251
|
Principe DR, Park A, Dorman MJ, Kumar S, Viswakarma N, Rubin J, Torres C, McKinney R, Munshi HG, Grippo PJ, Rana A. TGFβ Blockade Augments PD-1 Inhibition to Promote T-Cell-Mediated Regression of Pancreatic Cancer. Mol Cancer Ther 2018; 18:613-620. [PMID: 30587556 DOI: 10.1158/1535-7163.mct-18-0850] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/07/2018] [Accepted: 12/19/2018] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains remarkably lethal with a 5-year survival rate of 8%. This is mainly attributed to the late stage of presentation, as well as widespread resistance to conventional therapy. In addition, PDAC tumors are largely nonimmunogenic, and most patients have displayed incomplete responses to cancer immunotherapies. Our group has previously identified TGFβ as a crucial repressor of antitumor immune function in PDAC, particularly with respect to cytotoxic T lymphocytes. However, pharmacologic inhibition of TGFβ signaling has had limited efficacy in clinical trials, failing to promote a significant antitumor immune response. Hence, in this work, we extend our analysis to identify and circumvent the mechanisms of resistance to TGFβ signal inhibition in PDAC. Consistent with our previous observations, adoptive transfer of TGFβ-insensitive CD8+ T cells led to the near complete regression of neoplastic disease in vivo However, we demonstrate that this cannot be recapitulated via global reduction in TGFβ signaling, through either genetic ablation or pharmacologic inhibition of TGFBR1. In fact, tumors with TGFβ signal inhibition displayed increased PD-L1 expression and had no observable change in antitumor immunity. Using genetic models of advanced PDAC, we then determined that concomitant inhibition of both TGFβ and PD-L1 receptors led to a reduction in the neoplastic phenotype, improving survival and reducing disease-associated morbidity in vivo Combined, these data strongly suggest that TGFβ and PD-L1 pathway inhibitors may synergize in PDAC, and this approach warrants clinical consideration.
Collapse
Affiliation(s)
- Daniel R Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, Illinois. .,University of Illinois College of Medicine, Chicago, Illinois.,Department of Surgery, University of Illinois at Chicago, Chicago, Illinois
| | - Alex Park
- University of Illinois College of Medicine, Chicago, Illinois
| | - Matthew J Dorman
- Department of Surgery, University of Illinois at Chicago, Chicago, Illinois
| | - Sandeep Kumar
- Department of Surgery, University of Illinois at Chicago, Chicago, Illinois
| | - Navin Viswakarma
- Department of Surgery, University of Illinois at Chicago, Chicago, Illinois
| | - Jonathan Rubin
- Department of Surgery, University of Illinois at Chicago, Chicago, Illinois
| | - Carolina Torres
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Ronald McKinney
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | | | - Paul J Grippo
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Ajay Rana
- Department of Surgery, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
252
|
Jones KI, Tiersma J, Yuzhalin AE, Gordon-Weeks AN, Buzzelli J, Im JH, Muschel RJ. Radiation combined with macrophage depletion promotes adaptive immunity and potentiates checkpoint blockade. EMBO Mol Med 2018; 10:e9342. [PMID: 30442705 PMCID: PMC6284388 DOI: 10.15252/emmm.201809342] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 01/12/2023] Open
Abstract
Emerging evidence suggests a role for radiation in eliciting anti-tumour immunity. We aimed to investigate the role of macrophages in modulating the immune response to radiation. Irradiation to murine tumours generated from colorectal (MC38) and pancreatic (KPC) cell lines induced colony-stimulating factor 1 (CSF-1). Coincident with the elevation in CSF-1, macrophages increased in tumours, peaking 5 days following irradiation. These tumour-associated macrophages (TAMs) were skewed towards an immunosuppressive phenotype. Macrophage depletion via anti-CSF (aCSF) reduced macrophage numbers, yet only achieved tumour growth delay when combined with radiation. The tumour growth delay from aCSF after radiation was abrogated by depletion of CD8 T cells. There was enhanced recognition of tumour cell antigens by T cells isolated from irradiated tumours, consistent with increased antigen priming. The addition of anti-PD-L1 (aPD-L1) resulted in improved tumour suppression and even regression in some tumours. In summary, we show that adaptive immunity induced by radiation is limited by the recruitment of highly immunosuppressive macrophages. Macrophage depletion partly reduced immunosuppression, but additional treatment with anti-PD-L1 was required to achieve tumour regression.
Collapse
Affiliation(s)
- Keaton I Jones
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, Churchill Hospital, University of Oxford, Oxford, UK
| | - Jiske Tiersma
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, Churchill Hospital, University of Oxford, Oxford, UK
- Department of Medical Oncology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Arseniy E Yuzhalin
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, Churchill Hospital, University of Oxford, Oxford, UK
| | - Alex N Gordon-Weeks
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Jon Buzzelli
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, Churchill Hospital, University of Oxford, Oxford, UK
| | - Jae Hong Im
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, Churchill Hospital, University of Oxford, Oxford, UK
| | - Ruth J Muschel
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, Churchill Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
253
|
Totiger TM, Srinivasan S, Jala VR, Lamichhane P, Dosch AR, Gaidarski AA, Joshi C, Rangappa S, Castellanos J, Vemula PK, Chen X, Kwon D, Kashikar N, VanSaun M, Merchant NB, Nagathihalli NS. Urolithin A, a Novel Natural Compound to Target PI3K/AKT/mTOR Pathway in Pancreatic Cancer. Mol Cancer Ther 2018; 18:301-311. [PMID: 30404927 DOI: 10.1158/1535-7163.mct-18-0464] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/06/2018] [Accepted: 10/29/2018] [Indexed: 12/29/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy and is highly resistant to standard treatment regimens. Targeted therapies against KRAS, a mutation present in an overwhelming majority of PDAC cases, have been largely ineffective. However, inhibition of downstream components in the KRAS signaling cascade provides promising therapeutic targets in the management of PDAC and warrants further exploration. Here, we investigated Urolithin A (Uro A), a novel natural compound derived from pomegranates, which targets numerous kinases downstream of KRAS, in particular the PI3K/AKT/mTOR signaling pathways. We showed that treatment of PDAC cells with Uro A blocked the phosphorylation of AKT and p70S6K in vitro, successfully inhibited the growth of tumor xenografts, and increased overall survival of Ptf1aCre/+;LSL-KrasG12D/+;Tgfbr2flox/flox (PKT) mice compared with vehicle or gemcitabine therapy alone. Histologic evaluation of these Uro A-treated tumor samples confirmed mechanistic actions of Uro A via decreased phosphorylation of AKT and p70S6K, reduced proliferation, and increased cellular apoptosis in both xenograft and PKT mouse models. In addition, Uro A treatment reprogrammed the tumor microenvironment, as evidenced by reduced levels of infiltrating immunosuppressive cell populations such as myeloid-derived suppressor cells, tumor-associated macrophages, and regulatory T cells. Overall, this work provides convincing preclinical evidence for the utility of Uro A as a therapeutic agent in PDAC through suppression of the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Tulasigeri M Totiger
- Department of Surgery, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Supriya Srinivasan
- Department of Surgery, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Venkatakrishna R Jala
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | - Purushottam Lamichhane
- Department of Surgery, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Austin R Dosch
- Department of Surgery, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Alexander A Gaidarski
- Department of Surgery, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Chandrashekhar Joshi
- Department of Surgery, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, AIMS, Karnataka, India
| | - Jason Castellanos
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Praveen Kumar Vemula
- Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| | - Xi Chen
- Department of Public Health, University of Miami Miller School of Medicine, Miami, Florida
| | - Deukwoo Kwon
- Department of Public Health, University of Miami Miller School of Medicine, Miami, Florida
| | - Nilesh Kashikar
- Department of Pathology, University of Colorado, Denver, Colorado
| | - Michael VanSaun
- Department of Surgery, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Nipun B Merchant
- Department of Surgery, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Nagaraj S Nagathihalli
- Department of Surgery, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, Florida.
| |
Collapse
|
254
|
Shen L, Li J, Liu Q, Song W, Zhang X, Tiruthani K, Hu H, Das M, Goodwin TJ, Liu R, Huang L. Local Blockade of Interleukin 10 and C-X-C Motif Chemokine Ligand 12 with Nano-Delivery Promotes Antitumor Response in Murine Cancers. ACS NANO 2018; 12:9830-9841. [PMID: 30253648 DOI: 10.1021/acsnano.8b00967] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In many cancers, the tumor microenvironment (TME) is largely immune suppressive, blocking the antitumor immunity and resulting in immunotherapy resistance. Interleukin 10 (IL-10) is a major player controlling the immunosuppressive TME in different murine tumor models. Increased IL-10 production suppresses intratumoral dendritic cell production of interleukin 12, thereby limiting antitumor cytotoxic T-cell responses and activation of NK cells during therapy. We engineered, formulated, and delivered genes encoding an IL-10 protein trap to change immunosuppressive TME, which could enhance antitumor immunity. Additionally, to achieve stronger and long-term therapeutic efficacy in a pancreatic cancer model, we targeted C-X-C motif chemokine ligand 12 (CXCL12), a key factor for inhibiting T-cell tumor infiltration, and simultaneously delivered an IL-10 trap. Following three injections of the lipid-protamine-DNA (LPD) nanoparticles loaded with trap genes (IL-10 trap and CXCL12 trap), we found tumor growth reduction and significantly prolonged survival of the host compared to control groups. Furthermore, the combination trap gene treatment significantly reduced immunosuppressive cells, such as M2 macrophages, MDSCs, and PD-L1+ cells, and activated immunosuppressive tolerogenic dendritic cells, NK cells, and macrophages intratumorally. We have also shown that, when effectively delivered to the tumor, the IL-10 trap gene alone can inhibit triple-negative breast cancer growth. This strategy may allow clinicians and researchers to change the immunosuppressive microenvironment in the tumor with either a single therapeutic agent or in combination with other immunotherapies to prime the immune system, preventing cancer invasion and prolonging patient survival.
Collapse
|
255
|
Zhao J, Xiao Z, Li T, Chen H, Yuan Y, Wang YA, Hsiao CH, Chow DSL, Overwijk WW, Li C. Stromal Modulation Reverses Primary Resistance to Immune Checkpoint Blockade in Pancreatic Cancer. ACS NANO 2018; 12:9881-9893. [PMID: 30231203 DOI: 10.1021/acsnano.8b02481] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most difficult cancers to treat. It is refractory to most existing therapies, including immunotherapies, due to the presence of an excessive desmoplastic stroma, which restricts penetration of drugs and cytotoxic CD8+ T cells. Stromal modulation has shown promising results in the enhancement of immune checkpoint blockade treatment in PDAC. We demonstrate here effective stromal modulation by a polymeric micelle-based nanoformulation to codeliver a sonic hedgehog inhibitor (cyclopamine, abbreviated as CPA) and a cytotoxic chemotherapy drug (paclitaxel, abbreviated as PTX). The formulation, M-CPA/PTX, modulated the PDAC stroma by increasing the intratumoral vasculature density, which then promoted the tumor infiltration by cytotoxic CD8+ T cells without depletion of tumor-restraining α-smooth muscle action-positive fibroblasts and type I collage in the stroma. The combination of M-CPA/PTX and the PD-1 checkpoint blockade significantly prolonged animal survival in an orthotopic murine PDAC model as well as a genetically engineered mouse model of PDAC. The superior antitumor efficacy was mediated by enhanced tumor infiltration of CD8+ T cells without concomitant infiltration of suppressive regulatory T cells or myeloid-derived suppressor cells and by the coordinated action of PTX and interferon-gamma. Our results demonstrate that stroma-modulating nanoformulations are a promising approach to potentiate immune checkpoint blockade therapy of pancreatic cancer.
Collapse
Affiliation(s)
| | - Zhilan Xiao
- West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Tingting Li
- Department of Biophysics, School of Life Science & Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan China
| | | | | | | | - Cheng-Hui Hsiao
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77030, United States
| | - Diana S-L. Chow
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77030, United States
| | | | | |
Collapse
|
256
|
Gong J, Hendifar A, Tuli R, Chuang J, Cho M, Chung V, Li D, Salgia R. Combination systemic therapies with immune checkpoint inhibitors in pancreatic cancer: overcoming resistance to single-agent checkpoint blockade. Clin Transl Med 2018; 7:32. [PMID: 30294755 PMCID: PMC6174117 DOI: 10.1186/s40169-018-0210-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 09/24/2018] [Indexed: 12/16/2022] Open
Abstract
Immune checkpoint inhibitors have demonstrated broad single-agent antitumor activity and a favorable safety profile that render them attractive agents to combine with other systemic anticancer therapies. Pancreatic cancer has been fairly resistant to monotherapy blockade of programmed cell death protein 1 receptor, programmed death ligand 1, and cytotoxic T-lymphocyte associated protein 4. However, there is a growing body of preclinical evidence to support the rational combination of checkpoint inhibitors and various systemic therapies in pancreatic cancer. Furthermore, early clinical evidence has begun to support the feasibility and efficacy of checkpoint inhibitor-based combination therapy in advanced pancreatic cancer. Despite accumulating preclinical and clinical data, there remains several questions as to the optimal dosing and timing of administration of respective agents, toxicity of combination strategies, and mechanisms by which immune resistance to single-agent checkpoint blockade are overcome. Further development of biomarkers is also important in the advancement of combination systemic therapies incorporating checkpoint blockade in pancreatic cancer. Results from an impressive number of ongoing prospective clinical trials are eagerly anticipated and will seek to validate the viability of combination immuno-oncology strategies in pancreatic cancer.
