251
|
Abstract
The zinc metalloproteinase, PAPP-A, enhances local insulin-like growth factor (IGF) action through cleavage of inhibitory IGF-binding proteins, thereby increasing IGF available for IGF receptor-mediated cell proliferation, migration and survival. In many tumors, enhanced IGF receptor signaling is associated with tumor growth, invasion and metastasis. We will first discuss PAPP-A structure and function, and post-translational inhibitors of PAPP-A expression or proteolytic activity. We will then review the evidence supporting an important role for PAPP-A in many cancers, including breast, ovarian and lung cancer, and Ewing sarcoma.
Collapse
Affiliation(s)
- Cheryl A Conover
- From the Division of Endocrinology Mayo ClinicRochester, Minnesota, USA
| | - Claus Oxvig
- Department of Molecular Biology and GeneticsAarhus University, Aarhus, Denmark
| |
Collapse
|
252
|
Wang H, Zhou L, Xie K, Wu J, Song P, Xie H, Zhou L, Liu J, Xu X, Shen Y, Zheng S. Polylactide-tethered prodrugs in polymeric nanoparticles as reliable nanomedicines for the efficient eradication of patient-derived hepatocellular carcinoma. Theranostics 2018; 8:3949-3963. [PMID: 30083272 PMCID: PMC6071539 DOI: 10.7150/thno.26161] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/02/2018] [Indexed: 12/26/2022] Open
Abstract
Nanomedicines have been extensively explored for cancer treatment, and their efficacies have arguably been proven in various cancer cell-derived xenograft (CDX) mouse models. However, they generally fail to show such therapeutic advantages in patients because of the huge pathological differences between human tumors and CDX models. Methods: In this study, we fabricated colloidal ultrastable nanomedicines from polymeric prodrugs and compared the therapeutic efficacies in hepatocellular carcinoma (HCC) CDX and clinically relevant patient-derived xenograft (PDX) mouse models, which closely mimic human tumor pathological properties. Working towards this goal, we esterified a highly potent SN38 (7-ethyl-10-hydroxycamptothecin) agent using oligo- or polylactide (oLA or PLA) segments with varying molecular weights. Results: The resulting SN38 conjugates assembled with polyethylene glycol-block-polylactic acid to form systemically injectable nanomedicines. With increasing PLA chain length, the SN38 conjugates showed extended retention in the nanoparticles and superior antitumor activity, completely eradicating xenografted tumors in both mouse models. Our data implicate that these small-sized and ultrastable nanomedicines might also efficaciously treat cancer in patients. More interestingly, the systemically delivered nanomedicines notably alleviated the incidence of bloody diarrhea. Conclusion: Our studies demonstrate that the appropriate molecular editing of anticancer drugs enables the generation of better tolerated cytotoxic nanotherapy for cancer, which represents a potentially useful scaffold for further clinical translation.
Collapse
Affiliation(s)
- Hangxiang Wang
- The First Affiliated Hospital; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health; Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine; Zhejiang University, Hangzhou 310003, P. R. China
- Shenzhen Key Laboratory of Hepatobiliary Disease, Shenzhen Third People's Hospital, Shenzhen 518112, P. R. China
| | - Liqian Zhou
- The First Affiliated Hospital; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health; Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine; Zhejiang University, Hangzhou 310003, P. R. China
| | - Ke Xie
- The First Affiliated Hospital; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health; Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine; Zhejiang University, Hangzhou 310003, P. R. China
| | - Jiaping Wu
- The First Affiliated Hospital; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health; Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine; Zhejiang University, Hangzhou 310003, P. R. China
| | - Penghong Song
- The First Affiliated Hospital; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health; Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine; Zhejiang University, Hangzhou 310003, P. R. China
| | - Haiyang Xie
- The First Affiliated Hospital; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health; Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine; Zhejiang University, Hangzhou 310003, P. R. China
| | - Lin Zhou
- The First Affiliated Hospital; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health; Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine; Zhejiang University, Hangzhou 310003, P. R. China
| | - Jialin Liu
- Shenzhen Key Laboratory of Hepatobiliary Disease, Shenzhen Third People's Hospital, Shenzhen 518112, P. R. China
| | - Xiao Xu
- The First Affiliated Hospital; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health; Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine; Zhejiang University, Hangzhou 310003, P. R. China
| | - Youqing Shen
- Center for Bionanoengineering and State Key Laboratory of Chemical Engineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Shusen Zheng
- The First Affiliated Hospital; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health; Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine; Zhejiang University, Hangzhou 310003, P. R. China
| |
Collapse
|
253
|
Tamura H, Higa A, Hoshi H, Hiyama G, Takahashi N, Ryufuku M, Morisawa G, Yanagisawa Y, Ito E, Imai JI, Dobashi Y, Katahira K, Soeda S, Watanabe T, Fujimori K, Watanabe S, Takagi M. Evaluation of anticancer agents using patient-derived tumor organoids characteristically similar to source tissues. Oncol Rep 2018; 40:635-646. [PMID: 29917168 PMCID: PMC6072291 DOI: 10.3892/or.2018.6501] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/04/2018] [Indexed: 12/18/2022] Open
Abstract
Patient-derived tumor xenograft models represent a promising preclinical cancer model that better replicates disease, compared with traditional cell culture; however, their use is low-throughput and costly. To overcome this limitation, patient-derived tumor organoids (PDOs) were established from human lung, ovarian and uterine tumor tissues, among others, to accurately and efficiently recapitulate the tissue architecture and function. PDOs were able to be cultured for >6 months, and formed cell clusters with similar morphologies to their source tumors. Comparative histological and comprehensive gene expression analyses proved that the characteristics of PDOs were similar to those of their source tumors, even following long-term expansion in culture. At present, 53 PDOs have been established by the Fukushima Translational Research Project, and were designated as Fukushima PDOs (F-PDOs). In addition, the in vivo tumorigenesis of certain F-PDOs was confirmed using a xenograft model. The present study represents a detailed analysis of three F-PDOs (termed REME9, 11 and 16) established from endometrial cancer tissues. These were used for cell growth inhibition experiments using anticancer agents. A suitable high-throughput assay system, with 96- or 384-well plates, was designed for each F-PDO, and the efficacy of the anticancer agents was subsequently evaluated. REME9 and 11 exhibited distinct responses and increased resistance to the drugs, as compared with conventional cancer cell lines (AN3 CA and RL95-2). REME9 and 11, which were established from tumors that originated in patients who did not respond to paclitaxel and carboplatin (the standard chemotherapy for endometrial cancer), exhibited high resistance (half-maximal inhibitory concentration >10 µM) to the two agents. Therefore, assay systems using F-PDOs may be utilized to evaluate anticancer agents using conditions that better reflect clinical conditions, compared with conventional methods using cancer cell lines, and to discover markers that identify the pharmacological effects of anticancer agents.
Collapse
Affiliation(s)
- Hirosumi Tamura
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Arisa Higa
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Hirotaka Hoshi
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Gen Hiyama
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Nobuhiko Takahashi
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Masae Ryufuku
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Gaku Morisawa
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Yuka Yanagisawa
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Emi Ito
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Jun-Ichi Imai
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Yuu Dobashi
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Kiyoaki Katahira
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Shu Soeda
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Takafumi Watanabe
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Keiya Fujimori
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Shinya Watanabe
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Motoki Takagi
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| |
Collapse
|
254
|
Jiang Y, Zhao J, Zhang Y, Li K, Li T, Chen X, Zhao S, Zhao S, Liu K, Dong Z. Establishment of lung cancer patient-derived xenograft models and primary cell lines for lung cancer study. J Transl Med 2018; 16:138. [PMID: 29788985 PMCID: PMC5964929 DOI: 10.1186/s12967-018-1516-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/16/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The overall 5-year survival rate of lung cancer is about 15% even with therapeutic drugs like tyrosine kinase inhibitors. Ideal models are urgently needed for exploring mechanisms and finding new drugs. Patient-derived xenografts (PDX) models and primary cells are both used to screen therapeutic regimens for cancer. However, PDX models and primary cells from the same patient are difficult to establish. Their consistency to the original tumor tissue is not well studied. METHODS 31 lung cancer patient tissues were procured to establish the lung cancer PDX models and primary cell lines. Tumor growth measurements, histological and immunohistochemistry analysis, Western blotting, EGFR and K-RAS mutation detection and gefitinib sensitive assay were performed to evaluate the characteristic of established PDX models. Immunofluorescence analysis, anchorage-independent cell growth, Western blotting and gefitinib sensitive assay were performed to assay the characteristic of established primary cell lines. The whole-exome sequencing was used to compare the characteristic of the patient's tumor tissue, established PDX and primary cell line. RESULTS Twenty-one lung cancer PDX models (67.74%, 21/31) and ten primary cell lines (32.25%, 10/31) were established from patients' tumor tissues. The histology and pathological immunohistochemistry of PDX xenografts are consistent with the patients' tumor samples. Various signal pathways were activated in different PDX models (n = 5) and primary cell lines (n = 2). EGFR mutation PDX model and primary cell line (LG1) were sensitive to gefitinib treatment. The expression of CK8/18, TTF1 and NapsinA in LG1 and LG50 primary cells were also positive. And the activated signal pathways were activated in LG1 and LG50 primary cell lines. Furthermore, the gene mutation in PDX tumor tissues and primary cell line (LG50) was consistent with the mutation in LG50 patient's tumor tissues. CONCLUSION These data suggested that established lung cancer PDX models and primary cell lines reserved mostly molecular characteristics of primary lung cancer and could provide a new tool to further understand the mechanisms and explore new therapeutic strategies.
Collapse
Affiliation(s)
- Yanan Jiang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001 China
- Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, 450001 China
| | - Jimin Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001 China
- Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, 450001 China
| | - Yi Zhang
- The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052 China
| | - Ke Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Tiepeng Li
- The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, 450008 China
| | - Xinhuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001 China
- Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, 450001 China
| | - Simin Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Song Zhao
- The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052 China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001 China
- Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, 450001 China
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008 China
| | - Ziming Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001 China
- Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, 450001 China
| |
Collapse
|
255
|
Jeena K, Manju CA, Sajesh KM, Gowd GS, Sivanarayanan TB, Mol C D, Manohar M, Nambiar A, Nair SV, Koyakutty M. Brain-Tumor-Regenerating 3D Scaffold-Based Primary Xenograft Models for Glioma Stem Cell Targeted Drug Screening. ACS Biomater Sci Eng 2018; 5:139-148. [PMID: 33405881 DOI: 10.1021/acsbiomaterials.8b00249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Glioma stem cells (GSC) present a critical therapeutic challenge for glioblastoma multiforme (GBM). Drug screening against GSC demands development of novel in vitro and in vivo platforms that can mimic brain microenvironment and support GSC maintenance and tumorigenesis. Here, we report, a 3-dimensionel (3D) biomimetic macro-porous scaffold developed by incorporating hyaluronic acid, porcine brain extra cellular matrix (ECM) and growth factors that facilitates regeneration of GBM from primary GSCs, ex vivo and in vivo. After characterizing with human and rat GBM cell lines and neurospheres, human GSCs expressing Notch1, Sox-2, Nestin, and CD133 biomarkers were isolated from GBM patients, cultured in the 3D scaffold, and implanted subcutaneously in nude mice to develop patient derived xenograft (PDX) models. Aggressive growth pattern of PDX with formation of intratumoral vascularization was monitored by magnetic resonance imaging (MRI). Histopathological and phenotypial features of the original tumors were retained in the PDX models. We used this regenerated GBM platform to screen novel siRNA nanotherapeutics targeting Notch, Sox-2, FAK signaling for its ability to inhibit the tumorigenic potential of GSCs. Current clinical drug, Temozolomide and an anticancer phytochemical, nanocurcumin, were used as controls. The siRNA nanoparticles showed excellent efficacy in inhibiting tumorigenesis by GSCs in vivo. Our study suggests that the brain-ECM mimicking scaffold can regenerate primary gliomas from GSCs in vitro and in vivo, and the same can be used as an effective platform for screening drugs against glioma stem cells.
