethered tmTNFα holds the potential of tumor regression without initiating cell proliferation. The membrane-tethered form of TNFα is the physiological precursor of soluble TNFα that remains biologically active and is capable of initiating signaling cascades after binding with the TNFα receptors- TNFR I and TNFR II. In this review, we emphasize on the basic biology and molecular aspects of tmTNFα for its anti-cancer potential.
Collapse
Affiliation(s)
- Srirupa Bhattacharyya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 39, Assam, India
| | - Siddhartha Sankar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 39, Assam, India; Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 39, Assam, India.
| |
Collapse
|
281
|
Cheah JUJ, Low HB, Zhang Y, Yong Kah JC. Light-independent M1 macrophage polarization by photosensitizer-loaded protein corona on gold nanorods. Nanomedicine (Lond) 2020; 15:2329-2344. [PMID: 32945247 DOI: 10.2217/nnm-2020-0249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To establish a light-independent functionality of gold nanorods (AuNRs) with a human serum (HS) protein corona loaded with photosensitizer Chlorin e6 (AuNR-HS-Ce6) in M1 polarization of macrophages. Methods: RT-qPCR and ELISA were used to determine gene and protein expression, respectively. Uptake of AuNR-HS-Ce6 was determined via flow cytometry, inductively coupled plasma mass spectrometry and fluorescence microscopy. Cell viability was determined using PrestoBlue® cell viability assay. Results: An increase in M1 gene and protein expression was observed in AuNR-HS-Ce6-treated macrophages. Delivery of high Ce6 payload via AuNR-HS-Ce6 was the primary contributor toward M1 polarization. Finally, DLD-1 cells treated with conditioned media from AuNR-HS-Ce6-treated macrophages showed significantly reduced proliferation. Conclusion: Our study suggests an immunomodulatory potential of Ce6 in inducing light-independent M1 polarization outside of its role as a photosensitizer.
Collapse
Affiliation(s)
- Joshua U-Jin Cheah
- NUS Graduate School for Integrative Sciences & Engineering, National University of Singapore, 21 Lower Kent Ridge, University Hall, Tan Chin Tuan Wing, #04-02, 119077, Singapore
| | - Heng Boon Low
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Blk MD4, Level 3, 117545, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, 28 Medical Drive, Centre for Life Sciences, Level 3, 117456, Singapore
| | - Yongliang Zhang
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Blk MD4, Level 3, 117545, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, 28 Medical Drive, Centre for Life Sciences, Level 3, 117456, Singapore
| | - James Chen Yong Kah
- NUS Graduate School for Integrative Sciences & Engineering, National University of Singapore, 21 Lower Kent Ridge, University Hall, Tan Chin Tuan Wing, #04-02, 119077, Singapore.,Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Blk E4, #04-08, 117583, Singapore
| |
Collapse
|
282
|
Xie Z, Peng M, Lu R, Meng X, Liang W, Li Z, Qiu M, Zhang B, Nie G, Xie N, Zhang H, Prasad PN. Black phosphorus-based photothermal therapy with aCD47-mediated immune checkpoint blockade for enhanced cancer immunotherapy. LIGHT, SCIENCE & APPLICATIONS 2020; 9:161. [PMID: 33014356 PMCID: PMC7492464 DOI: 10.1038/s41377-020-00388-3] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/13/2020] [Accepted: 08/13/2020] [Indexed: 05/19/2023]
Abstract
Here, we describe a combination strategy of black phosphorus (BP)-based photothermal therapy together with anti-CD47 antibody (aCD47)-based immunotherapy to synergistically enhance cancer treatment. Tumour resistance to immune checkpoint blockades in most cancers due to immune escape from host surveillance, along with the initiation of metastasis through immunosuppressive cells in the tumour microenvironment, remains a significant challenge for cancer immunotherapy. aCD47, an agent for CD47/SIRPα axis blockade, induces modest phagocytic activity and a low response rate for monotherapy, resulting in failures in clinical trials. We showed that BP-mediated ablation of tumours through photothermal effects could serve as an effective strategy for specific immunological stimulation, improving the inherently poor immunogenicity of tumours, which is particularly useful for enhancing cancer immunotherapy. BP in combination with aCD47 blockade activates both innate and adaptive immunities and promotes local and systemic anticancer immune responses, thus offering a synergistically enhanced effect in suppression of tumour progression and in inducing abscopal effects for inhibition of metastatic cancers. Our combination strategy provides a promising platform in which photothermal agents could help to enhance the therapeutic efficacy of immunotherapy.