Collapse
Affiliation(s)
- Jun Gong
- Department of Gastrointestinal Malignancies, Cedars-Sinai Medical Center, 8700 Beverly Blvd, AC 1042C, Los Angeles, CA, 90048, USA
| | - Andrew Hendifar
- Department of Gastrointestinal Malignancies, Cedars-Sinai Medical Center, 8700 Beverly Blvd, AC 1042C, Los Angeles, CA, 90048, USA
| | - Richard Tuli
- Department of Radiation Oncology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, AC 1023, Los Angeles, CA, 90048, USA
| | - Jeremy Chuang
- Department of Internal Medicine, Harbor-UCLA Medical Center, 1000 W Carson St, Box 400, Torrance, CA, 90509, USA
| | - May Cho
- Department of Internal Medicine, Division of Hematology and Oncology, UC Davis Comprehensive Cancer Center, 4501 X Street, Ste 3016, Sacramento, CA, 95817, USA
| | - Vincent Chung
- Department of Medical Oncology, City of Hope National Medical Center, 1500 E Duarte Rd, Bldg 51, Duarte, CA, 91010, USA
| | - Daneng Li
- Department of Medical Oncology, City of Hope National Medical Center, 1500 E Duarte Rd, Bldg 51, Duarte, CA, 91010, USA
| | - Ravi Salgia
- Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Building 51, Room 101, 1500 E Duarte St, Duarte, CA, 91010, USA.
| |
Collapse
|
257
|
Bajor DL, Mick R, Riese MJ, Huang AC, Sullivan B, Richman LP, Torigian DA, George SM, Stelekati E, Chen F, Melenhorst JJ, Lacey SF, Xu X, Wherry EJ, Gangadhar TC, Amaravadi RK, Schuchter LM, Vonderheide RH. Long-term outcomes of a phase I study of agonist CD40 antibody and CTLA-4 blockade in patients with metastatic melanoma. Oncoimmunology 2018; 7:e1468956. [PMID: 30288340 PMCID: PMC6169575 DOI: 10.1080/2162402x.2018.1468956] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/17/2018] [Accepted: 04/19/2018] [Indexed: 12/18/2022] Open
Abstract
We report long-term clinical outcomes and immune responses observed from a phase 1 trial of agonist CD40 monoclonal antibody (mAb) and blocking CTLA-4 mAb in patients with metastatic melanoma. Twenty-four patients previously untreated with checkpoint blockade were enrolled. The agonistic CD40 mAb CP-870,893 and the CTLA-4 blocking mAb tremelimumab were dosed concomitantly every 3 weeks and 12 weeks, respectively, across four dose combinations. Two patients developed dose-limiting grade 3 immune-mediated colitis that led to the definition of the maximum tolerated dose (MTD). Other immune-mediated toxicity included uveitis (n = 1), hypophysitis (n = 1), hypothyroidism (n = 2), and grade 3 cytokine release syndrome (CRS) (n = 1). The estimated MTD was 0.2 mg/kg of CP-870,893 and 10 mg/kg of tremelimumab. In 22 evaluable patients, the objective response rate (ORR) was 27.3%: two patients (9.1%) had complete responses (CR) and four (18.2%) patients had partial responses (PR). With a median follow-up of 45 months, the median progression-free survival (PFS) was 3.2 months (95% CI, 1.3–5.1 months) and median overall survival (OS) was 23.6 months (95% CI, 11.7–35.5 months). Nine patients are long-term survivors (> 3 years), 8 of whom subsequently received other therapy including PD-1 mAb, surgery, or radiation therapy. Elevated baseline soluble CD25 was associated with shorter OS. Immunologically, treatment was associated with evidence of T cell activation and increased tumor T cell infiltration that was accomplished without therapeutic PD-1/PD-L1 blockade. These results suggest opportunities for immune activation and cancer immunotherapy beyond PD-1.
Collapse
Affiliation(s)
- David L Bajor
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.,Departments of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Rosemarie Mick
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.,Departments of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Matthew J Riese
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.,Departments of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Alex C Huang
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.,Departments of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Brendan Sullivan
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Lee P Richman
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Drew A Torigian
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.,Departments of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Sangeeth M George
- Departments of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Erietta Stelekati
- Departments of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Fang Chen
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - J Joseph Melenhorst
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Simon F Lacey
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Xiaowei Xu
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.,Departments of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - E John Wherry
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.,Departments of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Tara C Gangadhar
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.,Departments of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Ravi K Amaravadi
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.,Departments of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Lynn M Schuchter
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.,Departments of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Robert H Vonderheide
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.,Departments of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
258
|
Assoun S, Benderra MA, Géraud A, Bayle A, Boilève A, Grazziotin-Soares D, Lotz JP. Congrès de l’association américaine de recherche contre le cancer — AACR 2018. ONCOLOGIE 2018. [DOI: 10.3166/onco-2018-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
259
|
Rech AJ, Dada H, Kotzin JJ, Henao-Mejia J, Minn AJ, Twyman-Saint Victor C, Vonderheide RH. Radiotherapy and CD40 Activation Separately Augment Immunity to Checkpoint Blockade in Cancer. Cancer Res 2018; 78:4282-4291. [PMID: 29844122 PMCID: PMC6415684 DOI: 10.1158/0008-5472.can-17-3821] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/16/2018] [Accepted: 05/23/2018] [Indexed: 12/21/2022]
Abstract
Immunotherapy in pancreatic ductal adenocarcinoma (PDA) remains a difficult clinical problem despite success in other disease types with immune checkpoint blockade (ICB) and chimeric antigen receptor T-cell therapy. Mechanisms driving immunosuppression and poor T-cell infiltration in PDA are incompletely understood. Here, we use genetically engineered mouse models of PDA that recapitulate hallmarks of human disease to demonstrate that CD40 pathway activation is required for clinical response to radiotherapy and ICB with αCTLA-4 and αPD-1. The combination of an agonist αCD40 antibody, radiotherapy, and dual ICB eradicated irradiated and unirradiated (i.e., abscopal) tumors, generating long-term immunity. Response required T cells and also short-lived myeloid cells and was dependent on the long noncoding RNA myeloid regulator Morrbid Using unbiased random forest machine learning, we built unique, contextual signatures for each therapeutic component, revealing that (i) radiotherapy triggers an early proinflammatory stimulus, ablating existing intratumoral T cells and upregulating MHC class I and CD86 on antigen-presenting cells, (ii) αCD40 causes a systemic and intratumoral reorganization of the myeloid compartment, and (iii) ICB increases intratumoral T-cell infiltration and improves the CD8 T-cell:regulatory T-cell ratio. Thus, αCD40 and radiotherapy nonredundantly augment antitumor immunity in PDA, which is otherwise refractory to ICB, providing a clear rationale for clinical evaluation.Significance: Radiotherapy and αCD40 disrupt key links between innate and adaptive immunity, ameliorating resistance to immune checkpoint blockade in pancreatic cancer via multiple cellular mechanisms. Cancer Res; 78(15); 4282-91. ©2018 AACR.
Collapse
Affiliation(s)
- Andrew J Rech
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hannah Dada
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jonathan J Kotzin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Institute for Immunology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jorge Henao-Mejia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Institute for Immunology, University of Pennsylvania, Philadelphia, Pennsylvania
- Division of Transplant Immunology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Andy J Minn
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
- Institute for Immunology, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christina Twyman-Saint Victor
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Institute for Immunology, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert H Vonderheide
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania.
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Institute for Immunology, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
260
|
Ren B, Cui M, Yang G, Wang H, Feng M, You L, Zhao Y. Tumor microenvironment participates in metastasis of pancreatic cancer. Mol Cancer 2018; 17:108. [PMID: 30060755 PMCID: PMC6065152 DOI: 10.1186/s12943-018-0858-1] [Citation(s) in RCA: 399] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 07/16/2018] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is a deadly disease with high mortality due to difficulties in its early diagnosis and metastasis. The tumor microenvironment induced by interactions between pancreatic epithelial/cancer cells and stromal cells is critical for pancreatic cancer progression and has been implicated in the failure of chemotherapy, radiation therapy and immunotherapy. Microenvironment formation requires interactions between pancreatic cancer cells and stromal cells. Components of the pancreatic cancer microenvironment that contribute to desmoplasia and immunosuppression are associated with poor patient prognosis. These components can facilitate desmoplasia and immunosuppression in primary and metastatic sites or can promote metastasis by stimulating angiogenesis/lymphangiogenesis, epithelial-mesenchymal transition, invasion/migration, and pre-metastatic niche formation. Some molecules participate in both microenvironment formation and metastasis. In this review, we focus on the mechanisms of pancreatic cancer microenvironment formation and discuss how the pancreatic cancer microenvironment participates in metastasis, representing a potential target for combination therapy to enhance overall survival.
Collapse
Affiliation(s)
- Bo Ren
- Department of General Surgery, Chinese Academy of Medical Sciences, Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Ming Cui
- Department of General Surgery, Chinese Academy of Medical Sciences, Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Gang Yang
- Department of General Surgery, Chinese Academy of Medical Sciences, Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Huanyu Wang
- Department of General Surgery, Chinese Academy of Medical Sciences, Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Mengyu Feng
- Department of General Surgery, Chinese Academy of Medical Sciences, Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Lei You
- Department of General Surgery, Chinese Academy of Medical Sciences, Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China.
| | - Yupei Zhao
- Department of General Surgery, Chinese Academy of Medical Sciences, Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China.
| |
Collapse
|
261
|
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is composed of a minority of malignant cells within a microenvironment of extracellular matrix, fibroblasts, endothelial cells, and immune cells. Therapeutic failures of chemotherapy, targeted therapy, and immunotherapy have all been attributed to the PDAC microenvironment. In this review, we dissect the components of the microenvironment and explain how each cell type contributes to form a highly immunosuppressive, hypoxic, and desmoplastic cancer. New efforts in single-cell profiling will enable a better understanding of the composition of the microenvironment in primary and metastatic PDAC, as well as an understanding of how the microenvironment may respond to novel therapeutic approaches.
Collapse
|
262
|
Li J, Byrne KT, Yan F, Yamazoe T, Chen Z, Baslan T, Richman LP, Lin JH, Sun YH, Rech AJ, Balli D, Hay CA, Sela Y, Merrell AJ, Liudahl SM, Gordon N, Norgard RJ, Yuan S, Yu S, Chao T, Ye S, Eisinger-Mathason TSK, Faryabi RB, Tobias JW, Lowe SW, Coussens LM, Wherry EJ, Vonderheide RH, Stanger BZ. Tumor Cell-Intrinsic Factors Underlie Heterogeneity of Immune Cell Infiltration and Response to Immunotherapy. Immunity 2018; 49:178-193.e7. [PMID: 29958801 PMCID: PMC6707727 DOI: 10.1016/j.immuni.2018.06.006] [Citation(s) in RCA: 500] [Impact Index Per Article: 71.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/31/2018] [Accepted: 06/05/2018] [Indexed: 12/12/2022]
Abstract
The biological and functional heterogeneity between tumors-both across and within cancer types-poses a challenge for immunotherapy. To understand the factors underlying tumor immune heterogeneity and immunotherapy sensitivity, we established a library of congenic tumor cell clones from an autochthonous mouse model of pancreatic adenocarcinoma. These clones generated tumors that recapitulated T cell-inflamed and non-T-cell-inflamed tumor microenvironments upon implantation in immunocompetent mice, with distinct patterns of infiltration by immune cell subsets. Co-injecting tumor cell clones revealed the non-T-cell-inflamed phenotype is dominant and that both quantitative and qualitative features of intratumoral CD8+ T cells determine response to therapy. Transcriptomic and epigenetic analyses revealed tumor-cell-intrinsic production of the chemokine CXCL1 as a determinant of the non-T-cell-inflamed microenvironment, and ablation of CXCL1 promoted T cell infiltration and sensitivity to a combination immunotherapy regimen. Thus, tumor cell-intrinsic factors shape the tumor immune microenvironment and influence the outcome of immunotherapy.
Collapse
Affiliation(s)
- Jinyang Li
- Abramson Family Cancer Research Institute, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Katelyn T Byrne
- Department of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA.
| | - Fangxue Yan
- Abramson Family Cancer Research Institute, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Taiji Yamazoe
- Abramson Family Cancer Research Institute, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Zeyu Chen
- Institute for Immunology, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Timour Baslan
- Cancer Biology and Genetics Program, Sloan-Kettering Institute, NY 10065, USA
| | - Lee P Richman
- Abramson Family Cancer Research Institute, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Jeffrey H Lin
- Abramson Family Cancer Research Institute, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Yu H Sun
- Center for RNA Biology, Department of Biochemistry and Biophysics, Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Andrew J Rech
- Abramson Family Cancer Research Institute, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - David Balli
- Abramson Family Cancer Research Institute, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Ceire A Hay
- Department of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Yogev Sela
- Abramson Family Cancer Research Institute, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Allyson J Merrell
- Abramson Family Cancer Research Institute, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Shannon M Liudahl
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Naomi Gordon
- Abramson Family Cancer Research Institute, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Robert J Norgard
- Abramson Family Cancer Research Institute, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Salina Yuan
- Abramson Family Cancer Research Institute, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Sixiang Yu
- Abramson Family Cancer Research Institute, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Timothy Chao
- Abramson Family Cancer Research Institute, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Shuai Ye
- Abramson Family Cancer Research Institute, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - T S Karin Eisinger-Mathason
- Abramson Family Cancer Research Institute, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Robert B Faryabi
- Abramson Family Cancer Research Institute, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA; Institute for Immunology, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - John W Tobias
- Penn Genomic Analysis Core, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Sloan-Kettering Institute, NY 10065, USA; Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, 415 East 68(th) Street New York, NY 10065, USA
| | - Lisa M Coussens
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - E John Wherry
- Abramson Cancer Center, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA; Institute for Immunology, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Robert H Vonderheide
- Abramson Family Cancer Research Institute, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA; Abramson Cancer Center, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA; Institute for Immunology, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA.
| | - Ben Z Stanger
- Abramson Family Cancer Research Institute, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA; Abramson Cancer Center, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA.
| |
Collapse
|
263
|
Mirlekar B, Michaud D, Searcy R, Greene K, Pylayeva-Gupta Y. IL35 Hinders Endogenous Antitumor T-cell Immunity and Responsiveness to Immunotherapy in Pancreatic Cancer. Cancer Immunol Res 2018; 6:1014-1024. [PMID: 29980536 DOI: 10.1158/2326-6066.cir-17-0710] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/24/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022]
Abstract
Although successes in cancer immunotherapy have generated considerable excitement, this form of treatment has been largely ineffective in patients with pancreatic ductal adenocarcinoma (PDA). Mechanisms that contribute to the poor antitumor immune response in PDA are not well understood. Here, we demonstrated that cytokine IL35 is a major immunosuppressive driver in PDA and potentiates tumor growth via the suppression of endogenous antitumor T-cell responses. The growth of pancreatic tumors in mice deficient for IL35 was significantly reduced. An analysis of tumor-infiltrating immune cells revealed a role for IL35 in the expansion of regulatory T cells and the suppression of CD4+ effector T cells. We also detected a robust increase in both the infiltration and activation of cytotoxic CD8+ T cells, suggesting that targeting IL35 may be an effective strategy to convert PDA from an immunologically "cold" to "hot" tumor. Although PDA is typically resistant to anti-PD-1 immunotherapy, we demonstrated robust synergistic reduction in tumor growth when IL35 deficiency was combined with anti-PD-1 treatment. These findings provide new insight into the function of IL35 in the pathogenesis of pancreatic cancer and underscore the potential significance of IL35 as a therapeutic target for use in combination immunotherapy approaches in this deadly malignancy. Cancer Immunol Res; 6(9); 1014-24. ©2018 AACR.