Collapse
Affiliation(s)
- Kottarapat Jeena
- Amrita Centre for Nanosciences and Molecular Medicine, ‡Central Lab Animal Facility, and §Department of Pathology, Amrita Vishwa Vidyapeetham, Amrita Institute of Medical Sciences, Ponekkara, Kochi 682 041, India
| | - Cheripelil Abraham Manju
- Amrita Centre for Nanosciences and Molecular Medicine, Central Lab Animal Facility, and §Department of Pathology, Amrita Vishwa Vidyapeetham, Amrita Institute of Medical Sciences, Ponekkara, Kochi 682 041, India
| | - Koythatta Meethalveedu Sajesh
- Amrita Centre for Nanosciences and Molecular Medicine, Central Lab Animal Facility, and Department of Pathology, Amrita Vishwa Vidyapeetham, Amrita Institute of Medical Sciences, Ponekkara, Kochi 682 041, India
| | - G Siddaramana Gowd
- Amrita Centre for Nanosciences and Molecular Medicine, Central Lab Animal Facility, and Department of Pathology, Amrita Vishwa Vidyapeetham, Amrita Institute of Medical Sciences, Ponekkara, Kochi 682 041, India
| | - Thangalazhi Balakrishnan Sivanarayanan
- Amrita Centre for Nanosciences and Molecular Medicine, Central Lab Animal Facility, and Department of Pathology, Amrita Vishwa Vidyapeetham, Amrita Institute of Medical Sciences, Ponekkara, Kochi 682 041, India
| | - Deepthi Mol C
- Amrita Centre for Nanosciences and Molecular Medicine, Central Lab Animal Facility, and Department of Pathology, Amrita Vishwa Vidyapeetham, Amrita Institute of Medical Sciences, Ponekkara, Kochi 682 041, India
| | - Maneesh Manohar
- Amrita Centre for Nanosciences and Molecular Medicine, Central Lab Animal Facility, and Department of Pathology, Amrita Vishwa Vidyapeetham, Amrita Institute of Medical Sciences, Ponekkara, Kochi 682 041, India
| | - Ajit Nambiar
- Amrita Centre for Nanosciences and Molecular Medicine, Central Lab Animal Facility, and Department of Pathology, Amrita Vishwa Vidyapeetham, Amrita Institute of Medical Sciences, Ponekkara, Kochi 682 041, India
| | - Shantikumar V Nair
- Amrita Centre for Nanosciences and Molecular Medicine, Central Lab Animal Facility, and Department of Pathology, Amrita Vishwa Vidyapeetham, Amrita Institute of Medical Sciences, Ponekkara, Kochi 682 041, India
| | - Manzoor Koyakutty
- Amrita Centre for Nanosciences and Molecular Medicine, Central Lab Animal Facility, and Department of Pathology, Amrita Vishwa Vidyapeetham, Amrita Institute of Medical Sciences, Ponekkara, Kochi 682 041, India
| |
Collapse
|
256
|
Preclinical evaluation of novel fatty acid synthase inhibitors in primary colorectal cancer cells and a patient-derived xenograft model of colorectal cancer. Oncotarget 2018; 9:24787-24800. [PMID: 29872506 PMCID: PMC5973868 DOI: 10.18632/oncotarget.25361] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/26/2018] [Indexed: 12/14/2022] Open
Abstract
Fatty Acid Synthase (FASN), a key enzyme of de novo lipogenesis, is upregulated in many cancers including colorectal cancer (CRC); increased FASN expression is associated with poor prognosis. Potent FASN inhibitors (TVBs) developed by 3-V Biosciences demonstrate anti-tumor activity in vitro and in vivo and a favorable tolerability profile in a Phase I clinical trial. However, CRC characteristics associated with responsiveness to FASN inhibition are not fully understood. We evaluated the effect of TVB-3664 on tumor growth in nine CRC patient-derived xenografts (PDXs) and investigated molecular and metabolic changes associated with CRC responsiveness to FASN inhibition. CRC cells and PDXs showed a wide range of sensitivity to FASN inhibition. TVB-3664 treatment showed significant response (reduced tumor volume) in 30% of cases. Anti-tumor effect of TVB-3664 was associated with a significant decrease in a pool of adenine nucleotides and alterations in lipid composition including a significant reduction in fatty acids and phospholipids and an increase in lactosylceramide and sphingomyelin in PDXs sensitive to FASN inhibition. Moreover, Akt, Erk1/2 and AMPK were major oncogenic pathways altered by TVBs. In summary, we demonstrated that novel TVB inhibitors show anti-tumor activity in CRC and this activity is associated with a decrease in activation of Akt and Erk1/2 oncogenic pathways and significant alteration of lipid composition of tumors. Further understanding of genetic and metabolic characteristics of tumors susceptible to FASN inhibition may enable patient selection and personalized medicine approaches in CRC.
Collapse
|
257
|
He S, Hu B, Li C, Lin P, Tang WG, Sun YF, Feng FYM, Guo W, Li J, Xu Y, Yao QL, Zhang X, Qiu SJ, Zhou J, Fan J, Li YX, Li H, Yang XR. PDXliver: a database of liver cancer patient derived xenograft mouse models. BMC Cancer 2018; 18:550. [PMID: 29743053 PMCID: PMC5944069 DOI: 10.1186/s12885-018-4459-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 04/30/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Liver cancer is the second leading cause of cancer-related deaths and characterized by heterogeneity and drug resistance. Patient-derived xenograft (PDX) models have been widely used in cancer research because they reproduce the characteristics of original tumors. However, the current studies of liver cancer PDX mice are scattered and the number of available PDX models are too small to represent the heterogeneity of liver cancer patients. To improve this situation and to complement available PDX models related resources, here we constructed a comprehensive database, PDXliver, to integrate and analyze liver cancer PDX models. DESCRIPTION Currently, PDXliver contains 116 PDX models from Chinese liver cancer patients, 51 of them were established by the in-house PDX platform and others were curated from the public literatures. These models are annotated with complete information, including clinical characteristics of patients, genome-wide expression profiles, germline variations, somatic mutations and copy number alterations. Analysis of expression subtypes and mutated genes show that PDXliver represents the diversity of human patients. Another feature of PDXliver is storing drug response data of PDX mice, which makes it possible to explore the association between molecular profiles and drug sensitivity. All data can be accessed via the Browse and Search pages. Additionally, two tools are provided to interactively visualize the omics data of selected PDXs or to compare two groups of PDXs. CONCLUSION As far as we known, PDXliver is the first public database of liver cancer PDX models. We hope that this comprehensive resource will accelerate the utility of PDX models and facilitate liver cancer research. The PDXliver database is freely available online at: http://www.picb.ac.cn/PDXliver/.
Collapse
Affiliation(s)
- Sheng He
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210 China
- CAS Key Laboratory for Computational Biology, CAS-MPG Partner Institute for Computing Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
- University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Bo Hu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, 200032 China
| | - Chao Li
- CAS Key Laboratory for Computational Biology, CAS-MPG Partner Institute for Computing Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Ping Lin
- CAS Key Laboratory for Computational Biology, CAS-MPG Partner Institute for Computing Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
- University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Wei-Guo Tang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, 200032 China
| | - Yun-Fan Sun
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, 200032 China
| | - Fang-You-Min Feng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210 China
- CAS Key Laboratory for Computational Biology, CAS-MPG Partner Institute for Computing Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
- University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Wei Guo
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, 200032 China
| | - Jia Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210 China
- CAS Key Laboratory for Computational Biology, CAS-MPG Partner Institute for Computing Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
- University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Yang Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, 200032 China
| | - Qian-Lan Yao
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200031 China
| | - Xin Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, 200032 China
| | - Shuang-Jian Qiu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, 200032 China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, 200032 China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, 200032 China
| | - Yi-Xue Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210 China
- CAS Key Laboratory for Computational Biology, CAS-MPG Partner Institute for Computing Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Hong Li
- CAS Key Laboratory for Computational Biology, CAS-MPG Partner Institute for Computing Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Xin-Rong Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, 200032 China
| |
Collapse
|
258
|
Poetz O, Dieze T, Hammer H, Weiß F, Sommersdorf C, Templin MF, Esdar C, Zimmermann A, Stevanovic S, Bedke J, Stenzl A, Joos TO. Peptide-Based Sandwich Immunoassay for the Quantification of the Membrane Transporter Multidrug Resistance Protein 1. Anal Chem 2018; 90:5788-5794. [DOI: 10.1021/acs.analchem.8b00152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Oliver Poetz
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany
- SIGNATOPE GmbH Markwiesenstrasse 55, 72770 Reutlingen, Germany
| | - Theresa Dieze
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany
| | - Helen Hammer
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany
- SIGNATOPE GmbH Markwiesenstrasse 55, 72770 Reutlingen, Germany
| | - Frederik Weiß
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany
- SIGNATOPE GmbH Markwiesenstrasse 55, 72770 Reutlingen, Germany
| | - Cornelia Sommersdorf
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany
- SIGNATOPE GmbH Markwiesenstrasse 55, 72770 Reutlingen, Germany
| | - Markus F. Templin
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany
| | - Christina Esdar
- Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | | | - Stefan Stevanovic
- Eberhard Karls University, Department of Immunology, 72076 Tübingen, Germany
| | - Jens Bedke
- Eberhard Karls University, Department of Urology, 72076 Tübingen, Germany
| | - Arnulf Stenzl
- Eberhard Karls University, Department of Urology, 72076 Tübingen, Germany
| | - Thomas O. Joos
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany
- SIGNATOPE GmbH Markwiesenstrasse 55, 72770 Reutlingen, Germany
| |
Collapse
|
259
|
Turner TH, Alzubi MA, Sohal SS, Olex AL, Dozmorov MG, Harrell JC. Characterizing the efficacy of cancer therapeutics in patient-derived xenograft models of metastatic breast cancer. Breast Cancer Res Treat 2018. [PMID: 29532339 DOI: 10.1007/s10549-018-4748-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE Basal-like breast cancers are aggressive and often metastasize to vital organs. Treatment is largely limited to chemotherapy. This study aims to characterize the efficacy of cancer therapeutics in vitro and in vivo within the primary tumor and metastatic setting, using patient-derived xenograft (PDX) models. METHODS We employed two basal-like, triple-negative PDX models, WHIM2 and WHIM30. PDX cells, obtained from mammary tumors grown in mice, were treated with twelve cancer therapeutics to evaluate their cytotoxicity in vitro. Four of the effective drugs-carboplatin, cyclophosphamide, bortezomib, and dacarbazine-were tested in vivo for their efficacy in treating mammary tumors, and metastases generated by intracardiac injection of tumor cells. RESULTS RNA sequencing showed that global gene expression of PDX cells grown in the mammary gland was similar to those tested in culture. In vitro, carboplatin was cytotoxic to WHIM30 but not WHIM2, whereas bortezomib, dacarbazine, and cyclophosphamide were cytotoxic to both lines. Yet, these drugs were ineffective in treating both primary and metastatic WHIM2 tumors in vivo. Carboplatin and cyclophosphamide were effective in treating WHIM30 mammary tumors and reducing metastatic burden in the brain, liver, and lungs. WHIM2 and WHIM30 metastases showed distinct patterns of cytokeratin and vimentin expression, regardless of treatment, suggesting that different tumor cell subpopulations may preferentially seed in different organs. CONCLUSIONS This study highlights the utility of PDX models for studying the efficacy of therapeutics in reducing metastatic burden in specific organs. The differential treatment responses between two PDX models of the same intrinsic subtype, in both the primary and metastatic setting, recapitulates the challenges faced in treating cancer patients and highlights the need for combination therapies and predictive biomarkers.
Collapse
Affiliation(s)
- Tia H Turner
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23298, USA.,Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Mohammad A Alzubi
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23298, USA.,Integrative Life Sciences Doctoral Program, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Sahib S Sohal
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Amy L Olex
- Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Mikhail G Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - J Chuck Harrell
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23298, USA. .,Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, 23298, USA. .,Integrative Life Sciences Doctoral Program, Virginia Commonwealth University, Richmond, VA, 23298, USA. .,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
260
|
NIRF Optical/PET Dual-Modal Imaging of Hepatocellular Carcinoma Using Heptamethine Carbocyanine Dye. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:4979746. [PMID: 29706843 PMCID: PMC5863326 DOI: 10.1155/2018/4979746] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 01/13/2018] [Accepted: 02/05/2018] [Indexed: 12/17/2022]
Abstract
Combining near-infrared fluorescence (NIRF) and nuclear imaging techniques provides a novel approach for hepatocellular carcinoma (HCC) diagnosis. Here, we report the synthesis and characteristics of a dual-modality NIRF optical/positron emission tomography (PET) imaging probe using heptamethine carbocyanine dye and verify its feasibility in both nude mice and rabbits with orthotopic xenograft liver cancer. This dye, MHI-148, is an effective cancer-specific NIRF imaging agent and shows preferential uptake and retention in liver cancer. The corresponding NIRF imaging intensity reaches 109/cm2 tumor area at 24 h after injection in mice with HCC subcutaneous tumors. The dye can be further conjugated with radionuclide 68Ga (68Ga-MHI-148) for PET tracing. We applied the dual-modality methodology toward the detection of HCC in both patient-derived orthotopic xenograft (PDX) models and rabbit orthotopic transplantation models. NIRF/PET images showed clear tumor delineation after probe injection (MHI-148 and 68Ga-MHI-148). The tumor-to-muscle (T/M) standardized uptake value (SUV) ratios were obtained from PET at 1 h after injection of 68Ga-MHI-148, which was helpful for effectively capturing small tumors in mice (0.5 cm × 0.3 cm) and rabbits (1.2 cm × 1.8 cm). This cancer-targeting NIRF/PET dual-modality imaging probe provides a proof of principle for noninvasive detection of deep-tissue tumors in mouse and rabbit and is a promising technique for more accurate and early detection of HCC.
Collapse
|
261
|
Allison Stewart C, Tong P, Cardnell RJ, Sen T, Li L, Gay CM, Masrorpour F, Fan Y, Bara RO, Feng Y, Ru Y, Fujimoto J, Kundu ST, Post LE, Yu K, Shen Y, Glisson BS, Wistuba I, Heymach JV, Gibbons DL, Wang J, Byers LA. Dynamic variations in epithelial-to-mesenchymal transition (EMT), ATM, and SLFN11 govern response to PARP inhibitors and cisplatin in small cell lung cancer. Oncotarget 2018; 8:28575-28587. [PMID: 28212573 PMCID: PMC5438673 DOI: 10.18632/oncotarget.15338] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 01/19/2017] [Indexed: 12/16/2022] Open
Abstract
Small cell lung cancer (SCLC) is one of the most aggressive forms of cancer, with a 5-year survival <7%. A major barrier to progress is the absence of predictive biomarkers for chemotherapy and novel targeted agents such as PARP inhibitors. Using a high-throughput, integrated proteomic, transcriptomic, and genomic analysis of SCLC patient-derived xenografts (PDXs) and profiled cell lines, we identified biomarkers of drug sensitivity and determined their prevalence in patient tumors. In contrast to breast and ovarian cancer, PARP inhibitor response was not associated with mutations in homologous recombination (HR) genes (e.g., BRCA1/2) or HRD scores. Instead, we found several proteomic markers that predicted PDX response, including high levels of SLFN11 and E-cadherin and low ATM. SLFN11 and E-cadherin were also significantly associated with in vitro sensitivity to cisplatin and topoisomerase1/2 inhibitors (all commonly used in SCLC). Treatment with cisplatin or PARP inhibitors downregulated SLFN11 and E-cadherin, possibly explaining the rapid development of therapeutic resistance in SCLC. Supporting their functional role, silencing SLFN11 reduced in vitro sensitivity and drug-induced DNA damage; whereas ATM knockdown or pharmacologic inhibition enhanced sensitivity. Notably, SCLC with mesenchymal phenotypes (i.e., loss of E-cadherin and high epithelial-to-mesenchymal transition (EMT) signature scores) displayed striking alterations in expression of miR200 family and key SCLC genes (e.g., NEUROD1, ASCL1, ALDH1A1, MYCL1). Thus, SLFN11, EMT, and ATM mediate therapeutic response in SCLC and warrant further clinical investigation as predictive biomarkers.