Collapse
Affiliation(s)
- Zhongjian Xie
- Shenzhen International Institute for Biomedical Research, Shenzhen, 518116 Guangdong PR China
| | - Minhua Peng
- Shenzhen International Institute for Biomedical Research, Shenzhen, 518116 Guangdong PR China
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 Guangdong PR China
| | - Ruitao Lu
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436 Guangdong PR China
| | - Xiangying Meng
- Shenzhen International Institute for Biomedical Research, Shenzhen, 518116 Guangdong PR China
| | - Weiyuan Liang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People’s Hospital, Health Science Center, Shenzhen University, Shenzhen, 518060 PR China
| | - Zhongjun Li
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People’s Hospital, Health Science Center, Shenzhen University, Shenzhen, 518060 PR China
| | - Meng Qiu
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao, 266100 PR China
| | - Bin Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People’s Hospital, Health Science Center, Shenzhen University, Shenzhen, 518060 PR China
| | - Guohui Nie
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People’s Hospital, Health Science Center, Shenzhen University, Shenzhen, 518060 PR China
| | - Ni Xie
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People’s Hospital, Health Science Center, Shenzhen University, Shenzhen, 518060 PR China
| | - Han Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People’s Hospital, Health Science Center, Shenzhen University, Shenzhen, 518060 PR China
| | - Paras N. Prasad
- Department of Chemistry, Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, StateUniversity of New York, Buffalo, NY USA
| |
Collapse
|
283
|
Bertolini M, McElwee K, Gilhar A, Bulfone‐Paus S, Paus R. Hair follicle immune privilege and its collapse in alopecia areata. Exp Dermatol 2020; 29:703-725. [DOI: 10.1111/exd.14155] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/18/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022]
Affiliation(s)
| | - Kevin McElwee
- Monasterium Laboratory Münster Germany
- Centre for Skin Sciences University of Bradford Bradford UK
- Department of Dermatology and Skin Science University of British Columbia Vancouver British Columbia Canada
| | - Amos Gilhar
- Laboratory for Skin Research Rappaport Faculty of Medicine Technion‐Israel Institute of Technology Haifa Israel
| | - Silvia Bulfone‐Paus
- Monasterium Laboratory Münster Germany
- Centre for Dermatology Research University of Manchester and NIHR Manchester Biomedical Research Centre Manchester UK
| | - Ralf Paus
- Monasterium Laboratory Münster Germany
- Centre for Dermatology Research University of Manchester and NIHR Manchester Biomedical Research Centre Manchester UK
- Dr. Philip Frost Department of Dermatology & Cutaneous Surgery University of Miami Miller School of Medicine Miami FL USA
| |
Collapse
|
284
|
Shirmohammadi E, Ebrahimi SES, Farshchi A, Salimi M. The efficacy of etanercept as anti-breast cancer treatment is attenuated by residing macrophages. BMC Cancer 2020; 20:836. [PMID: 32883235 PMCID: PMC7469281 DOI: 10.1186/s12885-020-07228-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Interaction between microenvironment and breast cancer cells often is not considered at the early stages of drug development leading to failure of many drugs at later clinical stages. Etanercept is a TNF-alpha inhibitor that has been investigated for potential antitumor effect in breast cancer with conflicting results. METHODS Secretome data on MDA-MB-231 cancer cell-line were from public repositories and subjected to gene enrichment analyses. Since MDA-MB-231 cells secrete high levels of Granulocyte-Monocyte Colony Stimulating Factor, which activates macrophages to promote tumor growth, the effect of macrophage co-culturing on anticancer efficacy of Etanercept in breast cancer was evaluated using the Boolean network modeling and in vitro experiments including invasion, cell cycle, Annexin PI, and tetrazolium based viability assays and NFKB activity. RESULTS The secretome profile of MDA-MB-231 cells was similar to the expression of genes following treatment of breast cancer cells with TNF-α. Accordingly, inhibition of TNF-α by Etanercept decreased MDA-MB-231 cell survival, induced apoptosis and cell cycle arrest in vitro and inhibited NFKB activation. The inhibitory effect of Etanercept on cell viability, cell cycle progression, invasion and induction of apoptosis decreased following co-culturing of the cancer cells with macrophages. The Boolean network modeling of the changes in the dynamics of intracellular signaling pathways revealed NFKB activation by secretome of macrophages, leading to a decreased efficacy of Etanercept, suggesting NFKB inhibition as an alternative approach to inhibit cancer cell growth in the presence of macrophage crosstalk. CONCLUSION This study indicates that the effect of Etanercept may be influenced by residing macrophages in tumor microenvironment, and suggests a method to predict the effect of drugs in the presence of stromal cells to guide experimental designs in drug development.
Collapse
Affiliation(s)
- Elnaz Shirmohammadi
- School of Pharmacy, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Amir Farshchi
- Biopharmaceutical Research Center, AryoGen Pharmed Inc., Alborz University of Medical Sciences, Karaj, Iran
| | - Mona Salimi
- Physiology and Pharmacology Department, Pasteur Institute of Iran, P.O. Box: 13164, Tehran, Iran.
| |
Collapse
|
285
|
Zhao L, Jin Y, Yang C, Li C. HBV-specific CD8 T cells present higher TNF-α expression but lower cytotoxicity in hepatocellular carcinoma. Clin Exp Immunol 2020; 201:289-296. [PMID: 32474905 PMCID: PMC7419913 DOI: 10.1111/cei.13470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/14/2020] [Accepted: 05/24/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor (TNF)-α is largely regarded as a proinflammatory cytokine, but several recent researches have demonstrated that TNF-α could possess immunoregulatory roles with potential to suppress anti-tumor immunity. Chronic hepatitis B virus (HBV) infection is a major risk factor of hepatocellular carcinoma (HCC), and HBV-specific CD8 T cells could exert anti-tumor roles in HCC patients. Here, we found that HBV-specific CD8 T cells, both in the peripheral blood and in the tumor microenvironment, were more enriched with TNF-α-expressing cells than interferon (IFN)-γ-expressing cells. Compared to IFN-γ-expressing HBV-specific CD8 T cells, TNF-α-expressing HBV-specific CD8 T cells presented lower expression of inhibitory checkpoint molecules, including programmed cell death (PD)-1, T cell immunoglobulin mucin-3 (TIM-3) and cytotoxic T lymphocyte antigen (CTLA)-4. HBV-specific CD8 T cells could mediate the lysis of autologous primary tumor cells, and the inhibition of TNF-α could further elevate their cytotoxic capacity. Subsequently, we demonstrated that TNF-α inhibition in HBV-specific CD8 T cells could significantly increase granzyme B (GZMB) and perforin 1 (PRF1) expression while having no effect towards granzyme A (GZMA) expression. The addition of exogenous TNF-α at low levels had no consistent effect on the expression of GZMA, GZMB and PRF1, but at higher levels, exogenous TNF-α significantly reduced GZMA, GZMB and PRF1 expression. Overall, these results suggested that TNF-α-expressing cells probably presented a deleterious role in HCC but were enriched in HBV-specific CD8 T cells.