Collapse
Affiliation(s)
- Bhalchandra Mirlekar
- Department of Genetics, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina.,The Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Daniel Michaud
- The Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina.,Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Ryan Searcy
- Department of Genetics, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina.,The Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Kevin Greene
- The Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina.,Department of Pathology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Yuliya Pylayeva-Gupta
- Department of Genetics, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina. .,The Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
264
|
Torphy RJ, Zhu Y, Schulick RD. Immunotherapy for pancreatic cancer: Barriers and breakthroughs. Ann Gastroenterol Surg 2018; 2:274-281. [PMID: 30003190 PMCID: PMC6036358 DOI: 10.1002/ags3.12176] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 05/07/2018] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy is a rapidly growing field and represents a paradigm shift in the treatment of malignancies as it offers a new therapeutic approach beyond surgery, conventional chemotherapy, and radiation treatment. Targeting immune checkpoints, such as cytotoxic T-lymphocyte-associated antigen 4 and programmed death 1/programmed death ligand 1 has had immense clinical success resulting in sustained treatment response for a subset of patients with certain malignancies such as melanoma, non-small-cell lung cancer, urothelial carcinoma, squamous cell carcinoma of the head and neck, renal cell cancer, hepatocellular cancer, and metastatic colorectal cancer. Importantly, there has been limited success in the use of immunotherapy in the treatment of pancreatic cancer. Investigation into the complex tumor microenvironment of pancreatic cancer that is composed of immune cells, stromal cells, and extracellular matrix proteins has begun to shed light on important attributes of this microenvironment that act as barriers to the effective use of immunotherapy. In this review, we will discuss the progress that has been made in treating pancreatic cancer with immunotherapy, the barriers that have limited treatment success, and breakthroughs with combination treatments that hold promise for the future.
Collapse
Affiliation(s)
| | - Yuwen Zhu
- Department of SurgeryUniversity of ColoradoAuroraColoradoUSA
| | | |
Collapse
|
265
|
Sethi V, Kurtom S, Tarique M, Lavania S, Malchiodi Z, Hellmund L, Zhang L, Sharma U, Giri B, Garg B, Ferantella A, Vickers SM, Banerjee S, Dawra R, Roy S, Ramakrishnan S, Saluja A, Dudeja V. Gut Microbiota Promotes Tumor Growth in Mice by Modulating Immune Response. Gastroenterology 2018; 155:33-37.e6. [PMID: 29630898 PMCID: PMC6035070 DOI: 10.1053/j.gastro.2018.04.001] [Citation(s) in RCA: 291] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/22/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
We studied the effects of gut microbiome depletion by oral antibiotics on tumor growth in subcutaneous and liver metastases models of pancreatic cancer, colon cancer, and melanoma. Gut microbiome depletion significantly reduced tumor burden in all the models tested. However, depletion of gut microbiome did not reduce tumor growth in Rag1-knockout mice, which lack mature T and B cells. Flow cytometry analyses demonstrated that gut microbiome depletion led to significant increase in interferon gamma-producing T cells with corresponding decrease in interleukin 17A and interleukin 10-producing T cells. Our results suggest that gut microbiome modulation could emerge as a novel immunotherapeutic strategy.
Collapse
Affiliation(s)
- Vrishketan Sethi
- Department of Surgery at Sylvester Comprehensive Cancer Center and University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Saba Kurtom
- Department of Surgery at Sylvester Comprehensive Cancer Center and University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Mohammad Tarique
- Department of Surgery at Sylvester Comprehensive Cancer Center and University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Shweta Lavania
- Department of Surgery at Sylvester Comprehensive Cancer Center and University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Zoe Malchiodi
- Department of Surgery at Sylvester Comprehensive Cancer Center and University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Leonor Hellmund
- Department of Surgery at Sylvester Comprehensive Cancer Center and University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Li Zhang
- Department of Surgery at Sylvester Comprehensive Cancer Center and University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Umakant Sharma
- Department of Surgery at Sylvester Comprehensive Cancer Center and University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Bhuwan Giri
- Department of Surgery at Sylvester Comprehensive Cancer Center and University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Bharti Garg
- Department of Surgery at Sylvester Comprehensive Cancer Center and University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Anthony Ferantella
- Department of Surgery at Sylvester Comprehensive Cancer Center and University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Selwyn M Vickers
- Department of Surgery, University of Alabama, Birmingham, Alabama, USA
| | - Sulagna Banerjee
- Department of Surgery at Sylvester Comprehensive Cancer Center and University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Rajinder Dawra
- Department of Surgery at Sylvester Comprehensive Cancer Center and University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Sabita Roy
- Department of Surgery at Sylvester Comprehensive Cancer Center and University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Sundaram Ramakrishnan
- Department of Surgery at Sylvester Comprehensive Cancer Center and University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Ashok Saluja
- Department of Surgery at Sylvester Comprehensive Cancer Center and University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Vikas Dudeja
- Department of Surgery at Sylvester Comprehensive Cancer Center and University of Miami Miller School of Medicine, Miami, Florida.
| |
Collapse
|
266
|
Flint TR, Jones JO, Ferrer M, Colucci F, Janowitz T. A comparative analysis of immune privilege in pregnancy and cancer in the context of checkpoint blockade immunotherapy. Semin Oncol 2018; 45:170-175. [PMID: 30262396 DOI: 10.1053/j.seminoncol.2018.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 03/21/2018] [Indexed: 12/14/2022]
Abstract
Despite their abilities to elicit immune responses, both syngeneic tumors and the half-mismatched placenta grow in the host, unlike a tissue allograft that is aggressively rejected. This is because of local and systemic factors that contribute to the immunologic privilege of tumors and the placenta. Checkpoint blockade immunotherapies subvert this privilege, with spectacularly beneficial outcomes in subsets of patients with certain types of cancer. A challenge for the community of scientists and clinicians is to replicate these successes in pregnant patients with cancer, without harm to the placenta. Here we compare and contrast the immunology of cancers and the placenta, and suggest that immunotherapy for pregnant patients with cancer may be a reasonable option, but that this should be explored systematically.
Collapse
Affiliation(s)
- Thomas R Flint
- School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - James O Jones
- Department of Oncology, University of Cambridge, National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre and Addenbrooke's Hospital, Cambridge, UK; MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Miriam Ferrer
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Francesco Colucci
- Centre for Trophoblast Research, University of Cambridge and Department of Obstetrics and Gynaecology, University of Cambridge School of Clinical Medicine, NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Tobias Janowitz
- Department of Oncology, University of Cambridge, National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre and Addenbrooke's Hospital, Cambridge, UK; Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK.
| |
Collapse
|
267
|
Morrison AH, Byrne KT, Vonderheide RH. Immunotherapy and Prevention of Pancreatic Cancer. Trends Cancer 2018; 4:418-428. [PMID: 29860986 PMCID: PMC6028935 DOI: 10.1016/j.trecan.2018.04.001] [Citation(s) in RCA: 311] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 12/16/2022]
Abstract
Pancreatic cancer is the third-leading cause of cancer mortality in the USA, recently surpassing breast cancer. A key component of pancreatic cancer's lethality is its acquired immune privilege, which is driven by an immunosuppressive microenvironment, poor T cell infiltration, and a low mutational burden. Although immunotherapies such as checkpoint blockade or engineered T cells have yet to demonstrate efficacy, a growing body of evidence suggests that orthogonal combinations of these and other strategies could unlock immunotherapy in pancreatic cancer. In this Review article, we discuss promising immunotherapies currently under investigation in pancreatic cancer and provide a roadmap for the development of prevention vaccines for this and other cancers.
Collapse
Affiliation(s)
- Alexander H Morrison
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19014, USA
| | - Katelyn T Byrne
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19014, USA; Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19014, USA
| | - Robert H Vonderheide
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19014, USA; Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19014, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19014, USA.
| |
Collapse
|
268
|
Van Sciver RE, Lee MP, Lee CD, Lafever AC, Svyatova E, Kanda K, Colliver AL, Siewertsz van Reesema LL, Tang-Tan AM, Zheleva V, Bwayi MN, Bian M, Schmidt RL, Matrisian LM, Petersen GM, Tang AH. A New Strategy to Control and Eradicate "Undruggable" Oncogenic K-RAS-Driven Pancreatic Cancer: Molecular Insights and Core Principles Learned from Developmental and Evolutionary Biology. Cancers (Basel) 2018; 10:142. [PMID: 29757973 PMCID: PMC5977115 DOI: 10.3390/cancers10050142] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 12/15/2022] Open
Abstract
Oncogenic K-RAS mutations are found in virtually all pancreatic cancers, making K-RAS one of the most targeted oncoproteins for drug development in cancer therapies. Despite intense research efforts over the past three decades, oncogenic K-RAS has remained largely "undruggable". Rather than targeting an upstream component of the RAS signaling pathway (i.e., EGFR/HER2) and/or the midstream effector kinases (i.e., RAF/MEK/ERK/PI3K/mTOR), we propose an alternative strategy to control oncogenic K-RAS signal by targeting its most downstream signaling module, Seven-In-Absentia Homolog (SIAH). SIAH E3 ligase controls the signal output of oncogenic K-RAS hyperactivation that drives unchecked cell proliferation, uncontrolled tumor growth, and rapid cancer cell dissemination in human pancreatic cancer. Therefore, SIAH is an ideal therapeutic target as it is an extraordinarily conserved downstream signaling gatekeeper indispensable for proper RAS signaling. Guided by molecular insights and core principles obtained from developmental and evolutionary biology, we propose an anti-SIAH-centered anti-K-RAS strategy as a logical and alternative anticancer strategy to dampen uncontrolled K-RAS hyperactivation and halt tumor growth and metastasis in pancreatic cancer. The clinical utility of developing SIAH as both a tumor-specific and therapy-responsive biomarker, as well as a viable anti-K-RAS drug target, is logically simple and conceptually innovative. SIAH clearly constitutes a major tumor vulnerability and K-RAS signaling bottleneck in pancreatic ductal adenocarcinoma (PDAC). Given the high degree of evolutionary conservation in the K-RAS/SIAH signaling pathway, an anti-SIAH-based anti-PDAC therapy will synergize with covalent K-RAS inhibitors and direct K-RAS targeted initiatives to control and eradicate pancreatic cancer in the future.
Collapse
Affiliation(s)
- Robert E Van Sciver
- Department of Microbiology and Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | - Michael P Lee
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | - Caroline Dasom Lee
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | - Alex C Lafever
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | - Elizaveta Svyatova
- Department of Microbiology and Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | - Kevin Kanda
- Department of Microbiology and Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | - Amber L Colliver
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | | | - Angela M Tang-Tan
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA.
| | - Vasilena Zheleva
- Department of Surgery, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | - Monicah N Bwayi
- Department of Microbiology and Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | - Minglei Bian
- Department of Microbiology and Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | - Rebecca L Schmidt
- Department of Biology, Upper Iowa University, Fayette, IA 52142, USA.
| | - Lynn M Matrisian
- Pancreatic Cancer Action Network, 1050 Connecticut Ave NW, Suite 500, Washington, DC 20036, USA.
- Pancreatic Cancer Action Network, 1500 Rosecrans Ave, Suite 200, Manhattan Beach, CA 90266, USA.
| | - Gloria M Petersen
- Department of Health Sciences Research, Mayo Clinic Cancer Center, Mayo Clinic Pancreatic Cancer SPORE, BioBusiness 5-85, 200 First Street SW, Rochester, MN 55905, USA.
| | - Amy H Tang
- Department of Microbiology and Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| |
Collapse
|
269
|
Foucher ED, Ghigo C, Chouaib S, Galon J, Iovanna J, Olive D. Pancreatic Ductal Adenocarcinoma: A Strong Imbalance of Good and Bad Immunological Cops in the Tumor Microenvironment. Front Immunol 2018; 9:1044. [PMID: 29868007 PMCID: PMC5960705 DOI: 10.3389/fimmu.2018.01044] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 04/26/2018] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal cancers with very few available treatments. For many decades, gemcitabine was the only treatment for patients with PDAC. A recent attempt to improve patient survival by combining this chemotherapy with FOLFIRINOX and nab-paclitaxel failed and instead resulted in increased toxicity. Novel therapies are urgently required to improve PDAC patient survival. New treatments in other cancers such as melanoma, non-small-cell lung cancer, and renal cancer have emerged, based on immunotherapy targeting the immune checkpoints cytotoxic T-lymphocyte-associated antigen 4 or programmed death 1 ligand. However, the first clinical trials using such immune checkpoint inhibitors in PDAC have had limited success. Resistance to immunotherapy in PDAC remains unclear but could be due to tissue components (cancer-associated fibroblasts, desmoplasia, hypoxia) and to the imbalance between immunosuppressive and effector immune populations in the tumor microenvironment. In this review, we analyzed the presence of “good and bad immunological cops” in PDAC and discussed the significance of changes in their balance.
Collapse
Affiliation(s)
- Etienne D Foucher
- Team Immunity and Cancer, CRCM, Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Clément Ghigo
- Team Cellular Stress, CRCM, Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Salem Chouaib
- INSERM UMR1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, Equipe Labellisée par La Ligue Contre Le Cancer, EPHE, Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Villejuif, France.,Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Jérôme Galon
- Laboratory of Integrative Cancer Immunology, INSERM, UMRS1138, Paris, France
| | - Juan Iovanna
- Team Cellular Stress, CRCM, Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Daniel Olive
- Team Immunity and Cancer, CRCM, Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, Marseille, France
| |
Collapse
|
270
|
Czapar AE, Tiu BDB, Veliz FA, Pokorski JK, Steinmetz NF. Slow-Release Formulation of Cowpea Mosaic Virus for In Situ Vaccine Delivery to Treat Ovarian Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700991. [PMID: 29876220 PMCID: PMC5979803 DOI: 10.1002/advs.201700991] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/17/2018] [Indexed: 05/06/2023]
Abstract
The plant viral nanoparticle cowpea mosaic virus (CPMV) is shown to be an effective immunotherapy for ovarian cancer when administered as in situ vaccine weekly, directly into the intraperitoneal (IP) space in mice with disseminated tumors. While the antitumor efficacy is promising, the required frequency of administration may pose challenges for clinical implementation. To overcome this, a slow release formulation is developed. CPMV and polyamidoamine generation 4 dendrimer form aggregates (CPMV-G4) based on electrostatic interactions and as a function of salt concentration, allowing for tailoring of aggregate size and release of CPMV. The antitumor efficacy of a single administration of CPMV-G4 is compared to weekly administration of soluble CPMV in a mouse model of peritoneal ovarian cancer and found to be as effective at reducing disease burden as more frequent administrations of soluble CPMV; a single injection of soluble CPMV, does not significantly slow cancer development. The ability of CPMV-G4 to control tumor growth following a single injection is likely due to the continued presence of CPMV in the IP space leading to prolonged immune stimulation. This enhanced retention of CPMV and its antitumor efficacy demonstrates the potential for viral-dendrimer hybrids to be used for delayed release applications.