Collapse
Affiliation(s)
- C Allison Stewart
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pan Tong
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert J Cardnell
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Triparna Sen
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lerong Li
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Carl M Gay
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Fatemah Masrorpour
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - You Fan
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rasha O Bara
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ying Feng
- BioMarin Pharmaceutical, San Rafael, CA 94901, USA
| | - Yuanbin Ru
- BioMarin Pharmaceutical, San Rafael, CA 94901, USA
| | - Junya Fujimoto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Samrat T Kundu
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Karen Yu
- BioMarin Pharmaceutical, San Rafael, CA 94901, USA
| | - Yuqiao Shen
- BioMarin Pharmaceutical, San Rafael, CA 94901, USA
| | - Bonnie S Glisson
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ignacio Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John V Heymach
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Don L Gibbons
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lauren Averett Byers
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
262
|
Williams JA. Using PDX for Preclinical Cancer Drug Discovery: The Evolving Field. J Clin Med 2018; 7:E41. [PMID: 29498669 PMCID: PMC5867567 DOI: 10.3390/jcm7030041] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/19/2018] [Accepted: 02/21/2018] [Indexed: 12/21/2022] Open
Abstract
The ability to create patient derived xenografts (PDXs) has evolved considerably from the breakthrough of the development of immune compromised mice. How researchers in drug discovery have utilized PDX of certain cancer types has also changed from traditionally selecting a few models to profile a drug, to opting to assess inter-tumor response heterogeneity by screening across a broad range of tumor models, and subsequently to enable clinical stratification strategies. As with all models and methodologies, imperfections with this approach are apparent, and our understanding of the fidelity of these models continues to expand. To date though, they are still viewed as one of the most faithful modeling systems in oncology. Currently, there are many efforts ongoing to increase the utility and translatability of PDXs, including introducing a human immune component to enable immunotherapy studies.
Collapse
Affiliation(s)
- Juliet A Williams
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA.
| |
Collapse
|
263
|
Yen CS, Choy CS, Huang WJ, Huang SW, Lai PY, Yu MC, Shiue C, Hsu YF, Hsu MJ. A Novel Hydroxamate-Based Compound WMJ-J-09 Causes Head and Neck Squamous Cell Carcinoma Cell Death via LKB1-AMPK-p38MAPK-p63-Survivin Cascade. Front Pharmacol 2018; 9:167. [PMID: 29545751 PMCID: PMC5837967 DOI: 10.3389/fphar.2018.00167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 02/15/2018] [Indexed: 01/04/2023] Open
Abstract
Growing evidence shows that hydroxamate-based compounds exhibit broad-spectrum pharmacological properties including anti-tumor activity. However, the precise mechanisms underlying hydroxamate derivative-induced cancer cell death remain incomplete understood. In this study, we explored the anti-tumor mechanisms of a novel aliphatic hydroxamate-based compound, WMJ-J-09, in FaDu head and neck squamous cell carcinoma (HNSCC) cells. WMJ-J-09 induced G2/M cell cycle arrest and apoptosis in FaDu cells. These actions were associated with liver kinase B1 (LKB1), AMP-activated protein kinase (AMPK) and p38 mitogen-activated protein kinase (p38MAPK) activation, transcription factor p63 phosphorylation, as well as modulation of p21 and survivin. LKB1-AMPK-p38MAPK signaling blockade reduced WMJ-J-09’s enhancing effects in p63 phosphorylation, p21 elevation and survivin reduction. Moreover, WMJ-J-09 caused an increase in α-tubulin acetylation and interfered with microtubule assembly. Furthermore, WMJ-J-09 suppressed the growth of subcutaneous FaDu xenografts in vivo. Taken together, WMJ-J-09-induced FaDu cell death may involve LKB1-AMPK-p38MAPK-p63-survivin signaling cascade. HDACs inhibition and disruption of microtubule assembly may also contribute to WMJ-J-09’s actions in FaDu cells. This study suggests that WMJ-J-09 may be a potential lead compound and warrant the clinical development in the treatment of HNSCC.
Collapse
Affiliation(s)
- Chia-Sheng Yen
- Department of General Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Cheuk-Sing Choy
- Department of Emergency, Min-Sheng General Hospital, Taoyuan, Taiwan.,Department of Community Medicine, En Chu Kong Hospital, New Taipei, Taiwan
| | - Wei-Jan Huang
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Shiu-Wen Huang
- Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan
| | - Pin-Ye Lai
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Meng-Chieh Yu
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching Shiue
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ya-Fen Hsu
- Division of General Surgery, Department of Surgery, Landseed Hospital, Taoyuan, Taiwan
| | - Ming-Jen Hsu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
264
|
MEOHAS WALTER, GRANATO REGINAALCANTARA, GUIMARÃES JOÃOANTONIOMATHEUS, DIAS RHAYRABRAGA, FORTUNA-COSTA ANNELIESE, DUARTE MARIAEUGENIALEITE. PATIENT-DERIVED XENOGRAFTS AS A PRECLINICAL MODEL FOR BONE SARCOMAS. ACTA ORTOPEDICA BRASILEIRA 2018; 26:98-102. [PMID: 29983625 PMCID: PMC6032614 DOI: 10.1590/1413-785220182602186998] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Objective: The purpose of this study was to reproduce a mouse model of bone sarcomas for use in cancer research. Methods: A fresh sample of the tumor tissue was implanted subcutaneously into nude mice. When the patient-derived xenograft (PDX) reached a volume of 1500 mm3, it was harvested for re-implantation into additional mice. Histology was used to compare the morphological characteristics of different generations of sarcoma xenografts with the primary tumor. Results: Sixteen sarcoma tissue samples were engrafted into nude mice. Nine patients were diagnosed with osteosarcoma, two with chondrosarcoma, two with malignant peripheral nerve sheath tumor, one with synovial sarcoma, one with pleomorphic sarcoma, and one with Ewing’s sarcoma. PDX tumors were generated in 11 of the 16 implanted specimens (69% success rate in P1). Six P1 tumors grew sufficiently for transfer into additional mice, producing the P2 generation, and three P2 tumors established the P3 generation. Conclusion: PDX tumors generated from bone sarcomas were successfully established in immunodeficient mice and reproduced the characteristics of the primary tumor with a high degree of fidelity. The preclinical PDX model described herein may represent an important tool for translational oncology research and for evaluating therapeutic strategies for bone sarcomas. Level of Evidence I; Experimental study.
Collapse
Affiliation(s)
- WALTER MEOHAS
- Instituto Nacional de Traumatologia e Ortopedia, Brazil
| | | | | | | | | | | |
Collapse
|
265
|
Zhao X, Wang X, Sun W, Cheng K, Qin H, Han X, Lin Y, Wang Y, Lang J, Zhao R, Zheng X, Zhao Y, shi J, Hao J, Miao QR, Nie G, Ren H. Precision design of nanomedicines to restore gemcitabine chemosensitivity for personalized pancreatic ductal adenocarcinoma treatment. Biomaterials 2018; 158:44-55. [DOI: 10.1016/j.biomaterials.2017.12.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/18/2017] [Accepted: 12/18/2017] [Indexed: 12/20/2022]
|
266
|
Bhadury J, Einarsdottir BO, Podraza A, Bagge RO, Stierner U, Ny L, Dávila López M, Nilsson JA. Hypoxia-regulated gene expression explains differences between melanoma cell line-derived xenografts and patient-derived xenografts. Oncotarget 2018; 7:23801-11. [PMID: 27009863 PMCID: PMC5029664 DOI: 10.18632/oncotarget.8181] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/04/2016] [Indexed: 01/09/2023] Open
Abstract
Cell line-derived xenografts (CDXs) are an integral part of drug efficacy testing during development of new pharmaceuticals against cancer but their accuracy in predicting clinical responses in patients have been debated. Patient-derived xenografts (PDXs) are thought to be more useful for predictive biomarker identification for targeted therapies, including in metastatic melanoma, due to their similarities to human disease. Here, tumor biopsies from fifteen patients and ten widely-used melanoma cell lines were transplanted into immunocompromised mice to generate PDXs and CDXs, respectively. Gene expression profiles generated from the tumors of these PDXs and CDXs clustered into distinct groups, despite similar mutational signatures. Hypoxia-induced gene signatures and overexpression of the hypoxia-regulated miRNA hsa-miR-210 characterized CDXs. Inhibition of hsa-miR-210 with decoys had little phenotypic effect in vitro but reduced sensitivity to MEK1/2 inhibition in vivo, suggesting down-regulation of this miRNA could result in development of resistance to MEK inhibitors.
Collapse
Affiliation(s)
- Joydeep Bhadury
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Berglind O Einarsdottir
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Agnieszka Podraza
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Roger Olofsson Bagge
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ulrika Stierner
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lars Ny
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marcela Dávila López
- The Bioinformatics Core Facility at the University of Gothenburg, Gothenburg, Sweden
| | - Jonas A Nilsson
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
267
|
Zhao N, Zhang C, Zhao Y, Bai B, An J, Zhang H, Wu JB, Shi C. Optical imaging of gastric cancer with near-infrared heptamethine carbocyanine fluorescence dyes. Oncotarget 2018; 7:57277-57289. [PMID: 27329598 PMCID: PMC5302988 DOI: 10.18632/oncotarget.10031] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/26/2016] [Indexed: 12/17/2022] Open
Abstract
Near-infrared fluorescence (NIRF) imaging agents are promising tools for noninvasive cancer imaging. Here, we explored the tumor-specific targeting ability of NIRF heptamethine carbocyanine MHI-148 dye in cultured gastric cancer cells, gastric cancer cell-derived and patient-derived tumor xenograft (PDX) models. We show that the NIRF dye specifically accumulated in tumor regions of both xenograft models, suggesting the potential utility of the dye for tumor-specific imaging and targeting in gastric cancer. We also demonstrated significant correlations between NIRF signal intensity and tumor volume in PDX models. Mechanistically, the higher cellular uptake of MHI-148 in gastric cancer cells than in normal cells was stimulated by hypoxia and activation of a group of organic anion-transporting polypeptide (OATP) genes. Importantly, this NIRF dye was not retained in inflammatory stomach tissues induced by gastric ulcer in mice. In addition, fresh clinical gastric tumor specimens, when perfused with NIR dye, exhibited increased uptake of NIR dye in situ. Together, these results show the possibility of using NIRF dyes as novel candidate agents for clinical imaging and detection of gastric cancer.
Collapse
Affiliation(s)
- Ningning Zhao
- Laboratory Animal Center, the Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Caiqin Zhang
- Laboratory Animal Center, the Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yong Zhao
- Laboratory Animal Center, the Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Bing Bai
- Laboratory Animal Center, the Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jiaze An
- Laboratory Animal Center, the Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Hai Zhang
- Laboratory Animal Center, the Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jason Boyang Wu
- Urologic Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Changhong Shi
- Laboratory Animal Center, the Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
268
|
Hantel C, Shapiro I, Poli G, Chiapponi C, Bidlingmaier M, Reincke M, Luconi M, Jung S, Beuschlein F. Targeting heterogeneity of adrenocortical carcinoma: Evaluation and extension of preclinical tumor models to improve clinical translation. Oncotarget 2018; 7:79292-79304. [PMID: 27764813 PMCID: PMC5346714 DOI: 10.18632/oncotarget.12685] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/22/2016] [Indexed: 11/30/2022] Open
Abstract
In recent years it has been recognized that clinical translation of novel therapeutic strategies for patients with adrenocortical carcinoma (ACC) often fails. These disappointing results indicate that the currently utilized tumor models only poorly reflect relevant pathophysiology and, thereby, do not predict clinical applicability of novel pharmacological approaches. However, also the development of new preclinical ACC models has remained a challenge with only one human cell line (NCI-H295R) and one recently established human pediatric xenograft model (SJ-ACC3) being available for this highly heterogeneous malignancy. Our current study furthermore reveals a poor reproducibility of therapeutic action between different clones of the most commonly used tumor model NCI-H295R. In an attempt to broaden the current preclinical armamentarium, we aimed at the development of patient-individual tumor models. During these studies, one xenograft (MUC-1) displayed marked engraftment and sustained tumor growth. MUC-1 tumor analysis revealed highly vascularized, proliferating and SF-1 positive xenografts. In a next step, we characterized all currently available human tumor models for ACC for Ki67, SF-1 and EGF-receptor status in comparison with MUC-1-xenografts. In addition, we established a primary culture, which is now viable over 31 passages with sustained nuclear SF-1 and cytoplasmic 3βHSD immuno-positivity. Subsequent investigation of therapeutic responsiveness upon treatment with the current systemic gold standard EDP-M (etoposide, doxorubicin, cisplatin and mitotane) demonstrated maintenance of the clinically observed drug resistance for MUC-1 exclusively. In summary, we provide evidence for a novel patient-derived tumor model with the potential to improve clinical prediction of novel therapeutic strategies for patients with ACC.