Collapse
Affiliation(s)
- L. Zhao
- Department of Hepatobiliary Surgery (Ludong Zhao)Linyi People’s HospitalLinyiShandongChina
| | - Y. Jin
- Department of Hepatobiliary SurgeryPeople’s Hospital of Yunnan ProvinceKunmingYunnanChina
| | - C. Yang
- Department of Hepatobiliary SurgeryPeople’s Hospital of Yunnan ProvinceKunmingYunnanChina
| | - C. Li
- Department of Infection Control Center (Chen Li)Linyi People’s HospitalLinyiShandongChina
| |
Collapse
|
286
|
Calip GS, Patel PR, Sweiss K, Wu Z, Zhou J, Asfaw AA, Adimadhyam S, Lee TA, Chiu BCH. Targets of biologic disease-modifying antirheumatic drugs and risk of multiple myeloma. Int J Cancer 2020; 147:1300-1305. [PMID: 31997371 DOI: 10.1002/ijc.32891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 12/17/2022]
Abstract
Several commonly used immune-suppressing biologic drugs target proteins and cytokines involved in myeloma pathogenesis. Our objective was to determine whether targeted biologic disease-modifying antirheumatic drugs (DMARDs) are associated with risk of multiple myeloma (MM). We conducted a nested case-control study within a retrospective cohort of 56,886 commercially insured adults undergoing treatment for rheumatoid arthritis, psoriatic arthritis or ankylosing spondylitis between 2009 and 2015 using the Truven Health MarketScan Databases. MM cases (n = 287) were matched to up to 10 controls (n = 2,760) on age, sex and rheumatologic indication using incidence density sampling without replacement. Our exposures of interest were biologic DMARDs targeting tumor necrosis factor-alpha, interleukin 6, cytotoxic t-lymphocyte-associated protein-4 and depletion of B cells. Relative risks were estimated as adjusted odds ratios (OR) and 95% confidence intervals (CI) using conditional logistic regression models. Cases and controls were similar with respect to use of prescription NSAIDs and concurrent conventional-synthetic DMARDs. Cases had slightly fewer etanercept users (4% vs. 7%) and slightly more tocilizumab users (1.4% vs. 0.4%). Compared to patients treated with only conventional-synthetic DMARDs, those receiving concomitant conventional-synthetic plus biologic DMARDs had lower risk of developing MM (OR = 0.48; 95% CI 0.30-0.88; p = 0.02). Risks differed by drug target with an inverse association observed with use of etanercept inhibiting tumor necrosis factor-alpha (OR = 0.55; 95% CI 0.30-1.02; p = 0.06) and a positive association with tocilizumab inhibiting interleukin-6 (OR = 4.33; 95% CI 1.33-14.19; p = 0.02) compared to biologic DMARD-naïve patients. Further investigation is warranted to understand the roles of drugs suppressing tumor necrosis factor-alpha and interleukin-6 in myeloma pathogenesis.
Collapse
Affiliation(s)
- Gregory S Calip
- Department of Pharmacy Systems, Outcomes and Policy, University of Illinois at Chicago, Chicago, IL.,Center for Pharmacoepidemiology and Pharmacoeconomic Research, University of Illinois at Chicago, Chicago, IL.,Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Pritesh R Patel
- Division of Hematology and Oncology, University of Illinois at Chicago, Chicago, IL
| | - Karen Sweiss
- Department of Pharmacy Practice, University of Illinois at Chicago, Chicago, IL
| | - Zhaoju Wu
- Department of Pharmacy Systems, Outcomes and Policy, University of Illinois at Chicago, Chicago, IL
| | - Jifang Zhou
- Department of Pharmacy Systems, Outcomes and Policy, University of Illinois at Chicago, Chicago, IL
| | - Alemseged A Asfaw
- Department of Pharmacy Systems, Outcomes and Policy, University of Illinois at Chicago, Chicago, IL
| | - Sruthi Adimadhyam
- Department of Pharmacy Systems, Outcomes and Policy, University of Illinois at Chicago, Chicago, IL
| | - Todd A Lee
- Department of Pharmacy Systems, Outcomes and Policy, University of Illinois at Chicago, Chicago, IL.,Center for Pharmacoepidemiology and Pharmacoeconomic Research, University of Illinois at Chicago, Chicago, IL
| | - Brian C-H Chiu
- Department of Public Health Sciences, The University of Chicago, Chicago, IL
| |
Collapse
|
287
|
Moradian N, Gouravani M, Salehi MA, Heidari A, Shafeghat M, Hamblin MR, Rezaei N. Cytokine release syndrome: inhibition of pro-inflammatory cytokines as a solution for reducing COVID-19 mortality. Eur Cytokine Netw 2020; 31:81-93. [PMID: 33361013 PMCID: PMC7792554 DOI: 10.1684/ecn.2020.0451] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Coronavirus disease (COVID-19) reached pandemic proportions at the beginning of 2020 and continues to be a worldwide concern. End organ damage and acute respiratory distress syndrome are the leading causes of death in severely or critically ill patients. The elevated cytokine levels in severe patients in comparison with mildly affected patients suggest that cytokine release syndrome (CRS) occurs in the severe form of the disease. In this paper, the significant role of pro-inflammatory cytokines, including IL-1, IL-6, and TNF-alpha, and their mechanism of action in the CRS cascade is explained. Potential therapeutic approaches involving anti-IL-6 and anti-TNF-alpha antibodies to fight COVID-19 and reduce mortality rate in severe cases are also discussed.