Collapse
Affiliation(s)
- Anna E. Czapar
- Departments of PathologyCase Western Reserve University2109 Adelbert RoadClevelandOH44106USA
| | - Brylee David B. Tiu
- Department of Biomedical EngineeringCase Western Reserve University2109 Adelbert RoadClevelandOH44106USA
| | - Frank A. Veliz
- Department of Biomedical EngineeringCase Western Reserve University2109 Adelbert RoadClevelandOH44106USA
| | - Jonathan K. Pokorski
- Departments of Macromolecular Science and EngineeringDivision of General Medical Sciences‐OncologyCase Western Reserve University2109 Adelbert RoadClevelandOH44106USA
| | - Nicole F. Steinmetz
- Department of Biomedical EngineeringCase Western Reserve University2109 Adelbert RoadClevelandOH44106USA
- Departments of Macromolecular Science and EngineeringDivision of General Medical Sciences‐OncologyCase Western Reserve University2109 Adelbert RoadClevelandOH44106USA
- Departments of Materials Science and EngineeringDivision of General Medical Sciences‐OncologyCase Western Reserve University2109 Adelbert RoadClevelandOH44106USA
- Departments of RadiologyDivision of General Medical Sciences‐OncologyCase Western Reserve University2109 Adelbert RoadClevelandOH44106USA
- Departments of Case Comprehensive Cancer CenterDivision of General Medical Sciences‐OncologyCase Western Reserve University2109 Adelbert RoadClevelandOH44106USA
| |
Collapse
|
271
|
Vonderheide RH. The Immune Revolution: A Case for Priming, Not Checkpoint. Cancer Cell 2018; 33:563-569. [PMID: 29634944 PMCID: PMC5898647 DOI: 10.1016/j.ccell.2018.03.008] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 02/16/2018] [Accepted: 03/06/2018] [Indexed: 02/06/2023]
Abstract
Most tumors are unresponsive to immune checkpoint blockade, especially if deep immunosuppression in the tumor develops prior to and prevents T cell immunosurveillance. Failed or frustrated T cell priming often needs repair before successful sensitization to PD-1/PD-L1 blockade. CD40 activation plays a critical role in generating T cell immunity, by activating dendritic cells, and converting cold tumors to hot. In preclinical studies, agonistic CD40 antibodies demonstrate T cell-dependent anti-tumor activity, especially in combination with chemotherapy, checkpoint inhibitory antibodies, and other immune modulators. With the advent of multiple CD40 agonists with acceptable single-agent toxicity, clinical evaluation of CD40 combinations has accelerated.
Collapse
Affiliation(s)
- Robert H Vonderheide
- Abramson Cancer Center, University of Pennsylvania, 12 Floor South Pavilion, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
272
|
Albini A, Bruno A, Noonan DM, Mortara L. Contribution to Tumor Angiogenesis From Innate Immune Cells Within the Tumor Microenvironment: Implications for Immunotherapy. Front Immunol 2018; 9:527. [PMID: 29675018 PMCID: PMC5895776 DOI: 10.3389/fimmu.2018.00527] [Citation(s) in RCA: 297] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/28/2018] [Indexed: 12/14/2022] Open
Abstract
The critical role of angiogenesis in promoting tumor growth and metastasis is strongly established. However, tumors show considerable variation in angiogenic characteristics and in their sensitivity to antiangiogenic therapy. Tumor angiogenesis involves not only cancer cells but also various tumor-associated leukocytes (TALs) and stromal cells. TALs produce chemokines, cytokines, proteases, structural proteins, and microvescicles. Vascular endothelial growth factor (VEGF) and inflammatory chemokines are not only major proangiogenic factors but are also immune modulators, which increase angiogenesis and lead to immune suppression. In our review, we discuss the regulation of angiogenesis by innate immune cells in the tumor microenvironment, specific features, and roles of major players: macrophages, neutrophils, myeloid-derived suppressor and dendritic cells, mast cells, γδT cells, innate lymphoid cells, and natural killer cells. Anti-VEGF or anti-inflammatory drugs could balance an immunosuppressive microenvironment to an immune permissive one. Anti-VEGF as well as anti-inflammatory drugs could therefore represent partners for combinations with immune checkpoint inhibitors, enhancing the effects of immune therapy.
Collapse
Affiliation(s)
- Adriana Albini
- Scientific and Technology Pole, IRCCS MultiMedica, Milano, Italy.,Department of Medicine and Surgery, University Milano-Bicocca, Monza, Italy
| | - Antonino Bruno
- Scientific and Technology Pole, IRCCS MultiMedica, Milano, Italy
| | - Douglas M Noonan
- Scientific and Technology Pole, IRCCS MultiMedica, Milano, Italy.,Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Lorenzo Mortara
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
273
|
Narasimhan PB, Akabas L, Tariq S, Huda N, Bennuru S, Sabzevari H, Hofmeister R, Nutman TB, Tolouei Semnani R. Similarities and differences between helminth parasites and cancer cell lines in shaping human monocytes: Insights into parallel mechanisms of immune evasion. PLoS Negl Trop Dis 2018; 12:e0006404. [PMID: 29668679 PMCID: PMC5927465 DOI: 10.1371/journal.pntd.0006404] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/30/2018] [Accepted: 03/22/2018] [Indexed: 12/24/2022] Open
Abstract
A number of features at the host-parasite interface are reminiscent of those that are also observed at the host-tumor interface. Both cancer cells and parasites establish a tissue microenvironment that allows for immune evasion and may reflect functional alterations of various innate cells. Here, we investigated how the phenotype and function of human monocytes is altered by exposure to cancer cell lines and if these functional and phenotypic alterations parallel those induced by exposure to helminth parasites. Thus, human monocytes were exposed to three different cancer cell lines (breast, ovarian, or glioblastoma) or to live microfilariae (mf) of Brugia malayi-a causative agent of lymphatic filariasis. After 2 days of co-culture, monocytes exposed to cancer cell lines showed markedly upregulated expression of M1-associated (TNF-α, IL-1β), M2-associated (CCL13, CD206), Mreg-associated (IL-10, TGF-β), and angiogenesis associated (MMP9, VEGF) genes. Similar to cancer cell lines, but less dramatically, mf altered the mRNA expression of IL-1β, CCL13, TGM2 and MMP9. When surface expression of the inhibitory ligands PDL1 and PDL2 was assessed, monocytes exposed to both cancer cell lines and to live mf significantly upregulated PDL1 and PDL2 expression. In contrast to exposure to mf, exposure to cancer cell lines increased the phagocytic ability of monocytes and reduced their ability to induce T cell proliferation and to expand Granzyme A+ CD8+ T cells. Our data suggest that despite the fact that helminth parasites and cancer cell lines are extraordinarily disparate, they share the ability to alter the phenotype of human monocytes.
Collapse
Affiliation(s)
- Prakash Babu Narasimhan
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Leor Akabas
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Sameha Tariq
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Naureen Huda
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Sasisekhar Bennuru
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Helen Sabzevari
- EMD Serono Research and Development Institute, Billerica, MA, United States of America
| | - Robert Hofmeister
- EMD Serono Research and Development Institute, Billerica, MA, United States of America
| | - Thomas B. Nutman
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Roshanak Tolouei Semnani
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| |
Collapse
|
274
|
Dougan M, Ingram JR, Jeong HJ, Mosaheb MM, Bruck PT, Ali L, Pishesha N, Blomberg O, Tyler PM, Servos MM, Rashidian M, Nguyen QD, von Andrian UH, Ploegh HL, Dougan SK. Targeting Cytokine Therapy to the Pancreatic Tumor Microenvironment Using PD-L1-Specific VHHs. Cancer Immunol Res 2018; 6:389-401. [PMID: 29459478 PMCID: PMC6079513 DOI: 10.1158/2326-6066.cir-17-0495] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/13/2017] [Accepted: 02/07/2018] [Indexed: 12/31/2022]
Abstract
Cytokine-based therapies for cancer have not achieved widespread clinical success because of inherent toxicities. Treatment for pancreatic cancer is limited by the dense stroma that surrounds tumors and by an immunosuppressive tumor microenvironment. To overcome these barriers, we developed constructs of single-domain antibodies (VHHs) against PD-L1 fused with IL-2 and IFNγ. Targeting cytokine delivery in this manner reduced pancreatic tumor burden by 50%, whereas cytokines fused to an irrelevant VHH, or blockade of PD-L1 alone, showed little effect. Targeted delivery of IL-2 increased the number of intratumoral CD8+ T cells, whereas IFNγ reduced the number of CD11b+ cells and skewed intratumoral macrophages toward the display of M1-like characteristics. Imaging of fluorescent VHH-IFNγ constructs, as well as transcriptional profiling, demonstrated targeting of IFNγ to the tumor microenvironment. Many tumors and tumor-infiltrating myeloid cells express PD-L1, rendering them potentially susceptible to this form of targeted immunotherapy. Cancer Immunol Res; 6(4); 389-401. ©2018 AACR.
Collapse
Affiliation(s)
- Michael Dougan
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Jessica R Ingram
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Hee-Jin Jeong
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Munir M Mosaheb
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts
| | - Patrick T Bruck
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Lestat Ali
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Novalia Pishesha
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, Boston, Massachusetts
| | - Olga Blomberg
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, Boston, Massachusetts
| | - Paul M Tyler
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mariah M Servos
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mohammad Rashidian
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, Boston, Massachusetts
| | - Quang-De Nguyen
- Lurie Family Imaging Center, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ulrich H von Andrian
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, Boston, Massachusetts
| | - Stephanie K Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
275
|
Gao HL, Liu L, Qi ZH, Xu HX, Wang WQ, Wu CT, Zhang SR, Xu JZ, Ni QX, Yu XJ. The clinicopathological and prognostic significance of PD-L1 expression in pancreatic cancer: A meta-analysis. Hepatobiliary Pancreat Dis Int 2018; 17:95-100. [PMID: 29576277 DOI: 10.1016/j.hbpd.2018.03.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/17/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND Immunotherapy has shown promise against solid tumors. However, the clinical significance of programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PD-L1) in pancreatic ductal adenocarcinoma (PDAC) remains unclear. This meta-analysis aimed to analyze the prognostic effect of PD-L1 in PDAC. DATA SOURCES Electronic search of the PubMed, Cochrane Library and Web of Science was performed until December 2016. Through database searches, we identified articles describing the relationship between PD-L1 status and PDAC patient prognosis. Meta-analysis was performed to investigate the relationship between PD-1 and overall survival (OS). RESULTS Nine studies with 989 PDAC patients were included for PD-L1 expression analysis. And 5 studies with 688 PDAC patients were included in the prognostic analysis. The PD-L1 positive rate measured by immunohistochemistry (IHC) was higher than that measured by polymerase chain reaction (PCR) (P < 0.001). PDAC patients with high expression levels of PD-L1 had significantly reduced OS (HR = 2.34; 95% CI: 1.78-3.08). Subgroup analysis showed that the prognostic effect of PD-L1 levels was similar between the IHC and PCR methods. The PD-L1 positive rate was associated with PDAC T stages; the PD-L1 positive rate in the T3-4 group was higher than that in the T1-2 group (OR = 0.37; P = 0.001). CONCLUSIONS High PD-L1 expression levels predicted a poor prognosis in PDAC patients. Thus, PD-L1 status helps determine treatment in PDAC patients.
Collapse
Affiliation(s)
- He-Li Gao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Liang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Zi-Hao Qi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Hua-Xiang Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Chun-Tao Wu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Shi-Rong Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jin-Zhi Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Quan-Xing Ni
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xian-Jun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| |
Collapse
|
276
|
Silvestris N, Brunetti O, Pinto R, Petriella D, Argentiero A, Fucci L, Tommasi S, Danza K, De Summa S. Immunological mutational signature in adenosquamous cancer of pancreas: an exploratory study of potentially therapeutic targets. Expert Opin Ther Targets 2018; 22:453-461. [PMID: 29561217 DOI: 10.1080/14728222.2018.1456530] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVES Adenosquamous cancer of pancreas (ASCP) is a rare variant of pancreatic adenocarcinoma (PDAC). It is characterized by poor prognosis and lacks of literature data supporting the choice of systemic therapies. The role of immunotherapy for this malignancy is still unknown. In this study, we evaluated any differences between immune-related genes of PDAC and its adenosquamous variant with the aim to characterize these histothistotypes and eventually identify potential biomarkers useful for an immune-therapy approach in ASCP. METHODS We compared the mutational status of a customized gene panel, including 41 genes involved in immunity checkpoint, inflammation and control of leukocytes, B and T cells proliferation of PDAC and ASCP. Moreover, we evaluated the immunohistochemical expression of programmed death ligand 1 (PD-L1). RESULTS We observed a status of 'hypermutation' of genes included in our panel in ASCP (22/41 mutated genes). Furtheremore, PD-L1 was found to be expressed in about 15% of the squamous component of ASCP tissue. CONCLUSION Due to genetic characteristics and to PD-L1 expression in ASCP compared to PDAC tissue, we can conclude that ASCP presents a potential sensitivity to immunological therapy.