Collapse
Affiliation(s)
- Constanze Hantel
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität, Munich, Germany
| | - Igor Shapiro
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität, Munich, Germany
| | - Giada Poli
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | | | - Martin Bidlingmaier
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität, Munich, Germany
| | - Martin Reincke
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität, Munich, Germany
| | - Michaela Luconi
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Sara Jung
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität, Munich, Germany
| | - Felix Beuschlein
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
269
|
Sereti E, Karagianellou T, Kotsoni I, Magouliotis D, Kamposioras K, Ulukaya E, Sakellaridis N, Zacharoulis D, Dimas K. Patient Derived Xenografts (PDX) for personalized treatment of pancreatic cancer: emerging allies in the war on a devastating cancer? J Proteomics 2018; 188:107-118. [PMID: 29398619 DOI: 10.1016/j.jprot.2018.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/10/2018] [Accepted: 01/19/2018] [Indexed: 12/14/2022]
Abstract
The prognosis of pancreatic ductal adenocarcinoma (PDAC), the eighth most lethal cancer for men and ninth for women worldwide, remains dismal. The increasing rates of deaths by PDAC indicate that the overall management of the disease in 21st century is still insufficient. Thus it is obvious that there is an unmet need to improve management of PDAC by finding new biomarkers to screen high risk patients, confirm diagnosis, and predict response to treatment as well more efficacious and safer treatments. Patient Derived Xenografts (PDX) have been developed as a new promising tool in an effort to mirror genetics, tumor heterogeneity and cancer microenvironment of the primary tumor. Herein we aim to give an updated overview of the current status and the perspectives of PDX in the search for the identification of novel biomarkers and improved therapeutic outcomes for PDAC but also their use as a valuable tool towards individualized treatments to improve the outcome of the disease. Furthermore, we critically review the applications, advantages, limitations, and perspectives of PDX in the research towards an improved management of PDAC. SIGNIFICANCE This review provides a comprehensive overview of the current status and the potential role as well as the challenges of PDX in the road to fight one of the most lethal cancers in the developed countries, pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Evangelia Sereti
- Department of Pharmacology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | | | - Ioanna Kotsoni
- Department of Pharmacology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Dimitrios Magouliotis
- Department of Pharmacology, Faculty of Medicine, University of Thessaly, Larissa, Greece; Department of Surgery, University Hospital of Larissa, Larissa, Greece
| | - Konstantinos Kamposioras
- Department of Medical Oncology, The Mid Yorkshire Hospitals NHS Trust, Wakefield, United Kingdom
| | - Engin Ulukaya
- Istinye University, Faculty of Medicine, Department of Clinical Biochemistry, Istanbul, Turkey
| | - Nikos Sakellaridis
- Department of Pharmacology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | | | - Konstantinos Dimas
- Department of Pharmacology, Faculty of Medicine, University of Thessaly, Larissa, Greece.
| |
Collapse
|
270
|
Innovative methods for biomarker discovery in the evaluation and development of cancer precision therapies. Cancer Metastasis Rev 2018; 37:125-145. [PMID: 29392535 DOI: 10.1007/s10555-017-9710-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The discovery of biomarkers able to detect cancer at an early stage, to evaluate its aggressiveness, and to predict the response to therapy remains a major challenge in clinical oncology and precision medicine. In this review, we summarize recent achievements in the discovery and development of cancer biomarkers. We also highlight emerging innovative methods in biomarker discovery and provide insights into the challenges faced in their evaluation and validation.
Collapse
|
271
|
Lu YX, Wu QN, Chen DL, Chen LZ, Wang ZX, Ren C, Mo HY, Chen Y, Sheng H, Wang YN, Wang Y, Lu JH, Wang DS, Zeng ZL, Wang F, Wang FH, Li YH, Ju HQ, Xu RH. Pharmacological Ascorbate Suppresses Growth of Gastric Cancer Cells with GLUT1 Overexpression and Enhances the Efficacy of Oxaliplatin Through Redox Modulation. Am J Cancer Res 2018; 8:1312-1326. [PMID: 29507622 PMCID: PMC5835938 DOI: 10.7150/thno.21745] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/16/2017] [Indexed: 12/27/2022] Open
Abstract
Rationale: The antitumor activity of high-dose ascorbate has been re-evaluated recently, but the mechanism underlying cell-specific sensitivity to ascorbate has not yet been clarified. Methods: The effects of high-dose ascorbate on gastric cancer were assessed using cancer cell lines with high and low expression of GLUT1 via flow cytometry and colony formation assays in vitro and patient-derived xenografts in vivo. Results: In this study, we demonstrated that gastric cancer cells with high GLUT1 expression were more sensitive to ascorbate treatment than cells with low GLUT1 expression. GLUT1 knockdown significantly reversed the therapeutic effects of pharmacological ascorbate, while enforced expression of GLUT1 enhanced the sensitivity to ascorbate treatment. The efficacy of pharmacological ascorbate administration in mice bearing cell line-based and patient-derived xenografts was influenced by GLUT1 protein levels. Mechanistically, ascorbate depleted intracellular glutathione, generated oxidative stress and induced DNA damage. The combination of pharmacological ascorbate with genotoxic agents, including oxaliplatin and irinotecan, synergistically inhibited gastric tumor growth in mouse models. Conclusions: The current study showed that GLUT1 expression was inversely correlated with sensitivity of gastric cancer cells to pharmacological ascorbate and suggested that GLUT1 expression in gastric cancer may serve as a marker for sensitivity to pharmacological ascorbate.
Collapse
|
272
|
Kim BG, Kang S, Han HH, Lee JH, Kim JE, Lee SH, Cho NH. Transcriptome-wide analysis of compression-induced microRNA expression alteration in breast cancer for mining therapeutic targets. Oncotarget 2018; 7:27468-78. [PMID: 27027350 PMCID: PMC5053664 DOI: 10.18632/oncotarget.8322] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/14/2016] [Indexed: 01/04/2023] Open
Abstract
Tumor growth–generated mechanical compression may increase or decrease expression of microRNAs, leading to tumor progression. However, little is known about whether mechanical compression induces aberrant expression of microRNAs in cancer and stromal cells. To investigate the relationship between compression and microRNA expression, microRNA array analysis was performed with breast cancer cell lines and cancer-associated fibroblasts (CAFs) exposed to different compressive conditions. In our study, mechanical compression induced alteration of microRNA expression level in breast cancer cells and CAFs. The alteration was greater in the breast cancer cells than CAFs. Mechanical compression mainly induced upregulation of microRNAs rather than downregulation. In a parallel mRNA array analysis, more than 25% of downregulated target genes were functionally involved in tumor suppression (apoptosis, cell adhesion, and cell cycle arrest), whereas generally less than 15% were associated with tumor progression (epithelial-mesenchymal transition, migration, invasion, and angiogenesis). Of all cells examined, MDA-MB-231 cells showed the largest number of compression-upregulated microRNAs. miR-4769-5p and miR-4446-3p were upregulated by compression in both MDA-MB-231 cells and CAFs. Our results suggest that mechanical compression induces changes in microRNA expression level, which contribute to tumor progression. In addition, miR-4769-5p and miR-4446-3p may be potential therapeutic targets for incurable cancers, such as triple negative breast cancer, in that this would reduce or prevent downregulation of tumor-suppressing genes in both the tumor and its microenvironment simultaneously.
Collapse
Affiliation(s)
- Baek Gil Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Suki Kang
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea.,Severance Biomedical Science Institute (SBSI), Yonsei University College of Medicine, Seoul, South Korea
| | - Hyun Ho Han
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Joo Hyun Lee
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji Eun Kim
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Hwan Lee
- Department of Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Nam Hoon Cho
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.,Severance Biomedical Science Institute (SBSI), Yonsei University College of Medicine, Seoul, South Korea.,Global 5-5-10 System Biology, Yonsei University, Seoul, South Korea
| |
Collapse
|
273
|
Burgenske DM, Monsma DJ, MacKeigan JP. Patient-Derived Xenograft Models of Colorectal Cancer: Procedures for Engraftment and Propagation. Methods Mol Biol 2018; 1765:307-314. [PMID: 29589317 DOI: 10.1007/978-1-4939-7765-9_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Preclinical compounds tested in animal models often demonstrate limited efficacy when transitioned into patients. As a result, individuals are assigned to treatment regimens that may be ineffective at treating their disease. The development of more clinically relevant models, such as patient-derived xenografts (PDXs), will (1) more completely mimic the human condition and (2) more accurately predict tumor responses to previously untested therapeutics.PDX models are clinically relevant as tumor tissue is implanted directly from human donor to the mouse recipient. Therefore, these models prevent cell population selection, intentional or unintentional, as the human tissue adapts to an in vitro, two-dimensional environment prior to implantation into a three-dimensional in vivo murine host. Often, cell heterogeneity and tumor architecture can be maintained from human to the PDX model in the mouse. This protocol describes the engraftment and propagation processes for establishing colorectal (CRC) PDX models in mice, using tumor tissue from human subjects.
Collapse
Affiliation(s)
- Danielle M Burgenske
- Center for Cancer Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - David J Monsma
- Center for Cancer Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA.,College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Jeffrey P MacKeigan
- Center for Cancer Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA. .,College of Human Medicine, Michigan State University, Grand Rapids, MI, USA.
| |
Collapse
|
274
|
Hisada Y, Mackman N. Mouse models of cancer-associated thrombosis. Thromb Res 2017; 164 Suppl 1:S48-S53. [PMID: 29306575 DOI: 10.1016/j.thromres.2017.12.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/22/2017] [Accepted: 12/27/2017] [Indexed: 10/18/2022]
Abstract
Cancer patients have an increased risk of venous thromboembolism (VTE) compared with the general population. Mouse models are used to better understand the mechanisms of cancer-associated thrombosis. Several mouse models of cancer-associated thrombosis have been developed that use different mouse strains, tumors, tumor sites and thrombosis models. In this review, we summarize these different models. These models have been used to determine the role of different pathways in cancer-associated thrombosis. For instance, they have revealed roles for tumor-derived tissue factor-positive microvesicles and neutrophil extracellular traps in thrombosis in tumor-bearing mice. A better understanding of the mechanisms of cancer-associated thrombosis may allow the development of new therapies to reduce thrombosis in cancer patients.
Collapse
Affiliation(s)
- Yohei Hisada
- Department of Medicine, Division of Hematology and Oncology, Thrombosis and Hemostasis Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; K. G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
| | - Nigel Mackman
- Department of Medicine, Division of Hematology and Oncology, Thrombosis and Hemostasis Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
275
|
Yoshida T, Kates M, Sopko NA, Liu X, Singh AK, Bishai WR, Joice G, McConkey DJ, Bivalacqua TJ. Ex vivo culture of tumor cells from N-methyl-N-nitrosourea-induced bladder cancer in rats: Development of organoids and an immortalized cell line. Urol Oncol 2017; 36:160.e23-160.e32. [PMID: 29288005 DOI: 10.1016/j.urolonc.2017.11.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/24/2017] [Accepted: 11/30/2017] [Indexed: 01/09/2023]
Abstract
OBJECTIVE We ex vivo cultured primary tumor cells from N-methyl-N-nitrosourea (MNU)-induced bladder tumors in rats and established an immortalized cell line from them. MATERIALS AND METHODS Bladder tumors in rats were induced by instillation of MNU into the murine bladder. Primary tumor cells were prepared by the cancer-tissue originated spheroid method. An immortalized cell line was established by co-culture with fibroblasts. The cultured tumor cells were molecularly and functionally characterized by quantitative real-time polymerase chain reaction, Western blot, growth assay, and transwell migration assay. RESULTS Primary tumor cells were successfully prepared as multicellular spheroids from MNU-induced bladder tumors. The differentiation marker expression patterns observed in the original tumors were largely retained in the spheroids. We succeeded in establishing a cell line from the spheroids and named it T-MNU-1. Although basal markers (CK14 and CK5) were enriched in T-MNU-1 compared to the spheroids, T-MNU-1 expressed both luminal and basal markers. T-MNU-1 was able to migrate through a transwell. CONCLUSIONS Tumor cells in MNU-induced bladder tumors were successfully cultured ex vivo as organoids, and an immortalized cell line was also established from them. The ex vivo models offer a platform that enables analysis of intrinsic characteristics of tumor cells excluding influence of microenvironment in MNU-induced bladder tumors.