Collapse
Affiliation(s)
- Negar Moradian
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Gouravani
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Salehi
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Heidari
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Melika Shafeghat
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA 02114 USA
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028 South Africa
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Boston, MA 02114 USA
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
288
|
Schröder SK, Asimakopoulou A, Tillmann S, Koschmieder S, Weiskirchen R. TNF-α controls Lipocalin-2 expression in PC-3 prostate cancer cells. Cytokine 2020; 135:155214. [PMID: 32712458 DOI: 10.1016/j.cyto.2020.155214] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/30/2020] [Accepted: 07/16/2020] [Indexed: 12/21/2022]
Abstract
Prostate cancer (PCa) is one of the most common and deadly cancers in men worldwide. The surrounding tumor microenvironment (TME) is important in tumor progression, as cytokines and soluble mediators including tumor necrosis factor (TNF-α) or lipocalin-2 (LCN2) can influence tumor growth and formation of metastasis. The exact mechanisms on how these pleiotropic factors affect PCa are still unknown. In this study, we showed for the first time that LCN2 mRNA and protein expression are strongly inducible by TNF-α in the highly metastatic human PCa cell line PC-3. In addition, we observed higher levels of secreted LCN2 in cell culture medium of TNF-α-treated PC-3 cells. We found that different signaling pathways such as p38, NF-κB or JNK were activated shortly after TNF-α treatment. Moreover, the mRNA levels of IL-1β and IL-8 were also significantly increased after 24 h stimulation. Mechanistically, the NF-κB pathway and the JNK signaling axis are directly responsible for LCN2 upregulation. This was shown by the fact that pretreatment with the JNK inhibitors SP600125 or JNK-IN-8 strongly downregulated phosphorylation of c-Jun protein and markedly reduced TNF-α-mediated LCN2 upregulation in PC-3 cells. Likewise, the NF-κB inhibitor QNZ was able to repress TNF-α-induced LCN2 expression in PC-3 cells. Taking into consideration that LCN2 has been described as a tumor promoting factor in PCa, our results indicate that JNK regulates LCN2 expression and unmasks the JNK signaling axis as a possible therapeutic target for patients with PCa.
Collapse
Affiliation(s)
- Sarah K Schröder
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Anastasia Asimakopoulou
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Stefan Tillmann
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany.
| |
Collapse
|
289
|
Anti-proliferative activities of Byrsocarpus coccineus Schum. and Thonn. (Connaraceae) using ovarian cancer cell lines. J Ovarian Res 2020; 13:83. [PMID: 32693841 PMCID: PMC7374866 DOI: 10.1186/s13048-020-00679-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/02/2020] [Indexed: 02/03/2023] Open
Abstract
Background Ovarian cancer (OvCa) is one of the most lethal tumors of gynecologic malignancies, due to lack of early detection, and a high rate of metastasis. The standard treatment for OvCa is surgery and cytotoxic chemotherapy. However, to overcome the high cost and side effects of these treatments, medicinal plants are widely used in developing countries to treat OvCa. Byrsocarpus coccineus plant preparation has been administered to patients traditionally in the management of tumors in Nigeria. In this study, we investigated the anti-proliferative effects of B. coccineus ethanol leaf extract against OVCAR-3 and SW 626 OvCa cell lines. After the treatment of the two cell lines with the extracts, analyses were carried out to determine inhibition of proliferation and expression of cell cycle markers, pro-apoptotic, and anti-apoptotic markers. Results Results showed that B. coccineus ethanol leaf extract, significantly inhibited cell migration and colony formation in OVCAR-3 and SW 626 treated cells in a dose-dependent manner. Results also show that B. coccineus ethanol leaf extract modulated the expression of tumor suppressor gene (p53), cell cycle progression, pro- and anti-apoptotic gene, and the pro-inflammatory cytokines. Conclusions These results suggest that B. coccineus have anti-proliferative properties and could induce apoptosis. Further investigation will be carried out to isolate bioactive compounds for the treatment of ovarian cancer.
Collapse
|
290
|
Sitarek P, Merecz-Sadowska A, Kowalczyk T, Wieczfinska J, Zajdel R, Śliwiński T. Potential Synergistic Action of Bioactive Compounds from Plant Extracts against Skin Infecting Microorganisms. Int J Mol Sci 2020; 21:ijms21145105. [PMID: 32707732 PMCID: PMC7403983 DOI: 10.3390/ijms21145105] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 01/16/2023] Open
Abstract
The skin is an important organ that acts as a physical barrier to the outer environment. It is rich in immune cells such as keratinocytes, Langerhans cells, mast cells, and T cells, which provide the first line of defense mechanisms against numerous pathogens by activating both the innate and adaptive response. Cutaneous immunological processes may be stimulated or suppressed by numerous plant extracts via their immunomodulatory properties. Several plants are rich in bioactive molecules; many of these exert antimicrobial, antiviral, and antifungal effects. The present study describes the impact of plant extracts on the modulation of skin immunity, and their antimicrobial effects against selected skin invaders. Plant products remain valuable counterparts to modern pharmaceuticals and may be used to alleviate numerous skin disorders, including infected wounds, herpes, and tineas.