Collapse
Affiliation(s)
- Nicola Silvestris
- a Medical Oncology Unit and Scientific Directorate , Istituto Tumori "Giovanni Paolo II" , Bari , Italy
| | - Oronzo Brunetti
- b Medical Oncology Unit , Hospital of Barletta , Barletta , Italy
| | - Rosamaria Pinto
- c Pharmacogenetics and Molecular Diagnostic Unit , Istituto Tumori "Giovanni Paolo II" , Bari , Italy
| | - Daniela Petriella
- c Pharmacogenetics and Molecular Diagnostic Unit , Istituto Tumori "Giovanni Paolo II" , Bari , Italy
| | | | - Livia Fucci
- e Histopathological Unit , Istituto Tumori "Giovanni Paolo II" , Bari , Italy
| | - Stefania Tommasi
- c Pharmacogenetics and Molecular Diagnostic Unit , Istituto Tumori "Giovanni Paolo II" , Bari , Italy
| | - Katia Danza
- c Pharmacogenetics and Molecular Diagnostic Unit , Istituto Tumori "Giovanni Paolo II" , Bari , Italy
| | - Simona De Summa
- c Pharmacogenetics and Molecular Diagnostic Unit , Istituto Tumori "Giovanni Paolo II" , Bari , Italy
| |
Collapse
|
277
|
Birnbaum DJ, Finetti P, Lopresti A, Gilabert M, Poizat F, Turrini O, Raoul JL, Delpero JR, Moutardier V, Birnbaum D, Mamessier E, Bertucci F. Prognostic value of PDL1 expression in pancreatic cancer. Oncotarget 2018; 7:71198-71210. [PMID: 27589570 PMCID: PMC5342072 DOI: 10.18632/oncotarget.11685] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/24/2016] [Indexed: 12/21/2022] Open
Abstract
Pancreatic cancer is one of the most aggressive human cancers. PD1/PDL1-inhibitors recently showed promising results in different cancers with correlation between PDL1 tumor expression and responses. Expression of programmed cell death receptor ligand 1 (PDL1) has been scarcely studied in pancreatic cancer. In this retrospective study, we analyzed PDL1 mRNA expression in 453 clinical pancreatic cancer samples profiled using DNA microarrays and RNASeq. Compared to normal pancreatic samples, PDL1 expression was upregulated in 19% of cancer samples. Upregulation was not associated with clinicopathological features such as patients' age and sex, pathological type, tumor size, lymph node status, and grade, but was associated with shorter disease-free survival and overall survival in multivariate analyses. Analysis of correlations with biological parameters showed that PDL1 upregulation was associated with some degree of lymphocyte infiltration and signs of anti-tumor T-cell response, but to a lesser extent than what has been reported in breast cancer and GIST. PDL1-up pancreatic cancers displayed profiles of lymphocyte exhaustion, were more enriched in inhibitory molecules and pro-tumor populations (Tregs with upregulation of FOXP3 and IL10, myeloid-derived suppressor cells with upregulation of CD33 and S100A8/A9), and demonstrated a down-modulation of most MHC class I members (HLA-A/B/C, HLA-E/F/G) suggestive of a defect in antigen processing and presentation. In conclusion, our results suggest that PDL1 expression might refine the prediction of metastatic relapse in operated pancreatic cancer, and that PD1/PDL1 inhibitors might reactivate inhibited T-cells to increase the anti-tumor immune response in PDL1-upregulated tumors.
Collapse
Affiliation(s)
- David J Birnbaum
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, INSERM, CNRS, Université Aix-Marseille, Marseille, France.,Département de Chirurgie Générale et Viscérale, AP-HM, Marseille, France.,Faculté de Médecine, Aix-Marseille Université, Marseille, France
| | - Pascal Finetti
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, INSERM, CNRS, Université Aix-Marseille, Marseille, France
| | - Alexia Lopresti
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, INSERM, CNRS, Université Aix-Marseille, Marseille, France
| | - Marine Gilabert
- Equipe de Médecine Translationelle Hépato-Gastro-Entérologie, Institut Paoli-Calmettes, Marseille, France.,Département d'Oncologie Médicale, Institut Paoli-Calmettes, Marseille, France
| | - Flora Poizat
- Equipe de Médecine Translationelle Hépato-Gastro-Entérologie, Institut Paoli-Calmettes, Marseille, France.,Département d'Anatomopathologie, Institut Paoli-Calmettes, Marseille, France
| | - Olivier Turrini
- Faculté de Médecine, Aix-Marseille Université, Marseille, France.,Equipe de Médecine Translationelle Hépato-Gastro-Entérologie, Institut Paoli-Calmettes, Marseille, France.,Département d'Oncologie Chirurgicale, Institut Paoli-Calmettes, Marseille, France
| | - Jean-Luc Raoul
- Equipe de Médecine Translationelle Hépato-Gastro-Entérologie, Institut Paoli-Calmettes, Marseille, France.,Département d'Oncologie Médicale, Institut Paoli-Calmettes, Marseille, France
| | - Jean-Robert Delpero
- Faculté de Médecine, Aix-Marseille Université, Marseille, France.,Equipe de Médecine Translationelle Hépato-Gastro-Entérologie, Institut Paoli-Calmettes, Marseille, France.,Département d'Oncologie Chirurgicale, Institut Paoli-Calmettes, Marseille, France
| | - Vincent Moutardier
- Département de Chirurgie Générale et Viscérale, AP-HM, Marseille, France
| | - Daniel Birnbaum
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, INSERM, CNRS, Université Aix-Marseille, Marseille, France.,Faculté de Médecine, Aix-Marseille Université, Marseille, France
| | - Emilie Mamessier
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, INSERM, CNRS, Université Aix-Marseille, Marseille, France.,Equipe de Médecine Translationelle Hépato-Gastro-Entérologie, Institut Paoli-Calmettes, Marseille, France
| | - François Bertucci
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, INSERM, CNRS, Université Aix-Marseille, Marseille, France.,Faculté de Médecine, Aix-Marseille Université, Marseille, France.,Equipe de Médecine Translationelle Hépato-Gastro-Entérologie, Institut Paoli-Calmettes, Marseille, France.,Département d'Oncologie Médicale, Institut Paoli-Calmettes, Marseille, France
| |
Collapse
|
278
|
Perry CJ, Muñoz-Rojas AR, Meeth KM, Kellman LN, Amezquita RA, Thakral D, Du VY, Wang JX, Damsky W, Kuhlmann AL, Sher JW, Bosenberg M, Miller-Jensen K, Kaech SM. Myeloid-targeted immunotherapies act in synergy to induce inflammation and antitumor immunity. J Exp Med 2018; 215:877-893. [PMID: 29436395 PMCID: PMC5839759 DOI: 10.1084/jem.20171435] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/20/2017] [Accepted: 01/02/2018] [Indexed: 11/04/2022] Open
Abstract
Eliciting effective antitumor immune responses in patients who fail checkpoint inhibitor therapy is a critical challenge in cancer immunotherapy, and in such patients, tumor-associated myeloid cells and macrophages (TAMs) are promising therapeutic targets. We demonstrate in an autochthonous, poorly immunogenic mouse model of melanoma that combination therapy with an agonistic anti-CD40 mAb and CSF-1R inhibitor potently suppressed tumor growth. Microwell assays to measure multiplex protein secretion by single cells identified that untreated tumors have distinct TAM subpopulations secreting MMP9 or cosecreting CCL17/22, characteristic of an M2-like state. Combination therapy reduced the frequency of these subsets, while simultaneously inducing a separate polyfunctional inflammatory TAM subset cosecreting TNF-α, IL-6, and IL-12. Tumor suppression by this combined therapy was partially dependent on T cells, and on TNF-α and IFN-γ. Together, this study demonstrates the potential for targeting TAMs to convert a "cold" into an "inflamed" tumor microenvironment capable of eliciting protective T cell responses.
Collapse
Affiliation(s)
- Curtis J Perry
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | | | - Katrina M Meeth
- Department of Pathology, Yale University School of Medicine, New Haven, CT
| | - Laura N Kellman
- Department of Biomedical Engineering, Yale University, New Haven, CT
| | - Robert A Amezquita
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT.,Howard Hughes Medical Institute, Chevy Chase, MD
| | - Durga Thakral
- Department of Pathology, Yale University School of Medicine, New Haven, CT
| | - Victor Y Du
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Jake Xiao Wang
- Department of Pathology, Yale University School of Medicine, New Haven, CT
| | - William Damsky
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT.,Department of Pathology, Yale University School of Medicine, New Haven, CT
| | | | - Joel W Sher
- Department of Biomedical Engineering, Yale University, New Haven, CT
| | - Marcus Bosenberg
- Department of Pathology, Yale University School of Medicine, New Haven, CT
| | | | - Susan M Kaech
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
279
|
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with a devastating 5-year overall survival of only approximately 7%. Although just 4% of all malignant diseases are accounted to PDAC, it will become the second leading cause of cancer-related deaths before 2030. Immunotherapy has proven to be a promising therapeutic option in various malignancies such as melanoma, non-small cell lung cancer (NSCLC), microsatellite instability-high gastrointestinal cancer, urinary tract cancer, kidney cancer, and others. In this review, we summarize recent findings about immunological aspects of PDAC with the focus on the proposed model of the "cancer immunity cycle". By this model, a deeper understanding of the underlying mechanism in achieving a T-cell response against cancer cells is provided. There is currently great interest in the field around designing novel immunotherapy combination studies for PDAC based on a sound understanding of the underlying immunobiology.
Collapse
|
280
|
Rubiano A, Delitto D, Han S, Gerber M, Galitz C, Trevino J, Thomas RM, Hughes SJ, Simmons CS. Viscoelastic properties of human pancreatic tumors and in vitro constructs to mimic mechanical properties. Acta Biomater 2018; 67:331-340. [PMID: 29191507 PMCID: PMC5797706 DOI: 10.1016/j.actbio.2017.11.037] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/08/2017] [Accepted: 11/14/2017] [Indexed: 01/18/2023]
Abstract
UNLABELLED Pancreatic ductal adenocarcinoma (PDAC) is almost universally fatal, in large part due to a protective fibrotic barrier generated by tumor-associated stromal (TAS) cells. This barrier is thought to promote cancer cell survival and confounds attempts to develop effective therapies. We present a 3D in vitro system that replicates the mechanical properties of the PDAC microenvironment, representing an invaluable tool for understanding the biology of the disease. Mesoscale indentation quantified viscoelastic metrics of resected malignant tumors, inflamed chronic pancreatitis regions, and histologically normal tissue. Both pancreatitis (2.15 ± 0.41 kPa, Mean ± SD) and tumors (5.46 ± 3.18 kPa) exhibit higher Steady-State Modulus (SSM) than normal tissue (1.06 ± 0.25 kPa; p < .005). The average viscosity of pancreatitis samples (63.2 ± 26.7 kPa·s) is significantly lower than that of both normal tissue (252 ± 134 kPa·s) and tumors (349 ± 222 kPa·s; p < .005). To mimic this remodeling behavior, PDAC and TAS cells were isolated from human PDAC tumors. Conditioned medium from PDAC cells was used to culture TAS-embedded collagen hydrogels. After 7 days, TAS-embedded gels in control medium reached SSM (1.45 ± 0.12 kPa) near normal pancreas, while gels maintained with conditioned medium achieved higher SSM (3.38 ± 0.146 kPa) consistent with tumors. Taken together, we have demonstrated an in vitro system that recapitulates in vivo stiffening of PDAC tumors. In addition, our quantification of viscoelastic properties suggests that elastography algorithms incorporating viscosity may be able to more accurately distinguish between pancreatic cancer and pancreatitis. STATEMENT OF SIGNIFICANCE Understanding tumor-stroma crosstalk in pancreatic ductal adenocarcinoma (PDAC) is challenged by a lack of stroma-mimicking model systems. To design appropriate models, pancreatic tissue must be characterized with a method capable of evaluating in vitro models as well. Our indentation-based characterization tool quantified the distinct viscoelastic signatures of inflamed resections from pancreatitis, tumors from PDAC, and otherwise normal tissue to inform development of mechanically appropriate engineered tissues and scaffolds. We also made progress toward a 3D in vitro system that recapitulates mechanical properties of tumors. Our in vitro model of stromal cells in collagen and complementary characterization system can be used to investigate mechanisms of cancer-stroma crosstalk in PDAC and to propose and test innovative therapies.
Collapse
Affiliation(s)
- Andres Rubiano
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, United States
| | - Daniel Delitto
- Department of Surgery, College of Medicine, University of Florida, United States
| | - Song Han
- Department of Surgery, College of Medicine, University of Florida, United States
| | - Michael Gerber
- Department of Surgery, College of Medicine, University of Florida, United States
| | - Carly Galitz
- Department of Mathematics, College of Liberal Arts and Sciences, University of Florida, United States
| | - Jose Trevino
- Department of Surgery, College of Medicine, University of Florida, United States
| | - Ryan M Thomas
- Department of Surgery, College of Medicine, University of Florida, United States
| | - Steven J Hughes
- Department of Surgery, College of Medicine, University of Florida, United States
| | - Chelsey S Simmons
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, United States; J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, United States.
| |
Collapse
|
281
|
Liang X, Sun J, Wu H, Luo Y, Wang L, Lu J, Zhang Z, Guo J, Liang Z, Liu T. PD-L1 in pancreatic ductal adenocarcinoma: a retrospective analysis of 373 Chinese patients using an in vitro diagnostic assay. Diagn Pathol 2018; 13:5. [PMID: 29378617 PMCID: PMC6389094 DOI: 10.1186/s13000-017-0678-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 12/12/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Programmed death ligand 1 (PD-L1) has shown potential as a therapeutic target in numerous solid tumors. Its prognostic significance has also been established in pancreatic ductal adenocarcinoma (PDAC). The present study aimed to explore PD-L1 expression in PDAC cases in a large Chinese cohort using an in vitro diagnostic (IVD) assay to provide further insight into the potential value of programmed cell death protein 1 (PD-1) as a therapeutic target. METHODS Three hundred seventy-three PDAC patients were retrospectively recruited in this study. Tissue microarray (TMA) blocks were made from available formalin-fixed and paraffin-embedded (FFPE) tumor and matched adjacent tissue specimens. We evaluated PD-L1 protein expression via immunohistochemistry (IHC) using a U.S. Food and Drug Administration (FDA)-approved IVD assay. The relationships between PD-L1 positivity and both clinicopathological characteristics and patient prognosis were analyzed. PD-1 expression and clinicopathological significance were also evaluated. RESULTS PD-L1 and PD-1 positivity were observed in 3.2% and 7.5% of cases, respectively. PD-L1 showed a predominantly membranous pattern in tumor cells, while no positive PD-L1 staining was observed in normal regions. Statistical analyses revealed that PD-L1 expression was associated with lymph node metastasis. PD-L1 positivity was a prognostic indicator of progression-free survival (PFS) and overall survival (OS) in univariate analyses, but only PFS remained statistically significant in multivariate analysis. PD-1 expression was detected in lymphocytes and was not associated with any clinicopathological feature except a history of pancreatitis. CONCLUSIONS The PD-L1 positivity rate is low in PDAC when evaluated using a companion diagnostic assay. It remains an independent prognostic factor for poor PFS.