Collapse
Affiliation(s)
- Takahiro Yoshida
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD.
| | - Max Kates
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Nikolai A Sopko
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Xiaopu Liu
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Alok K Singh
- Center for Tuberculosis Research, Johns Hopkins School of Medicine, Baltimore, MD
| | - William R Bishai
- Center for Tuberculosis Research, Johns Hopkins School of Medicine, Baltimore, MD
| | - Gregory Joice
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD
| | - David J McConkey
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD; The Johns Hopkins Greenberg Bladder Cancer Institute, Baltimore, MD
| | - Trinity J Bivalacqua
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD; The Johns Hopkins Greenberg Bladder Cancer Institute, Baltimore, MD
| |
Collapse
|
276
|
Ory EC, Chen D, Chakrabarti KR, Zhang P, Andorko JI, Jewell CM, Losert W, Martin SS. Extracting microtentacle dynamics of tumor cells in a non-adherent environment. Oncotarget 2017; 8:111567-111580. [PMID: 29340075 PMCID: PMC5762343 DOI: 10.18632/oncotarget.22874] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 11/15/2017] [Indexed: 12/12/2022] Open
Abstract
During metastasis, tumor cells dynamically change their cytoskeleton to traverse through a variety of non-adherent microenvironments, including the vasculature or lymphatics. Due to the challenges of imaging drift in non-adhered tumor cells, the dynamic cytoskeletal phenotypes are poorly understood. We present a new approach to analyze the dynamic cytoskeletal phenotypes of non-adhered cells that support microtentacles (McTNs), which are cell surface projections implicated in metastatic reattachment. Combining a recently-developed cell tethering method with a novel image analysis framework allowed McTN attribute extraction. Full cell outlines, number of McTNs, and distance of McTN tips from the cell body boundary were calculated by integrating a rotating anisotropic filtering method for identifying thin features with retinal segmentation and active contour algorithms. Tethered cells behave like free-floating cells; however tethering reduces cell drift and improves the accuracy of McTN measurements. Tethering cells does not significantly alter McTN number, but rather allows better visualization of existing McTNs. In drug treatment experiments, stabilizing tubulin with paclitaxel significantly increases McTN length, while destabilizing tubulin with colchicine significantly decreases McTN length. Finally, we quantify McTN dynamics by computing the time delay autocorrelations of 2 composite phenotype metrics (cumulative McTN tip distance, cell perimeter:cell body ratio). Our automated analysis demonstrates that treatment with paclitaxel increases total McTN amount and colchicine reduces total McTN amount, while paclitaxel also reduces McTN dynamics. This analysis method enables rapid quantitative measurement of tumor cell drug responses within non-adherent microenvironments, using the small numbers of tumor cells that would be available from patient samples.
Collapse
Affiliation(s)
- Eleanor C. Ory
- Department of Physics, IPST, and IREAP, University of Maryland, College Park, MD 20742, USA
- Marlene and Stewart Greenebaum NCI Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Desu Chen
- Department of Physics, IPST, and IREAP, University of Maryland, College Park, MD 20742, USA
| | - Kristi R. Chakrabarti
- Marlene and Stewart Greenebaum NCI Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Peipei Zhang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - James I. Andorko
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Christopher M. Jewell
- Marlene and Stewart Greenebaum NCI Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- United States Department of Veterans Affairs, Baltimore, MD 21201, USA
| | - Wolfgang Losert
- Department of Physics, IPST, and IREAP, University of Maryland, College Park, MD 20742, USA
- Marlene and Stewart Greenebaum NCI Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Stuart S. Martin
- Marlene and Stewart Greenebaum NCI Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
277
|
Blomme A, Van Simaeys G, Doumont G, Costanza B, Bellier J, Otaka Y, Sherer F, Lovinfosse P, Boutry S, Palacios AP, De Pauw E, Hirano T, Yokobori T, Hustinx R, Bellahcène A, Delvenne P, Detry O, Goldman S, Nishiyama M, Castronovo V, Turtoi A. Murine stroma adopts a human-like metabolic phenotype in the PDX model of colorectal cancer and liver metastases. Oncogene 2017; 37:1237-1250. [PMID: 29242606 DOI: 10.1038/s41388-017-0018-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/22/2017] [Accepted: 10/19/2017] [Indexed: 12/26/2022]
Abstract
Cancer research is increasingly dependent of patient-derived xenograft model (PDX). However, a major point of concern regarding the PDX model remains the replacement of the human stroma with murine counterpart. In the present work we aimed at clarifying the significance of the human-to-murine stromal replacement for the fidelity of colorectal cancer (CRC) and liver metastasis (CRC-LM) PDX model. We have conducted a comparative metabolic analysis between 6 patient tumors and corresponding PDX across 4 generations. Metabolic signatures of cancer cells and stroma were measured separately by MALDI-imaging, while metabolite changes in entire tumors were quantified using mass spectrometry approach. Measurement of glucose metabolism was also conducted in vivo using [18F]-fluorodeoxyglucose (FDG) and positron emission tomography (PET). In CRC/CRC-LM PDX model, human stroma was entirely replaced at the second generation. Despite this change, MALDI-imaging demonstrated that the metabolic profiles of both stromal and cancer cells remained stable for at least four generations in comparison to the original patient material. On the tumor level, profiles of 86 water-soluble metabolites as well as 93 lipid mediators underlined the functional stability of the PDX model. In vivo PET measurement of glucose uptake (reflecting tumor glucose metabolism) supported the ex vivo observations. Our data show for the first time that CRC/CRC-LM PDX model maintains the functional stability at the metabolic level despite the early replacement of the human stroma by murine cells. The findings demonstrate that human cancer cells actively educate murine stromal cells during PDX development to adopt the human-like phenotype.
Collapse
Affiliation(s)
- Arnaud Blomme
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Gaetan Van Simaeys
- Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium.,Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles, Charleroi (Gosselies), Brussels, Belgium
| | - Gilles Doumont
- Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles, Charleroi (Gosselies), Brussels, Belgium
| | - Brunella Costanza
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Justine Bellier
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Yukihiro Otaka
- Department of Molecular Pharmacology and Oncology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Félicie Sherer
- Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium.,Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles, Charleroi (Gosselies), Brussels, Belgium
| | - Pierre Lovinfosse
- Nuclear Medicine and Oncological Imaging Division, Medical Physics Department, Liège University Hospital, Liège, Belgium
| | - Sébastien Boutry
- NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry, University of Mons, Mons, Belgium.,Center for Microscopy and Molecular Imaging, Université de Mons (UMONS), Charleroi (Gosselies), Belgium
| | - Ana Perez Palacios
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, University of Liège, Liège, Belgium
| | - Touko Hirano
- Laboratory for Analytical Instruments, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Takehiko Yokobori
- Department of Molecular Pharmacology and Oncology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Roland Hustinx
- Nuclear Medicine and Oncological Imaging Division, Medical Physics Department, Liège University Hospital, Liège, Belgium
| | - Akeila Bellahcène
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Philippe Delvenne
- Department of Pathology, University Hospital, University of Liège, Liège, Belgium
| | - Olivier Detry
- Department of Abdominal Surgery, University Hospital, University of Liège, Liège, Belgium
| | - Serge Goldman
- Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium.,Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles, Charleroi (Gosselies), Brussels, Belgium
| | - Masahiko Nishiyama
- Department of Molecular Pharmacology and Oncology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Vincent Castronovo
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Andrei Turtoi
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium. .,Tumor Microenvironment and Resistance to Treatment Lab, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France. .,Institut du Cancer, Montpellier, Montpellier, France. .,INSERM, U1194, Montpellier, France. .,Université, Montpellier, Montpellier, France.
| |
Collapse
|
278
|
Borodovsky A, McQuiston TJ, Stetson D, Ahmed A, Whitston D, Zhang J, Grondine M, Lawson D, Challberg SS, Zinda M, Pollok BA, Dougherty BA, D'Cruz CM. Generation of stable PDX derived cell lines using conditional reprogramming. Mol Cancer 2017; 16:177. [PMID: 29212548 PMCID: PMC5719579 DOI: 10.1186/s12943-017-0745-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 11/21/2017] [Indexed: 01/28/2023] Open
Abstract
Efforts to develop effective cancer therapeutics have been hindered by a lack of clinically predictive preclinical models which recapitulate this complex disease. Patient derived xenograft (PDX) models have emerged as valuable tools for translational research but have several practical limitations including lack of sustained growth in vitro. In this study, we utilized Conditional Reprogramming (CR) cell technology- a novel cell culture system facilitating the generation of stable cultures from patient biopsies- to establish PDX-derived cell lines which maintain the characteristics of the parental PDX tumor. Human lung and ovarian PDX tumors were successfully propagated using CR technology to create stable explant cell lines (CR-PDX). These CR-PDX cell lines maintained parental driver mutations and allele frequency without clonal drift. Purified CR-PDX cell lines were amenable to high throughput chemosensitivity screening and in vitro genetic knockdown studies. Additionally, re-implanted CR-PDX cells proliferated to form tumors that retained the growth kinetics, histology, and drug responses of the parental PDX tumor. CR technology can be used to generate and expand stable cell lines from PDX tumors without compromising fundamental biological properties of the model. It offers the ability to expand PDX cells in vitro for subsequent 2D screening assays as well as for use in vivo to reduce variability, animal usage and study costs. The methods and data detailed here provide a platform to generate physiologically relevant and predictive preclinical models to enhance drug discovery efforts.
Collapse
Affiliation(s)
| | - Travis J McQuiston
- Propagenix Inc, 9605 Medical Center Drive #325, Rockville, MD, 20850, USA
| | - Daniel Stetson
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca, Boston, USA
| | - Ambar Ahmed
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca, Boston, USA
| | - David Whitston
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca, Boston, USA
| | - Jingwen Zhang
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca, Boston, USA
| | - Michael Grondine
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca, Boston, USA
| | - Deborah Lawson
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca, Boston, USA
| | - Sharon S Challberg
- Propagenix Inc, 9605 Medical Center Drive #325, Rockville, MD, 20850, USA
| | - Michael Zinda
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca, Boston, USA
| | - Brian A Pollok
- Propagenix Inc, 9605 Medical Center Drive #325, Rockville, MD, 20850, USA
| | | | - Celina M D'Cruz
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca, Boston, USA.
| |
Collapse
|
279
|
Bazou D, Maimon N, Gruionu G, Munn LL. Self-assembly of vascularized tissue to support tumor explants in vitro. Integr Biol (Camb) 2017; 8:1301-1311. [PMID: 27787529 DOI: 10.1039/c6ib00108d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Testing the efficacy of cancer drugs requires functional assays that recapitulate the cell populations, anatomy and biological responses of human tumors. Although current animal models and in vitro cell culture platforms are informative, they have significant shortcomings. Mouse models can reproduce tissue-level and systemic responses to tumor growth and treatments observed in humans, but xenografts from patients often do not grow, or require months to develop. On the other hand, current in vitro assays are useful for studying the molecular bases of tumorigenesis or drug activity, but often lack the appropriate in vivo cell heterogeneity and natural microenvironment. Therefore, there is a need for novel tools that allow rapid analysis of patient-derived tumors in a robust and representative microenvironment. We have developed methodology for maintaining harvested tumor tissue in vitro by placing them in a support bed with self-assembled stroma and vasculature. The harvested biopsy or tumor explant integrates with the stromal bed and vasculature, providing the correct extracellular matrix (collagen I, IV, fibronectin), associated stromal cells, and a lumenized vessel network. Our system provides a new tool that will allow ex vivo drug-screening and can be adapted for the guidance of patient-specific therapeutic strategies.
Collapse
Affiliation(s)
- Despina Bazou
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, 100 Blossom Street, Boston, Massachusetts 02114, USA.
| | - Nir Maimon
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, 100 Blossom Street, Boston, Massachusetts 02114, USA.
| | - Gabriel Gruionu
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, USA
| | - Lance L Munn
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, 100 Blossom Street, Boston, Massachusetts 02114, USA.
| |
Collapse
|
280
|
Hasmim M, Bruno S, Azzi S, Gallerne C, Michel JG, Chiabotto G, Lecoz V, Romei C, Spaggiari GM, Pezzolo A, Pistoia V, Angevin E, Gad S, Ferlicot S, Messai Y, Kieda C, Clay D, Sabatini F, Escudier B, Camussi G, Eid P, Azzarone B, Chouaib S. Isolation and characterization of renal cancer stem cells from patient-derived xenografts. Oncotarget 2017; 7:15507-24. [PMID: 26551931 PMCID: PMC4941257 DOI: 10.18632/oncotarget.6266] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 01/06/2023] Open
Abstract
As rapidly developing patient-derived xenografts (PDX) could represent potential sources of cancer stem cells (CSC), we selected and characterized non-cultured PDX cell suspensions from four different renal carcinomas (RCC). Only the cell suspensions from the serial xenografts (PDX-1 and PDX-2) of an undifferentiated RCC (RCC-41) adapted to the selective CSC medium. The cell suspension derived from the original tumor specimen (RCC-41-P-0) did not adapt to the selective medium and strongly expressed CSC-like markers (CD133 and CD105) together with the non-CSC tumor marker E-cadherin. In comparison, PDX-1 and PDX-2 cells exhibited evolution in their phenotype since PDX-1 cells were CD133high/CD105-/Ecadlow and PDX-2 cells were CD133low/CD105-/Ecad-. Both PDX subsets expressed additional stem cell markers (CD146/CD29/OCT4/NANOG/Nestin) but still contained non-CSC tumor cells. Therefore, using different cell sorting strategies, we characterized 3 different putative CSC subsets (RCC-41-PDX-1/CD132+, RCC-41-PDX-2/CD133-/EpCAMlow and RCC-41-PDX-2/CD133+/EpCAMbright). In addition, transcriptomic analysis showed that RCC-41-PDX-2/CD133− over-expressed the pluripotency gene ERBB4, while RCC-41-PDX-2/CD133+ over-expressed several tumor suppressor genes. These three CSC subsets displayed ALDH activity, formed serial spheroids and developed serial tumors in SCID mice, although RCC-41-PDX-1/CD132+ and RCC-41-PDX-2/CD133+ displayed less efficiently the above CSC properties. RCC-41-PDX-1/CD132+ tumors showed vessels of human origin with CSC displaying peri-vascular distribution. By contrast, RCC-41-PDX-2 originated tumors exhibiting only vessels of mouse origin without CSC peri-vascular distribution. Altogether, our results indicate that PDX murine microenvironment promotes a continuous redesign of CSC phenotype, unmasking CSC subsets potentially present in a single RCC or generating ex novo different CSC-like subsets.