Collapse
Affiliation(s)
- Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland
- Correspondence:
| | - Anna Merecz-Sadowska
- Department of Economic Informatics, University of Lodz, 90-214 Lodz, Poland; (A.M.-S.); (R.Z.)
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland;
| | - Joanna Wieczfinska
- Department of Immunopathology, Medical University of Lodz, 90-752 Lodz, Poland;
| | - Radosław Zajdel
- Department of Economic Informatics, University of Lodz, 90-214 Lodz, Poland; (A.M.-S.); (R.Z.)
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| |
Collapse
|
291
|
Mu W, Chu Q, Liu Y, Zhang N. A Review on Nano-Based Drug Delivery System for Cancer Chemoimmunotherapy. NANO-MICRO LETTERS 2020; 12:142. [PMID: 34138136 PMCID: PMC7770879 DOI: 10.1007/s40820-020-00482-6] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/11/2020] [Indexed: 05/11/2023]
Abstract
Although notable progress has been made on novel cancer treatments, the overall survival rate and therapeutic effects are still unsatisfactory for cancer patients. Chemoimmunotherapy, combining chemotherapeutics and immunotherapeutic drugs, has emerged as a promising approach for cancer treatment, with the advantages of cooperating two kinds of treatment mechanism, reducing the dosage of the drug and enhancing therapeutic effect. Moreover, nano-based drug delivery system (NDDS) was applied to encapsulate chemotherapeutic agents and exhibited outstanding properties such as targeted delivery, tumor microenvironment response and site-specific release. Several nanocarriers have been approved in clinical cancer chemotherapy and showed significant improvement in therapeutic efficiency compared with traditional formulations, such as liposomes (Doxil®, Lipusu®), nanoparticles (Abraxane®) and micelles (Genexol-PM®). The applications of NDDS to chemoimmunotherapy would be a powerful strategy for future cancer treatment, which could greatly enhance the therapeutic efficacy, reduce the side effects and optimize the clinical outcomes of cancer patients. Herein, the current approaches of cancer immunotherapy and chemoimmunotherapy were discussed, and recent advances of NDDS applied for chemoimmunotherapy were further reviewed.
Collapse
Affiliation(s)
- Weiwei Mu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, 250012, People's Republic of China
| | - Qihui Chu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, 250012, People's Republic of China
| | - Yongjun Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, 250012, People's Republic of China
| | - Na Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, 250012, People's Republic of China.
| |
Collapse
|
292
|
Sex Hormones and Inflammation Role in Oral Cancer Progression: A Molecular and Biological Point of View. JOURNAL OF ONCOLOGY 2020; 2020:9587971. [PMID: 32684934 PMCID: PMC7336237 DOI: 10.1155/2020/9587971] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 12/14/2022]
Abstract
Oral cancers have been proven to arise from precursors lesions and to be related to risk behaviour such as alcohol consumption and smoke. However, the present paper focuses on the role of chronic inflammation, related to chronical oral infections and/or altered immune responses occurring during dysimmune and autoimmune diseases, in the oral cancerogenesis. Particularly, oral candidiasis and periodontal diseases introduce a vicious circle of nonhealing and perpetuation of the inflammatory processes, thus leading toward cancer occurrence via local and systemic inflammatory modulators and via genetic and epigenetic factors.
Collapse
|
293
|
Krawczyk A, Miśkiewicz J, Strzelec K, Wcisło-Dziadecka D, Strzałka-Mrozik B. Apoptosis in Autoimmunological Diseases, with Particular Consideration of Molecular Aspects of Psoriasis. Med Sci Monit 2020; 26:e922035. [PMID: 32567582 PMCID: PMC7331484 DOI: 10.12659/msm.922035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/18/2020] [Indexed: 12/29/2022] Open
Abstract
Apoptosis is a natural physiological process involving programmed cell death. Thanks to this process, it is possible to maintain the homeostasis of the body and the immune system. Dysfunctions of this mechanism lead to development of autoimmune diseases such as psoriasis; these diseases are chronic and treatment is extremely difficult. In psoriasis (a skin disease), apoptosis disorders are manifested by keratinocyte proliferation dysfunction. Autoimmune diseases coexisting with psoriasis include multiple sclerosis, autoimmune thyroid disease, and diabetes, but the common pathogenesis of these diseases is not fully understood. Given the heterogenous nature and chronic and recurrent course of psoriasis, the selection of an effective therapeutic strategy is still a problem. This literature review was focused on the process of apoptosis as a factor in the development of autoimmune diseases, with particular emphasis on psoriasis. The work also includes a review of therapeutic methods of psoriasis based on the latest literature.