Collapse
Affiliation(s)
- Xiaolong Liang
- Department of Pathology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuai Fu Yuan, Wangfujing, Beijing, 100730 People’s Republic of China
| | - Jian Sun
- Department of Pathology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuai Fu Yuan, Wangfujing, Beijing, 100730 People’s Republic of China
| | - Huanwen Wu
- Department of Pathology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuai Fu Yuan, Wangfujing, Beijing, 100730 People’s Republic of China
| | - Yufeng Luo
- Department of Pathology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuai Fu Yuan, Wangfujing, Beijing, 100730 People’s Republic of China
| | - Lili Wang
- Department of Pathology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuai Fu Yuan, Wangfujing, Beijing, 100730 People’s Republic of China
| | - Junliang Lu
- Department of Pathology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuai Fu Yuan, Wangfujing, Beijing, 100730 People’s Republic of China
| | - Zhiwen Zhang
- Department of Pathology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuai Fu Yuan, Wangfujing, Beijing, 100730 People’s Republic of China
| | - Junchao Guo
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuai Fu Yuan, Wangfujing, Beijing, 100730 People’s Republic of China
| | - Zhiyong Liang
- Department of Pathology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuai Fu Yuan, Wangfujing, Beijing, 100730 People’s Republic of China
| | - Tonghua Liu
- Department of Pathology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuai Fu Yuan, Wangfujing, Beijing, 100730 People’s Republic of China
| |
Collapse
|
282
|
Diana A, Wang LM, D'Costa Z, Allen P, Azad A, Silva MA, Soonawalla Z, Liu S, McKenna WG, Muschel RJ, Fokas E. Prognostic value, localization and correlation of PD-1/PD-L1, CD8 and FOXP3 with the desmoplastic stroma in pancreatic ductal adenocarcinoma. Oncotarget 2018; 7:40992-41004. [PMID: 27329602 PMCID: PMC5173037 DOI: 10.18632/oncotarget.10038] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 05/14/2016] [Indexed: 12/21/2022] Open
Abstract
We examined the prognostic value of programmed cell death-1 (PD-1) and its ligand (PD-L1) together with CD8+ tumor-infiltrating lymphocytes (TILs) and FOXP3+ Tregs in resectable pancreatic ductal adenocarcinoma (PDAC) samples treated with adjuvant chemotherapy. Whole-mount FFPE tissue sections from 145 pancreatectomies were immunohistochemically stained for PD-1, PD-L1, CD8 and FOXP3. Their expression was correlated with clinicopathological characteristics, and overall survival (OS), progression-free survival (PFS), local progression-free survival (LPFS) and distant metastases free-survival (DMFS), in the context of stroma density (haematoxylin-eosin) and activity (alpha-smooth muscle actin) and in regard to intratumoral lymphoid aggregates. The median OS was 21 months after a mean follow-up of 20 months (range, 2-69 months). In multivariate analysis, high PD-1+ TILs expression was associated with better OS (p = 0.049), LPFS (p = 0.017) and DMFS (p = 0.021). Similar findings were observed for CD8+ TILs, whereas FOXP3 and PD-L1 lacked prognostic significance. Although TIL distribution was heterogeneous, tumors of high stroma density had higher infiltration of CD8+ TILs than loose density stroma and vice versa (p < 0.001), whereas no correlation was found with stromal activity. Sixty (41.4%) tumors contained lymphoid aggregates and the presence of PD-1+ TILs was associated with better OS (p = 0.030), LPFS (p = 0.025) and DMFS (p = 0.033), whereas CD8+ TILs only correlated with superior LPFS (p = 0.039). PD-1+ and CD8+ TILs constitute independent prognostic markers in patients with PDAC treated with adjuvant chemotherapy. Our study provides important insight on the role of PD-1/PD-L1 in the context of desmoplastic stroma and could help guide future immunotherapies in PDAC.
Collapse
Affiliation(s)
- Angela Diana
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Lai Mun Wang
- Department of Pathology, Oxford University Hospital NHS Foundation Trust, Oxford, UK
| | - Zenobia D'Costa
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Paul Allen
- Department of Pathology, Oxford University Hospital NHS Foundation Trust, Oxford, UK
| | - Abul Azad
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Michael A Silva
- Department of Surgery, Oxford University Hospital NHS Foundation Trust, Oxford, UK
| | - Zahir Soonawalla
- Department of Surgery, Oxford University Hospital NHS Foundation Trust, Oxford, UK
| | - Stanley Liu
- Department of Radiation Oncology, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - W Gillies McKenna
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Ruth J Muschel
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Emmanouil Fokas
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| |
Collapse
|
283
|
Immune Evasion in Pancreatic Cancer: From Mechanisms to Therapy. Cancers (Basel) 2018; 10:cancers10010006. [PMID: 29301364 PMCID: PMC5789356 DOI: 10.3390/cancers10010006] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/22/2017] [Accepted: 12/27/2017] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA), the most frequent type of pancreatic cancer, remains one of the most challenging problems for the biomedical and clinical fields, with abysmal survival rates and poor therapy efficiency. Desmoplasia, which is abundant in PDA, can be blamed for much of the mechanisms behind poor drug performance, as it is the main source of the cytokines and chemokines that orchestrate rapid and silent tumor progression to allow tumor cells to be isolated into an extensive fibrotic reaction, which results in inefficient drug delivery. However, since immunotherapy was proclaimed as the breakthrough of the year in 2013, the focus on the stroma of pancreatic cancer has interestingly moved from activated fibroblasts to the immune compartment, trying to understand the immunosuppressive factors that play a part in the strong immune evasion that characterizes PDA. The PDA microenvironment is highly immunosuppressive and is basically composed of T regulatory cells (Tregs), tumor-associated macrophages (TAMs), and myeloid-derived suppressive cells (MDSCs), which block CD8⁺ T-cell duties in tumor recognition and clearance. Interestingly, preclinical data have highlighted the importance of this immune evasion as the source of resistance to single checkpoint immunotherapies and cancer vaccines and point at pathways that inhibit the immune attack as a key to solve the therapy puzzle. Here, we will discuss the molecular mechanisms involved in PDA immune escape as well as the state of the art of the PDA immunotherapy.
Collapse
|
284
|
Song M, Chen X, Wang L, Zhang Y. Future of anti-PD-1/PD-L1 applications: Combinations with other therapeutic regimens. Chin J Cancer Res 2018; 30:157-172. [PMID: 29861603 DOI: 10.21147/j.issn.1000-9604.2018.02.01] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Programmed cell death 1 (PD-1)/programmed cell death 1 ligand (PD-L1) blockade has shown promising effects in cancer immunotherapy. Removing the so-called " brakes" on T cell immune responses by blocking the PD-1/PD-L1 check point should boost anti-tumor immunity and provide durable tumor regression for cancer patients. However, 30%-60% of patients show no response to PD-1/PD-L1 blockade. Thus, it is urgent to explore the underlying resistance mechanisms to improve sensitivity to anti-PD-1/PD-L1 therapy. We propose that the mechanisms promoting resistance mainly include T cell exclusion or exhaustion at the tumor site, immunosuppressive factors in the tumor microenvironment (TME), and a range of tumor-intrinsic factors. This review highlights the power of studying the cellular and molecular mechanisms of resistance to improve the rational design of combination therapeutic strategies that can be translated to the clinic. Here, we briefly discuss the development of PD-1/PD-L1 blockade agents and focus on the current issues and future prospects for potential combinatorial therapeutic strategies that include anti-PD-1/PD-L1 therapy, based upon the available preclinical and clinical data.
Collapse
Affiliation(s)
- Mengjia Song
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.,Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xinfeng Chen
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.,Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Liping Wang
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yi Zhang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.,Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.,School of Life Sciences, Zhengzhou University, Zhengzhou 450052, China.,Key Laboratory for Tumor Immunology and Biotherapy of Henan Province, Zhengzhou 450052, China
| |
Collapse
|
285
|
Sun J, Lian M, Ma H, Wang R, Ma Z, Wang H, Zhai J, Meng L, Feng L, Bai Y, Cui X, Fang J. Competing endogenous RNA network analysis of CD274, IL‑10 and FOXP3 co‑expression in laryngeal squamous cell carcinoma. Mol Med Rep 2017; 17:3859-3869. [PMID: 29257349 DOI: 10.3892/mmr.2017.8307] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 06/15/2017] [Indexed: 11/06/2022] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) is one of the most common types of head and neck malignant tumor; however, there is a lack of effective molecular targets for therapy. The present study detected the expression of three immunity‑associated molecules [forkhead box (FOX)3, interleukin (IL)‑10 and cluster of differentiation (CD)274] in 133 LSCC samples using immunohistochemistry (IHC); subsequently, the association between their expression and the clinical characteristics of LSCC were analyzed. Spearman's rank correlation method, Kaplan‑Meier and Cox regression model were used to analyze the correlations of the three proteins and their clinical significance. StarBase and miRTarBase databases were used to establish the competitive endogenous (ce)RNA network of the three molecules. IHC demonstrated that the positive expression rates of FOXP3, IL‑10 and CD274 were 68.4, 73.7 and 58.6% in 133 LSCC samples, respectively. In addition, it was identified that the expression of the three proteins was closely correlated with the clinical characteristics of LSCC, including lymph node metastasis and prognosis (P<0.05). There was also a significant association of co‑expression between any two proteins (P<0.001). Furthermore, the expression levels of FOXP3, IL‑10 and CD274 were negatively associated with the survival rate of patients with LSCC (P<0.05). The results of a Cox regression model suggested that the three proteins were prognostic risk factors for LSCC (P<0.05). The ceRNA network revealed that 10 microRNAs (miRs; including miR‑16‑5p and miR‑214‑3p), 123 long non‑coding RNAs (including X‑inactive specific transcript, H19 and metastasis associated lung adenocarcinoma transcript 1) and 408 circular RNAs (including ATP‑binding cassette subfamily C member 1 hsa_circ_001569 and ISY1 splicing factor homolog hsa_circ_001859) may regulate the expression of FOXP3, IL‑10 and CD274. The data generated from the present study may increase the understanding of the immune escape mechanisms of LSCC and may be beneficial for the development of a specific immunotherapy.
Collapse
Affiliation(s)
- Juan Sun
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Meng Lian
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Hongzhi Ma
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Ru Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Zhihong Ma
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Haizhou Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Jie Zhai
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Lingzhao Meng
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Ling Feng
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Yunfei Bai
- Department of Otorhinolaryngology, Inner Mongolia Medical University Affiliated Hospital, Hohhot, Inner Mongolia 010050, P.R. China
| | - Xiaobo Cui
- Department of Otorhinolaryngology, Inner Mongolia Medical University Affiliated Hospital, Hohhot, Inner Mongolia 010050, P.R. China
| | - Jugao Fang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| |
Collapse
|
286
|
De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol 2017; 18:e731-e741. [PMID: 29208439 DOI: 10.1016/s1470-2045(17)30607-1] [Citation(s) in RCA: 527] [Impact Index Per Article: 65.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/21/2017] [Accepted: 07/24/2017] [Indexed: 12/19/2022]
Abstract
Use of immune checkpoint inhibitors targeting the programmed cell death protein-1/programmed cell death-ligand 1 and cytotoxic T lymphocyte-associated protein-4 axes has yielded impressive results in some clinical trials. However, only a subset of patients initially respond to these inhibitors, and increasing clinical evidence indicates that a substantial proportion of initial responders ultimately relapse with lethal, drug-resistant disease months or years later. Studies that have used massively parallel sequencing have shed light on the rich functional landscape of mutations that endow tumour cells with the ability to evade T-cell-mediated immunosurveillance. Cancer genomes bear signatures of clonal evolution and selection, particularly implicating acquired defects in interferon receptor signalling and antigen presentation. In this Review, we discuss the biological processes that operate in the formation of so-called immunoresistant niches, and describe the latest progress in the development of combination strategies to reinstate immunosurveillance in immune-refractory tumours.
Collapse
|
287
|
Emerging trends in the immunotherapy of pancreatic cancer. Cancer Lett 2017; 417:35-46. [PMID: 29242097 DOI: 10.1016/j.canlet.2017.12.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 11/20/2017] [Accepted: 12/07/2017] [Indexed: 12/23/2022]
Abstract
Pancreatic cancer (PC) is the fourth leading cause of cancer-related deaths in the U.S., claiming approximately 43,000 lives every year. Much like other solid tumors, PC evades the host immune surveillance by manipulating immune cells to establish an immunosuppressive tumor microenvironment (TME). Therefore, targeting and reinstating the patient's immune system could serve as a powerful therapeutic tool. Indeed, immunotherapy has emerged in recent years as a potential adjunct treatment for solid tumors including PC. Immunotherapy modulates the host's immune response to tumor-associated antigens (TAAs), eradicates cancer cells by reducing host tolerance to TAAs and provides both short- and long-term protection against the disease. Passive immunotherapies like monoclonal antibodies or engineered T-cell based therapies directly target tumor cells by recognizing TAAs. Active immunotherapies, like cancer vaccines, on the other hand elicit a long-lasting immune response via activation of the patient's immune cells against cancer cells. Several immunotherapy strategies have been tested for anti-tumor responses alone and in combination with standard care in multiple preclinical and clinical studies. In this review, we discuss various immunotherapy strategies used currently and their efficacy in abrogating self-antigen tolerance and immunosuppression, as well as their ability to eradicate PC.