Collapse
Affiliation(s)
- Meriem Hasmim
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus, Villejuif, France.,INSERM UMR 1014, Lavoisier Building, Paul Brousse Hospital, Villejuif, France
| | - Stefania Bruno
- Department of Molecular Biotechnology and Healthy Science, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Sandy Azzi
- INSERM UMR 1014, Lavoisier Building, Paul Brousse Hospital, Villejuif, France
| | - Cindy Gallerne
- INSERM UMR 1014, Lavoisier Building, Paul Brousse Hospital, Villejuif, France
| | - Julien Giron Michel
- INSERM UMR 1014, Lavoisier Building, Paul Brousse Hospital, Villejuif, France
| | - Giulia Chiabotto
- Department of Medical Science, University of Torino, Medical School, Torino, Italy
| | - Vincent Lecoz
- INSERM UMR 1014, Lavoisier Building, Paul Brousse Hospital, Villejuif, France
| | | | | | | | - Vito Pistoia
- Laboratory of Oncology Giannina Gaslini Institute, Genoa, Italy
| | - Eric Angevin
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus, Villejuif, France.,Medical Oncology Department, Gustave Roussy Campus, Villejuif, France
| | - Sophie Gad
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus, Villejuif, France.,Laboratoire de Génétique Oncologique EPHE, Ecole Pratique des Hautes Etudes, Paris, France
| | - Sophie Ferlicot
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus, Villejuif, France.,Université Paris-Sud, Assistance Publique-Hôpitaux de Paris, Service d'Anatomo-Pathologie, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Yosra Messai
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus, Villejuif, France
| | - Claudine Kieda
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Orléans, France
| | - Denis Clay
- INSERM UMR 972, Paul Brousse Hospital, Villejuif, France
| | - Federica Sabatini
- Stem Cell and Cell Therapy Laboratory, Istituto G. Gaslini, Genoa, Italy
| | - Bernard Escudier
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus, Villejuif, France.,Medical Oncology Department, Gustave Roussy Campus, Villejuif, France
| | - Giovanni Camussi
- Department of Medical Science, University of Torino, Medical School, Torino, Italy
| | - Pierre Eid
- INSERM UMR 1014, Lavoisier Building, Paul Brousse Hospital, Villejuif, France
| | | | - Salem Chouaib
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus, Villejuif, France
| |
Collapse
|
281
|
Gengenbacher N, Singhal M, Augustin HG. Preclinical mouse solid tumour models: status quo, challenges and perspectives. Nat Rev Cancer 2017; 17:751-765. [PMID: 29077691 DOI: 10.1038/nrc.2017.92] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oncology research in humans is limited to analytical and observational studies for obvious ethical reasons, with therapy-focused clinical trials being the one exception to this rule. Preclinical mouse tumour models therefore serve as an indispensable intermediate experimental model system bridging more reductionist in vitro research with human studies. Based on a systematic survey of preclinical mouse tumour studies published in eight scientific journals in 2016, this Analysis provides an overview of how contemporary preclinical mouse tumour biology research is pursued. It thereby identifies some of the most important challenges in this field and discusses potential ways in which preclinical mouse tumour models could be improved for better relevance, reproducibility and translatability.
Collapse
Affiliation(s)
- Nicolas Gengenbacher
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
| | - Mahak Singhal
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
- Department of Vascular Biology and Tumor Angiogenesis (CBTM), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Hellmut G Augustin
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
- Department of Vascular Biology and Tumor Angiogenesis (CBTM), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- German Cancer Consortium, 69120 Heidelberg, Germany
| |
Collapse
|
282
|
Taurozzi AJ, Beekharry R, Wantoch M, Labarthe MC, Walker HF, Seed RI, Simms M, Rodrigues G, Bradford J, van der Horst G, van der Pluijm G, Collins AT. Spontaneous development of Epstein-Barr Virus associated human lymphomas in a prostate cancer xenograft program. PLoS One 2017; 12:e0188228. [PMID: 29145505 PMCID: PMC5690647 DOI: 10.1371/journal.pone.0188228] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/02/2017] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer research is hampered by the lack of in vivo preclinical models that accurately reflect patient tumour biology and the clinical heterogeneity of human prostate cancer. To overcome these limitations we propagated and characterised a new collection of patient-derived prostate cancer xenografts. Tumour fragments from 147 unsupervised, surgical prostate samples were implanted subcutaneously into immunodeficient Rag2-/-γC-/- mice within 24 hours of surgery. Histologic and molecular characterisation of xenografts was compared with patient characteristics, including androgen-deprivation therapy, and exome sequencing. Xenografts were established from 47 of 147 (32%) implanted primary prostate cancers. Only 14% passaged successfully resulting in 20 stable lines; derived from 20 independent patient samples. Surprisingly, only three of the 20 lines (15%) were confirmed as prostate cancer; one line comprised of mouse stroma, and 16 were verified as human donor-derived lymphoid neoplasms. PCR for Epstein-Barr Virus (EBV) nuclear antigen, together with exome sequencing revealed that the lymphomas were exclusively EBV-associated. Genomic analysis determined that 14 of the 16 EBV+ lines had unique monoclonal or oligoclonal immunoglobulin heavy chain gene rearrangements, confirming their B-cell origin. We conclude that the generation of xenografts from tumour fragments can commonly result in B-cell lymphoma from patients carrying latent EBV. We recommend routine screening, of primary outgrowths, for latent EBV to avoid this phenomenon.
Collapse
Affiliation(s)
- Alberto J. Taurozzi
- Cancer Research Unit, Department of Biology, University of York, York, United Kingdom
| | | | - Michelle Wantoch
- Leeds Institute of Cancer & Pathology, University of Leeds, Leeds, United Kingdom
| | | | - Hannah F. Walker
- Cancer Research Unit, Department of Biology, University of York, York, United Kingdom
| | - Robert I. Seed
- Cancer Research Unit, Department of Biology, University of York, York, United Kingdom
| | - Matthew Simms
- Department of Urology, Castle Hill Hospital, Cottingham, United Kingdom
- Hull -York Medical School, University of York, York, United Kingdom
| | - Greta Rodrigues
- Department of Pathology, Hull Royal Infirmary, Hull, United Kingdom
| | - James Bradford
- Sheffield Institute for Nucleic Acids, Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | | | - Gabri van der Pluijm
- Department of Urology, Leiden University Medical School, Leiden, The Netherlands
| | - Anne T. Collins
- Cancer Research Unit, Department of Biology, University of York, York, United Kingdom
- * E-mail:
| |
Collapse
|
283
|
Wu JQ, Zhai J, Li CY, Tan AM, Wei P, Shen LZ, He MF. Patient-derived xenograft in zebrafish embryos: a new platform for translational research in gastric cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:160. [PMID: 29141689 PMCID: PMC5688753 DOI: 10.1186/s13046-017-0631-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/03/2017] [Indexed: 12/15/2022]
Abstract
Background Gastric cancer (GC) is among the most commonly cancer occurred in Asian, especially in China. With its high heterogeneity and few of validated drug targets, GC remains to be one of the most under explored areas of precision medicine. In this study, we aimed to establish an in vivo patient-derived xenograft (PDX) model based on zebrafish (Danio rerio) embryos, allowing for a rapid analysis of the angiogenic and invasive potentials, as well as a fast drug sensitivity testing. Methods Two human gastric cancer cell lines (AGS and SGC-7901) were xenografted into zebrafish embryos, their sensitivity to 5-FU were tested both in vitro and in vivo. Fourteen human primary cells from gastric cancer tissue were xenografted into zebrafish embryos, their proliferating, angiogenic and metastatic activities were evaluated in vivo. Sensitivity to 5-FU, docetaxel, and apatinib were also tested on primary samples from four patients. Results SGC-7901 showed higher sensitivity to 5-FU than AGS both in vitro (6.3 ± 0.9 μM vs.10.5 ± 1.8 μM) and in vivo. Nine out of fourteen patient samples were successfully transplanted in zebrafish embryos and all showed proliferating, angiogenic and metastatic potentials in the living embryos. Four cases showed varied sensitivity to the selected three chemotherapeutic drugs. Conclusions Our zebrafish PDX (zPDX) model is a preclinically reliable in vivo model for GC. The zPDX model is also a promising platform for the translational research and personalized treatment on GC. Electronic supplementary material The online version of this article (10.1186/s13046-017-0631-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jia-Qi Wu
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211800, People's Republic of China
| | - Jing Zhai
- Division of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China.,Department of Surgery Oncology, First Affiliated Hospital, Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Chong-Yong Li
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211800, People's Republic of China
| | - Ai-Min Tan
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical R&D Co. Ltd., Nanjing, Jiangsu, 210042, China
| | - Ping Wei
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211800, People's Republic of China
| | - Li-Zong Shen
- Division of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China.
| | - Ming-Fang He
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211800, People's Republic of China.
| |
Collapse
|
284
|
Zhang L, Liu Z, Yang K, Kong C, Liu C, Chen H, Huang J, Qian F. Tumor Progression of Non-Small Cell Lung Cancer Controlled by Albumin and Micellar Nanoparticles of Itraconazole, a Multitarget Angiogenesis Inhibitor. Mol Pharm 2017; 14:4705-4713. [PMID: 29068216 DOI: 10.1021/acs.molpharmaceut.7b00855] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Itraconazole (ITA), an old and widely prescribed antifungal drug with excellent safety profile, has more recently been demonstrated to be a multitarget antiangiogenesis agent affecting multiple angiogenic stimulatory signals and pathways, including vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), vascular endothelial growth factor receptor 2 (VEGFR2) glycosylation, and mammalian target of rapamycin (mTOR). In this study, we developed two nanoparticle formulations, i.e., polymer micelles (IP2K) and albumin nanoparticles (IBSA), to solubilize the extremely hydrophobic and insoluble ITA to allow intravenous administration and pharmacokinetics (PK)/pharmacodynamics (PD) comparisons. Although none of the formulations showed strong antiproliferation potency against non-small cell lung cancer (NSCLC) cells in vitro, when administrated at the equivalent ITA dose to a NSCLC patient-derived xenograft (PDX) model, IBSA retarded while IP2K accelerated the tumor growth. We attributed the cause of this paradox to formulation-dependent PK and vascular manipulation: IBSA demonstrated a more sustained PK with a Cmax of 60-70% and an AUC ∼2 times of those of IP2K, and alleviated the tumor hypoxia presumably through vascular normalization. In contrast, the high Cmax of IP2K elevated tumor hypoxia through a strong angiogenesis inhibition, which could have aggravated cancer aggressiveness and accelerated tumor growth. Furthermore, IBSA induced minimal hepatic and hematologic toxicities compared to IP2K and significantly enhanced the in vivo tumor inhibition activity of paclitaxel albumin nanoparticles when used in combination. These findings suggest that formulation and pharmacokinetics are critical aspects to be considered when designing the ITA angiogenesis therapy, and IBSA could potentially be assessed as a novel and safe multitarget angiogenesis therapy to be used in combination with other anticancer agents.
Collapse
Affiliation(s)
- Ling Zhang
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University , Beijing 100084, P. R. China
| | - Zhengsheng Liu
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University , Beijing 100084, P. R. China
| | - Kuan Yang
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University , Beijing 100084, P. R. China
| | - Chao Kong
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University , Beijing 100084, P. R. China
| | - Chun Liu
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University , Beijing 100084, P. R. China
| | - Huijun Chen
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University , Beijing 100084, P. R. China
| | - Jinfeng Huang
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medicine College , Beijing 100021, P. R. China
| | - Feng Qian
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University , Beijing 100084, P. R. China
| |
Collapse
|
285
|
Contreras-Zárate MJ, Ormond DR, Gillen AE, Hanna C, Day NL, Serkova NJ, Jacobsen BM, Edgerton SM, Thor AD, Borges VF, Lillehei KO, Graner MW, Kabos P, Cittelly DM. Development of Novel Patient-Derived Xenografts from Breast Cancer Brain Metastases. Front Oncol 2017; 7:252. [PMID: 29164052 PMCID: PMC5673842 DOI: 10.3389/fonc.2017.00252] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/09/2017] [Indexed: 12/21/2022] Open
Abstract
Brain metastases are an increasing burden among breast cancer patients, particularly for those with HER2+ and triple negative (TN) subtypes. Mechanistic insight into the pathophysiology of brain metastases and preclinical validation of therapies has relied almost exclusively on intracardiac injection of brain-homing cells derived from highly aggressive TN MDA-MB-231 and HER2+ BT474 breast cancer cell lines. Yet, these well characterized models are far from representing the tumor heterogeneity observed clinically and, due to their fast progression in vivo, their suitability to validate therapies for established brain metastasis remains limited. The goal of this study was to develop and characterize novel human brain metastasis breast cancer patient-derived xenografts (BM-PDXs) to study the biology of brain metastasis and to serve as tools for testing novel therapeutic approaches. We obtained freshly resected brain metastases from consenting donors with breast cancer. Tissue was immediately implanted in the mammary fat pad of female immunocompromised mice and expanded as BM-PDXs. Brain metastases from 3/4 (75%) TN, 1/1 (100%) estrogen receptor positive (ER+), and 5/9 (55.5%) HER2+ clinical subtypes were established as transplantable BM-PDXs. To facilitate tracking of metastatic dissemination using BM-PDXs, we labeled PDX-dissociated cells with EGFP-luciferase followed by reimplantation in mice, and generated a BM-derived cell line (F2-7). Immunohistologic analyses demonstrated that parental and labeled BM-PDXs retained expression of critical clinical markers such as ER, progesterone receptor, epidermal growth factor receptor, HER2, and the basal cell marker cytokeratin 5. Similarly, RNA sequencing analysis showed clustering of parental, labeled BM-PDXs and their corresponding cell line derivative. Intracardiac injection of dissociated cells from BM-E22-1, resulted in magnetic resonance imaging-detectable macrometastases in 4/8 (50%) and micrometastases (8/8) (100%) mice, suggesting that BM-PDXs remain capable of colonizing the brain at high frequencies. Brain metastases developed 8-12 weeks after ic injection, located to the brain parenchyma, grew around blood vessels, and elicited astroglia activation characteristic of breast cancer brain metastasis. These novel BM-PDXs represent heterogeneous and clinically relevant models to study mechanisms of brain metastatic colonization, with the added benefit of a slower progression rate that makes them suitable for preclinical testing of drugs in therapeutic settings.