Collapse
Affiliation(s)
- Agata Krawczyk
- Department of Nutrigenomics and Bromatology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Joanna Miśkiewicz
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Karolina Strzelec
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Dominika Wcisło-Dziadecka
- Department of Cosmetology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Barbara Strzałka-Mrozik
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| |
Collapse
|
294
|
Gadag S, Sinha S, Nayak Y, Garg S, Nayak UY. Combination Therapy and Nanoparticulate Systems: Smart Approaches for the Effective Treatment of Breast Cancer. Pharmaceutics 2020; 12:E524. [PMID: 32521684 PMCID: PMC7355786 DOI: 10.3390/pharmaceutics12060524] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer has become one of the biggest concerns for oncologists in the past few decades because of its unpredictable etiopathology and nonavailability of personalized translational medicine. The number of women getting affected by breast cancer has increased dramatically, owing to lifestyle and environmental changes. Besides, the development of multidrug resistance has become a challenge in the therapeutic management of breast cancer. Studies reveal that the use of monotherapy is not effective in the management of breast cancer due to high toxicity and the development of resistance. Combination therapies, such as radiation therapy with adjuvant therapy, endocrine therapy with chemotherapy, and targeted therapy with immunotherapy, are found to be effective. Thus, multimodal and combination treatments, along with nanomedicine, have emerged as a promising strategy with minimum side effects and drug resistance. In this review, we emphasize the multimodal approaches and recent advancements in breast cancer treatment modalities, giving importance to the current data on clinical trials. The novel treatment approach by targeted therapy, according to type, such as luminal, HER2 positive, and triple-negative breast cancer, are discussed. Further, passive and active targeting technologies, including nanoparticles, bioconjugate systems, stimuli-responsive, and nucleic acid delivery systems, including siRNA and aptamer, are explained. The recent research exploring the role of nanomedicine in combination therapy and the possible use of artificial intelligence in breast cancer therapy is also discussed herein. The complexity and dynamism of disease changes require the constant upgrading of knowledge, and innovation is essential for future drug development for treating breast cancer.
Collapse
Affiliation(s)
- Shivaprasad Gadag
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.G.); (S.S.)
| | - Shristi Sinha
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.G.); (S.S.)
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Sanjay Garg
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
| | - Usha Y. Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.G.); (S.S.)
| |
Collapse
|
295
|
Zheng X, Fernando V, Sharma V, Walia Y, Letson J, Furuta S. Correction of arginine metabolism with sepiapterin-the precursor of nitric oxide synthase cofactor BH 4-induces immunostimulatory-shift of breast cancer. Biochem Pharmacol 2020; 176:113887. [PMID: 32112882 PMCID: PMC7842273 DOI: 10.1016/j.bcp.2020.113887] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
Abstract
Immunotherapy is a first-line treatment for many tumor types. However, most breast tumors are immuno-suppressive and only modestly respond to immunotherapy. We hypothesized that correcting arginine metabolism might improve the immunogenicity of breast tumors. We tested whether supplementing sepiapterin, the precursor of tetrahydrobiopterin (BH4)-the nitric oxide synthase (NOS) cofactor-redirects arginine metabolism from the pathway synthesizing polyamines to that of synthesizing nitric oxide (NO) and make breast tumors more immunogenic. We showed that sepiapterin elevated NO but lowered polyamine levels in tumor cells, as well as in tumor-associated macrophages (TAMs). This not only suppressed tumor cell proliferation, but also induced the conversion of TAMs from the immuno-suppressive M2-type to immuno-stimulatory M1-type. Furthermore, sepiapterin abrogated the expression of a checkpoint ligand, PD-L1, in tumors in a STAT3-dependent manner. This is the first study which reveals that supplementing sepiapterin normalizes arginine metabolism, improves the immunogenicity and inhibits the growth of breast tumor cells.
Collapse
Affiliation(s)
- Xunzhen Zheng
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA
| | - Veani Fernando
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA
| | - Vandana Sharma
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA
| | - Yashna Walia
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA
| | - Joshua Letson
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA
| | - Saori Furuta
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA.
| |
Collapse
|
296
|
Bounder G, Jouimyi MR, Boura H, Touati E, Michel V, Badre W, Jouhadi H, Kadi M, Eljihad M, Benomar H, Kettani A, Lebrazi H, Maachi F. Associations of the -238(G/A) and -308(G/A) TNF-α Promoter Polymorphisms and TNF-α Serum Levels with the Susceptibility to Gastric Precancerous Lesions and Gastric Cancer Related to Helicobacter pylori Infection in a Moroccan Population. Asian Pac J Cancer Prev 2020; 21:1623-1629. [PMID: 32592356 PMCID: PMC7568906 DOI: 10.31557/apjcp.2020.21.6.1623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Indexed: 01/08/2023] Open
Abstract
Objective: Helicobacter pylori (H. pylori) induces the production of tumor necrosis factor-alpha (TNF-α), which is closely related to a gastric epithelial injury. TNF-α gene polymorphism and TNF-α serum levels are associated with various malignant conditions. Identification of the ideal marker for gastric cancer (GC) is still the leading aim of several trials. Physio-pathological considerations of GC led us to investigate the association of two TNF-α promoter polymorphisms (-308G>A and -238G>A), and TNF-α serum levels with the susceptibility to gastric precancerous (PL) and GC. Methods: Patients suffering from gastric lesions (65 chronic gastritis, 50 PL, 40 GC) related to H. pylori infection , and 63 healthy controls (HC) were involved in this study. Individuals are genotyped by TNF-α gene promoter sequencing and TNF-α serum levels are measured by ELISA quantitative method. Results: Regarding TNF-α-308 G/A locus, we noticed higher risk for GC (OR=4.3, CI 1.5-11.9, p-value=0.005) and PL (OR=3.4, CI 1.2-9.2, p-value=0.01) for individuals with AA/GA genotypes compared to GG genotype. Concerning TNF-α-238 G/A locus, we noticed higher risk for GC (OR=5.9, CI 1.2-27.5, p-value=0.01) and PL (OR=4.8, CI 1.3-18, p-value=0.01) for individuals with GG genotype compared to AA/GA genotypes. We noticed that TNF-α serum levels have been increased together with gastric lesions severity. Moreover, TNF-α-308 and TNF-α-238 A alleles seemed to, respectively, upregulate and downregulate TNF-α serum levels. Conclusion: The TNF-α -308 A allele has a promotive effect for GC progression, whereas the TNF-α -238 A allele has a protective function against GC progression. High levels of TNF-α seemed to be associated with the aggressiveness of gastric lesions. TNF-α gene polymorphisms and TNF-α serum levels might be helpful to select those patients who are at high risk for GC.