Collapse
|
288
|
Brooks J, Fleischmann-Mundt B, Woller N, Niemann J, Ribback S, Peters K, Demir IE, Armbrecht N, Ceyhan GO, Manns MP, Wirth TC, Kubicka S, Bernhardt G, Smyth MJ, Calvisi DF, Gürlevik E, Kühnel F. Perioperative, Spatiotemporally Coordinated Activation of T and NK Cells Prevents Recurrence of Pancreatic Cancer. Cancer Res 2017; 78:475-488. [PMID: 29180478 DOI: 10.1158/0008-5472.can-17-2415] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/27/2017] [Accepted: 11/07/2017] [Indexed: 01/11/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal and disseminating cancer resistant to therapy, including checkpoint immunotherapies, and early tumor resection and (neo)adjuvant chemotherapy fails to improve a poor prognosis. In a transgenic mouse model of resectable PDAC, we investigated the coordinated activation of T and natural killier (NK) cells in addition to gemcitabine chemotherapy to prevent tumor recurrence. Only neoadjuvant, but not adjuvant treatment with a PD-1 antagonist effectively supported chemotherapy and suppressed local tumor recurrence and improved survival involving both NK and T cells. Local T-cell activation was confirmed by increased tumor infiltration with CD103+CD8+ T cells and neoantigen-specific CD8 T lymphocytes against the marker neoepitope LAMA4-G1254V. To achieve effective prevention of distant metastases in a complementary approach, we blocked the NK-cell checkpoint CD96, an inhibitory NK-cell receptor that binds CD155, which was abundantly expressed in primary PDAC and metastases of human patients. In gemcitabine-treated mice, neoadjuvant PD-1 blockade followed by adjuvant inhibition of CD96 significantly prevented relapse of PDAC, allowing for long-term survival. In summary, our results show in an aggressively growing transgenic mouse model of PDAC that the coordinated activation of both innate and adaptive immunity can effectively reduce the risk of tumor recurrence after surgery, facilitating long-term remission of this lethal disease.Significance: Coordinated neoadjuvant and adjuvant immunotherapies reduce the risk of disease relapse after resection of murine PDAC, suggesting this concept for future clinical trials. Cancer Res; 78(2); 475-88. ©2017 AACR.
Collapse
Affiliation(s)
- Jennifer Brooks
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Bettina Fleischmann-Mundt
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Norman Woller
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Julia Niemann
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Silvia Ribback
- Institute of Pathology, University Medicine of Greifswald, Greifswald, Germany
| | - Kristin Peters
- Institute of Pathology, University Medicine of Greifswald, Greifswald, Germany
| | - Ihsan Ekin Demir
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Nina Armbrecht
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Guralp O Ceyhan
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Michael P Manns
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Thomas C Wirth
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Stefan Kubicka
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany.,Cancer Center Reutlingen, District Hospital, Reutlingen, Germany
| | - Gunter Bernhardt
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Mark J Smyth
- QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Diego F Calvisi
- Institute of Pathology, University Medicine of Greifswald, Greifswald, Germany
| | - Engin Gürlevik
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Florian Kühnel
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
289
|
Bakst RL, Xiong H, Chen CH, Deborde S, Lyubchik A, Zhou Y, He S, McNamara W, Lee SY, Olson OC, Leiner IM, Marcadis AR, Keith JW, Al-Ahmadie HA, Katabi N, Gil Z, Vakiani E, Joyce JA, Pamer E, Wong RJ. Inflammatory Monocytes Promote Perineural Invasion via CCL2-Mediated Recruitment and Cathepsin B Expression. Cancer Res 2017; 77:6400-6414. [PMID: 28951461 PMCID: PMC5831809 DOI: 10.1158/0008-5472.can-17-1612] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/21/2017] [Accepted: 09/18/2017] [Indexed: 12/14/2022]
Abstract
Perineural invasion (PNI) is an ominous event strongly linked to poor clinical outcome. Cells residing within peripheral nerves collaborate with cancer cells to enable PNI, but the contributing conditions within the tumor microenvironment are not well understood. Here, we show that CCR2-expressing inflammatory monocytes (IM) are preferentially recruited to sites of PNI, where they differentiate into macrophages and potentiate nerve invasion through a cathepsin B-mediated process. A series of adoptive transfer experiments with genetically engineered donors and recipients demonstrated that IM recruitment to nerves was driven by CCL2 released from Schwann cells at the site of PNI, but not CCL7, an alternate ligand for CCR2. Interruption of either CCL2-CCR2 signaling or cathepsin B function significantly impaired PNI in vivo Correlative studies in human specimens demonstrated that cathepsin B-producing macrophages were enriched in invaded nerves, which was associated with increased local tumor recurrence. These findings deepen our understanding of PNI pathogenesis and illuminate how PNI is driven in part by corruption of a nerve repair program. Further, they support the exploration of inhibiting IM recruitment and function as a targeted therapy for PNI. Cancer Res; 77(22); 6400-14. ©2017 AACR.
Collapse
MESH Headings
- Animals
- Cathepsin B/metabolism
- Cell Line
- Cell Line, Tumor
- Chemokine CCL2/genetics
- Chemokine CCL2/metabolism
- Humans
- Macrophages/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Nude
- Monocytes/metabolism
- Monocytes/pathology
- Neoplasm Invasiveness
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Peripheral Nerves/metabolism
- Peripheral Nerves/pathology
- Receptors, CCR2/genetics
- Receptors, CCR2/metabolism
- Schwann Cells/metabolism
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Richard L Bakst
- Department of Radiation Oncology, Mount Sinai School of Medicine, New York, New York
| | - Huizhong Xiong
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Chun-Hao Chen
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Sylvie Deborde
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Anna Lyubchik
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Yi Zhou
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Shizhi He
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - William McNamara
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Sei-Young Lee
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Oakley C Olson
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ingrid M Leiner
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Andrea R Marcadis
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - James W Keith
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Hikmat A Al-Ahmadie
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nora Katabi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ziv Gil
- Department of Otolaryngology, Rambam Healthcare Campus, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Efsevia Vakiani
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Johanna A Joyce
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Eric Pamer
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Richard J Wong
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York.
| |
Collapse
|
290
|
Maloney E, Khokhlova T, Pillarisetty VG, Schade GR, Repasky EA, Wang YN, Giuliani L, Primavera M, Hwang JH. Focused ultrasound for immuno-adjuvant treatment of pancreatic cancer: An emerging clinical paradigm in the era of personalized oncotherapy. Int Rev Immunol 2017; 36:338-351. [PMID: 28961038 PMCID: PMC6224292 DOI: 10.1080/08830185.2017.1363199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Current clinical treatment regimens, including many emergent immune strategies (e.g., checkpoint inhibitors) have done little to affect the devastating course of pancreatic ductal adenocarcinoma (PDA). Clinical trials for PDA often employ multi-modal treatment, and have started to incorporate stromal-targeted therapies, which have shown promising results in early reports. Focused ultrasound (FUS) is one such therapy that is uniquely equipped to address local and systemic limitations of conventional cancer therapies as well as emergent immune therapies for PDA. FUS methods can non-invasively generate mechanical and/or thermal effects that capitalize on the unique oncogenomic/proteomic signature of a tumor. Potential benefits of FUS therapy for PDA include: (1) emulsification of targeted tumor into undenatured antigens in situ, increasing dendritic cell maturation, and increasing intra-tumoral CD8+/ T regulatory cell ratio and CD8+ T cell activity; (2) reduction in intra-tumoral hypoxic stress; (3) modulation of tumor cell membrane protein localization to enhance immunogenicity; (4) modulation of the local cytokine milieu toward a Th1-type inflammatory profile; (5) up-regulation of local chemoattractants; (6) remodeling the tumor stroma; (7) localized delivery of exogenously packaged immune-stimulating antigens, genes and therapeutic drugs. While not all of these results have been studied in experimental PDA models to date, the principles garnered from other solid tumor and disease models have direct relevance to the design of optimal FUS protocols for PDA. In this review, we address the pertinent limitations in current and emergent immune therapies that can be improved with FUS therapy for PDA.
Collapse
Affiliation(s)
- Ezekiel Maloney
- a Department of Radiology , University of Washington , Seattle WA , USA
| | - Tanya Khokhlova
- b Department of Medicine Division of Gastroenterology , University of Washington , Seattle WA , USA
| | | | - George R Schade
- d Department of Urology , University of Washington , Seattle WA , USA
| | - Elizabeth A Repasky
- e Department of Immunology , Roswell Park Cancer Institute , Buffalo NY , USA
| | - Yak-Nam Wang
- f Applied Physics Laboratory , University of Washington , Seattle WA , USA
| | - Lorenzo Giuliani
- g School of Medicine , The Sapienza University of Rome , Rome , Italy
| | - Matteo Primavera
- h School of Medicine , The Sapienza University of Rome , Rome , Italy
| | - Joo Ha Hwang
- i Department of Medicine Division of Gastroenterology , University of Washington , Seattle WA , USA
| |
Collapse
|
291
|
Lehrke HD, Graham RP, McWilliams RR, Lam-Himlin DM, Smyrk TC, Jenkins S, Dong H, Zhang L. Undifferentiated Pancreatic Carcinomas Display Enrichment for Frequency and Extent of PD-L1 Expression by Tumor Cells. Am J Clin Pathol 2017; 148:441-449. [PMID: 29069274 DOI: 10.1093/ajcp/aqx092] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES Programmed death ligand 1 (PD-L1) expression in pancreatic ductal adenocarcinoma (PDA) has been described, but unselected PDAs have shown limited clinical responsiveness to anti-programmed death 1 (PD-1)/PD-L1 therapy. METHODS We studied 24 cases of undifferentiated pancreatic carcinoma (UPC) using immunohistochemistry for PD-L1 (E1L3N clone), CD3, CD20, CD68, and DNA mismatch repair proteins in this study. Slides were scored for extent of PD-L1 expression on tumor cells and tumor-infiltrating immune cells. RESULTS PD-L1 expression was more frequent in UPCs than in PDAs (63% vs 15%, P < .01). The extent of PD-L1 expression was greater in UPCs, with 13 (87%) of 15 cases containing 10% or more positive tumor cells compared with three of seven PDAs (P = .05). Both tumor groups showed similar numbers of tumor-infiltrating T cells, B cells, and macrophages. CONCLUSIONS UPC is enriched for PD-L1 expression in frequency and extent, relative to conventional PDA. Anti-PD-1/PD-L1 agents may represent a valuable therapeutic approach for this subset of highly aggressive pancreatic carcinoma.
Collapse
Affiliation(s)
| | | | | | - Dora M Lam-Himlin
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, AZ
| | | | | | - Haidong Dong
- Department of Immunology, Mayo Clinic, Rochester, MN
| | - Lizhi Zhang
- Department of Laboratory Medicine and Pathology
| |
Collapse
|
292
|
Stromnes IM, Hulbert A, Pierce RH, Greenberg PD, Hingorani SR. T-cell Localization, Activation, and Clonal Expansion in Human Pancreatic Ductal Adenocarcinoma. Cancer Immunol Res 2017; 5:978-991. [PMID: 29066497 PMCID: PMC5802342 DOI: 10.1158/2326-6066.cir-16-0322] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 07/21/2017] [Accepted: 09/18/2017] [Indexed: 12/20/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a lethal malignancy resistant to most therapies, including immune checkpoint blockade. To elucidate mechanisms of immunotherapy resistance, we assessed immune parameters in resected human PDA. We demonstrate significant interpatient variability in T-cell number, localization, and phenotype. CD8+ T cells, Foxp3+ regulatory T cells, and PD-1+ and PD-L1+ cells were preferentially enriched in tertiary lymphoid structures that were found in most tumors compared with stroma and tumor cell nests. Tumors containing more CD8+ T cells also had increased granulocytes, CD163+ (M2 immunosuppressive phenotype) macrophages, and FOXP3+ regulatory T cells. PD-L1 was rare on tumor cells, but was expressed by CD163+ macrophages and an additional stromal cell subset commonly found clustered together adjacent to tumor epithelium. The majority of tumoral CD8+ T cells did not express molecules suggestive of recent T-cell receptor (TCR) signaling. However, 41BB+PD-1+ T cells were still significantly enriched in tumors compared with circulation. Tumoral CD8+PD-1+ T cells commonly expressed additional inhibitory receptors, yet were mostly T-BEThi and EOMESlo, consistent with a less terminally exhausted state. Analysis of gene expression and rearranged TCR genes by deep sequencing suggested most patients have a limited tumor-reactive T-cell response. Multiplex immunohistochemistry revealed variable T-cell infiltration based on abundance and location, which may result in different mechanisms of immunotherapy resistance. Overall, the data support the need for therapies that either induce endogenous, or provide engineered, tumor-specific T-cell responses, and concurrently relieve suppressive mechanisms operative at the tumor site. Cancer Immunol Res; 5(11); 978-91. ©2017 AACR.
Collapse
Affiliation(s)
- Ingunn M Stromnes
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Ayaka Hulbert
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Robert H Pierce
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Philip D Greenberg
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Division of Medical Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Sunil R Hingorani
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.
- Division of Medical Oncology, University of Washington School of Medicine, Seattle, Washington
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| |
Collapse
|
293
|
Valentine FT, Golomb FM, Harris M, Roses DF. A novel immunization strategy using cytokine/chemokines induces new effective systemic immune responses, and frequent complete regressions of human metastatic melanoma. Oncoimmunology 2017; 7:e1386827. [PMID: 29308310 DOI: 10.1080/2162402x.2017.1386827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/13/2017] [Accepted: 09/27/2017] [Indexed: 02/08/2023] Open
Abstract
Immune responses have been elicited by a variety of cancer vaccines, but seldom induce regressions of established cancers in humans. As a novel therapeutic immunization strategy, we tested the hypothesis that multiple cytokines/chemokines secreted early in secondary responses ex-vivo might mimic the secretory environment guiding new immune responses. The early development of immune responses is regulated by multiple cytokines/chemokines acting together, which at physiologic concentrations act locally in concert with antigen to have non-specific effects on adjacent cells, including the maturation of dendritic cells, homing and retention of T cells at the site of antigen, and the differentiation and expansion of T cell clones with appropriate receptors. We postulated that repeated injections into a metastasis of an exogenous chemokine/cytokine mixture might establish the environment of an immune response and allow circulating T cell clones to self- select for mutant neo-epitopes in the tumor and generate systemic immune responses. To test this idea we injected some metastases in patients with multiple cutaneous melanoma nodules while never injecting other control metastases in the same patient. New immune responses were identified by the development of dense lymphocytic infiltrates in never-injected metastases, and the frequent complete regression of never-injected metastases, a surprising observation. 70% of subjects developed dense infiltrates of cytotoxic CD8 cells in the center and margin of never-injected metastases; 38% of subjects had complete and often durable regressions of all metastases, without the use of check-point inhibitors, suggesting that, as a proof-of-principle, an immunization strategy can control advanced human metastatic melanoma.