Collapse
Affiliation(s)
| | - D. Ryan Ormond
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Austin E. Gillen
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Colton Hanna
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Nicole L. Day
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Natalie J. Serkova
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Britta M. Jacobsen
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Susan M. Edgerton
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Ann D. Thor
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Virginia F. Borges
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kevin O. Lillehei
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Michael W. Graner
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Peter Kabos
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Diana M. Cittelly
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
286
|
Abstract
Cancer is a leading cause of mortality and morbidity worldwide. Around 90% of deaths are caused by metastasis and just 10% by primary tumor. The advancement of treatment approaches is not at the same rhythm of the disease; making cancer a focal target of biomedical research. To enhance the understanding and prompts the therapeutic delivery; concepts of tissue engineering are applied in the development of in vitro models that can bridge between 2D cell culture and animal models, mimicking tissue microenvironment. Tumor spheroid represents highly suitable 3D organoid-like framework elucidating the intra and inter cellular signaling of cancer, like that formed in physiological niche. However, spheroids are of limited value in studying critical biological phenomenon such as tumor-stroma interactions involving extra cellular matrix or immune system. Therefore, a compelling need of tailoring spheroid technologies with physiologically relevant biomaterials or in silico models, is ever emerging. The diagnostic and prognostic role of spheroids rearrangements within biomaterials or microfluidic channel is indicative of patient management; particularly for the decision of targeted therapy. Fragmented information on available in vitro spheroid models and lack of critical analysis on transformation aspects of these strategies; pushes the urge to comprehensively overview the recent technological advancements (e.g. bioprinting, micro-fluidic technologies or use of biomaterials to attain the third dimension) in the shed of translationable cancer research. In present article, relationships between current models and their possible exploitation in clinical success is explored with the highlight of existing challenges in defining therapeutic targets and screening of drug efficacy.
Collapse
|
287
|
Abstract
Methods for assessing whether a single biomarker is prognostic or predictive in the context of a control and experimental treatment are well known. With a panel of biomarkers, each component biomarker potentially measuring sensitivity to a different drug, it is not obvious how to extend these methods. We consider two situations, which lead to different ways of defining whether a biomarker panel is prognostic or predictive. In one, there are multiple experimental targeted treatments, each with an associated biomarker assay of the relevant target in the panel, along with a control treatment; the extension of the single-biomarker scenario to this situation is straightforward. In the other situation, there are many (nontargeted) treatments and a single assay that can be used to assess the sensitivity of the patient's tumor to the different treatments. In addition to evaluating previous approaches to this situation, we propose using regression models with varying assumptions to assess such panel biomarkers. Missing biomarker data can be problematic with the regression models, and, after demonstrating that a multiple imputation procedure does not work, we suggest a modified regression model that can accommodate some forms of missing data. We also address the notions of qualitative interactions in the biomarker panel setting.
Collapse
Affiliation(s)
- Edward L Korn
- a Biometric Research Program, National Cancer Institute , Bethesda , Maryland , USA
| | - Boris Freidlin
- a Biometric Research Program, National Cancer Institute , Bethesda , Maryland , USA
| |
Collapse
|
288
|
Kwatra MM. A Rational Approach to Target the Epidermal Growth Factor Receptor in Glioblastoma. Curr Cancer Drug Targets 2017; 17:290-296. [PMID: 28029074 DOI: 10.2174/1568009616666161227091522] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 04/27/2016] [Accepted: 05/17/2016] [Indexed: 01/07/2023]
Abstract
Glioblastoma (GBM) is a deadly brain cancer, and all attempts to control it have failed so far. However, the future looks bright, as we now know the molecular landscape of GBM through the work of The Cancer Genome Atlas (TCGA) program. GBMs exhibit significant inter- and intratumoral heterogeneity, and to control this type of tumor, a personalized approach is required. One target, whose gene is amplified and mutated in a large number of GBMs, is the epidermal growth factor receptor (EGFR). But all attempts to target it have been unsuccessful. We attribute the reason for this failure to the molecular heterogeneity of EGFR in GBM, as well as to the poor brain penetration of previously tested EGFR-Tyrosine Kinase Inhibitors (EGFR-TKIs). In this review, we discuss the molecular heterogeneity of EGFR and provide rational preclinical and clinical guidelines for testing AZD9291, a third generation, irreversible EGFR-TKI with both a high affinity for EGFRvIII and excellent brain penetration.
Collapse
Affiliation(s)
- Madan M Kwatra
- Duke University Medical Center, Durham, P.O. Box 3094, NC 27710, United States
| |
Collapse
|
289
|
Patient-derived xenografts undergo mouse-specific tumor evolution. Nat Genet 2017; 49:1567-1575. [PMID: 28991255 PMCID: PMC5659952 DOI: 10.1038/ng.3967] [Citation(s) in RCA: 526] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 09/13/2017] [Indexed: 12/14/2022]
Abstract
Patient-derived xenografts (PDXs) have become a prominent cancer model system, as they are presumed to faithfully represent the genomic features of primary tumors. Here we monitored the dynamics of copy number alterations (CNAs) in 1,110 PDX samples across 24 cancer types. We observed rapid accumulation of CNAs during PDX passaging, often due to selection of pre-existing minor clones. CNA acquisition in PDXs was correlated with the tissue-specific levels of aneuploidy and genetic heterogeneity observed in primary tumors. However, the particular CNAs acquired during PDX passaging differed from those acquired during tumor evolution in patients. Several CNAs recurrently observed in primary tumors gradually disappeared in PDXs, indicating that events undergoing positive selection in humans can become dispensable during propagation in mice. Importantly, the genomic stability of PDXs was associated with their response to chemotherapy and targeted drugs. These findings have important implications for PDX-based modeling of human cancer.
Collapse
|
290
|
Liu Z, Delavan B, Roberts R, Tong W. Lessons Learned from Two Decades of Anticancer Drugs. Trends Pharmacol Sci 2017; 38:852-872. [DOI: 10.1016/j.tips.2017.06.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/09/2017] [Accepted: 06/19/2017] [Indexed: 02/08/2023]
|
291
|
Abstract
Animal models of cancer have been instrumental in advancing our understanding of the biology of tumor initiation and progression, in studying gene function and in performing preclinical studies aimed at testing novel therapies. Several animal models of the MEN1 syndrome have been generated in different organisms by introducing loss-of-function mutations in the orthologues of the human MEN1 gene. In this review, we will discuss MEN1 and MEN1-like models in Drosophila, mice and rats. These model systems with their specific advantages and limitations have contributed to elucidate the function of Menin in tumorigenesis, which turned out to be remarkably conserved from flies to mammals, as well as the biology of the disease. Mouse models of MEN1 closely resemble the human disease in terms of tumor spectrum and associated hormonal changes, although individual tumor frequencies are variable. Rats affected by the MENX (MEN1-like) syndrome share some features with MEN1 patients albeit they bear a germline mutation in Cdkn1b (p27) and not in Men1 Both Men1-knockout mice and MENX rats have been exploited for therapy-response studies testing novel drugs for efficacy against neuroendocrine tumors (NETs) and have provided promising leads for novel therapies. In addition to presenting well-established models of MEN1, we also discuss potential models which, if implemented, might broaden even further our knowledge of neuroendocrine tumorigenesis. In the future, patient-derived xenografts in zebrafish or mice might allow us to expand the tool-box currently available for preclinical studies of MEN1-associated tumors.
Collapse
Affiliation(s)
- Hermine Mohr
- Institute for Diabetes and CancerHelmholtz Zentrum München, Neuherberg, Germany
| | - Natalia S Pellegata
- Institute for Diabetes and CancerHelmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
292
|
Jung J, Seol HS, Chang S. The Generation and Application of Patient-Derived Xenograft Model for Cancer Research. Cancer Res Treat 2017; 50:1-10. [PMID: 28903551 PMCID: PMC5784646 DOI: 10.4143/crt.2017.307] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/08/2017] [Indexed: 12/26/2022] Open
Abstract
Establishing an appropriate preclinical model is crucial for translational cancer research. The most common way that has been adopted by far is grafting cancer cell lines, derived from patients. Although this xenograft model is easy to generate, but has several limitations because this cancer model could not represent the unique features of each cancer patient sufficiently. Moreover, accumulating evidences demonstrate cancer is a highly heterogeneous disease so that a tumor is comprised of cancer cells with diverse characteristics. In attempt to avoid these discrepancies between xenograft model and patients' tumor, a patient-derived xenograft (PDX) model has been actively generated and applied. The PDX model can be developed by the implantation of cancerous tissue from a patient's tumor into an immune-deficient mouse directly, thereby it preserves both cell-cell interactions and tumor microenvironment. In addition, the PDX model has shown advantages as a preclinical model in drug screening, biomarker development and co-clinical trial. In this review, we will summarize the methodology and applications of PDX in detail, and cover critical issues for the development of this model for preclinical research.
Collapse
Affiliation(s)
- Jaeyun Jung
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyang Sook Seol
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Suhwan Chang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
293
|
Short-term spheroid culture of primary colorectal cancer cells as an in vitro model for personalizing cancer medicine. PLoS One 2017; 12:e0183074. [PMID: 28877221 PMCID: PMC5587104 DOI: 10.1371/journal.pone.0183074] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 07/28/2017] [Indexed: 11/29/2022] Open
Abstract
Chemotherapy treatment of cancer remains a challenge due to the molecular and functional heterogeneity displayed by tumours originating from the same cell type. The pronounced heterogeneity makes it difficult for oncologists to devise an effective therapeutic strategy for the patient. One approach for increasing treatment efficacy is to test the chemosensitivity of cancer cells obtained from the patient’s tumour. 3D culture represents a promising method for modelling patient tumours in vitro. The aim of this study was therefore to evaluate how closely short-term spheroid cultures of primary colorectal cancer cells resemble the original tumour. Colorectal cancer cells were isolated from human tumour tissue and cultured as spheroids. Spheroid cultures were established with a high success rate and remained viable for at least 10 days. The spheroids exhibited significant growth over a period of 7 days and no difference in growth rate was observed for spheroids of different sizes. Comparison of spheroids with the original tumour revealed that spheroid culture generally preserved adenocarcinoma histology and expression patterns of cytokeratin 20 and carcinoembryonic antigen. Interestingly, spheroids had a tendency to resemble tumour protein expression more closely after 10 days of culture compared to 3 days. Chemosensitivity screening using spheroids from five patients demonstrated individual response profiles. This indicates that the spheroids maintained patient-to-patient differences in sensitivity towards the drugs and combinations most commonly used for treatment of colorectal cancer. In summary, short-term spheroid culture of primary colorectal adenocarcinoma cells represents a promising in vitro model for use in personalized medicine.
Collapse
|
294
|
Li SH, Chien CY, Huang WT, Luo SD, Su YY, Tien WY, Lan YC, Chen CH. Prognostic significance and function of mammalian target of rapamycin in tongue squamous cell carcinoma. Sci Rep 2017; 7:8178. [PMID: 28811537 PMCID: PMC5558018 DOI: 10.1038/s41598-017-08345-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/06/2017] [Indexed: 12/18/2022] Open
Abstract
Despite improvement in preoperative imaging, surgical technique, and adjuvant therapy, the prognosis of patients with tongue squamous cell carcinoma (SCC) is still unsatisfactory. The mammalian target of rapamycin (mTOR) play a key role in the regulation of tumor cell proliferation and survival. However, the significance of mTOR on the prognosis of tongue SCC remains largely undefined. In the present study, immunohistochemistry was performed to evaluate the expression of phosphorylated mTOR (p-mTOR) in 160 surgically resected tongue SCC, and correlated with survival. Univariate analysis revealed that p-mTOR overexpression (P = 0.006) was associated with inferior overall survival. In multivariate comparison, p-mTOR overexpression (P = 0.002, hazard ratio = 2.082) remained independently associated with worse overall survival. In vitro study, tongue cancer cells treated with everolimus, the specific mTOR inhibitor, or transfected with mTOR-mediated siRNAs dramatically attenuated the abilities of cell proliferation by MTT and BrdU assays. In 4-NQO-induced tongue cancer murine model, mTOR inhibitors significantly decreased the incidence of tongue SCC. In conclusion, p-mTOR overexpression was independently associated with poor prognosis of patients with tongue SCC. In vitro and vivo, mTOR inhibition showed the promising activity in tongue SCC. Our results suggest that inhibition of mTOR signaling pathway may be a novel therapeutic target for tongue SCC.