Collapse
Affiliation(s)
- Ghizlane Bounder
- Helicobacter Pylori and Gastric Pathologies Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco.,Biology and Health Laboratory, Faculty of Sciences Ben M'sik, University Hassan II, Casablanca, Morocco
| | - Mohamed Reda Jouimyi
- Helicobacter Pylori and Gastric Pathologies Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco.,Biology and Health Laboratory, Faculty of Sciences Ben M'sik, University Hassan II, Casablanca, Morocco
| | - Hasna Boura
- Helicobacter Pylori and Gastric Pathologies Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Eliette Touati
- Pathogenesis of Helicobacter Laboratory, Institut Pasteur, Paris, France
| | - Valerie Michel
- Pathogenesis of Helicobacter Laboratory, Institut Pasteur, Paris, France
| | - Wafaa Badre
- Gastroenterology Department, Ibn Rochd University Hospital Center, Casablanca, Morocco
| | - Hassan Jouhadi
- Department of Radiotherapy Oncology, Ibn Rochd University Hospital Center, Casablanca, Morocco
| | - Maria Kadi
- Gastroenterology Department, Ibn Rochd University Hospital Center, Casablanca, Morocco
| | - Meriem Eljihad
- Gastroenterology Department, Ibn Rochd University Hospital Center, Casablanca, Morocco
| | - Hakima Benomar
- Histo-Cytopathology Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Anass Kettani
- Biology and Health Laboratory, Faculty of Sciences Ben M'sik, University Hassan II, Casablanca, Morocco
| | - Halima Lebrazi
- Biology and Health Laboratory, Faculty of Sciences Ben M'sik, University Hassan II, Casablanca, Morocco
| | - Fatima Maachi
- Helicobacter Pylori and Gastric Pathologies Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| |
Collapse
|
297
|
Paramanantham A, Kim MJ, Jung EJ, Nagappan A, Yun JW, Kim HJ, Shin SC, Kim GS, Lee WS. Pretreatment of Anthocyanin from the Fruit of Vitis coignetiae Pulliat Acts as a Potent Inhibitor of TNF-α Effect by Inhibiting NF-κB-Regulated Genes in Human Breast Cancer Cells. Molecules 2020; 25:molecules25102396. [PMID: 32455624 PMCID: PMC7287973 DOI: 10.3390/molecules25102396] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/24/2022] Open
Abstract
Vitis coignetiaePulliat (Meoru in Korea) has been used in Korean folk medicine for the treatment of inflammatory diseases and cancers. Evidence suggests that NF-κB activation is mainly involved in cancer cell proliferation, invasion, angiogenesis, and metastasis. TNF-α also enhances the inflammatory process in tumor development. Recently, flavonoids from plants have been reported to have inhibitory effects on NF-κB activities. We investigated the effects of anthocyanins extracted from the fruits of Vitis coignetiae Pulliat (AIM, anthocyanins isolated from Meoru (AIM)) on TNF-α-induced NF-κB activities in MCF-7 human breast cancer cells and the molecules involved in AIM-induced anti-cancer effects, especially on cancer metastasis. We performed cell viability assay, gelatin zymography, invasion assay, and western blot analysis to unravel the anti-NF-κB activity of AIMs on MCF-7 cells. AIM suppressed the TNF-α effects on the NF-κB-regulated proteins involved in cancer cell proliferation (COX-2, C-myc), invasion, and angiogenesis (MMP-2, MMP9, ICAM-1, and VEGF). AIM also increased the expression of E-cadherin, which is one of the hallmarks of the epithelial-mesenchymal transition (EMT) process. In conclusion, this study demonstrates that the anthocyanins isolated from the fruits of Vitis coignetiae Pulliat acts as an inhibitor of TNF-α induced NF-κB activation, and subsequent downstream molecules involved in cancer proliferation, invasion, adhesion, angiogenesis, and thus have anti-metastatic activities in MCF-7 breast cancer cells.
Collapse
Affiliation(s)
- Anjugam Paramanantham
- Departments of Internal Medicine, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju 660-702, Korea; (A.P.); (M.J.K.); (A.N.); (J.W.Y.)