Collapse
Affiliation(s)
- Fred T Valentine
- Departments of Medicine, the New York University School of Medicine, New York, NY, USA
| | - Frederick M Golomb
- Department of Surgery, the New York University School of Medicine, New York, NY, USA
| | - Matthew Harris
- Department of Surgery, the New York University School of Medicine, New York, NY, USA
| | - Daniel F Roses
- Department of Surgery, the New York University School of Medicine, New York, NY, USA
| |
Collapse
|
294
|
Chen Y, Xue SA, Behboudi S, Mohammad GH, Pereira SP, Morris EC. Ex Vivo PD-L1/PD-1 Pathway Blockade Reverses Dysfunction of Circulating CEA-Specific T Cells in Pancreatic Cancer Patients. Clin Cancer Res 2017; 23:6178-6189. [PMID: 28710313 PMCID: PMC5683391 DOI: 10.1158/1078-0432.ccr-17-1185] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/20/2017] [Accepted: 07/10/2017] [Indexed: 12/27/2022]
Abstract
Purpose: Carcinoembryonic antigen (CEA) is a candidate target for cellular immunotherapy of pancreatic cancer. In this study, we have characterized the antigen-specific function of autologous cytotoxic T lymphocytes (CTL) specific for the HLA-A2-restricted peptide, pCEA691-699, isolated from the peripheral T-cell repertoire of pancreatic cancer patients and sought to determine if ex vivo PD-L1 and TIM-3 blockade could enhance CTL function.Experimental Design: CD8+ T-cell lines were generated from peripheral blood mononuclear cells of 18 HLA-A2+ patients with pancreatic cancer and from 15 healthy controls. In vitro peptide-specific responses were evaluated by flow cytometry after staining for intracellular cytokine production and carboxy fluorescein succinimydyl ester cytotoxicity assays using pancreatic cancer cell lines as targets.Results: Cytokine-secreting functional CEA691-specific CTL lines were successfully generated from 10 of 18 pancreatic cancer patients, with two CTL lines able to recognize and kill both CEA691 peptide-loaded T2 cells and CEA+ HLA-A2+ pancreatic cancer cell lines. In the presence of ex vivo PD-L1 blockade, functional CEA691-specific CD8+ T-cell responses, including IFNγ secretion and proliferation, were enhanced, and this effect was more pronounced on Ag-specific T cells isolated from tumor draining lymph nodes.Conclusions: These data demonstrate that CEA691-specific CTL can be readily expanded from the self-restricted T-cell repertoire of pancreatic cancer patients and that their function can be enhanced by PD-L1 blockade. Clin Cancer Res; 23(20); 6178-89. ©2017 AACR.
Collapse
Affiliation(s)
- Yuan Chen
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Shao-An Xue
- Institute of Immunity and Transplantation, University College London, London, United Kingdom.,Genetic Engineering Laboratory, School of Biological and Environmental Engineering, Xi'An University, Xi'An, P. R. China
| | | | - Goran H Mohammad
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Chemistry Department, College of Science, University of Sulaimani, Sulaimanyah, Kurdistan Region, Iraq
| | - Stephen P Pereira
- Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Emma C Morris
- Institute of Immunity and Transplantation, University College London, London, United Kingdom.
| |
Collapse
|
295
|
Cioffi M, Trabulo SM, Vallespinos M, Raj D, Kheir TB, Lin ML, Begum J, Baker AM, Amgheib A, Saif J, Perez M, Soriano J, Desco M, Gomez-Gaviro MV, Cusso L, Megias D, Aicher A, Heeschen C. The miR-25-93-106b cluster regulates tumor metastasis and immune evasion via modulation of CXCL12 and PD-L1. Oncotarget 2017; 8:21609-21625. [PMID: 28423491 PMCID: PMC5400610 DOI: 10.18632/oncotarget.15450] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 01/10/2017] [Indexed: 12/14/2022] Open
Abstract
The stromal microenvironment controls response to injury and inflammation, and is also an important determinant of cancer cell behavior. However, our understanding of its modulation by miRNA (miR) and their respective targets is still sparse. Here, we identified the miR-25-93-106b cluster and two new target genes as critical drivers for metastasis and immune evasion of cancer cells. Using miR-25-93-106b knockout mice or antagomiRs, we demonstrated regulation of the production of the chemoattractant CXCL12 controlling bone marrow metastasis. Moreover, we identified the immune checkpoint PD-L1 (CD274) as a novel miR-93/106b target playing a central role in diminishing tumor immunity. Eventually, upregulation of miR-93 and miR-106b via miR-mimics or treatment with an epigenetic reader domain (BET) inhibitor resulted in diminished expression of CXCL12 and PD-L1. These data suggest a potential new therapeutic rationale for use of BET inhibitors for dual targeting of cancers with strong immunosuppressive and metastatic phenotypes.
Collapse
Affiliation(s)
- Michele Cioffi
- Stem Cells & Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sara M Trabulo
- Stem Cells & Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Mireia Vallespinos
- Stem Cells & Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Deepak Raj
- Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Tony Bou Kheir
- Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Meng-Lay Lin
- Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Julfa Begum
- Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Ann-Marie Baker
- Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Ala Amgheib
- Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Jaimy Saif
- School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Manuel Perez
- Confocal Microscopy Unit, Centro Nacional de Investigaciones Oncológicas, Spain
| | - Joaquim Soriano
- Confocal Microscopy Unit, Centro Nacional de Investigaciones Oncológicas, Spain
| | - Manuel Desco
- Departamento de Ingenieria Biomedica e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Maria Victoria Gomez-Gaviro
- Departamento de Ingenieria Biomedica e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Lorena Cusso
- Departamento de Ingenieria Biomedica e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Diego Megias
- Confocal Microscopy Unit, Centro Nacional de Investigaciones Oncológicas, Spain
| | - Alexandra Aicher
- Stem Cells & Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Christopher Heeschen
- Stem Cells & Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
296
|
Miao L, Li J, Liu Q, Feng R, Das M, Lin CM, Goodwin TJ, Dorosheva O, Liu R, Huang L. Transient and Local Expression of Chemokine and Immune Checkpoint Traps To Treat Pancreatic Cancer. ACS NANO 2017; 11:8690-8706. [PMID: 28809532 PMCID: PMC5961942 DOI: 10.1021/acsnano.7b01786] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Pancreatic tumors are known to be resistant to immunotherapy due to the extensive immune suppressive tumor microenvironment (TME). We hypothesized that CXCL12 and PD-L1 are two key molecules controlling the immunosuppressive TME. Fusion proteins, called traps, designed to bind with these two molecules with high affinity (Kd = 4.1 and 0.22 nM, respectively) were manufactured and tested for specific binding with the targets. Plasmid DNA encoding for each trap was formulated in nanoparticles and intravenously injected to mice bearing orthotopic pancreatic cancer. Expression of traps was mainly seen in the tumor, and secondarily, accumulations were primarily in the liver. Combination trap therapy shrunk the tumor and significantly prolonged the host survival. Either trap alone only brought in a partial therapeutic effect. We also found that CXCL12 trap allowed T-cell penetration into the tumor, and PD-L1 trap allowed the infiltrated T-cells to kill the tumor cells. Combo trap therapy also significantly reduced metastasis of the tumor cells to other organs. We conclude that the trap therapy significantly modified the immunosuppressive TME to allow the host immune system to kill the tumor cells. This can be an effective therapy in clinical settings.
Collapse
Affiliation(s)
- Lei Miao
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jingjing Li
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Qi Liu
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- UNC & NCSU Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Richard Feng
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Manisit Das
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - C. Michael Lin
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Tyler J. Goodwin
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Oleksandra Dorosheva
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Rihe Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Corresponding Authors: .
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- UNC & NCSU Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Corresponding Authors: .
| |
Collapse
|
297
|
Kuen J, Darowski D, Kluge T, Majety M. Pancreatic cancer cell/fibroblast co-culture induces M2 like macrophages that influence therapeutic response in a 3D model. PLoS One 2017; 12:e0182039. [PMID: 28750018 PMCID: PMC5531481 DOI: 10.1371/journal.pone.0182039] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/11/2017] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer (PC) remains one of the most challenging solid tumors to treat with a high unmet medical need as patients poorly respond to standard-of-care-therapies. Prominent desmoplastic reaction involving cancer-associated fibroblasts (CAFs) and the immune cells in the tumor microenvironment (TME) and their cross-talk play a significant role in tumor immune escape and progression. To identify the key cellular mechanisms induce an immunosuppressive tumor microenvironment, we established 3D co-culture model with pancreatic cancer cells, CAFs and monocytes. Using this model, we analyzed the influence of tumor cells and fibroblasts on monocytes and their immune suppressive phenotype. Phenotypic characterization of the monocytes after 3D co-culture with tumor/fibroblast spheroids was performed by analyzing the expression of defined cell surface markers and soluble factors. Functionality of these monocytes and their ability to influence T cell phenotype and proliferation was investigated. 3D co-culture of monocytes with pancreatic cancer cells and fibroblasts induced the production of immunosuppressive cytokines which are known to promote polarization of M2 like macrophages and myeloid derived suppressive cells (MDSCs). These co-culture spheroid polarized monocyte derived macrophages (MDMs) were poorly differentiated and had an M2 phenotype. The immunosuppressive function of these co-culture spheroids polarized MDMs was demonstrated by their ability to inhibit CD4+ and CD8+ T cell activation and proliferation in vitro, which we could partially reverse by 3D co-culture spheroid treatment with therapeutic molecules that are able to re-activated spheroid polarized MDMs or block immune suppressive factors such as Arginase-I.
Collapse
Affiliation(s)
- Janina Kuen
- Discovery Oncology, Roche Innovation Center Munich, Roche Pharma Research and Early development, Penzberg, Germany
| | - Diana Darowski
- Discovery Oncology, Roche Innovation Center Munich, Roche Pharma Research and Early development, Penzberg, Germany
| | - Tobias Kluge
- Discovery Oncology, Roche Innovation Center Munich, Roche Pharma Research and Early development, Penzberg, Germany
| | - Meher Majety
- Discovery Oncology, Roche Innovation Center Munich, Roche Pharma Research and Early development, Penzberg, Germany
- * E-mail:
| |
Collapse
|
298
|
Application of pharmacometrics and quantitative systems pharmacology to cancer therapy: The example of luminal a breast cancer. Pharmacol Res 2017; 124:20-33. [PMID: 28735000 DOI: 10.1016/j.phrs.2017.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/09/2017] [Accepted: 07/14/2017] [Indexed: 12/12/2022]
Abstract
Breast cancer (BC) is the most common cancer in women, and the second most frequent cause of cancer-related deaths in women worldwide. It is a heterogeneous disease composed of multiple subtypes with distinct morphologies and clinical implications. Quantitative systems pharmacology (QSP) is an emerging discipline bridging systems biology with pharmacokinetics (PK) and pharmacodynamics (PD) leveraging the systematic understanding of drugs' efficacy and toxicity. Despite numerous challenges in applying computational methodologies for QSP and mechanism-based PK/PD models to biological, physiological, and pharmacological data, bridging these disciplines has the potential to enhance our understanding of complex disease systems such as BC. In QSP/PK/PD models, various sources of data are combined including large, multi-scale experimental data such as -omics (i.e. genomics, transcriptomics, proteomics, and metabolomics), biomarkers (circulating and bound), PK, and PD endpoints. This offers a means for a translational application from pre-clinical mathematical models to patients, bridging the bench to bedside paradigm. Not only can these models be applied to inform and advance BC drug development, but they also could aid in optimizing combination therapies and rational dosing regimens for BC patients. Here, we review the current literature pertaining to the application of QSP and pharmacometrics-based pharmacotherapy in BC including bottom-up and top-down modeling approaches. Bottom-up modeling approaches employ mechanistic signal transduction pathways to predict the behavior of a biological system. The ones that are addressed in this review include signal transduction and homeostatic feedback modeling approaches. Alternatively, top-down modeling techniques are bioinformatics reconstruction techniques that infer static connections between molecules that make up a biological network and include (1) Bayesian networks, (2) co-expression networks, and (3) module-based approaches. This review also addresses novel techniques which utilize the principles of systems biology, synthetic lethality and tumor priming, both of which are discussed in relationship to novel drug targets and existing BC therapies. By utilizing QSP approaches, clinicians may develop a platform for improved dose individualization for subpopulation of BC patients, strengthen rationale in treatment designs, and explore mechanism elucidation for improving future treatments in BC medicine.
Collapse
|
299
|
Rationally combining immunotherapies to improve efficacy of immune checkpoint blockade in solid tumors. Cytokine Growth Factor Rev 2017; 36:5-15. [PMID: 28693973 DOI: 10.1016/j.cytogfr.2017.06.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 12/13/2022]
Abstract
With the widespread application of immune checkpoint blocking antibodies (ICBs) for the treatment of advanced cancer, immunotherapy has proven to be capable of yielding unparalleled clinical results. However, despite the initial success of ICB-treatment, still a minority of patients experience durable responses to ICB therapy. A plethora of mechanisms underlie ICB resistance ranging from low immunogenicity, inadequate generation or recruitment of tumor-specific T cells or local suppression by stromal cells to acquired genetic alterations leading to immune escape. Increasing the response rates to ICBs requires insight into the mechanisms underlying resistance and the subsequent design of rational therapeutic combinations on a per patient basis. In this review, we aim to establish order into the mechanisms governing primary and secondary ICB resistance, offer therapeutic options to circumvent different modes of resistance and plea for a personalized medicine approach to maximize immunotherapeutic benefit for all cancer patients.
Collapse
|
300
|
Guo S, Contratto M, Miller G, Leichman L, Wu J. Immunotherapy in pancreatic cancer: Unleash its potential through novel combinations. World J Clin Oncol 2017; 8:230-240. [PMID: 28638792 PMCID: PMC5465012 DOI: 10.5306/wjco.v8.i3.230] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/18/2017] [Accepted: 04/18/2017] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is the third leading cause of cancer mortality in both men and women in the United States, with poor response to current standard of care, short progression-free and overall survival. Immunotherapies that target cytotoxic T lymphocyte antigen-4, programmed cell death protein-1, and programmed death-ligand 1 checkpoints have shown remarkable activities in several cancers such as melanoma, renal cell carcinoma, and non-small cell lung cancer due to high numbers of somatic mutations, combined with cytotoxic T-cell responses. However, single checkpoint blockade was ineffective in pancreatic cancer, highlighting the challenges including the poor antigenicity, a dense desmoplastic stroma, and a largely immunosuppressive microenvironment. In this review, we will summarize available clinical results and ongoing efforts of combining immune checkpoint therapies with other treatment modalities such as chemotherapy, radiotherapy, and targeted therapy. These combination therapies hold promise in unleashing the potential of immunotherapy in pancreatic cancer to achieve better and more durable clinical responses by enhancing cytotoxic T-cell responses.
Collapse
|