Collapse
Affiliation(s)
- Shau-Hsuan Li
- Department of Hematology-Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Yen Chien
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wan-Ting Huang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Sheng-Dean Luo
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yan-Ye Su
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wan-Yu Tien
- Department of Hematology-Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ya-Chun Lan
- Department of Hematology-Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chang-Han Chen
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
- Department of Applied Chemistry, and Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Chi Nan, Taiwan.
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
295
|
Decker WK, da Silva RF, Sanabria MH, Angelo LS, Guimarães F, Burt BM, Kheradmand F, Paust S. Cancer Immunotherapy: Historical Perspective of a Clinical Revolution and Emerging Preclinical Animal Models. Front Immunol 2017; 8:829. [PMID: 28824608 PMCID: PMC5539135 DOI: 10.3389/fimmu.2017.00829] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/30/2017] [Indexed: 01/13/2023] Open
Abstract
At the turn of the last century, the emerging field of medical oncology chose a cytotoxic approach to cancer therapy over an immune-centered approach at a time when evidence in support of either paradigm did not yet exist. Today, nearly 120 years of data have established that (a) even the best cytotoxic regimens only infrequently cure late-stage malignancy and (b) strategies that supplement and augment existing antitumor immune responses offer the greatest opportunities to potentiate durable remission in cancer. Despite widespread acceptance of these paradigms today, the ability of the immune system to recognize and fight cancer was a highly controversial topic for much of the twentieth century. Why this modern paradigmatic mainstay should have been both dubious and controversial for such an extended period is a topic of considerable interest that merits candid discussion. Herein, we review the literature to identify and describe the watershed events that ultimately led to the acceptance of immunotherapy as a viable regimen for the treatment of neoplastic malignancy. In addition to noting important clinical discoveries, we also focus on research milestones and the development of critical model systems in rodents and dogs including the advanced modeling techniques that allowed development of patient-derived xenografts. Together, their use will further our understanding of cancer biology and tumor immunology, allow for a speedier assessment of the efficacy and safety of novel approaches, and ultimately provide a faster bench to beside transition.
Collapse
Affiliation(s)
- William K. Decker
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Dan L Duncan Cancer Center, Texas Children’s Hospital, Houston, TX, United States
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States
| | - Rodrigo F. da Silva
- Center for Human Immunobiology, Department of Pediatrics, Texas Children’s Hospital, Houston, TX, United States
- Women’s Hospital – CAISM, University of Campinas, Campinas, Brazil
| | - Mayra H. Sanabria
- Center for Human Immunobiology, Department of Pediatrics, Texas Children’s Hospital, Houston, TX, United States
- Diana Helis Henry Medical Research Foundation, New Orleans, LA, United States
| | - Laura S. Angelo
- Center for Human Immunobiology, Department of Pediatrics, Texas Children’s Hospital, Houston, TX, United States
| | | | - Bryan M. Burt
- Dan L Duncan Cancer Center, Texas Children’s Hospital, Houston, TX, United States
- Michael E. DeBakey Department of Surgery, Division of Thoracic Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Farrah Kheradmand
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Dan L Duncan Cancer Center, Texas Children’s Hospital, Houston, TX, United States
- Department of Medicine, Pulmonary and Critical Care, Baylor College of Medicine, Houston, TX, United States
| | - Silke Paust
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Dan L Duncan Cancer Center, Texas Children’s Hospital, Houston, TX, United States
- Center for Human Immunobiology, Department of Pediatrics, Texas Children’s Hospital, Houston, TX, United States
| |
Collapse
|
296
|
Dhandapani M, Goldman A. Preclinical Cancer Models and Biomarkers for Drug Development: New Technologies and Emerging Tools. ACTA ACUST UNITED AC 2017; 8. [PMID: 29285415 PMCID: PMC5743226 DOI: 10.4172/2155-9929.1000356] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background and purpose Predicting the efficacy of anticancer therapy is the holy grail of drug development and treatment selection in the clinic. To achieve this goal, scientists require pre-clinical models that can reliably screen anticancer agents with robust clinical correlation. However, there is increasing challenge to develop models that can accurately capture the diversity of the tumor ecosystem, and therefore reliably predict how tumors respond or resistant to treatment. Indeed, tumors are made up of a heterogeneous landscape comprising malignant cells, normal and abnormal stroma, immune cells, and dynamic microenvironment containing chemokines, cytokines and growth factors. In this mini-review we present a focused, brief perspective on emerging preclinical models for anticancer therapy that attempt to address the challenge posed by tumor heterogeneity, highlighting biomarkers of response and resistance. Recent findings Starting from 2-dimensional and 3-dimensional in-vitro models, we discuss how organoid co-cultures have led to accelerated efforts in anti-cancer drug screening, and advanced our fundamental understanding for mechanisms of action using high-throughput platforms that interrogate various biomarkers of ‘clinical’ efficacy. Then, mentioning the limitations that exist, we focus on in-vivo and human explant technologies and models, which build-in intrinsic tumor heterogeneity using the native microenvironment as a scaffold. Importantly, we will address how these models can be harnessed to understand cancer immunotherapy, an emerging therapeutic strategy that seeks to recalibrate the body’s own immune system to fight cancer. Conclusion Over the past several decades, numerous model systems have emerged to address the exploding market of drug development for cancer. While all of the present models have contributed critical information about tumor biology, each one carries limitations. Harnessing pre-clinical models that incorporate cell heterogeneity is beginning to address some of the underlying challenges associated with predicting clinical efficacy of novel anticancer agents.
Collapse
Affiliation(s)
- Muthu Dhandapani
- Integrative Immuno-Oncology Center, Mitra Biotech Woburn, MA 01801, USA
| | - Aaron Goldman
- Integrative Immuno-Oncology Center, Mitra Biotech Woburn, MA 01801, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.,Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| |
Collapse
|
297
|
Kang JH, Driscoll H, Mammoto A, Watters AL, Melakeberhan B, Diaz A, Super M, Ingber DE. An Engineered Human Fc‐Mannose‐Binding‐Lectin Captures Circulating Tumor Cells. ACTA ACUST UNITED AC 2017; 1:e1700094. [DOI: 10.1002/adbi.201700094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Joo H. Kang
- Wyss Institute for Biologically Inspired Engineering Harvard University CLSB5, 3 Blackfan Circle Boston MA 02115 USA
- Department of Biomedical Engineering School of Life Sciences Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| | - Harry Driscoll
- Wyss Institute for Biologically Inspired Engineering Harvard University CLSB5, 3 Blackfan Circle Boston MA 02115 USA
| | - Akiko Mammoto
- Vascular Biology Program Boston Children's Hospital and Harvard Medical School Boston MA 02115 USA
| | - Alexander L. Watters
- Wyss Institute for Biologically Inspired Engineering Harvard University CLSB5, 3 Blackfan Circle Boston MA 02115 USA
| | - Bissrat Melakeberhan
- Wyss Institute for Biologically Inspired Engineering Harvard University CLSB5, 3 Blackfan Circle Boston MA 02115 USA
| | - Alexander Diaz
- Wyss Institute for Biologically Inspired Engineering Harvard University CLSB5, 3 Blackfan Circle Boston MA 02115 USA
| | - Michael Super
- Wyss Institute for Biologically Inspired Engineering Harvard University CLSB5, 3 Blackfan Circle Boston MA 02115 USA
| | - Donald E. Ingber
- Wyss Institute for Biologically Inspired Engineering Harvard University CLSB5, 3 Blackfan Circle Boston MA 02115 USA
- Vascular Biology Program Boston Children's Hospital and Harvard Medical School Boston MA 02115 USA
- Harvard John A. Paulson School of Engineering and Applied Sciences Cambridge MA 02139 USA
| |
Collapse
|
298
|
Anti-RhoJ antibody functionalized Au@I nanoparticles as CT-guided tumor vessel-targeting radiosensitizers in patient-derived tumor xenograft model. Biomaterials 2017; 141:1-12. [PMID: 28666098 DOI: 10.1016/j.biomaterials.2017.06.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/27/2017] [Accepted: 06/22/2017] [Indexed: 01/08/2023]
Abstract
The clinical success of radiotherapy is greatly hampered due to its intolerable off-target cytotoxicity induced by the high dose of radiation. Meanwhile, low dose of irradiation greatly potentiates the intratumoral angiogenesis, which promotes the local relapse and metastasis of tumor. Therefore, it is essential to reduce the irradiation dosage while inhibiting the tumor angiogenesis during radiotherapy. In this work, tumor vessel specific ultrafine Au@I nanoparticles (AIRA NPs) are fabricated and used as targeted radiosensitizers. Due to the presence of Au and iodine, these AIRA NPs exhibit superb X-ray attenuation for contrast-enhanced computed tomography (CT). Once injected, these AIRA NPs bind specifically to both newly formed tumor vessels in peri- and intratumoral regions and pre-existing tumor vessels. Upon radiation under CT guidance, AIRA NPs remarkably enhanced the killing efficacy against tumors in vivo with respect to radiation alone or anti-angiogenesis chemotherapy. Meanwhile, down-regulation of the level of circulating VEGF cytokine further indicates that our strategy can eradicate tumor without risking the recurrence of hypoxia and angiogenesis. Our demonstration provides a robust method of cancer therapy integrating good biocompatibility, high specificity and relapse-free manner alternative to traditional metal NPs enhanced radiotherapy.
Collapse
|
299
|
Kageyama K, Ohara M, Saito K, Ozaki S, Terai M, Mastrangelo MJ, Fortina P, Aplin AE, Sato T. Establishment of an orthotopic patient-derived xenograft mouse model using uveal melanoma hepatic metastasis. J Transl Med 2017. [PMID: 28645290 PMCID: PMC5481921 DOI: 10.1186/s12967-017-1247-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Background Metastatic uveal melanoma is a highly fatal disease; most patients die from their hepatic metastasis within 1 year. A major drawback in the development of new treatments for metastatic uveal melanoma is the difficulty in obtaining appropriate cell lines and the lack of appropriate animal models. Patient-derived xenograft (PDX) tumor models, bearing ectopically implanted tumors at a subcutaneous site, have been developed. However, these ectopically implanted PDX models have obstacles to translational research, including a low engraftment rate, slow tumor growth, and biological changes after multiple passages due to the different microenvironment. To overcome these limitations, we developed a new method to directly transplant biopsy specimens to the liver of immunocompromised mice. Results By using two metastatic uveal melanoma cell lines, we demonstrated that the liver provides a more suitable microenvironment for tumor growth compared to subcutaneous sites and that surgical orthotopic implantation (SOI) of tumor pieces allows the creation of a liver tumor in immunocompromised mice. Subsequently, 10 of 12 hepatic metastasis specimens from patients were successfully xenografted into the immunocompromised mice (83.3% success rate) using SOI, including 8 of 10 needle biopsy specimens (80%). Additionally, four cryopreserved PDX tumors were re-implanted to new mice and re-establishment of PDX tumors was confirmed in all four mice. The serially passaged xenograft tumors as well as the re-implanted tumors after cryopreservation were similar to the original patient tumors in histologic, genomic, and proteomic expression profiles. CT imaging was effective for detecting and monitoring PDX tumors in the liver of living mice. The expression of Ki67 in original patient tumors was a predictive factor for implanted tumor growth and the success of serial passages in PDX mice. Conclusions Surgical orthotopic implantation of hepatic metastasis from uveal melanoma is highly successful in the establishment of orthotopic PDX models, enhancing their practical utility for research applications. By using CT scan, tumor growth can be monitored, which is beneficial to evaluate treatment effects in interventional studies. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1247-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ken Kageyama
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 1015 Walnut Street, Ste. 1024, Philadelphia, PA, 19107, USA.,Department of Radiology, Osaka City University, 1-4-3 Asahimachi Abenoku, Osaka, Osaka, 545-8585, Japan
| | - Masahiro Ohara
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 1015 Walnut Street, Ste. 1024, Philadelphia, PA, 19107, USA
| | - Kengo Saito
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 1015 Walnut Street, Ste. 1024, Philadelphia, PA, 19107, USA
| | - Shinji Ozaki
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 1015 Walnut Street, Ste. 1024, Philadelphia, PA, 19107, USA.,Department of Surgery, National Hospital Organization, Kure Medical Center/Chugoku Cancer Center, 3-1 Aoyamacho Kure, Hiroshima, 737-0023, Japan
| | - Mizue Terai
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 1015 Walnut Street, Ste. 1024, Philadelphia, PA, 19107, USA
| | - Michael J Mastrangelo
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 1015 Walnut Street, Ste. 1024, Philadelphia, PA, 19107, USA
| | - Paolo Fortina
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 1015 Walnut Street, Ste. 1024, Philadelphia, PA, 19107, USA
| | - Andrew E Aplin
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 1015 Walnut Street, Ste. 1024, Philadelphia, PA, 19107, USA
| | - Takami Sato
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 1015 Walnut Street, Ste. 1024, Philadelphia, PA, 19107, USA.
| |
Collapse
|
300
|
Yao YMM, Donoho GP, Iversen PW, Zhang Y, Van Horn RD, Forest A, Novosiadly RD, Webster YW, Ebert P, Bray S, Ting JC, Aggarwal A, Henry JR, Tiu RV, Plowman GD, Peng SB. Mouse PDX Trial Suggests Synergy of Concurrent Inhibition of RAF and EGFR in Colorectal Cancer with BRAF or KRAS Mutations. Clin Cancer Res 2017; 23:5547-5560. [DOI: 10.1158/1078-0432.ccr-16-3250] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 05/17/2017] [Accepted: 06/07/2017] [Indexed: 11/16/2022]
|