- Research Institute of Life science and College of Veterinary Medicine, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Korea
| | - Min Jeong Kim
- Departments of Internal Medicine, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju 660-702, Korea; (A.P.); (M.J.K.); (A.N.); (J.W.Y.)
| | - Eun Joo Jung
- Departments of Biochemistry, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju 660-702, Korea;
| | - Arulkumar Nagappan
- Departments of Internal Medicine, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju 660-702, Korea; (A.P.); (M.J.K.); (A.N.); (J.W.Y.)
| | - Jeong Won Yun
- Departments of Internal Medicine, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju 660-702, Korea; (A.P.); (M.J.K.); (A.N.); (J.W.Y.)
| | - Hye Jung Kim
- Departments of Pharmacology, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju 660-702, Korea;
| | - Sung Chul Shin
- Department of Chemistry, Research Institute of Life Science, Gyeongsang National University, Jinju 660-701, Korea;
| | - Gon Sup Kim
- Research Institute of Life science and College of Veterinary Medicine, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Korea
- Correspondence: (G.S.K.); (W.S.L.); Tel.: +82-55-772-2356 (G.S.K.); +82-55-750-8733 (W.S.L.)
| | - Won Sup Lee
- Departments of Internal Medicine, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju 660-702, Korea; (A.P.); (M.J.K.); (A.N.); (J.W.Y.)
- Correspondence: (G.S.K.); (W.S.L.); Tel.: +82-55-772-2356 (G.S.K.); +82-55-750-8733 (W.S.L.)
| |
Collapse
|
298
|
Benlebna M, Balas L, Bonafos B, Pessemesse L, Vigor C, Grober J, Bernex F, Fouret G, Paluchova V, Gaillet S, Landrier JF, Kuda O, Durand T, Coudray C, Casas F, Feillet-Coudray C. Long-term high intake of 9-PAHPA or 9-OAHPA increases basal metabolism and insulin sensitivity but disrupts liver homeostasis in healthy mice. J Nutr Biochem 2020; 79:108361. [DOI: 10.1016/j.jnutbio.2020.108361] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/24/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
|
299
|
Lei W, Duan R, Li J, Liu X, Huston A, Boyce BF, Yao Z. The IAP Antagonist SM-164 Eliminates Triple-Negative Breast Cancer Metastasis to Bone and Lung in Mice. Sci Rep 2020; 10:7004. [PMID: 32332865 PMCID: PMC7181667 DOI: 10.1038/s41598-020-64018-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/08/2020] [Indexed: 12/17/2022] Open
Abstract
The most challenging issue for breast cancer (BC) patients is metastasis to other organs because current therapies do not prevent or eliminate metastatic BC. Here, we show that SM-164, a small molecule inhibitor, which degrades inhibitor of apoptosis proteins (IAPs), eliminated early-stage metastases and reduced progression of advanced BC metastasis from MDA-MB-231 BC cells in bones and lungs of nude mice. Mechanistically, SM-164-induced BC cell death is TNFα-dependent, with TNFα produced by IL-4-polarized macrophages triggering MDA-MB-231 cell apoptosis in combination with SM-164. SM-164 also inhibited expression of RANKL, which mediates interactions between metastatic BC and host microenvironment cells and induces osteoclast-mediated osteolysis. SM-164 did not kill adriamycin-resistant BC cells, while adriamycin inhibited SM-164-resistant BC cell growth, similar to parental cells. We conclude that SM-164 is a promising therapeutic agent for early stage bone and lung metastasis from triple-negative breast cancer that should be given prior to conventional chemotherapy.
Collapse
Affiliation(s)
- Wei Lei
- Department of Pathology and Laboratory Medicine, and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Department of Medical Imaging, Henan University First Affiliated Hospital, 357 Ximen Street, Kaifeng, Henan, 475001, P.R. China
| | - Rong Duan
- Department of Pathology and Laboratory Medicine, and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Jinbo Li
- Department of Pathology and Laboratory Medicine, and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Xin Liu
- Department of Pathology and Laboratory Medicine, and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Alissa Huston
- Department of Medicine, Hematology/Oncology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Brendan F Boyce
- Department of Pathology and Laboratory Medicine, and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Zhenqiang Yao
- Department of Pathology and Laboratory Medicine, and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
300
|
Zhang J, Le TD, Liu L, Li J. Inferring and analyzing module-specific lncRNA-mRNA causal regulatory networks in human cancer. Brief Bioinform 2020; 20:1403-1419. [PMID: 29401217 DOI: 10.1093/bib/bby008] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/08/2018] [Indexed: 12/12/2022] Open
Abstract
It is known that noncoding RNAs (ncRNAs) cover ∼98% of the transcriptome, but do not encode proteins. Among ncRNAs, long noncoding RNAs (lncRNAs) are a large and diverse class of RNA molecules, and are thought to be a gold mine of potential oncogenes, anti-oncogenes and new biomarkers. Although only a minority of lncRNAs is functionally characterized, it is clear that they are important regulators to modulate gene expression and involve in many biological functions. To reveal the functions and regulatory mechanisms of lncRNAs, it is vital to understand how lncRNAs regulate their target genes for implementing specific biological functions. In this article, we review the computational methods for inferring lncRNA-mRNA interactions and the third-party databases of storing lncRNA-mRNA regulatory relationships. We have found that the existing methods are based on statistical correlations between the gene expression levels of lncRNAs and mRNAs, and may not reveal gene regulatory relationships which are causal relationships. Moreover, these methods do not consider the modularity of lncRNA-mRNA regulatory networks, and thus, the networks identified are not module-specific. To address the above two issues, we propose a novel method, MSLCRN, to infer and analyze module-specific lncRNA-mRNA causal regulatory networks. We have applied it into glioblastoma multiforme, lung squamous cell carcinoma, ovarian cancer and prostate cancer, respectively. The experimental results show that MSLCRN, as an expression-based method, could be a useful complementary method to study lncRNA regulations.
Collapse
|